1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.inline.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/allocation.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/java.hpp"
  39 #include "runtime/jniHandles.hpp"
  40 
  41 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  42 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  44 
  45 void referenceProcessor_init() {
  46   ReferenceProcessor::init_statics();
  47 }
  48 
  49 void ReferenceProcessor::init_statics() {
  50   // We need a monotonically non-decreasing time in ms but
  51   // os::javaTimeMillis() does not guarantee monotonicity.
  52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  53 
  54   // Initialize the soft ref timestamp clock.
  55   _soft_ref_timestamp_clock = now;
  56   // Also update the soft ref clock in j.l.r.SoftReference
  57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  58 
  59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  60   if (is_server_compilation_mode_vm()) {
  61     _default_soft_ref_policy = new LRUMaxHeapPolicy();
  62   } else {
  63     _default_soft_ref_policy = new LRUCurrentHeapPolicy();
  64   }
  65   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  66     vm_exit_during_initialization("Could not allocate reference policy object");
  67   }
  68   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  69             RefDiscoveryPolicy == ReferentBasedDiscovery,
  70             "Unrecognized RefDiscoveryPolicy");
  71 }
  72 
  73 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  74 #ifdef ASSERT
  75   // Verify that we're not currently discovering refs
  76   assert(!_discovering_refs, "nested call?");
  77 
  78   if (check_no_refs) {
  79     // Verify that the discovered lists are empty
  80     verify_no_references_recorded();
  81   }
  82 #endif // ASSERT
  83 
  84   // Someone could have modified the value of the static
  85   // field in the j.l.r.SoftReference class that holds the
  86   // soft reference timestamp clock using reflection or
  87   // Unsafe between GCs. Unconditionally update the static
  88   // field in ReferenceProcessor here so that we use the new
  89   // value during reference discovery.
  90 
  91   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  92   _discovering_refs = true;
  93 }
  94 
  95 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  96                                        bool      mt_processing,
  97                                        uint      mt_processing_degree,
  98                                        bool      mt_discovery,
  99                                        uint      mt_discovery_degree,
 100                                        bool      atomic_discovery,
 101                                        BoolObjectClosure* is_alive_non_header)  :
 102   _discovering_refs(false),
 103   _enqueuing_is_done(false),
 104   _is_alive_non_header(is_alive_non_header),
 105   _processing_is_mt(mt_processing),
 106   _next_id(0)
 107 {
 108   _span = span;
 109   _discovery_is_atomic = atomic_discovery;
 110   _discovery_is_mt     = mt_discovery;
 111   _num_q               = MAX2(1U, mt_processing_degree);
 112   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 113   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 114             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 115 
 116   if (_discovered_refs == NULL) {
 117     vm_exit_during_initialization("Could not allocated RefProc Array");
 118   }
 119   _discoveredSoftRefs    = &_discovered_refs[0];
 120   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 121   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 122   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 123 
 124   // Initialize all entries to NULL
 125   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 126     _discovered_refs[i].set_head(NULL);
 127     _discovered_refs[i].set_length(0);
 128   }
 129 
 130   setup_policy(false /* default soft ref policy */);
 131 }
 132 
 133 #ifndef PRODUCT
 134 void ReferenceProcessor::verify_no_references_recorded() {
 135   guarantee(!_discovering_refs, "Discovering refs?");
 136   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 137     guarantee(_discovered_refs[i].is_empty(),
 138               "Found non-empty discovered list at %u", i);
 139   }
 140 }
 141 #endif
 142 
 143 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 144   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 145     if (UseCompressedOops) {
 146       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 147     } else {
 148       f->do_oop((oop*)_discovered_refs[i].adr_head());
 149     }
 150   }
 151 }
 152 
 153 void ReferenceProcessor::update_soft_ref_master_clock() {
 154   // Update (advance) the soft ref master clock field. This must be done
 155   // after processing the soft ref list.
 156 
 157   // We need a monotonically non-decreasing time in ms but
 158   // os::javaTimeMillis() does not guarantee monotonicity.
 159   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 160   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 161   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 162 
 163   NOT_PRODUCT(
 164   if (now < _soft_ref_timestamp_clock) {
 165     log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 166                     _soft_ref_timestamp_clock, now);
 167   }
 168   )
 169   // The values of now and _soft_ref_timestamp_clock are set using
 170   // javaTimeNanos(), which is guaranteed to be monotonically
 171   // non-decreasing provided the underlying platform provides such
 172   // a time source (and it is bug free).
 173   // In product mode, however, protect ourselves from non-monotonicity.
 174   if (now > _soft_ref_timestamp_clock) {
 175     _soft_ref_timestamp_clock = now;
 176     java_lang_ref_SoftReference::set_clock(now);
 177   }
 178   // Else leave clock stalled at its old value until time progresses
 179   // past clock value.
 180 }
 181 
 182 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 183   size_t total = 0;
 184   for (uint i = 0; i < _max_num_q; ++i) {
 185     total += lists[i].length();
 186   }
 187   return total;
 188 }
 189 
 190 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 191   BoolObjectClosure*           is_alive,
 192   OopClosure*                  keep_alive,
 193   VoidClosure*                 complete_gc,
 194   AbstractRefProcTaskExecutor* task_executor,
 195   GCTimer*                     gc_timer) {
 196 
 197   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 198   // Stop treating discovered references specially.
 199   disable_discovery();
 200 
 201   // If discovery was concurrent, someone could have modified
 202   // the value of the static field in the j.l.r.SoftReference
 203   // class that holds the soft reference timestamp clock using
 204   // reflection or Unsafe between when discovery was enabled and
 205   // now. Unconditionally update the static field in ReferenceProcessor
 206   // here so that we use the new value during processing of the
 207   // discovered soft refs.
 208 
 209   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 210 
 211   ReferenceProcessorStats stats(
 212       total_count(_discoveredSoftRefs),
 213       total_count(_discoveredWeakRefs),
 214       total_count(_discoveredFinalRefs),
 215       total_count(_discoveredPhantomRefs));
 216 
 217   // Soft references
 218   {
 219     GCTraceTime(Debug, gc, ref) tt("SoftReference", gc_timer);
 220     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 221                                is_alive, keep_alive, complete_gc, task_executor);
 222   }
 223 
 224   update_soft_ref_master_clock();
 225 
 226   // Weak references
 227   {
 228     GCTraceTime(Debug, gc, ref) tt("WeakReference", gc_timer);
 229     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 230                                is_alive, keep_alive, complete_gc, task_executor);
 231   }
 232 
 233   // Final references
 234   {
 235     GCTraceTime(Debug, gc, ref) tt("FinalReference", gc_timer);
 236     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 237                                is_alive, keep_alive, complete_gc, task_executor);
 238   }
 239 
 240   // Phantom references
 241   {
 242     GCTraceTime(Debug, gc, ref) tt("PhantomReference", gc_timer);
 243     process_discovered_reflist(_discoveredPhantomRefs, NULL, true,
 244                                is_alive, keep_alive, complete_gc, task_executor);
 245   }
 246 
 247   // Weak global JNI references. It would make more sense (semantically) to
 248   // traverse these simultaneously with the regular weak references above, but
 249   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 250   // thus use JNI weak references to circumvent the phantom references and
 251   // resurrect a "post-mortem" object.
 252   {
 253     GCTraceTime(Debug, gc, ref) tt("JNI Weak Reference", gc_timer);
 254     if (task_executor != NULL) {
 255       task_executor->set_single_threaded_mode();
 256     }
 257     process_phaseJNI(is_alive, keep_alive, complete_gc);
 258   }
 259 
 260   HeapMonitoring::do_weak_oops(task_executor, is_alive, keep_alive, complete_gc);
 261   log_debug(gc, ref)("Ref Counts: Soft: " SIZE_FORMAT " Weak: " SIZE_FORMAT " Final: " SIZE_FORMAT " Phantom: " SIZE_FORMAT,
 262                      stats.soft_count(), stats.weak_count(), stats.final_count(), stats.phantom_count());
 263   log_develop_trace(gc, ref)("JNI Weak Reference count: " SIZE_FORMAT, count_jni_refs());
 264 
 265   return stats;
 266 }
 267 
 268 #ifndef PRODUCT
 269 // Calculate the number of jni handles.
 270 size_t ReferenceProcessor::count_jni_refs() {
 271   class CountHandleClosure: public OopClosure {
 272   private:
 273     size_t _count;
 274   public:
 275     CountHandleClosure(): _count(0) {}
 276     void do_oop(oop* unused)       { _count++; }
 277     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 278     size_t count() { return _count; }
 279   };
 280   CountHandleClosure global_handle_count;
 281   JNIHandles::weak_oops_do(&global_handle_count);
 282   return global_handle_count.count();
 283 }
 284 #endif
 285 
 286 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 287                                           OopClosure*        keep_alive,
 288                                           VoidClosure*       complete_gc) {
 289   JNIHandles::weak_oops_do(is_alive, keep_alive);
 290   complete_gc->do_void();
 291 }
 292 
 293 void ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 294   // Enqueue references that are not made active again, and
 295   // clear the decks for the next collection (cycle).
 296   enqueue_discovered_reflists(task_executor);
 297 
 298   // Stop treating discovered references specially.
 299   disable_discovery();
 300 }
 301 
 302 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list) {
 303   // Given a list of refs linked through the "discovered" field
 304   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 305   // thus distinguishing them from active References, then
 306   // prepend them to the pending list.
 307   //
 308   // The Java threads will see the Reference objects linked together through
 309   // the discovered field. Instead of trying to do the write barrier updates
 310   // in all places in the reference processor where we manipulate the discovered
 311   // field we make sure to do the barrier here where we anyway iterate through
 312   // all linked Reference objects. Note that it is important to not dirty any
 313   // cards during reference processing since this will cause card table
 314   // verification to fail for G1.
 315   log_develop_trace(gc, ref)("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, p2i(&refs_list));
 316 
 317   oop obj = NULL;
 318   oop next_d = refs_list.head();
 319   // Walk down the list, self-looping the next field
 320   // so that the References are not considered active.
 321   while (obj != next_d) {
 322     obj = next_d;
 323     assert(obj->is_instance(), "should be an instance object");
 324     assert(InstanceKlass::cast(obj->klass())->is_reference_instance_klass(), "should be reference object");
 325     next_d = java_lang_ref_Reference::discovered(obj);
 326     log_develop_trace(gc, ref)("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, p2i(obj), p2i(next_d));
 327     assert(java_lang_ref_Reference::next(obj) == NULL,
 328            "Reference not active; should not be discovered");
 329     // Self-loop next, so as to make Ref not active.
 330     java_lang_ref_Reference::set_next_raw(obj, obj);
 331     if (next_d != obj) {
 332       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 333     } else {
 334       // This is the last object.
 335       // Swap refs_list into pending list and set obj's
 336       // discovered to what we read from the pending list.
 337       oop old = Universe::swap_reference_pending_list(refs_list.head());
 338       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 339       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 340     }
 341   }
 342 }
 343 
 344 // Parallel enqueue task
 345 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 346 public:
 347   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 348                      DiscoveredList      discovered_refs[],
 349                      int                 n_queues)
 350     : EnqueueTask(ref_processor, discovered_refs, n_queues)
 351   { }
 352 
 353   virtual void work(unsigned int work_id) {
 354     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 355     // Simplest first cut: static partitioning.
 356     int index = work_id;
 357     // The increment on "index" must correspond to the maximum number of queues
 358     // (n_queues) with which that ReferenceProcessor was created.  That
 359     // is because of the "clever" way the discovered references lists were
 360     // allocated and are indexed into.
 361     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 362     for (int j = 0;
 363          j < ReferenceProcessor::number_of_subclasses_of_ref();
 364          j++, index += _n_queues) {
 365       _ref_processor.enqueue_discovered_reflist(_refs_lists[index]);
 366       _refs_lists[index].set_head(NULL);
 367       _refs_lists[index].set_length(0);
 368     }
 369   }
 370 };
 371 
 372 // Enqueue references that are not made active again
 373 void ReferenceProcessor::enqueue_discovered_reflists(AbstractRefProcTaskExecutor* task_executor) {
 374   if (_processing_is_mt && task_executor != NULL) {
 375     // Parallel code
 376     RefProcEnqueueTask tsk(*this, _discovered_refs, _max_num_q);
 377     task_executor->execute(tsk);
 378   } else {
 379     // Serial code: call the parent class's implementation
 380     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 381       enqueue_discovered_reflist(_discovered_refs[i]);
 382       _discovered_refs[i].set_head(NULL);
 383       _discovered_refs[i].set_length(0);
 384     }
 385   }
 386 }
 387 
 388 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 389   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 390   oop discovered = java_lang_ref_Reference::discovered(_ref);
 391   assert(_discovered_addr && discovered->is_oop_or_null(),
 392          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 393   _next = discovered;
 394   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 395   _referent = java_lang_ref_Reference::referent(_ref);
 396   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 397          "Wrong oop found in java.lang.Reference object");
 398   assert(allow_null_referent ?
 399              _referent->is_oop_or_null()
 400            : _referent->is_oop(),
 401          "Expected an oop%s for referent field at " PTR_FORMAT,
 402          (allow_null_referent ? " or NULL" : ""),
 403          p2i(_referent));
 404 }
 405 
 406 void DiscoveredListIterator::remove() {
 407   assert(_ref->is_oop(), "Dropping a bad reference");
 408   oop_store_raw(_discovered_addr, NULL);
 409 
 410   // First _prev_next ref actually points into DiscoveredList (gross).
 411   oop new_next;
 412   if (_next == _ref) {
 413     // At the end of the list, we should make _prev point to itself.
 414     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 415     // and _prev will be NULL.
 416     new_next = _prev;
 417   } else {
 418     new_next = _next;
 419   }
 420   // Remove Reference object from discovered list. Note that G1 does not need a
 421   // pre-barrier here because we know the Reference has already been found/marked,
 422   // that's how it ended up in the discovered list in the first place.
 423   oop_store_raw(_prev_next, new_next);
 424   NOT_PRODUCT(_removed++);
 425   _refs_list.dec_length(1);
 426 }
 427 
 428 void DiscoveredListIterator::clear_referent() {
 429   oop_store_raw(_referent_addr, NULL);
 430 }
 431 
 432 // NOTE: process_phase*() are largely similar, and at a high level
 433 // merely iterate over the extant list applying a predicate to
 434 // each of its elements and possibly removing that element from the
 435 // list and applying some further closures to that element.
 436 // We should consider the possibility of replacing these
 437 // process_phase*() methods by abstracting them into
 438 // a single general iterator invocation that receives appropriate
 439 // closures that accomplish this work.
 440 
 441 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 442 // referents are not alive, but that should be kept alive for policy reasons.
 443 // Keep alive the transitive closure of all such referents.
 444 void
 445 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 446                                    ReferencePolicy*   policy,
 447                                    BoolObjectClosure* is_alive,
 448                                    OopClosure*        keep_alive,
 449                                    VoidClosure*       complete_gc) {
 450   assert(policy != NULL, "Must have a non-NULL policy");
 451   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 452   // Decide which softly reachable refs should be kept alive.
 453   while (iter.has_next()) {
 454     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 455     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 456     if (referent_is_dead &&
 457         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 458       log_develop_trace(gc, ref)("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 459                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 460       // Remove Reference object from list
 461       iter.remove();
 462       // keep the referent around
 463       iter.make_referent_alive();
 464       iter.move_to_next();
 465     } else {
 466       iter.next();
 467     }
 468   }
 469   // Close the reachable set
 470   complete_gc->do_void();
 471   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 472                              iter.removed(), iter.processed(), p2i(&refs_list));
 473     }
 474 
 475 // Traverse the list and remove any Refs that are not active, or
 476 // whose referents are either alive or NULL.
 477 void
 478 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 479                              BoolObjectClosure* is_alive,
 480                              OopClosure*        keep_alive) {
 481   assert(discovery_is_atomic(), "Error");
 482   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 483   while (iter.has_next()) {
 484     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 485     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 486     assert(next == NULL, "Should not discover inactive Reference");
 487     if (iter.is_referent_alive()) {
 488       log_develop_trace(gc, ref)("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 489                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 490       // The referent is reachable after all.
 491       // Remove Reference object from list.
 492       iter.remove();
 493       // Update the referent pointer as necessary: Note that this
 494       // should not entail any recursive marking because the
 495       // referent must already have been traversed.
 496       iter.make_referent_alive();
 497       iter.move_to_next();
 498     } else {
 499       iter.next();
 500     }
 501   }
 502   NOT_PRODUCT(
 503     if (iter.processed() > 0) {
 504       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 505         " Refs in discovered list " INTPTR_FORMAT,
 506         iter.removed(), iter.processed(), p2i(&refs_list));
 507     }
 508   )
 509 }
 510 
 511 void
 512 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 513                                                   BoolObjectClosure* is_alive,
 514                                                   OopClosure*        keep_alive,
 515                                                   VoidClosure*       complete_gc) {
 516   assert(!discovery_is_atomic(), "Error");
 517   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 518   while (iter.has_next()) {
 519     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 520     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 521     oop next = java_lang_ref_Reference::next(iter.obj());
 522     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 523          next != NULL)) {
 524       assert(next->is_oop_or_null(), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
 525       // Remove Reference object from list
 526       iter.remove();
 527       // Trace the cohorts
 528       iter.make_referent_alive();
 529       if (UseCompressedOops) {
 530         keep_alive->do_oop((narrowOop*)next_addr);
 531       } else {
 532         keep_alive->do_oop((oop*)next_addr);
 533       }
 534       iter.move_to_next();
 535     } else {
 536       iter.next();
 537     }
 538   }
 539   // Now close the newly reachable set
 540   complete_gc->do_void();
 541   NOT_PRODUCT(
 542     if (iter.processed() > 0) {
 543       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 544         " Refs in discovered list " INTPTR_FORMAT,
 545         iter.removed(), iter.processed(), p2i(&refs_list));
 546     }
 547   )
 548 }
 549 
 550 // Traverse the list and process the referents, by either
 551 // clearing them or keeping them (and their reachable
 552 // closure) alive.
 553 void
 554 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 555                                    bool               clear_referent,
 556                                    BoolObjectClosure* is_alive,
 557                                    OopClosure*        keep_alive,
 558                                    VoidClosure*       complete_gc) {
 559   ResourceMark rm;
 560   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 561   while (iter.has_next()) {
 562     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 563     if (clear_referent) {
 564       // NULL out referent pointer
 565       iter.clear_referent();
 566     } else {
 567       // keep the referent around
 568       iter.make_referent_alive();
 569     }
 570     log_develop_trace(gc, ref)("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 571                                clear_referent ? "cleared " : "", p2i(iter.obj()), iter.obj()->klass()->internal_name());
 572     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 573     iter.next();
 574   }
 575   // Close the reachable set
 576   complete_gc->do_void();
 577 }
 578 
 579 void
 580 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 581   oop obj = NULL;
 582   oop next = refs_list.head();
 583   while (next != obj) {
 584     obj = next;
 585     next = java_lang_ref_Reference::discovered(obj);
 586     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 587   }
 588   refs_list.set_head(NULL);
 589   refs_list.set_length(0);
 590 }
 591 
 592 void ReferenceProcessor::abandon_partial_discovery() {
 593   // loop over the lists
 594   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 595     if ((i % _max_num_q) == 0) {
 596       log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
 597     }
 598     clear_discovered_references(_discovered_refs[i]);
 599   }
 600 }
 601 
 602 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 603 public:
 604   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 605                     DiscoveredList      refs_lists[],
 606                     ReferencePolicy*    policy,
 607                     bool                marks_oops_alive)
 608     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 609       _policy(policy)
 610   { }
 611   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 612                     OopClosure& keep_alive,
 613                     VoidClosure& complete_gc)
 614   {
 615     _ref_processor.process_phase1(_refs_lists[i], _policy,
 616                                   &is_alive, &keep_alive, &complete_gc);
 617   }
 618 private:
 619   ReferencePolicy* _policy;
 620 };
 621 
 622 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 623 public:
 624   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 625                     DiscoveredList      refs_lists[],
 626                     bool                marks_oops_alive)
 627     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 628   { }
 629   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 630                     OopClosure& keep_alive,
 631                     VoidClosure& complete_gc)
 632   {
 633     _ref_processor.process_phase2(_refs_lists[i],
 634                                   &is_alive, &keep_alive, &complete_gc);
 635   }
 636 };
 637 
 638 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 639 public:
 640   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 641                     DiscoveredList      refs_lists[],
 642                     bool                clear_referent,
 643                     bool                marks_oops_alive)
 644     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 645       _clear_referent(clear_referent)
 646   { }
 647   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 648                     OopClosure& keep_alive,
 649                     VoidClosure& complete_gc)
 650   {
 651     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 652                                   &is_alive, &keep_alive, &complete_gc);
 653   }
 654 private:
 655   bool _clear_referent;
 656 };
 657 
 658 #ifndef PRODUCT
 659 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_refs) {
 660   if (!log_is_enabled(Trace, gc, ref)) {
 661     return;
 662   }
 663 
 664   stringStream st;
 665   for (uint i = 0; i < active_length; ++i) {
 666     st.print(SIZE_FORMAT " ", ref_lists[i].length());
 667   }
 668   log_develop_trace(gc, ref)("%s= " SIZE_FORMAT, st.as_string(), total_refs);
 669 #ifdef ASSERT
 670   for (uint i = active_length; i < _max_num_q; i++) {
 671     assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u",
 672            ref_lists[i].length(), i);
 673   }
 674 #endif
 675 }
 676 #endif
 677 
 678 void ReferenceProcessor::set_active_mt_degree(uint v) {
 679   _num_q = v;
 680   _next_id = 0;
 681 }
 682 
 683 // Balances reference queues.
 684 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 685 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 686 // corresponding to the active workers will be processed.
 687 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 688 {
 689   // calculate total length
 690   size_t total_refs = 0;
 691   log_develop_trace(gc, ref)("Balance ref_lists ");
 692 
 693   for (uint i = 0; i < _max_num_q; ++i) {
 694     total_refs += ref_lists[i].length();
 695   }
 696   log_reflist_counts(ref_lists, _max_num_q, total_refs);
 697   size_t avg_refs = total_refs / _num_q + 1;
 698   uint to_idx = 0;
 699   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 700     bool move_all = false;
 701     if (from_idx >= _num_q) {
 702       move_all = ref_lists[from_idx].length() > 0;
 703     }
 704     while ((ref_lists[from_idx].length() > avg_refs) ||
 705            move_all) {
 706       assert(to_idx < _num_q, "Sanity Check!");
 707       if (ref_lists[to_idx].length() < avg_refs) {
 708         // move superfluous refs
 709         size_t refs_to_move;
 710         // Move all the Ref's if the from queue will not be processed.
 711         if (move_all) {
 712           refs_to_move = MIN2(ref_lists[from_idx].length(),
 713                               avg_refs - ref_lists[to_idx].length());
 714         } else {
 715           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 716                               avg_refs - ref_lists[to_idx].length());
 717         }
 718 
 719         assert(refs_to_move > 0, "otherwise the code below will fail");
 720 
 721         oop move_head = ref_lists[from_idx].head();
 722         oop move_tail = move_head;
 723         oop new_head  = move_head;
 724         // find an element to split the list on
 725         for (size_t j = 0; j < refs_to_move; ++j) {
 726           move_tail = new_head;
 727           new_head = java_lang_ref_Reference::discovered(new_head);
 728         }
 729 
 730         // Add the chain to the to list.
 731         if (ref_lists[to_idx].head() == NULL) {
 732           // to list is empty. Make a loop at the end.
 733           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 734         } else {
 735           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 736         }
 737         ref_lists[to_idx].set_head(move_head);
 738         ref_lists[to_idx].inc_length(refs_to_move);
 739 
 740         // Remove the chain from the from list.
 741         if (move_tail == new_head) {
 742           // We found the end of the from list.
 743           ref_lists[from_idx].set_head(NULL);
 744         } else {
 745           ref_lists[from_idx].set_head(new_head);
 746         }
 747         ref_lists[from_idx].dec_length(refs_to_move);
 748         if (ref_lists[from_idx].length() == 0) {
 749           break;
 750         }
 751       } else {
 752         to_idx = (to_idx + 1) % _num_q;
 753       }
 754     }
 755   }
 756 #ifdef ASSERT
 757   size_t balanced_total_refs = 0;
 758   for (uint i = 0; i < _num_q; ++i) {
 759     balanced_total_refs += ref_lists[i].length();
 760   }
 761   log_reflist_counts(ref_lists, _num_q, balanced_total_refs);
 762   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 763 #endif
 764 }
 765 
 766 void ReferenceProcessor::balance_all_queues() {
 767   balance_queues(_discoveredSoftRefs);
 768   balance_queues(_discoveredWeakRefs);
 769   balance_queues(_discoveredFinalRefs);
 770   balance_queues(_discoveredPhantomRefs);
 771 }
 772 
 773 void ReferenceProcessor::process_discovered_reflist(
 774   DiscoveredList               refs_lists[],
 775   ReferencePolicy*             policy,
 776   bool                         clear_referent,
 777   BoolObjectClosure*           is_alive,
 778   OopClosure*                  keep_alive,
 779   VoidClosure*                 complete_gc,
 780   AbstractRefProcTaskExecutor* task_executor)
 781 {
 782   bool mt_processing = task_executor != NULL && _processing_is_mt;
 783   // If discovery used MT and a dynamic number of GC threads, then
 784   // the queues must be balanced for correctness if fewer than the
 785   // maximum number of queues were used.  The number of queue used
 786   // during discovery may be different than the number to be used
 787   // for processing so don't depend of _num_q < _max_num_q as part
 788   // of the test.
 789   bool must_balance = _discovery_is_mt;
 790 
 791   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 792       must_balance) {
 793     balance_queues(refs_lists);
 794   }
 795 
 796   // Phase 1 (soft refs only):
 797   // . Traverse the list and remove any SoftReferences whose
 798   //   referents are not alive, but that should be kept alive for
 799   //   policy reasons. Keep alive the transitive closure of all
 800   //   such referents.
 801   if (policy != NULL) {
 802     if (mt_processing) {
 803       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 804       task_executor->execute(phase1);
 805     } else {
 806       for (uint i = 0; i < _max_num_q; i++) {
 807         process_phase1(refs_lists[i], policy,
 808                        is_alive, keep_alive, complete_gc);
 809       }
 810     }
 811   } else { // policy == NULL
 812     assert(refs_lists != _discoveredSoftRefs,
 813            "Policy must be specified for soft references.");
 814   }
 815 
 816   // Phase 2:
 817   // . Traverse the list and remove any refs whose referents are alive.
 818   if (mt_processing) {
 819     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 820     task_executor->execute(phase2);
 821   } else {
 822     for (uint i = 0; i < _max_num_q; i++) {
 823       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 824     }
 825   }
 826 
 827   // Phase 3:
 828   // . Traverse the list and process referents as appropriate.
 829   if (mt_processing) {
 830     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 831     task_executor->execute(phase3);
 832   } else {
 833     for (uint i = 0; i < _max_num_q; i++) {
 834       process_phase3(refs_lists[i], clear_referent,
 835                      is_alive, keep_alive, complete_gc);
 836     }
 837   }
 838 }
 839 
 840 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 841   uint id = 0;
 842   // Determine the queue index to use for this object.
 843   if (_discovery_is_mt) {
 844     // During a multi-threaded discovery phase,
 845     // each thread saves to its "own" list.
 846     Thread* thr = Thread::current();
 847     id = thr->as_Worker_thread()->id();
 848   } else {
 849     // single-threaded discovery, we save in round-robin
 850     // fashion to each of the lists.
 851     if (_processing_is_mt) {
 852       id = next_id();
 853     }
 854   }
 855   assert(id < _max_num_q, "Id is out-of-bounds id %u and max id %u)", id, _max_num_q);
 856 
 857   // Get the discovered queue to which we will add
 858   DiscoveredList* list = NULL;
 859   switch (rt) {
 860     case REF_OTHER:
 861       // Unknown reference type, no special treatment
 862       break;
 863     case REF_SOFT:
 864       list = &_discoveredSoftRefs[id];
 865       break;
 866     case REF_WEAK:
 867       list = &_discoveredWeakRefs[id];
 868       break;
 869     case REF_FINAL:
 870       list = &_discoveredFinalRefs[id];
 871       break;
 872     case REF_PHANTOM:
 873       list = &_discoveredPhantomRefs[id];
 874       break;
 875     case REF_NONE:
 876       // we should not reach here if we are an InstanceRefKlass
 877     default:
 878       ShouldNotReachHere();
 879   }
 880   log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 881   return list;
 882 }
 883 
 884 inline void
 885 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 886                                               oop             obj,
 887                                               HeapWord*       discovered_addr) {
 888   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 889   // First we must make sure this object is only enqueued once. CAS in a non null
 890   // discovered_addr.
 891   oop current_head = refs_list.head();
 892   // The last ref must have its discovered field pointing to itself.
 893   oop next_discovered = (current_head != NULL) ? current_head : obj;
 894 
 895   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 896                                                     NULL);
 897   if (retest == NULL) {
 898     // This thread just won the right to enqueue the object.
 899     // We have separate lists for enqueueing, so no synchronization
 900     // is necessary.
 901     refs_list.set_head(obj);
 902     refs_list.inc_length(1);
 903 
 904     log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 905                                p2i(obj), obj->klass()->internal_name());
 906   } else {
 907     // If retest was non NULL, another thread beat us to it:
 908     // The reference has already been discovered...
 909     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
 910                                p2i(obj), obj->klass()->internal_name());
 911     }
 912   }
 913 
 914 #ifndef PRODUCT
 915 // Non-atomic (i.e. concurrent) discovery might allow us
 916 // to observe j.l.References with NULL referents, being those
 917 // cleared concurrently by mutators during (or after) discovery.
 918 void ReferenceProcessor::verify_referent(oop obj) {
 919   bool da = discovery_is_atomic();
 920   oop referent = java_lang_ref_Reference::referent(obj);
 921   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
 922          "Bad referent " INTPTR_FORMAT " found in Reference "
 923          INTPTR_FORMAT " during %satomic discovery ",
 924          p2i(referent), p2i(obj), da ? "" : "non-");
 925 }
 926 #endif
 927 
 928 // We mention two of several possible choices here:
 929 // #0: if the reference object is not in the "originating generation"
 930 //     (or part of the heap being collected, indicated by our "span"
 931 //     we don't treat it specially (i.e. we scan it as we would
 932 //     a normal oop, treating its references as strong references).
 933 //     This means that references can't be discovered unless their
 934 //     referent is also in the same span. This is the simplest,
 935 //     most "local" and most conservative approach, albeit one
 936 //     that may cause weak references to be enqueued least promptly.
 937 //     We call this choice the "ReferenceBasedDiscovery" policy.
 938 // #1: the reference object may be in any generation (span), but if
 939 //     the referent is in the generation (span) being currently collected
 940 //     then we can discover the reference object, provided
 941 //     the object has not already been discovered by
 942 //     a different concurrently running collector (as may be the
 943 //     case, for instance, if the reference object is in CMS and
 944 //     the referent in DefNewGeneration), and provided the processing
 945 //     of this reference object by the current collector will
 946 //     appear atomic to every other collector in the system.
 947 //     (Thus, for instance, a concurrent collector may not
 948 //     discover references in other generations even if the
 949 //     referent is in its own generation). This policy may,
 950 //     in certain cases, enqueue references somewhat sooner than
 951 //     might Policy #0 above, but at marginally increased cost
 952 //     and complexity in processing these references.
 953 //     We call this choice the "RefeferentBasedDiscovery" policy.
 954 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
 955   // Make sure we are discovering refs (rather than processing discovered refs).
 956   if (!_discovering_refs || !RegisterReferences) {
 957     return false;
 958   }
 959   // We only discover active references.
 960   oop next = java_lang_ref_Reference::next(obj);
 961   if (next != NULL) {   // Ref is no longer active
 962     return false;
 963   }
 964 
 965   HeapWord* obj_addr = (HeapWord*)obj;
 966   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
 967       !_span.contains(obj_addr)) {
 968     // Reference is not in the originating generation;
 969     // don't treat it specially (i.e. we want to scan it as a normal
 970     // object with strong references).
 971     return false;
 972   }
 973 
 974   // We only discover references whose referents are not (yet)
 975   // known to be strongly reachable.
 976   if (is_alive_non_header() != NULL) {
 977     verify_referent(obj);
 978     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
 979       return false;  // referent is reachable
 980     }
 981   }
 982   if (rt == REF_SOFT) {
 983     // For soft refs we can decide now if these are not
 984     // current candidates for clearing, in which case we
 985     // can mark through them now, rather than delaying that
 986     // to the reference-processing phase. Since all current
 987     // time-stamp policies advance the soft-ref clock only
 988     // at a full collection cycle, this is always currently
 989     // accurate.
 990     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
 991       return false;
 992     }
 993   }
 994 
 995   ResourceMark rm;      // Needed for tracing.
 996 
 997   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
 998   const oop  discovered = java_lang_ref_Reference::discovered(obj);
 999   assert(discovered->is_oop_or_null(), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1000   if (discovered != NULL) {
1001     // The reference has already been discovered...
1002     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1003                                p2i(obj), obj->klass()->internal_name());
1004     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1005       // assumes that an object is not processed twice;
1006       // if it's been already discovered it must be on another
1007       // generation's discovered list; so we won't discover it.
1008       return false;
1009     } else {
1010       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1011              "Unrecognized policy");
1012       // Check assumption that an object is not potentially
1013       // discovered twice except by concurrent collectors that potentially
1014       // trace the same Reference object twice.
1015       assert(UseConcMarkSweepGC || UseG1GC,
1016              "Only possible with a concurrent marking collector");
1017       return true;
1018     }
1019   }
1020 
1021   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1022     verify_referent(obj);
1023     // Discover if and only if EITHER:
1024     // .. reference is in our span, OR
1025     // .. we are an atomic collector and referent is in our span
1026     if (_span.contains(obj_addr) ||
1027         (discovery_is_atomic() &&
1028          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1029       // should_enqueue = true;
1030     } else {
1031       return false;
1032     }
1033   } else {
1034     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1035            _span.contains(obj_addr), "code inconsistency");
1036   }
1037 
1038   // Get the right type of discovered queue head.
1039   DiscoveredList* list = get_discovered_list(rt);
1040   if (list == NULL) {
1041     return false;   // nothing special needs to be done
1042   }
1043 
1044   if (_discovery_is_mt) {
1045     add_to_discovered_list_mt(*list, obj, discovered_addr);
1046   } else {
1047     // We do a raw store here: the field will be visited later when processing
1048     // the discovered references.
1049     oop current_head = list->head();
1050     // The last ref must have its discovered field pointing to itself.
1051     oop next_discovered = (current_head != NULL) ? current_head : obj;
1052 
1053     assert(discovered == NULL, "control point invariant");
1054     oop_store_raw(discovered_addr, next_discovered);
1055     list->set_head(obj);
1056     list->inc_length(1);
1057 
1058     log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1059   }
1060   assert(obj->is_oop(), "Discovered a bad reference");
1061   verify_referent(obj);
1062   return true;
1063 }
1064 
1065 bool ReferenceProcessor::has_discovered_references() {
1066   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1067     if (!_discovered_refs[i].is_empty()) {
1068       return true;
1069     }
1070   }
1071   return false;
1072 }
1073 
1074 // Preclean the discovered references by removing those
1075 // whose referents are alive, and by marking from those that
1076 // are not active. These lists can be handled here
1077 // in any order and, indeed, concurrently.
1078 void ReferenceProcessor::preclean_discovered_references(
1079   BoolObjectClosure* is_alive,
1080   OopClosure* keep_alive,
1081   VoidClosure* complete_gc,
1082   YieldClosure* yield,
1083   GCTimer* gc_timer) {
1084 
1085   // Soft references
1086   {
1087     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1088     for (uint i = 0; i < _max_num_q; i++) {
1089       if (yield->should_return()) {
1090         return;
1091       }
1092       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1093                                   keep_alive, complete_gc, yield);
1094     }
1095   }
1096 
1097   // Weak references
1098   {
1099     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1100     for (uint i = 0; i < _max_num_q; i++) {
1101       if (yield->should_return()) {
1102         return;
1103       }
1104       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1105                                   keep_alive, complete_gc, yield);
1106     }
1107   }
1108 
1109   // Final references
1110   {
1111     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1112     for (uint i = 0; i < _max_num_q; i++) {
1113       if (yield->should_return()) {
1114         return;
1115       }
1116       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1117                                   keep_alive, complete_gc, yield);
1118     }
1119   }
1120 
1121   // Phantom references
1122   {
1123     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1124     for (uint i = 0; i < _max_num_q; i++) {
1125       if (yield->should_return()) {
1126         return;
1127       }
1128       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1129                                   keep_alive, complete_gc, yield);
1130     }
1131   }
1132 }
1133 
1134 // Walk the given discovered ref list, and remove all reference objects
1135 // whose referents are still alive, whose referents are NULL or which
1136 // are not active (have a non-NULL next field). NOTE: When we are
1137 // thus precleaning the ref lists (which happens single-threaded today),
1138 // we do not disable refs discovery to honor the correct semantics of
1139 // java.lang.Reference. As a result, we need to be careful below
1140 // that ref removal steps interleave safely with ref discovery steps
1141 // (in this thread).
1142 void
1143 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1144                                                 BoolObjectClosure* is_alive,
1145                                                 OopClosure*        keep_alive,
1146                                                 VoidClosure*       complete_gc,
1147                                                 YieldClosure*      yield) {
1148   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1149   while (iter.has_next()) {
1150     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1151     oop obj = iter.obj();
1152     oop next = java_lang_ref_Reference::next(obj);
1153     if (iter.referent() == NULL || iter.is_referent_alive() ||
1154         next != NULL) {
1155       // The referent has been cleared, or is alive, or the Reference is not
1156       // active; we need to trace and mark its cohort.
1157       log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1158                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
1159       // Remove Reference object from list
1160       iter.remove();
1161       // Keep alive its cohort.
1162       iter.make_referent_alive();
1163       if (UseCompressedOops) {
1164         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1165         keep_alive->do_oop(next_addr);
1166       } else {
1167         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1168         keep_alive->do_oop(next_addr);
1169       }
1170       iter.move_to_next();
1171     } else {
1172       iter.next();
1173     }
1174   }
1175   // Close the reachable set
1176   complete_gc->do_void();
1177 
1178   NOT_PRODUCT(
1179     if (iter.processed() > 0) {
1180       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1181         iter.removed(), iter.processed(), p2i(&refs_list));
1182     }
1183   )
1184 }
1185 
1186 const char* ReferenceProcessor::list_name(uint i) {
1187    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1188           "Out of bounds index");
1189 
1190    int j = i / _max_num_q;
1191    switch (j) {
1192      case 0: return "SoftRef";
1193      case 1: return "WeakRef";
1194      case 2: return "FinalRef";
1195      case 3: return "PhantomRef";
1196    }
1197    ShouldNotReachHere();
1198    return NULL;
1199 }
1200