1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/atomic.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/vframe.hpp"
  59 #include "runtime/vframeArray.hpp"
  60 #include "runtime/vm_version.hpp"
  61 #include "utilities/copy.hpp"
  62 #include "utilities/events.hpp"
  63 
  64 
  65 // Implementation of StubAssembler
  66 
  67 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  68   _name = name;
  69   _must_gc_arguments = false;
  70   _frame_size = no_frame_size;
  71   _num_rt_args = 0;
  72   _stub_id = stub_id;
  73 }
  74 
  75 
  76 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  77   _name = name;
  78   _must_gc_arguments = must_gc_arguments;
  79 }
  80 
  81 
  82 void StubAssembler::set_frame_size(int size) {
  83   if (_frame_size == no_frame_size) {
  84     _frame_size = size;
  85   }
  86   assert(_frame_size == size, "can't change the frame size");
  87 }
  88 
  89 
  90 void StubAssembler::set_num_rt_args(int args) {
  91   if (_num_rt_args == 0) {
  92     _num_rt_args = args;
  93   }
  94   assert(_num_rt_args == args, "can't change the number of args");
  95 }
  96 
  97 // Implementation of Runtime1
  98 
  99 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 100 const char *Runtime1::_blob_names[] = {
 101   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 102 };
 103 
 104 #ifndef PRODUCT
 105 // statistics
 106 int Runtime1::_generic_arraycopy_cnt = 0;
 107 int Runtime1::_primitive_arraycopy_cnt = 0;
 108 int Runtime1::_oop_arraycopy_cnt = 0;
 109 int Runtime1::_generic_arraycopystub_cnt = 0;
 110 int Runtime1::_arraycopy_slowcase_cnt = 0;
 111 int Runtime1::_arraycopy_checkcast_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 113 int Runtime1::_new_type_array_slowcase_cnt = 0;
 114 int Runtime1::_new_object_array_slowcase_cnt = 0;
 115 int Runtime1::_new_instance_slowcase_cnt = 0;
 116 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 117 int Runtime1::_monitorenter_slowcase_cnt = 0;
 118 int Runtime1::_monitorexit_slowcase_cnt = 0;
 119 int Runtime1::_patch_code_slowcase_cnt = 0;
 120 int Runtime1::_throw_range_check_exception_count = 0;
 121 int Runtime1::_throw_index_exception_count = 0;
 122 int Runtime1::_throw_div0_exception_count = 0;
 123 int Runtime1::_throw_null_pointer_exception_count = 0;
 124 int Runtime1::_throw_class_cast_exception_count = 0;
 125 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 126 int Runtime1::_throw_array_store_exception_count = 0;
 127 int Runtime1::_throw_count = 0;
 128 
 129 static int _byte_arraycopy_stub_cnt = 0;
 130 static int _short_arraycopy_stub_cnt = 0;
 131 static int _int_arraycopy_stub_cnt = 0;
 132 static int _long_arraycopy_stub_cnt = 0;
 133 static int _oop_arraycopy_stub_cnt = 0;
 134 
 135 address Runtime1::arraycopy_count_address(BasicType type) {
 136   switch (type) {
 137   case T_BOOLEAN:
 138   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 139   case T_CHAR:
 140   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 141   case T_FLOAT:
 142   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 143   case T_DOUBLE:
 144   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 145   case T_ARRAY:
 146   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 147   default:
 148     ShouldNotReachHere();
 149     return NULL;
 150   }
 151 }
 152 
 153 
 154 #endif
 155 
 156 // Simple helper to see if the caller of a runtime stub which
 157 // entered the VM has been deoptimized
 158 
 159 static bool caller_is_deopted() {
 160   JavaThread* thread = JavaThread::current();
 161   RegisterMap reg_map(thread, false);
 162   frame runtime_frame = thread->last_frame();
 163   frame caller_frame = runtime_frame.sender(&reg_map);
 164   assert(caller_frame.is_compiled_frame(), "must be compiled");
 165   return caller_frame.is_deoptimized_frame();
 166 }
 167 
 168 // Stress deoptimization
 169 static void deopt_caller() {
 170   if ( !caller_is_deopted()) {
 171     JavaThread* thread = JavaThread::current();
 172     RegisterMap reg_map(thread, false);
 173     frame runtime_frame = thread->last_frame();
 174     frame caller_frame = runtime_frame.sender(&reg_map);
 175     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 176     assert(caller_is_deopted(), "Must be deoptimized");
 177   }
 178 }
 179 
 180 
 181 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 182   assert(0 <= id && id < number_of_ids, "illegal stub id");
 183   ResourceMark rm;
 184   // create code buffer for code storage
 185   CodeBuffer code(buffer_blob);
 186 
 187   OopMapSet* oop_maps;
 188   int frame_size;
 189   bool must_gc_arguments;
 190 
 191   Compilation::setup_code_buffer(&code, 0);
 192 
 193   // create assembler for code generation
 194   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 195   // generate code for runtime stub
 196   oop_maps = generate_code_for(id, sasm);
 197   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 198          "if stub has an oop map it must have a valid frame size");
 199 
 200 #ifdef ASSERT
 201   // Make sure that stubs that need oopmaps have them
 202   switch (id) {
 203     // These stubs don't need to have an oopmap
 204   case dtrace_object_alloc_id:
 205   case g1_pre_barrier_slow_id:
 206   case g1_post_barrier_slow_id:
 207   case slow_subtype_check_id:
 208   case fpu2long_stub_id:
 209   case unwind_exception_id:
 210   case counter_overflow_id:
 211 #if defined(SPARC) || defined(PPC32)
 212   case handle_exception_nofpu_id:  // Unused on sparc
 213 #endif
 214     break;
 215 
 216     // All other stubs should have oopmaps
 217   default:
 218     assert(oop_maps != NULL, "must have an oopmap");
 219   }
 220 #endif
 221 
 222   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 223   sasm->align(BytesPerWord);
 224   // make sure all code is in code buffer
 225   sasm->flush();
 226 
 227   frame_size = sasm->frame_size();
 228   must_gc_arguments = sasm->must_gc_arguments();
 229   // create blob - distinguish a few special cases
 230   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 231                                                  &code,
 232                                                  CodeOffsets::frame_never_safe,
 233                                                  frame_size,
 234                                                  oop_maps,
 235                                                  must_gc_arguments);
 236   // install blob
 237   assert(blob != NULL, "blob must exist");
 238   _blobs[id] = blob;
 239 }
 240 
 241 
 242 void Runtime1::initialize(BufferBlob* blob) {
 243   // platform-dependent initialization
 244   initialize_pd();
 245   // generate stubs
 246   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 247   // printing
 248 #ifndef PRODUCT
 249   if (PrintSimpleStubs) {
 250     ResourceMark rm;
 251     for (int id = 0; id < number_of_ids; id++) {
 252       _blobs[id]->print();
 253       if (_blobs[id]->oop_maps() != NULL) {
 254         _blobs[id]->oop_maps()->print();
 255       }
 256     }
 257   }
 258 #endif
 259 }
 260 
 261 
 262 CodeBlob* Runtime1::blob_for(StubID id) {
 263   assert(0 <= id && id < number_of_ids, "illegal stub id");
 264   return _blobs[id];
 265 }
 266 
 267 
 268 const char* Runtime1::name_for(StubID id) {
 269   assert(0 <= id && id < number_of_ids, "illegal stub id");
 270   return _blob_names[id];
 271 }
 272 
 273 const char* Runtime1::name_for_address(address entry) {
 274   for (int id = 0; id < number_of_ids; id++) {
 275     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 276   }
 277 
 278 #define FUNCTION_CASE(a, f) \
 279   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 280 
 281   FUNCTION_CASE(entry, os::javaTimeMillis);
 282   FUNCTION_CASE(entry, os::javaTimeNanos);
 283   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 284   FUNCTION_CASE(entry, SharedRuntime::d2f);
 285   FUNCTION_CASE(entry, SharedRuntime::d2i);
 286   FUNCTION_CASE(entry, SharedRuntime::d2l);
 287   FUNCTION_CASE(entry, SharedRuntime::dcos);
 288   FUNCTION_CASE(entry, SharedRuntime::dexp);
 289   FUNCTION_CASE(entry, SharedRuntime::dlog);
 290   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 291   FUNCTION_CASE(entry, SharedRuntime::dpow);
 292   FUNCTION_CASE(entry, SharedRuntime::drem);
 293   FUNCTION_CASE(entry, SharedRuntime::dsin);
 294   FUNCTION_CASE(entry, SharedRuntime::dtan);
 295   FUNCTION_CASE(entry, SharedRuntime::f2i);
 296   FUNCTION_CASE(entry, SharedRuntime::f2l);
 297   FUNCTION_CASE(entry, SharedRuntime::frem);
 298   FUNCTION_CASE(entry, SharedRuntime::l2d);
 299   FUNCTION_CASE(entry, SharedRuntime::l2f);
 300   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 301   FUNCTION_CASE(entry, SharedRuntime::lmul);
 302   FUNCTION_CASE(entry, SharedRuntime::lrem);
 303   FUNCTION_CASE(entry, SharedRuntime::lrem);
 304   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 305   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 306   FUNCTION_CASE(entry, is_instance_of);
 307   FUNCTION_CASE(entry, trace_block_entry);
 308 #ifdef TRACE_HAVE_INTRINSICS
 309   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 310 #endif
 311   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 312   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 313   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 314   FUNCTION_CASE(entry, StubRoutines::dexp());
 315   FUNCTION_CASE(entry, StubRoutines::dlog());
 316   FUNCTION_CASE(entry, StubRoutines::dlog10());
 317   FUNCTION_CASE(entry, StubRoutines::dpow());
 318   FUNCTION_CASE(entry, StubRoutines::dsin());
 319   FUNCTION_CASE(entry, StubRoutines::dcos());
 320   FUNCTION_CASE(entry, StubRoutines::dtan());
 321 
 322 #undef FUNCTION_CASE
 323 
 324   // Soft float adds more runtime names.
 325   return pd_name_for_address(entry);
 326 }
 327 
 328 
 329 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 330   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 331 
 332   assert(klass->is_klass(), "not a class");
 333   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 334   instanceKlassHandle h(thread, klass);
 335   h->check_valid_for_instantiation(true, CHECK);
 336   // make sure klass is initialized
 337   h->initialize(CHECK);
 338   // allocate instance and return via TLS
 339   oop obj = h->allocate_instance(CHECK);
 340   thread->set_vm_result(obj);
 341 JRT_END
 342 
 343 
 344 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 345   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 346   // Note: no handle for klass needed since they are not used
 347   //       anymore after new_typeArray() and no GC can happen before.
 348   //       (This may have to change if this code changes!)
 349   assert(klass->is_klass(), "not a class");
 350   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 351   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 352   thread->set_vm_result(obj);
 353   // This is pretty rare but this runtime patch is stressful to deoptimization
 354   // if we deoptimize here so force a deopt to stress the path.
 355   if (DeoptimizeALot) {
 356     deopt_caller();
 357   }
 358 
 359 JRT_END
 360 
 361 
 362 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 363   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 364 
 365   // Note: no handle for klass needed since they are not used
 366   //       anymore after new_objArray() and no GC can happen before.
 367   //       (This may have to change if this code changes!)
 368   assert(array_klass->is_klass(), "not a class");
 369   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 370   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 371   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 372   thread->set_vm_result(obj);
 373   // This is pretty rare but this runtime patch is stressful to deoptimization
 374   // if we deoptimize here so force a deopt to stress the path.
 375   if (DeoptimizeALot) {
 376     deopt_caller();
 377   }
 378 JRT_END
 379 
 380 
 381 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 382   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 383 
 384   assert(klass->is_klass(), "not a class");
 385   assert(rank >= 1, "rank must be nonzero");
 386   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 387   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 388   thread->set_vm_result(obj);
 389 JRT_END
 390 
 391 
 392 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 393   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 394 JRT_END
 395 
 396 
 397 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 398   ResourceMark rm(thread);
 399   const char* klass_name = obj->klass()->external_name();
 400   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 401 JRT_END
 402 
 403 
 404 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 405 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 406 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 407 // a constant.
 408 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 409   nmethod* osr_nm = NULL;
 410   methodHandle method(THREAD, m);
 411 
 412   RegisterMap map(THREAD, false);
 413   frame fr =  THREAD->last_frame().sender(&map);
 414   nmethod* nm = (nmethod*) fr.cb();
 415   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 416   methodHandle enclosing_method(THREAD, nm->method());
 417 
 418   CompLevel level = (CompLevel)nm->comp_level();
 419   int bci = InvocationEntryBci;
 420   if (branch_bci != InvocationEntryBci) {
 421     // Compute destination bci
 422     address pc = method()->code_base() + branch_bci;
 423     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 424     int offset = 0;
 425     switch (branch) {
 426       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 427       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 428       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 429       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 430       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 431       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 432       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 433         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 434         break;
 435       case Bytecodes::_goto_w:
 436         offset = Bytes::get_Java_u4(pc + 1);
 437         break;
 438       default: ;
 439     }
 440     bci = branch_bci + offset;
 441   }
 442   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 443   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 444   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 445   return osr_nm;
 446 }
 447 
 448 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 449   nmethod* osr_nm;
 450   JRT_BLOCK
 451     osr_nm = counter_overflow_helper(thread, bci, method);
 452     if (osr_nm != NULL) {
 453       RegisterMap map(thread, false);
 454       frame fr =  thread->last_frame().sender(&map);
 455       Deoptimization::deoptimize_frame(thread, fr.id());
 456     }
 457   JRT_BLOCK_END
 458   return NULL;
 459 JRT_END
 460 
 461 extern void vm_exit(int code);
 462 
 463 // Enter this method from compiled code handler below. This is where we transition
 464 // to VM mode. This is done as a helper routine so that the method called directly
 465 // from compiled code does not have to transition to VM. This allows the entry
 466 // method to see if the nmethod that we have just looked up a handler for has
 467 // been deoptimized while we were in the vm. This simplifies the assembly code
 468 // cpu directories.
 469 //
 470 // We are entering here from exception stub (via the entry method below)
 471 // If there is a compiled exception handler in this method, we will continue there;
 472 // otherwise we will unwind the stack and continue at the caller of top frame method
 473 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 474 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 475 // check to see if the handler we are going to return is now in a nmethod that has
 476 // been deoptimized. If that is the case we return the deopt blob
 477 // unpack_with_exception entry instead. This makes life for the exception blob easier
 478 // because making that same check and diverting is painful from assembly language.
 479 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 480   // Reset method handle flag.
 481   thread->set_is_method_handle_return(false);
 482 
 483   Handle exception(thread, ex);
 484   nm = CodeCache::find_nmethod(pc);
 485   assert(nm != NULL, "this is not an nmethod");
 486   // Adjust the pc as needed/
 487   if (nm->is_deopt_pc(pc)) {
 488     RegisterMap map(thread, false);
 489     frame exception_frame = thread->last_frame().sender(&map);
 490     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 491     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 492     pc = exception_frame.pc();
 493   }
 494 #ifdef ASSERT
 495   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 496   assert(exception->is_oop(), "just checking");
 497   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 498   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 499     if (ExitVMOnVerifyError) vm_exit(-1);
 500     ShouldNotReachHere();
 501   }
 502 #endif
 503 
 504   // Check the stack guard pages and reenable them if necessary and there is
 505   // enough space on the stack to do so.  Use fast exceptions only if the guard
 506   // pages are enabled.
 507   bool guard_pages_enabled = thread->stack_guards_enabled();
 508   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 509 
 510   if (JvmtiExport::can_post_on_exceptions()) {
 511     // To ensure correct notification of exception catches and throws
 512     // we have to deoptimize here.  If we attempted to notify the
 513     // catches and throws during this exception lookup it's possible
 514     // we could deoptimize on the way out of the VM and end back in
 515     // the interpreter at the throw site.  This would result in double
 516     // notifications since the interpreter would also notify about
 517     // these same catches and throws as it unwound the frame.
 518 
 519     RegisterMap reg_map(thread);
 520     frame stub_frame = thread->last_frame();
 521     frame caller_frame = stub_frame.sender(&reg_map);
 522 
 523     // We don't really want to deoptimize the nmethod itself since we
 524     // can actually continue in the exception handler ourselves but I
 525     // don't see an easy way to have the desired effect.
 526     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 527     assert(caller_is_deopted(), "Must be deoptimized");
 528 
 529     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 530   }
 531 
 532   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 533   if (guard_pages_enabled) {
 534     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 535     if (fast_continuation != NULL) {
 536       // Set flag if return address is a method handle call site.
 537       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 538       return fast_continuation;
 539     }
 540   }
 541 
 542   // If the stack guard pages are enabled, check whether there is a handler in
 543   // the current method.  Otherwise (guard pages disabled), force an unwind and
 544   // skip the exception cache update (i.e., just leave continuation==NULL).
 545   address continuation = NULL;
 546   if (guard_pages_enabled) {
 547 
 548     // New exception handling mechanism can support inlined methods
 549     // with exception handlers since the mappings are from PC to PC
 550 
 551     // debugging support
 552     // tracing
 553     if (log_is_enabled(Info, exceptions)) {
 554       ResourceMark rm;
 555       stringStream tempst;
 556       tempst.print("compiled method <%s>\n"
 557                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 558                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 559       Exceptions::log_exception(exception, tempst);
 560     }
 561     // for AbortVMOnException flag
 562     Exceptions::debug_check_abort(exception);
 563 
 564     // Clear out the exception oop and pc since looking up an
 565     // exception handler can cause class loading, which might throw an
 566     // exception and those fields are expected to be clear during
 567     // normal bytecode execution.
 568     thread->clear_exception_oop_and_pc();
 569 
 570     bool recursive_exception = false;
 571     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 572     // If an exception was thrown during exception dispatch, the exception oop may have changed
 573     thread->set_exception_oop(exception());
 574     thread->set_exception_pc(pc);
 575 
 576     // the exception cache is used only by non-implicit exceptions
 577     // Update the exception cache only when there didn't happen
 578     // another exception during the computation of the compiled
 579     // exception handler. Checking for exception oop equality is not
 580     // sufficient because some exceptions are pre-allocated and reused.
 581     if (continuation != NULL && !recursive_exception) {
 582       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 583     }
 584   }
 585 
 586   thread->set_vm_result(exception());
 587   // Set flag if return address is a method handle call site.
 588   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 589 
 590   if (log_is_enabled(Info, exceptions)) {
 591     ResourceMark rm;
 592     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 593                          " for exception thrown at PC " PTR_FORMAT,
 594                          p2i(thread), p2i(continuation), p2i(pc));
 595   }
 596 
 597   return continuation;
 598 JRT_END
 599 
 600 // Enter this method from compiled code only if there is a Java exception handler
 601 // in the method handling the exception.
 602 // We are entering here from exception stub. We don't do a normal VM transition here.
 603 // We do it in a helper. This is so we can check to see if the nmethod we have just
 604 // searched for an exception handler has been deoptimized in the meantime.
 605 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 606   oop exception = thread->exception_oop();
 607   address pc = thread->exception_pc();
 608   // Still in Java mode
 609   DEBUG_ONLY(ResetNoHandleMark rnhm);
 610   nmethod* nm = NULL;
 611   address continuation = NULL;
 612   {
 613     // Enter VM mode by calling the helper
 614     ResetNoHandleMark rnhm;
 615     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 616   }
 617   // Back in JAVA, use no oops DON'T safepoint
 618 
 619   // Now check to see if the nmethod we were called from is now deoptimized.
 620   // If so we must return to the deopt blob and deoptimize the nmethod
 621   if (nm != NULL && caller_is_deopted()) {
 622     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 623   }
 624 
 625   assert(continuation != NULL, "no handler found");
 626   return continuation;
 627 }
 628 
 629 
 630 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 631   NOT_PRODUCT(_throw_range_check_exception_count++;)
 632   char message[jintAsStringSize];
 633   sprintf(message, "%d", index);
 634   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 635 JRT_END
 636 
 637 
 638 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 639   NOT_PRODUCT(_throw_index_exception_count++;)
 640   char message[16];
 641   sprintf(message, "%d", index);
 642   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 643 JRT_END
 644 
 645 
 646 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 647   NOT_PRODUCT(_throw_div0_exception_count++;)
 648   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 649 JRT_END
 650 
 651 
 652 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 653   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 654   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 655 JRT_END
 656 
 657 
 658 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 659   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 660   ResourceMark rm(thread);
 661   char* message = SharedRuntime::generate_class_cast_message(
 662     thread, object->klass());
 663   SharedRuntime::throw_and_post_jvmti_exception(
 664     thread, vmSymbols::java_lang_ClassCastException(), message);
 665 JRT_END
 666 
 667 
 668 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 669   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 670   ResourceMark rm(thread);
 671   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 672 JRT_END
 673 
 674 
 675 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 676   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 677   if (PrintBiasedLockingStatistics) {
 678     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 679   }
 680   Handle h_obj(thread, obj);
 681   assert(h_obj()->is_oop(), "must be NULL or an object");
 682   if (UseBiasedLocking) {
 683     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 684     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 685   } else {
 686     if (UseFastLocking) {
 687       // When using fast locking, the compiled code has already tried the fast case
 688       assert(obj == lock->obj(), "must match");
 689       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 690     } else {
 691       lock->set_obj(obj);
 692       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 693     }
 694   }
 695 JRT_END
 696 
 697 
 698 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 699   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 700   assert(thread == JavaThread::current(), "threads must correspond");
 701   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 702   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 703   EXCEPTION_MARK;
 704 
 705   oop obj = lock->obj();
 706   assert(obj->is_oop(), "must be NULL or an object");
 707   if (UseFastLocking) {
 708     // When using fast locking, the compiled code has already tried the fast case
 709     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 710   } else {
 711     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 712   }
 713 JRT_END
 714 
 715 // Cf. OptoRuntime::deoptimize_caller_frame
 716 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 717   // Called from within the owner thread, so no need for safepoint
 718   RegisterMap reg_map(thread, false);
 719   frame stub_frame = thread->last_frame();
 720   assert(stub_frame.is_runtime_frame(), "Sanity check");
 721   frame caller_frame = stub_frame.sender(&reg_map);
 722   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 723   assert(nm != NULL, "Sanity check");
 724   methodHandle method(thread, nm->method());
 725   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 726   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 727   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 728 
 729   if (action == Deoptimization::Action_make_not_entrant) {
 730     if (nm->make_not_entrant()) {
 731       if (reason == Deoptimization::Reason_tenured) {
 732         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 733         if (trap_mdo != NULL) {
 734           trap_mdo->inc_tenure_traps();
 735         }
 736       }
 737     }
 738   }
 739 
 740   // Deoptimize the caller frame.
 741   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 742   // Return to the now deoptimized frame.
 743 JRT_END
 744 
 745 
 746 #ifndef DEOPTIMIZE_WHEN_PATCHING
 747 
 748 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 749   Bytecode_field field_access(caller, bci);
 750   // This can be static or non-static field access
 751   Bytecodes::Code code       = field_access.code();
 752 
 753   // We must load class, initialize class and resolve the field
 754   fieldDescriptor result; // initialize class if needed
 755   constantPoolHandle constants(THREAD, caller->constants());
 756   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 757   return result.field_holder();
 758 }
 759 
 760 
 761 //
 762 // This routine patches sites where a class wasn't loaded or
 763 // initialized at the time the code was generated.  It handles
 764 // references to classes, fields and forcing of initialization.  Most
 765 // of the cases are straightforward and involving simply forcing
 766 // resolution of a class, rewriting the instruction stream with the
 767 // needed constant and replacing the call in this function with the
 768 // patched code.  The case for static field is more complicated since
 769 // the thread which is in the process of initializing a class can
 770 // access it's static fields but other threads can't so the code
 771 // either has to deoptimize when this case is detected or execute a
 772 // check that the current thread is the initializing thread.  The
 773 // current
 774 //
 775 // Patches basically look like this:
 776 //
 777 //
 778 // patch_site: jmp patch stub     ;; will be patched
 779 // continue:   ...
 780 //             ...
 781 //             ...
 782 //             ...
 783 //
 784 // They have a stub which looks like this:
 785 //
 786 //             ;; patch body
 787 //             movl <const>, reg           (for class constants)
 788 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 789 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 790 //             <being_init offset> <bytes to copy> <bytes to skip>
 791 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 792 //             jmp patch_site
 793 //
 794 //
 795 // A normal patch is done by rewriting the patch body, usually a move,
 796 // and then copying it into place over top of the jmp instruction
 797 // being careful to flush caches and doing it in an MP-safe way.  The
 798 // constants following the patch body are used to find various pieces
 799 // of the patch relative to the call site for Runtime1::patch_code.
 800 // The case for getstatic and putstatic is more complicated because
 801 // getstatic and putstatic have special semantics when executing while
 802 // the class is being initialized.  getstatic/putstatic on a class
 803 // which is being_initialized may be executed by the initializing
 804 // thread but other threads have to block when they execute it.  This
 805 // is accomplished in compiled code by executing a test of the current
 806 // thread against the initializing thread of the class.  It's emitted
 807 // as boilerplate in their stub which allows the patched code to be
 808 // executed before it's copied back into the main body of the nmethod.
 809 //
 810 // being_init: get_thread(<tmp reg>
 811 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 812 //             jne patch_stub
 813 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 814 //             movl reg, [reg1 + <const>]  (for field offsets)
 815 //             jmp continue
 816 //             <being_init offset> <bytes to copy> <bytes to skip>
 817 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 818 //             jmp patch_site
 819 //
 820 // If the class is being initialized the patch body is rewritten and
 821 // the patch site is rewritten to jump to being_init, instead of
 822 // patch_stub.  Whenever this code is executed it checks the current
 823 // thread against the intializing thread so other threads will enter
 824 // the runtime and end up blocked waiting the class to finish
 825 // initializing inside the calls to resolve_field below.  The
 826 // initializing class will continue on it's way.  Once the class is
 827 // fully_initialized, the intializing_thread of the class becomes
 828 // NULL, so the next thread to execute this code will fail the test,
 829 // call into patch_code and complete the patching process by copying
 830 // the patch body back into the main part of the nmethod and resume
 831 // executing.
 832 //
 833 //
 834 
 835 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 836   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 837 
 838   ResourceMark rm(thread);
 839   RegisterMap reg_map(thread, false);
 840   frame runtime_frame = thread->last_frame();
 841   frame caller_frame = runtime_frame.sender(&reg_map);
 842 
 843   // last java frame on stack
 844   vframeStream vfst(thread, true);
 845   assert(!vfst.at_end(), "Java frame must exist");
 846 
 847   methodHandle caller_method(THREAD, vfst.method());
 848   // Note that caller_method->code() may not be same as caller_code because of OSR's
 849   // Note also that in the presence of inlining it is not guaranteed
 850   // that caller_method() == caller_code->method()
 851 
 852   int bci = vfst.bci();
 853   Bytecodes::Code code = caller_method()->java_code_at(bci);
 854 
 855   // this is used by assertions in the access_field_patching_id
 856   BasicType patch_field_type = T_ILLEGAL;
 857   bool deoptimize_for_volatile = false;
 858   bool deoptimize_for_atomic = false;
 859   int patch_field_offset = -1;
 860   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 861   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 862   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 863   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 864   bool load_klass_or_mirror_patch_id =
 865     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 866 
 867   if (stub_id == Runtime1::access_field_patching_id) {
 868 
 869     Bytecode_field field_access(caller_method, bci);
 870     fieldDescriptor result; // initialize class if needed
 871     Bytecodes::Code code = field_access.code();
 872     constantPoolHandle constants(THREAD, caller_method->constants());
 873     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 874     patch_field_offset = result.offset();
 875 
 876     // If we're patching a field which is volatile then at compile it
 877     // must not have been know to be volatile, so the generated code
 878     // isn't correct for a volatile reference.  The nmethod has to be
 879     // deoptimized so that the code can be regenerated correctly.
 880     // This check is only needed for access_field_patching since this
 881     // is the path for patching field offsets.  load_klass is only
 882     // used for patching references to oops which don't need special
 883     // handling in the volatile case.
 884 
 885     deoptimize_for_volatile = result.access_flags().is_volatile();
 886 
 887     // If we are patching a field which should be atomic, then
 888     // the generated code is not correct either, force deoptimizing.
 889     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 890     // break access atomicity only for them.
 891 
 892     // Strictly speaking, the deoptimizaation on 64-bit platforms
 893     // is unnecessary, and T_LONG stores on 32-bit platforms need
 894     // to be handled by special patching code when AlwaysAtomicAccesses
 895     // becomes product feature. At this point, we are still going
 896     // for the deoptimization for consistency against volatile
 897     // accesses.
 898 
 899     patch_field_type = result.field_type();
 900     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 901 
 902   } else if (load_klass_or_mirror_patch_id) {
 903     Klass* k = NULL;
 904     switch (code) {
 905       case Bytecodes::_putstatic:
 906       case Bytecodes::_getstatic:
 907         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 908           init_klass = KlassHandle(THREAD, klass);
 909           mirror = Handle(THREAD, klass->java_mirror());
 910         }
 911         break;
 912       case Bytecodes::_new:
 913         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 914           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 915         }
 916         break;
 917       case Bytecodes::_multianewarray:
 918         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 919           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 920         }
 921         break;
 922       case Bytecodes::_instanceof:
 923         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 924           k = caller_method->constants()->klass_at(io.index(), CHECK);
 925         }
 926         break;
 927       case Bytecodes::_checkcast:
 928         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 929           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 930         }
 931         break;
 932       case Bytecodes::_anewarray:
 933         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 934           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 935           k = ek->array_klass(CHECK);
 936         }
 937         break;
 938       case Bytecodes::_ldc:
 939       case Bytecodes::_ldc_w:
 940         {
 941           Bytecode_loadconstant cc(caller_method, bci);
 942           oop m = cc.resolve_constant(CHECK);
 943           mirror = Handle(THREAD, m);
 944         }
 945         break;
 946       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 947     }
 948     // convert to handle
 949     load_klass = KlassHandle(THREAD, k);
 950   } else if (stub_id == load_appendix_patching_id) {
 951     Bytecode_invoke bytecode(caller_method, bci);
 952     Bytecodes::Code bc = bytecode.invoke_code();
 953 
 954     CallInfo info;
 955     constantPoolHandle pool(thread, caller_method->constants());
 956     int index = bytecode.index();
 957     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 958     switch (bc) {
 959       case Bytecodes::_invokehandle: {
 960         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 961         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 962         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 963         cpce->set_method_handle(pool, info);
 964         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 965         break;
 966       }
 967       case Bytecodes::_invokedynamic: {
 968         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 969         cpce->set_dynamic_call(pool, info);
 970         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 971         break;
 972       }
 973       default: fatal("unexpected bytecode for load_appendix_patching_id");
 974     }
 975   } else {
 976     ShouldNotReachHere();
 977   }
 978 
 979   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 980     // At compile time we assumed the field wasn't volatile/atomic but after
 981     // loading it turns out it was volatile/atomic so we have to throw the
 982     // compiled code out and let it be regenerated.
 983     if (TracePatching) {
 984       if (deoptimize_for_volatile) {
 985         tty->print_cr("Deoptimizing for patching volatile field reference");
 986       }
 987       if (deoptimize_for_atomic) {
 988         tty->print_cr("Deoptimizing for patching atomic field reference");
 989       }
 990     }
 991 
 992     // It's possible the nmethod was invalidated in the last
 993     // safepoint, but if it's still alive then make it not_entrant.
 994     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 995     if (nm != NULL) {
 996       nm->make_not_entrant();
 997     }
 998 
 999     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1000 
1001     // Return to the now deoptimized frame.
1002   }
1003 
1004   // Now copy code back
1005 
1006   {
1007     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1008     //
1009     // Deoptimization may have happened while we waited for the lock.
1010     // In that case we don't bother to do any patching we just return
1011     // and let the deopt happen
1012     if (!caller_is_deopted()) {
1013       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1014       address instr_pc = jump->jump_destination();
1015       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1016       if (ni->is_jump() ) {
1017         // the jump has not been patched yet
1018         // The jump destination is slow case and therefore not part of the stubs
1019         // (stubs are only for StaticCalls)
1020 
1021         // format of buffer
1022         //    ....
1023         //    instr byte 0     <-- copy_buff
1024         //    instr byte 1
1025         //    ..
1026         //    instr byte n-1
1027         //      n
1028         //    ....             <-- call destination
1029 
1030         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1031         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1032         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1033         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1034         address copy_buff = stub_location - *byte_skip - *byte_count;
1035         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1036         if (TracePatching) {
1037           ttyLocker ttyl;
1038           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1039                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1040           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1041           assert(caller_code != NULL, "nmethod not found");
1042 
1043           // NOTE we use pc() not original_pc() because we already know they are
1044           // identical otherwise we'd have never entered this block of code
1045 
1046           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1047           assert(map != NULL, "null check");
1048           map->print();
1049           tty->cr();
1050 
1051           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1052         }
1053         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1054         bool do_patch = true;
1055         if (stub_id == Runtime1::access_field_patching_id) {
1056           // The offset may not be correct if the class was not loaded at code generation time.
1057           // Set it now.
1058           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1059           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1060           assert(patch_field_offset >= 0, "illegal offset");
1061           n_move->add_offset_in_bytes(patch_field_offset);
1062         } else if (load_klass_or_mirror_patch_id) {
1063           // If a getstatic or putstatic is referencing a klass which
1064           // isn't fully initialized, the patch body isn't copied into
1065           // place until initialization is complete.  In this case the
1066           // patch site is setup so that any threads besides the
1067           // initializing thread are forced to come into the VM and
1068           // block.
1069           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1070                      InstanceKlass::cast(init_klass())->is_initialized();
1071           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1072           if (jump->jump_destination() == being_initialized_entry) {
1073             assert(do_patch == true, "initialization must be complete at this point");
1074           } else {
1075             // patch the instruction <move reg, klass>
1076             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1077 
1078             assert(n_copy->data() == 0 ||
1079                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1080                    "illegal init value");
1081             if (stub_id == Runtime1::load_klass_patching_id) {
1082               assert(load_klass() != NULL, "klass not set");
1083               n_copy->set_data((intx) (load_klass()));
1084             } else {
1085               assert(mirror() != NULL, "klass not set");
1086               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1087               n_copy->set_data(cast_from_oop<intx>(mirror()));
1088             }
1089 
1090             if (TracePatching) {
1091               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1092             }
1093           }
1094         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1095           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1096           assert(n_copy->data() == 0 ||
1097                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1098                  "illegal init value");
1099           n_copy->set_data(cast_from_oop<intx>(appendix()));
1100 
1101           if (TracePatching) {
1102             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1103           }
1104         } else {
1105           ShouldNotReachHere();
1106         }
1107 
1108 #if defined(SPARC) || defined(PPC32)
1109         if (load_klass_or_mirror_patch_id ||
1110             stub_id == Runtime1::load_appendix_patching_id) {
1111           // Update the location in the nmethod with the proper
1112           // metadata.  When the code was generated, a NULL was stuffed
1113           // in the metadata table and that table needs to be update to
1114           // have the right value.  On intel the value is kept
1115           // directly in the instruction instead of in the metadata
1116           // table, so set_data above effectively updated the value.
1117           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1118           assert(nm != NULL, "invalid nmethod_pc");
1119           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1120           bool found = false;
1121           while (mds.next() && !found) {
1122             if (mds.type() == relocInfo::oop_type) {
1123               assert(stub_id == Runtime1::load_mirror_patching_id ||
1124                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1125               oop_Relocation* r = mds.oop_reloc();
1126               oop* oop_adr = r->oop_addr();
1127               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1128               r->fix_oop_relocation();
1129               found = true;
1130             } else if (mds.type() == relocInfo::metadata_type) {
1131               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1132               metadata_Relocation* r = mds.metadata_reloc();
1133               Metadata** metadata_adr = r->metadata_addr();
1134               *metadata_adr = load_klass();
1135               r->fix_metadata_relocation();
1136               found = true;
1137             }
1138           }
1139           assert(found, "the metadata must exist!");
1140         }
1141 #endif
1142         if (do_patch) {
1143           // replace instructions
1144           // first replace the tail, then the call
1145 #ifdef ARM
1146           if((load_klass_or_mirror_patch_id ||
1147               stub_id == Runtime1::load_appendix_patching_id) &&
1148               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1149             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1150             address addr = NULL;
1151             assert(nm != NULL, "invalid nmethod_pc");
1152             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1153             while (mds.next()) {
1154               if (mds.type() == relocInfo::oop_type) {
1155                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1156                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1157                 oop_Relocation* r = mds.oop_reloc();
1158                 addr = (address)r->oop_addr();
1159                 break;
1160               } else if (mds.type() == relocInfo::metadata_type) {
1161                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1162                 metadata_Relocation* r = mds.metadata_reloc();
1163                 addr = (address)r->metadata_addr();
1164                 break;
1165               }
1166             }
1167             assert(addr != NULL, "metadata relocation must exist");
1168             copy_buff -= *byte_count;
1169             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1170             n_copy2->set_pc_relative_offset(addr, instr_pc);
1171           }
1172 #endif
1173 
1174           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1175             address ptr = copy_buff + i;
1176             int a_byte = (*ptr) & 0xFF;
1177             address dst = instr_pc + i;
1178             *(unsigned char*)dst = (unsigned char) a_byte;
1179           }
1180           ICache::invalidate_range(instr_pc, *byte_count);
1181           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1182 
1183           if (load_klass_or_mirror_patch_id ||
1184               stub_id == Runtime1::load_appendix_patching_id) {
1185             relocInfo::relocType rtype =
1186               (stub_id == Runtime1::load_klass_patching_id) ?
1187                                    relocInfo::metadata_type :
1188                                    relocInfo::oop_type;
1189             // update relocInfo to metadata
1190             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1191             assert(nm != NULL, "invalid nmethod_pc");
1192 
1193             // The old patch site is now a move instruction so update
1194             // the reloc info so that it will get updated during
1195             // future GCs.
1196             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1197             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1198                                                      relocInfo::none, rtype);
1199 #ifdef SPARC
1200             // Sparc takes two relocations for an metadata so update the second one.
1201             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1202             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1203             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1204                                                      relocInfo::none, rtype);
1205 #endif
1206 #ifdef PPC32
1207           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1208             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1209             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1210                                                      relocInfo::none, rtype);
1211           }
1212 #endif
1213           }
1214 
1215         } else {
1216           ICache::invalidate_range(copy_buff, *byte_count);
1217           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1218         }
1219       }
1220     }
1221   }
1222 
1223   // If we are patching in a non-perm oop, make sure the nmethod
1224   // is on the right list.
1225   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1226                               (appendix.not_null() && appendix->is_scavengable()))) {
1227     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1228     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1229     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1230     if (!nm->on_scavenge_root_list()) {
1231       CodeCache::add_scavenge_root_nmethod(nm);
1232     }
1233 
1234     // Since we've patched some oops in the nmethod,
1235     // (re)register it with the heap.
1236     Universe::heap()->register_nmethod(nm);
1237   }
1238 JRT_END
1239 
1240 #else // DEOPTIMIZE_WHEN_PATCHING
1241 
1242 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1243   RegisterMap reg_map(thread, false);
1244 
1245   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1246   if (TracePatching) {
1247     tty->print_cr("Deoptimizing because patch is needed");
1248   }
1249 
1250   frame runtime_frame = thread->last_frame();
1251   frame caller_frame = runtime_frame.sender(&reg_map);
1252 
1253   // It's possible the nmethod was invalidated in the last
1254   // safepoint, but if it's still alive then make it not_entrant.
1255   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1256   if (nm != NULL) {
1257     nm->make_not_entrant();
1258   }
1259 
1260   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1261 
1262   // Return to the now deoptimized frame.
1263 JRT_END
1264 
1265 #endif // DEOPTIMIZE_WHEN_PATCHING
1266 
1267 //
1268 // Entry point for compiled code. We want to patch a nmethod.
1269 // We don't do a normal VM transition here because we want to
1270 // know after the patching is complete and any safepoint(s) are taken
1271 // if the calling nmethod was deoptimized. We do this by calling a
1272 // helper method which does the normal VM transition and when it
1273 // completes we can check for deoptimization. This simplifies the
1274 // assembly code in the cpu directories.
1275 //
1276 int Runtime1::move_klass_patching(JavaThread* thread) {
1277 //
1278 // NOTE: we are still in Java
1279 //
1280   Thread* THREAD = thread;
1281   debug_only(NoHandleMark nhm;)
1282   {
1283     // Enter VM mode
1284 
1285     ResetNoHandleMark rnhm;
1286     patch_code(thread, load_klass_patching_id);
1287   }
1288   // Back in JAVA, use no oops DON'T safepoint
1289 
1290   // Return true if calling code is deoptimized
1291 
1292   return caller_is_deopted();
1293 }
1294 
1295 int Runtime1::move_mirror_patching(JavaThread* thread) {
1296 //
1297 // NOTE: we are still in Java
1298 //
1299   Thread* THREAD = thread;
1300   debug_only(NoHandleMark nhm;)
1301   {
1302     // Enter VM mode
1303 
1304     ResetNoHandleMark rnhm;
1305     patch_code(thread, load_mirror_patching_id);
1306   }
1307   // Back in JAVA, use no oops DON'T safepoint
1308 
1309   // Return true if calling code is deoptimized
1310 
1311   return caller_is_deopted();
1312 }
1313 
1314 int Runtime1::move_appendix_patching(JavaThread* thread) {
1315 //
1316 // NOTE: we are still in Java
1317 //
1318   Thread* THREAD = thread;
1319   debug_only(NoHandleMark nhm;)
1320   {
1321     // Enter VM mode
1322 
1323     ResetNoHandleMark rnhm;
1324     patch_code(thread, load_appendix_patching_id);
1325   }
1326   // Back in JAVA, use no oops DON'T safepoint
1327 
1328   // Return true if calling code is deoptimized
1329 
1330   return caller_is_deopted();
1331 }
1332 //
1333 // Entry point for compiled code. We want to patch a nmethod.
1334 // We don't do a normal VM transition here because we want to
1335 // know after the patching is complete and any safepoint(s) are taken
1336 // if the calling nmethod was deoptimized. We do this by calling a
1337 // helper method which does the normal VM transition and when it
1338 // completes we can check for deoptimization. This simplifies the
1339 // assembly code in the cpu directories.
1340 //
1341 
1342 int Runtime1::access_field_patching(JavaThread* thread) {
1343 //
1344 // NOTE: we are still in Java
1345 //
1346   Thread* THREAD = thread;
1347   debug_only(NoHandleMark nhm;)
1348   {
1349     // Enter VM mode
1350 
1351     ResetNoHandleMark rnhm;
1352     patch_code(thread, access_field_patching_id);
1353   }
1354   // Back in JAVA, use no oops DON'T safepoint
1355 
1356   // Return true if calling code is deoptimized
1357 
1358   return caller_is_deopted();
1359 JRT_END
1360 
1361 
1362 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1363   // for now we just print out the block id
1364   tty->print("%d ", block_id);
1365 JRT_END
1366 
1367 
1368 // Array copy return codes.
1369 enum {
1370   ac_failed = -1, // arraycopy failed
1371   ac_ok = 0       // arraycopy succeeded
1372 };
1373 
1374 
1375 // Below length is the # elements copied.
1376 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1377                                           oopDesc* dst, T* dst_addr,
1378                                           int length) {
1379 
1380   // For performance reasons, we assume we are using a card marking write
1381   // barrier. The assert will fail if this is not the case.
1382   // Note that we use the non-virtual inlineable variant of write_ref_array.
1383   BarrierSet* bs = Universe::heap()->barrier_set();
1384   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1385   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1386   if (src == dst) {
1387     // same object, no check
1388     bs->write_ref_array_pre(dst_addr, length);
1389     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1390     bs->write_ref_array((HeapWord*)dst_addr, length);
1391     return ac_ok;
1392   } else {
1393     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1394     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1395     if (stype == bound || stype->is_subtype_of(bound)) {
1396       // Elements are guaranteed to be subtypes, so no check necessary
1397       bs->write_ref_array_pre(dst_addr, length);
1398       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1399       bs->write_ref_array((HeapWord*)dst_addr, length);
1400       return ac_ok;
1401     }
1402   }
1403   return ac_failed;
1404 }
1405 
1406 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1407 // and we did not copy anything
1408 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1409 #ifndef PRODUCT
1410   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1411 #endif
1412 
1413   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1414   if (!dst->is_array() || !src->is_array()) return ac_failed;
1415   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1416   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1417 
1418   if (length == 0) return ac_ok;
1419   if (src->is_typeArray()) {
1420     Klass* klass_oop = src->klass();
1421     if (klass_oop != dst->klass()) return ac_failed;
1422     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1423     const int l2es = klass->log2_element_size();
1424     const int ihs = klass->array_header_in_bytes() / wordSize;
1425     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1426     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1427     // Potential problem: memmove is not guaranteed to be word atomic
1428     // Revisit in Merlin
1429     memmove(dst_addr, src_addr, length << l2es);
1430     return ac_ok;
1431   } else if (src->is_objArray() && dst->is_objArray()) {
1432     if (UseCompressedOops) {
1433       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1434       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1435       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1436     } else {
1437       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1438       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1439       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1440     }
1441   }
1442   return ac_failed;
1443 JRT_END
1444 
1445 
1446 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1447 #ifndef PRODUCT
1448   _primitive_arraycopy_cnt++;
1449 #endif
1450 
1451   if (length == 0) return;
1452   // Not guaranteed to be word atomic, but that doesn't matter
1453   // for anything but an oop array, which is covered by oop_arraycopy.
1454   Copy::conjoint_jbytes(src, dst, length);
1455 JRT_END
1456 
1457 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1458 #ifndef PRODUCT
1459   _oop_arraycopy_cnt++;
1460 #endif
1461 
1462   if (num == 0) return;
1463   BarrierSet* bs = Universe::heap()->barrier_set();
1464   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1465   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1466   if (UseCompressedOops) {
1467     bs->write_ref_array_pre((narrowOop*)dst, num);
1468     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1469   } else {
1470     bs->write_ref_array_pre((oop*)dst, num);
1471     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1472   }
1473   bs->write_ref_array(dst, num);
1474 JRT_END
1475 
1476 
1477 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1478   // had to return int instead of bool, otherwise there may be a mismatch
1479   // between the C calling convention and the Java one.
1480   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1481   // JVM takes the whole %eax as the return value, which may misinterpret
1482   // the return value as a boolean true.
1483 
1484   assert(mirror != NULL, "should null-check on mirror before calling");
1485   Klass* k = java_lang_Class::as_Klass(mirror);
1486   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1487 JRT_END
1488 
1489 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1490   ResourceMark rm;
1491 
1492   assert(!TieredCompilation, "incompatible with tiered compilation");
1493 
1494   RegisterMap reg_map(thread, false);
1495   frame runtime_frame = thread->last_frame();
1496   frame caller_frame = runtime_frame.sender(&reg_map);
1497 
1498   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1499   assert (nm != NULL, "no more nmethod?");
1500   nm->make_not_entrant();
1501 
1502   methodHandle m(nm->method());
1503   MethodData* mdo = m->method_data();
1504 
1505   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1506     // Build an MDO.  Ignore errors like OutOfMemory;
1507     // that simply means we won't have an MDO to update.
1508     Method::build_interpreter_method_data(m, THREAD);
1509     if (HAS_PENDING_EXCEPTION) {
1510       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1511       CLEAR_PENDING_EXCEPTION;
1512     }
1513     mdo = m->method_data();
1514   }
1515 
1516   if (mdo != NULL) {
1517     mdo->inc_trap_count(Deoptimization::Reason_none);
1518   }
1519 
1520   if (TracePredicateFailedTraps) {
1521     stringStream ss1, ss2;
1522     vframeStream vfst(thread);
1523     methodHandle inlinee = methodHandle(vfst.method());
1524     inlinee->print_short_name(&ss1);
1525     m->print_short_name(&ss2);
1526     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1527   }
1528 
1529 
1530   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1531 
1532 JRT_END
1533 
1534 #ifndef PRODUCT
1535 void Runtime1::print_statistics() {
1536   tty->print_cr("C1 Runtime statistics:");
1537   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1538   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1539   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1540   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1541   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1542   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1543   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1544   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1545   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1546   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1547   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1548   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1549   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1550   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1551   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1552   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1553   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1554 
1555   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1556   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1557   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1558   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1559   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1560   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1561   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1562 
1563   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1564   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1565   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1566   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1567   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1568   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1569   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1570   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1571 
1572   SharedRuntime::print_ic_miss_histogram();
1573   tty->cr();
1574 }
1575 #endif // PRODUCT