1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/cms/concurrentMarkSweepThread.hpp"
 105 #include "gc/g1/concurrentMarkThread.inline.hpp"
 106 #include "gc/parallel/pcTasks.hpp"
 107 #endif // INCLUDE_ALL_GCS
 108 #if INCLUDE_JVMCI
 109 #include "jvmci/jvmciCompiler.hpp"
 110 #include "jvmci/jvmciRuntime.hpp"
 111 #endif
 112 #ifdef COMPILER1
 113 #include "c1/c1_Compiler.hpp"
 114 #endif
 115 #ifdef COMPILER2
 116 #include "opto/c2compiler.hpp"
 117 #include "opto/idealGraphPrinter.hpp"
 118 #endif
 119 #if INCLUDE_RTM_OPT
 120 #include "runtime/rtmLocking.hpp"
 121 #endif
 122 
 123 // Initialization after module runtime initialization
 124 void universe_post_module_init();  // must happen after call_initPhase2
 125 
 126 #ifdef DTRACE_ENABLED
 127 
 128 // Only bother with this argument setup if dtrace is available
 129 
 130   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 131   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 132 
 133   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 134     {                                                                      \
 135       ResourceMark rm(this);                                               \
 136       int len = 0;                                                         \
 137       const char* name = (javathread)->get_thread_name();                  \
 138       len = strlen(name);                                                  \
 139       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 140         (char *) name, len,                                                \
 141         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 142         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 143         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 144     }
 145 
 146 #else //  ndef DTRACE_ENABLED
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)
 149 
 150 #endif // ndef DTRACE_ENABLED
 151 
 152 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 153 // Current thread is maintained as a thread-local variable
 154 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 155 #endif
 156 // Class hierarchy
 157 // - Thread
 158 //   - VMThread
 159 //   - WatcherThread
 160 //   - ConcurrentMarkSweepThread
 161 //   - JavaThread
 162 //     - CompilerThread
 163 
 164 // ======= Thread ========
 165 // Support for forcing alignment of thread objects for biased locking
 166 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 167   if (UseBiasedLocking) {
 168     const int alignment = markOopDesc::biased_lock_alignment;
 169     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 170     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 171                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 172                                                          AllocFailStrategy::RETURN_NULL);
 173     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 174     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 175            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 176            "JavaThread alignment code overflowed allocated storage");
 177     if (aligned_addr != real_malloc_addr) {
 178       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 179                               p2i(real_malloc_addr),
 180                               p2i(aligned_addr));
 181     }
 182     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 183     return aligned_addr;
 184   } else {
 185     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 186                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 187   }
 188 }
 189 
 190 void Thread::operator delete(void* p) {
 191   if (UseBiasedLocking) {
 192     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 193     FreeHeap(real_malloc_addr);
 194   } else {
 195     FreeHeap(p);
 196   }
 197 }
 198 
 199 
 200 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 201 // JavaThread
 202 
 203 
 204 Thread::Thread() {
 205   // stack and get_thread
 206   set_stack_base(NULL);
 207   set_stack_size(0);
 208   set_self_raw_id(0);
 209   set_lgrp_id(-1);
 210   DEBUG_ONLY(clear_suspendible_thread();)
 211 
 212   // allocated data structures
 213   set_osthread(NULL);
 214   set_resource_area(new (mtThread)ResourceArea());
 215   DEBUG_ONLY(_current_resource_mark = NULL;)
 216   set_handle_area(new (mtThread) HandleArea(NULL));
 217   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 218   set_active_handles(NULL);
 219   set_free_handle_block(NULL);
 220   set_last_handle_mark(NULL);
 221 
 222   // This initial value ==> never claimed.
 223   _oops_do_parity = 0;
 224 
 225   // the handle mark links itself to last_handle_mark
 226   new HandleMark(this);
 227 
 228   // plain initialization
 229   debug_only(_owned_locks = NULL;)
 230   debug_only(_allow_allocation_count = 0;)
 231   NOT_PRODUCT(_allow_safepoint_count = 0;)
 232   NOT_PRODUCT(_skip_gcalot = false;)
 233   _jvmti_env_iteration_count = 0;
 234   set_allocated_bytes(0);
 235   _vm_operation_started_count = 0;
 236   _vm_operation_completed_count = 0;
 237   _current_pending_monitor = NULL;
 238   _current_pending_monitor_is_from_java = true;
 239   _current_waiting_monitor = NULL;
 240   _num_nested_signal = 0;
 241   omFreeList = NULL;
 242   omFreeCount = 0;
 243   omFreeProvision = 32;
 244   omInUseList = NULL;
 245   omInUseCount = 0;
 246 
 247 #ifdef ASSERT
 248   _visited_for_critical_count = false;
 249 #endif
 250 
 251   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 252                          Monitor::_safepoint_check_sometimes);
 253   _suspend_flags = 0;
 254 
 255   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 256   _hashStateX = os::random();
 257   _hashStateY = 842502087;
 258   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 259   _hashStateW = 273326509;
 260 
 261   _OnTrap   = 0;
 262   _schedctl = NULL;
 263   _Stalled  = 0;
 264   _TypeTag  = 0x2BAD;
 265 
 266   // Many of the following fields are effectively final - immutable
 267   // Note that nascent threads can't use the Native Monitor-Mutex
 268   // construct until the _MutexEvent is initialized ...
 269   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 270   // we might instead use a stack of ParkEvents that we could provision on-demand.
 271   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 272   // and ::Release()
 273   _ParkEvent   = ParkEvent::Allocate(this);
 274   _SleepEvent  = ParkEvent::Allocate(this);
 275   _MutexEvent  = ParkEvent::Allocate(this);
 276   _MuxEvent    = ParkEvent::Allocate(this);
 277 
 278 #ifdef CHECK_UNHANDLED_OOPS
 279   if (CheckUnhandledOops) {
 280     _unhandled_oops = new UnhandledOops(this);
 281   }
 282 #endif // CHECK_UNHANDLED_OOPS
 283 #ifdef ASSERT
 284   if (UseBiasedLocking) {
 285     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 286     assert(this == _real_malloc_address ||
 287            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 288            "bug in forced alignment of thread objects");
 289   }
 290 #endif // ASSERT
 291 }
 292 
 293 void Thread::initialize_thread_current() {
 294 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 295   assert(_thr_current == NULL, "Thread::current already initialized");
 296   _thr_current = this;
 297 #endif
 298   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 299   ThreadLocalStorage::set_thread(this);
 300   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 301 }
 302 
 303 void Thread::clear_thread_current() {
 304   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 305 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 306   _thr_current = NULL;
 307 #endif
 308   ThreadLocalStorage::set_thread(NULL);
 309 }
 310 
 311 void Thread::record_stack_base_and_size() {
 312   set_stack_base(os::current_stack_base());
 313   set_stack_size(os::current_stack_size());
 314   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 315   // in initialize_thread(). Without the adjustment, stack size is
 316   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 317   // So far, only Solaris has real implementation of initialize_thread().
 318   //
 319   // set up any platform-specific state.
 320   os::initialize_thread(this);
 321 
 322   // Set stack limits after thread is initialized.
 323   if (is_Java_thread()) {
 324     ((JavaThread*) this)->set_stack_overflow_limit();
 325     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 326   }
 327 #if INCLUDE_NMT
 328   // record thread's native stack, stack grows downward
 329   MemTracker::record_thread_stack(stack_end(), stack_size());
 330 #endif // INCLUDE_NMT
 331   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 332     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 333     os::current_thread_id(), p2i(stack_base() - stack_size()),
 334     p2i(stack_base()), stack_size()/1024);
 335 }
 336 
 337 
 338 Thread::~Thread() {
 339   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 340   ObjectSynchronizer::omFlush(this);
 341 
 342   EVENT_THREAD_DESTRUCT(this);
 343 
 344   // stack_base can be NULL if the thread is never started or exited before
 345   // record_stack_base_and_size called. Although, we would like to ensure
 346   // that all started threads do call record_stack_base_and_size(), there is
 347   // not proper way to enforce that.
 348 #if INCLUDE_NMT
 349   if (_stack_base != NULL) {
 350     MemTracker::release_thread_stack(stack_end(), stack_size());
 351 #ifdef ASSERT
 352     set_stack_base(NULL);
 353 #endif
 354   }
 355 #endif // INCLUDE_NMT
 356 
 357   // deallocate data structures
 358   delete resource_area();
 359   // since the handle marks are using the handle area, we have to deallocated the root
 360   // handle mark before deallocating the thread's handle area,
 361   assert(last_handle_mark() != NULL, "check we have an element");
 362   delete last_handle_mark();
 363   assert(last_handle_mark() == NULL, "check we have reached the end");
 364 
 365   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 366   // We NULL out the fields for good hygiene.
 367   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 368   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 369   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 370   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 371 
 372   delete handle_area();
 373   delete metadata_handles();
 374 
 375   // SR_handler uses this as a termination indicator -
 376   // needs to happen before os::free_thread()
 377   delete _SR_lock;
 378   _SR_lock = NULL;
 379 
 380   // osthread() can be NULL, if creation of thread failed.
 381   if (osthread() != NULL) os::free_thread(osthread());
 382 
 383   // clear Thread::current if thread is deleting itself.
 384   // Needed to ensure JNI correctly detects non-attached threads.
 385   if (this == Thread::current()) {
 386     clear_thread_current();
 387   }
 388 
 389   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 390 }
 391 
 392 // NOTE: dummy function for assertion purpose.
 393 void Thread::run() {
 394   ShouldNotReachHere();
 395 }
 396 
 397 #ifdef ASSERT
 398 // Private method to check for dangling thread pointer
 399 void check_for_dangling_thread_pointer(Thread *thread) {
 400   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 401          "possibility of dangling Thread pointer");
 402 }
 403 #endif
 404 
 405 ThreadPriority Thread::get_priority(const Thread* const thread) {
 406   ThreadPriority priority;
 407   // Can return an error!
 408   (void)os::get_priority(thread, priority);
 409   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 410   return priority;
 411 }
 412 
 413 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 414   debug_only(check_for_dangling_thread_pointer(thread);)
 415   // Can return an error!
 416   (void)os::set_priority(thread, priority);
 417 }
 418 
 419 
 420 void Thread::start(Thread* thread) {
 421   // Start is different from resume in that its safety is guaranteed by context or
 422   // being called from a Java method synchronized on the Thread object.
 423   if (!DisableStartThread) {
 424     if (thread->is_Java_thread()) {
 425       // Initialize the thread state to RUNNABLE before starting this thread.
 426       // Can not set it after the thread started because we do not know the
 427       // exact thread state at that time. It could be in MONITOR_WAIT or
 428       // in SLEEPING or some other state.
 429       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 430                                           java_lang_Thread::RUNNABLE);
 431     }
 432     os::start_thread(thread);
 433   }
 434 }
 435 
 436 // Enqueue a VM_Operation to do the job for us - sometime later
 437 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 438   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 439   VMThread::execute(vm_stop);
 440 }
 441 
 442 
 443 // Check if an external suspend request has completed (or has been
 444 // cancelled). Returns true if the thread is externally suspended and
 445 // false otherwise.
 446 //
 447 // The bits parameter returns information about the code path through
 448 // the routine. Useful for debugging:
 449 //
 450 // set in is_ext_suspend_completed():
 451 // 0x00000001 - routine was entered
 452 // 0x00000010 - routine return false at end
 453 // 0x00000100 - thread exited (return false)
 454 // 0x00000200 - suspend request cancelled (return false)
 455 // 0x00000400 - thread suspended (return true)
 456 // 0x00001000 - thread is in a suspend equivalent state (return true)
 457 // 0x00002000 - thread is native and walkable (return true)
 458 // 0x00004000 - thread is native_trans and walkable (needed retry)
 459 //
 460 // set in wait_for_ext_suspend_completion():
 461 // 0x00010000 - routine was entered
 462 // 0x00020000 - suspend request cancelled before loop (return false)
 463 // 0x00040000 - thread suspended before loop (return true)
 464 // 0x00080000 - suspend request cancelled in loop (return false)
 465 // 0x00100000 - thread suspended in loop (return true)
 466 // 0x00200000 - suspend not completed during retry loop (return false)
 467 
 468 // Helper class for tracing suspend wait debug bits.
 469 //
 470 // 0x00000100 indicates that the target thread exited before it could
 471 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 472 // 0x00080000 each indicate a cancelled suspend request so they don't
 473 // count as wait failures either.
 474 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 475 
 476 class TraceSuspendDebugBits : public StackObj {
 477  private:
 478   JavaThread * jt;
 479   bool         is_wait;
 480   bool         called_by_wait;  // meaningful when !is_wait
 481   uint32_t *   bits;
 482 
 483  public:
 484   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 485                         uint32_t *_bits) {
 486     jt             = _jt;
 487     is_wait        = _is_wait;
 488     called_by_wait = _called_by_wait;
 489     bits           = _bits;
 490   }
 491 
 492   ~TraceSuspendDebugBits() {
 493     if (!is_wait) {
 494 #if 1
 495       // By default, don't trace bits for is_ext_suspend_completed() calls.
 496       // That trace is very chatty.
 497       return;
 498 #else
 499       if (!called_by_wait) {
 500         // If tracing for is_ext_suspend_completed() is enabled, then only
 501         // trace calls to it from wait_for_ext_suspend_completion()
 502         return;
 503       }
 504 #endif
 505     }
 506 
 507     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 508       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 509         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 510         ResourceMark rm;
 511 
 512         tty->print_cr(
 513                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 514                       jt->get_thread_name(), *bits);
 515 
 516         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 517       }
 518     }
 519   }
 520 };
 521 #undef DEBUG_FALSE_BITS
 522 
 523 
 524 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 525                                           uint32_t *bits) {
 526   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 527 
 528   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 529   bool do_trans_retry;           // flag to force the retry
 530 
 531   *bits |= 0x00000001;
 532 
 533   do {
 534     do_trans_retry = false;
 535 
 536     if (is_exiting()) {
 537       // Thread is in the process of exiting. This is always checked
 538       // first to reduce the risk of dereferencing a freed JavaThread.
 539       *bits |= 0x00000100;
 540       return false;
 541     }
 542 
 543     if (!is_external_suspend()) {
 544       // Suspend request is cancelled. This is always checked before
 545       // is_ext_suspended() to reduce the risk of a rogue resume
 546       // confusing the thread that made the suspend request.
 547       *bits |= 0x00000200;
 548       return false;
 549     }
 550 
 551     if (is_ext_suspended()) {
 552       // thread is suspended
 553       *bits |= 0x00000400;
 554       return true;
 555     }
 556 
 557     // Now that we no longer do hard suspends of threads running
 558     // native code, the target thread can be changing thread state
 559     // while we are in this routine:
 560     //
 561     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 562     //
 563     // We save a copy of the thread state as observed at this moment
 564     // and make our decision about suspend completeness based on the
 565     // copy. This closes the race where the thread state is seen as
 566     // _thread_in_native_trans in the if-thread_blocked check, but is
 567     // seen as _thread_blocked in if-thread_in_native_trans check.
 568     JavaThreadState save_state = thread_state();
 569 
 570     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 571       // If the thread's state is _thread_blocked and this blocking
 572       // condition is known to be equivalent to a suspend, then we can
 573       // consider the thread to be externally suspended. This means that
 574       // the code that sets _thread_blocked has been modified to do
 575       // self-suspension if the blocking condition releases. We also
 576       // used to check for CONDVAR_WAIT here, but that is now covered by
 577       // the _thread_blocked with self-suspension check.
 578       //
 579       // Return true since we wouldn't be here unless there was still an
 580       // external suspend request.
 581       *bits |= 0x00001000;
 582       return true;
 583     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 584       // Threads running native code will self-suspend on native==>VM/Java
 585       // transitions. If its stack is walkable (should always be the case
 586       // unless this function is called before the actual java_suspend()
 587       // call), then the wait is done.
 588       *bits |= 0x00002000;
 589       return true;
 590     } else if (!called_by_wait && !did_trans_retry &&
 591                save_state == _thread_in_native_trans &&
 592                frame_anchor()->walkable()) {
 593       // The thread is transitioning from thread_in_native to another
 594       // thread state. check_safepoint_and_suspend_for_native_trans()
 595       // will force the thread to self-suspend. If it hasn't gotten
 596       // there yet we may have caught the thread in-between the native
 597       // code check above and the self-suspend. Lucky us. If we were
 598       // called by wait_for_ext_suspend_completion(), then it
 599       // will be doing the retries so we don't have to.
 600       //
 601       // Since we use the saved thread state in the if-statement above,
 602       // there is a chance that the thread has already transitioned to
 603       // _thread_blocked by the time we get here. In that case, we will
 604       // make a single unnecessary pass through the logic below. This
 605       // doesn't hurt anything since we still do the trans retry.
 606 
 607       *bits |= 0x00004000;
 608 
 609       // Once the thread leaves thread_in_native_trans for another
 610       // thread state, we break out of this retry loop. We shouldn't
 611       // need this flag to prevent us from getting back here, but
 612       // sometimes paranoia is good.
 613       did_trans_retry = true;
 614 
 615       // We wait for the thread to transition to a more usable state.
 616       for (int i = 1; i <= SuspendRetryCount; i++) {
 617         // We used to do an "os::yield_all(i)" call here with the intention
 618         // that yielding would increase on each retry. However, the parameter
 619         // is ignored on Linux which means the yield didn't scale up. Waiting
 620         // on the SR_lock below provides a much more predictable scale up for
 621         // the delay. It also provides a simple/direct point to check for any
 622         // safepoint requests from the VMThread
 623 
 624         // temporarily drops SR_lock while doing wait with safepoint check
 625         // (if we're a JavaThread - the WatcherThread can also call this)
 626         // and increase delay with each retry
 627         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 628 
 629         // check the actual thread state instead of what we saved above
 630         if (thread_state() != _thread_in_native_trans) {
 631           // the thread has transitioned to another thread state so
 632           // try all the checks (except this one) one more time.
 633           do_trans_retry = true;
 634           break;
 635         }
 636       } // end retry loop
 637 
 638 
 639     }
 640   } while (do_trans_retry);
 641 
 642   *bits |= 0x00000010;
 643   return false;
 644 }
 645 
 646 // Wait for an external suspend request to complete (or be cancelled).
 647 // Returns true if the thread is externally suspended and false otherwise.
 648 //
 649 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 650                                                  uint32_t *bits) {
 651   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 652                              false /* !called_by_wait */, bits);
 653 
 654   // local flag copies to minimize SR_lock hold time
 655   bool is_suspended;
 656   bool pending;
 657   uint32_t reset_bits;
 658 
 659   // set a marker so is_ext_suspend_completed() knows we are the caller
 660   *bits |= 0x00010000;
 661 
 662   // We use reset_bits to reinitialize the bits value at the top of
 663   // each retry loop. This allows the caller to make use of any
 664   // unused bits for their own marking purposes.
 665   reset_bits = *bits;
 666 
 667   {
 668     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 669     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 670                                             delay, bits);
 671     pending = is_external_suspend();
 672   }
 673   // must release SR_lock to allow suspension to complete
 674 
 675   if (!pending) {
 676     // A cancelled suspend request is the only false return from
 677     // is_ext_suspend_completed() that keeps us from entering the
 678     // retry loop.
 679     *bits |= 0x00020000;
 680     return false;
 681   }
 682 
 683   if (is_suspended) {
 684     *bits |= 0x00040000;
 685     return true;
 686   }
 687 
 688   for (int i = 1; i <= retries; i++) {
 689     *bits = reset_bits;  // reinit to only track last retry
 690 
 691     // We used to do an "os::yield_all(i)" call here with the intention
 692     // that yielding would increase on each retry. However, the parameter
 693     // is ignored on Linux which means the yield didn't scale up. Waiting
 694     // on the SR_lock below provides a much more predictable scale up for
 695     // the delay. It also provides a simple/direct point to check for any
 696     // safepoint requests from the VMThread
 697 
 698     {
 699       MutexLocker ml(SR_lock());
 700       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 701       // can also call this)  and increase delay with each retry
 702       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 703 
 704       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 705                                               delay, bits);
 706 
 707       // It is possible for the external suspend request to be cancelled
 708       // (by a resume) before the actual suspend operation is completed.
 709       // Refresh our local copy to see if we still need to wait.
 710       pending = is_external_suspend();
 711     }
 712 
 713     if (!pending) {
 714       // A cancelled suspend request is the only false return from
 715       // is_ext_suspend_completed() that keeps us from staying in the
 716       // retry loop.
 717       *bits |= 0x00080000;
 718       return false;
 719     }
 720 
 721     if (is_suspended) {
 722       *bits |= 0x00100000;
 723       return true;
 724     }
 725   } // end retry loop
 726 
 727   // thread did not suspend after all our retries
 728   *bits |= 0x00200000;
 729   return false;
 730 }
 731 
 732 #ifndef PRODUCT
 733 void JavaThread::record_jump(address target, address instr, const char* file,
 734                              int line) {
 735 
 736   // This should not need to be atomic as the only way for simultaneous
 737   // updates is via interrupts. Even then this should be rare or non-existent
 738   // and we don't care that much anyway.
 739 
 740   int index = _jmp_ring_index;
 741   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 742   _jmp_ring[index]._target = (intptr_t) target;
 743   _jmp_ring[index]._instruction = (intptr_t) instr;
 744   _jmp_ring[index]._file = file;
 745   _jmp_ring[index]._line = line;
 746 }
 747 #endif // PRODUCT
 748 
 749 // Called by flat profiler
 750 // Callers have already called wait_for_ext_suspend_completion
 751 // The assertion for that is currently too complex to put here:
 752 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 753   bool gotframe = false;
 754   // self suspension saves needed state.
 755   if (has_last_Java_frame() && _anchor.walkable()) {
 756     *_fr = pd_last_frame();
 757     gotframe = true;
 758   }
 759   return gotframe;
 760 }
 761 
 762 void Thread::interrupt(Thread* thread) {
 763   debug_only(check_for_dangling_thread_pointer(thread);)
 764   os::interrupt(thread);
 765 }
 766 
 767 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 768   debug_only(check_for_dangling_thread_pointer(thread);)
 769   // Note:  If clear_interrupted==false, this simply fetches and
 770   // returns the value of the field osthread()->interrupted().
 771   return os::is_interrupted(thread, clear_interrupted);
 772 }
 773 
 774 
 775 // GC Support
 776 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 777   jint thread_parity = _oops_do_parity;
 778   if (thread_parity != strong_roots_parity) {
 779     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 780     if (res == thread_parity) {
 781       return true;
 782     } else {
 783       guarantee(res == strong_roots_parity, "Or else what?");
 784       return false;
 785     }
 786   }
 787   return false;
 788 }
 789 
 790 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 791   active_handles()->oops_do(f);
 792   // Do oop for ThreadShadow
 793   f->do_oop((oop*)&_pending_exception);
 794   handle_area()->oops_do(f);
 795 
 796   if (MonitorInUseLists) {
 797     // When using thread local monitor lists, we scan them here,
 798     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 799     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 800   }
 801 }
 802 
 803 void Thread::metadata_handles_do(void f(Metadata*)) {
 804   // Only walk the Handles in Thread.
 805   if (metadata_handles() != NULL) {
 806     for (int i = 0; i< metadata_handles()->length(); i++) {
 807       f(metadata_handles()->at(i));
 808     }
 809   }
 810 }
 811 
 812 void Thread::print_on(outputStream* st) const {
 813   // get_priority assumes osthread initialized
 814   if (osthread() != NULL) {
 815     int os_prio;
 816     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 817       st->print("os_prio=%d ", os_prio);
 818     }
 819     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 820     ext().print_on(st);
 821     osthread()->print_on(st);
 822   }
 823   debug_only(if (WizardMode) print_owned_locks_on(st);)
 824 }
 825 
 826 // Thread::print_on_error() is called by fatal error handler. Don't use
 827 // any lock or allocate memory.
 828 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 829   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 830 
 831   if (is_VM_thread())                 { st->print("VMThread"); }
 832   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 833   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 834   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 835   else                                { st->print("Thread"); }
 836 
 837   if (is_Named_thread()) {
 838     st->print(" \"%s\"", name());
 839   }
 840 
 841   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 842             p2i(stack_end()), p2i(stack_base()));
 843 
 844   if (osthread()) {
 845     st->print(" [id=%d]", osthread()->thread_id());
 846   }
 847 }
 848 
 849 #ifdef ASSERT
 850 void Thread::print_owned_locks_on(outputStream* st) const {
 851   Monitor *cur = _owned_locks;
 852   if (cur == NULL) {
 853     st->print(" (no locks) ");
 854   } else {
 855     st->print_cr(" Locks owned:");
 856     while (cur) {
 857       cur->print_on(st);
 858       cur = cur->next();
 859     }
 860   }
 861 }
 862 
 863 static int ref_use_count  = 0;
 864 
 865 bool Thread::owns_locks_but_compiled_lock() const {
 866   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 867     if (cur != Compile_lock) return true;
 868   }
 869   return false;
 870 }
 871 
 872 
 873 #endif
 874 
 875 #ifndef PRODUCT
 876 
 877 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 878 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 879 // no threads which allow_vm_block's are held
 880 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 881   // Check if current thread is allowed to block at a safepoint
 882   if (!(_allow_safepoint_count == 0)) {
 883     fatal("Possible safepoint reached by thread that does not allow it");
 884   }
 885   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 886     fatal("LEAF method calling lock?");
 887   }
 888 
 889 #ifdef ASSERT
 890   if (potential_vm_operation && is_Java_thread()
 891       && !Universe::is_bootstrapping()) {
 892     // Make sure we do not hold any locks that the VM thread also uses.
 893     // This could potentially lead to deadlocks
 894     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 895       // Threads_lock is special, since the safepoint synchronization will not start before this is
 896       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 897       // since it is used to transfer control between JavaThreads and the VMThread
 898       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 899       if ((cur->allow_vm_block() &&
 900            cur != Threads_lock &&
 901            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 902            cur != VMOperationRequest_lock &&
 903            cur != VMOperationQueue_lock) ||
 904            cur->rank() == Mutex::special) {
 905         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 906       }
 907     }
 908   }
 909 
 910   if (GCALotAtAllSafepoints) {
 911     // We could enter a safepoint here and thus have a gc
 912     InterfaceSupport::check_gc_alot();
 913   }
 914 #endif
 915 }
 916 #endif
 917 
 918 bool Thread::is_in_stack(address adr) const {
 919   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 920   address end = os::current_stack_pointer();
 921   // Allow non Java threads to call this without stack_base
 922   if (_stack_base == NULL) return true;
 923   if (stack_base() >= adr && adr >= end) return true;
 924 
 925   return false;
 926 }
 927 
 928 bool Thread::is_in_usable_stack(address adr) const {
 929   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 930   size_t usable_stack_size = _stack_size - stack_guard_size;
 931 
 932   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 933 }
 934 
 935 
 936 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 937 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 938 // used for compilation in the future. If that change is made, the need for these methods
 939 // should be revisited, and they should be removed if possible.
 940 
 941 bool Thread::is_lock_owned(address adr) const {
 942   return on_local_stack(adr);
 943 }
 944 
 945 bool Thread::set_as_starting_thread() {
 946   // NOTE: this must be called inside the main thread.
 947   return os::create_main_thread((JavaThread*)this);
 948 }
 949 
 950 static void initialize_class(Symbol* class_name, TRAPS) {
 951   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 952   InstanceKlass::cast(klass)->initialize(CHECK);
 953 }
 954 
 955 
 956 // Creates the initial ThreadGroup
 957 static Handle create_initial_thread_group(TRAPS) {
 958   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 959   InstanceKlass* ik = InstanceKlass::cast(k);
 960 
 961   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 962   {
 963     JavaValue result(T_VOID);
 964     JavaCalls::call_special(&result,
 965                             system_instance,
 966                             ik,
 967                             vmSymbols::object_initializer_name(),
 968                             vmSymbols::void_method_signature(),
 969                             CHECK_NH);
 970   }
 971   Universe::set_system_thread_group(system_instance());
 972 
 973   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 974   {
 975     JavaValue result(T_VOID);
 976     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 977     JavaCalls::call_special(&result,
 978                             main_instance,
 979                             ik,
 980                             vmSymbols::object_initializer_name(),
 981                             vmSymbols::threadgroup_string_void_signature(),
 982                             system_instance,
 983                             string,
 984                             CHECK_NH);
 985   }
 986   return main_instance;
 987 }
 988 
 989 // Creates the initial Thread
 990 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 991                                  TRAPS) {
 992   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 993   InstanceKlass* ik = InstanceKlass::cast(k);
 994   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
 995 
 996   java_lang_Thread::set_thread(thread_oop(), thread);
 997   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 998   thread->set_threadObj(thread_oop());
 999 
1000   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1001 
1002   JavaValue result(T_VOID);
1003   JavaCalls::call_special(&result, thread_oop,
1004                           ik,
1005                           vmSymbols::object_initializer_name(),
1006                           vmSymbols::threadgroup_string_void_signature(),
1007                           thread_group,
1008                           string,
1009                           CHECK_NULL);
1010   return thread_oop();
1011 }
1012 
1013 char java_runtime_name[128] = "";
1014 char java_runtime_version[128] = "";
1015 
1016 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1017 static const char* get_java_runtime_name(TRAPS) {
1018   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1019                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1020   fieldDescriptor fd;
1021   bool found = k != NULL &&
1022                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1023                                                         vmSymbols::string_signature(), &fd);
1024   if (found) {
1025     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1026     if (name_oop == NULL) {
1027       return NULL;
1028     }
1029     const char* name = java_lang_String::as_utf8_string(name_oop,
1030                                                         java_runtime_name,
1031                                                         sizeof(java_runtime_name));
1032     return name;
1033   } else {
1034     return NULL;
1035   }
1036 }
1037 
1038 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1039 static const char* get_java_runtime_version(TRAPS) {
1040   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1041                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1042   fieldDescriptor fd;
1043   bool found = k != NULL &&
1044                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1045                                                         vmSymbols::string_signature(), &fd);
1046   if (found) {
1047     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1048     if (name_oop == NULL) {
1049       return NULL;
1050     }
1051     const char* name = java_lang_String::as_utf8_string(name_oop,
1052                                                         java_runtime_version,
1053                                                         sizeof(java_runtime_version));
1054     return name;
1055   } else {
1056     return NULL;
1057   }
1058 }
1059 
1060 // General purpose hook into Java code, run once when the VM is initialized.
1061 // The Java library method itself may be changed independently from the VM.
1062 static void call_postVMInitHook(TRAPS) {
1063   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1064   if (klass != NULL) {
1065     JavaValue result(T_VOID);
1066     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1067                            vmSymbols::void_method_signature(),
1068                            CHECK);
1069   }
1070 }
1071 
1072 static void reset_vm_info_property(TRAPS) {
1073   // the vm info string
1074   ResourceMark rm(THREAD);
1075   const char *vm_info = VM_Version::vm_info_string();
1076 
1077   // java.lang.System class
1078   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1079 
1080   // setProperty arguments
1081   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1082   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1083 
1084   // return value
1085   JavaValue r(T_OBJECT);
1086 
1087   // public static String setProperty(String key, String value);
1088   JavaCalls::call_static(&r,
1089                          klass,
1090                          vmSymbols::setProperty_name(),
1091                          vmSymbols::string_string_string_signature(),
1092                          key_str,
1093                          value_str,
1094                          CHECK);
1095 }
1096 
1097 
1098 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1099                                     bool daemon, TRAPS) {
1100   assert(thread_group.not_null(), "thread group should be specified");
1101   assert(threadObj() == NULL, "should only create Java thread object once");
1102 
1103   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1104   InstanceKlass* ik = InstanceKlass::cast(k);
1105   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1106 
1107   java_lang_Thread::set_thread(thread_oop(), this);
1108   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1109   set_threadObj(thread_oop());
1110 
1111   JavaValue result(T_VOID);
1112   if (thread_name != NULL) {
1113     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1114     // Thread gets assigned specified name and null target
1115     JavaCalls::call_special(&result,
1116                             thread_oop,
1117                             ik,
1118                             vmSymbols::object_initializer_name(),
1119                             vmSymbols::threadgroup_string_void_signature(),
1120                             thread_group, // Argument 1
1121                             name,         // Argument 2
1122                             THREAD);
1123   } else {
1124     // Thread gets assigned name "Thread-nnn" and null target
1125     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1126     JavaCalls::call_special(&result,
1127                             thread_oop,
1128                             ik,
1129                             vmSymbols::object_initializer_name(),
1130                             vmSymbols::threadgroup_runnable_void_signature(),
1131                             thread_group, // Argument 1
1132                             Handle(),     // Argument 2
1133                             THREAD);
1134   }
1135 
1136 
1137   if (daemon) {
1138     java_lang_Thread::set_daemon(thread_oop());
1139   }
1140 
1141   if (HAS_PENDING_EXCEPTION) {
1142     return;
1143   }
1144 
1145   Klass* group =  SystemDictionary::ThreadGroup_klass();
1146   Handle threadObj(THREAD, this->threadObj());
1147 
1148   JavaCalls::call_special(&result,
1149                           thread_group,
1150                           group,
1151                           vmSymbols::add_method_name(),
1152                           vmSymbols::thread_void_signature(),
1153                           threadObj,          // Arg 1
1154                           THREAD);
1155 }
1156 
1157 // NamedThread --  non-JavaThread subclasses with multiple
1158 // uniquely named instances should derive from this.
1159 NamedThread::NamedThread() : Thread() {
1160   _name = NULL;
1161   _processed_thread = NULL;
1162   _gc_id = GCId::undefined();
1163 }
1164 
1165 NamedThread::~NamedThread() {
1166   if (_name != NULL) {
1167     FREE_C_HEAP_ARRAY(char, _name);
1168     _name = NULL;
1169   }
1170 }
1171 
1172 void NamedThread::set_name(const char* format, ...) {
1173   guarantee(_name == NULL, "Only get to set name once.");
1174   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1175   guarantee(_name != NULL, "alloc failure");
1176   va_list ap;
1177   va_start(ap, format);
1178   jio_vsnprintf(_name, max_name_len, format, ap);
1179   va_end(ap);
1180 }
1181 
1182 void NamedThread::initialize_named_thread() {
1183   set_native_thread_name(name());
1184 }
1185 
1186 void NamedThread::print_on(outputStream* st) const {
1187   st->print("\"%s\" ", name());
1188   Thread::print_on(st);
1189   st->cr();
1190 }
1191 
1192 
1193 // ======= WatcherThread ========
1194 
1195 // The watcher thread exists to simulate timer interrupts.  It should
1196 // be replaced by an abstraction over whatever native support for
1197 // timer interrupts exists on the platform.
1198 
1199 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1200 bool WatcherThread::_startable = false;
1201 volatile bool  WatcherThread::_should_terminate = false;
1202 
1203 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1204   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1205   if (os::create_thread(this, os::watcher_thread)) {
1206     _watcher_thread = this;
1207 
1208     // Set the watcher thread to the highest OS priority which should not be
1209     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1210     // is created. The only normal thread using this priority is the reference
1211     // handler thread, which runs for very short intervals only.
1212     // If the VMThread's priority is not lower than the WatcherThread profiling
1213     // will be inaccurate.
1214     os::set_priority(this, MaxPriority);
1215     if (!DisableStartThread) {
1216       os::start_thread(this);
1217     }
1218   }
1219 }
1220 
1221 int WatcherThread::sleep() const {
1222   // The WatcherThread does not participate in the safepoint protocol
1223   // for the PeriodicTask_lock because it is not a JavaThread.
1224   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1225 
1226   if (_should_terminate) {
1227     // check for termination before we do any housekeeping or wait
1228     return 0;  // we did not sleep.
1229   }
1230 
1231   // remaining will be zero if there are no tasks,
1232   // causing the WatcherThread to sleep until a task is
1233   // enrolled
1234   int remaining = PeriodicTask::time_to_wait();
1235   int time_slept = 0;
1236 
1237   // we expect this to timeout - we only ever get unparked when
1238   // we should terminate or when a new task has been enrolled
1239   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1240 
1241   jlong time_before_loop = os::javaTimeNanos();
1242 
1243   while (true) {
1244     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1245                                             remaining);
1246     jlong now = os::javaTimeNanos();
1247 
1248     if (remaining == 0) {
1249       // if we didn't have any tasks we could have waited for a long time
1250       // consider the time_slept zero and reset time_before_loop
1251       time_slept = 0;
1252       time_before_loop = now;
1253     } else {
1254       // need to recalculate since we might have new tasks in _tasks
1255       time_slept = (int) ((now - time_before_loop) / 1000000);
1256     }
1257 
1258     // Change to task list or spurious wakeup of some kind
1259     if (timedout || _should_terminate) {
1260       break;
1261     }
1262 
1263     remaining = PeriodicTask::time_to_wait();
1264     if (remaining == 0) {
1265       // Last task was just disenrolled so loop around and wait until
1266       // another task gets enrolled
1267       continue;
1268     }
1269 
1270     remaining -= time_slept;
1271     if (remaining <= 0) {
1272       break;
1273     }
1274   }
1275 
1276   return time_slept;
1277 }
1278 
1279 void WatcherThread::run() {
1280   assert(this == watcher_thread(), "just checking");
1281 
1282   this->record_stack_base_and_size();
1283   this->set_native_thread_name(this->name());
1284   this->set_active_handles(JNIHandleBlock::allocate_block());
1285   while (true) {
1286     assert(watcher_thread() == Thread::current(), "thread consistency check");
1287     assert(watcher_thread() == this, "thread consistency check");
1288 
1289     // Calculate how long it'll be until the next PeriodicTask work
1290     // should be done, and sleep that amount of time.
1291     int time_waited = sleep();
1292 
1293     if (is_error_reported()) {
1294       // A fatal error has happened, the error handler(VMError::report_and_die)
1295       // should abort JVM after creating an error log file. However in some
1296       // rare cases, the error handler itself might deadlock. Here periodically
1297       // check for error reporting timeouts, and if it happens, just proceed to
1298       // abort the VM.
1299 
1300       // This code is in WatcherThread because WatcherThread wakes up
1301       // periodically so the fatal error handler doesn't need to do anything;
1302       // also because the WatcherThread is less likely to crash than other
1303       // threads.
1304 
1305       for (;;) {
1306         // Note: we use naked sleep in this loop because we want to avoid using
1307         // any kind of VM infrastructure which may be broken at this point.
1308         if (VMError::check_timeout()) {
1309           // We hit error reporting timeout. Error reporting was interrupted and
1310           // will be wrapping things up now (closing files etc). Give it some more
1311           // time, then quit the VM.
1312           os::naked_short_sleep(200);
1313           // Print a message to stderr.
1314           fdStream err(defaultStream::output_fd());
1315           err.print_raw_cr("# [ timer expired, abort... ]");
1316           // skip atexit/vm_exit/vm_abort hooks
1317           os::die();
1318         }
1319 
1320         // Wait a second, then recheck for timeout.
1321         os::naked_short_sleep(999);
1322       }
1323     }
1324 
1325     if (_should_terminate) {
1326       // check for termination before posting the next tick
1327       break;
1328     }
1329 
1330     PeriodicTask::real_time_tick(time_waited);
1331   }
1332 
1333   // Signal that it is terminated
1334   {
1335     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1336     _watcher_thread = NULL;
1337     Terminator_lock->notify();
1338   }
1339 }
1340 
1341 void WatcherThread::start() {
1342   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1343 
1344   if (watcher_thread() == NULL && _startable) {
1345     _should_terminate = false;
1346     // Create the single instance of WatcherThread
1347     new WatcherThread();
1348   }
1349 }
1350 
1351 void WatcherThread::make_startable() {
1352   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1353   _startable = true;
1354 }
1355 
1356 void WatcherThread::stop() {
1357   {
1358     // Follow normal safepoint aware lock enter protocol since the
1359     // WatcherThread is stopped by another JavaThread.
1360     MutexLocker ml(PeriodicTask_lock);
1361     _should_terminate = true;
1362 
1363     WatcherThread* watcher = watcher_thread();
1364     if (watcher != NULL) {
1365       // unpark the WatcherThread so it can see that it should terminate
1366       watcher->unpark();
1367     }
1368   }
1369 
1370   MutexLocker mu(Terminator_lock);
1371 
1372   while (watcher_thread() != NULL) {
1373     // This wait should make safepoint checks, wait without a timeout,
1374     // and wait as a suspend-equivalent condition.
1375     //
1376     // Note: If the FlatProfiler is running, then this thread is waiting
1377     // for the WatcherThread to terminate and the WatcherThread, via the
1378     // FlatProfiler task, is waiting for the external suspend request on
1379     // this thread to complete. wait_for_ext_suspend_completion() will
1380     // eventually timeout, but that takes time. Making this wait a
1381     // suspend-equivalent condition solves that timeout problem.
1382     //
1383     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1384                           Mutex::_as_suspend_equivalent_flag);
1385   }
1386 }
1387 
1388 void WatcherThread::unpark() {
1389   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1390   PeriodicTask_lock->notify();
1391 }
1392 
1393 void WatcherThread::print_on(outputStream* st) const {
1394   st->print("\"%s\" ", name());
1395   Thread::print_on(st);
1396   st->cr();
1397 }
1398 
1399 // ======= JavaThread ========
1400 
1401 #if INCLUDE_JVMCI
1402 
1403 jlong* JavaThread::_jvmci_old_thread_counters;
1404 
1405 bool jvmci_counters_include(JavaThread* thread) {
1406   oop threadObj = thread->threadObj();
1407   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1408 }
1409 
1410 void JavaThread::collect_counters(typeArrayOop array) {
1411   if (JVMCICounterSize > 0) {
1412     MutexLocker tl(Threads_lock);
1413     for (int i = 0; i < array->length(); i++) {
1414       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1415     }
1416     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1417       if (jvmci_counters_include(tp)) {
1418         for (int i = 0; i < array->length(); i++) {
1419           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1420         }
1421       }
1422     }
1423   }
1424 }
1425 
1426 #endif // INCLUDE_JVMCI
1427 
1428 // A JavaThread is a normal Java thread
1429 
1430 void JavaThread::initialize() {
1431   // Initialize fields
1432 
1433   set_saved_exception_pc(NULL);
1434   set_threadObj(NULL);
1435   _anchor.clear();
1436   set_entry_point(NULL);
1437   set_jni_functions(jni_functions());
1438   set_callee_target(NULL);
1439   set_vm_result(NULL);
1440   set_vm_result_2(NULL);
1441   set_vframe_array_head(NULL);
1442   set_vframe_array_last(NULL);
1443   set_deferred_locals(NULL);
1444   set_deopt_mark(NULL);
1445   set_deopt_compiled_method(NULL);
1446   clear_must_deopt_id();
1447   set_monitor_chunks(NULL);
1448   set_next(NULL);
1449   set_thread_state(_thread_new);
1450   _terminated = _not_terminated;
1451   _privileged_stack_top = NULL;
1452   _array_for_gc = NULL;
1453   _suspend_equivalent = false;
1454   _in_deopt_handler = 0;
1455   _doing_unsafe_access = false;
1456   _stack_guard_state = stack_guard_unused;
1457 #if INCLUDE_JVMCI
1458   _pending_monitorenter = false;
1459   _pending_deoptimization = -1;
1460   _pending_failed_speculation = NULL;
1461   _pending_transfer_to_interpreter = false;
1462   _adjusting_comp_level = false;
1463   _jvmci._alternate_call_target = NULL;
1464   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1465   if (JVMCICounterSize > 0) {
1466     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1467     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1468   } else {
1469     _jvmci_counters = NULL;
1470   }
1471 #endif // INCLUDE_JVMCI
1472   _reserved_stack_activation = NULL;  // stack base not known yet
1473   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1474   _exception_pc  = 0;
1475   _exception_handler_pc = 0;
1476   _is_method_handle_return = 0;
1477   _jvmti_thread_state= NULL;
1478   _should_post_on_exceptions_flag = JNI_FALSE;
1479   _jvmti_get_loaded_classes_closure = NULL;
1480   _interp_only_mode    = 0;
1481   _special_runtime_exit_condition = _no_async_condition;
1482   _pending_async_exception = NULL;
1483   _thread_stat = NULL;
1484   _thread_stat = new ThreadStatistics();
1485   _blocked_on_compilation = false;
1486   _jni_active_critical = 0;
1487   _pending_jni_exception_check_fn = NULL;
1488   _do_not_unlock_if_synchronized = false;
1489   _cached_monitor_info = NULL;
1490   _parker = Parker::Allocate(this);
1491 
1492 #ifndef PRODUCT
1493   _jmp_ring_index = 0;
1494   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1495     record_jump(NULL, NULL, NULL, 0);
1496   }
1497 #endif // PRODUCT
1498 
1499   set_thread_profiler(NULL);
1500   if (FlatProfiler::is_active()) {
1501     // This is where we would decide to either give each thread it's own profiler
1502     // or use one global one from FlatProfiler,
1503     // or up to some count of the number of profiled threads, etc.
1504     ThreadProfiler* pp = new ThreadProfiler();
1505     pp->engage();
1506     set_thread_profiler(pp);
1507   }
1508 
1509   // Setup safepoint state info for this thread
1510   ThreadSafepointState::create(this);
1511 
1512   debug_only(_java_call_counter = 0);
1513 
1514   // JVMTI PopFrame support
1515   _popframe_condition = popframe_inactive;
1516   _popframe_preserved_args = NULL;
1517   _popframe_preserved_args_size = 0;
1518   _frames_to_pop_failed_realloc = 0;
1519 
1520   pd_initialize();
1521 }
1522 
1523 #if INCLUDE_ALL_GCS
1524 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1525 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1526 #endif // INCLUDE_ALL_GCS
1527 
1528 JavaThread::JavaThread(bool is_attaching_via_jni) :
1529                        Thread()
1530 #if INCLUDE_ALL_GCS
1531                        , _satb_mark_queue(&_satb_mark_queue_set),
1532                        _dirty_card_queue(&_dirty_card_queue_set)
1533 #endif // INCLUDE_ALL_GCS
1534 {
1535   initialize();
1536   if (is_attaching_via_jni) {
1537     _jni_attach_state = _attaching_via_jni;
1538   } else {
1539     _jni_attach_state = _not_attaching_via_jni;
1540   }
1541   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1542 }
1543 
1544 bool JavaThread::reguard_stack(address cur_sp) {
1545   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1546       && _stack_guard_state != stack_guard_reserved_disabled) {
1547     return true; // Stack already guarded or guard pages not needed.
1548   }
1549 
1550   if (register_stack_overflow()) {
1551     // For those architectures which have separate register and
1552     // memory stacks, we must check the register stack to see if
1553     // it has overflowed.
1554     return false;
1555   }
1556 
1557   // Java code never executes within the yellow zone: the latter is only
1558   // there to provoke an exception during stack banging.  If java code
1559   // is executing there, either StackShadowPages should be larger, or
1560   // some exception code in c1, c2 or the interpreter isn't unwinding
1561   // when it should.
1562   guarantee(cur_sp > stack_reserved_zone_base(),
1563             "not enough space to reguard - increase StackShadowPages");
1564   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1565     enable_stack_yellow_reserved_zone();
1566     if (reserved_stack_activation() != stack_base()) {
1567       set_reserved_stack_activation(stack_base());
1568     }
1569   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1570     set_reserved_stack_activation(stack_base());
1571     enable_stack_reserved_zone();
1572   }
1573   return true;
1574 }
1575 
1576 bool JavaThread::reguard_stack(void) {
1577   return reguard_stack(os::current_stack_pointer());
1578 }
1579 
1580 
1581 void JavaThread::block_if_vm_exited() {
1582   if (_terminated == _vm_exited) {
1583     // _vm_exited is set at safepoint, and Threads_lock is never released
1584     // we will block here forever
1585     Threads_lock->lock_without_safepoint_check();
1586     ShouldNotReachHere();
1587   }
1588 }
1589 
1590 
1591 // Remove this ifdef when C1 is ported to the compiler interface.
1592 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1593 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1594 
1595 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1596                        Thread()
1597 #if INCLUDE_ALL_GCS
1598                        , _satb_mark_queue(&_satb_mark_queue_set),
1599                        _dirty_card_queue(&_dirty_card_queue_set)
1600 #endif // INCLUDE_ALL_GCS
1601 {
1602   initialize();
1603   _jni_attach_state = _not_attaching_via_jni;
1604   set_entry_point(entry_point);
1605   // Create the native thread itself.
1606   // %note runtime_23
1607   os::ThreadType thr_type = os::java_thread;
1608   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1609                                                      os::java_thread;
1610   os::create_thread(this, thr_type, stack_sz);
1611   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1612   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1613   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1614   // the exception consists of creating the exception object & initializing it, initialization
1615   // will leave the VM via a JavaCall and then all locks must be unlocked).
1616   //
1617   // The thread is still suspended when we reach here. Thread must be explicit started
1618   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1619   // by calling Threads:add. The reason why this is not done here, is because the thread
1620   // object must be fully initialized (take a look at JVM_Start)
1621 }
1622 
1623 JavaThread::~JavaThread() {
1624 
1625   // JSR166 -- return the parker to the free list
1626   Parker::Release(_parker);
1627   _parker = NULL;
1628 
1629   // Free any remaining  previous UnrollBlock
1630   vframeArray* old_array = vframe_array_last();
1631 
1632   if (old_array != NULL) {
1633     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1634     old_array->set_unroll_block(NULL);
1635     delete old_info;
1636     delete old_array;
1637   }
1638 
1639   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1640   if (deferred != NULL) {
1641     // This can only happen if thread is destroyed before deoptimization occurs.
1642     assert(deferred->length() != 0, "empty array!");
1643     do {
1644       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1645       deferred->remove_at(0);
1646       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1647       delete dlv;
1648     } while (deferred->length() != 0);
1649     delete deferred;
1650   }
1651 
1652   // All Java related clean up happens in exit
1653   ThreadSafepointState::destroy(this);
1654   if (_thread_profiler != NULL) delete _thread_profiler;
1655   if (_thread_stat != NULL) delete _thread_stat;
1656 
1657 #if INCLUDE_JVMCI
1658   if (JVMCICounterSize > 0) {
1659     if (jvmci_counters_include(this)) {
1660       for (int i = 0; i < JVMCICounterSize; i++) {
1661         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1662       }
1663     }
1664     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1665   }
1666 #endif // INCLUDE_JVMCI
1667 }
1668 
1669 
1670 // The first routine called by a new Java thread
1671 void JavaThread::run() {
1672   // initialize thread-local alloc buffer related fields
1673   this->initialize_tlab();
1674 
1675   // used to test validity of stack trace backs
1676   this->record_base_of_stack_pointer();
1677 
1678   // Record real stack base and size.
1679   this->record_stack_base_and_size();
1680 
1681   this->create_stack_guard_pages();
1682 
1683   this->cache_global_variables();
1684 
1685   // Thread is now sufficient initialized to be handled by the safepoint code as being
1686   // in the VM. Change thread state from _thread_new to _thread_in_vm
1687   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1688 
1689   assert(JavaThread::current() == this, "sanity check");
1690   assert(!Thread::current()->owns_locks(), "sanity check");
1691 
1692   DTRACE_THREAD_PROBE(start, this);
1693 
1694   // This operation might block. We call that after all safepoint checks for a new thread has
1695   // been completed.
1696   this->set_active_handles(JNIHandleBlock::allocate_block());
1697 
1698   if (JvmtiExport::should_post_thread_life()) {
1699     JvmtiExport::post_thread_start(this);
1700   }
1701 
1702   EventThreadStart event;
1703   if (event.should_commit()) {
1704     event.set_thread(THREAD_TRACE_ID(this));
1705     event.commit();
1706   }
1707 
1708   // We call another function to do the rest so we are sure that the stack addresses used
1709   // from there will be lower than the stack base just computed
1710   thread_main_inner();
1711 
1712   // Note, thread is no longer valid at this point!
1713 }
1714 
1715 
1716 void JavaThread::thread_main_inner() {
1717   assert(JavaThread::current() == this, "sanity check");
1718   assert(this->threadObj() != NULL, "just checking");
1719 
1720   // Execute thread entry point unless this thread has a pending exception
1721   // or has been stopped before starting.
1722   // Note: Due to JVM_StopThread we can have pending exceptions already!
1723   if (!this->has_pending_exception() &&
1724       !java_lang_Thread::is_stillborn(this->threadObj())) {
1725     {
1726       ResourceMark rm(this);
1727       this->set_native_thread_name(this->get_thread_name());
1728     }
1729     HandleMark hm(this);
1730     this->entry_point()(this, this);
1731   }
1732 
1733   DTRACE_THREAD_PROBE(stop, this);
1734 
1735   this->exit(false);
1736   delete this;
1737 }
1738 
1739 
1740 static void ensure_join(JavaThread* thread) {
1741   // We do not need to grap the Threads_lock, since we are operating on ourself.
1742   Handle threadObj(thread, thread->threadObj());
1743   assert(threadObj.not_null(), "java thread object must exist");
1744   ObjectLocker lock(threadObj, thread);
1745   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1746   thread->clear_pending_exception();
1747   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1748   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1749   // Clear the native thread instance - this makes isAlive return false and allows the join()
1750   // to complete once we've done the notify_all below
1751   java_lang_Thread::set_thread(threadObj(), NULL);
1752   lock.notify_all(thread);
1753   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1754   thread->clear_pending_exception();
1755 }
1756 
1757 
1758 // For any new cleanup additions, please check to see if they need to be applied to
1759 // cleanup_failed_attach_current_thread as well.
1760 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1761   assert(this == JavaThread::current(), "thread consistency check");
1762 
1763   HandleMark hm(this);
1764   Handle uncaught_exception(this, this->pending_exception());
1765   this->clear_pending_exception();
1766   Handle threadObj(this, this->threadObj());
1767   assert(threadObj.not_null(), "Java thread object should be created");
1768 
1769   if (get_thread_profiler() != NULL) {
1770     get_thread_profiler()->disengage();
1771     ResourceMark rm;
1772     get_thread_profiler()->print(get_thread_name());
1773   }
1774 
1775 
1776   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1777   {
1778     EXCEPTION_MARK;
1779 
1780     CLEAR_PENDING_EXCEPTION;
1781   }
1782   if (!destroy_vm) {
1783     if (uncaught_exception.not_null()) {
1784       EXCEPTION_MARK;
1785       // Call method Thread.dispatchUncaughtException().
1786       Klass* thread_klass = SystemDictionary::Thread_klass();
1787       JavaValue result(T_VOID);
1788       JavaCalls::call_virtual(&result,
1789                               threadObj, thread_klass,
1790                               vmSymbols::dispatchUncaughtException_name(),
1791                               vmSymbols::throwable_void_signature(),
1792                               uncaught_exception,
1793                               THREAD);
1794       if (HAS_PENDING_EXCEPTION) {
1795         ResourceMark rm(this);
1796         jio_fprintf(defaultStream::error_stream(),
1797                     "\nException: %s thrown from the UncaughtExceptionHandler"
1798                     " in thread \"%s\"\n",
1799                     pending_exception()->klass()->external_name(),
1800                     get_thread_name());
1801         CLEAR_PENDING_EXCEPTION;
1802       }
1803     }
1804 
1805     // Called before the java thread exit since we want to read info
1806     // from java_lang_Thread object
1807     EventThreadEnd event;
1808     if (event.should_commit()) {
1809       event.set_thread(THREAD_TRACE_ID(this));
1810       event.commit();
1811     }
1812 
1813     // Call after last event on thread
1814     EVENT_THREAD_EXIT(this);
1815 
1816     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1817     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1818     // is deprecated anyhow.
1819     if (!is_Compiler_thread()) {
1820       int count = 3;
1821       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1822         EXCEPTION_MARK;
1823         JavaValue result(T_VOID);
1824         Klass* thread_klass = SystemDictionary::Thread_klass();
1825         JavaCalls::call_virtual(&result,
1826                                 threadObj, thread_klass,
1827                                 vmSymbols::exit_method_name(),
1828                                 vmSymbols::void_method_signature(),
1829                                 THREAD);
1830         CLEAR_PENDING_EXCEPTION;
1831       }
1832     }
1833     // notify JVMTI
1834     if (JvmtiExport::should_post_thread_life()) {
1835       JvmtiExport::post_thread_end(this);
1836     }
1837 
1838     // We have notified the agents that we are exiting, before we go on,
1839     // we must check for a pending external suspend request and honor it
1840     // in order to not surprise the thread that made the suspend request.
1841     while (true) {
1842       {
1843         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1844         if (!is_external_suspend()) {
1845           set_terminated(_thread_exiting);
1846           ThreadService::current_thread_exiting(this);
1847           break;
1848         }
1849         // Implied else:
1850         // Things get a little tricky here. We have a pending external
1851         // suspend request, but we are holding the SR_lock so we
1852         // can't just self-suspend. So we temporarily drop the lock
1853         // and then self-suspend.
1854       }
1855 
1856       ThreadBlockInVM tbivm(this);
1857       java_suspend_self();
1858 
1859       // We're done with this suspend request, but we have to loop around
1860       // and check again. Eventually we will get SR_lock without a pending
1861       // external suspend request and will be able to mark ourselves as
1862       // exiting.
1863     }
1864     // no more external suspends are allowed at this point
1865   } else {
1866     // before_exit() has already posted JVMTI THREAD_END events
1867   }
1868 
1869   // Notify waiters on thread object. This has to be done after exit() is called
1870   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1871   // group should have the destroyed bit set before waiters are notified).
1872   ensure_join(this);
1873   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1874 
1875   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1876   // held by this thread must be released. The spec does not distinguish
1877   // between JNI-acquired and regular Java monitors. We can only see
1878   // regular Java monitors here if monitor enter-exit matching is broken.
1879   //
1880   // Optionally release any monitors for regular JavaThread exits. This
1881   // is provided as a work around for any bugs in monitor enter-exit
1882   // matching. This can be expensive so it is not enabled by default.
1883   //
1884   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1885   // ObjectSynchronizer::release_monitors_owned_by_thread().
1886   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1887     // Sanity check even though JNI DetachCurrentThread() would have
1888     // returned JNI_ERR if there was a Java frame. JavaThread exit
1889     // should be done executing Java code by the time we get here.
1890     assert(!this->has_last_Java_frame(),
1891            "should not have a Java frame when detaching or exiting");
1892     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1893     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1894   }
1895 
1896   // These things needs to be done while we are still a Java Thread. Make sure that thread
1897   // is in a consistent state, in case GC happens
1898   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1899 
1900   if (active_handles() != NULL) {
1901     JNIHandleBlock* block = active_handles();
1902     set_active_handles(NULL);
1903     JNIHandleBlock::release_block(block);
1904   }
1905 
1906   if (free_handle_block() != NULL) {
1907     JNIHandleBlock* block = free_handle_block();
1908     set_free_handle_block(NULL);
1909     JNIHandleBlock::release_block(block);
1910   }
1911 
1912   // These have to be removed while this is still a valid thread.
1913   remove_stack_guard_pages();
1914 
1915   if (UseTLAB) {
1916     tlab().make_parsable(true);  // retire TLAB
1917   }
1918 
1919   if (JvmtiEnv::environments_might_exist()) {
1920     JvmtiExport::cleanup_thread(this);
1921   }
1922 
1923   // We must flush any deferred card marks before removing a thread from
1924   // the list of active threads.
1925   Universe::heap()->flush_deferred_store_barrier(this);
1926   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1927 
1928 #if INCLUDE_ALL_GCS
1929   // We must flush the G1-related buffers before removing a thread
1930   // from the list of active threads. We must do this after any deferred
1931   // card marks have been flushed (above) so that any entries that are
1932   // added to the thread's dirty card queue as a result are not lost.
1933   if (UseG1GC) {
1934     flush_barrier_queues();
1935   }
1936 #endif // INCLUDE_ALL_GCS
1937 
1938   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1939     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1940     os::current_thread_id());
1941 
1942   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1943   Threads::remove(this);
1944 }
1945 
1946 #if INCLUDE_ALL_GCS
1947 // Flush G1-related queues.
1948 void JavaThread::flush_barrier_queues() {
1949   satb_mark_queue().flush();
1950   dirty_card_queue().flush();
1951 }
1952 
1953 void JavaThread::initialize_queues() {
1954   assert(!SafepointSynchronize::is_at_safepoint(),
1955          "we should not be at a safepoint");
1956 
1957   SATBMarkQueue& satb_queue = satb_mark_queue();
1958   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1959   // The SATB queue should have been constructed with its active
1960   // field set to false.
1961   assert(!satb_queue.is_active(), "SATB queue should not be active");
1962   assert(satb_queue.is_empty(), "SATB queue should be empty");
1963   // If we are creating the thread during a marking cycle, we should
1964   // set the active field of the SATB queue to true.
1965   if (satb_queue_set.is_active()) {
1966     satb_queue.set_active(true);
1967   }
1968 
1969   DirtyCardQueue& dirty_queue = dirty_card_queue();
1970   // The dirty card queue should have been constructed with its
1971   // active field set to true.
1972   assert(dirty_queue.is_active(), "dirty card queue should be active");
1973 }
1974 #endif // INCLUDE_ALL_GCS
1975 
1976 void JavaThread::cleanup_failed_attach_current_thread() {
1977   if (get_thread_profiler() != NULL) {
1978     get_thread_profiler()->disengage();
1979     ResourceMark rm;
1980     get_thread_profiler()->print(get_thread_name());
1981   }
1982 
1983   if (active_handles() != NULL) {
1984     JNIHandleBlock* block = active_handles();
1985     set_active_handles(NULL);
1986     JNIHandleBlock::release_block(block);
1987   }
1988 
1989   if (free_handle_block() != NULL) {
1990     JNIHandleBlock* block = free_handle_block();
1991     set_free_handle_block(NULL);
1992     JNIHandleBlock::release_block(block);
1993   }
1994 
1995   // These have to be removed while this is still a valid thread.
1996   remove_stack_guard_pages();
1997 
1998   if (UseTLAB) {
1999     tlab().make_parsable(true);  // retire TLAB, if any
2000   }
2001 
2002 #if INCLUDE_ALL_GCS
2003   if (UseG1GC) {
2004     flush_barrier_queues();
2005   }
2006 #endif // INCLUDE_ALL_GCS
2007 
2008   Threads::remove(this);
2009   delete this;
2010 }
2011 
2012 
2013 
2014 
2015 JavaThread* JavaThread::active() {
2016   Thread* thread = Thread::current();
2017   if (thread->is_Java_thread()) {
2018     return (JavaThread*) thread;
2019   } else {
2020     assert(thread->is_VM_thread(), "this must be a vm thread");
2021     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2022     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2023     assert(ret->is_Java_thread(), "must be a Java thread");
2024     return ret;
2025   }
2026 }
2027 
2028 bool JavaThread::is_lock_owned(address adr) const {
2029   if (Thread::is_lock_owned(adr)) return true;
2030 
2031   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2032     if (chunk->contains(adr)) return true;
2033   }
2034 
2035   return false;
2036 }
2037 
2038 
2039 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2040   chunk->set_next(monitor_chunks());
2041   set_monitor_chunks(chunk);
2042 }
2043 
2044 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2045   guarantee(monitor_chunks() != NULL, "must be non empty");
2046   if (monitor_chunks() == chunk) {
2047     set_monitor_chunks(chunk->next());
2048   } else {
2049     MonitorChunk* prev = monitor_chunks();
2050     while (prev->next() != chunk) prev = prev->next();
2051     prev->set_next(chunk->next());
2052   }
2053 }
2054 
2055 // JVM support.
2056 
2057 // Note: this function shouldn't block if it's called in
2058 // _thread_in_native_trans state (such as from
2059 // check_special_condition_for_native_trans()).
2060 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2061 
2062   if (has_last_Java_frame() && has_async_condition()) {
2063     // If we are at a polling page safepoint (not a poll return)
2064     // then we must defer async exception because live registers
2065     // will be clobbered by the exception path. Poll return is
2066     // ok because the call we a returning from already collides
2067     // with exception handling registers and so there is no issue.
2068     // (The exception handling path kills call result registers but
2069     //  this is ok since the exception kills the result anyway).
2070 
2071     if (is_at_poll_safepoint()) {
2072       // if the code we are returning to has deoptimized we must defer
2073       // the exception otherwise live registers get clobbered on the
2074       // exception path before deoptimization is able to retrieve them.
2075       //
2076       RegisterMap map(this, false);
2077       frame caller_fr = last_frame().sender(&map);
2078       assert(caller_fr.is_compiled_frame(), "what?");
2079       if (caller_fr.is_deoptimized_frame()) {
2080         log_info(exceptions)("deferred async exception at compiled safepoint");
2081         return;
2082       }
2083     }
2084   }
2085 
2086   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2087   if (condition == _no_async_condition) {
2088     // Conditions have changed since has_special_runtime_exit_condition()
2089     // was called:
2090     // - if we were here only because of an external suspend request,
2091     //   then that was taken care of above (or cancelled) so we are done
2092     // - if we were here because of another async request, then it has
2093     //   been cleared between the has_special_runtime_exit_condition()
2094     //   and now so again we are done
2095     return;
2096   }
2097 
2098   // Check for pending async. exception
2099   if (_pending_async_exception != NULL) {
2100     // Only overwrite an already pending exception, if it is not a threadDeath.
2101     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2102 
2103       // We cannot call Exceptions::_throw(...) here because we cannot block
2104       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2105 
2106       if (log_is_enabled(Info, exceptions)) {
2107         ResourceMark rm;
2108         outputStream* logstream = Log(exceptions)::info_stream();
2109         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2110           if (has_last_Java_frame()) {
2111             frame f = last_frame();
2112            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2113           }
2114         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2115       }
2116       _pending_async_exception = NULL;
2117       clear_has_async_exception();
2118     }
2119   }
2120 
2121   if (check_unsafe_error &&
2122       condition == _async_unsafe_access_error && !has_pending_exception()) {
2123     condition = _no_async_condition;  // done
2124     switch (thread_state()) {
2125     case _thread_in_vm: {
2126       JavaThread* THREAD = this;
2127       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2128     }
2129     case _thread_in_native: {
2130       ThreadInVMfromNative tiv(this);
2131       JavaThread* THREAD = this;
2132       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2133     }
2134     case _thread_in_Java: {
2135       ThreadInVMfromJava tiv(this);
2136       JavaThread* THREAD = this;
2137       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2138     }
2139     default:
2140       ShouldNotReachHere();
2141     }
2142   }
2143 
2144   assert(condition == _no_async_condition || has_pending_exception() ||
2145          (!check_unsafe_error && condition == _async_unsafe_access_error),
2146          "must have handled the async condition, if no exception");
2147 }
2148 
2149 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2150   //
2151   // Check for pending external suspend. Internal suspend requests do
2152   // not use handle_special_runtime_exit_condition().
2153   // If JNIEnv proxies are allowed, don't self-suspend if the target
2154   // thread is not the current thread. In older versions of jdbx, jdbx
2155   // threads could call into the VM with another thread's JNIEnv so we
2156   // can be here operating on behalf of a suspended thread (4432884).
2157   bool do_self_suspend = is_external_suspend_with_lock();
2158   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2159     //
2160     // Because thread is external suspended the safepoint code will count
2161     // thread as at a safepoint. This can be odd because we can be here
2162     // as _thread_in_Java which would normally transition to _thread_blocked
2163     // at a safepoint. We would like to mark the thread as _thread_blocked
2164     // before calling java_suspend_self like all other callers of it but
2165     // we must then observe proper safepoint protocol. (We can't leave
2166     // _thread_blocked with a safepoint in progress). However we can be
2167     // here as _thread_in_native_trans so we can't use a normal transition
2168     // constructor/destructor pair because they assert on that type of
2169     // transition. We could do something like:
2170     //
2171     // JavaThreadState state = thread_state();
2172     // set_thread_state(_thread_in_vm);
2173     // {
2174     //   ThreadBlockInVM tbivm(this);
2175     //   java_suspend_self()
2176     // }
2177     // set_thread_state(_thread_in_vm_trans);
2178     // if (safepoint) block;
2179     // set_thread_state(state);
2180     //
2181     // but that is pretty messy. Instead we just go with the way the
2182     // code has worked before and note that this is the only path to
2183     // java_suspend_self that doesn't put the thread in _thread_blocked
2184     // mode.
2185 
2186     frame_anchor()->make_walkable(this);
2187     java_suspend_self();
2188 
2189     // We might be here for reasons in addition to the self-suspend request
2190     // so check for other async requests.
2191   }
2192 
2193   if (check_asyncs) {
2194     check_and_handle_async_exceptions();
2195   }
2196 }
2197 
2198 void JavaThread::send_thread_stop(oop java_throwable)  {
2199   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2200   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2201   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2202 
2203   // Do not throw asynchronous exceptions against the compiler thread
2204   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2205   if (!can_call_java()) return;
2206 
2207   {
2208     // Actually throw the Throwable against the target Thread - however
2209     // only if there is no thread death exception installed already.
2210     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2211       // If the topmost frame is a runtime stub, then we are calling into
2212       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2213       // must deoptimize the caller before continuing, as the compiled  exception handler table
2214       // may not be valid
2215       if (has_last_Java_frame()) {
2216         frame f = last_frame();
2217         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2218           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2219           RegisterMap reg_map(this, UseBiasedLocking);
2220           frame compiled_frame = f.sender(&reg_map);
2221           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2222             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2223           }
2224         }
2225       }
2226 
2227       // Set async. pending exception in thread.
2228       set_pending_async_exception(java_throwable);
2229 
2230       if (log_is_enabled(Info, exceptions)) {
2231          ResourceMark rm;
2232         log_info(exceptions)("Pending Async. exception installed of type: %s",
2233                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2234       }
2235       // for AbortVMOnException flag
2236       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2237     }
2238   }
2239 
2240 
2241   // Interrupt thread so it will wake up from a potential wait()
2242   Thread::interrupt(this);
2243 }
2244 
2245 // External suspension mechanism.
2246 //
2247 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2248 // to any VM_locks and it is at a transition
2249 // Self-suspension will happen on the transition out of the vm.
2250 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2251 //
2252 // Guarantees on return:
2253 //   + Target thread will not execute any new bytecode (that's why we need to
2254 //     force a safepoint)
2255 //   + Target thread will not enter any new monitors
2256 //
2257 void JavaThread::java_suspend() {
2258   { MutexLocker mu(Threads_lock);
2259     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2260       return;
2261     }
2262   }
2263 
2264   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2265     if (!is_external_suspend()) {
2266       // a racing resume has cancelled us; bail out now
2267       return;
2268     }
2269 
2270     // suspend is done
2271     uint32_t debug_bits = 0;
2272     // Warning: is_ext_suspend_completed() may temporarily drop the
2273     // SR_lock to allow the thread to reach a stable thread state if
2274     // it is currently in a transient thread state.
2275     if (is_ext_suspend_completed(false /* !called_by_wait */,
2276                                  SuspendRetryDelay, &debug_bits)) {
2277       return;
2278     }
2279   }
2280 
2281   VM_ForceSafepoint vm_suspend;
2282   VMThread::execute(&vm_suspend);
2283 }
2284 
2285 // Part II of external suspension.
2286 // A JavaThread self suspends when it detects a pending external suspend
2287 // request. This is usually on transitions. It is also done in places
2288 // where continuing to the next transition would surprise the caller,
2289 // e.g., monitor entry.
2290 //
2291 // Returns the number of times that the thread self-suspended.
2292 //
2293 // Note: DO NOT call java_suspend_self() when you just want to block current
2294 //       thread. java_suspend_self() is the second stage of cooperative
2295 //       suspension for external suspend requests and should only be used
2296 //       to complete an external suspend request.
2297 //
2298 int JavaThread::java_suspend_self() {
2299   int ret = 0;
2300 
2301   // we are in the process of exiting so don't suspend
2302   if (is_exiting()) {
2303     clear_external_suspend();
2304     return ret;
2305   }
2306 
2307   assert(_anchor.walkable() ||
2308          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2309          "must have walkable stack");
2310 
2311   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2312 
2313   assert(!this->is_ext_suspended(),
2314          "a thread trying to self-suspend should not already be suspended");
2315 
2316   if (this->is_suspend_equivalent()) {
2317     // If we are self-suspending as a result of the lifting of a
2318     // suspend equivalent condition, then the suspend_equivalent
2319     // flag is not cleared until we set the ext_suspended flag so
2320     // that wait_for_ext_suspend_completion() returns consistent
2321     // results.
2322     this->clear_suspend_equivalent();
2323   }
2324 
2325   // A racing resume may have cancelled us before we grabbed SR_lock
2326   // above. Or another external suspend request could be waiting for us
2327   // by the time we return from SR_lock()->wait(). The thread
2328   // that requested the suspension may already be trying to walk our
2329   // stack and if we return now, we can change the stack out from under
2330   // it. This would be a "bad thing (TM)" and cause the stack walker
2331   // to crash. We stay self-suspended until there are no more pending
2332   // external suspend requests.
2333   while (is_external_suspend()) {
2334     ret++;
2335     this->set_ext_suspended();
2336 
2337     // _ext_suspended flag is cleared by java_resume()
2338     while (is_ext_suspended()) {
2339       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2340     }
2341   }
2342 
2343   return ret;
2344 }
2345 
2346 #ifdef ASSERT
2347 // verify the JavaThread has not yet been published in the Threads::list, and
2348 // hence doesn't need protection from concurrent access at this stage
2349 void JavaThread::verify_not_published() {
2350   if (!Threads_lock->owned_by_self()) {
2351     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2352     assert(!Threads::includes(this),
2353            "java thread shouldn't have been published yet!");
2354   } else {
2355     assert(!Threads::includes(this),
2356            "java thread shouldn't have been published yet!");
2357   }
2358 }
2359 #endif
2360 
2361 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2362 // progress or when _suspend_flags is non-zero.
2363 // Current thread needs to self-suspend if there is a suspend request and/or
2364 // block if a safepoint is in progress.
2365 // Async exception ISN'T checked.
2366 // Note only the ThreadInVMfromNative transition can call this function
2367 // directly and when thread state is _thread_in_native_trans
2368 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2369   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2370 
2371   JavaThread *curJT = JavaThread::current();
2372   bool do_self_suspend = thread->is_external_suspend();
2373 
2374   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2375 
2376   // If JNIEnv proxies are allowed, don't self-suspend if the target
2377   // thread is not the current thread. In older versions of jdbx, jdbx
2378   // threads could call into the VM with another thread's JNIEnv so we
2379   // can be here operating on behalf of a suspended thread (4432884).
2380   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2381     JavaThreadState state = thread->thread_state();
2382 
2383     // We mark this thread_blocked state as a suspend-equivalent so
2384     // that a caller to is_ext_suspend_completed() won't be confused.
2385     // The suspend-equivalent state is cleared by java_suspend_self().
2386     thread->set_suspend_equivalent();
2387 
2388     // If the safepoint code sees the _thread_in_native_trans state, it will
2389     // wait until the thread changes to other thread state. There is no
2390     // guarantee on how soon we can obtain the SR_lock and complete the
2391     // self-suspend request. It would be a bad idea to let safepoint wait for
2392     // too long. Temporarily change the state to _thread_blocked to
2393     // let the VM thread know that this thread is ready for GC. The problem
2394     // of changing thread state is that safepoint could happen just after
2395     // java_suspend_self() returns after being resumed, and VM thread will
2396     // see the _thread_blocked state. We must check for safepoint
2397     // after restoring the state and make sure we won't leave while a safepoint
2398     // is in progress.
2399     thread->set_thread_state(_thread_blocked);
2400     thread->java_suspend_self();
2401     thread->set_thread_state(state);
2402     // Make sure new state is seen by VM thread
2403     if (os::is_MP()) {
2404       if (UseMembar) {
2405         // Force a fence between the write above and read below
2406         OrderAccess::fence();
2407       } else {
2408         // Must use this rather than serialization page in particular on Windows
2409         InterfaceSupport::serialize_memory(thread);
2410       }
2411     }
2412   }
2413 
2414   if (SafepointSynchronize::do_call_back()) {
2415     // If we are safepointing, then block the caller which may not be
2416     // the same as the target thread (see above).
2417     SafepointSynchronize::block(curJT);
2418   }
2419 
2420   if (thread->is_deopt_suspend()) {
2421     thread->clear_deopt_suspend();
2422     RegisterMap map(thread, false);
2423     frame f = thread->last_frame();
2424     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2425       f = f.sender(&map);
2426     }
2427     if (f.id() == thread->must_deopt_id()) {
2428       thread->clear_must_deopt_id();
2429       f.deoptimize(thread);
2430     } else {
2431       fatal("missed deoptimization!");
2432     }
2433   }
2434 }
2435 
2436 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2437 // progress or when _suspend_flags is non-zero.
2438 // Current thread needs to self-suspend if there is a suspend request and/or
2439 // block if a safepoint is in progress.
2440 // Also check for pending async exception (not including unsafe access error).
2441 // Note only the native==>VM/Java barriers can call this function and when
2442 // thread state is _thread_in_native_trans.
2443 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2444   check_safepoint_and_suspend_for_native_trans(thread);
2445 
2446   if (thread->has_async_exception()) {
2447     // We are in _thread_in_native_trans state, don't handle unsafe
2448     // access error since that may block.
2449     thread->check_and_handle_async_exceptions(false);
2450   }
2451 }
2452 
2453 // This is a variant of the normal
2454 // check_special_condition_for_native_trans with slightly different
2455 // semantics for use by critical native wrappers.  It does all the
2456 // normal checks but also performs the transition back into
2457 // thread_in_Java state.  This is required so that critical natives
2458 // can potentially block and perform a GC if they are the last thread
2459 // exiting the GCLocker.
2460 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2461   check_special_condition_for_native_trans(thread);
2462 
2463   // Finish the transition
2464   thread->set_thread_state(_thread_in_Java);
2465 
2466   if (thread->do_critical_native_unlock()) {
2467     ThreadInVMfromJavaNoAsyncException tiv(thread);
2468     GCLocker::unlock_critical(thread);
2469     thread->clear_critical_native_unlock();
2470   }
2471 }
2472 
2473 // We need to guarantee the Threads_lock here, since resumes are not
2474 // allowed during safepoint synchronization
2475 // Can only resume from an external suspension
2476 void JavaThread::java_resume() {
2477   assert_locked_or_safepoint(Threads_lock);
2478 
2479   // Sanity check: thread is gone, has started exiting or the thread
2480   // was not externally suspended.
2481   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2482     return;
2483   }
2484 
2485   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2486 
2487   clear_external_suspend();
2488 
2489   if (is_ext_suspended()) {
2490     clear_ext_suspended();
2491     SR_lock()->notify_all();
2492   }
2493 }
2494 
2495 size_t JavaThread::_stack_red_zone_size = 0;
2496 size_t JavaThread::_stack_yellow_zone_size = 0;
2497 size_t JavaThread::_stack_reserved_zone_size = 0;
2498 size_t JavaThread::_stack_shadow_zone_size = 0;
2499 
2500 void JavaThread::create_stack_guard_pages() {
2501   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2502   address low_addr = stack_end();
2503   size_t len = stack_guard_zone_size();
2504 
2505   int must_commit = os::must_commit_stack_guard_pages();
2506   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2507 
2508   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2509     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2510     return;
2511   }
2512 
2513   if (os::guard_memory((char *) low_addr, len)) {
2514     _stack_guard_state = stack_guard_enabled;
2515   } else {
2516     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2517       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2518     if (os::uncommit_memory((char *) low_addr, len)) {
2519       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2520     }
2521     return;
2522   }
2523 
2524   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2525     PTR_FORMAT "-" PTR_FORMAT ".",
2526     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2527 }
2528 
2529 void JavaThread::remove_stack_guard_pages() {
2530   assert(Thread::current() == this, "from different thread");
2531   if (_stack_guard_state == stack_guard_unused) return;
2532   address low_addr = stack_end();
2533   size_t len = stack_guard_zone_size();
2534 
2535   if (os::must_commit_stack_guard_pages()) {
2536     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2537       _stack_guard_state = stack_guard_unused;
2538     } else {
2539       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2540         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2541       return;
2542     }
2543   } else {
2544     if (_stack_guard_state == stack_guard_unused) return;
2545     if (os::unguard_memory((char *) low_addr, len)) {
2546       _stack_guard_state = stack_guard_unused;
2547     } else {
2548       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2549         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2550       return;
2551     }
2552   }
2553 
2554   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2555     PTR_FORMAT "-" PTR_FORMAT ".",
2556     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2557 }
2558 
2559 void JavaThread::enable_stack_reserved_zone() {
2560   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2561   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2562 
2563   // The base notation is from the stack's point of view, growing downward.
2564   // We need to adjust it to work correctly with guard_memory()
2565   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2566 
2567   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2568   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2569 
2570   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2571     _stack_guard_state = stack_guard_enabled;
2572   } else {
2573     warning("Attempt to guard stack reserved zone failed.");
2574   }
2575   enable_register_stack_guard();
2576 }
2577 
2578 void JavaThread::disable_stack_reserved_zone() {
2579   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2580   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2581 
2582   // Simply return if called for a thread that does not use guard pages.
2583   if (_stack_guard_state == stack_guard_unused) return;
2584 
2585   // The base notation is from the stack's point of view, growing downward.
2586   // We need to adjust it to work correctly with guard_memory()
2587   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2588 
2589   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2590     _stack_guard_state = stack_guard_reserved_disabled;
2591   } else {
2592     warning("Attempt to unguard stack reserved zone failed.");
2593   }
2594   disable_register_stack_guard();
2595 }
2596 
2597 void JavaThread::enable_stack_yellow_reserved_zone() {
2598   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2599   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2600 
2601   // The base notation is from the stacks point of view, growing downward.
2602   // We need to adjust it to work correctly with guard_memory()
2603   address base = stack_red_zone_base();
2604 
2605   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2606   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2607 
2608   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2609     _stack_guard_state = stack_guard_enabled;
2610   } else {
2611     warning("Attempt to guard stack yellow zone failed.");
2612   }
2613   enable_register_stack_guard();
2614 }
2615 
2616 void JavaThread::disable_stack_yellow_reserved_zone() {
2617   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2618   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2619 
2620   // Simply return if called for a thread that does not use guard pages.
2621   if (_stack_guard_state == stack_guard_unused) return;
2622 
2623   // The base notation is from the stacks point of view, growing downward.
2624   // We need to adjust it to work correctly with guard_memory()
2625   address base = stack_red_zone_base();
2626 
2627   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2628     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2629   } else {
2630     warning("Attempt to unguard stack yellow zone failed.");
2631   }
2632   disable_register_stack_guard();
2633 }
2634 
2635 void JavaThread::enable_stack_red_zone() {
2636   // The base notation is from the stacks point of view, growing downward.
2637   // We need to adjust it to work correctly with guard_memory()
2638   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2639   address base = stack_red_zone_base() - stack_red_zone_size();
2640 
2641   guarantee(base < stack_base(), "Error calculating stack red zone");
2642   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2643 
2644   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2645     warning("Attempt to guard stack red zone failed.");
2646   }
2647 }
2648 
2649 void JavaThread::disable_stack_red_zone() {
2650   // The base notation is from the stacks point of view, growing downward.
2651   // We need to adjust it to work correctly with guard_memory()
2652   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2653   address base = stack_red_zone_base() - stack_red_zone_size();
2654   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2655     warning("Attempt to unguard stack red zone failed.");
2656   }
2657 }
2658 
2659 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2660   // ignore is there is no stack
2661   if (!has_last_Java_frame()) return;
2662   // traverse the stack frames. Starts from top frame.
2663   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2664     frame* fr = fst.current();
2665     f(fr, fst.register_map());
2666   }
2667 }
2668 
2669 
2670 #ifndef PRODUCT
2671 // Deoptimization
2672 // Function for testing deoptimization
2673 void JavaThread::deoptimize() {
2674   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2675   StackFrameStream fst(this, UseBiasedLocking);
2676   bool deopt = false;           // Dump stack only if a deopt actually happens.
2677   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2678   // Iterate over all frames in the thread and deoptimize
2679   for (; !fst.is_done(); fst.next()) {
2680     if (fst.current()->can_be_deoptimized()) {
2681 
2682       if (only_at) {
2683         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2684         // consists of comma or carriage return separated numbers so
2685         // search for the current bci in that string.
2686         address pc = fst.current()->pc();
2687         nmethod* nm =  (nmethod*) fst.current()->cb();
2688         ScopeDesc* sd = nm->scope_desc_at(pc);
2689         char buffer[8];
2690         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2691         size_t len = strlen(buffer);
2692         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2693         while (found != NULL) {
2694           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2695               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2696             // Check that the bci found is bracketed by terminators.
2697             break;
2698           }
2699           found = strstr(found + 1, buffer);
2700         }
2701         if (!found) {
2702           continue;
2703         }
2704       }
2705 
2706       if (DebugDeoptimization && !deopt) {
2707         deopt = true; // One-time only print before deopt
2708         tty->print_cr("[BEFORE Deoptimization]");
2709         trace_frames();
2710         trace_stack();
2711       }
2712       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2713     }
2714   }
2715 
2716   if (DebugDeoptimization && deopt) {
2717     tty->print_cr("[AFTER Deoptimization]");
2718     trace_frames();
2719   }
2720 }
2721 
2722 
2723 // Make zombies
2724 void JavaThread::make_zombies() {
2725   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2726     if (fst.current()->can_be_deoptimized()) {
2727       // it is a Java nmethod
2728       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2729       nm->make_not_entrant();
2730     }
2731   }
2732 }
2733 #endif // PRODUCT
2734 
2735 
2736 void JavaThread::deoptimized_wrt_marked_nmethods() {
2737   if (!has_last_Java_frame()) return;
2738   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2739   StackFrameStream fst(this, UseBiasedLocking);
2740   for (; !fst.is_done(); fst.next()) {
2741     if (fst.current()->should_be_deoptimized()) {
2742       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2743     }
2744   }
2745 }
2746 
2747 
2748 // If the caller is a NamedThread, then remember, in the current scope,
2749 // the given JavaThread in its _processed_thread field.
2750 class RememberProcessedThread: public StackObj {
2751   NamedThread* _cur_thr;
2752  public:
2753   RememberProcessedThread(JavaThread* jthr) {
2754     Thread* thread = Thread::current();
2755     if (thread->is_Named_thread()) {
2756       _cur_thr = (NamedThread *)thread;
2757       _cur_thr->set_processed_thread(jthr);
2758     } else {
2759       _cur_thr = NULL;
2760     }
2761   }
2762 
2763   ~RememberProcessedThread() {
2764     if (_cur_thr) {
2765       _cur_thr->set_processed_thread(NULL);
2766     }
2767   }
2768 };
2769 
2770 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2771   // Verify that the deferred card marks have been flushed.
2772   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2773 
2774   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2775   // since there may be more than one thread using each ThreadProfiler.
2776 
2777   // Traverse the GCHandles
2778   Thread::oops_do(f, cf);
2779 
2780   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2781 
2782   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2783          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2784 
2785   if (has_last_Java_frame()) {
2786     // Record JavaThread to GC thread
2787     RememberProcessedThread rpt(this);
2788 
2789     // Traverse the privileged stack
2790     if (_privileged_stack_top != NULL) {
2791       _privileged_stack_top->oops_do(f);
2792     }
2793 
2794     // traverse the registered growable array
2795     if (_array_for_gc != NULL) {
2796       for (int index = 0; index < _array_for_gc->length(); index++) {
2797         f->do_oop(_array_for_gc->adr_at(index));
2798       }
2799     }
2800 
2801     // Traverse the monitor chunks
2802     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2803       chunk->oops_do(f);
2804     }
2805 
2806     // Traverse the execution stack
2807     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2808       fst.current()->oops_do(f, cf, fst.register_map());
2809     }
2810   }
2811 
2812   // callee_target is never live across a gc point so NULL it here should
2813   // it still contain a methdOop.
2814 
2815   set_callee_target(NULL);
2816 
2817   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2818   // If we have deferred set_locals there might be oops waiting to be
2819   // written
2820   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2821   if (list != NULL) {
2822     for (int i = 0; i < list->length(); i++) {
2823       list->at(i)->oops_do(f);
2824     }
2825   }
2826 
2827   // Traverse instance variables at the end since the GC may be moving things
2828   // around using this function
2829   f->do_oop((oop*) &_threadObj);
2830   f->do_oop((oop*) &_vm_result);
2831   f->do_oop((oop*) &_exception_oop);
2832   f->do_oop((oop*) &_pending_async_exception);
2833 
2834   if (jvmti_thread_state() != NULL) {
2835     jvmti_thread_state()->oops_do(f);
2836   }
2837 }
2838 
2839 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2840   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2841          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2842 
2843   if (has_last_Java_frame()) {
2844     // Traverse the execution stack
2845     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2846       fst.current()->nmethods_do(cf);
2847     }
2848   }
2849 }
2850 
2851 void JavaThread::metadata_do(void f(Metadata*)) {
2852   if (has_last_Java_frame()) {
2853     // Traverse the execution stack to call f() on the methods in the stack
2854     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2855       fst.current()->metadata_do(f);
2856     }
2857   } else if (is_Compiler_thread()) {
2858     // need to walk ciMetadata in current compile tasks to keep alive.
2859     CompilerThread* ct = (CompilerThread*)this;
2860     if (ct->env() != NULL) {
2861       ct->env()->metadata_do(f);
2862     }
2863     if (ct->task() != NULL) {
2864       ct->task()->metadata_do(f);
2865     }
2866   }
2867 }
2868 
2869 // Printing
2870 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2871   switch (_thread_state) {
2872   case _thread_uninitialized:     return "_thread_uninitialized";
2873   case _thread_new:               return "_thread_new";
2874   case _thread_new_trans:         return "_thread_new_trans";
2875   case _thread_in_native:         return "_thread_in_native";
2876   case _thread_in_native_trans:   return "_thread_in_native_trans";
2877   case _thread_in_vm:             return "_thread_in_vm";
2878   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2879   case _thread_in_Java:           return "_thread_in_Java";
2880   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2881   case _thread_blocked:           return "_thread_blocked";
2882   case _thread_blocked_trans:     return "_thread_blocked_trans";
2883   default:                        return "unknown thread state";
2884   }
2885 }
2886 
2887 #ifndef PRODUCT
2888 void JavaThread::print_thread_state_on(outputStream *st) const {
2889   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2890 };
2891 void JavaThread::print_thread_state() const {
2892   print_thread_state_on(tty);
2893 }
2894 #endif // PRODUCT
2895 
2896 // Called by Threads::print() for VM_PrintThreads operation
2897 void JavaThread::print_on(outputStream *st) const {
2898   st->print_raw("\"");
2899   st->print_raw(get_thread_name());
2900   st->print_raw("\" ");
2901   oop thread_oop = threadObj();
2902   if (thread_oop != NULL) {
2903     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2904     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2905     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2906   }
2907   Thread::print_on(st);
2908   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2909   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2910   if (thread_oop != NULL) {
2911     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2912   }
2913 #ifndef PRODUCT
2914   print_thread_state_on(st);
2915   _safepoint_state->print_on(st);
2916 #endif // PRODUCT
2917   if (is_Compiler_thread()) {
2918     CompilerThread* ct = (CompilerThread*)this;
2919     if (ct->task() != NULL) {
2920       st->print("   Compiling: ");
2921       ct->task()->print(st, NULL, true, false);
2922     } else {
2923       st->print("   No compile task");
2924     }
2925     st->cr();
2926   }
2927 }
2928 
2929 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2930   st->print("%s", get_thread_name_string(buf, buflen));
2931 }
2932 
2933 // Called by fatal error handler. The difference between this and
2934 // JavaThread::print() is that we can't grab lock or allocate memory.
2935 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2936   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2937   oop thread_obj = threadObj();
2938   if (thread_obj != NULL) {
2939     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2940   }
2941   st->print(" [");
2942   st->print("%s", _get_thread_state_name(_thread_state));
2943   if (osthread()) {
2944     st->print(", id=%d", osthread()->thread_id());
2945   }
2946   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2947             p2i(stack_end()), p2i(stack_base()));
2948   st->print("]");
2949   return;
2950 }
2951 
2952 // Verification
2953 
2954 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2955 
2956 void JavaThread::verify() {
2957   // Verify oops in the thread.
2958   oops_do(&VerifyOopClosure::verify_oop, NULL);
2959 
2960   // Verify the stack frames.
2961   frames_do(frame_verify);
2962 }
2963 
2964 // CR 6300358 (sub-CR 2137150)
2965 // Most callers of this method assume that it can't return NULL but a
2966 // thread may not have a name whilst it is in the process of attaching to
2967 // the VM - see CR 6412693, and there are places where a JavaThread can be
2968 // seen prior to having it's threadObj set (eg JNI attaching threads and
2969 // if vm exit occurs during initialization). These cases can all be accounted
2970 // for such that this method never returns NULL.
2971 const char* JavaThread::get_thread_name() const {
2972 #ifdef ASSERT
2973   // early safepoints can hit while current thread does not yet have TLS
2974   if (!SafepointSynchronize::is_at_safepoint()) {
2975     Thread *cur = Thread::current();
2976     if (!(cur->is_Java_thread() && cur == this)) {
2977       // Current JavaThreads are allowed to get their own name without
2978       // the Threads_lock.
2979       assert_locked_or_safepoint(Threads_lock);
2980     }
2981   }
2982 #endif // ASSERT
2983   return get_thread_name_string();
2984 }
2985 
2986 // Returns a non-NULL representation of this thread's name, or a suitable
2987 // descriptive string if there is no set name
2988 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2989   const char* name_str;
2990   oop thread_obj = threadObj();
2991   if (thread_obj != NULL) {
2992     oop name = java_lang_Thread::name(thread_obj);
2993     if (name != NULL) {
2994       if (buf == NULL) {
2995         name_str = java_lang_String::as_utf8_string(name);
2996       } else {
2997         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2998       }
2999     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3000       name_str = "<no-name - thread is attaching>";
3001     } else {
3002       name_str = Thread::name();
3003     }
3004   } else {
3005     name_str = Thread::name();
3006   }
3007   assert(name_str != NULL, "unexpected NULL thread name");
3008   return name_str;
3009 }
3010 
3011 
3012 const char* JavaThread::get_threadgroup_name() const {
3013   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3014   oop thread_obj = threadObj();
3015   if (thread_obj != NULL) {
3016     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3017     if (thread_group != NULL) {
3018       // ThreadGroup.name can be null
3019       return java_lang_ThreadGroup::name(thread_group);
3020     }
3021   }
3022   return NULL;
3023 }
3024 
3025 const char* JavaThread::get_parent_name() const {
3026   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3027   oop thread_obj = threadObj();
3028   if (thread_obj != NULL) {
3029     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3030     if (thread_group != NULL) {
3031       oop parent = java_lang_ThreadGroup::parent(thread_group);
3032       if (parent != NULL) {
3033         // ThreadGroup.name can be null
3034         return java_lang_ThreadGroup::name(parent);
3035       }
3036     }
3037   }
3038   return NULL;
3039 }
3040 
3041 ThreadPriority JavaThread::java_priority() const {
3042   oop thr_oop = threadObj();
3043   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3044   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3045   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3046   return priority;
3047 }
3048 
3049 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3050 
3051   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3052   // Link Java Thread object <-> C++ Thread
3053 
3054   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3055   // and put it into a new Handle.  The Handle "thread_oop" can then
3056   // be used to pass the C++ thread object to other methods.
3057 
3058   // Set the Java level thread object (jthread) field of the
3059   // new thread (a JavaThread *) to C++ thread object using the
3060   // "thread_oop" handle.
3061 
3062   // Set the thread field (a JavaThread *) of the
3063   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3064 
3065   Handle thread_oop(Thread::current(),
3066                     JNIHandles::resolve_non_null(jni_thread));
3067   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3068          "must be initialized");
3069   set_threadObj(thread_oop());
3070   java_lang_Thread::set_thread(thread_oop(), this);
3071 
3072   if (prio == NoPriority) {
3073     prio = java_lang_Thread::priority(thread_oop());
3074     assert(prio != NoPriority, "A valid priority should be present");
3075   }
3076 
3077   // Push the Java priority down to the native thread; needs Threads_lock
3078   Thread::set_priority(this, prio);
3079 
3080   prepare_ext();
3081 
3082   // Add the new thread to the Threads list and set it in motion.
3083   // We must have threads lock in order to call Threads::add.
3084   // It is crucial that we do not block before the thread is
3085   // added to the Threads list for if a GC happens, then the java_thread oop
3086   // will not be visited by GC.
3087   Threads::add(this);
3088 }
3089 
3090 oop JavaThread::current_park_blocker() {
3091   // Support for JSR-166 locks
3092   oop thread_oop = threadObj();
3093   if (thread_oop != NULL &&
3094       JDK_Version::current().supports_thread_park_blocker()) {
3095     return java_lang_Thread::park_blocker(thread_oop);
3096   }
3097   return NULL;
3098 }
3099 
3100 
3101 void JavaThread::print_stack_on(outputStream* st) {
3102   if (!has_last_Java_frame()) return;
3103   ResourceMark rm;
3104   HandleMark   hm;
3105 
3106   RegisterMap reg_map(this);
3107   vframe* start_vf = last_java_vframe(&reg_map);
3108   int count = 0;
3109   for (vframe* f = start_vf; f; f = f->sender()) {
3110     if (f->is_java_frame()) {
3111       javaVFrame* jvf = javaVFrame::cast(f);
3112       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3113 
3114       // Print out lock information
3115       if (JavaMonitorsInStackTrace) {
3116         jvf->print_lock_info_on(st, count);
3117       }
3118     } else {
3119       // Ignore non-Java frames
3120     }
3121 
3122     // Bail-out case for too deep stacks
3123     count++;
3124     if (MaxJavaStackTraceDepth == count) return;
3125   }
3126 }
3127 
3128 
3129 // JVMTI PopFrame support
3130 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3131   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3132   if (in_bytes(size_in_bytes) != 0) {
3133     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3134     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3135     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3136   }
3137 }
3138 
3139 void* JavaThread::popframe_preserved_args() {
3140   return _popframe_preserved_args;
3141 }
3142 
3143 ByteSize JavaThread::popframe_preserved_args_size() {
3144   return in_ByteSize(_popframe_preserved_args_size);
3145 }
3146 
3147 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3148   int sz = in_bytes(popframe_preserved_args_size());
3149   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3150   return in_WordSize(sz / wordSize);
3151 }
3152 
3153 void JavaThread::popframe_free_preserved_args() {
3154   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3155   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3156   _popframe_preserved_args = NULL;
3157   _popframe_preserved_args_size = 0;
3158 }
3159 
3160 #ifndef PRODUCT
3161 
3162 void JavaThread::trace_frames() {
3163   tty->print_cr("[Describe stack]");
3164   int frame_no = 1;
3165   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3166     tty->print("  %d. ", frame_no++);
3167     fst.current()->print_value_on(tty, this);
3168     tty->cr();
3169   }
3170 }
3171 
3172 class PrintAndVerifyOopClosure: public OopClosure {
3173  protected:
3174   template <class T> inline void do_oop_work(T* p) {
3175     oop obj = oopDesc::load_decode_heap_oop(p);
3176     if (obj == NULL) return;
3177     tty->print(INTPTR_FORMAT ": ", p2i(p));
3178     if (obj->is_oop_or_null()) {
3179       if (obj->is_objArray()) {
3180         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3181       } else {
3182         obj->print();
3183       }
3184     } else {
3185       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3186     }
3187     tty->cr();
3188   }
3189  public:
3190   virtual void do_oop(oop* p) { do_oop_work(p); }
3191   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3192 };
3193 
3194 
3195 static void oops_print(frame* f, const RegisterMap *map) {
3196   PrintAndVerifyOopClosure print;
3197   f->print_value();
3198   f->oops_do(&print, NULL, (RegisterMap*)map);
3199 }
3200 
3201 // Print our all the locations that contain oops and whether they are
3202 // valid or not.  This useful when trying to find the oldest frame
3203 // where an oop has gone bad since the frame walk is from youngest to
3204 // oldest.
3205 void JavaThread::trace_oops() {
3206   tty->print_cr("[Trace oops]");
3207   frames_do(oops_print);
3208 }
3209 
3210 
3211 #ifdef ASSERT
3212 // Print or validate the layout of stack frames
3213 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3214   ResourceMark rm;
3215   PRESERVE_EXCEPTION_MARK;
3216   FrameValues values;
3217   int frame_no = 0;
3218   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3219     fst.current()->describe(values, ++frame_no);
3220     if (depth == frame_no) break;
3221   }
3222   if (validate_only) {
3223     values.validate();
3224   } else {
3225     tty->print_cr("[Describe stack layout]");
3226     values.print(this);
3227   }
3228 }
3229 #endif
3230 
3231 void JavaThread::trace_stack_from(vframe* start_vf) {
3232   ResourceMark rm;
3233   int vframe_no = 1;
3234   for (vframe* f = start_vf; f; f = f->sender()) {
3235     if (f->is_java_frame()) {
3236       javaVFrame::cast(f)->print_activation(vframe_no++);
3237     } else {
3238       f->print();
3239     }
3240     if (vframe_no > StackPrintLimit) {
3241       tty->print_cr("...<more frames>...");
3242       return;
3243     }
3244   }
3245 }
3246 
3247 
3248 void JavaThread::trace_stack() {
3249   if (!has_last_Java_frame()) return;
3250   ResourceMark rm;
3251   HandleMark   hm;
3252   RegisterMap reg_map(this);
3253   trace_stack_from(last_java_vframe(&reg_map));
3254 }
3255 
3256 
3257 #endif // PRODUCT
3258 
3259 
3260 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3261   assert(reg_map != NULL, "a map must be given");
3262   frame f = last_frame();
3263   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3264     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3265   }
3266   return NULL;
3267 }
3268 
3269 
3270 Klass* JavaThread::security_get_caller_class(int depth) {
3271   vframeStream vfst(this);
3272   vfst.security_get_caller_frame(depth);
3273   if (!vfst.at_end()) {
3274     return vfst.method()->method_holder();
3275   }
3276   return NULL;
3277 }
3278 
3279 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3280   assert(thread->is_Compiler_thread(), "must be compiler thread");
3281   CompileBroker::compiler_thread_loop();
3282 }
3283 
3284 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3285   NMethodSweeper::sweeper_loop();
3286 }
3287 
3288 // Create a CompilerThread
3289 CompilerThread::CompilerThread(CompileQueue* queue,
3290                                CompilerCounters* counters)
3291                                : JavaThread(&compiler_thread_entry) {
3292   _env   = NULL;
3293   _log   = NULL;
3294   _task  = NULL;
3295   _queue = queue;
3296   _counters = counters;
3297   _buffer_blob = NULL;
3298   _compiler = NULL;
3299 
3300 #ifndef PRODUCT
3301   _ideal_graph_printer = NULL;
3302 #endif
3303 }
3304 
3305 bool CompilerThread::can_call_java() const {
3306   return _compiler != NULL && _compiler->is_jvmci();
3307 }
3308 
3309 // Create sweeper thread
3310 CodeCacheSweeperThread::CodeCacheSweeperThread()
3311 : JavaThread(&sweeper_thread_entry) {
3312   _scanned_compiled_method = NULL;
3313 }
3314 
3315 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3316   JavaThread::oops_do(f, cf);
3317   if (_scanned_compiled_method != NULL && cf != NULL) {
3318     // Safepoints can occur when the sweeper is scanning an nmethod so
3319     // process it here to make sure it isn't unloaded in the middle of
3320     // a scan.
3321     cf->do_code_blob(_scanned_compiled_method);
3322   }
3323 }
3324 
3325 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3326   JavaThread::nmethods_do(cf);
3327   if (_scanned_compiled_method != NULL && cf != NULL) {
3328     // Safepoints can occur when the sweeper is scanning an nmethod so
3329     // process it here to make sure it isn't unloaded in the middle of
3330     // a scan.
3331     cf->do_code_blob(_scanned_compiled_method);
3332   }
3333 }
3334 
3335 
3336 // ======= Threads ========
3337 
3338 // The Threads class links together all active threads, and provides
3339 // operations over all threads.  It is protected by its own Mutex
3340 // lock, which is also used in other contexts to protect thread
3341 // operations from having the thread being operated on from exiting
3342 // and going away unexpectedly (e.g., safepoint synchronization)
3343 
3344 JavaThread* Threads::_thread_list = NULL;
3345 int         Threads::_number_of_threads = 0;
3346 int         Threads::_number_of_non_daemon_threads = 0;
3347 int         Threads::_return_code = 0;
3348 int         Threads::_thread_claim_parity = 0;
3349 size_t      JavaThread::_stack_size_at_create = 0;
3350 #ifdef ASSERT
3351 bool        Threads::_vm_complete = false;
3352 #endif
3353 
3354 // All JavaThreads
3355 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3356 
3357 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3358 void Threads::threads_do(ThreadClosure* tc) {
3359   assert_locked_or_safepoint(Threads_lock);
3360   // ALL_JAVA_THREADS iterates through all JavaThreads
3361   ALL_JAVA_THREADS(p) {
3362     tc->do_thread(p);
3363   }
3364   // Someday we could have a table or list of all non-JavaThreads.
3365   // For now, just manually iterate through them.
3366   tc->do_thread(VMThread::vm_thread());
3367   Universe::heap()->gc_threads_do(tc);
3368   WatcherThread *wt = WatcherThread::watcher_thread();
3369   // Strictly speaking, the following NULL check isn't sufficient to make sure
3370   // the data for WatcherThread is still valid upon being examined. However,
3371   // considering that WatchThread terminates when the VM is on the way to
3372   // exit at safepoint, the chance of the above is extremely small. The right
3373   // way to prevent termination of WatcherThread would be to acquire
3374   // Terminator_lock, but we can't do that without violating the lock rank
3375   // checking in some cases.
3376   if (wt != NULL) {
3377     tc->do_thread(wt);
3378   }
3379 
3380   // If CompilerThreads ever become non-JavaThreads, add them here
3381 }
3382 
3383 // The system initialization in the library has three phases.
3384 //
3385 // Phase 1: java.lang.System class initialization
3386 //     java.lang.System is a primordial class loaded and initialized
3387 //     by the VM early during startup.  java.lang.System.<clinit>
3388 //     only does registerNatives and keeps the rest of the class
3389 //     initialization work later until thread initialization completes.
3390 //
3391 //     System.initPhase1 initializes the system properties, the static
3392 //     fields in, out, and err. Set up java signal handlers, OS-specific
3393 //     system settings, and thread group of the main thread.
3394 static void call_initPhase1(TRAPS) {
3395   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3396   JavaValue result(T_VOID);
3397   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3398                                          vmSymbols::void_method_signature(), CHECK);
3399 }
3400 
3401 // Phase 2. Module system initialization
3402 //     This will initialize the module system.  Only java.base classes
3403 //     can be loaded until phase 2 completes.
3404 //
3405 //     Call System.initPhase2 after the compiler initialization and jsr292
3406 //     classes get initialized because module initialization runs a lot of java
3407 //     code, that for performance reasons, should be compiled.  Also, this will
3408 //     enable the startup code to use lambda and other language features in this
3409 //     phase and onward.
3410 //
3411 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3412 static void call_initPhase2(TRAPS) {
3413   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, module, startuptime));
3414 
3415   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3416 
3417   JavaValue result(T_INT);
3418   JavaCallArguments args;
3419   args.push_int(DisplayVMOutputToStderr);
3420   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3421   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3422                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3423   if (result.get_jint() != JNI_OK) {
3424     vm_exit_during_initialization(); // no message or exception
3425   }
3426 
3427   universe_post_module_init();
3428 }
3429 
3430 // Phase 3. final setup - set security manager, system class loader and TCCL
3431 //
3432 //     This will instantiate and set the security manager, set the system class
3433 //     loader as well as the thread context class loader.  The security manager
3434 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3435 //     other modules or the application's classpath.
3436 static void call_initPhase3(TRAPS) {
3437   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3438   JavaValue result(T_VOID);
3439   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3440                                          vmSymbols::void_method_signature(), CHECK);
3441 }
3442 
3443 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3444   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3445 
3446   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3447     create_vm_init_libraries();
3448   }
3449 
3450   initialize_class(vmSymbols::java_lang_String(), CHECK);
3451 
3452   // Inject CompactStrings value after the static initializers for String ran.
3453   java_lang_String::set_compact_strings(CompactStrings);
3454 
3455   // Initialize java_lang.System (needed before creating the thread)
3456   initialize_class(vmSymbols::java_lang_System(), CHECK);
3457   // The VM creates & returns objects of this class. Make sure it's initialized.
3458   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3459   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3460   Handle thread_group = create_initial_thread_group(CHECK);
3461   Universe::set_main_thread_group(thread_group());
3462   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3463   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3464   main_thread->set_threadObj(thread_object);
3465   // Set thread status to running since main thread has
3466   // been started and running.
3467   java_lang_Thread::set_thread_status(thread_object,
3468                                       java_lang_Thread::RUNNABLE);
3469 
3470   // The VM creates objects of this class.
3471   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3472 
3473   // The VM preresolves methods to these classes. Make sure that they get initialized
3474   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3475   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3476 
3477   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3478   call_initPhase1(CHECK);
3479 
3480   // get the Java runtime name after java.lang.System is initialized
3481   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3482   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3483 
3484   // an instance of OutOfMemory exception has been allocated earlier
3485   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3486   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3487   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3488   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3489   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3490   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3491   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3492   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3493 }
3494 
3495 void Threads::initialize_jsr292_core_classes(TRAPS) {
3496   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3497 
3498   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3499   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3500   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3501 }
3502 
3503 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3504   extern void JDK_Version_init();
3505 
3506   // Preinitialize version info.
3507   VM_Version::early_initialize();
3508 
3509   // Check version
3510   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3511 
3512   // Initialize library-based TLS
3513   ThreadLocalStorage::init();
3514 
3515   // Initialize the output stream module
3516   ostream_init();
3517 
3518   // Process java launcher properties.
3519   Arguments::process_sun_java_launcher_properties(args);
3520 
3521   // Initialize the os module
3522   os::init();
3523 
3524   // Record VM creation timing statistics
3525   TraceVmCreationTime create_vm_timer;
3526   create_vm_timer.start();
3527 
3528   // Initialize system properties.
3529   Arguments::init_system_properties();
3530 
3531   // So that JDK version can be used as a discriminator when parsing arguments
3532   JDK_Version_init();
3533 
3534   // Update/Initialize System properties after JDK version number is known
3535   Arguments::init_version_specific_system_properties();
3536 
3537   // Make sure to initialize log configuration *before* parsing arguments
3538   LogConfiguration::initialize(create_vm_timer.begin_time());
3539 
3540   // Parse arguments
3541   jint parse_result = Arguments::parse(args);
3542   if (parse_result != JNI_OK) return parse_result;
3543 
3544   os::init_before_ergo();
3545 
3546   jint ergo_result = Arguments::apply_ergo();
3547   if (ergo_result != JNI_OK) return ergo_result;
3548 
3549   // Final check of all ranges after ergonomics which may change values.
3550   if (!CommandLineFlagRangeList::check_ranges()) {
3551     return JNI_EINVAL;
3552   }
3553 
3554   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3555   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3556   if (!constraint_result) {
3557     return JNI_EINVAL;
3558   }
3559 
3560   CommandLineFlagWriteableList::mark_startup();
3561 
3562   if (PauseAtStartup) {
3563     os::pause();
3564   }
3565 
3566   HOTSPOT_VM_INIT_BEGIN();
3567 
3568   // Timing (must come after argument parsing)
3569   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3570 
3571   // Initialize the os module after parsing the args
3572   jint os_init_2_result = os::init_2();
3573   if (os_init_2_result != JNI_OK) return os_init_2_result;
3574 
3575   jint adjust_after_os_result = Arguments::adjust_after_os();
3576   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3577 
3578   // Initialize output stream logging
3579   ostream_init_log();
3580 
3581   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3582   // Must be before create_vm_init_agents()
3583   if (Arguments::init_libraries_at_startup()) {
3584     convert_vm_init_libraries_to_agents();
3585   }
3586 
3587   // Launch -agentlib/-agentpath and converted -Xrun agents
3588   if (Arguments::init_agents_at_startup()) {
3589     create_vm_init_agents();
3590   }
3591 
3592   // Initialize Threads state
3593   _thread_list = NULL;
3594   _number_of_threads = 0;
3595   _number_of_non_daemon_threads = 0;
3596 
3597   // Initialize global data structures and create system classes in heap
3598   vm_init_globals();
3599 
3600 #if INCLUDE_JVMCI
3601   if (JVMCICounterSize > 0) {
3602     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3603     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3604   } else {
3605     JavaThread::_jvmci_old_thread_counters = NULL;
3606   }
3607 #endif // INCLUDE_JVMCI
3608 
3609   // Attach the main thread to this os thread
3610   JavaThread* main_thread = new JavaThread();
3611   main_thread->set_thread_state(_thread_in_vm);
3612   main_thread->initialize_thread_current();
3613   // must do this before set_active_handles
3614   main_thread->record_stack_base_and_size();
3615   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3616 
3617   if (!main_thread->set_as_starting_thread()) {
3618     vm_shutdown_during_initialization(
3619                                       "Failed necessary internal allocation. Out of swap space");
3620     delete main_thread;
3621     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3622     return JNI_ENOMEM;
3623   }
3624 
3625   // Enable guard page *after* os::create_main_thread(), otherwise it would
3626   // crash Linux VM, see notes in os_linux.cpp.
3627   main_thread->create_stack_guard_pages();
3628 
3629   // Initialize Java-Level synchronization subsystem
3630   ObjectMonitor::Initialize();
3631 
3632   // Initialize global modules
3633   jint status = init_globals();
3634   if (status != JNI_OK) {
3635     delete main_thread;
3636     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3637     return status;
3638   }
3639 
3640   if (TRACE_INITIALIZE() != JNI_OK) {
3641     vm_exit_during_initialization("Failed to initialize tracing backend");
3642   }
3643 
3644   // Should be done after the heap is fully created
3645   main_thread->cache_global_variables();
3646 
3647   HandleMark hm;
3648 
3649   { MutexLocker mu(Threads_lock);
3650     Threads::add(main_thread);
3651   }
3652 
3653   // Any JVMTI raw monitors entered in onload will transition into
3654   // real raw monitor. VM is setup enough here for raw monitor enter.
3655   JvmtiExport::transition_pending_onload_raw_monitors();
3656 
3657   // Create the VMThread
3658   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3659 
3660   VMThread::create();
3661     Thread* vmthread = VMThread::vm_thread();
3662 
3663     if (!os::create_thread(vmthread, os::vm_thread)) {
3664       vm_exit_during_initialization("Cannot create VM thread. "
3665                                     "Out of system resources.");
3666     }
3667 
3668     // Wait for the VM thread to become ready, and VMThread::run to initialize
3669     // Monitors can have spurious returns, must always check another state flag
3670     {
3671       MutexLocker ml(Notify_lock);
3672       os::start_thread(vmthread);
3673       while (vmthread->active_handles() == NULL) {
3674         Notify_lock->wait();
3675       }
3676     }
3677   }
3678 
3679   assert(Universe::is_fully_initialized(), "not initialized");
3680   if (VerifyDuringStartup) {
3681     // Make sure we're starting with a clean slate.
3682     VM_Verify verify_op;
3683     VMThread::execute(&verify_op);
3684   }
3685 
3686   Thread* THREAD = Thread::current();
3687 
3688   // At this point, the Universe is initialized, but we have not executed
3689   // any byte code.  Now is a good time (the only time) to dump out the
3690   // internal state of the JVM for sharing.
3691   if (DumpSharedSpaces) {
3692     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3693     ShouldNotReachHere();
3694   }
3695 
3696   // Always call even when there are not JVMTI environments yet, since environments
3697   // may be attached late and JVMTI must track phases of VM execution
3698   JvmtiExport::enter_early_start_phase();
3699 
3700   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3701   JvmtiExport::post_early_vm_start();
3702 
3703   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3704 
3705   // We need this for ClassDataSharing - the initial vm.info property is set
3706   // with the default value of CDS "sharing" which may be reset through
3707   // command line options.
3708   reset_vm_info_property(CHECK_JNI_ERR);
3709 
3710   quicken_jni_functions();
3711 
3712   // No more stub generation allowed after that point.
3713   StubCodeDesc::freeze();
3714 
3715   // Set flag that basic initialization has completed. Used by exceptions and various
3716   // debug stuff, that does not work until all basic classes have been initialized.
3717   set_init_completed();
3718 
3719   LogConfiguration::post_initialize();
3720   Metaspace::post_initialize();
3721 
3722   HOTSPOT_VM_INIT_END();
3723 
3724   // record VM initialization completion time
3725 #if INCLUDE_MANAGEMENT
3726   Management::record_vm_init_completed();
3727 #endif // INCLUDE_MANAGEMENT
3728 
3729   // Signal Dispatcher needs to be started before VMInit event is posted
3730   os::signal_init(CHECK_JNI_ERR);
3731 
3732   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3733   if (!DisableAttachMechanism) {
3734     AttachListener::vm_start();
3735     if (StartAttachListener || AttachListener::init_at_startup()) {
3736       AttachListener::init();
3737     }
3738   }
3739 
3740   // Launch -Xrun agents
3741   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3742   // back-end can launch with -Xdebug -Xrunjdwp.
3743   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3744     create_vm_init_libraries();
3745   }
3746 
3747   if (CleanChunkPoolAsync) {
3748     Chunk::start_chunk_pool_cleaner_task();
3749   }
3750 
3751   // initialize compiler(s)
3752 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3753   CompileBroker::compilation_init(CHECK_JNI_ERR);
3754 #endif
3755 
3756   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3757   // It is done after compilers are initialized, because otherwise compilations of
3758   // signature polymorphic MH intrinsics can be missed
3759   // (see SystemDictionary::find_method_handle_intrinsic).
3760   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3761 
3762   // This will initialize the module system.  Only java.base classes can be
3763   // loaded until phase 2 completes
3764   call_initPhase2(CHECK_JNI_ERR);
3765 
3766   // Always call even when there are not JVMTI environments yet, since environments
3767   // may be attached late and JVMTI must track phases of VM execution
3768   JvmtiExport::enter_start_phase();
3769 
3770   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3771   JvmtiExport::post_vm_start();
3772 
3773   // Final system initialization including security manager and system class loader
3774   call_initPhase3(CHECK_JNI_ERR);
3775 
3776   // cache the system class loader
3777   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3778 
3779 #if INCLUDE_JVMCI
3780   if (EnableJVMCI) {
3781     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3782     // The JVMCI Java initialization code will read this flag and
3783     // do the printing if it's set.
3784     bool init = JVMCIPrintProperties;
3785 
3786     if (!init) {
3787       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3788       // compilations via JVMCI will not actually block until JVMCI is initialized.
3789       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3790     }
3791 
3792     if (init) {
3793       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3794     }
3795   }
3796 #endif
3797 
3798   // Always call even when there are not JVMTI environments yet, since environments
3799   // may be attached late and JVMTI must track phases of VM execution
3800   JvmtiExport::enter_live_phase();
3801 
3802   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3803   JvmtiExport::post_vm_initialized();
3804 
3805   if (TRACE_START() != JNI_OK) {
3806     vm_exit_during_initialization("Failed to start tracing backend.");
3807   }
3808 
3809 #if INCLUDE_MANAGEMENT
3810   Management::initialize(THREAD);
3811 
3812   if (HAS_PENDING_EXCEPTION) {
3813     // management agent fails to start possibly due to
3814     // configuration problem and is responsible for printing
3815     // stack trace if appropriate. Simply exit VM.
3816     vm_exit(1);
3817   }
3818 #endif // INCLUDE_MANAGEMENT
3819 
3820   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3821   if (MemProfiling)                   MemProfiler::engage();
3822   StatSampler::engage();
3823   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3824 
3825   BiasedLocking::init();
3826 
3827 #if INCLUDE_RTM_OPT
3828   RTMLockingCounters::init();
3829 #endif
3830 
3831   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3832     call_postVMInitHook(THREAD);
3833     // The Java side of PostVMInitHook.run must deal with all
3834     // exceptions and provide means of diagnosis.
3835     if (HAS_PENDING_EXCEPTION) {
3836       CLEAR_PENDING_EXCEPTION;
3837     }
3838   }
3839 
3840   {
3841     MutexLocker ml(PeriodicTask_lock);
3842     // Make sure the WatcherThread can be started by WatcherThread::start()
3843     // or by dynamic enrollment.
3844     WatcherThread::make_startable();
3845     // Start up the WatcherThread if there are any periodic tasks
3846     // NOTE:  All PeriodicTasks should be registered by now. If they
3847     //   aren't, late joiners might appear to start slowly (we might
3848     //   take a while to process their first tick).
3849     if (PeriodicTask::num_tasks() > 0) {
3850       WatcherThread::start();
3851     }
3852   }
3853 
3854   create_vm_timer.end();
3855 #ifdef ASSERT
3856   _vm_complete = true;
3857 #endif
3858   return JNI_OK;
3859 }
3860 
3861 // type for the Agent_OnLoad and JVM_OnLoad entry points
3862 extern "C" {
3863   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3864 }
3865 // Find a command line agent library and return its entry point for
3866 //         -agentlib:  -agentpath:   -Xrun
3867 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3868 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3869                                     const char *on_load_symbols[],
3870                                     size_t num_symbol_entries) {
3871   OnLoadEntry_t on_load_entry = NULL;
3872   void *library = NULL;
3873 
3874   if (!agent->valid()) {
3875     char buffer[JVM_MAXPATHLEN];
3876     char ebuf[1024] = "";
3877     const char *name = agent->name();
3878     const char *msg = "Could not find agent library ";
3879 
3880     // First check to see if agent is statically linked into executable
3881     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3882       library = agent->os_lib();
3883     } else if (agent->is_absolute_path()) {
3884       library = os::dll_load(name, ebuf, sizeof ebuf);
3885       if (library == NULL) {
3886         const char *sub_msg = " in absolute path, with error: ";
3887         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3888         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3889         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3890         // If we can't find the agent, exit.
3891         vm_exit_during_initialization(buf, NULL);
3892         FREE_C_HEAP_ARRAY(char, buf);
3893       }
3894     } else {
3895       // Try to load the agent from the standard dll directory
3896       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3897                              name)) {
3898         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3899       }
3900       if (library == NULL) { // Try the local directory
3901         char ns[1] = {0};
3902         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3903           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3904         }
3905         if (library == NULL) {
3906           const char *sub_msg = " on the library path, with error: ";
3907           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3908           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3909           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3910           // If we can't find the agent, exit.
3911           vm_exit_during_initialization(buf, NULL);
3912           FREE_C_HEAP_ARRAY(char, buf);
3913         }
3914       }
3915     }
3916     agent->set_os_lib(library);
3917     agent->set_valid();
3918   }
3919 
3920   // Find the OnLoad function.
3921   on_load_entry =
3922     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3923                                                           false,
3924                                                           on_load_symbols,
3925                                                           num_symbol_entries));
3926   return on_load_entry;
3927 }
3928 
3929 // Find the JVM_OnLoad entry point
3930 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3931   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3932   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3933 }
3934 
3935 // Find the Agent_OnLoad entry point
3936 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3937   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3938   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3939 }
3940 
3941 // For backwards compatibility with -Xrun
3942 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3943 // treated like -agentpath:
3944 // Must be called before agent libraries are created
3945 void Threads::convert_vm_init_libraries_to_agents() {
3946   AgentLibrary* agent;
3947   AgentLibrary* next;
3948 
3949   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3950     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3951     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3952 
3953     // If there is an JVM_OnLoad function it will get called later,
3954     // otherwise see if there is an Agent_OnLoad
3955     if (on_load_entry == NULL) {
3956       on_load_entry = lookup_agent_on_load(agent);
3957       if (on_load_entry != NULL) {
3958         // switch it to the agent list -- so that Agent_OnLoad will be called,
3959         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3960         Arguments::convert_library_to_agent(agent);
3961       } else {
3962         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3963       }
3964     }
3965   }
3966 }
3967 
3968 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3969 // Invokes Agent_OnLoad
3970 // Called very early -- before JavaThreads exist
3971 void Threads::create_vm_init_agents() {
3972   extern struct JavaVM_ main_vm;
3973   AgentLibrary* agent;
3974 
3975   JvmtiExport::enter_onload_phase();
3976 
3977   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3978     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3979 
3980     if (on_load_entry != NULL) {
3981       // Invoke the Agent_OnLoad function
3982       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3983       if (err != JNI_OK) {
3984         vm_exit_during_initialization("agent library failed to init", agent->name());
3985       }
3986     } else {
3987       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3988     }
3989   }
3990   JvmtiExport::enter_primordial_phase();
3991 }
3992 
3993 extern "C" {
3994   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3995 }
3996 
3997 void Threads::shutdown_vm_agents() {
3998   // Send any Agent_OnUnload notifications
3999   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4000   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4001   extern struct JavaVM_ main_vm;
4002   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4003 
4004     // Find the Agent_OnUnload function.
4005     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4006                                                    os::find_agent_function(agent,
4007                                                    false,
4008                                                    on_unload_symbols,
4009                                                    num_symbol_entries));
4010 
4011     // Invoke the Agent_OnUnload function
4012     if (unload_entry != NULL) {
4013       JavaThread* thread = JavaThread::current();
4014       ThreadToNativeFromVM ttn(thread);
4015       HandleMark hm(thread);
4016       (*unload_entry)(&main_vm);
4017     }
4018   }
4019 }
4020 
4021 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4022 // Invokes JVM_OnLoad
4023 void Threads::create_vm_init_libraries() {
4024   extern struct JavaVM_ main_vm;
4025   AgentLibrary* agent;
4026 
4027   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4028     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4029 
4030     if (on_load_entry != NULL) {
4031       // Invoke the JVM_OnLoad function
4032       JavaThread* thread = JavaThread::current();
4033       ThreadToNativeFromVM ttn(thread);
4034       HandleMark hm(thread);
4035       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4036       if (err != JNI_OK) {
4037         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4038       }
4039     } else {
4040       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4041     }
4042   }
4043 }
4044 
4045 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4046   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4047 
4048   JavaThread* java_thread = NULL;
4049   // Sequential search for now.  Need to do better optimization later.
4050   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4051     oop tobj = thread->threadObj();
4052     if (!thread->is_exiting() &&
4053         tobj != NULL &&
4054         java_tid == java_lang_Thread::thread_id(tobj)) {
4055       java_thread = thread;
4056       break;
4057     }
4058   }
4059   return java_thread;
4060 }
4061 
4062 
4063 // Last thread running calls java.lang.Shutdown.shutdown()
4064 void JavaThread::invoke_shutdown_hooks() {
4065   HandleMark hm(this);
4066 
4067   // We could get here with a pending exception, if so clear it now.
4068   if (this->has_pending_exception()) {
4069     this->clear_pending_exception();
4070   }
4071 
4072   EXCEPTION_MARK;
4073   Klass* shutdown_klass =
4074     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4075                                       THREAD);
4076   if (shutdown_klass != NULL) {
4077     // SystemDictionary::resolve_or_null will return null if there was
4078     // an exception.  If we cannot load the Shutdown class, just don't
4079     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4080     // and finalizers (if runFinalizersOnExit is set) won't be run.
4081     // Note that if a shutdown hook was registered or runFinalizersOnExit
4082     // was called, the Shutdown class would have already been loaded
4083     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4084     JavaValue result(T_VOID);
4085     JavaCalls::call_static(&result,
4086                            shutdown_klass,
4087                            vmSymbols::shutdown_method_name(),
4088                            vmSymbols::void_method_signature(),
4089                            THREAD);
4090   }
4091   CLEAR_PENDING_EXCEPTION;
4092 }
4093 
4094 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4095 // the program falls off the end of main(). Another VM exit path is through
4096 // vm_exit() when the program calls System.exit() to return a value or when
4097 // there is a serious error in VM. The two shutdown paths are not exactly
4098 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4099 // and VM_Exit op at VM level.
4100 //
4101 // Shutdown sequence:
4102 //   + Shutdown native memory tracking if it is on
4103 //   + Wait until we are the last non-daemon thread to execute
4104 //     <-- every thing is still working at this moment -->
4105 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4106 //        shutdown hooks, run finalizers if finalization-on-exit
4107 //   + Call before_exit(), prepare for VM exit
4108 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4109 //        currently the only user of this mechanism is File.deleteOnExit())
4110 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4111 //        post thread end and vm death events to JVMTI,
4112 //        stop signal thread
4113 //   + Call JavaThread::exit(), it will:
4114 //      > release JNI handle blocks, remove stack guard pages
4115 //      > remove this thread from Threads list
4116 //     <-- no more Java code from this thread after this point -->
4117 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4118 //     the compiler threads at safepoint
4119 //     <-- do not use anything that could get blocked by Safepoint -->
4120 //   + Disable tracing at JNI/JVM barriers
4121 //   + Set _vm_exited flag for threads that are still running native code
4122 //   + Delete this thread
4123 //   + Call exit_globals()
4124 //      > deletes tty
4125 //      > deletes PerfMemory resources
4126 //   + Return to caller
4127 
4128 bool Threads::destroy_vm() {
4129   JavaThread* thread = JavaThread::current();
4130 
4131 #ifdef ASSERT
4132   _vm_complete = false;
4133 #endif
4134   // Wait until we are the last non-daemon thread to execute
4135   { MutexLocker nu(Threads_lock);
4136     while (Threads::number_of_non_daemon_threads() > 1)
4137       // This wait should make safepoint checks, wait without a timeout,
4138       // and wait as a suspend-equivalent condition.
4139       //
4140       // Note: If the FlatProfiler is running and this thread is waiting
4141       // for another non-daemon thread to finish, then the FlatProfiler
4142       // is waiting for the external suspend request on this thread to
4143       // complete. wait_for_ext_suspend_completion() will eventually
4144       // timeout, but that takes time. Making this wait a suspend-
4145       // equivalent condition solves that timeout problem.
4146       //
4147       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4148                          Mutex::_as_suspend_equivalent_flag);
4149   }
4150 
4151   // Hang forever on exit if we are reporting an error.
4152   if (ShowMessageBoxOnError && is_error_reported()) {
4153     os::infinite_sleep();
4154   }
4155   os::wait_for_keypress_at_exit();
4156 
4157   // run Java level shutdown hooks
4158   thread->invoke_shutdown_hooks();
4159 
4160   before_exit(thread);
4161 
4162   thread->exit(true);
4163 
4164   // Stop VM thread.
4165   {
4166     // 4945125 The vm thread comes to a safepoint during exit.
4167     // GC vm_operations can get caught at the safepoint, and the
4168     // heap is unparseable if they are caught. Grab the Heap_lock
4169     // to prevent this. The GC vm_operations will not be able to
4170     // queue until after the vm thread is dead. After this point,
4171     // we'll never emerge out of the safepoint before the VM exits.
4172 
4173     MutexLocker ml(Heap_lock);
4174 
4175     VMThread::wait_for_vm_thread_exit();
4176     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4177     VMThread::destroy();
4178   }
4179 
4180   // clean up ideal graph printers
4181 #if defined(COMPILER2) && !defined(PRODUCT)
4182   IdealGraphPrinter::clean_up();
4183 #endif
4184 
4185   // Now, all Java threads are gone except daemon threads. Daemon threads
4186   // running Java code or in VM are stopped by the Safepoint. However,
4187   // daemon threads executing native code are still running.  But they
4188   // will be stopped at native=>Java/VM barriers. Note that we can't
4189   // simply kill or suspend them, as it is inherently deadlock-prone.
4190 
4191   VM_Exit::set_vm_exited();
4192 
4193   notify_vm_shutdown();
4194 
4195   delete thread;
4196 
4197 #if INCLUDE_JVMCI
4198   if (JVMCICounterSize > 0) {
4199     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4200   }
4201 #endif
4202 
4203   // exit_globals() will delete tty
4204   exit_globals();
4205 
4206   LogConfiguration::finalize();
4207 
4208   return true;
4209 }
4210 
4211 
4212 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4213   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4214   return is_supported_jni_version(version);
4215 }
4216 
4217 
4218 jboolean Threads::is_supported_jni_version(jint version) {
4219   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4220   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4221   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4222   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4223   if (version == JNI_VERSION_9) return JNI_TRUE;
4224   return JNI_FALSE;
4225 }
4226 
4227 
4228 void Threads::add(JavaThread* p, bool force_daemon) {
4229   // The threads lock must be owned at this point
4230   assert_locked_or_safepoint(Threads_lock);
4231 
4232   // See the comment for this method in thread.hpp for its purpose and
4233   // why it is called here.
4234   p->initialize_queues();
4235   p->set_next(_thread_list);
4236   _thread_list = p;
4237   _number_of_threads++;
4238   oop threadObj = p->threadObj();
4239   bool daemon = true;
4240   // Bootstrapping problem: threadObj can be null for initial
4241   // JavaThread (or for threads attached via JNI)
4242   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4243     _number_of_non_daemon_threads++;
4244     daemon = false;
4245   }
4246 
4247   ThreadService::add_thread(p, daemon);
4248 
4249   // Possible GC point.
4250   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4251 }
4252 
4253 void Threads::remove(JavaThread* p) {
4254   // Extra scope needed for Thread_lock, so we can check
4255   // that we do not remove thread without safepoint code notice
4256   { MutexLocker ml(Threads_lock);
4257 
4258     assert(includes(p), "p must be present");
4259 
4260     JavaThread* current = _thread_list;
4261     JavaThread* prev    = NULL;
4262 
4263     while (current != p) {
4264       prev    = current;
4265       current = current->next();
4266     }
4267 
4268     if (prev) {
4269       prev->set_next(current->next());
4270     } else {
4271       _thread_list = p->next();
4272     }
4273     _number_of_threads--;
4274     oop threadObj = p->threadObj();
4275     bool daemon = true;
4276     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4277       _number_of_non_daemon_threads--;
4278       daemon = false;
4279 
4280       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4281       // on destroy_vm will wake up.
4282       if (number_of_non_daemon_threads() == 1) {
4283         Threads_lock->notify_all();
4284       }
4285     }
4286     ThreadService::remove_thread(p, daemon);
4287 
4288     // Make sure that safepoint code disregard this thread. This is needed since
4289     // the thread might mess around with locks after this point. This can cause it
4290     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4291     // of this thread since it is removed from the queue.
4292     p->set_terminated_value();
4293   } // unlock Threads_lock
4294 
4295   // Since Events::log uses a lock, we grab it outside the Threads_lock
4296   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4297 }
4298 
4299 // Threads_lock must be held when this is called (or must be called during a safepoint)
4300 bool Threads::includes(JavaThread* p) {
4301   assert(Threads_lock->is_locked(), "sanity check");
4302   ALL_JAVA_THREADS(q) {
4303     if (q == p) {
4304       return true;
4305     }
4306   }
4307   return false;
4308 }
4309 
4310 // Operations on the Threads list for GC.  These are not explicitly locked,
4311 // but the garbage collector must provide a safe context for them to run.
4312 // In particular, these things should never be called when the Threads_lock
4313 // is held by some other thread. (Note: the Safepoint abstraction also
4314 // uses the Threads_lock to guarantee this property. It also makes sure that
4315 // all threads gets blocked when exiting or starting).
4316 
4317 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4318   ALL_JAVA_THREADS(p) {
4319     p->oops_do(f, cf);
4320   }
4321   VMThread::vm_thread()->oops_do(f, cf);
4322 }
4323 
4324 void Threads::change_thread_claim_parity() {
4325   // Set the new claim parity.
4326   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4327          "Not in range.");
4328   _thread_claim_parity++;
4329   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4330   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4331          "Not in range.");
4332 }
4333 
4334 #ifdef ASSERT
4335 void Threads::assert_all_threads_claimed() {
4336   ALL_JAVA_THREADS(p) {
4337     const int thread_parity = p->oops_do_parity();
4338     assert((thread_parity == _thread_claim_parity),
4339            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4340   }
4341 }
4342 #endif // ASSERT
4343 
4344 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4345   int cp = Threads::thread_claim_parity();
4346   ALL_JAVA_THREADS(p) {
4347     if (p->claim_oops_do(is_par, cp)) {
4348       p->oops_do(f, cf);
4349     }
4350   }
4351   VMThread* vmt = VMThread::vm_thread();
4352   if (vmt->claim_oops_do(is_par, cp)) {
4353     vmt->oops_do(f, cf);
4354   }
4355 }
4356 
4357 #if INCLUDE_ALL_GCS
4358 // Used by ParallelScavenge
4359 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4360   ALL_JAVA_THREADS(p) {
4361     q->enqueue(new ThreadRootsTask(p));
4362   }
4363   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4364 }
4365 
4366 // Used by Parallel Old
4367 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4368   ALL_JAVA_THREADS(p) {
4369     q->enqueue(new ThreadRootsMarkingTask(p));
4370   }
4371   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4372 }
4373 #endif // INCLUDE_ALL_GCS
4374 
4375 void Threads::nmethods_do(CodeBlobClosure* cf) {
4376   ALL_JAVA_THREADS(p) {
4377     // This is used by the code cache sweeper to mark nmethods that are active
4378     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4379     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4380     if(!p->is_Code_cache_sweeper_thread()) {
4381       p->nmethods_do(cf);
4382     }
4383   }
4384 }
4385 
4386 void Threads::metadata_do(void f(Metadata*)) {
4387   ALL_JAVA_THREADS(p) {
4388     p->metadata_do(f);
4389   }
4390 }
4391 
4392 class ThreadHandlesClosure : public ThreadClosure {
4393   void (*_f)(Metadata*);
4394  public:
4395   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4396   virtual void do_thread(Thread* thread) {
4397     thread->metadata_handles_do(_f);
4398   }
4399 };
4400 
4401 void Threads::metadata_handles_do(void f(Metadata*)) {
4402   // Only walk the Handles in Thread.
4403   ThreadHandlesClosure handles_closure(f);
4404   threads_do(&handles_closure);
4405 }
4406 
4407 void Threads::deoptimized_wrt_marked_nmethods() {
4408   ALL_JAVA_THREADS(p) {
4409     p->deoptimized_wrt_marked_nmethods();
4410   }
4411 }
4412 
4413 
4414 // Get count Java threads that are waiting to enter the specified monitor.
4415 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4416                                                          address monitor,
4417                                                          bool doLock) {
4418   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4419          "must grab Threads_lock or be at safepoint");
4420   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4421 
4422   int i = 0;
4423   {
4424     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4425     ALL_JAVA_THREADS(p) {
4426       if (!p->can_call_java()) continue;
4427 
4428       address pending = (address)p->current_pending_monitor();
4429       if (pending == monitor) {             // found a match
4430         if (i < count) result->append(p);   // save the first count matches
4431         i++;
4432       }
4433     }
4434   }
4435   return result;
4436 }
4437 
4438 
4439 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4440                                                       bool doLock) {
4441   assert(doLock ||
4442          Threads_lock->owned_by_self() ||
4443          SafepointSynchronize::is_at_safepoint(),
4444          "must grab Threads_lock or be at safepoint");
4445 
4446   // NULL owner means not locked so we can skip the search
4447   if (owner == NULL) return NULL;
4448 
4449   {
4450     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4451     ALL_JAVA_THREADS(p) {
4452       // first, see if owner is the address of a Java thread
4453       if (owner == (address)p) return p;
4454     }
4455   }
4456   // Cannot assert on lack of success here since this function may be
4457   // used by code that is trying to report useful problem information
4458   // like deadlock detection.
4459   if (UseHeavyMonitors) return NULL;
4460 
4461   // If we didn't find a matching Java thread and we didn't force use of
4462   // heavyweight monitors, then the owner is the stack address of the
4463   // Lock Word in the owning Java thread's stack.
4464   //
4465   JavaThread* the_owner = NULL;
4466   {
4467     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4468     ALL_JAVA_THREADS(q) {
4469       if (q->is_lock_owned(owner)) {
4470         the_owner = q;
4471         break;
4472       }
4473     }
4474   }
4475   // cannot assert on lack of success here; see above comment
4476   return the_owner;
4477 }
4478 
4479 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4480 void Threads::print_on(outputStream* st, bool print_stacks,
4481                        bool internal_format, bool print_concurrent_locks) {
4482   char buf[32];
4483   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4484 
4485   st->print_cr("Full thread dump %s (%s %s):",
4486                Abstract_VM_Version::vm_name(),
4487                Abstract_VM_Version::vm_release(),
4488                Abstract_VM_Version::vm_info_string());
4489   st->cr();
4490 
4491 #if INCLUDE_SERVICES
4492   // Dump concurrent locks
4493   ConcurrentLocksDump concurrent_locks;
4494   if (print_concurrent_locks) {
4495     concurrent_locks.dump_at_safepoint();
4496   }
4497 #endif // INCLUDE_SERVICES
4498 
4499   ALL_JAVA_THREADS(p) {
4500     ResourceMark rm;
4501     p->print_on(st);
4502     if (print_stacks) {
4503       if (internal_format) {
4504         p->trace_stack();
4505       } else {
4506         p->print_stack_on(st);
4507       }
4508     }
4509     st->cr();
4510 #if INCLUDE_SERVICES
4511     if (print_concurrent_locks) {
4512       concurrent_locks.print_locks_on(p, st);
4513     }
4514 #endif // INCLUDE_SERVICES
4515   }
4516 
4517   VMThread::vm_thread()->print_on(st);
4518   st->cr();
4519   Universe::heap()->print_gc_threads_on(st);
4520   WatcherThread* wt = WatcherThread::watcher_thread();
4521   if (wt != NULL) {
4522     wt->print_on(st);
4523     st->cr();
4524   }
4525   st->flush();
4526 }
4527 
4528 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4529                              int buflen, bool* found_current) {
4530   if (this_thread != NULL) {
4531     bool is_current = (current == this_thread);
4532     *found_current = *found_current || is_current;
4533     st->print("%s", is_current ? "=>" : "  ");
4534 
4535     st->print(PTR_FORMAT, p2i(this_thread));
4536     st->print(" ");
4537     this_thread->print_on_error(st, buf, buflen);
4538     st->cr();
4539   }
4540 }
4541 
4542 class PrintOnErrorClosure : public ThreadClosure {
4543   outputStream* _st;
4544   Thread* _current;
4545   char* _buf;
4546   int _buflen;
4547   bool* _found_current;
4548  public:
4549   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4550                       int buflen, bool* found_current) :
4551    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4552 
4553   virtual void do_thread(Thread* thread) {
4554     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4555   }
4556 };
4557 
4558 // Threads::print_on_error() is called by fatal error handler. It's possible
4559 // that VM is not at safepoint and/or current thread is inside signal handler.
4560 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4561 // memory (even in resource area), it might deadlock the error handler.
4562 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4563                              int buflen) {
4564   bool found_current = false;
4565   st->print_cr("Java Threads: ( => current thread )");
4566   ALL_JAVA_THREADS(thread) {
4567     print_on_error(thread, st, current, buf, buflen, &found_current);
4568   }
4569   st->cr();
4570 
4571   st->print_cr("Other Threads:");
4572   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4573   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4574 
4575   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4576   Universe::heap()->gc_threads_do(&print_closure);
4577 
4578   if (!found_current) {
4579     st->cr();
4580     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4581     current->print_on_error(st, buf, buflen);
4582     st->cr();
4583   }
4584   st->cr();
4585   st->print_cr("Threads with active compile tasks:");
4586   print_threads_compiling(st, buf, buflen);
4587 }
4588 
4589 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4590   ALL_JAVA_THREADS(thread) {
4591     if (thread->is_Compiler_thread()) {
4592       CompilerThread* ct = (CompilerThread*) thread;
4593       if (ct->task() != NULL) {
4594         thread->print_name_on_error(st, buf, buflen);
4595         ct->task()->print(st, NULL, true, true);
4596       }
4597     }
4598   }
4599 }
4600 
4601 
4602 // Internal SpinLock and Mutex
4603 // Based on ParkEvent
4604 
4605 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4606 //
4607 // We employ SpinLocks _only for low-contention, fixed-length
4608 // short-duration critical sections where we're concerned
4609 // about native mutex_t or HotSpot Mutex:: latency.
4610 // The mux construct provides a spin-then-block mutual exclusion
4611 // mechanism.
4612 //
4613 // Testing has shown that contention on the ListLock guarding gFreeList
4614 // is common.  If we implement ListLock as a simple SpinLock it's common
4615 // for the JVM to devolve to yielding with little progress.  This is true
4616 // despite the fact that the critical sections protected by ListLock are
4617 // extremely short.
4618 //
4619 // TODO-FIXME: ListLock should be of type SpinLock.
4620 // We should make this a 1st-class type, integrated into the lock
4621 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4622 // should have sufficient padding to avoid false-sharing and excessive
4623 // cache-coherency traffic.
4624 
4625 
4626 typedef volatile int SpinLockT;
4627 
4628 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4629   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4630     return;   // normal fast-path return
4631   }
4632 
4633   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4634   TEVENT(SpinAcquire - ctx);
4635   int ctr = 0;
4636   int Yields = 0;
4637   for (;;) {
4638     while (*adr != 0) {
4639       ++ctr;
4640       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4641         if (Yields > 5) {
4642           os::naked_short_sleep(1);
4643         } else {
4644           os::naked_yield();
4645           ++Yields;
4646         }
4647       } else {
4648         SpinPause();
4649       }
4650     }
4651     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4652   }
4653 }
4654 
4655 void Thread::SpinRelease(volatile int * adr) {
4656   assert(*adr != 0, "invariant");
4657   OrderAccess::fence();      // guarantee at least release consistency.
4658   // Roach-motel semantics.
4659   // It's safe if subsequent LDs and STs float "up" into the critical section,
4660   // but prior LDs and STs within the critical section can't be allowed
4661   // to reorder or float past the ST that releases the lock.
4662   // Loads and stores in the critical section - which appear in program
4663   // order before the store that releases the lock - must also appear
4664   // before the store that releases the lock in memory visibility order.
4665   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4666   // the ST of 0 into the lock-word which releases the lock, so fence
4667   // more than covers this on all platforms.
4668   *adr = 0;
4669 }
4670 
4671 // muxAcquire and muxRelease:
4672 //
4673 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4674 //    The LSB of the word is set IFF the lock is held.
4675 //    The remainder of the word points to the head of a singly-linked list
4676 //    of threads blocked on the lock.
4677 //
4678 // *  The current implementation of muxAcquire-muxRelease uses its own
4679 //    dedicated Thread._MuxEvent instance.  If we're interested in
4680 //    minimizing the peak number of extant ParkEvent instances then
4681 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4682 //    as certain invariants were satisfied.  Specifically, care would need
4683 //    to be taken with regards to consuming unpark() "permits".
4684 //    A safe rule of thumb is that a thread would never call muxAcquire()
4685 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4686 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4687 //    consume an unpark() permit intended for monitorenter, for instance.
4688 //    One way around this would be to widen the restricted-range semaphore
4689 //    implemented in park().  Another alternative would be to provide
4690 //    multiple instances of the PlatformEvent() for each thread.  One
4691 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4692 //
4693 // *  Usage:
4694 //    -- Only as leaf locks
4695 //    -- for short-term locking only as muxAcquire does not perform
4696 //       thread state transitions.
4697 //
4698 // Alternatives:
4699 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4700 //    but with parking or spin-then-park instead of pure spinning.
4701 // *  Use Taura-Oyama-Yonenzawa locks.
4702 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4703 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4704 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4705 //    acquiring threads use timers (ParkTimed) to detect and recover from
4706 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4707 //    boundaries by using placement-new.
4708 // *  Augment MCS with advisory back-link fields maintained with CAS().
4709 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4710 //    The validity of the backlinks must be ratified before we trust the value.
4711 //    If the backlinks are invalid the exiting thread must back-track through the
4712 //    the forward links, which are always trustworthy.
4713 // *  Add a successor indication.  The LockWord is currently encoded as
4714 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4715 //    to provide the usual futile-wakeup optimization.
4716 //    See RTStt for details.
4717 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4718 //
4719 
4720 
4721 typedef volatile intptr_t MutexT;      // Mux Lock-word
4722 enum MuxBits { LOCKBIT = 1 };
4723 
4724 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4725   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4726   if (w == 0) return;
4727   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4728     return;
4729   }
4730 
4731   TEVENT(muxAcquire - Contention);
4732   ParkEvent * const Self = Thread::current()->_MuxEvent;
4733   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4734   for (;;) {
4735     int its = (os::is_MP() ? 100 : 0) + 1;
4736 
4737     // Optional spin phase: spin-then-park strategy
4738     while (--its >= 0) {
4739       w = *Lock;
4740       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4741         return;
4742       }
4743     }
4744 
4745     Self->reset();
4746     Self->OnList = intptr_t(Lock);
4747     // The following fence() isn't _strictly necessary as the subsequent
4748     // CAS() both serializes execution and ratifies the fetched *Lock value.
4749     OrderAccess::fence();
4750     for (;;) {
4751       w = *Lock;
4752       if ((w & LOCKBIT) == 0) {
4753         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4754           Self->OnList = 0;   // hygiene - allows stronger asserts
4755           return;
4756         }
4757         continue;      // Interference -- *Lock changed -- Just retry
4758       }
4759       assert(w & LOCKBIT, "invariant");
4760       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4761       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4762     }
4763 
4764     while (Self->OnList != 0) {
4765       Self->park();
4766     }
4767   }
4768 }
4769 
4770 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4771   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4772   if (w == 0) return;
4773   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4774     return;
4775   }
4776 
4777   TEVENT(muxAcquire - Contention);
4778   ParkEvent * ReleaseAfter = NULL;
4779   if (ev == NULL) {
4780     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4781   }
4782   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4783   for (;;) {
4784     guarantee(ev->OnList == 0, "invariant");
4785     int its = (os::is_MP() ? 100 : 0) + 1;
4786 
4787     // Optional spin phase: spin-then-park strategy
4788     while (--its >= 0) {
4789       w = *Lock;
4790       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4791         if (ReleaseAfter != NULL) {
4792           ParkEvent::Release(ReleaseAfter);
4793         }
4794         return;
4795       }
4796     }
4797 
4798     ev->reset();
4799     ev->OnList = intptr_t(Lock);
4800     // The following fence() isn't _strictly necessary as the subsequent
4801     // CAS() both serializes execution and ratifies the fetched *Lock value.
4802     OrderAccess::fence();
4803     for (;;) {
4804       w = *Lock;
4805       if ((w & LOCKBIT) == 0) {
4806         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4807           ev->OnList = 0;
4808           // We call ::Release while holding the outer lock, thus
4809           // artificially lengthening the critical section.
4810           // Consider deferring the ::Release() until the subsequent unlock(),
4811           // after we've dropped the outer lock.
4812           if (ReleaseAfter != NULL) {
4813             ParkEvent::Release(ReleaseAfter);
4814           }
4815           return;
4816         }
4817         continue;      // Interference -- *Lock changed -- Just retry
4818       }
4819       assert(w & LOCKBIT, "invariant");
4820       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4821       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4822     }
4823 
4824     while (ev->OnList != 0) {
4825       ev->park();
4826     }
4827   }
4828 }
4829 
4830 // Release() must extract a successor from the list and then wake that thread.
4831 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4832 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4833 // Release() would :
4834 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4835 // (B) Extract a successor from the private list "in-hand"
4836 // (C) attempt to CAS() the residual back into *Lock over null.
4837 //     If there were any newly arrived threads and the CAS() would fail.
4838 //     In that case Release() would detach the RATs, re-merge the list in-hand
4839 //     with the RATs and repeat as needed.  Alternately, Release() might
4840 //     detach and extract a successor, but then pass the residual list to the wakee.
4841 //     The wakee would be responsible for reattaching and remerging before it
4842 //     competed for the lock.
4843 //
4844 // Both "pop" and DMR are immune from ABA corruption -- there can be
4845 // multiple concurrent pushers, but only one popper or detacher.
4846 // This implementation pops from the head of the list.  This is unfair,
4847 // but tends to provide excellent throughput as hot threads remain hot.
4848 // (We wake recently run threads first).
4849 //
4850 // All paths through muxRelease() will execute a CAS.
4851 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4852 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4853 // executed within the critical section are complete and globally visible before the
4854 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4855 void Thread::muxRelease(volatile intptr_t * Lock)  {
4856   for (;;) {
4857     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4858     assert(w & LOCKBIT, "invariant");
4859     if (w == LOCKBIT) return;
4860     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4861     assert(List != NULL, "invariant");
4862     assert(List->OnList == intptr_t(Lock), "invariant");
4863     ParkEvent * const nxt = List->ListNext;
4864     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4865 
4866     // The following CAS() releases the lock and pops the head element.
4867     // The CAS() also ratifies the previously fetched lock-word value.
4868     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4869       continue;
4870     }
4871     List->OnList = 0;
4872     OrderAccess::fence();
4873     List->unpark();
4874     return;
4875   }
4876 }
4877 
4878 
4879 void Threads::verify() {
4880   ALL_JAVA_THREADS(p) {
4881     p->verify();
4882   }
4883   VMThread* thread = VMThread::vm_thread();
4884   if (thread != NULL) thread->verify();
4885 }