1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/cms/concurrentMarkSweepThread.hpp"
 105 #include "gc/g1/concurrentMarkThread.inline.hpp"
 106 #include "gc/parallel/pcTasks.hpp"
 107 #endif // INCLUDE_ALL_GCS
 108 #if INCLUDE_JVMCI
 109 #include "jvmci/jvmciCompiler.hpp"
 110 #include "jvmci/jvmciRuntime.hpp"
 111 #endif
 112 #ifdef COMPILER1
 113 #include "c1/c1_Compiler.hpp"
 114 #endif
 115 #ifdef COMPILER2
 116 #include "opto/c2compiler.hpp"
 117 #include "opto/idealGraphPrinter.hpp"
 118 #endif
 119 #if INCLUDE_RTM_OPT
 120 #include "runtime/rtmLocking.hpp"
 121 #endif
 122 
 123 // Initialization after module runtime initialization
 124 void universe_post_module_init();  // must happen after call_initPhase2
 125 
 126 #ifdef DTRACE_ENABLED
 127 
 128 // Only bother with this argument setup if dtrace is available
 129 
 130   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 131   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 132 
 133   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 134     {                                                                      \
 135       ResourceMark rm(this);                                               \
 136       int len = 0;                                                         \
 137       const char* name = (javathread)->get_thread_name();                  \
 138       len = strlen(name);                                                  \
 139       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 140         (char *) name, len,                                                \
 141         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 142         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 143         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 144     }
 145 
 146 #else //  ndef DTRACE_ENABLED
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)
 149 
 150 #endif // ndef DTRACE_ENABLED
 151 
 152 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 153 // Current thread is maintained as a thread-local variable
 154 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 155 #endif
 156 // Class hierarchy
 157 // - Thread
 158 //   - VMThread
 159 //   - WatcherThread
 160 //   - ConcurrentMarkSweepThread
 161 //   - JavaThread
 162 //     - CompilerThread
 163 
 164 // ======= Thread ========
 165 // Support for forcing alignment of thread objects for biased locking
 166 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 167   if (UseBiasedLocking) {
 168     const int alignment = markOopDesc::biased_lock_alignment;
 169     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 170     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 171                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 172                                                          AllocFailStrategy::RETURN_NULL);
 173     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 174     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 175            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 176            "JavaThread alignment code overflowed allocated storage");
 177     if (aligned_addr != real_malloc_addr) {
 178       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 179                               p2i(real_malloc_addr),
 180                               p2i(aligned_addr));
 181     }
 182     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 183     return aligned_addr;
 184   } else {
 185     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 186                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 187   }
 188 }
 189 
 190 void Thread::operator delete(void* p) {
 191   if (UseBiasedLocking) {
 192     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 193     FreeHeap(real_malloc_addr);
 194   } else {
 195     FreeHeap(p);
 196   }
 197 }
 198 
 199 
 200 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 201 // JavaThread
 202 
 203 
 204 Thread::Thread() {
 205   // stack and get_thread
 206   set_stack_base(NULL);
 207   set_stack_size(0);
 208   set_self_raw_id(0);
 209   set_lgrp_id(-1);
 210   DEBUG_ONLY(clear_suspendible_thread();)
 211 
 212   // allocated data structures
 213   set_osthread(NULL);
 214   set_resource_area(new (mtThread)ResourceArea());
 215   DEBUG_ONLY(_current_resource_mark = NULL;)
 216   set_handle_area(new (mtThread) HandleArea(NULL));
 217   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 218   set_active_handles(NULL);
 219   set_free_handle_block(NULL);
 220   set_last_handle_mark(NULL);
 221 
 222   // This initial value ==> never claimed.
 223   _oops_do_parity = 0;
 224 
 225   // the handle mark links itself to last_handle_mark
 226   new HandleMark(this);
 227 
 228   // plain initialization
 229   debug_only(_owned_locks = NULL;)
 230   debug_only(_allow_allocation_count = 0;)
 231   NOT_PRODUCT(_allow_safepoint_count = 0;)
 232   NOT_PRODUCT(_skip_gcalot = false;)
 233   _jvmti_env_iteration_count = 0;
 234   set_allocated_bytes(0);
 235   _vm_operation_started_count = 0;
 236   _vm_operation_completed_count = 0;
 237   _current_pending_monitor = NULL;
 238   _current_pending_monitor_is_from_java = true;
 239   _current_waiting_monitor = NULL;
 240   _num_nested_signal = 0;
 241   omFreeList = NULL;
 242   omFreeCount = 0;
 243   omFreeProvision = 32;
 244   omInUseList = NULL;
 245   omInUseCount = 0;
 246 
 247 #ifdef ASSERT
 248   _visited_for_critical_count = false;
 249 #endif
 250 
 251   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 252                          Monitor::_safepoint_check_sometimes);
 253   _suspend_flags = 0;
 254 
 255   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 256   _hashStateX = os::random();
 257   _hashStateY = 842502087;
 258   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 259   _hashStateW = 273326509;
 260 
 261   _OnTrap   = 0;
 262   _schedctl = NULL;
 263   _Stalled  = 0;
 264   _TypeTag  = 0x2BAD;
 265 
 266   // Many of the following fields are effectively final - immutable
 267   // Note that nascent threads can't use the Native Monitor-Mutex
 268   // construct until the _MutexEvent is initialized ...
 269   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 270   // we might instead use a stack of ParkEvents that we could provision on-demand.
 271   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 272   // and ::Release()
 273   _ParkEvent   = ParkEvent::Allocate(this);
 274   _SleepEvent  = ParkEvent::Allocate(this);
 275   _MutexEvent  = ParkEvent::Allocate(this);
 276   _MuxEvent    = ParkEvent::Allocate(this);
 277 
 278 #ifdef CHECK_UNHANDLED_OOPS
 279   if (CheckUnhandledOops) {
 280     _unhandled_oops = new UnhandledOops(this);
 281   }
 282 #endif // CHECK_UNHANDLED_OOPS
 283 #ifdef ASSERT
 284   if (UseBiasedLocking) {
 285     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 286     assert(this == _real_malloc_address ||
 287            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 288            "bug in forced alignment of thread objects");
 289   }
 290 #endif // ASSERT
 291 }
 292 
 293 void Thread::initialize_thread_current() {
 294 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 295   assert(_thr_current == NULL, "Thread::current already initialized");
 296   _thr_current = this;
 297 #endif
 298   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 299   ThreadLocalStorage::set_thread(this);
 300   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 301 }
 302 
 303 void Thread::clear_thread_current() {
 304   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 305 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 306   _thr_current = NULL;
 307 #endif
 308   ThreadLocalStorage::set_thread(NULL);
 309 }
 310 
 311 void Thread::record_stack_base_and_size() {
 312   set_stack_base(os::current_stack_base());
 313   set_stack_size(os::current_stack_size());
 314   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 315   // in initialize_thread(). Without the adjustment, stack size is
 316   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 317   // So far, only Solaris has real implementation of initialize_thread().
 318   //
 319   // set up any platform-specific state.
 320   os::initialize_thread(this);
 321 
 322   // Set stack limits after thread is initialized.
 323   if (is_Java_thread()) {
 324     ((JavaThread*) this)->set_stack_overflow_limit();
 325     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 326   }
 327 #if INCLUDE_NMT
 328   // record thread's native stack, stack grows downward
 329   MemTracker::record_thread_stack(stack_end(), stack_size());
 330 #endif // INCLUDE_NMT
 331   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 332     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 333     os::current_thread_id(), p2i(stack_base() - stack_size()),
 334     p2i(stack_base()), stack_size()/1024);
 335 }
 336 
 337 
 338 Thread::~Thread() {
 339   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 340   ObjectSynchronizer::omFlush(this);
 341 
 342   EVENT_THREAD_DESTRUCT(this);
 343 
 344   // stack_base can be NULL if the thread is never started or exited before
 345   // record_stack_base_and_size called. Although, we would like to ensure
 346   // that all started threads do call record_stack_base_and_size(), there is
 347   // not proper way to enforce that.
 348 #if INCLUDE_NMT
 349   if (_stack_base != NULL) {
 350     MemTracker::release_thread_stack(stack_end(), stack_size());
 351 #ifdef ASSERT
 352     set_stack_base(NULL);
 353 #endif
 354   }
 355 #endif // INCLUDE_NMT
 356 
 357   // deallocate data structures
 358   delete resource_area();
 359   // since the handle marks are using the handle area, we have to deallocated the root
 360   // handle mark before deallocating the thread's handle area,
 361   assert(last_handle_mark() != NULL, "check we have an element");
 362   delete last_handle_mark();
 363   assert(last_handle_mark() == NULL, "check we have reached the end");
 364 
 365   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 366   // We NULL out the fields for good hygiene.
 367   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 368   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 369   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 370   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 371 
 372   delete handle_area();
 373   delete metadata_handles();
 374 
 375   // SR_handler uses this as a termination indicator -
 376   // needs to happen before os::free_thread()
 377   delete _SR_lock;
 378   _SR_lock = NULL;
 379 
 380   // osthread() can be NULL, if creation of thread failed.
 381   if (osthread() != NULL) os::free_thread(osthread());
 382 
 383   // clear Thread::current if thread is deleting itself.
 384   // Needed to ensure JNI correctly detects non-attached threads.
 385   if (this == Thread::current()) {
 386     clear_thread_current();
 387   }
 388 
 389   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 390 }
 391 
 392 // NOTE: dummy function for assertion purpose.
 393 void Thread::run() {
 394   ShouldNotReachHere();
 395 }
 396 
 397 #ifdef ASSERT
 398 // Private method to check for dangling thread pointer
 399 void check_for_dangling_thread_pointer(Thread *thread) {
 400   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 401          "possibility of dangling Thread pointer");
 402 }
 403 #endif
 404 
 405 ThreadPriority Thread::get_priority(const Thread* const thread) {
 406   ThreadPriority priority;
 407   // Can return an error!
 408   (void)os::get_priority(thread, priority);
 409   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 410   return priority;
 411 }
 412 
 413 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 414   debug_only(check_for_dangling_thread_pointer(thread);)
 415   // Can return an error!
 416   (void)os::set_priority(thread, priority);
 417 }
 418 
 419 
 420 void Thread::start(Thread* thread) {
 421   // Start is different from resume in that its safety is guaranteed by context or
 422   // being called from a Java method synchronized on the Thread object.
 423   if (!DisableStartThread) {
 424     if (thread->is_Java_thread()) {
 425       // Initialize the thread state to RUNNABLE before starting this thread.
 426       // Can not set it after the thread started because we do not know the
 427       // exact thread state at that time. It could be in MONITOR_WAIT or
 428       // in SLEEPING or some other state.
 429       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 430                                           java_lang_Thread::RUNNABLE);
 431     }
 432     os::start_thread(thread);
 433   }
 434 }
 435 
 436 // Enqueue a VM_Operation to do the job for us - sometime later
 437 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 438   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 439   VMThread::execute(vm_stop);
 440 }
 441 
 442 
 443 // Check if an external suspend request has completed (or has been
 444 // cancelled). Returns true if the thread is externally suspended and
 445 // false otherwise.
 446 //
 447 // The bits parameter returns information about the code path through
 448 // the routine. Useful for debugging:
 449 //
 450 // set in is_ext_suspend_completed():
 451 // 0x00000001 - routine was entered
 452 // 0x00000010 - routine return false at end
 453 // 0x00000100 - thread exited (return false)
 454 // 0x00000200 - suspend request cancelled (return false)
 455 // 0x00000400 - thread suspended (return true)
 456 // 0x00001000 - thread is in a suspend equivalent state (return true)
 457 // 0x00002000 - thread is native and walkable (return true)
 458 // 0x00004000 - thread is native_trans and walkable (needed retry)
 459 //
 460 // set in wait_for_ext_suspend_completion():
 461 // 0x00010000 - routine was entered
 462 // 0x00020000 - suspend request cancelled before loop (return false)
 463 // 0x00040000 - thread suspended before loop (return true)
 464 // 0x00080000 - suspend request cancelled in loop (return false)
 465 // 0x00100000 - thread suspended in loop (return true)
 466 // 0x00200000 - suspend not completed during retry loop (return false)
 467 
 468 // Helper class for tracing suspend wait debug bits.
 469 //
 470 // 0x00000100 indicates that the target thread exited before it could
 471 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 472 // 0x00080000 each indicate a cancelled suspend request so they don't
 473 // count as wait failures either.
 474 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 475 
 476 class TraceSuspendDebugBits : public StackObj {
 477  private:
 478   JavaThread * jt;
 479   bool         is_wait;
 480   bool         called_by_wait;  // meaningful when !is_wait
 481   uint32_t *   bits;
 482 
 483  public:
 484   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 485                         uint32_t *_bits) {
 486     jt             = _jt;
 487     is_wait        = _is_wait;
 488     called_by_wait = _called_by_wait;
 489     bits           = _bits;
 490   }
 491 
 492   ~TraceSuspendDebugBits() {
 493     if (!is_wait) {
 494 #if 1
 495       // By default, don't trace bits for is_ext_suspend_completed() calls.
 496       // That trace is very chatty.
 497       return;
 498 #else
 499       if (!called_by_wait) {
 500         // If tracing for is_ext_suspend_completed() is enabled, then only
 501         // trace calls to it from wait_for_ext_suspend_completion()
 502         return;
 503       }
 504 #endif
 505     }
 506 
 507     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 508       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 509         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 510         ResourceMark rm;
 511 
 512         tty->print_cr(
 513                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 514                       jt->get_thread_name(), *bits);
 515 
 516         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 517       }
 518     }
 519   }
 520 };
 521 #undef DEBUG_FALSE_BITS
 522 
 523 
 524 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 525                                           uint32_t *bits) {
 526   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 527 
 528   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 529   bool do_trans_retry;           // flag to force the retry
 530 
 531   *bits |= 0x00000001;
 532 
 533   do {
 534     do_trans_retry = false;
 535 
 536     if (is_exiting()) {
 537       // Thread is in the process of exiting. This is always checked
 538       // first to reduce the risk of dereferencing a freed JavaThread.
 539       *bits |= 0x00000100;
 540       return false;
 541     }
 542 
 543     if (!is_external_suspend()) {
 544       // Suspend request is cancelled. This is always checked before
 545       // is_ext_suspended() to reduce the risk of a rogue resume
 546       // confusing the thread that made the suspend request.
 547       *bits |= 0x00000200;
 548       return false;
 549     }
 550 
 551     if (is_ext_suspended()) {
 552       // thread is suspended
 553       *bits |= 0x00000400;
 554       return true;
 555     }
 556 
 557     // Now that we no longer do hard suspends of threads running
 558     // native code, the target thread can be changing thread state
 559     // while we are in this routine:
 560     //
 561     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 562     //
 563     // We save a copy of the thread state as observed at this moment
 564     // and make our decision about suspend completeness based on the
 565     // copy. This closes the race where the thread state is seen as
 566     // _thread_in_native_trans in the if-thread_blocked check, but is
 567     // seen as _thread_blocked in if-thread_in_native_trans check.
 568     JavaThreadState save_state = thread_state();
 569 
 570     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 571       // If the thread's state is _thread_blocked and this blocking
 572       // condition is known to be equivalent to a suspend, then we can
 573       // consider the thread to be externally suspended. This means that
 574       // the code that sets _thread_blocked has been modified to do
 575       // self-suspension if the blocking condition releases. We also
 576       // used to check for CONDVAR_WAIT here, but that is now covered by
 577       // the _thread_blocked with self-suspension check.
 578       //
 579       // Return true since we wouldn't be here unless there was still an
 580       // external suspend request.
 581       *bits |= 0x00001000;
 582       return true;
 583     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 584       // Threads running native code will self-suspend on native==>VM/Java
 585       // transitions. If its stack is walkable (should always be the case
 586       // unless this function is called before the actual java_suspend()
 587       // call), then the wait is done.
 588       *bits |= 0x00002000;
 589       return true;
 590     } else if (!called_by_wait && !did_trans_retry &&
 591                save_state == _thread_in_native_trans &&
 592                frame_anchor()->walkable()) {
 593       // The thread is transitioning from thread_in_native to another
 594       // thread state. check_safepoint_and_suspend_for_native_trans()
 595       // will force the thread to self-suspend. If it hasn't gotten
 596       // there yet we may have caught the thread in-between the native
 597       // code check above and the self-suspend. Lucky us. If we were
 598       // called by wait_for_ext_suspend_completion(), then it
 599       // will be doing the retries so we don't have to.
 600       //
 601       // Since we use the saved thread state in the if-statement above,
 602       // there is a chance that the thread has already transitioned to
 603       // _thread_blocked by the time we get here. In that case, we will
 604       // make a single unnecessary pass through the logic below. This
 605       // doesn't hurt anything since we still do the trans retry.
 606 
 607       *bits |= 0x00004000;
 608 
 609       // Once the thread leaves thread_in_native_trans for another
 610       // thread state, we break out of this retry loop. We shouldn't
 611       // need this flag to prevent us from getting back here, but
 612       // sometimes paranoia is good.
 613       did_trans_retry = true;
 614 
 615       // We wait for the thread to transition to a more usable state.
 616       for (int i = 1; i <= SuspendRetryCount; i++) {
 617         // We used to do an "os::yield_all(i)" call here with the intention
 618         // that yielding would increase on each retry. However, the parameter
 619         // is ignored on Linux which means the yield didn't scale up. Waiting
 620         // on the SR_lock below provides a much more predictable scale up for
 621         // the delay. It also provides a simple/direct point to check for any
 622         // safepoint requests from the VMThread
 623 
 624         // temporarily drops SR_lock while doing wait with safepoint check
 625         // (if we're a JavaThread - the WatcherThread can also call this)
 626         // and increase delay with each retry
 627         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 628 
 629         // check the actual thread state instead of what we saved above
 630         if (thread_state() != _thread_in_native_trans) {
 631           // the thread has transitioned to another thread state so
 632           // try all the checks (except this one) one more time.
 633           do_trans_retry = true;
 634           break;
 635         }
 636       } // end retry loop
 637 
 638 
 639     }
 640   } while (do_trans_retry);
 641 
 642   *bits |= 0x00000010;
 643   return false;
 644 }
 645 
 646 // Wait for an external suspend request to complete (or be cancelled).
 647 // Returns true if the thread is externally suspended and false otherwise.
 648 //
 649 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 650                                                  uint32_t *bits) {
 651   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 652                              false /* !called_by_wait */, bits);
 653 
 654   // local flag copies to minimize SR_lock hold time
 655   bool is_suspended;
 656   bool pending;
 657   uint32_t reset_bits;
 658 
 659   // set a marker so is_ext_suspend_completed() knows we are the caller
 660   *bits |= 0x00010000;
 661 
 662   // We use reset_bits to reinitialize the bits value at the top of
 663   // each retry loop. This allows the caller to make use of any
 664   // unused bits for their own marking purposes.
 665   reset_bits = *bits;
 666 
 667   {
 668     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 669     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 670                                             delay, bits);
 671     pending = is_external_suspend();
 672   }
 673   // must release SR_lock to allow suspension to complete
 674 
 675   if (!pending) {
 676     // A cancelled suspend request is the only false return from
 677     // is_ext_suspend_completed() that keeps us from entering the
 678     // retry loop.
 679     *bits |= 0x00020000;
 680     return false;
 681   }
 682 
 683   if (is_suspended) {
 684     *bits |= 0x00040000;
 685     return true;
 686   }
 687 
 688   for (int i = 1; i <= retries; i++) {
 689     *bits = reset_bits;  // reinit to only track last retry
 690 
 691     // We used to do an "os::yield_all(i)" call here with the intention
 692     // that yielding would increase on each retry. However, the parameter
 693     // is ignored on Linux which means the yield didn't scale up. Waiting
 694     // on the SR_lock below provides a much more predictable scale up for
 695     // the delay. It also provides a simple/direct point to check for any
 696     // safepoint requests from the VMThread
 697 
 698     {
 699       MutexLocker ml(SR_lock());
 700       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 701       // can also call this)  and increase delay with each retry
 702       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 703 
 704       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 705                                               delay, bits);
 706 
 707       // It is possible for the external suspend request to be cancelled
 708       // (by a resume) before the actual suspend operation is completed.
 709       // Refresh our local copy to see if we still need to wait.
 710       pending = is_external_suspend();
 711     }
 712 
 713     if (!pending) {
 714       // A cancelled suspend request is the only false return from
 715       // is_ext_suspend_completed() that keeps us from staying in the
 716       // retry loop.
 717       *bits |= 0x00080000;
 718       return false;
 719     }
 720 
 721     if (is_suspended) {
 722       *bits |= 0x00100000;
 723       return true;
 724     }
 725   } // end retry loop
 726 
 727   // thread did not suspend after all our retries
 728   *bits |= 0x00200000;
 729   return false;
 730 }
 731 
 732 #ifndef PRODUCT
 733 void JavaThread::record_jump(address target, address instr, const char* file,
 734                              int line) {
 735 
 736   // This should not need to be atomic as the only way for simultaneous
 737   // updates is via interrupts. Even then this should be rare or non-existent
 738   // and we don't care that much anyway.
 739 
 740   int index = _jmp_ring_index;
 741   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 742   _jmp_ring[index]._target = (intptr_t) target;
 743   _jmp_ring[index]._instruction = (intptr_t) instr;
 744   _jmp_ring[index]._file = file;
 745   _jmp_ring[index]._line = line;
 746 }
 747 #endif // PRODUCT
 748 
 749 // Called by flat profiler
 750 // Callers have already called wait_for_ext_suspend_completion
 751 // The assertion for that is currently too complex to put here:
 752 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 753   bool gotframe = false;
 754   // self suspension saves needed state.
 755   if (has_last_Java_frame() && _anchor.walkable()) {
 756     *_fr = pd_last_frame();
 757     gotframe = true;
 758   }
 759   return gotframe;
 760 }
 761 
 762 void Thread::interrupt(Thread* thread) {
 763   debug_only(check_for_dangling_thread_pointer(thread);)
 764   os::interrupt(thread);
 765 }
 766 
 767 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 768   debug_only(check_for_dangling_thread_pointer(thread);)
 769   // Note:  If clear_interrupted==false, this simply fetches and
 770   // returns the value of the field osthread()->interrupted().
 771   return os::is_interrupted(thread, clear_interrupted);
 772 }
 773 
 774 
 775 // GC Support
 776 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 777   jint thread_parity = _oops_do_parity;
 778   if (thread_parity != strong_roots_parity) {
 779     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 780     if (res == thread_parity) {
 781       return true;
 782     } else {
 783       guarantee(res == strong_roots_parity, "Or else what?");
 784       return false;
 785     }
 786   }
 787   return false;
 788 }
 789 
 790 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 791   active_handles()->oops_do(f);
 792   // Do oop for ThreadShadow
 793   f->do_oop((oop*)&_pending_exception);
 794   handle_area()->oops_do(f);
 795 }
 796 
 797 void Thread::metadata_handles_do(void f(Metadata*)) {
 798   // Only walk the Handles in Thread.
 799   if (metadata_handles() != NULL) {
 800     for (int i = 0; i< metadata_handles()->length(); i++) {
 801       f(metadata_handles()->at(i));
 802     }
 803   }
 804 }
 805 
 806 void Thread::print_on(outputStream* st) const {
 807   // get_priority assumes osthread initialized
 808   if (osthread() != NULL) {
 809     int os_prio;
 810     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 811       st->print("os_prio=%d ", os_prio);
 812     }
 813     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 814     ext().print_on(st);
 815     osthread()->print_on(st);
 816   }
 817   debug_only(if (WizardMode) print_owned_locks_on(st);)
 818 }
 819 
 820 // Thread::print_on_error() is called by fatal error handler. Don't use
 821 // any lock or allocate memory.
 822 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 823   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 824 
 825   if (is_VM_thread())                 { st->print("VMThread"); }
 826   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 827   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 828   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 829   else                                { st->print("Thread"); }
 830 
 831   if (is_Named_thread()) {
 832     st->print(" \"%s\"", name());
 833   }
 834 
 835   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 836             p2i(stack_end()), p2i(stack_base()));
 837 
 838   if (osthread()) {
 839     st->print(" [id=%d]", osthread()->thread_id());
 840   }
 841 }
 842 
 843 #ifdef ASSERT
 844 void Thread::print_owned_locks_on(outputStream* st) const {
 845   Monitor *cur = _owned_locks;
 846   if (cur == NULL) {
 847     st->print(" (no locks) ");
 848   } else {
 849     st->print_cr(" Locks owned:");
 850     while (cur) {
 851       cur->print_on(st);
 852       cur = cur->next();
 853     }
 854   }
 855 }
 856 
 857 static int ref_use_count  = 0;
 858 
 859 bool Thread::owns_locks_but_compiled_lock() const {
 860   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 861     if (cur != Compile_lock) return true;
 862   }
 863   return false;
 864 }
 865 
 866 
 867 #endif
 868 
 869 #ifndef PRODUCT
 870 
 871 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 872 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 873 // no threads which allow_vm_block's are held
 874 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 875   // Check if current thread is allowed to block at a safepoint
 876   if (!(_allow_safepoint_count == 0)) {
 877     fatal("Possible safepoint reached by thread that does not allow it");
 878   }
 879   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 880     fatal("LEAF method calling lock?");
 881   }
 882 
 883 #ifdef ASSERT
 884   if (potential_vm_operation && is_Java_thread()
 885       && !Universe::is_bootstrapping()) {
 886     // Make sure we do not hold any locks that the VM thread also uses.
 887     // This could potentially lead to deadlocks
 888     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 889       // Threads_lock is special, since the safepoint synchronization will not start before this is
 890       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 891       // since it is used to transfer control between JavaThreads and the VMThread
 892       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 893       if ((cur->allow_vm_block() &&
 894            cur != Threads_lock &&
 895            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 896            cur != VMOperationRequest_lock &&
 897            cur != VMOperationQueue_lock) ||
 898            cur->rank() == Mutex::special) {
 899         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 900       }
 901     }
 902   }
 903 
 904   if (GCALotAtAllSafepoints) {
 905     // We could enter a safepoint here and thus have a gc
 906     InterfaceSupport::check_gc_alot();
 907   }
 908 #endif
 909 }
 910 #endif
 911 
 912 bool Thread::is_in_stack(address adr) const {
 913   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 914   address end = os::current_stack_pointer();
 915   // Allow non Java threads to call this without stack_base
 916   if (_stack_base == NULL) return true;
 917   if (stack_base() >= adr && adr >= end) return true;
 918 
 919   return false;
 920 }
 921 
 922 bool Thread::is_in_usable_stack(address adr) const {
 923   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 924   size_t usable_stack_size = _stack_size - stack_guard_size;
 925 
 926   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 927 }
 928 
 929 
 930 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 931 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 932 // used for compilation in the future. If that change is made, the need for these methods
 933 // should be revisited, and they should be removed if possible.
 934 
 935 bool Thread::is_lock_owned(address adr) const {
 936   return on_local_stack(adr);
 937 }
 938 
 939 bool Thread::set_as_starting_thread() {
 940   // NOTE: this must be called inside the main thread.
 941   return os::create_main_thread((JavaThread*)this);
 942 }
 943 
 944 static void initialize_class(Symbol* class_name, TRAPS) {
 945   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 946   InstanceKlass::cast(klass)->initialize(CHECK);
 947 }
 948 
 949 
 950 // Creates the initial ThreadGroup
 951 static Handle create_initial_thread_group(TRAPS) {
 952   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 953   instanceKlassHandle klass (THREAD, k);
 954 
 955   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 956   {
 957     JavaValue result(T_VOID);
 958     JavaCalls::call_special(&result,
 959                             system_instance,
 960                             klass,
 961                             vmSymbols::object_initializer_name(),
 962                             vmSymbols::void_method_signature(),
 963                             CHECK_NH);
 964   }
 965   Universe::set_system_thread_group(system_instance());
 966 
 967   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 968   {
 969     JavaValue result(T_VOID);
 970     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 971     JavaCalls::call_special(&result,
 972                             main_instance,
 973                             klass,
 974                             vmSymbols::object_initializer_name(),
 975                             vmSymbols::threadgroup_string_void_signature(),
 976                             system_instance,
 977                             string,
 978                             CHECK_NH);
 979   }
 980   return main_instance;
 981 }
 982 
 983 // Creates the initial Thread
 984 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 985                                  TRAPS) {
 986   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 987   instanceKlassHandle klass (THREAD, k);
 988   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 989 
 990   java_lang_Thread::set_thread(thread_oop(), thread);
 991   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 992   thread->set_threadObj(thread_oop());
 993 
 994   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 995 
 996   JavaValue result(T_VOID);
 997   JavaCalls::call_special(&result, thread_oop,
 998                           klass,
 999                           vmSymbols::object_initializer_name(),
1000                           vmSymbols::threadgroup_string_void_signature(),
1001                           thread_group,
1002                           string,
1003                           CHECK_NULL);
1004   return thread_oop();
1005 }
1006 
1007 char java_runtime_name[128] = "";
1008 char java_runtime_version[128] = "";
1009 
1010 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1011 static const char* get_java_runtime_name(TRAPS) {
1012   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1013                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1014   fieldDescriptor fd;
1015   bool found = k != NULL &&
1016                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1017                                                         vmSymbols::string_signature(), &fd);
1018   if (found) {
1019     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1020     if (name_oop == NULL) {
1021       return NULL;
1022     }
1023     const char* name = java_lang_String::as_utf8_string(name_oop,
1024                                                         java_runtime_name,
1025                                                         sizeof(java_runtime_name));
1026     return name;
1027   } else {
1028     return NULL;
1029   }
1030 }
1031 
1032 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1033 static const char* get_java_runtime_version(TRAPS) {
1034   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1035                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1036   fieldDescriptor fd;
1037   bool found = k != NULL &&
1038                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1039                                                         vmSymbols::string_signature(), &fd);
1040   if (found) {
1041     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1042     if (name_oop == NULL) {
1043       return NULL;
1044     }
1045     const char* name = java_lang_String::as_utf8_string(name_oop,
1046                                                         java_runtime_version,
1047                                                         sizeof(java_runtime_version));
1048     return name;
1049   } else {
1050     return NULL;
1051   }
1052 }
1053 
1054 // General purpose hook into Java code, run once when the VM is initialized.
1055 // The Java library method itself may be changed independently from the VM.
1056 static void call_postVMInitHook(TRAPS) {
1057   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1058   instanceKlassHandle klass (THREAD, k);
1059   if (klass.not_null()) {
1060     JavaValue result(T_VOID);
1061     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1062                            vmSymbols::void_method_signature(),
1063                            CHECK);
1064   }
1065 }
1066 
1067 static void reset_vm_info_property(TRAPS) {
1068   // the vm info string
1069   ResourceMark rm(THREAD);
1070   const char *vm_info = VM_Version::vm_info_string();
1071 
1072   // java.lang.System class
1073   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1074   instanceKlassHandle klass (THREAD, k);
1075 
1076   // setProperty arguments
1077   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1078   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1079 
1080   // return value
1081   JavaValue r(T_OBJECT);
1082 
1083   // public static String setProperty(String key, String value);
1084   JavaCalls::call_static(&r,
1085                          klass,
1086                          vmSymbols::setProperty_name(),
1087                          vmSymbols::string_string_string_signature(),
1088                          key_str,
1089                          value_str,
1090                          CHECK);
1091 }
1092 
1093 
1094 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1095                                     bool daemon, TRAPS) {
1096   assert(thread_group.not_null(), "thread group should be specified");
1097   assert(threadObj() == NULL, "should only create Java thread object once");
1098 
1099   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1100   instanceKlassHandle klass (THREAD, k);
1101   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1102 
1103   java_lang_Thread::set_thread(thread_oop(), this);
1104   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1105   set_threadObj(thread_oop());
1106 
1107   JavaValue result(T_VOID);
1108   if (thread_name != NULL) {
1109     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1110     // Thread gets assigned specified name and null target
1111     JavaCalls::call_special(&result,
1112                             thread_oop,
1113                             klass,
1114                             vmSymbols::object_initializer_name(),
1115                             vmSymbols::threadgroup_string_void_signature(),
1116                             thread_group, // Argument 1
1117                             name,         // Argument 2
1118                             THREAD);
1119   } else {
1120     // Thread gets assigned name "Thread-nnn" and null target
1121     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1122     JavaCalls::call_special(&result,
1123                             thread_oop,
1124                             klass,
1125                             vmSymbols::object_initializer_name(),
1126                             vmSymbols::threadgroup_runnable_void_signature(),
1127                             thread_group, // Argument 1
1128                             Handle(),     // Argument 2
1129                             THREAD);
1130   }
1131 
1132 
1133   if (daemon) {
1134     java_lang_Thread::set_daemon(thread_oop());
1135   }
1136 
1137   if (HAS_PENDING_EXCEPTION) {
1138     return;
1139   }
1140 
1141   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1142   Handle threadObj(THREAD, this->threadObj());
1143 
1144   JavaCalls::call_special(&result,
1145                           thread_group,
1146                           group,
1147                           vmSymbols::add_method_name(),
1148                           vmSymbols::thread_void_signature(),
1149                           threadObj,          // Arg 1
1150                           THREAD);
1151 }
1152 
1153 // NamedThread --  non-JavaThread subclasses with multiple
1154 // uniquely named instances should derive from this.
1155 NamedThread::NamedThread() : Thread() {
1156   _name = NULL;
1157   _processed_thread = NULL;
1158   _gc_id = GCId::undefined();
1159 }
1160 
1161 NamedThread::~NamedThread() {
1162   if (_name != NULL) {
1163     FREE_C_HEAP_ARRAY(char, _name);
1164     _name = NULL;
1165   }
1166 }
1167 
1168 void NamedThread::set_name(const char* format, ...) {
1169   guarantee(_name == NULL, "Only get to set name once.");
1170   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1171   guarantee(_name != NULL, "alloc failure");
1172   va_list ap;
1173   va_start(ap, format);
1174   jio_vsnprintf(_name, max_name_len, format, ap);
1175   va_end(ap);
1176 }
1177 
1178 void NamedThread::initialize_named_thread() {
1179   set_native_thread_name(name());
1180 }
1181 
1182 void NamedThread::print_on(outputStream* st) const {
1183   st->print("\"%s\" ", name());
1184   Thread::print_on(st);
1185   st->cr();
1186 }
1187 
1188 
1189 // ======= WatcherThread ========
1190 
1191 // The watcher thread exists to simulate timer interrupts.  It should
1192 // be replaced by an abstraction over whatever native support for
1193 // timer interrupts exists on the platform.
1194 
1195 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1196 bool WatcherThread::_startable = false;
1197 volatile bool  WatcherThread::_should_terminate = false;
1198 
1199 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1200   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1201   if (os::create_thread(this, os::watcher_thread)) {
1202     _watcher_thread = this;
1203 
1204     // Set the watcher thread to the highest OS priority which should not be
1205     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1206     // is created. The only normal thread using this priority is the reference
1207     // handler thread, which runs for very short intervals only.
1208     // If the VMThread's priority is not lower than the WatcherThread profiling
1209     // will be inaccurate.
1210     os::set_priority(this, MaxPriority);
1211     if (!DisableStartThread) {
1212       os::start_thread(this);
1213     }
1214   }
1215 }
1216 
1217 int WatcherThread::sleep() const {
1218   // The WatcherThread does not participate in the safepoint protocol
1219   // for the PeriodicTask_lock because it is not a JavaThread.
1220   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1221 
1222   if (_should_terminate) {
1223     // check for termination before we do any housekeeping or wait
1224     return 0;  // we did not sleep.
1225   }
1226 
1227   // remaining will be zero if there are no tasks,
1228   // causing the WatcherThread to sleep until a task is
1229   // enrolled
1230   int remaining = PeriodicTask::time_to_wait();
1231   int time_slept = 0;
1232 
1233   // we expect this to timeout - we only ever get unparked when
1234   // we should terminate or when a new task has been enrolled
1235   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1236 
1237   jlong time_before_loop = os::javaTimeNanos();
1238 
1239   while (true) {
1240     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1241                                             remaining);
1242     jlong now = os::javaTimeNanos();
1243 
1244     if (remaining == 0) {
1245       // if we didn't have any tasks we could have waited for a long time
1246       // consider the time_slept zero and reset time_before_loop
1247       time_slept = 0;
1248       time_before_loop = now;
1249     } else {
1250       // need to recalculate since we might have new tasks in _tasks
1251       time_slept = (int) ((now - time_before_loop) / 1000000);
1252     }
1253 
1254     // Change to task list or spurious wakeup of some kind
1255     if (timedout || _should_terminate) {
1256       break;
1257     }
1258 
1259     remaining = PeriodicTask::time_to_wait();
1260     if (remaining == 0) {
1261       // Last task was just disenrolled so loop around and wait until
1262       // another task gets enrolled
1263       continue;
1264     }
1265 
1266     remaining -= time_slept;
1267     if (remaining <= 0) {
1268       break;
1269     }
1270   }
1271 
1272   return time_slept;
1273 }
1274 
1275 void WatcherThread::run() {
1276   assert(this == watcher_thread(), "just checking");
1277 
1278   this->record_stack_base_and_size();
1279   this->set_native_thread_name(this->name());
1280   this->set_active_handles(JNIHandleBlock::allocate_block());
1281   while (true) {
1282     assert(watcher_thread() == Thread::current(), "thread consistency check");
1283     assert(watcher_thread() == this, "thread consistency check");
1284 
1285     // Calculate how long it'll be until the next PeriodicTask work
1286     // should be done, and sleep that amount of time.
1287     int time_waited = sleep();
1288 
1289     if (is_error_reported()) {
1290       // A fatal error has happened, the error handler(VMError::report_and_die)
1291       // should abort JVM after creating an error log file. However in some
1292       // rare cases, the error handler itself might deadlock. Here we try to
1293       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1294       //
1295       // This code is in WatcherThread because WatcherThread wakes up
1296       // periodically so the fatal error handler doesn't need to do anything;
1297       // also because the WatcherThread is less likely to crash than other
1298       // threads.
1299 
1300       for (;;) {
1301         if (!ShowMessageBoxOnError
1302             && (OnError == NULL || OnError[0] == '\0')
1303             && Arguments::abort_hook() == NULL) {
1304           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1305           fdStream err(defaultStream::output_fd());
1306           err.print_raw_cr("# [ timer expired, abort... ]");
1307           // skip atexit/vm_exit/vm_abort hooks
1308           os::die();
1309         }
1310 
1311         // Wake up 5 seconds later, the fatal handler may reset OnError or
1312         // ShowMessageBoxOnError when it is ready to abort.
1313         os::sleep(this, 5 * 1000, false);
1314       }
1315     }
1316 
1317     if (_should_terminate) {
1318       // check for termination before posting the next tick
1319       break;
1320     }
1321 
1322     PeriodicTask::real_time_tick(time_waited);
1323   }
1324 
1325   // Signal that it is terminated
1326   {
1327     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1328     _watcher_thread = NULL;
1329     Terminator_lock->notify();
1330   }
1331 }
1332 
1333 void WatcherThread::start() {
1334   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1335 
1336   if (watcher_thread() == NULL && _startable) {
1337     _should_terminate = false;
1338     // Create the single instance of WatcherThread
1339     new WatcherThread();
1340   }
1341 }
1342 
1343 void WatcherThread::make_startable() {
1344   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1345   _startable = true;
1346 }
1347 
1348 void WatcherThread::stop() {
1349   {
1350     // Follow normal safepoint aware lock enter protocol since the
1351     // WatcherThread is stopped by another JavaThread.
1352     MutexLocker ml(PeriodicTask_lock);
1353     _should_terminate = true;
1354 
1355     WatcherThread* watcher = watcher_thread();
1356     if (watcher != NULL) {
1357       // unpark the WatcherThread so it can see that it should terminate
1358       watcher->unpark();
1359     }
1360   }
1361 
1362   MutexLocker mu(Terminator_lock);
1363 
1364   while (watcher_thread() != NULL) {
1365     // This wait should make safepoint checks, wait without a timeout,
1366     // and wait as a suspend-equivalent condition.
1367     //
1368     // Note: If the FlatProfiler is running, then this thread is waiting
1369     // for the WatcherThread to terminate and the WatcherThread, via the
1370     // FlatProfiler task, is waiting for the external suspend request on
1371     // this thread to complete. wait_for_ext_suspend_completion() will
1372     // eventually timeout, but that takes time. Making this wait a
1373     // suspend-equivalent condition solves that timeout problem.
1374     //
1375     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1376                           Mutex::_as_suspend_equivalent_flag);
1377   }
1378 }
1379 
1380 void WatcherThread::unpark() {
1381   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1382   PeriodicTask_lock->notify();
1383 }
1384 
1385 void WatcherThread::print_on(outputStream* st) const {
1386   st->print("\"%s\" ", name());
1387   Thread::print_on(st);
1388   st->cr();
1389 }
1390 
1391 // ======= JavaThread ========
1392 
1393 #if INCLUDE_JVMCI
1394 
1395 jlong* JavaThread::_jvmci_old_thread_counters;
1396 
1397 bool jvmci_counters_include(JavaThread* thread) {
1398   oop threadObj = thread->threadObj();
1399   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1400 }
1401 
1402 void JavaThread::collect_counters(typeArrayOop array) {
1403   if (JVMCICounterSize > 0) {
1404     MutexLocker tl(Threads_lock);
1405     for (int i = 0; i < array->length(); i++) {
1406       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1407     }
1408     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1409       if (jvmci_counters_include(tp)) {
1410         for (int i = 0; i < array->length(); i++) {
1411           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1412         }
1413       }
1414     }
1415   }
1416 }
1417 
1418 #endif // INCLUDE_JVMCI
1419 
1420 // A JavaThread is a normal Java thread
1421 
1422 void JavaThread::initialize() {
1423   // Initialize fields
1424 
1425   set_saved_exception_pc(NULL);
1426   set_threadObj(NULL);
1427   _anchor.clear();
1428   set_entry_point(NULL);
1429   set_jni_functions(jni_functions());
1430   set_callee_target(NULL);
1431   set_vm_result(NULL);
1432   set_vm_result_2(NULL);
1433   set_vframe_array_head(NULL);
1434   set_vframe_array_last(NULL);
1435   set_deferred_locals(NULL);
1436   set_deopt_mark(NULL);
1437   set_deopt_compiled_method(NULL);
1438   clear_must_deopt_id();
1439   set_monitor_chunks(NULL);
1440   set_next(NULL);
1441   set_thread_state(_thread_new);
1442   _terminated = _not_terminated;
1443   _privileged_stack_top = NULL;
1444   _array_for_gc = NULL;
1445   _suspend_equivalent = false;
1446   _in_deopt_handler = 0;
1447   _doing_unsafe_access = false;
1448   _stack_guard_state = stack_guard_unused;
1449 #if INCLUDE_JVMCI
1450   _pending_monitorenter = false;
1451   _pending_deoptimization = -1;
1452   _pending_failed_speculation = NULL;
1453   _pending_transfer_to_interpreter = false;
1454   _adjusting_comp_level = false;
1455   _jvmci._alternate_call_target = NULL;
1456   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1457   if (JVMCICounterSize > 0) {
1458     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1459     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1460   } else {
1461     _jvmci_counters = NULL;
1462   }
1463 #endif // INCLUDE_JVMCI
1464   _reserved_stack_activation = NULL;  // stack base not known yet
1465   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1466   _exception_pc  = 0;
1467   _exception_handler_pc = 0;
1468   _is_method_handle_return = 0;
1469   _jvmti_thread_state= NULL;
1470   _should_post_on_exceptions_flag = JNI_FALSE;
1471   _jvmti_get_loaded_classes_closure = NULL;
1472   _interp_only_mode    = 0;
1473   _special_runtime_exit_condition = _no_async_condition;
1474   _pending_async_exception = NULL;
1475   _thread_stat = NULL;
1476   _thread_stat = new ThreadStatistics();
1477   _blocked_on_compilation = false;
1478   _jni_active_critical = 0;
1479   _pending_jni_exception_check_fn = NULL;
1480   _do_not_unlock_if_synchronized = false;
1481   _cached_monitor_info = NULL;
1482   _parker = Parker::Allocate(this);
1483 
1484 #ifndef PRODUCT
1485   _jmp_ring_index = 0;
1486   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1487     record_jump(NULL, NULL, NULL, 0);
1488   }
1489 #endif // PRODUCT
1490 
1491   set_thread_profiler(NULL);
1492   if (FlatProfiler::is_active()) {
1493     // This is where we would decide to either give each thread it's own profiler
1494     // or use one global one from FlatProfiler,
1495     // or up to some count of the number of profiled threads, etc.
1496     ThreadProfiler* pp = new ThreadProfiler();
1497     pp->engage();
1498     set_thread_profiler(pp);
1499   }
1500 
1501   // Setup safepoint state info for this thread
1502   ThreadSafepointState::create(this);
1503 
1504   debug_only(_java_call_counter = 0);
1505 
1506   // JVMTI PopFrame support
1507   _popframe_condition = popframe_inactive;
1508   _popframe_preserved_args = NULL;
1509   _popframe_preserved_args_size = 0;
1510   _frames_to_pop_failed_realloc = 0;
1511 
1512   pd_initialize();
1513 }
1514 
1515 #if INCLUDE_ALL_GCS
1516 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1517 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1518 #endif // INCLUDE_ALL_GCS
1519 
1520 JavaThread::JavaThread(bool is_attaching_via_jni) :
1521                        Thread()
1522 #if INCLUDE_ALL_GCS
1523                        , _satb_mark_queue(&_satb_mark_queue_set),
1524                        _dirty_card_queue(&_dirty_card_queue_set)
1525 #endif // INCLUDE_ALL_GCS
1526 {
1527   initialize();
1528   if (is_attaching_via_jni) {
1529     _jni_attach_state = _attaching_via_jni;
1530   } else {
1531     _jni_attach_state = _not_attaching_via_jni;
1532   }
1533   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1534 }
1535 
1536 bool JavaThread::reguard_stack(address cur_sp) {
1537   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1538       && _stack_guard_state != stack_guard_reserved_disabled) {
1539     return true; // Stack already guarded or guard pages not needed.
1540   }
1541 
1542   if (register_stack_overflow()) {
1543     // For those architectures which have separate register and
1544     // memory stacks, we must check the register stack to see if
1545     // it has overflowed.
1546     return false;
1547   }
1548 
1549   // Java code never executes within the yellow zone: the latter is only
1550   // there to provoke an exception during stack banging.  If java code
1551   // is executing there, either StackShadowPages should be larger, or
1552   // some exception code in c1, c2 or the interpreter isn't unwinding
1553   // when it should.
1554   guarantee(cur_sp > stack_reserved_zone_base(),
1555             "not enough space to reguard - increase StackShadowPages");
1556   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1557     enable_stack_yellow_reserved_zone();
1558     if (reserved_stack_activation() != stack_base()) {
1559       set_reserved_stack_activation(stack_base());
1560     }
1561   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1562     set_reserved_stack_activation(stack_base());
1563     enable_stack_reserved_zone();
1564   }
1565   return true;
1566 }
1567 
1568 bool JavaThread::reguard_stack(void) {
1569   return reguard_stack(os::current_stack_pointer());
1570 }
1571 
1572 
1573 void JavaThread::block_if_vm_exited() {
1574   if (_terminated == _vm_exited) {
1575     // _vm_exited is set at safepoint, and Threads_lock is never released
1576     // we will block here forever
1577     Threads_lock->lock_without_safepoint_check();
1578     ShouldNotReachHere();
1579   }
1580 }
1581 
1582 
1583 // Remove this ifdef when C1 is ported to the compiler interface.
1584 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1585 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1586 
1587 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1588                        Thread()
1589 #if INCLUDE_ALL_GCS
1590                        , _satb_mark_queue(&_satb_mark_queue_set),
1591                        _dirty_card_queue(&_dirty_card_queue_set)
1592 #endif // INCLUDE_ALL_GCS
1593 {
1594   initialize();
1595   _jni_attach_state = _not_attaching_via_jni;
1596   set_entry_point(entry_point);
1597   // Create the native thread itself.
1598   // %note runtime_23
1599   os::ThreadType thr_type = os::java_thread;
1600   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1601                                                      os::java_thread;
1602   os::create_thread(this, thr_type, stack_sz);
1603   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1604   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1605   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1606   // the exception consists of creating the exception object & initializing it, initialization
1607   // will leave the VM via a JavaCall and then all locks must be unlocked).
1608   //
1609   // The thread is still suspended when we reach here. Thread must be explicit started
1610   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1611   // by calling Threads:add. The reason why this is not done here, is because the thread
1612   // object must be fully initialized (take a look at JVM_Start)
1613 }
1614 
1615 JavaThread::~JavaThread() {
1616 
1617   // JSR166 -- return the parker to the free list
1618   Parker::Release(_parker);
1619   _parker = NULL;
1620 
1621   // Free any remaining  previous UnrollBlock
1622   vframeArray* old_array = vframe_array_last();
1623 
1624   if (old_array != NULL) {
1625     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1626     old_array->set_unroll_block(NULL);
1627     delete old_info;
1628     delete old_array;
1629   }
1630 
1631   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1632   if (deferred != NULL) {
1633     // This can only happen if thread is destroyed before deoptimization occurs.
1634     assert(deferred->length() != 0, "empty array!");
1635     do {
1636       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1637       deferred->remove_at(0);
1638       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1639       delete dlv;
1640     } while (deferred->length() != 0);
1641     delete deferred;
1642   }
1643 
1644   // All Java related clean up happens in exit
1645   ThreadSafepointState::destroy(this);
1646   if (_thread_profiler != NULL) delete _thread_profiler;
1647   if (_thread_stat != NULL) delete _thread_stat;
1648 
1649 #if INCLUDE_JVMCI
1650   if (JVMCICounterSize > 0) {
1651     if (jvmci_counters_include(this)) {
1652       for (int i = 0; i < JVMCICounterSize; i++) {
1653         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1654       }
1655     }
1656     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1657   }
1658 #endif // INCLUDE_JVMCI
1659 }
1660 
1661 
1662 // The first routine called by a new Java thread
1663 void JavaThread::run() {
1664   // initialize thread-local alloc buffer related fields
1665   this->initialize_tlab();
1666 
1667   // used to test validity of stack trace backs
1668   this->record_base_of_stack_pointer();
1669 
1670   // Record real stack base and size.
1671   this->record_stack_base_and_size();
1672 
1673   this->create_stack_guard_pages();
1674 
1675   this->cache_global_variables();
1676 
1677   // Thread is now sufficient initialized to be handled by the safepoint code as being
1678   // in the VM. Change thread state from _thread_new to _thread_in_vm
1679   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1680 
1681   assert(JavaThread::current() == this, "sanity check");
1682   assert(!Thread::current()->owns_locks(), "sanity check");
1683 
1684   DTRACE_THREAD_PROBE(start, this);
1685 
1686   // This operation might block. We call that after all safepoint checks for a new thread has
1687   // been completed.
1688   this->set_active_handles(JNIHandleBlock::allocate_block());
1689 
1690   if (JvmtiExport::should_post_thread_life()) {
1691     JvmtiExport::post_thread_start(this);
1692   }
1693 
1694   EventThreadStart event;
1695   if (event.should_commit()) {
1696     event.set_thread(THREAD_TRACE_ID(this));
1697     event.commit();
1698   }
1699 
1700   // We call another function to do the rest so we are sure that the stack addresses used
1701   // from there will be lower than the stack base just computed
1702   thread_main_inner();
1703 
1704   // Note, thread is no longer valid at this point!
1705 }
1706 
1707 
1708 void JavaThread::thread_main_inner() {
1709   assert(JavaThread::current() == this, "sanity check");
1710   assert(this->threadObj() != NULL, "just checking");
1711 
1712   // Execute thread entry point unless this thread has a pending exception
1713   // or has been stopped before starting.
1714   // Note: Due to JVM_StopThread we can have pending exceptions already!
1715   if (!this->has_pending_exception() &&
1716       !java_lang_Thread::is_stillborn(this->threadObj())) {
1717     {
1718       ResourceMark rm(this);
1719       this->set_native_thread_name(this->get_thread_name());
1720     }
1721     HandleMark hm(this);
1722     this->entry_point()(this, this);
1723   }
1724 
1725   DTRACE_THREAD_PROBE(stop, this);
1726 
1727   this->exit(false);
1728   delete this;
1729 }
1730 
1731 
1732 static void ensure_join(JavaThread* thread) {
1733   // We do not need to grap the Threads_lock, since we are operating on ourself.
1734   Handle threadObj(thread, thread->threadObj());
1735   assert(threadObj.not_null(), "java thread object must exist");
1736   ObjectLocker lock(threadObj, thread);
1737   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1738   thread->clear_pending_exception();
1739   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1740   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1741   // Clear the native thread instance - this makes isAlive return false and allows the join()
1742   // to complete once we've done the notify_all below
1743   java_lang_Thread::set_thread(threadObj(), NULL);
1744   lock.notify_all(thread);
1745   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1746   thread->clear_pending_exception();
1747 }
1748 
1749 
1750 // For any new cleanup additions, please check to see if they need to be applied to
1751 // cleanup_failed_attach_current_thread as well.
1752 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1753   assert(this == JavaThread::current(), "thread consistency check");
1754 
1755   HandleMark hm(this);
1756   Handle uncaught_exception(this, this->pending_exception());
1757   this->clear_pending_exception();
1758   Handle threadObj(this, this->threadObj());
1759   assert(threadObj.not_null(), "Java thread object should be created");
1760 
1761   if (get_thread_profiler() != NULL) {
1762     get_thread_profiler()->disengage();
1763     ResourceMark rm;
1764     get_thread_profiler()->print(get_thread_name());
1765   }
1766 
1767 
1768   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1769   {
1770     EXCEPTION_MARK;
1771 
1772     CLEAR_PENDING_EXCEPTION;
1773   }
1774   if (!destroy_vm) {
1775     if (uncaught_exception.not_null()) {
1776       EXCEPTION_MARK;
1777       // Call method Thread.dispatchUncaughtException().
1778       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1779       JavaValue result(T_VOID);
1780       JavaCalls::call_virtual(&result,
1781                               threadObj, thread_klass,
1782                               vmSymbols::dispatchUncaughtException_name(),
1783                               vmSymbols::throwable_void_signature(),
1784                               uncaught_exception,
1785                               THREAD);
1786       if (HAS_PENDING_EXCEPTION) {
1787         ResourceMark rm(this);
1788         jio_fprintf(defaultStream::error_stream(),
1789                     "\nException: %s thrown from the UncaughtExceptionHandler"
1790                     " in thread \"%s\"\n",
1791                     pending_exception()->klass()->external_name(),
1792                     get_thread_name());
1793         CLEAR_PENDING_EXCEPTION;
1794       }
1795     }
1796 
1797     // Called before the java thread exit since we want to read info
1798     // from java_lang_Thread object
1799     EventThreadEnd event;
1800     if (event.should_commit()) {
1801       event.set_thread(THREAD_TRACE_ID(this));
1802       event.commit();
1803     }
1804 
1805     // Call after last event on thread
1806     EVENT_THREAD_EXIT(this);
1807 
1808     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1809     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1810     // is deprecated anyhow.
1811     if (!is_Compiler_thread()) {
1812       int count = 3;
1813       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1814         EXCEPTION_MARK;
1815         JavaValue result(T_VOID);
1816         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1817         JavaCalls::call_virtual(&result,
1818                                 threadObj, thread_klass,
1819                                 vmSymbols::exit_method_name(),
1820                                 vmSymbols::void_method_signature(),
1821                                 THREAD);
1822         CLEAR_PENDING_EXCEPTION;
1823       }
1824     }
1825     // notify JVMTI
1826     if (JvmtiExport::should_post_thread_life()) {
1827       JvmtiExport::post_thread_end(this);
1828     }
1829 
1830     // We have notified the agents that we are exiting, before we go on,
1831     // we must check for a pending external suspend request and honor it
1832     // in order to not surprise the thread that made the suspend request.
1833     while (true) {
1834       {
1835         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1836         if (!is_external_suspend()) {
1837           set_terminated(_thread_exiting);
1838           ThreadService::current_thread_exiting(this);
1839           break;
1840         }
1841         // Implied else:
1842         // Things get a little tricky here. We have a pending external
1843         // suspend request, but we are holding the SR_lock so we
1844         // can't just self-suspend. So we temporarily drop the lock
1845         // and then self-suspend.
1846       }
1847 
1848       ThreadBlockInVM tbivm(this);
1849       java_suspend_self();
1850 
1851       // We're done with this suspend request, but we have to loop around
1852       // and check again. Eventually we will get SR_lock without a pending
1853       // external suspend request and will be able to mark ourselves as
1854       // exiting.
1855     }
1856     // no more external suspends are allowed at this point
1857   } else {
1858     // before_exit() has already posted JVMTI THREAD_END events
1859   }
1860 
1861   // Notify waiters on thread object. This has to be done after exit() is called
1862   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1863   // group should have the destroyed bit set before waiters are notified).
1864   ensure_join(this);
1865   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1866 
1867   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1868   // held by this thread must be released. The spec does not distinguish
1869   // between JNI-acquired and regular Java monitors. We can only see
1870   // regular Java monitors here if monitor enter-exit matching is broken.
1871   //
1872   // Optionally release any monitors for regular JavaThread exits. This
1873   // is provided as a work around for any bugs in monitor enter-exit
1874   // matching. This can be expensive so it is not enabled by default.
1875   //
1876   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1877   // ObjectSynchronizer::release_monitors_owned_by_thread().
1878   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1879     // Sanity check even though JNI DetachCurrentThread() would have
1880     // returned JNI_ERR if there was a Java frame. JavaThread exit
1881     // should be done executing Java code by the time we get here.
1882     assert(!this->has_last_Java_frame(),
1883            "should not have a Java frame when detaching or exiting");
1884     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1885     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1886   }
1887 
1888   // These things needs to be done while we are still a Java Thread. Make sure that thread
1889   // is in a consistent state, in case GC happens
1890   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1891 
1892   if (active_handles() != NULL) {
1893     JNIHandleBlock* block = active_handles();
1894     set_active_handles(NULL);
1895     JNIHandleBlock::release_block(block);
1896   }
1897 
1898   if (free_handle_block() != NULL) {
1899     JNIHandleBlock* block = free_handle_block();
1900     set_free_handle_block(NULL);
1901     JNIHandleBlock::release_block(block);
1902   }
1903 
1904   // These have to be removed while this is still a valid thread.
1905   remove_stack_guard_pages();
1906 
1907   if (UseTLAB) {
1908     tlab().make_parsable(true);  // retire TLAB
1909   }
1910 
1911   if (JvmtiEnv::environments_might_exist()) {
1912     JvmtiExport::cleanup_thread(this);
1913   }
1914 
1915   // We must flush any deferred card marks before removing a thread from
1916   // the list of active threads.
1917   Universe::heap()->flush_deferred_store_barrier(this);
1918   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1919 
1920 #if INCLUDE_ALL_GCS
1921   // We must flush the G1-related buffers before removing a thread
1922   // from the list of active threads. We must do this after any deferred
1923   // card marks have been flushed (above) so that any entries that are
1924   // added to the thread's dirty card queue as a result are not lost.
1925   if (UseG1GC) {
1926     flush_barrier_queues();
1927   }
1928 #endif // INCLUDE_ALL_GCS
1929 
1930   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1931     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1932     os::current_thread_id());
1933 
1934   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1935   Threads::remove(this);
1936 }
1937 
1938 #if INCLUDE_ALL_GCS
1939 // Flush G1-related queues.
1940 void JavaThread::flush_barrier_queues() {
1941   satb_mark_queue().flush();
1942   dirty_card_queue().flush();
1943 }
1944 
1945 void JavaThread::initialize_queues() {
1946   assert(!SafepointSynchronize::is_at_safepoint(),
1947          "we should not be at a safepoint");
1948 
1949   SATBMarkQueue& satb_queue = satb_mark_queue();
1950   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1951   // The SATB queue should have been constructed with its active
1952   // field set to false.
1953   assert(!satb_queue.is_active(), "SATB queue should not be active");
1954   assert(satb_queue.is_empty(), "SATB queue should be empty");
1955   // If we are creating the thread during a marking cycle, we should
1956   // set the active field of the SATB queue to true.
1957   if (satb_queue_set.is_active()) {
1958     satb_queue.set_active(true);
1959   }
1960 
1961   DirtyCardQueue& dirty_queue = dirty_card_queue();
1962   // The dirty card queue should have been constructed with its
1963   // active field set to true.
1964   assert(dirty_queue.is_active(), "dirty card queue should be active");
1965 }
1966 #endif // INCLUDE_ALL_GCS
1967 
1968 void JavaThread::cleanup_failed_attach_current_thread() {
1969   if (get_thread_profiler() != NULL) {
1970     get_thread_profiler()->disengage();
1971     ResourceMark rm;
1972     get_thread_profiler()->print(get_thread_name());
1973   }
1974 
1975   if (active_handles() != NULL) {
1976     JNIHandleBlock* block = active_handles();
1977     set_active_handles(NULL);
1978     JNIHandleBlock::release_block(block);
1979   }
1980 
1981   if (free_handle_block() != NULL) {
1982     JNIHandleBlock* block = free_handle_block();
1983     set_free_handle_block(NULL);
1984     JNIHandleBlock::release_block(block);
1985   }
1986 
1987   // These have to be removed while this is still a valid thread.
1988   remove_stack_guard_pages();
1989 
1990   if (UseTLAB) {
1991     tlab().make_parsable(true);  // retire TLAB, if any
1992   }
1993 
1994 #if INCLUDE_ALL_GCS
1995   if (UseG1GC) {
1996     flush_barrier_queues();
1997   }
1998 #endif // INCLUDE_ALL_GCS
1999 
2000   Threads::remove(this);
2001   delete this;
2002 }
2003 
2004 
2005 
2006 
2007 JavaThread* JavaThread::active() {
2008   Thread* thread = Thread::current();
2009   if (thread->is_Java_thread()) {
2010     return (JavaThread*) thread;
2011   } else {
2012     assert(thread->is_VM_thread(), "this must be a vm thread");
2013     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2014     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2015     assert(ret->is_Java_thread(), "must be a Java thread");
2016     return ret;
2017   }
2018 }
2019 
2020 bool JavaThread::is_lock_owned(address adr) const {
2021   if (Thread::is_lock_owned(adr)) return true;
2022 
2023   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2024     if (chunk->contains(adr)) return true;
2025   }
2026 
2027   return false;
2028 }
2029 
2030 
2031 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2032   chunk->set_next(monitor_chunks());
2033   set_monitor_chunks(chunk);
2034 }
2035 
2036 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2037   guarantee(monitor_chunks() != NULL, "must be non empty");
2038   if (monitor_chunks() == chunk) {
2039     set_monitor_chunks(chunk->next());
2040   } else {
2041     MonitorChunk* prev = monitor_chunks();
2042     while (prev->next() != chunk) prev = prev->next();
2043     prev->set_next(chunk->next());
2044   }
2045 }
2046 
2047 // JVM support.
2048 
2049 // Note: this function shouldn't block if it's called in
2050 // _thread_in_native_trans state (such as from
2051 // check_special_condition_for_native_trans()).
2052 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2053 
2054   if (has_last_Java_frame() && has_async_condition()) {
2055     // If we are at a polling page safepoint (not a poll return)
2056     // then we must defer async exception because live registers
2057     // will be clobbered by the exception path. Poll return is
2058     // ok because the call we a returning from already collides
2059     // with exception handling registers and so there is no issue.
2060     // (The exception handling path kills call result registers but
2061     //  this is ok since the exception kills the result anyway).
2062 
2063     if (is_at_poll_safepoint()) {
2064       // if the code we are returning to has deoptimized we must defer
2065       // the exception otherwise live registers get clobbered on the
2066       // exception path before deoptimization is able to retrieve them.
2067       //
2068       RegisterMap map(this, false);
2069       frame caller_fr = last_frame().sender(&map);
2070       assert(caller_fr.is_compiled_frame(), "what?");
2071       if (caller_fr.is_deoptimized_frame()) {
2072         log_info(exceptions)("deferred async exception at compiled safepoint");
2073         return;
2074       }
2075     }
2076   }
2077 
2078   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2079   if (condition == _no_async_condition) {
2080     // Conditions have changed since has_special_runtime_exit_condition()
2081     // was called:
2082     // - if we were here only because of an external suspend request,
2083     //   then that was taken care of above (or cancelled) so we are done
2084     // - if we were here because of another async request, then it has
2085     //   been cleared between the has_special_runtime_exit_condition()
2086     //   and now so again we are done
2087     return;
2088   }
2089 
2090   // Check for pending async. exception
2091   if (_pending_async_exception != NULL) {
2092     // Only overwrite an already pending exception, if it is not a threadDeath.
2093     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2094 
2095       // We cannot call Exceptions::_throw(...) here because we cannot block
2096       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2097 
2098       if (log_is_enabled(Info, exceptions)) {
2099         ResourceMark rm;
2100         outputStream* logstream = Log(exceptions)::info_stream();
2101         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2102           if (has_last_Java_frame()) {
2103             frame f = last_frame();
2104            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2105           }
2106         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2107       }
2108       _pending_async_exception = NULL;
2109       clear_has_async_exception();
2110     }
2111   }
2112 
2113   if (check_unsafe_error &&
2114       condition == _async_unsafe_access_error && !has_pending_exception()) {
2115     condition = _no_async_condition;  // done
2116     switch (thread_state()) {
2117     case _thread_in_vm: {
2118       JavaThread* THREAD = this;
2119       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2120     }
2121     case _thread_in_native: {
2122       ThreadInVMfromNative tiv(this);
2123       JavaThread* THREAD = this;
2124       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2125     }
2126     case _thread_in_Java: {
2127       ThreadInVMfromJava tiv(this);
2128       JavaThread* THREAD = this;
2129       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2130     }
2131     default:
2132       ShouldNotReachHere();
2133     }
2134   }
2135 
2136   assert(condition == _no_async_condition || has_pending_exception() ||
2137          (!check_unsafe_error && condition == _async_unsafe_access_error),
2138          "must have handled the async condition, if no exception");
2139 }
2140 
2141 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2142   //
2143   // Check for pending external suspend. Internal suspend requests do
2144   // not use handle_special_runtime_exit_condition().
2145   // If JNIEnv proxies are allowed, don't self-suspend if the target
2146   // thread is not the current thread. In older versions of jdbx, jdbx
2147   // threads could call into the VM with another thread's JNIEnv so we
2148   // can be here operating on behalf of a suspended thread (4432884).
2149   bool do_self_suspend = is_external_suspend_with_lock();
2150   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2151     //
2152     // Because thread is external suspended the safepoint code will count
2153     // thread as at a safepoint. This can be odd because we can be here
2154     // as _thread_in_Java which would normally transition to _thread_blocked
2155     // at a safepoint. We would like to mark the thread as _thread_blocked
2156     // before calling java_suspend_self like all other callers of it but
2157     // we must then observe proper safepoint protocol. (We can't leave
2158     // _thread_blocked with a safepoint in progress). However we can be
2159     // here as _thread_in_native_trans so we can't use a normal transition
2160     // constructor/destructor pair because they assert on that type of
2161     // transition. We could do something like:
2162     //
2163     // JavaThreadState state = thread_state();
2164     // set_thread_state(_thread_in_vm);
2165     // {
2166     //   ThreadBlockInVM tbivm(this);
2167     //   java_suspend_self()
2168     // }
2169     // set_thread_state(_thread_in_vm_trans);
2170     // if (safepoint) block;
2171     // set_thread_state(state);
2172     //
2173     // but that is pretty messy. Instead we just go with the way the
2174     // code has worked before and note that this is the only path to
2175     // java_suspend_self that doesn't put the thread in _thread_blocked
2176     // mode.
2177 
2178     frame_anchor()->make_walkable(this);
2179     java_suspend_self();
2180 
2181     // We might be here for reasons in addition to the self-suspend request
2182     // so check for other async requests.
2183   }
2184 
2185   if (check_asyncs) {
2186     check_and_handle_async_exceptions();
2187   }
2188 }
2189 
2190 void JavaThread::send_thread_stop(oop java_throwable)  {
2191   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2192   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2193   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2194 
2195   // Do not throw asynchronous exceptions against the compiler thread
2196   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2197   if (!can_call_java()) return;
2198 
2199   {
2200     // Actually throw the Throwable against the target Thread - however
2201     // only if there is no thread death exception installed already.
2202     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2203       // If the topmost frame is a runtime stub, then we are calling into
2204       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2205       // must deoptimize the caller before continuing, as the compiled  exception handler table
2206       // may not be valid
2207       if (has_last_Java_frame()) {
2208         frame f = last_frame();
2209         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2210           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2211           RegisterMap reg_map(this, UseBiasedLocking);
2212           frame compiled_frame = f.sender(&reg_map);
2213           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2214             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2215           }
2216         }
2217       }
2218 
2219       // Set async. pending exception in thread.
2220       set_pending_async_exception(java_throwable);
2221 
2222       if (log_is_enabled(Info, exceptions)) {
2223          ResourceMark rm;
2224         log_info(exceptions)("Pending Async. exception installed of type: %s",
2225                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2226       }
2227       // for AbortVMOnException flag
2228       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2229     }
2230   }
2231 
2232 
2233   // Interrupt thread so it will wake up from a potential wait()
2234   Thread::interrupt(this);
2235 }
2236 
2237 // External suspension mechanism.
2238 //
2239 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2240 // to any VM_locks and it is at a transition
2241 // Self-suspension will happen on the transition out of the vm.
2242 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2243 //
2244 // Guarantees on return:
2245 //   + Target thread will not execute any new bytecode (that's why we need to
2246 //     force a safepoint)
2247 //   + Target thread will not enter any new monitors
2248 //
2249 void JavaThread::java_suspend() {
2250   { MutexLocker mu(Threads_lock);
2251     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2252       return;
2253     }
2254   }
2255 
2256   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2257     if (!is_external_suspend()) {
2258       // a racing resume has cancelled us; bail out now
2259       return;
2260     }
2261 
2262     // suspend is done
2263     uint32_t debug_bits = 0;
2264     // Warning: is_ext_suspend_completed() may temporarily drop the
2265     // SR_lock to allow the thread to reach a stable thread state if
2266     // it is currently in a transient thread state.
2267     if (is_ext_suspend_completed(false /* !called_by_wait */,
2268                                  SuspendRetryDelay, &debug_bits)) {
2269       return;
2270     }
2271   }
2272 
2273   VM_ForceSafepoint vm_suspend;
2274   VMThread::execute(&vm_suspend);
2275 }
2276 
2277 // Part II of external suspension.
2278 // A JavaThread self suspends when it detects a pending external suspend
2279 // request. This is usually on transitions. It is also done in places
2280 // where continuing to the next transition would surprise the caller,
2281 // e.g., monitor entry.
2282 //
2283 // Returns the number of times that the thread self-suspended.
2284 //
2285 // Note: DO NOT call java_suspend_self() when you just want to block current
2286 //       thread. java_suspend_self() is the second stage of cooperative
2287 //       suspension for external suspend requests and should only be used
2288 //       to complete an external suspend request.
2289 //
2290 int JavaThread::java_suspend_self() {
2291   int ret = 0;
2292 
2293   // we are in the process of exiting so don't suspend
2294   if (is_exiting()) {
2295     clear_external_suspend();
2296     return ret;
2297   }
2298 
2299   assert(_anchor.walkable() ||
2300          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2301          "must have walkable stack");
2302 
2303   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2304 
2305   assert(!this->is_ext_suspended(),
2306          "a thread trying to self-suspend should not already be suspended");
2307 
2308   if (this->is_suspend_equivalent()) {
2309     // If we are self-suspending as a result of the lifting of a
2310     // suspend equivalent condition, then the suspend_equivalent
2311     // flag is not cleared until we set the ext_suspended flag so
2312     // that wait_for_ext_suspend_completion() returns consistent
2313     // results.
2314     this->clear_suspend_equivalent();
2315   }
2316 
2317   // A racing resume may have cancelled us before we grabbed SR_lock
2318   // above. Or another external suspend request could be waiting for us
2319   // by the time we return from SR_lock()->wait(). The thread
2320   // that requested the suspension may already be trying to walk our
2321   // stack and if we return now, we can change the stack out from under
2322   // it. This would be a "bad thing (TM)" and cause the stack walker
2323   // to crash. We stay self-suspended until there are no more pending
2324   // external suspend requests.
2325   while (is_external_suspend()) {
2326     ret++;
2327     this->set_ext_suspended();
2328 
2329     // _ext_suspended flag is cleared by java_resume()
2330     while (is_ext_suspended()) {
2331       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2332     }
2333   }
2334 
2335   return ret;
2336 }
2337 
2338 #ifdef ASSERT
2339 // verify the JavaThread has not yet been published in the Threads::list, and
2340 // hence doesn't need protection from concurrent access at this stage
2341 void JavaThread::verify_not_published() {
2342   if (!Threads_lock->owned_by_self()) {
2343     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2344     assert(!Threads::includes(this),
2345            "java thread shouldn't have been published yet!");
2346   } else {
2347     assert(!Threads::includes(this),
2348            "java thread shouldn't have been published yet!");
2349   }
2350 }
2351 #endif
2352 
2353 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2354 // progress or when _suspend_flags is non-zero.
2355 // Current thread needs to self-suspend if there is a suspend request and/or
2356 // block if a safepoint is in progress.
2357 // Async exception ISN'T checked.
2358 // Note only the ThreadInVMfromNative transition can call this function
2359 // directly and when thread state is _thread_in_native_trans
2360 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2361   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2362 
2363   JavaThread *curJT = JavaThread::current();
2364   bool do_self_suspend = thread->is_external_suspend();
2365 
2366   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2367 
2368   // If JNIEnv proxies are allowed, don't self-suspend if the target
2369   // thread is not the current thread. In older versions of jdbx, jdbx
2370   // threads could call into the VM with another thread's JNIEnv so we
2371   // can be here operating on behalf of a suspended thread (4432884).
2372   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2373     JavaThreadState state = thread->thread_state();
2374 
2375     // We mark this thread_blocked state as a suspend-equivalent so
2376     // that a caller to is_ext_suspend_completed() won't be confused.
2377     // The suspend-equivalent state is cleared by java_suspend_self().
2378     thread->set_suspend_equivalent();
2379 
2380     // If the safepoint code sees the _thread_in_native_trans state, it will
2381     // wait until the thread changes to other thread state. There is no
2382     // guarantee on how soon we can obtain the SR_lock and complete the
2383     // self-suspend request. It would be a bad idea to let safepoint wait for
2384     // too long. Temporarily change the state to _thread_blocked to
2385     // let the VM thread know that this thread is ready for GC. The problem
2386     // of changing thread state is that safepoint could happen just after
2387     // java_suspend_self() returns after being resumed, and VM thread will
2388     // see the _thread_blocked state. We must check for safepoint
2389     // after restoring the state and make sure we won't leave while a safepoint
2390     // is in progress.
2391     thread->set_thread_state(_thread_blocked);
2392     thread->java_suspend_self();
2393     thread->set_thread_state(state);
2394     // Make sure new state is seen by VM thread
2395     if (os::is_MP()) {
2396       if (UseMembar) {
2397         // Force a fence between the write above and read below
2398         OrderAccess::fence();
2399       } else {
2400         // Must use this rather than serialization page in particular on Windows
2401         InterfaceSupport::serialize_memory(thread);
2402       }
2403     }
2404   }
2405 
2406   if (SafepointSynchronize::do_call_back()) {
2407     // If we are safepointing, then block the caller which may not be
2408     // the same as the target thread (see above).
2409     SafepointSynchronize::block(curJT);
2410   }
2411 
2412   if (thread->is_deopt_suspend()) {
2413     thread->clear_deopt_suspend();
2414     RegisterMap map(thread, false);
2415     frame f = thread->last_frame();
2416     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2417       f = f.sender(&map);
2418     }
2419     if (f.id() == thread->must_deopt_id()) {
2420       thread->clear_must_deopt_id();
2421       f.deoptimize(thread);
2422     } else {
2423       fatal("missed deoptimization!");
2424     }
2425   }
2426 }
2427 
2428 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2429 // progress or when _suspend_flags is non-zero.
2430 // Current thread needs to self-suspend if there is a suspend request and/or
2431 // block if a safepoint is in progress.
2432 // Also check for pending async exception (not including unsafe access error).
2433 // Note only the native==>VM/Java barriers can call this function and when
2434 // thread state is _thread_in_native_trans.
2435 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2436   check_safepoint_and_suspend_for_native_trans(thread);
2437 
2438   if (thread->has_async_exception()) {
2439     // We are in _thread_in_native_trans state, don't handle unsafe
2440     // access error since that may block.
2441     thread->check_and_handle_async_exceptions(false);
2442   }
2443 }
2444 
2445 // This is a variant of the normal
2446 // check_special_condition_for_native_trans with slightly different
2447 // semantics for use by critical native wrappers.  It does all the
2448 // normal checks but also performs the transition back into
2449 // thread_in_Java state.  This is required so that critical natives
2450 // can potentially block and perform a GC if they are the last thread
2451 // exiting the GCLocker.
2452 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2453   check_special_condition_for_native_trans(thread);
2454 
2455   // Finish the transition
2456   thread->set_thread_state(_thread_in_Java);
2457 
2458   if (thread->do_critical_native_unlock()) {
2459     ThreadInVMfromJavaNoAsyncException tiv(thread);
2460     GCLocker::unlock_critical(thread);
2461     thread->clear_critical_native_unlock();
2462   }
2463 }
2464 
2465 // We need to guarantee the Threads_lock here, since resumes are not
2466 // allowed during safepoint synchronization
2467 // Can only resume from an external suspension
2468 void JavaThread::java_resume() {
2469   assert_locked_or_safepoint(Threads_lock);
2470 
2471   // Sanity check: thread is gone, has started exiting or the thread
2472   // was not externally suspended.
2473   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2474     return;
2475   }
2476 
2477   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2478 
2479   clear_external_suspend();
2480 
2481   if (is_ext_suspended()) {
2482     clear_ext_suspended();
2483     SR_lock()->notify_all();
2484   }
2485 }
2486 
2487 size_t JavaThread::_stack_red_zone_size = 0;
2488 size_t JavaThread::_stack_yellow_zone_size = 0;
2489 size_t JavaThread::_stack_reserved_zone_size = 0;
2490 size_t JavaThread::_stack_shadow_zone_size = 0;
2491 
2492 void JavaThread::create_stack_guard_pages() {
2493   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2494   address low_addr = stack_end();
2495   size_t len = stack_guard_zone_size();
2496 
2497   int must_commit = os::must_commit_stack_guard_pages();
2498   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2499 
2500   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2501     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2502     return;
2503   }
2504 
2505   if (os::guard_memory((char *) low_addr, len)) {
2506     _stack_guard_state = stack_guard_enabled;
2507   } else {
2508     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2509       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2510     if (os::uncommit_memory((char *) low_addr, len)) {
2511       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2512     }
2513     return;
2514   }
2515 
2516   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2517     PTR_FORMAT "-" PTR_FORMAT ".",
2518     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2519 }
2520 
2521 void JavaThread::remove_stack_guard_pages() {
2522   assert(Thread::current() == this, "from different thread");
2523   if (_stack_guard_state == stack_guard_unused) return;
2524   address low_addr = stack_end();
2525   size_t len = stack_guard_zone_size();
2526 
2527   if (os::must_commit_stack_guard_pages()) {
2528     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2529       _stack_guard_state = stack_guard_unused;
2530     } else {
2531       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2532         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2533       return;
2534     }
2535   } else {
2536     if (_stack_guard_state == stack_guard_unused) return;
2537     if (os::unguard_memory((char *) low_addr, len)) {
2538       _stack_guard_state = stack_guard_unused;
2539     } else {
2540       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2541         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2542       return;
2543     }
2544   }
2545 
2546   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2547     PTR_FORMAT "-" PTR_FORMAT ".",
2548     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2549 }
2550 
2551 void JavaThread::enable_stack_reserved_zone() {
2552   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2553   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2554 
2555   // The base notation is from the stack's point of view, growing downward.
2556   // We need to adjust it to work correctly with guard_memory()
2557   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2558 
2559   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2560   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2561 
2562   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2563     _stack_guard_state = stack_guard_enabled;
2564   } else {
2565     warning("Attempt to guard stack reserved zone failed.");
2566   }
2567   enable_register_stack_guard();
2568 }
2569 
2570 void JavaThread::disable_stack_reserved_zone() {
2571   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2572   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2573 
2574   // Simply return if called for a thread that does not use guard pages.
2575   if (_stack_guard_state == stack_guard_unused) return;
2576 
2577   // The base notation is from the stack's point of view, growing downward.
2578   // We need to adjust it to work correctly with guard_memory()
2579   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2580 
2581   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2582     _stack_guard_state = stack_guard_reserved_disabled;
2583   } else {
2584     warning("Attempt to unguard stack reserved zone failed.");
2585   }
2586   disable_register_stack_guard();
2587 }
2588 
2589 void JavaThread::enable_stack_yellow_reserved_zone() {
2590   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2591   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2592 
2593   // The base notation is from the stacks point of view, growing downward.
2594   // We need to adjust it to work correctly with guard_memory()
2595   address base = stack_red_zone_base();
2596 
2597   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2598   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2599 
2600   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2601     _stack_guard_state = stack_guard_enabled;
2602   } else {
2603     warning("Attempt to guard stack yellow zone failed.");
2604   }
2605   enable_register_stack_guard();
2606 }
2607 
2608 void JavaThread::disable_stack_yellow_reserved_zone() {
2609   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2610   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2611 
2612   // Simply return if called for a thread that does not use guard pages.
2613   if (_stack_guard_state == stack_guard_unused) return;
2614 
2615   // The base notation is from the stacks point of view, growing downward.
2616   // We need to adjust it to work correctly with guard_memory()
2617   address base = stack_red_zone_base();
2618 
2619   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2620     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2621   } else {
2622     warning("Attempt to unguard stack yellow zone failed.");
2623   }
2624   disable_register_stack_guard();
2625 }
2626 
2627 void JavaThread::enable_stack_red_zone() {
2628   // The base notation is from the stacks point of view, growing downward.
2629   // We need to adjust it to work correctly with guard_memory()
2630   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2631   address base = stack_red_zone_base() - stack_red_zone_size();
2632 
2633   guarantee(base < stack_base(), "Error calculating stack red zone");
2634   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2635 
2636   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2637     warning("Attempt to guard stack red zone failed.");
2638   }
2639 }
2640 
2641 void JavaThread::disable_stack_red_zone() {
2642   // The base notation is from the stacks point of view, growing downward.
2643   // We need to adjust it to work correctly with guard_memory()
2644   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2645   address base = stack_red_zone_base() - stack_red_zone_size();
2646   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2647     warning("Attempt to unguard stack red zone failed.");
2648   }
2649 }
2650 
2651 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2652   // ignore is there is no stack
2653   if (!has_last_Java_frame()) return;
2654   // traverse the stack frames. Starts from top frame.
2655   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2656     frame* fr = fst.current();
2657     f(fr, fst.register_map());
2658   }
2659 }
2660 
2661 
2662 #ifndef PRODUCT
2663 // Deoptimization
2664 // Function for testing deoptimization
2665 void JavaThread::deoptimize() {
2666   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2667   StackFrameStream fst(this, UseBiasedLocking);
2668   bool deopt = false;           // Dump stack only if a deopt actually happens.
2669   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2670   // Iterate over all frames in the thread and deoptimize
2671   for (; !fst.is_done(); fst.next()) {
2672     if (fst.current()->can_be_deoptimized()) {
2673 
2674       if (only_at) {
2675         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2676         // consists of comma or carriage return separated numbers so
2677         // search for the current bci in that string.
2678         address pc = fst.current()->pc();
2679         nmethod* nm =  (nmethod*) fst.current()->cb();
2680         ScopeDesc* sd = nm->scope_desc_at(pc);
2681         char buffer[8];
2682         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2683         size_t len = strlen(buffer);
2684         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2685         while (found != NULL) {
2686           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2687               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2688             // Check that the bci found is bracketed by terminators.
2689             break;
2690           }
2691           found = strstr(found + 1, buffer);
2692         }
2693         if (!found) {
2694           continue;
2695         }
2696       }
2697 
2698       if (DebugDeoptimization && !deopt) {
2699         deopt = true; // One-time only print before deopt
2700         tty->print_cr("[BEFORE Deoptimization]");
2701         trace_frames();
2702         trace_stack();
2703       }
2704       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2705     }
2706   }
2707 
2708   if (DebugDeoptimization && deopt) {
2709     tty->print_cr("[AFTER Deoptimization]");
2710     trace_frames();
2711   }
2712 }
2713 
2714 
2715 // Make zombies
2716 void JavaThread::make_zombies() {
2717   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2718     if (fst.current()->can_be_deoptimized()) {
2719       // it is a Java nmethod
2720       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2721       nm->make_not_entrant();
2722     }
2723   }
2724 }
2725 #endif // PRODUCT
2726 
2727 
2728 void JavaThread::deoptimized_wrt_marked_nmethods() {
2729   if (!has_last_Java_frame()) return;
2730   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2731   StackFrameStream fst(this, UseBiasedLocking);
2732   for (; !fst.is_done(); fst.next()) {
2733     if (fst.current()->should_be_deoptimized()) {
2734       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2735     }
2736   }
2737 }
2738 
2739 
2740 // If the caller is a NamedThread, then remember, in the current scope,
2741 // the given JavaThread in its _processed_thread field.
2742 class RememberProcessedThread: public StackObj {
2743   NamedThread* _cur_thr;
2744  public:
2745   RememberProcessedThread(JavaThread* jthr) {
2746     Thread* thread = Thread::current();
2747     if (thread->is_Named_thread()) {
2748       _cur_thr = (NamedThread *)thread;
2749       _cur_thr->set_processed_thread(jthr);
2750     } else {
2751       _cur_thr = NULL;
2752     }
2753   }
2754 
2755   ~RememberProcessedThread() {
2756     if (_cur_thr) {
2757       _cur_thr->set_processed_thread(NULL);
2758     }
2759   }
2760 };
2761 
2762 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2763   // Verify that the deferred card marks have been flushed.
2764   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2765 
2766   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2767   // since there may be more than one thread using each ThreadProfiler.
2768 
2769   // Traverse the GCHandles
2770   Thread::oops_do(f, cf);
2771 
2772   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2773 
2774   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2775          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2776 
2777   if (has_last_Java_frame()) {
2778     // Record JavaThread to GC thread
2779     RememberProcessedThread rpt(this);
2780 
2781     // Traverse the privileged stack
2782     if (_privileged_stack_top != NULL) {
2783       _privileged_stack_top->oops_do(f);
2784     }
2785 
2786     // traverse the registered growable array
2787     if (_array_for_gc != NULL) {
2788       for (int index = 0; index < _array_for_gc->length(); index++) {
2789         f->do_oop(_array_for_gc->adr_at(index));
2790       }
2791     }
2792 
2793     // Traverse the monitor chunks
2794     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2795       chunk->oops_do(f);
2796     }
2797 
2798     // Traverse the execution stack
2799     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2800       fst.current()->oops_do(f, cf, fst.register_map());
2801     }
2802   }
2803 
2804   // callee_target is never live across a gc point so NULL it here should
2805   // it still contain a methdOop.
2806 
2807   set_callee_target(NULL);
2808 
2809   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2810   // If we have deferred set_locals there might be oops waiting to be
2811   // written
2812   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2813   if (list != NULL) {
2814     for (int i = 0; i < list->length(); i++) {
2815       list->at(i)->oops_do(f);
2816     }
2817   }
2818 
2819   // Traverse instance variables at the end since the GC may be moving things
2820   // around using this function
2821   f->do_oop((oop*) &_threadObj);
2822   f->do_oop((oop*) &_vm_result);
2823   f->do_oop((oop*) &_exception_oop);
2824   f->do_oop((oop*) &_pending_async_exception);
2825 
2826   if (jvmti_thread_state() != NULL) {
2827     jvmti_thread_state()->oops_do(f);
2828   }
2829 }
2830 
2831 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2832   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2833          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2834 
2835   if (has_last_Java_frame()) {
2836     // Traverse the execution stack
2837     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2838       fst.current()->nmethods_do(cf);
2839     }
2840   }
2841 }
2842 
2843 void JavaThread::metadata_do(void f(Metadata*)) {
2844   if (has_last_Java_frame()) {
2845     // Traverse the execution stack to call f() on the methods in the stack
2846     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2847       fst.current()->metadata_do(f);
2848     }
2849   } else if (is_Compiler_thread()) {
2850     // need to walk ciMetadata in current compile tasks to keep alive.
2851     CompilerThread* ct = (CompilerThread*)this;
2852     if (ct->env() != NULL) {
2853       ct->env()->metadata_do(f);
2854     }
2855     if (ct->task() != NULL) {
2856       ct->task()->metadata_do(f);
2857     }
2858   }
2859 }
2860 
2861 // Printing
2862 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2863   switch (_thread_state) {
2864   case _thread_uninitialized:     return "_thread_uninitialized";
2865   case _thread_new:               return "_thread_new";
2866   case _thread_new_trans:         return "_thread_new_trans";
2867   case _thread_in_native:         return "_thread_in_native";
2868   case _thread_in_native_trans:   return "_thread_in_native_trans";
2869   case _thread_in_vm:             return "_thread_in_vm";
2870   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2871   case _thread_in_Java:           return "_thread_in_Java";
2872   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2873   case _thread_blocked:           return "_thread_blocked";
2874   case _thread_blocked_trans:     return "_thread_blocked_trans";
2875   default:                        return "unknown thread state";
2876   }
2877 }
2878 
2879 #ifndef PRODUCT
2880 void JavaThread::print_thread_state_on(outputStream *st) const {
2881   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2882 };
2883 void JavaThread::print_thread_state() const {
2884   print_thread_state_on(tty);
2885 }
2886 #endif // PRODUCT
2887 
2888 // Called by Threads::print() for VM_PrintThreads operation
2889 void JavaThread::print_on(outputStream *st) const {
2890   st->print_raw("\"");
2891   st->print_raw(get_thread_name());
2892   st->print_raw("\" ");
2893   oop thread_oop = threadObj();
2894   if (thread_oop != NULL) {
2895     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2896     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2897     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2898   }
2899   Thread::print_on(st);
2900   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2901   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2902   if (thread_oop != NULL) {
2903     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2904   }
2905 #ifndef PRODUCT
2906   print_thread_state_on(st);
2907   _safepoint_state->print_on(st);
2908 #endif // PRODUCT
2909   if (is_Compiler_thread()) {
2910     CompilerThread* ct = (CompilerThread*)this;
2911     if (ct->task() != NULL) {
2912       st->print("   Compiling: ");
2913       ct->task()->print(st, NULL, true, false);
2914     } else {
2915       st->print("   No compile task");
2916     }
2917     st->cr();
2918   }
2919 }
2920 
2921 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2922   st->print("%s", get_thread_name_string(buf, buflen));
2923 }
2924 
2925 // Called by fatal error handler. The difference between this and
2926 // JavaThread::print() is that we can't grab lock or allocate memory.
2927 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2928   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2929   oop thread_obj = threadObj();
2930   if (thread_obj != NULL) {
2931     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2932   }
2933   st->print(" [");
2934   st->print("%s", _get_thread_state_name(_thread_state));
2935   if (osthread()) {
2936     st->print(", id=%d", osthread()->thread_id());
2937   }
2938   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2939             p2i(stack_end()), p2i(stack_base()));
2940   st->print("]");
2941   return;
2942 }
2943 
2944 // Verification
2945 
2946 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2947 
2948 void JavaThread::verify() {
2949   // Verify oops in the thread.
2950   oops_do(&VerifyOopClosure::verify_oop, NULL);
2951 
2952   // Verify the stack frames.
2953   frames_do(frame_verify);
2954 }
2955 
2956 // CR 6300358 (sub-CR 2137150)
2957 // Most callers of this method assume that it can't return NULL but a
2958 // thread may not have a name whilst it is in the process of attaching to
2959 // the VM - see CR 6412693, and there are places where a JavaThread can be
2960 // seen prior to having it's threadObj set (eg JNI attaching threads and
2961 // if vm exit occurs during initialization). These cases can all be accounted
2962 // for such that this method never returns NULL.
2963 const char* JavaThread::get_thread_name() const {
2964 #ifdef ASSERT
2965   // early safepoints can hit while current thread does not yet have TLS
2966   if (!SafepointSynchronize::is_at_safepoint()) {
2967     Thread *cur = Thread::current();
2968     if (!(cur->is_Java_thread() && cur == this)) {
2969       // Current JavaThreads are allowed to get their own name without
2970       // the Threads_lock.
2971       assert_locked_or_safepoint(Threads_lock);
2972     }
2973   }
2974 #endif // ASSERT
2975   return get_thread_name_string();
2976 }
2977 
2978 // Returns a non-NULL representation of this thread's name, or a suitable
2979 // descriptive string if there is no set name
2980 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2981   const char* name_str;
2982   oop thread_obj = threadObj();
2983   if (thread_obj != NULL) {
2984     oop name = java_lang_Thread::name(thread_obj);
2985     if (name != NULL) {
2986       if (buf == NULL) {
2987         name_str = java_lang_String::as_utf8_string(name);
2988       } else {
2989         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2990       }
2991     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2992       name_str = "<no-name - thread is attaching>";
2993     } else {
2994       name_str = Thread::name();
2995     }
2996   } else {
2997     name_str = Thread::name();
2998   }
2999   assert(name_str != NULL, "unexpected NULL thread name");
3000   return name_str;
3001 }
3002 
3003 
3004 const char* JavaThread::get_threadgroup_name() const {
3005   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3006   oop thread_obj = threadObj();
3007   if (thread_obj != NULL) {
3008     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3009     if (thread_group != NULL) {
3010       // ThreadGroup.name can be null
3011       return java_lang_ThreadGroup::name(thread_group);
3012     }
3013   }
3014   return NULL;
3015 }
3016 
3017 const char* JavaThread::get_parent_name() const {
3018   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3019   oop thread_obj = threadObj();
3020   if (thread_obj != NULL) {
3021     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3022     if (thread_group != NULL) {
3023       oop parent = java_lang_ThreadGroup::parent(thread_group);
3024       if (parent != NULL) {
3025         // ThreadGroup.name can be null
3026         return java_lang_ThreadGroup::name(parent);
3027       }
3028     }
3029   }
3030   return NULL;
3031 }
3032 
3033 ThreadPriority JavaThread::java_priority() const {
3034   oop thr_oop = threadObj();
3035   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3036   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3037   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3038   return priority;
3039 }
3040 
3041 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3042 
3043   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3044   // Link Java Thread object <-> C++ Thread
3045 
3046   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3047   // and put it into a new Handle.  The Handle "thread_oop" can then
3048   // be used to pass the C++ thread object to other methods.
3049 
3050   // Set the Java level thread object (jthread) field of the
3051   // new thread (a JavaThread *) to C++ thread object using the
3052   // "thread_oop" handle.
3053 
3054   // Set the thread field (a JavaThread *) of the
3055   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3056 
3057   Handle thread_oop(Thread::current(),
3058                     JNIHandles::resolve_non_null(jni_thread));
3059   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3060          "must be initialized");
3061   set_threadObj(thread_oop());
3062   java_lang_Thread::set_thread(thread_oop(), this);
3063 
3064   if (prio == NoPriority) {
3065     prio = java_lang_Thread::priority(thread_oop());
3066     assert(prio != NoPriority, "A valid priority should be present");
3067   }
3068 
3069   // Push the Java priority down to the native thread; needs Threads_lock
3070   Thread::set_priority(this, prio);
3071 
3072   prepare_ext();
3073 
3074   // Add the new thread to the Threads list and set it in motion.
3075   // We must have threads lock in order to call Threads::add.
3076   // It is crucial that we do not block before the thread is
3077   // added to the Threads list for if a GC happens, then the java_thread oop
3078   // will not be visited by GC.
3079   Threads::add(this);
3080 }
3081 
3082 oop JavaThread::current_park_blocker() {
3083   // Support for JSR-166 locks
3084   oop thread_oop = threadObj();
3085   if (thread_oop != NULL &&
3086       JDK_Version::current().supports_thread_park_blocker()) {
3087     return java_lang_Thread::park_blocker(thread_oop);
3088   }
3089   return NULL;
3090 }
3091 
3092 
3093 void JavaThread::print_stack_on(outputStream* st) {
3094   if (!has_last_Java_frame()) return;
3095   ResourceMark rm;
3096   HandleMark   hm;
3097 
3098   RegisterMap reg_map(this);
3099   vframe* start_vf = last_java_vframe(&reg_map);
3100   int count = 0;
3101   for (vframe* f = start_vf; f; f = f->sender()) {
3102     if (f->is_java_frame()) {
3103       javaVFrame* jvf = javaVFrame::cast(f);
3104       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3105 
3106       // Print out lock information
3107       if (JavaMonitorsInStackTrace) {
3108         jvf->print_lock_info_on(st, count);
3109       }
3110     } else {
3111       // Ignore non-Java frames
3112     }
3113 
3114     // Bail-out case for too deep stacks
3115     count++;
3116     if (MaxJavaStackTraceDepth == count) return;
3117   }
3118 }
3119 
3120 
3121 // JVMTI PopFrame support
3122 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3123   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3124   if (in_bytes(size_in_bytes) != 0) {
3125     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3126     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3127     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3128   }
3129 }
3130 
3131 void* JavaThread::popframe_preserved_args() {
3132   return _popframe_preserved_args;
3133 }
3134 
3135 ByteSize JavaThread::popframe_preserved_args_size() {
3136   return in_ByteSize(_popframe_preserved_args_size);
3137 }
3138 
3139 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3140   int sz = in_bytes(popframe_preserved_args_size());
3141   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3142   return in_WordSize(sz / wordSize);
3143 }
3144 
3145 void JavaThread::popframe_free_preserved_args() {
3146   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3147   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3148   _popframe_preserved_args = NULL;
3149   _popframe_preserved_args_size = 0;
3150 }
3151 
3152 #ifndef PRODUCT
3153 
3154 void JavaThread::trace_frames() {
3155   tty->print_cr("[Describe stack]");
3156   int frame_no = 1;
3157   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3158     tty->print("  %d. ", frame_no++);
3159     fst.current()->print_value_on(tty, this);
3160     tty->cr();
3161   }
3162 }
3163 
3164 class PrintAndVerifyOopClosure: public OopClosure {
3165  protected:
3166   template <class T> inline void do_oop_work(T* p) {
3167     oop obj = oopDesc::load_decode_heap_oop(p);
3168     if (obj == NULL) return;
3169     tty->print(INTPTR_FORMAT ": ", p2i(p));
3170     if (obj->is_oop_or_null()) {
3171       if (obj->is_objArray()) {
3172         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3173       } else {
3174         obj->print();
3175       }
3176     } else {
3177       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3178     }
3179     tty->cr();
3180   }
3181  public:
3182   virtual void do_oop(oop* p) { do_oop_work(p); }
3183   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3184 };
3185 
3186 
3187 static void oops_print(frame* f, const RegisterMap *map) {
3188   PrintAndVerifyOopClosure print;
3189   f->print_value();
3190   f->oops_do(&print, NULL, (RegisterMap*)map);
3191 }
3192 
3193 // Print our all the locations that contain oops and whether they are
3194 // valid or not.  This useful when trying to find the oldest frame
3195 // where an oop has gone bad since the frame walk is from youngest to
3196 // oldest.
3197 void JavaThread::trace_oops() {
3198   tty->print_cr("[Trace oops]");
3199   frames_do(oops_print);
3200 }
3201 
3202 
3203 #ifdef ASSERT
3204 // Print or validate the layout of stack frames
3205 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3206   ResourceMark rm;
3207   PRESERVE_EXCEPTION_MARK;
3208   FrameValues values;
3209   int frame_no = 0;
3210   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3211     fst.current()->describe(values, ++frame_no);
3212     if (depth == frame_no) break;
3213   }
3214   if (validate_only) {
3215     values.validate();
3216   } else {
3217     tty->print_cr("[Describe stack layout]");
3218     values.print(this);
3219   }
3220 }
3221 #endif
3222 
3223 void JavaThread::trace_stack_from(vframe* start_vf) {
3224   ResourceMark rm;
3225   int vframe_no = 1;
3226   for (vframe* f = start_vf; f; f = f->sender()) {
3227     if (f->is_java_frame()) {
3228       javaVFrame::cast(f)->print_activation(vframe_no++);
3229     } else {
3230       f->print();
3231     }
3232     if (vframe_no > StackPrintLimit) {
3233       tty->print_cr("...<more frames>...");
3234       return;
3235     }
3236   }
3237 }
3238 
3239 
3240 void JavaThread::trace_stack() {
3241   if (!has_last_Java_frame()) return;
3242   ResourceMark rm;
3243   HandleMark   hm;
3244   RegisterMap reg_map(this);
3245   trace_stack_from(last_java_vframe(&reg_map));
3246 }
3247 
3248 
3249 #endif // PRODUCT
3250 
3251 
3252 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3253   assert(reg_map != NULL, "a map must be given");
3254   frame f = last_frame();
3255   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3256     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3257   }
3258   return NULL;
3259 }
3260 
3261 
3262 Klass* JavaThread::security_get_caller_class(int depth) {
3263   vframeStream vfst(this);
3264   vfst.security_get_caller_frame(depth);
3265   if (!vfst.at_end()) {
3266     return vfst.method()->method_holder();
3267   }
3268   return NULL;
3269 }
3270 
3271 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3272   assert(thread->is_Compiler_thread(), "must be compiler thread");
3273   CompileBroker::compiler_thread_loop();
3274 }
3275 
3276 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3277   NMethodSweeper::sweeper_loop();
3278 }
3279 
3280 // Create a CompilerThread
3281 CompilerThread::CompilerThread(CompileQueue* queue,
3282                                CompilerCounters* counters)
3283                                : JavaThread(&compiler_thread_entry) {
3284   _env   = NULL;
3285   _log   = NULL;
3286   _task  = NULL;
3287   _queue = queue;
3288   _counters = counters;
3289   _buffer_blob = NULL;
3290   _compiler = NULL;
3291 
3292 #ifndef PRODUCT
3293   _ideal_graph_printer = NULL;
3294 #endif
3295 }
3296 
3297 bool CompilerThread::can_call_java() const {
3298   return _compiler != NULL && _compiler->is_jvmci();
3299 }
3300 
3301 // Create sweeper thread
3302 CodeCacheSweeperThread::CodeCacheSweeperThread()
3303 : JavaThread(&sweeper_thread_entry) {
3304   _scanned_compiled_method = NULL;
3305 }
3306 
3307 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3308   JavaThread::oops_do(f, cf);
3309   if (_scanned_compiled_method != NULL && cf != NULL) {
3310     // Safepoints can occur when the sweeper is scanning an nmethod so
3311     // process it here to make sure it isn't unloaded in the middle of
3312     // a scan.
3313     cf->do_code_blob(_scanned_compiled_method);
3314   }
3315 }
3316 
3317 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3318   JavaThread::nmethods_do(cf);
3319   if (_scanned_compiled_method != NULL && cf != NULL) {
3320     // Safepoints can occur when the sweeper is scanning an nmethod so
3321     // process it here to make sure it isn't unloaded in the middle of
3322     // a scan.
3323     cf->do_code_blob(_scanned_compiled_method);
3324   }
3325 }
3326 
3327 
3328 // ======= Threads ========
3329 
3330 // The Threads class links together all active threads, and provides
3331 // operations over all threads.  It is protected by its own Mutex
3332 // lock, which is also used in other contexts to protect thread
3333 // operations from having the thread being operated on from exiting
3334 // and going away unexpectedly (e.g., safepoint synchronization)
3335 
3336 JavaThread* Threads::_thread_list = NULL;
3337 int         Threads::_number_of_threads = 0;
3338 int         Threads::_number_of_non_daemon_threads = 0;
3339 int         Threads::_return_code = 0;
3340 int         Threads::_thread_claim_parity = 0;
3341 size_t      JavaThread::_stack_size_at_create = 0;
3342 #ifdef ASSERT
3343 bool        Threads::_vm_complete = false;
3344 #endif
3345 
3346 // All JavaThreads
3347 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3348 
3349 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3350 void Threads::threads_do(ThreadClosure* tc) {
3351   assert_locked_or_safepoint(Threads_lock);
3352   // ALL_JAVA_THREADS iterates through all JavaThreads
3353   ALL_JAVA_THREADS(p) {
3354     tc->do_thread(p);
3355   }
3356   // Someday we could have a table or list of all non-JavaThreads.
3357   // For now, just manually iterate through them.
3358   tc->do_thread(VMThread::vm_thread());
3359   Universe::heap()->gc_threads_do(tc);
3360   WatcherThread *wt = WatcherThread::watcher_thread();
3361   // Strictly speaking, the following NULL check isn't sufficient to make sure
3362   // the data for WatcherThread is still valid upon being examined. However,
3363   // considering that WatchThread terminates when the VM is on the way to
3364   // exit at safepoint, the chance of the above is extremely small. The right
3365   // way to prevent termination of WatcherThread would be to acquire
3366   // Terminator_lock, but we can't do that without violating the lock rank
3367   // checking in some cases.
3368   if (wt != NULL) {
3369     tc->do_thread(wt);
3370   }
3371 
3372   // If CompilerThreads ever become non-JavaThreads, add them here
3373 }
3374 
3375 // The system initialization in the library has three phases.
3376 //
3377 // Phase 1: java.lang.System class initialization
3378 //     java.lang.System is a primordial class loaded and initialized
3379 //     by the VM early during startup.  java.lang.System.<clinit>
3380 //     only does registerNatives and keeps the rest of the class
3381 //     initialization work later until thread initialization completes.
3382 //
3383 //     System.initPhase1 initializes the system properties, the static
3384 //     fields in, out, and err. Set up java signal handlers, OS-specific
3385 //     system settings, and thread group of the main thread.
3386 static void call_initPhase1(TRAPS) {
3387   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3388   instanceKlassHandle klass (THREAD, k);
3389 
3390   JavaValue result(T_VOID);
3391   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3392                                          vmSymbols::void_method_signature(), CHECK);
3393 }
3394 
3395 // Phase 2. Module system initialization
3396 //     This will initialize the module system.  Only java.base classes
3397 //     can be loaded until phase 2 completes.
3398 //
3399 //     Call System.initPhase2 after the compiler initialization and jsr292
3400 //     classes get initialized because module initialization runs a lot of java
3401 //     code, that for performance reasons, should be compiled.  Also, this will
3402 //     enable the startup code to use lambda and other language features in this
3403 //     phase and onward.
3404 //
3405 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3406 static void call_initPhase2(TRAPS) {
3407   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3408 
3409   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3410   instanceKlassHandle klass (THREAD, k);
3411 
3412   JavaValue result(T_VOID);
3413   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3414                                          vmSymbols::void_method_signature(), CHECK);
3415   universe_post_module_init();
3416 }
3417 
3418 // Phase 3. final setup - set security manager, system class loader and TCCL
3419 //
3420 //     This will instantiate and set the security manager, set the system class
3421 //     loader as well as the thread context class loader.  The security manager
3422 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3423 //     other modules or the application's classpath.
3424 static void call_initPhase3(TRAPS) {
3425   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3426   instanceKlassHandle klass (THREAD, k);
3427 
3428   JavaValue result(T_VOID);
3429   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3430                                          vmSymbols::void_method_signature(), CHECK);
3431 }
3432 
3433 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3434   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3435 
3436   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3437     create_vm_init_libraries();
3438   }
3439 
3440   initialize_class(vmSymbols::java_lang_String(), CHECK);
3441 
3442   // Inject CompactStrings value after the static initializers for String ran.
3443   java_lang_String::set_compact_strings(CompactStrings);
3444 
3445   // Initialize java_lang.System (needed before creating the thread)
3446   initialize_class(vmSymbols::java_lang_System(), CHECK);
3447   // The VM creates & returns objects of this class. Make sure it's initialized.
3448   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3449   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3450   Handle thread_group = create_initial_thread_group(CHECK);
3451   Universe::set_main_thread_group(thread_group());
3452   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3453   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3454   main_thread->set_threadObj(thread_object);
3455   // Set thread status to running since main thread has
3456   // been started and running.
3457   java_lang_Thread::set_thread_status(thread_object,
3458                                       java_lang_Thread::RUNNABLE);
3459 
3460   // The VM creates objects of this class.
3461   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3462 
3463   // The VM preresolves methods to these classes. Make sure that they get initialized
3464   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3465   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3466 
3467   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3468   call_initPhase1(CHECK);
3469 
3470   // get the Java runtime name after java.lang.System is initialized
3471   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3472   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3473 
3474   // an instance of OutOfMemory exception has been allocated earlier
3475   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3476   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3477   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3478   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3479   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3480   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3481   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3482   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3483 }
3484 
3485 void Threads::initialize_jsr292_core_classes(TRAPS) {
3486   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3487 
3488   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3489   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3490   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3491 }
3492 
3493 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3494   extern void JDK_Version_init();
3495 
3496   // Preinitialize version info.
3497   VM_Version::early_initialize();
3498 
3499   // Check version
3500   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3501 
3502   // Initialize library-based TLS
3503   ThreadLocalStorage::init();
3504 
3505   // Initialize the output stream module
3506   ostream_init();
3507 
3508   // Process java launcher properties.
3509   Arguments::process_sun_java_launcher_properties(args);
3510 
3511   // Initialize the os module
3512   os::init();
3513 
3514   // Record VM creation timing statistics
3515   TraceVmCreationTime create_vm_timer;
3516   create_vm_timer.start();
3517 
3518   // Initialize system properties.
3519   Arguments::init_system_properties();
3520 
3521   // So that JDK version can be used as a discriminator when parsing arguments
3522   JDK_Version_init();
3523 
3524   // Update/Initialize System properties after JDK version number is known
3525   Arguments::init_version_specific_system_properties();
3526 
3527   // Make sure to initialize log configuration *before* parsing arguments
3528   LogConfiguration::initialize(create_vm_timer.begin_time());
3529 
3530   // Parse arguments
3531   jint parse_result = Arguments::parse(args);
3532   if (parse_result != JNI_OK) return parse_result;
3533 
3534   os::init_before_ergo();
3535 
3536   jint ergo_result = Arguments::apply_ergo();
3537   if (ergo_result != JNI_OK) return ergo_result;
3538 
3539   // Final check of all ranges after ergonomics which may change values.
3540   if (!CommandLineFlagRangeList::check_ranges()) {
3541     return JNI_EINVAL;
3542   }
3543 
3544   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3545   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3546   if (!constraint_result) {
3547     return JNI_EINVAL;
3548   }
3549 
3550   CommandLineFlagWriteableList::mark_startup();
3551 
3552   if (PauseAtStartup) {
3553     os::pause();
3554   }
3555 
3556   HOTSPOT_VM_INIT_BEGIN();
3557 
3558   // Timing (must come after argument parsing)
3559   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3560 
3561   // Initialize the os module after parsing the args
3562   jint os_init_2_result = os::init_2();
3563   if (os_init_2_result != JNI_OK) return os_init_2_result;
3564 
3565   jint adjust_after_os_result = Arguments::adjust_after_os();
3566   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3567 
3568   // Initialize output stream logging
3569   ostream_init_log();
3570 
3571   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3572   // Must be before create_vm_init_agents()
3573   if (Arguments::init_libraries_at_startup()) {
3574     convert_vm_init_libraries_to_agents();
3575   }
3576 
3577   // Launch -agentlib/-agentpath and converted -Xrun agents
3578   if (Arguments::init_agents_at_startup()) {
3579     create_vm_init_agents();
3580   }
3581 
3582   // Initialize Threads state
3583   _thread_list = NULL;
3584   _number_of_threads = 0;
3585   _number_of_non_daemon_threads = 0;
3586 
3587   // Initialize global data structures and create system classes in heap
3588   vm_init_globals();
3589 
3590 #if INCLUDE_JVMCI
3591   if (JVMCICounterSize > 0) {
3592     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3593     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3594   } else {
3595     JavaThread::_jvmci_old_thread_counters = NULL;
3596   }
3597 #endif // INCLUDE_JVMCI
3598 
3599   // Attach the main thread to this os thread
3600   JavaThread* main_thread = new JavaThread();
3601   main_thread->set_thread_state(_thread_in_vm);
3602   main_thread->initialize_thread_current();
3603   // must do this before set_active_handles
3604   main_thread->record_stack_base_and_size();
3605   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3606 
3607   if (!main_thread->set_as_starting_thread()) {
3608     vm_shutdown_during_initialization(
3609                                       "Failed necessary internal allocation. Out of swap space");
3610     delete main_thread;
3611     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3612     return JNI_ENOMEM;
3613   }
3614 
3615   // Enable guard page *after* os::create_main_thread(), otherwise it would
3616   // crash Linux VM, see notes in os_linux.cpp.
3617   main_thread->create_stack_guard_pages();
3618 
3619   // Initialize Java-Level synchronization subsystem
3620   ObjectMonitor::Initialize();
3621 
3622   // Initialize global modules
3623   jint status = init_globals();
3624   if (status != JNI_OK) {
3625     delete main_thread;
3626     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3627     return status;
3628   }
3629 
3630   if (TRACE_INITIALIZE() != JNI_OK) {
3631     vm_exit_during_initialization("Failed to initialize tracing backend");
3632   }
3633 
3634   // Should be done after the heap is fully created
3635   main_thread->cache_global_variables();
3636 
3637   HandleMark hm;
3638 
3639   { MutexLocker mu(Threads_lock);
3640     Threads::add(main_thread);
3641   }
3642 
3643   // Any JVMTI raw monitors entered in onload will transition into
3644   // real raw monitor. VM is setup enough here for raw monitor enter.
3645   JvmtiExport::transition_pending_onload_raw_monitors();
3646 
3647   // Create the VMThread
3648   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3649 
3650   VMThread::create();
3651     Thread* vmthread = VMThread::vm_thread();
3652 
3653     if (!os::create_thread(vmthread, os::vm_thread)) {
3654       vm_exit_during_initialization("Cannot create VM thread. "
3655                                     "Out of system resources.");
3656     }
3657 
3658     // Wait for the VM thread to become ready, and VMThread::run to initialize
3659     // Monitors can have spurious returns, must always check another state flag
3660     {
3661       MutexLocker ml(Notify_lock);
3662       os::start_thread(vmthread);
3663       while (vmthread->active_handles() == NULL) {
3664         Notify_lock->wait();
3665       }
3666     }
3667   }
3668 
3669   assert(Universe::is_fully_initialized(), "not initialized");
3670   if (VerifyDuringStartup) {
3671     // Make sure we're starting with a clean slate.
3672     VM_Verify verify_op;
3673     VMThread::execute(&verify_op);
3674   }
3675 
3676   Thread* THREAD = Thread::current();
3677 
3678   // At this point, the Universe is initialized, but we have not executed
3679   // any byte code.  Now is a good time (the only time) to dump out the
3680   // internal state of the JVM for sharing.
3681   if (DumpSharedSpaces) {
3682     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3683     ShouldNotReachHere();
3684   }
3685 
3686   // Always call even when there are not JVMTI environments yet, since environments
3687   // may be attached late and JVMTI must track phases of VM execution
3688   JvmtiExport::enter_early_start_phase();
3689 
3690   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3691   JvmtiExport::post_early_vm_start();
3692 
3693   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3694 
3695   // We need this for ClassDataSharing - the initial vm.info property is set
3696   // with the default value of CDS "sharing" which may be reset through
3697   // command line options.
3698   reset_vm_info_property(CHECK_JNI_ERR);
3699 
3700   quicken_jni_functions();
3701 
3702   // No more stub generation allowed after that point.
3703   StubCodeDesc::freeze();
3704 
3705   // Set flag that basic initialization has completed. Used by exceptions and various
3706   // debug stuff, that does not work until all basic classes have been initialized.
3707   set_init_completed();
3708 
3709   LogConfiguration::post_initialize();
3710   Metaspace::post_initialize();
3711 
3712   HOTSPOT_VM_INIT_END();
3713 
3714   // record VM initialization completion time
3715 #if INCLUDE_MANAGEMENT
3716   Management::record_vm_init_completed();
3717 #endif // INCLUDE_MANAGEMENT
3718 
3719   // Signal Dispatcher needs to be started before VMInit event is posted
3720   os::signal_init();
3721 
3722   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3723   if (!DisableAttachMechanism) {
3724     AttachListener::vm_start();
3725     if (StartAttachListener || AttachListener::init_at_startup()) {
3726       AttachListener::init();
3727     }
3728   }
3729 
3730   // Launch -Xrun agents
3731   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3732   // back-end can launch with -Xdebug -Xrunjdwp.
3733   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3734     create_vm_init_libraries();
3735   }
3736 
3737   if (CleanChunkPoolAsync) {
3738     Chunk::start_chunk_pool_cleaner_task();
3739   }
3740 
3741   // initialize compiler(s)
3742 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3743   CompileBroker::compilation_init(CHECK_JNI_ERR);
3744 #endif
3745 
3746   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3747   // It is done after compilers are initialized, because otherwise compilations of
3748   // signature polymorphic MH intrinsics can be missed
3749   // (see SystemDictionary::find_method_handle_intrinsic).
3750   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3751 
3752   // This will initialize the module system.  Only java.base classes can be
3753   // loaded until phase 2 completes
3754   call_initPhase2(CHECK_JNI_ERR);
3755 
3756   // Always call even when there are not JVMTI environments yet, since environments
3757   // may be attached late and JVMTI must track phases of VM execution
3758   JvmtiExport::enter_start_phase();
3759 
3760   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3761   JvmtiExport::post_vm_start();
3762 
3763   // Final system initialization including security manager and system class loader
3764   call_initPhase3(CHECK_JNI_ERR);
3765 
3766   // cache the system class loader
3767   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3768 
3769 #if INCLUDE_JVMCI
3770   if (EnableJVMCI) {
3771     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3772     // The JVMCI Java initialization code will read this flag and
3773     // do the printing if it's set.
3774     bool init = JVMCIPrintProperties;
3775 
3776     if (!init) {
3777       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3778       // compilations via JVMCI will not actually block until JVMCI is initialized.
3779       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3780     }
3781 
3782     if (init) {
3783       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3784     }
3785   }
3786 #endif
3787 
3788   // Always call even when there are not JVMTI environments yet, since environments
3789   // may be attached late and JVMTI must track phases of VM execution
3790   JvmtiExport::enter_live_phase();
3791 
3792   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3793   JvmtiExport::post_vm_initialized();
3794 
3795   if (TRACE_START() != JNI_OK) {
3796     vm_exit_during_initialization("Failed to start tracing backend.");
3797   }
3798 
3799 #if INCLUDE_MANAGEMENT
3800   Management::initialize(THREAD);
3801 
3802   if (HAS_PENDING_EXCEPTION) {
3803     // management agent fails to start possibly due to
3804     // configuration problem and is responsible for printing
3805     // stack trace if appropriate. Simply exit VM.
3806     vm_exit(1);
3807   }
3808 #endif // INCLUDE_MANAGEMENT
3809 
3810   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3811   if (MemProfiling)                   MemProfiler::engage();
3812   StatSampler::engage();
3813   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3814 
3815   BiasedLocking::init();
3816 
3817 #if INCLUDE_RTM_OPT
3818   RTMLockingCounters::init();
3819 #endif
3820 
3821   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3822     call_postVMInitHook(THREAD);
3823     // The Java side of PostVMInitHook.run must deal with all
3824     // exceptions and provide means of diagnosis.
3825     if (HAS_PENDING_EXCEPTION) {
3826       CLEAR_PENDING_EXCEPTION;
3827     }
3828   }
3829 
3830   {
3831     MutexLocker ml(PeriodicTask_lock);
3832     // Make sure the WatcherThread can be started by WatcherThread::start()
3833     // or by dynamic enrollment.
3834     WatcherThread::make_startable();
3835     // Start up the WatcherThread if there are any periodic tasks
3836     // NOTE:  All PeriodicTasks should be registered by now. If they
3837     //   aren't, late joiners might appear to start slowly (we might
3838     //   take a while to process their first tick).
3839     if (PeriodicTask::num_tasks() > 0) {
3840       WatcherThread::start();
3841     }
3842   }
3843 
3844   create_vm_timer.end();
3845 #ifdef ASSERT
3846   _vm_complete = true;
3847 #endif
3848   return JNI_OK;
3849 }
3850 
3851 // type for the Agent_OnLoad and JVM_OnLoad entry points
3852 extern "C" {
3853   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3854 }
3855 // Find a command line agent library and return its entry point for
3856 //         -agentlib:  -agentpath:   -Xrun
3857 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3858 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3859                                     const char *on_load_symbols[],
3860                                     size_t num_symbol_entries) {
3861   OnLoadEntry_t on_load_entry = NULL;
3862   void *library = NULL;
3863 
3864   if (!agent->valid()) {
3865     char buffer[JVM_MAXPATHLEN];
3866     char ebuf[1024] = "";
3867     const char *name = agent->name();
3868     const char *msg = "Could not find agent library ";
3869 
3870     // First check to see if agent is statically linked into executable
3871     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3872       library = agent->os_lib();
3873     } else if (agent->is_absolute_path()) {
3874       library = os::dll_load(name, ebuf, sizeof ebuf);
3875       if (library == NULL) {
3876         const char *sub_msg = " in absolute path, with error: ";
3877         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3878         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3879         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3880         // If we can't find the agent, exit.
3881         vm_exit_during_initialization(buf, NULL);
3882         FREE_C_HEAP_ARRAY(char, buf);
3883       }
3884     } else {
3885       // Try to load the agent from the standard dll directory
3886       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3887                              name)) {
3888         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3889       }
3890       if (library == NULL) { // Try the local directory
3891         char ns[1] = {0};
3892         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3893           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3894         }
3895         if (library == NULL) {
3896           const char *sub_msg = " on the library path, with error: ";
3897           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3898           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3899           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3900           // If we can't find the agent, exit.
3901           vm_exit_during_initialization(buf, NULL);
3902           FREE_C_HEAP_ARRAY(char, buf);
3903         }
3904       }
3905     }
3906     agent->set_os_lib(library);
3907     agent->set_valid();
3908   }
3909 
3910   // Find the OnLoad function.
3911   on_load_entry =
3912     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3913                                                           false,
3914                                                           on_load_symbols,
3915                                                           num_symbol_entries));
3916   return on_load_entry;
3917 }
3918 
3919 // Find the JVM_OnLoad entry point
3920 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3921   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3922   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3923 }
3924 
3925 // Find the Agent_OnLoad entry point
3926 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3927   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3928   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3929 }
3930 
3931 // For backwards compatibility with -Xrun
3932 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3933 // treated like -agentpath:
3934 // Must be called before agent libraries are created
3935 void Threads::convert_vm_init_libraries_to_agents() {
3936   AgentLibrary* agent;
3937   AgentLibrary* next;
3938 
3939   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3940     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3941     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3942 
3943     // If there is an JVM_OnLoad function it will get called later,
3944     // otherwise see if there is an Agent_OnLoad
3945     if (on_load_entry == NULL) {
3946       on_load_entry = lookup_agent_on_load(agent);
3947       if (on_load_entry != NULL) {
3948         // switch it to the agent list -- so that Agent_OnLoad will be called,
3949         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3950         Arguments::convert_library_to_agent(agent);
3951       } else {
3952         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3953       }
3954     }
3955   }
3956 }
3957 
3958 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3959 // Invokes Agent_OnLoad
3960 // Called very early -- before JavaThreads exist
3961 void Threads::create_vm_init_agents() {
3962   extern struct JavaVM_ main_vm;
3963   AgentLibrary* agent;
3964 
3965   JvmtiExport::enter_onload_phase();
3966 
3967   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3968     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3969 
3970     if (on_load_entry != NULL) {
3971       // Invoke the Agent_OnLoad function
3972       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3973       if (err != JNI_OK) {
3974         vm_exit_during_initialization("agent library failed to init", agent->name());
3975       }
3976     } else {
3977       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3978     }
3979   }
3980   JvmtiExport::enter_primordial_phase();
3981 }
3982 
3983 extern "C" {
3984   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3985 }
3986 
3987 void Threads::shutdown_vm_agents() {
3988   // Send any Agent_OnUnload notifications
3989   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3990   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3991   extern struct JavaVM_ main_vm;
3992   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3993 
3994     // Find the Agent_OnUnload function.
3995     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3996                                                    os::find_agent_function(agent,
3997                                                    false,
3998                                                    on_unload_symbols,
3999                                                    num_symbol_entries));
4000 
4001     // Invoke the Agent_OnUnload function
4002     if (unload_entry != NULL) {
4003       JavaThread* thread = JavaThread::current();
4004       ThreadToNativeFromVM ttn(thread);
4005       HandleMark hm(thread);
4006       (*unload_entry)(&main_vm);
4007     }
4008   }
4009 }
4010 
4011 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4012 // Invokes JVM_OnLoad
4013 void Threads::create_vm_init_libraries() {
4014   extern struct JavaVM_ main_vm;
4015   AgentLibrary* agent;
4016 
4017   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4018     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4019 
4020     if (on_load_entry != NULL) {
4021       // Invoke the JVM_OnLoad function
4022       JavaThread* thread = JavaThread::current();
4023       ThreadToNativeFromVM ttn(thread);
4024       HandleMark hm(thread);
4025       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4026       if (err != JNI_OK) {
4027         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4028       }
4029     } else {
4030       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4031     }
4032   }
4033 }
4034 
4035 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4036   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4037 
4038   JavaThread* java_thread = NULL;
4039   // Sequential search for now.  Need to do better optimization later.
4040   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4041     oop tobj = thread->threadObj();
4042     if (!thread->is_exiting() &&
4043         tobj != NULL &&
4044         java_tid == java_lang_Thread::thread_id(tobj)) {
4045       java_thread = thread;
4046       break;
4047     }
4048   }
4049   return java_thread;
4050 }
4051 
4052 
4053 // Last thread running calls java.lang.Shutdown.shutdown()
4054 void JavaThread::invoke_shutdown_hooks() {
4055   HandleMark hm(this);
4056 
4057   // We could get here with a pending exception, if so clear it now.
4058   if (this->has_pending_exception()) {
4059     this->clear_pending_exception();
4060   }
4061 
4062   EXCEPTION_MARK;
4063   Klass* k =
4064     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4065                                       THREAD);
4066   if (k != NULL) {
4067     // SystemDictionary::resolve_or_null will return null if there was
4068     // an exception.  If we cannot load the Shutdown class, just don't
4069     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4070     // and finalizers (if runFinalizersOnExit is set) won't be run.
4071     // Note that if a shutdown hook was registered or runFinalizersOnExit
4072     // was called, the Shutdown class would have already been loaded
4073     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4074     instanceKlassHandle shutdown_klass (THREAD, k);
4075     JavaValue result(T_VOID);
4076     JavaCalls::call_static(&result,
4077                            shutdown_klass,
4078                            vmSymbols::shutdown_method_name(),
4079                            vmSymbols::void_method_signature(),
4080                            THREAD);
4081   }
4082   CLEAR_PENDING_EXCEPTION;
4083 }
4084 
4085 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4086 // the program falls off the end of main(). Another VM exit path is through
4087 // vm_exit() when the program calls System.exit() to return a value or when
4088 // there is a serious error in VM. The two shutdown paths are not exactly
4089 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4090 // and VM_Exit op at VM level.
4091 //
4092 // Shutdown sequence:
4093 //   + Shutdown native memory tracking if it is on
4094 //   + Wait until we are the last non-daemon thread to execute
4095 //     <-- every thing is still working at this moment -->
4096 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4097 //        shutdown hooks, run finalizers if finalization-on-exit
4098 //   + Call before_exit(), prepare for VM exit
4099 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4100 //        currently the only user of this mechanism is File.deleteOnExit())
4101 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4102 //        post thread end and vm death events to JVMTI,
4103 //        stop signal thread
4104 //   + Call JavaThread::exit(), it will:
4105 //      > release JNI handle blocks, remove stack guard pages
4106 //      > remove this thread from Threads list
4107 //     <-- no more Java code from this thread after this point -->
4108 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4109 //     the compiler threads at safepoint
4110 //     <-- do not use anything that could get blocked by Safepoint -->
4111 //   + Disable tracing at JNI/JVM barriers
4112 //   + Set _vm_exited flag for threads that are still running native code
4113 //   + Delete this thread
4114 //   + Call exit_globals()
4115 //      > deletes tty
4116 //      > deletes PerfMemory resources
4117 //   + Return to caller
4118 
4119 bool Threads::destroy_vm() {
4120   JavaThread* thread = JavaThread::current();
4121 
4122 #ifdef ASSERT
4123   _vm_complete = false;
4124 #endif
4125   // Wait until we are the last non-daemon thread to execute
4126   { MutexLocker nu(Threads_lock);
4127     while (Threads::number_of_non_daemon_threads() > 1)
4128       // This wait should make safepoint checks, wait without a timeout,
4129       // and wait as a suspend-equivalent condition.
4130       //
4131       // Note: If the FlatProfiler is running and this thread is waiting
4132       // for another non-daemon thread to finish, then the FlatProfiler
4133       // is waiting for the external suspend request on this thread to
4134       // complete. wait_for_ext_suspend_completion() will eventually
4135       // timeout, but that takes time. Making this wait a suspend-
4136       // equivalent condition solves that timeout problem.
4137       //
4138       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4139                          Mutex::_as_suspend_equivalent_flag);
4140   }
4141 
4142   // Hang forever on exit if we are reporting an error.
4143   if (ShowMessageBoxOnError && is_error_reported()) {
4144     os::infinite_sleep();
4145   }
4146   os::wait_for_keypress_at_exit();
4147 
4148   // run Java level shutdown hooks
4149   thread->invoke_shutdown_hooks();
4150 
4151   before_exit(thread);
4152 
4153   thread->exit(true);
4154 
4155   // Stop VM thread.
4156   {
4157     // 4945125 The vm thread comes to a safepoint during exit.
4158     // GC vm_operations can get caught at the safepoint, and the
4159     // heap is unparseable if they are caught. Grab the Heap_lock
4160     // to prevent this. The GC vm_operations will not be able to
4161     // queue until after the vm thread is dead. After this point,
4162     // we'll never emerge out of the safepoint before the VM exits.
4163 
4164     MutexLocker ml(Heap_lock);
4165 
4166     VMThread::wait_for_vm_thread_exit();
4167     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4168     VMThread::destroy();
4169   }
4170 
4171   // clean up ideal graph printers
4172 #if defined(COMPILER2) && !defined(PRODUCT)
4173   IdealGraphPrinter::clean_up();
4174 #endif
4175 
4176   // Now, all Java threads are gone except daemon threads. Daemon threads
4177   // running Java code or in VM are stopped by the Safepoint. However,
4178   // daemon threads executing native code are still running.  But they
4179   // will be stopped at native=>Java/VM barriers. Note that we can't
4180   // simply kill or suspend them, as it is inherently deadlock-prone.
4181 
4182   VM_Exit::set_vm_exited();
4183 
4184   notify_vm_shutdown();
4185 
4186   delete thread;
4187 
4188 #if INCLUDE_JVMCI
4189   if (JVMCICounterSize > 0) {
4190     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4191   }
4192 #endif
4193 
4194   // exit_globals() will delete tty
4195   exit_globals();
4196 
4197   LogConfiguration::finalize();
4198 
4199   return true;
4200 }
4201 
4202 
4203 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4204   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4205   return is_supported_jni_version(version);
4206 }
4207 
4208 
4209 jboolean Threads::is_supported_jni_version(jint version) {
4210   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4211   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4212   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4213   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4214   if (version == JNI_VERSION_9) return JNI_TRUE;
4215   return JNI_FALSE;
4216 }
4217 
4218 
4219 void Threads::add(JavaThread* p, bool force_daemon) {
4220   // The threads lock must be owned at this point
4221   assert_locked_or_safepoint(Threads_lock);
4222 
4223   // See the comment for this method in thread.hpp for its purpose and
4224   // why it is called here.
4225   p->initialize_queues();
4226   p->set_next(_thread_list);
4227   _thread_list = p;
4228   _number_of_threads++;
4229   oop threadObj = p->threadObj();
4230   bool daemon = true;
4231   // Bootstrapping problem: threadObj can be null for initial
4232   // JavaThread (or for threads attached via JNI)
4233   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4234     _number_of_non_daemon_threads++;
4235     daemon = false;
4236   }
4237 
4238   ThreadService::add_thread(p, daemon);
4239 
4240   // Possible GC point.
4241   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4242 }
4243 
4244 void Threads::remove(JavaThread* p) {
4245   // Extra scope needed for Thread_lock, so we can check
4246   // that we do not remove thread without safepoint code notice
4247   { MutexLocker ml(Threads_lock);
4248 
4249     assert(includes(p), "p must be present");
4250 
4251     JavaThread* current = _thread_list;
4252     JavaThread* prev    = NULL;
4253 
4254     while (current != p) {
4255       prev    = current;
4256       current = current->next();
4257     }
4258 
4259     if (prev) {
4260       prev->set_next(current->next());
4261     } else {
4262       _thread_list = p->next();
4263     }
4264     _number_of_threads--;
4265     oop threadObj = p->threadObj();
4266     bool daemon = true;
4267     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4268       _number_of_non_daemon_threads--;
4269       daemon = false;
4270 
4271       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4272       // on destroy_vm will wake up.
4273       if (number_of_non_daemon_threads() == 1) {
4274         Threads_lock->notify_all();
4275       }
4276     }
4277     ThreadService::remove_thread(p, daemon);
4278 
4279     // Make sure that safepoint code disregard this thread. This is needed since
4280     // the thread might mess around with locks after this point. This can cause it
4281     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4282     // of this thread since it is removed from the queue.
4283     p->set_terminated_value();
4284   } // unlock Threads_lock
4285 
4286   // Since Events::log uses a lock, we grab it outside the Threads_lock
4287   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4288 }
4289 
4290 // Threads_lock must be held when this is called (or must be called during a safepoint)
4291 bool Threads::includes(JavaThread* p) {
4292   assert(Threads_lock->is_locked(), "sanity check");
4293   ALL_JAVA_THREADS(q) {
4294     if (q == p) {
4295       return true;
4296     }
4297   }
4298   return false;
4299 }
4300 
4301 // Operations on the Threads list for GC.  These are not explicitly locked,
4302 // but the garbage collector must provide a safe context for them to run.
4303 // In particular, these things should never be called when the Threads_lock
4304 // is held by some other thread. (Note: the Safepoint abstraction also
4305 // uses the Threads_lock to guarantee this property. It also makes sure that
4306 // all threads gets blocked when exiting or starting).
4307 
4308 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4309   ALL_JAVA_THREADS(p) {
4310     p->oops_do(f, cf);
4311   }
4312   VMThread::vm_thread()->oops_do(f, cf);
4313 }
4314 
4315 void Threads::change_thread_claim_parity() {
4316   // Set the new claim parity.
4317   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4318          "Not in range.");
4319   _thread_claim_parity++;
4320   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4321   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4322          "Not in range.");
4323 }
4324 
4325 #ifdef ASSERT
4326 void Threads::assert_all_threads_claimed() {
4327   ALL_JAVA_THREADS(p) {
4328     const int thread_parity = p->oops_do_parity();
4329     assert((thread_parity == _thread_claim_parity),
4330            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4331   }
4332 }
4333 #endif // ASSERT
4334 
4335 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4336   int cp = Threads::thread_claim_parity();
4337   ALL_JAVA_THREADS(p) {
4338     if (p->claim_oops_do(is_par, cp)) {
4339       p->oops_do(f, cf);
4340     }
4341   }
4342   VMThread* vmt = VMThread::vm_thread();
4343   if (vmt->claim_oops_do(is_par, cp)) {
4344     vmt->oops_do(f, cf);
4345   }
4346 }
4347 
4348 #if INCLUDE_ALL_GCS
4349 // Used by ParallelScavenge
4350 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4351   ALL_JAVA_THREADS(p) {
4352     q->enqueue(new ThreadRootsTask(p));
4353   }
4354   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4355 }
4356 
4357 // Used by Parallel Old
4358 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4359   ALL_JAVA_THREADS(p) {
4360     q->enqueue(new ThreadRootsMarkingTask(p));
4361   }
4362   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4363 }
4364 #endif // INCLUDE_ALL_GCS
4365 
4366 void Threads::nmethods_do(CodeBlobClosure* cf) {
4367   ALL_JAVA_THREADS(p) {
4368     // This is used by the code cache sweeper to mark nmethods that are active
4369     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4370     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4371     if(!p->is_Code_cache_sweeper_thread()) {
4372       p->nmethods_do(cf);
4373     }
4374   }
4375 }
4376 
4377 void Threads::metadata_do(void f(Metadata*)) {
4378   ALL_JAVA_THREADS(p) {
4379     p->metadata_do(f);
4380   }
4381 }
4382 
4383 class ThreadHandlesClosure : public ThreadClosure {
4384   void (*_f)(Metadata*);
4385  public:
4386   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4387   virtual void do_thread(Thread* thread) {
4388     thread->metadata_handles_do(_f);
4389   }
4390 };
4391 
4392 void Threads::metadata_handles_do(void f(Metadata*)) {
4393   // Only walk the Handles in Thread.
4394   ThreadHandlesClosure handles_closure(f);
4395   threads_do(&handles_closure);
4396 }
4397 
4398 void Threads::deoptimized_wrt_marked_nmethods() {
4399   ALL_JAVA_THREADS(p) {
4400     p->deoptimized_wrt_marked_nmethods();
4401   }
4402 }
4403 
4404 
4405 // Get count Java threads that are waiting to enter the specified monitor.
4406 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4407                                                          address monitor,
4408                                                          bool doLock) {
4409   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4410          "must grab Threads_lock or be at safepoint");
4411   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4412 
4413   int i = 0;
4414   {
4415     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4416     ALL_JAVA_THREADS(p) {
4417       if (!p->can_call_java()) continue;
4418 
4419       address pending = (address)p->current_pending_monitor();
4420       if (pending == monitor) {             // found a match
4421         if (i < count) result->append(p);   // save the first count matches
4422         i++;
4423       }
4424     }
4425   }
4426   return result;
4427 }
4428 
4429 
4430 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4431                                                       bool doLock) {
4432   assert(doLock ||
4433          Threads_lock->owned_by_self() ||
4434          SafepointSynchronize::is_at_safepoint(),
4435          "must grab Threads_lock or be at safepoint");
4436 
4437   // NULL owner means not locked so we can skip the search
4438   if (owner == NULL) return NULL;
4439 
4440   {
4441     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4442     ALL_JAVA_THREADS(p) {
4443       // first, see if owner is the address of a Java thread
4444       if (owner == (address)p) return p;
4445     }
4446   }
4447   // Cannot assert on lack of success here since this function may be
4448   // used by code that is trying to report useful problem information
4449   // like deadlock detection.
4450   if (UseHeavyMonitors) return NULL;
4451 
4452   // If we didn't find a matching Java thread and we didn't force use of
4453   // heavyweight monitors, then the owner is the stack address of the
4454   // Lock Word in the owning Java thread's stack.
4455   //
4456   JavaThread* the_owner = NULL;
4457   {
4458     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4459     ALL_JAVA_THREADS(q) {
4460       if (q->is_lock_owned(owner)) {
4461         the_owner = q;
4462         break;
4463       }
4464     }
4465   }
4466   // cannot assert on lack of success here; see above comment
4467   return the_owner;
4468 }
4469 
4470 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4471 void Threads::print_on(outputStream* st, bool print_stacks,
4472                        bool internal_format, bool print_concurrent_locks) {
4473   char buf[32];
4474   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4475 
4476   st->print_cr("Full thread dump %s (%s %s):",
4477                Abstract_VM_Version::vm_name(),
4478                Abstract_VM_Version::vm_release(),
4479                Abstract_VM_Version::vm_info_string());
4480   st->cr();
4481 
4482 #if INCLUDE_SERVICES
4483   // Dump concurrent locks
4484   ConcurrentLocksDump concurrent_locks;
4485   if (print_concurrent_locks) {
4486     concurrent_locks.dump_at_safepoint();
4487   }
4488 #endif // INCLUDE_SERVICES
4489 
4490   ALL_JAVA_THREADS(p) {
4491     ResourceMark rm;
4492     p->print_on(st);
4493     if (print_stacks) {
4494       if (internal_format) {
4495         p->trace_stack();
4496       } else {
4497         p->print_stack_on(st);
4498       }
4499     }
4500     st->cr();
4501 #if INCLUDE_SERVICES
4502     if (print_concurrent_locks) {
4503       concurrent_locks.print_locks_on(p, st);
4504     }
4505 #endif // INCLUDE_SERVICES
4506   }
4507 
4508   VMThread::vm_thread()->print_on(st);
4509   st->cr();
4510   Universe::heap()->print_gc_threads_on(st);
4511   WatcherThread* wt = WatcherThread::watcher_thread();
4512   if (wt != NULL) {
4513     wt->print_on(st);
4514     st->cr();
4515   }
4516   st->flush();
4517 }
4518 
4519 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4520                              int buflen, bool* found_current) {
4521   if (this_thread != NULL) {
4522     bool is_current = (current == this_thread);
4523     *found_current = *found_current || is_current;
4524     st->print("%s", is_current ? "=>" : "  ");
4525 
4526     st->print(PTR_FORMAT, p2i(this_thread));
4527     st->print(" ");
4528     this_thread->print_on_error(st, buf, buflen);
4529     st->cr();
4530   }
4531 }
4532 
4533 class PrintOnErrorClosure : public ThreadClosure {
4534   outputStream* _st;
4535   Thread* _current;
4536   char* _buf;
4537   int _buflen;
4538   bool* _found_current;
4539  public:
4540   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4541                       int buflen, bool* found_current) :
4542    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4543 
4544   virtual void do_thread(Thread* thread) {
4545     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4546   }
4547 };
4548 
4549 // Threads::print_on_error() is called by fatal error handler. It's possible
4550 // that VM is not at safepoint and/or current thread is inside signal handler.
4551 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4552 // memory (even in resource area), it might deadlock the error handler.
4553 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4554                              int buflen) {
4555   bool found_current = false;
4556   st->print_cr("Java Threads: ( => current thread )");
4557   ALL_JAVA_THREADS(thread) {
4558     print_on_error(thread, st, current, buf, buflen, &found_current);
4559   }
4560   st->cr();
4561 
4562   st->print_cr("Other Threads:");
4563   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4564   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4565 
4566   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4567   Universe::heap()->gc_threads_do(&print_closure);
4568 
4569   if (!found_current) {
4570     st->cr();
4571     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4572     current->print_on_error(st, buf, buflen);
4573     st->cr();
4574   }
4575   st->cr();
4576   st->print_cr("Threads with active compile tasks:");
4577   print_threads_compiling(st, buf, buflen);
4578 }
4579 
4580 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4581   ALL_JAVA_THREADS(thread) {
4582     if (thread->is_Compiler_thread()) {
4583       CompilerThread* ct = (CompilerThread*) thread;
4584       if (ct->task() != NULL) {
4585         thread->print_name_on_error(st, buf, buflen);
4586         ct->task()->print(st, NULL, true, true);
4587       }
4588     }
4589   }
4590 }
4591 
4592 
4593 // Internal SpinLock and Mutex
4594 // Based on ParkEvent
4595 
4596 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4597 //
4598 // We employ SpinLocks _only for low-contention, fixed-length
4599 // short-duration critical sections where we're concerned
4600 // about native mutex_t or HotSpot Mutex:: latency.
4601 // The mux construct provides a spin-then-block mutual exclusion
4602 // mechanism.
4603 //
4604 // Testing has shown that contention on the ListLock guarding gFreeList
4605 // is common.  If we implement ListLock as a simple SpinLock it's common
4606 // for the JVM to devolve to yielding with little progress.  This is true
4607 // despite the fact that the critical sections protected by ListLock are
4608 // extremely short.
4609 //
4610 // TODO-FIXME: ListLock should be of type SpinLock.
4611 // We should make this a 1st-class type, integrated into the lock
4612 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4613 // should have sufficient padding to avoid false-sharing and excessive
4614 // cache-coherency traffic.
4615 
4616 
4617 typedef volatile int SpinLockT;
4618 
4619 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4620   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4621     return;   // normal fast-path return
4622   }
4623 
4624   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4625   TEVENT(SpinAcquire - ctx);
4626   int ctr = 0;
4627   int Yields = 0;
4628   for (;;) {
4629     while (*adr != 0) {
4630       ++ctr;
4631       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4632         if (Yields > 5) {
4633           os::naked_short_sleep(1);
4634         } else {
4635           os::naked_yield();
4636           ++Yields;
4637         }
4638       } else {
4639         SpinPause();
4640       }
4641     }
4642     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4643   }
4644 }
4645 
4646 void Thread::SpinRelease(volatile int * adr) {
4647   assert(*adr != 0, "invariant");
4648   OrderAccess::fence();      // guarantee at least release consistency.
4649   // Roach-motel semantics.
4650   // It's safe if subsequent LDs and STs float "up" into the critical section,
4651   // but prior LDs and STs within the critical section can't be allowed
4652   // to reorder or float past the ST that releases the lock.
4653   // Loads and stores in the critical section - which appear in program
4654   // order before the store that releases the lock - must also appear
4655   // before the store that releases the lock in memory visibility order.
4656   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4657   // the ST of 0 into the lock-word which releases the lock, so fence
4658   // more than covers this on all platforms.
4659   *adr = 0;
4660 }
4661 
4662 // muxAcquire and muxRelease:
4663 //
4664 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4665 //    The LSB of the word is set IFF the lock is held.
4666 //    The remainder of the word points to the head of a singly-linked list
4667 //    of threads blocked on the lock.
4668 //
4669 // *  The current implementation of muxAcquire-muxRelease uses its own
4670 //    dedicated Thread._MuxEvent instance.  If we're interested in
4671 //    minimizing the peak number of extant ParkEvent instances then
4672 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4673 //    as certain invariants were satisfied.  Specifically, care would need
4674 //    to be taken with regards to consuming unpark() "permits".
4675 //    A safe rule of thumb is that a thread would never call muxAcquire()
4676 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4677 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4678 //    consume an unpark() permit intended for monitorenter, for instance.
4679 //    One way around this would be to widen the restricted-range semaphore
4680 //    implemented in park().  Another alternative would be to provide
4681 //    multiple instances of the PlatformEvent() for each thread.  One
4682 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4683 //
4684 // *  Usage:
4685 //    -- Only as leaf locks
4686 //    -- for short-term locking only as muxAcquire does not perform
4687 //       thread state transitions.
4688 //
4689 // Alternatives:
4690 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4691 //    but with parking or spin-then-park instead of pure spinning.
4692 // *  Use Taura-Oyama-Yonenzawa locks.
4693 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4694 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4695 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4696 //    acquiring threads use timers (ParkTimed) to detect and recover from
4697 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4698 //    boundaries by using placement-new.
4699 // *  Augment MCS with advisory back-link fields maintained with CAS().
4700 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4701 //    The validity of the backlinks must be ratified before we trust the value.
4702 //    If the backlinks are invalid the exiting thread must back-track through the
4703 //    the forward links, which are always trustworthy.
4704 // *  Add a successor indication.  The LockWord is currently encoded as
4705 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4706 //    to provide the usual futile-wakeup optimization.
4707 //    See RTStt for details.
4708 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4709 //
4710 
4711 
4712 typedef volatile intptr_t MutexT;      // Mux Lock-word
4713 enum MuxBits { LOCKBIT = 1 };
4714 
4715 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4716   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4717   if (w == 0) return;
4718   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4719     return;
4720   }
4721 
4722   TEVENT(muxAcquire - Contention);
4723   ParkEvent * const Self = Thread::current()->_MuxEvent;
4724   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4725   for (;;) {
4726     int its = (os::is_MP() ? 100 : 0) + 1;
4727 
4728     // Optional spin phase: spin-then-park strategy
4729     while (--its >= 0) {
4730       w = *Lock;
4731       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4732         return;
4733       }
4734     }
4735 
4736     Self->reset();
4737     Self->OnList = intptr_t(Lock);
4738     // The following fence() isn't _strictly necessary as the subsequent
4739     // CAS() both serializes execution and ratifies the fetched *Lock value.
4740     OrderAccess::fence();
4741     for (;;) {
4742       w = *Lock;
4743       if ((w & LOCKBIT) == 0) {
4744         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4745           Self->OnList = 0;   // hygiene - allows stronger asserts
4746           return;
4747         }
4748         continue;      // Interference -- *Lock changed -- Just retry
4749       }
4750       assert(w & LOCKBIT, "invariant");
4751       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4752       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4753     }
4754 
4755     while (Self->OnList != 0) {
4756       Self->park();
4757     }
4758   }
4759 }
4760 
4761 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4762   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4763   if (w == 0) return;
4764   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4765     return;
4766   }
4767 
4768   TEVENT(muxAcquire - Contention);
4769   ParkEvent * ReleaseAfter = NULL;
4770   if (ev == NULL) {
4771     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4772   }
4773   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4774   for (;;) {
4775     guarantee(ev->OnList == 0, "invariant");
4776     int its = (os::is_MP() ? 100 : 0) + 1;
4777 
4778     // Optional spin phase: spin-then-park strategy
4779     while (--its >= 0) {
4780       w = *Lock;
4781       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4782         if (ReleaseAfter != NULL) {
4783           ParkEvent::Release(ReleaseAfter);
4784         }
4785         return;
4786       }
4787     }
4788 
4789     ev->reset();
4790     ev->OnList = intptr_t(Lock);
4791     // The following fence() isn't _strictly necessary as the subsequent
4792     // CAS() both serializes execution and ratifies the fetched *Lock value.
4793     OrderAccess::fence();
4794     for (;;) {
4795       w = *Lock;
4796       if ((w & LOCKBIT) == 0) {
4797         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4798           ev->OnList = 0;
4799           // We call ::Release while holding the outer lock, thus
4800           // artificially lengthening the critical section.
4801           // Consider deferring the ::Release() until the subsequent unlock(),
4802           // after we've dropped the outer lock.
4803           if (ReleaseAfter != NULL) {
4804             ParkEvent::Release(ReleaseAfter);
4805           }
4806           return;
4807         }
4808         continue;      // Interference -- *Lock changed -- Just retry
4809       }
4810       assert(w & LOCKBIT, "invariant");
4811       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4812       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4813     }
4814 
4815     while (ev->OnList != 0) {
4816       ev->park();
4817     }
4818   }
4819 }
4820 
4821 // Release() must extract a successor from the list and then wake that thread.
4822 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4823 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4824 // Release() would :
4825 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4826 // (B) Extract a successor from the private list "in-hand"
4827 // (C) attempt to CAS() the residual back into *Lock over null.
4828 //     If there were any newly arrived threads and the CAS() would fail.
4829 //     In that case Release() would detach the RATs, re-merge the list in-hand
4830 //     with the RATs and repeat as needed.  Alternately, Release() might
4831 //     detach and extract a successor, but then pass the residual list to the wakee.
4832 //     The wakee would be responsible for reattaching and remerging before it
4833 //     competed for the lock.
4834 //
4835 // Both "pop" and DMR are immune from ABA corruption -- there can be
4836 // multiple concurrent pushers, but only one popper or detacher.
4837 // This implementation pops from the head of the list.  This is unfair,
4838 // but tends to provide excellent throughput as hot threads remain hot.
4839 // (We wake recently run threads first).
4840 //
4841 // All paths through muxRelease() will execute a CAS.
4842 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4843 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4844 // executed within the critical section are complete and globally visible before the
4845 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4846 void Thread::muxRelease(volatile intptr_t * Lock)  {
4847   for (;;) {
4848     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4849     assert(w & LOCKBIT, "invariant");
4850     if (w == LOCKBIT) return;
4851     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4852     assert(List != NULL, "invariant");
4853     assert(List->OnList == intptr_t(Lock), "invariant");
4854     ParkEvent * const nxt = List->ListNext;
4855     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4856 
4857     // The following CAS() releases the lock and pops the head element.
4858     // The CAS() also ratifies the previously fetched lock-word value.
4859     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4860       continue;
4861     }
4862     List->OnList = 0;
4863     OrderAccess::fence();
4864     List->unpark();
4865     return;
4866   }
4867 }
4868 
4869 
4870 void Threads::verify() {
4871   ALL_JAVA_THREADS(p) {
4872     p->verify();
4873   }
4874   VMThread* thread = VMThread::vm_thread();
4875   if (thread != NULL) thread->verify();
4876 }