1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/cms/concurrentMarkSweepThread.hpp"
 105 #include "gc/g1/concurrentMarkThread.inline.hpp"
 106 #include "gc/parallel/pcTasks.hpp"
 107 #endif // INCLUDE_ALL_GCS
 108 #if INCLUDE_JVMCI
 109 #include "jvmci/jvmciCompiler.hpp"
 110 #include "jvmci/jvmciRuntime.hpp"
 111 #endif
 112 #ifdef COMPILER1
 113 #include "c1/c1_Compiler.hpp"
 114 #endif
 115 #ifdef COMPILER2
 116 #include "opto/c2compiler.hpp"
 117 #include "opto/idealGraphPrinter.hpp"
 118 #endif
 119 #if INCLUDE_RTM_OPT
 120 #include "runtime/rtmLocking.hpp"
 121 #endif
 122 
 123 // Initialization after module runtime initialization
 124 void universe_post_module_init();  // must happen after call_initPhase2
 125 
 126 #ifdef DTRACE_ENABLED
 127 
 128 // Only bother with this argument setup if dtrace is available
 129 
 130   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 131   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 132 
 133   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 134     {                                                                      \
 135       ResourceMark rm(this);                                               \
 136       int len = 0;                                                         \
 137       const char* name = (javathread)->get_thread_name();                  \
 138       len = strlen(name);                                                  \
 139       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 140         (char *) name, len,                                                \
 141         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 142         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 143         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 144     }
 145 
 146 #else //  ndef DTRACE_ENABLED
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)
 149 
 150 #endif // ndef DTRACE_ENABLED
 151 
 152 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 153 // Current thread is maintained as a thread-local variable
 154 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 155 #endif
 156 // Class hierarchy
 157 // - Thread
 158 //   - VMThread
 159 //   - WatcherThread
 160 //   - ConcurrentMarkSweepThread
 161 //   - JavaThread
 162 //     - CompilerThread
 163 
 164 // ======= Thread ========
 165 // Support for forcing alignment of thread objects for biased locking
 166 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 167   if (UseBiasedLocking) {
 168     const int alignment = markOopDesc::biased_lock_alignment;
 169     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 170     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 171                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 172                                                          AllocFailStrategy::RETURN_NULL);
 173     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 174     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 175            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 176            "JavaThread alignment code overflowed allocated storage");
 177     if (aligned_addr != real_malloc_addr) {
 178       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 179                               p2i(real_malloc_addr),
 180                               p2i(aligned_addr));
 181     }
 182     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 183     return aligned_addr;
 184   } else {
 185     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 186                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 187   }
 188 }
 189 
 190 void Thread::operator delete(void* p) {
 191   if (UseBiasedLocking) {
 192     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 193     FreeHeap(real_malloc_addr);
 194   } else {
 195     FreeHeap(p);
 196   }
 197 }
 198 
 199 
 200 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 201 // JavaThread
 202 
 203 
 204 Thread::Thread() {
 205   // stack and get_thread
 206   set_stack_base(NULL);
 207   set_stack_size(0);
 208   set_self_raw_id(0);
 209   set_lgrp_id(-1);
 210   DEBUG_ONLY(clear_suspendible_thread();)
 211 
 212   // allocated data structures
 213   set_osthread(NULL);
 214   set_resource_area(new (mtThread)ResourceArea());
 215   DEBUG_ONLY(_current_resource_mark = NULL;)
 216   set_handle_area(new (mtThread) HandleArea(NULL));
 217   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 218   set_active_handles(NULL);
 219   set_free_handle_block(NULL);
 220   set_last_handle_mark(NULL);
 221 
 222   // This initial value ==> never claimed.
 223   _oops_do_parity = 0;
 224 
 225   // the handle mark links itself to last_handle_mark
 226   new HandleMark(this);
 227 
 228   // plain initialization
 229   debug_only(_owned_locks = NULL;)
 230   debug_only(_allow_allocation_count = 0;)
 231   NOT_PRODUCT(_allow_safepoint_count = 0;)
 232   NOT_PRODUCT(_skip_gcalot = false;)
 233   _jvmti_env_iteration_count = 0;
 234   set_allocated_bytes(0);
 235   _vm_operation_started_count = 0;
 236   _vm_operation_completed_count = 0;
 237   _current_pending_monitor = NULL;
 238   _current_pending_monitor_is_from_java = true;
 239   _current_waiting_monitor = NULL;
 240   _num_nested_signal = 0;
 241   omFreeList = NULL;
 242   omFreeCount = 0;
 243   omFreeProvision = 32;
 244   omInUseList = NULL;
 245   omInUseCount = 0;
 246 
 247 #ifdef ASSERT
 248   _visited_for_critical_count = false;
 249 #endif
 250 
 251   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 252                          Monitor::_safepoint_check_sometimes);
 253   _suspend_flags = 0;
 254 
 255   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 256   _hashStateX = os::random();
 257   _hashStateY = 842502087;
 258   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 259   _hashStateW = 273326509;
 260 
 261   _OnTrap   = 0;
 262   _schedctl = NULL;
 263   _Stalled  = 0;
 264   _TypeTag  = 0x2BAD;
 265 
 266   // Many of the following fields are effectively final - immutable
 267   // Note that nascent threads can't use the Native Monitor-Mutex
 268   // construct until the _MutexEvent is initialized ...
 269   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 270   // we might instead use a stack of ParkEvents that we could provision on-demand.
 271   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 272   // and ::Release()
 273   _ParkEvent   = ParkEvent::Allocate(this);
 274   _SleepEvent  = ParkEvent::Allocate(this);
 275   _MutexEvent  = ParkEvent::Allocate(this);
 276   _MuxEvent    = ParkEvent::Allocate(this);
 277 
 278 #ifdef CHECK_UNHANDLED_OOPS
 279   if (CheckUnhandledOops) {
 280     _unhandled_oops = new UnhandledOops(this);
 281   }
 282 #endif // CHECK_UNHANDLED_OOPS
 283 #ifdef ASSERT
 284   if (UseBiasedLocking) {
 285     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 286     assert(this == _real_malloc_address ||
 287            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 288            "bug in forced alignment of thread objects");
 289   }
 290 #endif // ASSERT
 291 }
 292 
 293 void Thread::initialize_thread_current() {
 294 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 295   assert(_thr_current == NULL, "Thread::current already initialized");
 296   _thr_current = this;
 297 #endif
 298   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 299   ThreadLocalStorage::set_thread(this);
 300   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 301 }
 302 
 303 void Thread::clear_thread_current() {
 304   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 305 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 306   _thr_current = NULL;
 307 #endif
 308   ThreadLocalStorage::set_thread(NULL);
 309 }
 310 
 311 void Thread::record_stack_base_and_size() {
 312   set_stack_base(os::current_stack_base());
 313   set_stack_size(os::current_stack_size());
 314   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 315   // in initialize_thread(). Without the adjustment, stack size is
 316   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 317   // So far, only Solaris has real implementation of initialize_thread().
 318   //
 319   // set up any platform-specific state.
 320   os::initialize_thread(this);
 321 
 322   // Set stack limits after thread is initialized.
 323   if (is_Java_thread()) {
 324     ((JavaThread*) this)->set_stack_overflow_limit();
 325     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 326   }
 327 #if INCLUDE_NMT
 328   // record thread's native stack, stack grows downward
 329   MemTracker::record_thread_stack(stack_end(), stack_size());
 330 #endif // INCLUDE_NMT
 331   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 332     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 333     os::current_thread_id(), p2i(stack_base() - stack_size()),
 334     p2i(stack_base()), stack_size()/1024);
 335 }
 336 
 337 
 338 Thread::~Thread() {
 339   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 340   ObjectSynchronizer::omFlush(this);
 341 
 342   EVENT_THREAD_DESTRUCT(this);
 343 
 344   // stack_base can be NULL if the thread is never started or exited before
 345   // record_stack_base_and_size called. Although, we would like to ensure
 346   // that all started threads do call record_stack_base_and_size(), there is
 347   // not proper way to enforce that.
 348 #if INCLUDE_NMT
 349   if (_stack_base != NULL) {
 350     MemTracker::release_thread_stack(stack_end(), stack_size());
 351 #ifdef ASSERT
 352     set_stack_base(NULL);
 353 #endif
 354   }
 355 #endif // INCLUDE_NMT
 356 
 357   // deallocate data structures
 358   delete resource_area();
 359   // since the handle marks are using the handle area, we have to deallocated the root
 360   // handle mark before deallocating the thread's handle area,
 361   assert(last_handle_mark() != NULL, "check we have an element");
 362   delete last_handle_mark();
 363   assert(last_handle_mark() == NULL, "check we have reached the end");
 364 
 365   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 366   // We NULL out the fields for good hygiene.
 367   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 368   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 369   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 370   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 371 
 372   delete handle_area();
 373   delete metadata_handles();
 374 
 375   // SR_handler uses this as a termination indicator -
 376   // needs to happen before os::free_thread()
 377   delete _SR_lock;
 378   _SR_lock = NULL;
 379 
 380   // osthread() can be NULL, if creation of thread failed.
 381   if (osthread() != NULL) os::free_thread(osthread());
 382 
 383   // clear Thread::current if thread is deleting itself.
 384   // Needed to ensure JNI correctly detects non-attached threads.
 385   if (this == Thread::current()) {
 386     clear_thread_current();
 387   }
 388 
 389   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 390 }
 391 
 392 // NOTE: dummy function for assertion purpose.
 393 void Thread::run() {
 394   ShouldNotReachHere();
 395 }
 396 
 397 #ifdef ASSERT
 398 // Private method to check for dangling thread pointer
 399 void check_for_dangling_thread_pointer(Thread *thread) {
 400   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 401          "possibility of dangling Thread pointer");
 402 }
 403 #endif
 404 
 405 ThreadPriority Thread::get_priority(const Thread* const thread) {
 406   ThreadPriority priority;
 407   // Can return an error!
 408   (void)os::get_priority(thread, priority);
 409   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 410   return priority;
 411 }
 412 
 413 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 414   debug_only(check_for_dangling_thread_pointer(thread);)
 415   // Can return an error!
 416   (void)os::set_priority(thread, priority);
 417 }
 418 
 419 
 420 void Thread::start(Thread* thread) {
 421   // Start is different from resume in that its safety is guaranteed by context or
 422   // being called from a Java method synchronized on the Thread object.
 423   if (!DisableStartThread) {
 424     if (thread->is_Java_thread()) {
 425       // Initialize the thread state to RUNNABLE before starting this thread.
 426       // Can not set it after the thread started because we do not know the
 427       // exact thread state at that time. It could be in MONITOR_WAIT or
 428       // in SLEEPING or some other state.
 429       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 430                                           java_lang_Thread::RUNNABLE);
 431     }
 432     os::start_thread(thread);
 433   }
 434 }
 435 
 436 // Enqueue a VM_Operation to do the job for us - sometime later
 437 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 438   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 439   VMThread::execute(vm_stop);
 440 }
 441 
 442 
 443 // Check if an external suspend request has completed (or has been
 444 // cancelled). Returns true if the thread is externally suspended and
 445 // false otherwise.
 446 //
 447 // The bits parameter returns information about the code path through
 448 // the routine. Useful for debugging:
 449 //
 450 // set in is_ext_suspend_completed():
 451 // 0x00000001 - routine was entered
 452 // 0x00000010 - routine return false at end
 453 // 0x00000100 - thread exited (return false)
 454 // 0x00000200 - suspend request cancelled (return false)
 455 // 0x00000400 - thread suspended (return true)
 456 // 0x00001000 - thread is in a suspend equivalent state (return true)
 457 // 0x00002000 - thread is native and walkable (return true)
 458 // 0x00004000 - thread is native_trans and walkable (needed retry)
 459 //
 460 // set in wait_for_ext_suspend_completion():
 461 // 0x00010000 - routine was entered
 462 // 0x00020000 - suspend request cancelled before loop (return false)
 463 // 0x00040000 - thread suspended before loop (return true)
 464 // 0x00080000 - suspend request cancelled in loop (return false)
 465 // 0x00100000 - thread suspended in loop (return true)
 466 // 0x00200000 - suspend not completed during retry loop (return false)
 467 
 468 // Helper class for tracing suspend wait debug bits.
 469 //
 470 // 0x00000100 indicates that the target thread exited before it could
 471 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 472 // 0x00080000 each indicate a cancelled suspend request so they don't
 473 // count as wait failures either.
 474 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 475 
 476 class TraceSuspendDebugBits : public StackObj {
 477  private:
 478   JavaThread * jt;
 479   bool         is_wait;
 480   bool         called_by_wait;  // meaningful when !is_wait
 481   uint32_t *   bits;
 482 
 483  public:
 484   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 485                         uint32_t *_bits) {
 486     jt             = _jt;
 487     is_wait        = _is_wait;
 488     called_by_wait = _called_by_wait;
 489     bits           = _bits;
 490   }
 491 
 492   ~TraceSuspendDebugBits() {
 493     if (!is_wait) {
 494 #if 1
 495       // By default, don't trace bits for is_ext_suspend_completed() calls.
 496       // That trace is very chatty.
 497       return;
 498 #else
 499       if (!called_by_wait) {
 500         // If tracing for is_ext_suspend_completed() is enabled, then only
 501         // trace calls to it from wait_for_ext_suspend_completion()
 502         return;
 503       }
 504 #endif
 505     }
 506 
 507     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 508       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 509         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 510         ResourceMark rm;
 511 
 512         tty->print_cr(
 513                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 514                       jt->get_thread_name(), *bits);
 515 
 516         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 517       }
 518     }
 519   }
 520 };
 521 #undef DEBUG_FALSE_BITS
 522 
 523 
 524 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 525                                           uint32_t *bits) {
 526   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 527 
 528   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 529   bool do_trans_retry;           // flag to force the retry
 530 
 531   *bits |= 0x00000001;
 532 
 533   do {
 534     do_trans_retry = false;
 535 
 536     if (is_exiting()) {
 537       // Thread is in the process of exiting. This is always checked
 538       // first to reduce the risk of dereferencing a freed JavaThread.
 539       *bits |= 0x00000100;
 540       return false;
 541     }
 542 
 543     if (!is_external_suspend()) {
 544       // Suspend request is cancelled. This is always checked before
 545       // is_ext_suspended() to reduce the risk of a rogue resume
 546       // confusing the thread that made the suspend request.
 547       *bits |= 0x00000200;
 548       return false;
 549     }
 550 
 551     if (is_ext_suspended()) {
 552       // thread is suspended
 553       *bits |= 0x00000400;
 554       return true;
 555     }
 556 
 557     // Now that we no longer do hard suspends of threads running
 558     // native code, the target thread can be changing thread state
 559     // while we are in this routine:
 560     //
 561     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 562     //
 563     // We save a copy of the thread state as observed at this moment
 564     // and make our decision about suspend completeness based on the
 565     // copy. This closes the race where the thread state is seen as
 566     // _thread_in_native_trans in the if-thread_blocked check, but is
 567     // seen as _thread_blocked in if-thread_in_native_trans check.
 568     JavaThreadState save_state = thread_state();
 569 
 570     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 571       // If the thread's state is _thread_blocked and this blocking
 572       // condition is known to be equivalent to a suspend, then we can
 573       // consider the thread to be externally suspended. This means that
 574       // the code that sets _thread_blocked has been modified to do
 575       // self-suspension if the blocking condition releases. We also
 576       // used to check for CONDVAR_WAIT here, but that is now covered by
 577       // the _thread_blocked with self-suspension check.
 578       //
 579       // Return true since we wouldn't be here unless there was still an
 580       // external suspend request.
 581       *bits |= 0x00001000;
 582       return true;
 583     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 584       // Threads running native code will self-suspend on native==>VM/Java
 585       // transitions. If its stack is walkable (should always be the case
 586       // unless this function is called before the actual java_suspend()
 587       // call), then the wait is done.
 588       *bits |= 0x00002000;
 589       return true;
 590     } else if (!called_by_wait && !did_trans_retry &&
 591                save_state == _thread_in_native_trans &&
 592                frame_anchor()->walkable()) {
 593       // The thread is transitioning from thread_in_native to another
 594       // thread state. check_safepoint_and_suspend_for_native_trans()
 595       // will force the thread to self-suspend. If it hasn't gotten
 596       // there yet we may have caught the thread in-between the native
 597       // code check above and the self-suspend. Lucky us. If we were
 598       // called by wait_for_ext_suspend_completion(), then it
 599       // will be doing the retries so we don't have to.
 600       //
 601       // Since we use the saved thread state in the if-statement above,
 602       // there is a chance that the thread has already transitioned to
 603       // _thread_blocked by the time we get here. In that case, we will
 604       // make a single unnecessary pass through the logic below. This
 605       // doesn't hurt anything since we still do the trans retry.
 606 
 607       *bits |= 0x00004000;
 608 
 609       // Once the thread leaves thread_in_native_trans for another
 610       // thread state, we break out of this retry loop. We shouldn't
 611       // need this flag to prevent us from getting back here, but
 612       // sometimes paranoia is good.
 613       did_trans_retry = true;
 614 
 615       // We wait for the thread to transition to a more usable state.
 616       for (int i = 1; i <= SuspendRetryCount; i++) {
 617         // We used to do an "os::yield_all(i)" call here with the intention
 618         // that yielding would increase on each retry. However, the parameter
 619         // is ignored on Linux which means the yield didn't scale up. Waiting
 620         // on the SR_lock below provides a much more predictable scale up for
 621         // the delay. It also provides a simple/direct point to check for any
 622         // safepoint requests from the VMThread
 623 
 624         // temporarily drops SR_lock while doing wait with safepoint check
 625         // (if we're a JavaThread - the WatcherThread can also call this)
 626         // and increase delay with each retry
 627         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 628 
 629         // check the actual thread state instead of what we saved above
 630         if (thread_state() != _thread_in_native_trans) {
 631           // the thread has transitioned to another thread state so
 632           // try all the checks (except this one) one more time.
 633           do_trans_retry = true;
 634           break;
 635         }
 636       } // end retry loop
 637 
 638 
 639     }
 640   } while (do_trans_retry);
 641 
 642   *bits |= 0x00000010;
 643   return false;
 644 }
 645 
 646 // Wait for an external suspend request to complete (or be cancelled).
 647 // Returns true if the thread is externally suspended and false otherwise.
 648 //
 649 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 650                                                  uint32_t *bits) {
 651   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 652                              false /* !called_by_wait */, bits);
 653 
 654   // local flag copies to minimize SR_lock hold time
 655   bool is_suspended;
 656   bool pending;
 657   uint32_t reset_bits;
 658 
 659   // set a marker so is_ext_suspend_completed() knows we are the caller
 660   *bits |= 0x00010000;
 661 
 662   // We use reset_bits to reinitialize the bits value at the top of
 663   // each retry loop. This allows the caller to make use of any
 664   // unused bits for their own marking purposes.
 665   reset_bits = *bits;
 666 
 667   {
 668     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 669     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 670                                             delay, bits);
 671     pending = is_external_suspend();
 672   }
 673   // must release SR_lock to allow suspension to complete
 674 
 675   if (!pending) {
 676     // A cancelled suspend request is the only false return from
 677     // is_ext_suspend_completed() that keeps us from entering the
 678     // retry loop.
 679     *bits |= 0x00020000;
 680     return false;
 681   }
 682 
 683   if (is_suspended) {
 684     *bits |= 0x00040000;
 685     return true;
 686   }
 687 
 688   for (int i = 1; i <= retries; i++) {
 689     *bits = reset_bits;  // reinit to only track last retry
 690 
 691     // We used to do an "os::yield_all(i)" call here with the intention
 692     // that yielding would increase on each retry. However, the parameter
 693     // is ignored on Linux which means the yield didn't scale up. Waiting
 694     // on the SR_lock below provides a much more predictable scale up for
 695     // the delay. It also provides a simple/direct point to check for any
 696     // safepoint requests from the VMThread
 697 
 698     {
 699       MutexLocker ml(SR_lock());
 700       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 701       // can also call this)  and increase delay with each retry
 702       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 703 
 704       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 705                                               delay, bits);
 706 
 707       // It is possible for the external suspend request to be cancelled
 708       // (by a resume) before the actual suspend operation is completed.
 709       // Refresh our local copy to see if we still need to wait.
 710       pending = is_external_suspend();
 711     }
 712 
 713     if (!pending) {
 714       // A cancelled suspend request is the only false return from
 715       // is_ext_suspend_completed() that keeps us from staying in the
 716       // retry loop.
 717       *bits |= 0x00080000;
 718       return false;
 719     }
 720 
 721     if (is_suspended) {
 722       *bits |= 0x00100000;
 723       return true;
 724     }
 725   } // end retry loop
 726 
 727   // thread did not suspend after all our retries
 728   *bits |= 0x00200000;
 729   return false;
 730 }
 731 
 732 #ifndef PRODUCT
 733 void JavaThread::record_jump(address target, address instr, const char* file,
 734                              int line) {
 735 
 736   // This should not need to be atomic as the only way for simultaneous
 737   // updates is via interrupts. Even then this should be rare or non-existent
 738   // and we don't care that much anyway.
 739 
 740   int index = _jmp_ring_index;
 741   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 742   _jmp_ring[index]._target = (intptr_t) target;
 743   _jmp_ring[index]._instruction = (intptr_t) instr;
 744   _jmp_ring[index]._file = file;
 745   _jmp_ring[index]._line = line;
 746 }
 747 #endif // PRODUCT
 748 
 749 // Called by flat profiler
 750 // Callers have already called wait_for_ext_suspend_completion
 751 // The assertion for that is currently too complex to put here:
 752 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 753   bool gotframe = false;
 754   // self suspension saves needed state.
 755   if (has_last_Java_frame() && _anchor.walkable()) {
 756     *_fr = pd_last_frame();
 757     gotframe = true;
 758   }
 759   return gotframe;
 760 }
 761 
 762 void Thread::interrupt(Thread* thread) {
 763   debug_only(check_for_dangling_thread_pointer(thread);)
 764   os::interrupt(thread);
 765 }
 766 
 767 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 768   debug_only(check_for_dangling_thread_pointer(thread);)
 769   // Note:  If clear_interrupted==false, this simply fetches and
 770   // returns the value of the field osthread()->interrupted().
 771   return os::is_interrupted(thread, clear_interrupted);
 772 }
 773 
 774 
 775 // GC Support
 776 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 777   jint thread_parity = _oops_do_parity;
 778   if (thread_parity != strong_roots_parity) {
 779     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 780     if (res == thread_parity) {
 781       return true;
 782     } else {
 783       guarantee(res == strong_roots_parity, "Or else what?");
 784       return false;
 785     }
 786   }
 787   return false;
 788 }
 789 
 790 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 791   active_handles()->oops_do(f);
 792   // Do oop for ThreadShadow
 793   f->do_oop((oop*)&_pending_exception);
 794   handle_area()->oops_do(f);
 795 
 796   if (MonitorInUseLists) {
 797     // When using thread local monitor lists, we scan them here,
 798     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 799     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 800   }
 801 }
 802 
 803 void Thread::metadata_handles_do(void f(Metadata*)) {
 804   // Only walk the Handles in Thread.
 805   if (metadata_handles() != NULL) {
 806     for (int i = 0; i< metadata_handles()->length(); i++) {
 807       f(metadata_handles()->at(i));
 808     }
 809   }
 810 }
 811 
 812 void Thread::print_on(outputStream* st) const {
 813   // get_priority assumes osthread initialized
 814   if (osthread() != NULL) {
 815     int os_prio;
 816     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 817       st->print("os_prio=%d ", os_prio);
 818     }
 819     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 820     ext().print_on(st);
 821     osthread()->print_on(st);
 822   }
 823   debug_only(if (WizardMode) print_owned_locks_on(st);)
 824 }
 825 
 826 // Thread::print_on_error() is called by fatal error handler. Don't use
 827 // any lock or allocate memory.
 828 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 829   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 830 
 831   if (is_VM_thread())                 { st->print("VMThread"); }
 832   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 833   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 834   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 835   else                                { st->print("Thread"); }
 836 
 837   if (is_Named_thread()) {
 838     st->print(" \"%s\"", name());
 839   }
 840 
 841   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 842             p2i(stack_end()), p2i(stack_base()));
 843 
 844   if (osthread()) {
 845     st->print(" [id=%d]", osthread()->thread_id());
 846   }
 847 }
 848 
 849 #ifdef ASSERT
 850 void Thread::print_owned_locks_on(outputStream* st) const {
 851   Monitor *cur = _owned_locks;
 852   if (cur == NULL) {
 853     st->print(" (no locks) ");
 854   } else {
 855     st->print_cr(" Locks owned:");
 856     while (cur) {
 857       cur->print_on(st);
 858       cur = cur->next();
 859     }
 860   }
 861 }
 862 
 863 static int ref_use_count  = 0;
 864 
 865 bool Thread::owns_locks_but_compiled_lock() const {
 866   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 867     if (cur != Compile_lock) return true;
 868   }
 869   return false;
 870 }
 871 
 872 
 873 #endif
 874 
 875 #ifndef PRODUCT
 876 
 877 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 878 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 879 // no threads which allow_vm_block's are held
 880 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 881   // Check if current thread is allowed to block at a safepoint
 882   if (!(_allow_safepoint_count == 0)) {
 883     fatal("Possible safepoint reached by thread that does not allow it");
 884   }
 885   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 886     fatal("LEAF method calling lock?");
 887   }
 888 
 889 #ifdef ASSERT
 890   if (potential_vm_operation && is_Java_thread()
 891       && !Universe::is_bootstrapping()) {
 892     // Make sure we do not hold any locks that the VM thread also uses.
 893     // This could potentially lead to deadlocks
 894     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 895       // Threads_lock is special, since the safepoint synchronization will not start before this is
 896       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 897       // since it is used to transfer control between JavaThreads and the VMThread
 898       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 899       if ((cur->allow_vm_block() &&
 900            cur != Threads_lock &&
 901            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 902            cur != VMOperationRequest_lock &&
 903            cur != VMOperationQueue_lock) ||
 904            cur->rank() == Mutex::special) {
 905         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 906       }
 907     }
 908   }
 909 
 910   if (GCALotAtAllSafepoints) {
 911     // We could enter a safepoint here and thus have a gc
 912     InterfaceSupport::check_gc_alot();
 913   }
 914 #endif
 915 }
 916 #endif
 917 
 918 bool Thread::is_in_stack(address adr) const {
 919   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 920   address end = os::current_stack_pointer();
 921   // Allow non Java threads to call this without stack_base
 922   if (_stack_base == NULL) return true;
 923   if (stack_base() >= adr && adr >= end) return true;
 924 
 925   return false;
 926 }
 927 
 928 bool Thread::is_in_usable_stack(address adr) const {
 929   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 930   size_t usable_stack_size = _stack_size - stack_guard_size;
 931 
 932   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 933 }
 934 
 935 
 936 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 937 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 938 // used for compilation in the future. If that change is made, the need for these methods
 939 // should be revisited, and they should be removed if possible.
 940 
 941 bool Thread::is_lock_owned(address adr) const {
 942   return on_local_stack(adr);
 943 }
 944 
 945 bool Thread::set_as_starting_thread() {
 946   // NOTE: this must be called inside the main thread.
 947   return os::create_main_thread((JavaThread*)this);
 948 }
 949 
 950 static void initialize_class(Symbol* class_name, TRAPS) {
 951   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 952   InstanceKlass::cast(klass)->initialize(CHECK);
 953 }
 954 
 955 
 956 // Creates the initial ThreadGroup
 957 static Handle create_initial_thread_group(TRAPS) {
 958   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 959   InstanceKlass* ik = InstanceKlass::cast(k);
 960 
 961   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 962   {
 963     JavaValue result(T_VOID);
 964     JavaCalls::call_special(&result,
 965                             system_instance,
 966                             ik,
 967                             vmSymbols::object_initializer_name(),
 968                             vmSymbols::void_method_signature(),
 969                             CHECK_NH);
 970   }
 971   Universe::set_system_thread_group(system_instance());
 972 
 973   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 974   {
 975     JavaValue result(T_VOID);
 976     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 977     JavaCalls::call_special(&result,
 978                             main_instance,
 979                             ik,
 980                             vmSymbols::object_initializer_name(),
 981                             vmSymbols::threadgroup_string_void_signature(),
 982                             system_instance,
 983                             string,
 984                             CHECK_NH);
 985   }
 986   return main_instance;
 987 }
 988 
 989 // Creates the initial Thread
 990 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 991                                  TRAPS) {
 992   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 993   InstanceKlass* ik = InstanceKlass::cast(k);
 994   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
 995 
 996   java_lang_Thread::set_thread(thread_oop(), thread);
 997   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 998   thread->set_threadObj(thread_oop());
 999 
1000   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1001 
1002   JavaValue result(T_VOID);
1003   JavaCalls::call_special(&result, thread_oop,
1004                           ik,
1005                           vmSymbols::object_initializer_name(),
1006                           vmSymbols::threadgroup_string_void_signature(),
1007                           thread_group,
1008                           string,
1009                           CHECK_NULL);
1010   return thread_oop();
1011 }
1012 
1013 char java_runtime_name[128] = "";
1014 char java_runtime_version[128] = "";
1015 
1016 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1017 static const char* get_java_runtime_name(TRAPS) {
1018   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1019                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1020   fieldDescriptor fd;
1021   bool found = k != NULL &&
1022                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1023                                                         vmSymbols::string_signature(), &fd);
1024   if (found) {
1025     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1026     if (name_oop == NULL) {
1027       return NULL;
1028     }
1029     const char* name = java_lang_String::as_utf8_string(name_oop,
1030                                                         java_runtime_name,
1031                                                         sizeof(java_runtime_name));
1032     return name;
1033   } else {
1034     return NULL;
1035   }
1036 }
1037 
1038 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1039 static const char* get_java_runtime_version(TRAPS) {
1040   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1041                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1042   fieldDescriptor fd;
1043   bool found = k != NULL &&
1044                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1045                                                         vmSymbols::string_signature(), &fd);
1046   if (found) {
1047     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1048     if (name_oop == NULL) {
1049       return NULL;
1050     }
1051     const char* name = java_lang_String::as_utf8_string(name_oop,
1052                                                         java_runtime_version,
1053                                                         sizeof(java_runtime_version));
1054     return name;
1055   } else {
1056     return NULL;
1057   }
1058 }
1059 
1060 // General purpose hook into Java code, run once when the VM is initialized.
1061 // The Java library method itself may be changed independently from the VM.
1062 static void call_postVMInitHook(TRAPS) {
1063   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1064   if (klass != NULL) {
1065     JavaValue result(T_VOID);
1066     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1067                            vmSymbols::void_method_signature(),
1068                            CHECK);
1069   }
1070 }
1071 
1072 static void reset_vm_info_property(TRAPS) {
1073   // the vm info string
1074   ResourceMark rm(THREAD);
1075   const char *vm_info = VM_Version::vm_info_string();
1076 
1077   // java.lang.System class
1078   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1079 
1080   // setProperty arguments
1081   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1082   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1083 
1084   // return value
1085   JavaValue r(T_OBJECT);
1086 
1087   // public static String setProperty(String key, String value);
1088   JavaCalls::call_static(&r,
1089                          klass,
1090                          vmSymbols::setProperty_name(),
1091                          vmSymbols::string_string_string_signature(),
1092                          key_str,
1093                          value_str,
1094                          CHECK);
1095 }
1096 
1097 
1098 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1099                                     bool daemon, TRAPS) {
1100   assert(thread_group.not_null(), "thread group should be specified");
1101   assert(threadObj() == NULL, "should only create Java thread object once");
1102 
1103   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1104   InstanceKlass* ik = InstanceKlass::cast(k);
1105   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1106 
1107   java_lang_Thread::set_thread(thread_oop(), this);
1108   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1109   set_threadObj(thread_oop());
1110 
1111   JavaValue result(T_VOID);
1112   if (thread_name != NULL) {
1113     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1114     // Thread gets assigned specified name and null target
1115     JavaCalls::call_special(&result,
1116                             thread_oop,
1117                             ik,
1118                             vmSymbols::object_initializer_name(),
1119                             vmSymbols::threadgroup_string_void_signature(),
1120                             thread_group, // Argument 1
1121                             name,         // Argument 2
1122                             THREAD);
1123   } else {
1124     // Thread gets assigned name "Thread-nnn" and null target
1125     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1126     JavaCalls::call_special(&result,
1127                             thread_oop,
1128                             ik,
1129                             vmSymbols::object_initializer_name(),
1130                             vmSymbols::threadgroup_runnable_void_signature(),
1131                             thread_group, // Argument 1
1132                             Handle(),     // Argument 2
1133                             THREAD);
1134   }
1135 
1136 
1137   if (daemon) {
1138     java_lang_Thread::set_daemon(thread_oop());
1139   }
1140 
1141   if (HAS_PENDING_EXCEPTION) {
1142     return;
1143   }
1144 
1145   Klass* group =  SystemDictionary::ThreadGroup_klass();
1146   Handle threadObj(THREAD, this->threadObj());
1147 
1148   JavaCalls::call_special(&result,
1149                           thread_group,
1150                           group,
1151                           vmSymbols::add_method_name(),
1152                           vmSymbols::thread_void_signature(),
1153                           threadObj,          // Arg 1
1154                           THREAD);
1155 }
1156 
1157 // NamedThread --  non-JavaThread subclasses with multiple
1158 // uniquely named instances should derive from this.
1159 NamedThread::NamedThread() : Thread() {
1160   _name = NULL;
1161   _processed_thread = NULL;
1162   _gc_id = GCId::undefined();
1163 }
1164 
1165 NamedThread::~NamedThread() {
1166   if (_name != NULL) {
1167     FREE_C_HEAP_ARRAY(char, _name);
1168     _name = NULL;
1169   }
1170 }
1171 
1172 void NamedThread::set_name(const char* format, ...) {
1173   guarantee(_name == NULL, "Only get to set name once.");
1174   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1175   guarantee(_name != NULL, "alloc failure");
1176   va_list ap;
1177   va_start(ap, format);
1178   jio_vsnprintf(_name, max_name_len, format, ap);
1179   va_end(ap);
1180 }
1181 
1182 void NamedThread::initialize_named_thread() {
1183   set_native_thread_name(name());
1184 }
1185 
1186 void NamedThread::print_on(outputStream* st) const {
1187   st->print("\"%s\" ", name());
1188   Thread::print_on(st);
1189   st->cr();
1190 }
1191 
1192 
1193 // ======= WatcherThread ========
1194 
1195 // The watcher thread exists to simulate timer interrupts.  It should
1196 // be replaced by an abstraction over whatever native support for
1197 // timer interrupts exists on the platform.
1198 
1199 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1200 bool WatcherThread::_startable = false;
1201 volatile bool  WatcherThread::_should_terminate = false;
1202 
1203 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1204   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1205   if (os::create_thread(this, os::watcher_thread)) {
1206     _watcher_thread = this;
1207 
1208     // Set the watcher thread to the highest OS priority which should not be
1209     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1210     // is created. The only normal thread using this priority is the reference
1211     // handler thread, which runs for very short intervals only.
1212     // If the VMThread's priority is not lower than the WatcherThread profiling
1213     // will be inaccurate.
1214     os::set_priority(this, MaxPriority);
1215     if (!DisableStartThread) {
1216       os::start_thread(this);
1217     }
1218   }
1219 }
1220 
1221 int WatcherThread::sleep() const {
1222   // The WatcherThread does not participate in the safepoint protocol
1223   // for the PeriodicTask_lock because it is not a JavaThread.
1224   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1225 
1226   if (_should_terminate) {
1227     // check for termination before we do any housekeeping or wait
1228     return 0;  // we did not sleep.
1229   }
1230 
1231   // remaining will be zero if there are no tasks,
1232   // causing the WatcherThread to sleep until a task is
1233   // enrolled
1234   int remaining = PeriodicTask::time_to_wait();
1235   int time_slept = 0;
1236 
1237   // we expect this to timeout - we only ever get unparked when
1238   // we should terminate or when a new task has been enrolled
1239   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1240 
1241   jlong time_before_loop = os::javaTimeNanos();
1242 
1243   while (true) {
1244     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1245                                             remaining);
1246     jlong now = os::javaTimeNanos();
1247 
1248     if (remaining == 0) {
1249       // if we didn't have any tasks we could have waited for a long time
1250       // consider the time_slept zero and reset time_before_loop
1251       time_slept = 0;
1252       time_before_loop = now;
1253     } else {
1254       // need to recalculate since we might have new tasks in _tasks
1255       time_slept = (int) ((now - time_before_loop) / 1000000);
1256     }
1257 
1258     // Change to task list or spurious wakeup of some kind
1259     if (timedout || _should_terminate) {
1260       break;
1261     }
1262 
1263     remaining = PeriodicTask::time_to_wait();
1264     if (remaining == 0) {
1265       // Last task was just disenrolled so loop around and wait until
1266       // another task gets enrolled
1267       continue;
1268     }
1269 
1270     remaining -= time_slept;
1271     if (remaining <= 0) {
1272       break;
1273     }
1274   }
1275 
1276   return time_slept;
1277 }
1278 
1279 void WatcherThread::run() {
1280   assert(this == watcher_thread(), "just checking");
1281 
1282   this->record_stack_base_and_size();
1283   this->set_native_thread_name(this->name());
1284   this->set_active_handles(JNIHandleBlock::allocate_block());
1285   while (true) {
1286     assert(watcher_thread() == Thread::current(), "thread consistency check");
1287     assert(watcher_thread() == this, "thread consistency check");
1288 
1289     // Calculate how long it'll be until the next PeriodicTask work
1290     // should be done, and sleep that amount of time.
1291     int time_waited = sleep();
1292 
1293     if (is_error_reported()) {
1294       // A fatal error has happened, the error handler(VMError::report_and_die)
1295       // should abort JVM after creating an error log file. However in some
1296       // rare cases, the error handler itself might deadlock. Here periodically
1297       // check for error reporting timeouts, and if it happens, just proceed to
1298       // abort the VM.
1299 
1300       // This code is in WatcherThread because WatcherThread wakes up
1301       // periodically so the fatal error handler doesn't need to do anything;
1302       // also because the WatcherThread is less likely to crash than other
1303       // threads.
1304 
1305       for (;;) {
1306         // Note: we use naked sleep in this loop because we want to avoid using
1307         // any kind of VM infrastructure which may be broken at this point.
1308         if (VMError::check_timeout()) {
1309           // We hit error reporting timeout. Error reporting was interrupted and
1310           // will be wrapping things up now (closing files etc). Give it some more
1311           // time, then quit the VM.
1312           os::naked_short_sleep(200);
1313           // Print a message to stderr.
1314           fdStream err(defaultStream::output_fd());
1315           err.print_raw_cr("# [ timer expired, abort... ]");
1316           // skip atexit/vm_exit/vm_abort hooks
1317           os::die();
1318         }
1319 
1320         // Wait a second, then recheck for timeout.
1321         os::naked_short_sleep(999);
1322       }
1323     }
1324 
1325     if (_should_terminate) {
1326       // check for termination before posting the next tick
1327       break;
1328     }
1329 
1330     PeriodicTask::real_time_tick(time_waited);
1331   }
1332 
1333   // Signal that it is terminated
1334   {
1335     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1336     _watcher_thread = NULL;
1337     Terminator_lock->notify();
1338   }
1339 }
1340 
1341 void WatcherThread::start() {
1342   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1343 
1344   if (watcher_thread() == NULL && _startable) {
1345     _should_terminate = false;
1346     // Create the single instance of WatcherThread
1347     new WatcherThread();
1348   }
1349 }
1350 
1351 void WatcherThread::make_startable() {
1352   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1353   _startable = true;
1354 }
1355 
1356 void WatcherThread::stop() {
1357   {
1358     // Follow normal safepoint aware lock enter protocol since the
1359     // WatcherThread is stopped by another JavaThread.
1360     MutexLocker ml(PeriodicTask_lock);
1361     _should_terminate = true;
1362 
1363     WatcherThread* watcher = watcher_thread();
1364     if (watcher != NULL) {
1365       // unpark the WatcherThread so it can see that it should terminate
1366       watcher->unpark();
1367     }
1368   }
1369 
1370   MutexLocker mu(Terminator_lock);
1371 
1372   while (watcher_thread() != NULL) {
1373     // This wait should make safepoint checks, wait without a timeout,
1374     // and wait as a suspend-equivalent condition.
1375     //
1376     // Note: If the FlatProfiler is running, then this thread is waiting
1377     // for the WatcherThread to terminate and the WatcherThread, via the
1378     // FlatProfiler task, is waiting for the external suspend request on
1379     // this thread to complete. wait_for_ext_suspend_completion() will
1380     // eventually timeout, but that takes time. Making this wait a
1381     // suspend-equivalent condition solves that timeout problem.
1382     //
1383     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1384                           Mutex::_as_suspend_equivalent_flag);
1385   }
1386 }
1387 
1388 void WatcherThread::unpark() {
1389   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1390   PeriodicTask_lock->notify();
1391 }
1392 
1393 void WatcherThread::print_on(outputStream* st) const {
1394   st->print("\"%s\" ", name());
1395   Thread::print_on(st);
1396   st->cr();
1397 }
1398 
1399 // ======= JavaThread ========
1400 
1401 #if INCLUDE_JVMCI
1402 
1403 jlong* JavaThread::_jvmci_old_thread_counters;
1404 
1405 bool jvmci_counters_include(JavaThread* thread) {
1406   oop threadObj = thread->threadObj();
1407   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1408 }
1409 
1410 void JavaThread::collect_counters(typeArrayOop array) {
1411   if (JVMCICounterSize > 0) {
1412     MutexLocker tl(Threads_lock);
1413     for (int i = 0; i < array->length(); i++) {
1414       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1415     }
1416     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1417       if (jvmci_counters_include(tp)) {
1418         for (int i = 0; i < array->length(); i++) {
1419           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1420         }
1421       }
1422     }
1423   }
1424 }
1425 
1426 #endif // INCLUDE_JVMCI
1427 
1428 // A JavaThread is a normal Java thread
1429 
1430 void JavaThread::initialize() {
1431   // Initialize fields
1432 
1433   set_saved_exception_pc(NULL);
1434   set_threadObj(NULL);
1435   _anchor.clear();
1436   set_entry_point(NULL);
1437   set_jni_functions(jni_functions());
1438   set_callee_target(NULL);
1439   set_vm_result(NULL);
1440   set_vm_result_2(NULL);
1441   set_vframe_array_head(NULL);
1442   set_vframe_array_last(NULL);
1443   set_deferred_locals(NULL);
1444   set_deopt_mark(NULL);
1445   set_deopt_compiled_method(NULL);
1446   clear_must_deopt_id();
1447   set_monitor_chunks(NULL);
1448   set_next(NULL);
1449   set_thread_state(_thread_new);
1450   _terminated = _not_terminated;
1451   _privileged_stack_top = NULL;
1452   _array_for_gc = NULL;
1453   _suspend_equivalent = false;
1454   _in_deopt_handler = 0;
1455   _doing_unsafe_access = false;
1456   _stack_guard_state = stack_guard_unused;
1457 #if INCLUDE_JVMCI
1458   _pending_monitorenter = false;
1459   _pending_deoptimization = -1;
1460   _pending_failed_speculation = NULL;
1461   _pending_transfer_to_interpreter = false;
1462   _adjusting_comp_level = false;
1463   _jvmci._alternate_call_target = NULL;
1464   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1465   if (JVMCICounterSize > 0) {
1466     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1467     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1468   } else {
1469     _jvmci_counters = NULL;
1470   }
1471 #endif // INCLUDE_JVMCI
1472   _reserved_stack_activation = NULL;  // stack base not known yet
1473   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1474   _exception_pc  = 0;
1475   _exception_handler_pc = 0;
1476   _is_method_handle_return = 0;
1477   _jvmti_thread_state= NULL;
1478   _should_post_on_exceptions_flag = JNI_FALSE;
1479   _jvmti_get_loaded_classes_closure = NULL;
1480   _interp_only_mode    = 0;
1481   _special_runtime_exit_condition = _no_async_condition;
1482   _pending_async_exception = NULL;
1483   _thread_stat = NULL;
1484   _thread_stat = new ThreadStatistics();
1485   _blocked_on_compilation = false;
1486   _jni_active_critical = 0;
1487   _pending_jni_exception_check_fn = NULL;
1488   _do_not_unlock_if_synchronized = false;
1489   _cached_monitor_info = NULL;
1490   _parker = Parker::Allocate(this);
1491   _bytes_until_sample = 0;
1492 
1493 #ifndef PRODUCT
1494   _jmp_ring_index = 0;
1495   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1496     record_jump(NULL, NULL, NULL, 0);
1497   }
1498 #endif // PRODUCT
1499 
1500   set_thread_profiler(NULL);
1501   if (FlatProfiler::is_active()) {
1502     // This is where we would decide to either give each thread it's own profiler
1503     // or use one global one from FlatProfiler,
1504     // or up to some count of the number of profiled threads, etc.
1505     ThreadProfiler* pp = new ThreadProfiler();
1506     pp->engage();
1507     set_thread_profiler(pp);
1508   }
1509 
1510   // Setup safepoint state info for this thread
1511   ThreadSafepointState::create(this);
1512 
1513   debug_only(_java_call_counter = 0);
1514 
1515   // JVMTI PopFrame support
1516   _popframe_condition = popframe_inactive;
1517   _popframe_preserved_args = NULL;
1518   _popframe_preserved_args_size = 0;
1519   _frames_to_pop_failed_realloc = 0;
1520 
1521   pd_initialize();
1522 }
1523 
1524 #if INCLUDE_ALL_GCS
1525 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1526 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1527 #endif // INCLUDE_ALL_GCS
1528 
1529 JavaThread::JavaThread(bool is_attaching_via_jni) :
1530                        Thread()
1531 #if INCLUDE_ALL_GCS
1532                        , _satb_mark_queue(&_satb_mark_queue_set),
1533                        _dirty_card_queue(&_dirty_card_queue_set)
1534 #endif // INCLUDE_ALL_GCS
1535 {
1536   initialize();
1537   if (is_attaching_via_jni) {
1538     _jni_attach_state = _attaching_via_jni;
1539   } else {
1540     _jni_attach_state = _not_attaching_via_jni;
1541   }
1542   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1543 }
1544 
1545 bool JavaThread::reguard_stack(address cur_sp) {
1546   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1547       && _stack_guard_state != stack_guard_reserved_disabled) {
1548     return true; // Stack already guarded or guard pages not needed.
1549   }
1550 
1551   if (register_stack_overflow()) {
1552     // For those architectures which have separate register and
1553     // memory stacks, we must check the register stack to see if
1554     // it has overflowed.
1555     return false;
1556   }
1557 
1558   // Java code never executes within the yellow zone: the latter is only
1559   // there to provoke an exception during stack banging.  If java code
1560   // is executing there, either StackShadowPages should be larger, or
1561   // some exception code in c1, c2 or the interpreter isn't unwinding
1562   // when it should.
1563   guarantee(cur_sp > stack_reserved_zone_base(),
1564             "not enough space to reguard - increase StackShadowPages");
1565   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1566     enable_stack_yellow_reserved_zone();
1567     if (reserved_stack_activation() != stack_base()) {
1568       set_reserved_stack_activation(stack_base());
1569     }
1570   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1571     set_reserved_stack_activation(stack_base());
1572     enable_stack_reserved_zone();
1573   }
1574   return true;
1575 }
1576 
1577 bool JavaThread::reguard_stack(void) {
1578   return reguard_stack(os::current_stack_pointer());
1579 }
1580 
1581 
1582 void JavaThread::block_if_vm_exited() {
1583   if (_terminated == _vm_exited) {
1584     // _vm_exited is set at safepoint, and Threads_lock is never released
1585     // we will block here forever
1586     Threads_lock->lock_without_safepoint_check();
1587     ShouldNotReachHere();
1588   }
1589 }
1590 
1591 
1592 // Remove this ifdef when C1 is ported to the compiler interface.
1593 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1594 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1595 
1596 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1597                        Thread()
1598 #if INCLUDE_ALL_GCS
1599                        , _satb_mark_queue(&_satb_mark_queue_set),
1600                        _dirty_card_queue(&_dirty_card_queue_set)
1601 #endif // INCLUDE_ALL_GCS
1602 {
1603   initialize();
1604   _jni_attach_state = _not_attaching_via_jni;
1605   set_entry_point(entry_point);
1606   // Create the native thread itself.
1607   // %note runtime_23
1608   os::ThreadType thr_type = os::java_thread;
1609   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1610                                                      os::java_thread;
1611   os::create_thread(this, thr_type, stack_sz);
1612   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1613   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1614   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1615   // the exception consists of creating the exception object & initializing it, initialization
1616   // will leave the VM via a JavaCall and then all locks must be unlocked).
1617   //
1618   // The thread is still suspended when we reach here. Thread must be explicit started
1619   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1620   // by calling Threads:add. The reason why this is not done here, is because the thread
1621   // object must be fully initialized (take a look at JVM_Start)
1622 }
1623 
1624 JavaThread::~JavaThread() {
1625 
1626   // JSR166 -- return the parker to the free list
1627   Parker::Release(_parker);
1628   _parker = NULL;
1629 
1630   // Free any remaining  previous UnrollBlock
1631   vframeArray* old_array = vframe_array_last();
1632 
1633   if (old_array != NULL) {
1634     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1635     old_array->set_unroll_block(NULL);
1636     delete old_info;
1637     delete old_array;
1638   }
1639 
1640   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1641   if (deferred != NULL) {
1642     // This can only happen if thread is destroyed before deoptimization occurs.
1643     assert(deferred->length() != 0, "empty array!");
1644     do {
1645       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1646       deferred->remove_at(0);
1647       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1648       delete dlv;
1649     } while (deferred->length() != 0);
1650     delete deferred;
1651   }
1652 
1653   // All Java related clean up happens in exit
1654   ThreadSafepointState::destroy(this);
1655   if (_thread_profiler != NULL) delete _thread_profiler;
1656   if (_thread_stat != NULL) delete _thread_stat;
1657 
1658 #if INCLUDE_JVMCI
1659   if (JVMCICounterSize > 0) {
1660     if (jvmci_counters_include(this)) {
1661       for (int i = 0; i < JVMCICounterSize; i++) {
1662         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1663       }
1664     }
1665     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1666   }
1667 #endif // INCLUDE_JVMCI
1668 }
1669 
1670 
1671 // The first routine called by a new Java thread
1672 void JavaThread::run() {
1673   // initialize thread-local alloc buffer related fields
1674   this->initialize_tlab();
1675 
1676   // used to test validity of stack trace backs
1677   this->record_base_of_stack_pointer();
1678 
1679   // Record real stack base and size.
1680   this->record_stack_base_and_size();
1681 
1682   this->create_stack_guard_pages();
1683 
1684   this->cache_global_variables();
1685 
1686   // Thread is now sufficient initialized to be handled by the safepoint code as being
1687   // in the VM. Change thread state from _thread_new to _thread_in_vm
1688   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1689 
1690   assert(JavaThread::current() == this, "sanity check");
1691   assert(!Thread::current()->owns_locks(), "sanity check");
1692 
1693   DTRACE_THREAD_PROBE(start, this);
1694 
1695   // This operation might block. We call that after all safepoint checks for a new thread has
1696   // been completed.
1697   this->set_active_handles(JNIHandleBlock::allocate_block());
1698 
1699   if (JvmtiExport::should_post_thread_life()) {
1700     JvmtiExport::post_thread_start(this);
1701   }
1702 
1703   EventThreadStart event;
1704   if (event.should_commit()) {
1705     event.set_thread(THREAD_TRACE_ID(this));
1706     event.commit();
1707   }
1708 
1709   // We call another function to do the rest so we are sure that the stack addresses used
1710   // from there will be lower than the stack base just computed
1711   thread_main_inner();
1712 
1713   // Note, thread is no longer valid at this point!
1714 }
1715 
1716 
1717 void JavaThread::thread_main_inner() {
1718   assert(JavaThread::current() == this, "sanity check");
1719   assert(this->threadObj() != NULL, "just checking");
1720 
1721   // Execute thread entry point unless this thread has a pending exception
1722   // or has been stopped before starting.
1723   // Note: Due to JVM_StopThread we can have pending exceptions already!
1724   if (!this->has_pending_exception() &&
1725       !java_lang_Thread::is_stillborn(this->threadObj())) {
1726     {
1727       ResourceMark rm(this);
1728       this->set_native_thread_name(this->get_thread_name());
1729     }
1730     HandleMark hm(this);
1731     this->entry_point()(this, this);
1732   }
1733 
1734   DTRACE_THREAD_PROBE(stop, this);
1735 
1736   this->exit(false);
1737   delete this;
1738 }
1739 
1740 
1741 static void ensure_join(JavaThread* thread) {
1742   // We do not need to grap the Threads_lock, since we are operating on ourself.
1743   Handle threadObj(thread, thread->threadObj());
1744   assert(threadObj.not_null(), "java thread object must exist");
1745   ObjectLocker lock(threadObj, thread);
1746   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1747   thread->clear_pending_exception();
1748   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1749   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1750   // Clear the native thread instance - this makes isAlive return false and allows the join()
1751   // to complete once we've done the notify_all below
1752   java_lang_Thread::set_thread(threadObj(), NULL);
1753   lock.notify_all(thread);
1754   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1755   thread->clear_pending_exception();
1756 }
1757 
1758 
1759 // For any new cleanup additions, please check to see if they need to be applied to
1760 // cleanup_failed_attach_current_thread as well.
1761 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1762   assert(this == JavaThread::current(), "thread consistency check");
1763 
1764   HandleMark hm(this);
1765   Handle uncaught_exception(this, this->pending_exception());
1766   this->clear_pending_exception();
1767   Handle threadObj(this, this->threadObj());
1768   assert(threadObj.not_null(), "Java thread object should be created");
1769 
1770   if (get_thread_profiler() != NULL) {
1771     get_thread_profiler()->disengage();
1772     ResourceMark rm;
1773     get_thread_profiler()->print(get_thread_name());
1774   }
1775 
1776 
1777   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1778   {
1779     EXCEPTION_MARK;
1780 
1781     CLEAR_PENDING_EXCEPTION;
1782   }
1783   if (!destroy_vm) {
1784     if (uncaught_exception.not_null()) {
1785       EXCEPTION_MARK;
1786       // Call method Thread.dispatchUncaughtException().
1787       Klass* thread_klass = SystemDictionary::Thread_klass();
1788       JavaValue result(T_VOID);
1789       JavaCalls::call_virtual(&result,
1790                               threadObj, thread_klass,
1791                               vmSymbols::dispatchUncaughtException_name(),
1792                               vmSymbols::throwable_void_signature(),
1793                               uncaught_exception,
1794                               THREAD);
1795       if (HAS_PENDING_EXCEPTION) {
1796         ResourceMark rm(this);
1797         jio_fprintf(defaultStream::error_stream(),
1798                     "\nException: %s thrown from the UncaughtExceptionHandler"
1799                     " in thread \"%s\"\n",
1800                     pending_exception()->klass()->external_name(),
1801                     get_thread_name());
1802         CLEAR_PENDING_EXCEPTION;
1803       }
1804     }
1805 
1806     // Called before the java thread exit since we want to read info
1807     // from java_lang_Thread object
1808     EventThreadEnd event;
1809     if (event.should_commit()) {
1810       event.set_thread(THREAD_TRACE_ID(this));
1811       event.commit();
1812     }
1813 
1814     // Call after last event on thread
1815     EVENT_THREAD_EXIT(this);
1816 
1817     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1818     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1819     // is deprecated anyhow.
1820     if (!is_Compiler_thread()) {
1821       int count = 3;
1822       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1823         EXCEPTION_MARK;
1824         JavaValue result(T_VOID);
1825         Klass* thread_klass = SystemDictionary::Thread_klass();
1826         JavaCalls::call_virtual(&result,
1827                                 threadObj, thread_klass,
1828                                 vmSymbols::exit_method_name(),
1829                                 vmSymbols::void_method_signature(),
1830                                 THREAD);
1831         CLEAR_PENDING_EXCEPTION;
1832       }
1833     }
1834     // notify JVMTI
1835     if (JvmtiExport::should_post_thread_life()) {
1836       JvmtiExport::post_thread_end(this);
1837     }
1838 
1839     // We have notified the agents that we are exiting, before we go on,
1840     // we must check for a pending external suspend request and honor it
1841     // in order to not surprise the thread that made the suspend request.
1842     while (true) {
1843       {
1844         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1845         if (!is_external_suspend()) {
1846           set_terminated(_thread_exiting);
1847           ThreadService::current_thread_exiting(this);
1848           break;
1849         }
1850         // Implied else:
1851         // Things get a little tricky here. We have a pending external
1852         // suspend request, but we are holding the SR_lock so we
1853         // can't just self-suspend. So we temporarily drop the lock
1854         // and then self-suspend.
1855       }
1856 
1857       ThreadBlockInVM tbivm(this);
1858       java_suspend_self();
1859 
1860       // We're done with this suspend request, but we have to loop around
1861       // and check again. Eventually we will get SR_lock without a pending
1862       // external suspend request and will be able to mark ourselves as
1863       // exiting.
1864     }
1865     // no more external suspends are allowed at this point
1866   } else {
1867     // before_exit() has already posted JVMTI THREAD_END events
1868   }
1869 
1870   // Notify waiters on thread object. This has to be done after exit() is called
1871   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1872   // group should have the destroyed bit set before waiters are notified).
1873   ensure_join(this);
1874   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1875 
1876   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1877   // held by this thread must be released. The spec does not distinguish
1878   // between JNI-acquired and regular Java monitors. We can only see
1879   // regular Java monitors here if monitor enter-exit matching is broken.
1880   //
1881   // Optionally release any monitors for regular JavaThread exits. This
1882   // is provided as a work around for any bugs in monitor enter-exit
1883   // matching. This can be expensive so it is not enabled by default.
1884   //
1885   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1886   // ObjectSynchronizer::release_monitors_owned_by_thread().
1887   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1888     // Sanity check even though JNI DetachCurrentThread() would have
1889     // returned JNI_ERR if there was a Java frame. JavaThread exit
1890     // should be done executing Java code by the time we get here.
1891     assert(!this->has_last_Java_frame(),
1892            "should not have a Java frame when detaching or exiting");
1893     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1894     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1895   }
1896 
1897   // These things needs to be done while we are still a Java Thread. Make sure that thread
1898   // is in a consistent state, in case GC happens
1899   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1900 
1901   if (active_handles() != NULL) {
1902     JNIHandleBlock* block = active_handles();
1903     set_active_handles(NULL);
1904     JNIHandleBlock::release_block(block);
1905   }
1906 
1907   if (free_handle_block() != NULL) {
1908     JNIHandleBlock* block = free_handle_block();
1909     set_free_handle_block(NULL);
1910     JNIHandleBlock::release_block(block);
1911   }
1912 
1913   // These have to be removed while this is still a valid thread.
1914   remove_stack_guard_pages();
1915 
1916   if (UseTLAB) {
1917     tlab().make_parsable(true);  // retire TLAB
1918   }
1919 
1920   if (JvmtiEnv::environments_might_exist()) {
1921     JvmtiExport::cleanup_thread(this);
1922   }
1923 
1924   // We must flush any deferred card marks before removing a thread from
1925   // the list of active threads.
1926   Universe::heap()->flush_deferred_store_barrier(this);
1927   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1928 
1929 #if INCLUDE_ALL_GCS
1930   // We must flush the G1-related buffers before removing a thread
1931   // from the list of active threads. We must do this after any deferred
1932   // card marks have been flushed (above) so that any entries that are
1933   // added to the thread's dirty card queue as a result are not lost.
1934   if (UseG1GC) {
1935     flush_barrier_queues();
1936   }
1937 #endif // INCLUDE_ALL_GCS
1938 
1939   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1940     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1941     os::current_thread_id());
1942 
1943   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1944   Threads::remove(this);
1945 }
1946 
1947 #if INCLUDE_ALL_GCS
1948 // Flush G1-related queues.
1949 void JavaThread::flush_barrier_queues() {
1950   satb_mark_queue().flush();
1951   dirty_card_queue().flush();
1952 }
1953 
1954 void JavaThread::initialize_queues() {
1955   assert(!SafepointSynchronize::is_at_safepoint(),
1956          "we should not be at a safepoint");
1957 
1958   SATBMarkQueue& satb_queue = satb_mark_queue();
1959   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1960   // The SATB queue should have been constructed with its active
1961   // field set to false.
1962   assert(!satb_queue.is_active(), "SATB queue should not be active");
1963   assert(satb_queue.is_empty(), "SATB queue should be empty");
1964   // If we are creating the thread during a marking cycle, we should
1965   // set the active field of the SATB queue to true.
1966   if (satb_queue_set.is_active()) {
1967     satb_queue.set_active(true);
1968   }
1969 
1970   DirtyCardQueue& dirty_queue = dirty_card_queue();
1971   // The dirty card queue should have been constructed with its
1972   // active field set to true.
1973   assert(dirty_queue.is_active(), "dirty card queue should be active");
1974 }
1975 #endif // INCLUDE_ALL_GCS
1976 
1977 void JavaThread::cleanup_failed_attach_current_thread() {
1978   if (get_thread_profiler() != NULL) {
1979     get_thread_profiler()->disengage();
1980     ResourceMark rm;
1981     get_thread_profiler()->print(get_thread_name());
1982   }
1983 
1984   if (active_handles() != NULL) {
1985     JNIHandleBlock* block = active_handles();
1986     set_active_handles(NULL);
1987     JNIHandleBlock::release_block(block);
1988   }
1989 
1990   if (free_handle_block() != NULL) {
1991     JNIHandleBlock* block = free_handle_block();
1992     set_free_handle_block(NULL);
1993     JNIHandleBlock::release_block(block);
1994   }
1995 
1996   // These have to be removed while this is still a valid thread.
1997   remove_stack_guard_pages();
1998 
1999   if (UseTLAB) {
2000     tlab().make_parsable(true);  // retire TLAB, if any
2001   }
2002 
2003 #if INCLUDE_ALL_GCS
2004   if (UseG1GC) {
2005     flush_barrier_queues();
2006   }
2007 #endif // INCLUDE_ALL_GCS
2008 
2009   Threads::remove(this);
2010   delete this;
2011 }
2012 
2013 
2014 
2015 
2016 JavaThread* JavaThread::active() {
2017   Thread* thread = Thread::current();
2018   if (thread->is_Java_thread()) {
2019     return (JavaThread*) thread;
2020   } else {
2021     assert(thread->is_VM_thread(), "this must be a vm thread");
2022     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2023     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2024     assert(ret->is_Java_thread(), "must be a Java thread");
2025     return ret;
2026   }
2027 }
2028 
2029 bool JavaThread::is_lock_owned(address adr) const {
2030   if (Thread::is_lock_owned(adr)) return true;
2031 
2032   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2033     if (chunk->contains(adr)) return true;
2034   }
2035 
2036   return false;
2037 }
2038 
2039 
2040 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2041   chunk->set_next(monitor_chunks());
2042   set_monitor_chunks(chunk);
2043 }
2044 
2045 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2046   guarantee(monitor_chunks() != NULL, "must be non empty");
2047   if (monitor_chunks() == chunk) {
2048     set_monitor_chunks(chunk->next());
2049   } else {
2050     MonitorChunk* prev = monitor_chunks();
2051     while (prev->next() != chunk) prev = prev->next();
2052     prev->set_next(chunk->next());
2053   }
2054 }
2055 
2056 // JVM support.
2057 
2058 // Note: this function shouldn't block if it's called in
2059 // _thread_in_native_trans state (such as from
2060 // check_special_condition_for_native_trans()).
2061 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2062 
2063   if (has_last_Java_frame() && has_async_condition()) {
2064     // If we are at a polling page safepoint (not a poll return)
2065     // then we must defer async exception because live registers
2066     // will be clobbered by the exception path. Poll return is
2067     // ok because the call we a returning from already collides
2068     // with exception handling registers and so there is no issue.
2069     // (The exception handling path kills call result registers but
2070     //  this is ok since the exception kills the result anyway).
2071 
2072     if (is_at_poll_safepoint()) {
2073       // if the code we are returning to has deoptimized we must defer
2074       // the exception otherwise live registers get clobbered on the
2075       // exception path before deoptimization is able to retrieve them.
2076       //
2077       RegisterMap map(this, false);
2078       frame caller_fr = last_frame().sender(&map);
2079       assert(caller_fr.is_compiled_frame(), "what?");
2080       if (caller_fr.is_deoptimized_frame()) {
2081         log_info(exceptions)("deferred async exception at compiled safepoint");
2082         return;
2083       }
2084     }
2085   }
2086 
2087   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2088   if (condition == _no_async_condition) {
2089     // Conditions have changed since has_special_runtime_exit_condition()
2090     // was called:
2091     // - if we were here only because of an external suspend request,
2092     //   then that was taken care of above (or cancelled) so we are done
2093     // - if we were here because of another async request, then it has
2094     //   been cleared between the has_special_runtime_exit_condition()
2095     //   and now so again we are done
2096     return;
2097   }
2098 
2099   // Check for pending async. exception
2100   if (_pending_async_exception != NULL) {
2101     // Only overwrite an already pending exception, if it is not a threadDeath.
2102     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2103 
2104       // We cannot call Exceptions::_throw(...) here because we cannot block
2105       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2106 
2107       if (log_is_enabled(Info, exceptions)) {
2108         ResourceMark rm;
2109         outputStream* logstream = Log(exceptions)::info_stream();
2110         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2111           if (has_last_Java_frame()) {
2112             frame f = last_frame();
2113            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2114           }
2115         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2116       }
2117       _pending_async_exception = NULL;
2118       clear_has_async_exception();
2119     }
2120   }
2121 
2122   if (check_unsafe_error &&
2123       condition == _async_unsafe_access_error && !has_pending_exception()) {
2124     condition = _no_async_condition;  // done
2125     switch (thread_state()) {
2126     case _thread_in_vm: {
2127       JavaThread* THREAD = this;
2128       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2129     }
2130     case _thread_in_native: {
2131       ThreadInVMfromNative tiv(this);
2132       JavaThread* THREAD = this;
2133       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2134     }
2135     case _thread_in_Java: {
2136       ThreadInVMfromJava tiv(this);
2137       JavaThread* THREAD = this;
2138       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2139     }
2140     default:
2141       ShouldNotReachHere();
2142     }
2143   }
2144 
2145   assert(condition == _no_async_condition || has_pending_exception() ||
2146          (!check_unsafe_error && condition == _async_unsafe_access_error),
2147          "must have handled the async condition, if no exception");
2148 }
2149 
2150 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2151   //
2152   // Check for pending external suspend. Internal suspend requests do
2153   // not use handle_special_runtime_exit_condition().
2154   // If JNIEnv proxies are allowed, don't self-suspend if the target
2155   // thread is not the current thread. In older versions of jdbx, jdbx
2156   // threads could call into the VM with another thread's JNIEnv so we
2157   // can be here operating on behalf of a suspended thread (4432884).
2158   bool do_self_suspend = is_external_suspend_with_lock();
2159   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2160     //
2161     // Because thread is external suspended the safepoint code will count
2162     // thread as at a safepoint. This can be odd because we can be here
2163     // as _thread_in_Java which would normally transition to _thread_blocked
2164     // at a safepoint. We would like to mark the thread as _thread_blocked
2165     // before calling java_suspend_self like all other callers of it but
2166     // we must then observe proper safepoint protocol. (We can't leave
2167     // _thread_blocked with a safepoint in progress). However we can be
2168     // here as _thread_in_native_trans so we can't use a normal transition
2169     // constructor/destructor pair because they assert on that type of
2170     // transition. We could do something like:
2171     //
2172     // JavaThreadState state = thread_state();
2173     // set_thread_state(_thread_in_vm);
2174     // {
2175     //   ThreadBlockInVM tbivm(this);
2176     //   java_suspend_self()
2177     // }
2178     // set_thread_state(_thread_in_vm_trans);
2179     // if (safepoint) block;
2180     // set_thread_state(state);
2181     //
2182     // but that is pretty messy. Instead we just go with the way the
2183     // code has worked before and note that this is the only path to
2184     // java_suspend_self that doesn't put the thread in _thread_blocked
2185     // mode.
2186 
2187     frame_anchor()->make_walkable(this);
2188     java_suspend_self();
2189 
2190     // We might be here for reasons in addition to the self-suspend request
2191     // so check for other async requests.
2192   }
2193 
2194   if (check_asyncs) {
2195     check_and_handle_async_exceptions();
2196   }
2197 }
2198 
2199 void JavaThread::send_thread_stop(oop java_throwable)  {
2200   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2201   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2202   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2203 
2204   // Do not throw asynchronous exceptions against the compiler thread
2205   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2206   if (!can_call_java()) return;
2207 
2208   {
2209     // Actually throw the Throwable against the target Thread - however
2210     // only if there is no thread death exception installed already.
2211     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2212       // If the topmost frame is a runtime stub, then we are calling into
2213       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2214       // must deoptimize the caller before continuing, as the compiled  exception handler table
2215       // may not be valid
2216       if (has_last_Java_frame()) {
2217         frame f = last_frame();
2218         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2219           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2220           RegisterMap reg_map(this, UseBiasedLocking);
2221           frame compiled_frame = f.sender(&reg_map);
2222           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2223             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2224           }
2225         }
2226       }
2227 
2228       // Set async. pending exception in thread.
2229       set_pending_async_exception(java_throwable);
2230 
2231       if (log_is_enabled(Info, exceptions)) {
2232          ResourceMark rm;
2233         log_info(exceptions)("Pending Async. exception installed of type: %s",
2234                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2235       }
2236       // for AbortVMOnException flag
2237       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2238     }
2239   }
2240 
2241 
2242   // Interrupt thread so it will wake up from a potential wait()
2243   Thread::interrupt(this);
2244 }
2245 
2246 // External suspension mechanism.
2247 //
2248 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2249 // to any VM_locks and it is at a transition
2250 // Self-suspension will happen on the transition out of the vm.
2251 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2252 //
2253 // Guarantees on return:
2254 //   + Target thread will not execute any new bytecode (that's why we need to
2255 //     force a safepoint)
2256 //   + Target thread will not enter any new monitors
2257 //
2258 void JavaThread::java_suspend() {
2259   { MutexLocker mu(Threads_lock);
2260     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2261       return;
2262     }
2263   }
2264 
2265   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2266     if (!is_external_suspend()) {
2267       // a racing resume has cancelled us; bail out now
2268       return;
2269     }
2270 
2271     // suspend is done
2272     uint32_t debug_bits = 0;
2273     // Warning: is_ext_suspend_completed() may temporarily drop the
2274     // SR_lock to allow the thread to reach a stable thread state if
2275     // it is currently in a transient thread state.
2276     if (is_ext_suspend_completed(false /* !called_by_wait */,
2277                                  SuspendRetryDelay, &debug_bits)) {
2278       return;
2279     }
2280   }
2281 
2282   VM_ForceSafepoint vm_suspend;
2283   VMThread::execute(&vm_suspend);
2284 }
2285 
2286 // Part II of external suspension.
2287 // A JavaThread self suspends when it detects a pending external suspend
2288 // request. This is usually on transitions. It is also done in places
2289 // where continuing to the next transition would surprise the caller,
2290 // e.g., monitor entry.
2291 //
2292 // Returns the number of times that the thread self-suspended.
2293 //
2294 // Note: DO NOT call java_suspend_self() when you just want to block current
2295 //       thread. java_suspend_self() is the second stage of cooperative
2296 //       suspension for external suspend requests and should only be used
2297 //       to complete an external suspend request.
2298 //
2299 int JavaThread::java_suspend_self() {
2300   int ret = 0;
2301 
2302   // we are in the process of exiting so don't suspend
2303   if (is_exiting()) {
2304     clear_external_suspend();
2305     return ret;
2306   }
2307 
2308   assert(_anchor.walkable() ||
2309          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2310          "must have walkable stack");
2311 
2312   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2313 
2314   assert(!this->is_ext_suspended(),
2315          "a thread trying to self-suspend should not already be suspended");
2316 
2317   if (this->is_suspend_equivalent()) {
2318     // If we are self-suspending as a result of the lifting of a
2319     // suspend equivalent condition, then the suspend_equivalent
2320     // flag is not cleared until we set the ext_suspended flag so
2321     // that wait_for_ext_suspend_completion() returns consistent
2322     // results.
2323     this->clear_suspend_equivalent();
2324   }
2325 
2326   // A racing resume may have cancelled us before we grabbed SR_lock
2327   // above. Or another external suspend request could be waiting for us
2328   // by the time we return from SR_lock()->wait(). The thread
2329   // that requested the suspension may already be trying to walk our
2330   // stack and if we return now, we can change the stack out from under
2331   // it. This would be a "bad thing (TM)" and cause the stack walker
2332   // to crash. We stay self-suspended until there are no more pending
2333   // external suspend requests.
2334   while (is_external_suspend()) {
2335     ret++;
2336     this->set_ext_suspended();
2337 
2338     // _ext_suspended flag is cleared by java_resume()
2339     while (is_ext_suspended()) {
2340       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2341     }
2342   }
2343 
2344   return ret;
2345 }
2346 
2347 #ifdef ASSERT
2348 // verify the JavaThread has not yet been published in the Threads::list, and
2349 // hence doesn't need protection from concurrent access at this stage
2350 void JavaThread::verify_not_published() {
2351   if (!Threads_lock->owned_by_self()) {
2352     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2353     assert(!Threads::includes(this),
2354            "java thread shouldn't have been published yet!");
2355   } else {
2356     assert(!Threads::includes(this),
2357            "java thread shouldn't have been published yet!");
2358   }
2359 }
2360 #endif
2361 
2362 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2363 // progress or when _suspend_flags is non-zero.
2364 // Current thread needs to self-suspend if there is a suspend request and/or
2365 // block if a safepoint is in progress.
2366 // Async exception ISN'T checked.
2367 // Note only the ThreadInVMfromNative transition can call this function
2368 // directly and when thread state is _thread_in_native_trans
2369 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2370   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2371 
2372   JavaThread *curJT = JavaThread::current();
2373   bool do_self_suspend = thread->is_external_suspend();
2374 
2375   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2376 
2377   // If JNIEnv proxies are allowed, don't self-suspend if the target
2378   // thread is not the current thread. In older versions of jdbx, jdbx
2379   // threads could call into the VM with another thread's JNIEnv so we
2380   // can be here operating on behalf of a suspended thread (4432884).
2381   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2382     JavaThreadState state = thread->thread_state();
2383 
2384     // We mark this thread_blocked state as a suspend-equivalent so
2385     // that a caller to is_ext_suspend_completed() won't be confused.
2386     // The suspend-equivalent state is cleared by java_suspend_self().
2387     thread->set_suspend_equivalent();
2388 
2389     // If the safepoint code sees the _thread_in_native_trans state, it will
2390     // wait until the thread changes to other thread state. There is no
2391     // guarantee on how soon we can obtain the SR_lock and complete the
2392     // self-suspend request. It would be a bad idea to let safepoint wait for
2393     // too long. Temporarily change the state to _thread_blocked to
2394     // let the VM thread know that this thread is ready for GC. The problem
2395     // of changing thread state is that safepoint could happen just after
2396     // java_suspend_self() returns after being resumed, and VM thread will
2397     // see the _thread_blocked state. We must check for safepoint
2398     // after restoring the state and make sure we won't leave while a safepoint
2399     // is in progress.
2400     thread->set_thread_state(_thread_blocked);
2401     thread->java_suspend_self();
2402     thread->set_thread_state(state);
2403     // Make sure new state is seen by VM thread
2404     if (os::is_MP()) {
2405       if (UseMembar) {
2406         // Force a fence between the write above and read below
2407         OrderAccess::fence();
2408       } else {
2409         // Must use this rather than serialization page in particular on Windows
2410         InterfaceSupport::serialize_memory(thread);
2411       }
2412     }
2413   }
2414 
2415   if (SafepointSynchronize::do_call_back()) {
2416     // If we are safepointing, then block the caller which may not be
2417     // the same as the target thread (see above).
2418     SafepointSynchronize::block(curJT);
2419   }
2420 
2421   if (thread->is_deopt_suspend()) {
2422     thread->clear_deopt_suspend();
2423     RegisterMap map(thread, false);
2424     frame f = thread->last_frame();
2425     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2426       f = f.sender(&map);
2427     }
2428     if (f.id() == thread->must_deopt_id()) {
2429       thread->clear_must_deopt_id();
2430       f.deoptimize(thread);
2431     } else {
2432       fatal("missed deoptimization!");
2433     }
2434   }
2435 }
2436 
2437 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2438 // progress or when _suspend_flags is non-zero.
2439 // Current thread needs to self-suspend if there is a suspend request and/or
2440 // block if a safepoint is in progress.
2441 // Also check for pending async exception (not including unsafe access error).
2442 // Note only the native==>VM/Java barriers can call this function and when
2443 // thread state is _thread_in_native_trans.
2444 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2445   check_safepoint_and_suspend_for_native_trans(thread);
2446 
2447   if (thread->has_async_exception()) {
2448     // We are in _thread_in_native_trans state, don't handle unsafe
2449     // access error since that may block.
2450     thread->check_and_handle_async_exceptions(false);
2451   }
2452 }
2453 
2454 // This is a variant of the normal
2455 // check_special_condition_for_native_trans with slightly different
2456 // semantics for use by critical native wrappers.  It does all the
2457 // normal checks but also performs the transition back into
2458 // thread_in_Java state.  This is required so that critical natives
2459 // can potentially block and perform a GC if they are the last thread
2460 // exiting the GCLocker.
2461 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2462   check_special_condition_for_native_trans(thread);
2463 
2464   // Finish the transition
2465   thread->set_thread_state(_thread_in_Java);
2466 
2467   if (thread->do_critical_native_unlock()) {
2468     ThreadInVMfromJavaNoAsyncException tiv(thread);
2469     GCLocker::unlock_critical(thread);
2470     thread->clear_critical_native_unlock();
2471   }
2472 }
2473 
2474 // We need to guarantee the Threads_lock here, since resumes are not
2475 // allowed during safepoint synchronization
2476 // Can only resume from an external suspension
2477 void JavaThread::java_resume() {
2478   assert_locked_or_safepoint(Threads_lock);
2479 
2480   // Sanity check: thread is gone, has started exiting or the thread
2481   // was not externally suspended.
2482   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2483     return;
2484   }
2485 
2486   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2487 
2488   clear_external_suspend();
2489 
2490   if (is_ext_suspended()) {
2491     clear_ext_suspended();
2492     SR_lock()->notify_all();
2493   }
2494 }
2495 
2496 size_t JavaThread::_stack_red_zone_size = 0;
2497 size_t JavaThread::_stack_yellow_zone_size = 0;
2498 size_t JavaThread::_stack_reserved_zone_size = 0;
2499 size_t JavaThread::_stack_shadow_zone_size = 0;
2500 
2501 void JavaThread::create_stack_guard_pages() {
2502   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2503   address low_addr = stack_end();
2504   size_t len = stack_guard_zone_size();
2505 
2506   int must_commit = os::must_commit_stack_guard_pages();
2507   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2508 
2509   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2510     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2511     return;
2512   }
2513 
2514   if (os::guard_memory((char *) low_addr, len)) {
2515     _stack_guard_state = stack_guard_enabled;
2516   } else {
2517     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2518       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2519     if (os::uncommit_memory((char *) low_addr, len)) {
2520       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2521     }
2522     return;
2523   }
2524 
2525   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2526     PTR_FORMAT "-" PTR_FORMAT ".",
2527     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2528 }
2529 
2530 void JavaThread::remove_stack_guard_pages() {
2531   assert(Thread::current() == this, "from different thread");
2532   if (_stack_guard_state == stack_guard_unused) return;
2533   address low_addr = stack_end();
2534   size_t len = stack_guard_zone_size();
2535 
2536   if (os::must_commit_stack_guard_pages()) {
2537     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2538       _stack_guard_state = stack_guard_unused;
2539     } else {
2540       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2541         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2542       return;
2543     }
2544   } else {
2545     if (_stack_guard_state == stack_guard_unused) return;
2546     if (os::unguard_memory((char *) low_addr, len)) {
2547       _stack_guard_state = stack_guard_unused;
2548     } else {
2549       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2550         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2551       return;
2552     }
2553   }
2554 
2555   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2556     PTR_FORMAT "-" PTR_FORMAT ".",
2557     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2558 }
2559 
2560 void JavaThread::enable_stack_reserved_zone() {
2561   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2562   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2563 
2564   // The base notation is from the stack's point of view, growing downward.
2565   // We need to adjust it to work correctly with guard_memory()
2566   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2567 
2568   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2569   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2570 
2571   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2572     _stack_guard_state = stack_guard_enabled;
2573   } else {
2574     warning("Attempt to guard stack reserved zone failed.");
2575   }
2576   enable_register_stack_guard();
2577 }
2578 
2579 void JavaThread::disable_stack_reserved_zone() {
2580   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2581   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2582 
2583   // Simply return if called for a thread that does not use guard pages.
2584   if (_stack_guard_state == stack_guard_unused) return;
2585 
2586   // The base notation is from the stack's point of view, growing downward.
2587   // We need to adjust it to work correctly with guard_memory()
2588   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2589 
2590   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2591     _stack_guard_state = stack_guard_reserved_disabled;
2592   } else {
2593     warning("Attempt to unguard stack reserved zone failed.");
2594   }
2595   disable_register_stack_guard();
2596 }
2597 
2598 void JavaThread::enable_stack_yellow_reserved_zone() {
2599   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2600   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2601 
2602   // The base notation is from the stacks point of view, growing downward.
2603   // We need to adjust it to work correctly with guard_memory()
2604   address base = stack_red_zone_base();
2605 
2606   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2607   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2608 
2609   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2610     _stack_guard_state = stack_guard_enabled;
2611   } else {
2612     warning("Attempt to guard stack yellow zone failed.");
2613   }
2614   enable_register_stack_guard();
2615 }
2616 
2617 void JavaThread::disable_stack_yellow_reserved_zone() {
2618   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2619   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2620 
2621   // Simply return if called for a thread that does not use guard pages.
2622   if (_stack_guard_state == stack_guard_unused) return;
2623 
2624   // The base notation is from the stacks point of view, growing downward.
2625   // We need to adjust it to work correctly with guard_memory()
2626   address base = stack_red_zone_base();
2627 
2628   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2629     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2630   } else {
2631     warning("Attempt to unguard stack yellow zone failed.");
2632   }
2633   disable_register_stack_guard();
2634 }
2635 
2636 void JavaThread::enable_stack_red_zone() {
2637   // The base notation is from the stacks point of view, growing downward.
2638   // We need to adjust it to work correctly with guard_memory()
2639   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2640   address base = stack_red_zone_base() - stack_red_zone_size();
2641 
2642   guarantee(base < stack_base(), "Error calculating stack red zone");
2643   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2644 
2645   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2646     warning("Attempt to guard stack red zone failed.");
2647   }
2648 }
2649 
2650 void JavaThread::disable_stack_red_zone() {
2651   // The base notation is from the stacks point of view, growing downward.
2652   // We need to adjust it to work correctly with guard_memory()
2653   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2654   address base = stack_red_zone_base() - stack_red_zone_size();
2655   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2656     warning("Attempt to unguard stack red zone failed.");
2657   }
2658 }
2659 
2660 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2661   // ignore is there is no stack
2662   if (!has_last_Java_frame()) return;
2663   // traverse the stack frames. Starts from top frame.
2664   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2665     frame* fr = fst.current();
2666     f(fr, fst.register_map());
2667   }
2668 }
2669 
2670 
2671 #ifndef PRODUCT
2672 // Deoptimization
2673 // Function for testing deoptimization
2674 void JavaThread::deoptimize() {
2675   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2676   StackFrameStream fst(this, UseBiasedLocking);
2677   bool deopt = false;           // Dump stack only if a deopt actually happens.
2678   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2679   // Iterate over all frames in the thread and deoptimize
2680   for (; !fst.is_done(); fst.next()) {
2681     if (fst.current()->can_be_deoptimized()) {
2682 
2683       if (only_at) {
2684         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2685         // consists of comma or carriage return separated numbers so
2686         // search for the current bci in that string.
2687         address pc = fst.current()->pc();
2688         nmethod* nm =  (nmethod*) fst.current()->cb();
2689         ScopeDesc* sd = nm->scope_desc_at(pc);
2690         char buffer[8];
2691         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2692         size_t len = strlen(buffer);
2693         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2694         while (found != NULL) {
2695           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2696               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2697             // Check that the bci found is bracketed by terminators.
2698             break;
2699           }
2700           found = strstr(found + 1, buffer);
2701         }
2702         if (!found) {
2703           continue;
2704         }
2705       }
2706 
2707       if (DebugDeoptimization && !deopt) {
2708         deopt = true; // One-time only print before deopt
2709         tty->print_cr("[BEFORE Deoptimization]");
2710         trace_frames();
2711         trace_stack();
2712       }
2713       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2714     }
2715   }
2716 
2717   if (DebugDeoptimization && deopt) {
2718     tty->print_cr("[AFTER Deoptimization]");
2719     trace_frames();
2720   }
2721 }
2722 
2723 
2724 // Make zombies
2725 void JavaThread::make_zombies() {
2726   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2727     if (fst.current()->can_be_deoptimized()) {
2728       // it is a Java nmethod
2729       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2730       nm->make_not_entrant();
2731     }
2732   }
2733 }
2734 #endif // PRODUCT
2735 
2736 
2737 void JavaThread::deoptimized_wrt_marked_nmethods() {
2738   if (!has_last_Java_frame()) return;
2739   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2740   StackFrameStream fst(this, UseBiasedLocking);
2741   for (; !fst.is_done(); fst.next()) {
2742     if (fst.current()->should_be_deoptimized()) {
2743       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2744     }
2745   }
2746 }
2747 
2748 
2749 // If the caller is a NamedThread, then remember, in the current scope,
2750 // the given JavaThread in its _processed_thread field.
2751 class RememberProcessedThread: public StackObj {
2752   NamedThread* _cur_thr;
2753  public:
2754   RememberProcessedThread(JavaThread* jthr) {
2755     Thread* thread = Thread::current();
2756     if (thread->is_Named_thread()) {
2757       _cur_thr = (NamedThread *)thread;
2758       _cur_thr->set_processed_thread(jthr);
2759     } else {
2760       _cur_thr = NULL;
2761     }
2762   }
2763 
2764   ~RememberProcessedThread() {
2765     if (_cur_thr) {
2766       _cur_thr->set_processed_thread(NULL);
2767     }
2768   }
2769 };
2770 
2771 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2772   // Verify that the deferred card marks have been flushed.
2773   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2774 
2775   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2776   // since there may be more than one thread using each ThreadProfiler.
2777 
2778   // Traverse the GCHandles
2779   Thread::oops_do(f, cf);
2780 
2781   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2782 
2783   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2784          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2785 
2786   if (has_last_Java_frame()) {
2787     // Record JavaThread to GC thread
2788     RememberProcessedThread rpt(this);
2789 
2790     // Traverse the privileged stack
2791     if (_privileged_stack_top != NULL) {
2792       _privileged_stack_top->oops_do(f);
2793     }
2794 
2795     // traverse the registered growable array
2796     if (_array_for_gc != NULL) {
2797       for (int index = 0; index < _array_for_gc->length(); index++) {
2798         f->do_oop(_array_for_gc->adr_at(index));
2799       }
2800     }
2801 
2802     // Traverse the monitor chunks
2803     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2804       chunk->oops_do(f);
2805     }
2806 
2807     // Traverse the execution stack
2808     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2809       fst.current()->oops_do(f, cf, fst.register_map());
2810     }
2811   }
2812 
2813   // callee_target is never live across a gc point so NULL it here should
2814   // it still contain a methdOop.
2815 
2816   set_callee_target(NULL);
2817 
2818   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2819   // If we have deferred set_locals there might be oops waiting to be
2820   // written
2821   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2822   if (list != NULL) {
2823     for (int i = 0; i < list->length(); i++) {
2824       list->at(i)->oops_do(f);
2825     }
2826   }
2827 
2828   // Traverse instance variables at the end since the GC may be moving things
2829   // around using this function
2830   f->do_oop((oop*) &_threadObj);
2831   f->do_oop((oop*) &_vm_result);
2832   f->do_oop((oop*) &_exception_oop);
2833   f->do_oop((oop*) &_pending_async_exception);
2834 
2835   if (jvmti_thread_state() != NULL) {
2836     jvmti_thread_state()->oops_do(f);
2837   }
2838 }
2839 
2840 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2841   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2842          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2843 
2844   if (has_last_Java_frame()) {
2845     // Traverse the execution stack
2846     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2847       fst.current()->nmethods_do(cf);
2848     }
2849   }
2850 }
2851 
2852 void JavaThread::metadata_do(void f(Metadata*)) {
2853   if (has_last_Java_frame()) {
2854     // Traverse the execution stack to call f() on the methods in the stack
2855     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2856       fst.current()->metadata_do(f);
2857     }
2858   } else if (is_Compiler_thread()) {
2859     // need to walk ciMetadata in current compile tasks to keep alive.
2860     CompilerThread* ct = (CompilerThread*)this;
2861     if (ct->env() != NULL) {
2862       ct->env()->metadata_do(f);
2863     }
2864     if (ct->task() != NULL) {
2865       ct->task()->metadata_do(f);
2866     }
2867   }
2868 }
2869 
2870 // Printing
2871 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2872   switch (_thread_state) {
2873   case _thread_uninitialized:     return "_thread_uninitialized";
2874   case _thread_new:               return "_thread_new";
2875   case _thread_new_trans:         return "_thread_new_trans";
2876   case _thread_in_native:         return "_thread_in_native";
2877   case _thread_in_native_trans:   return "_thread_in_native_trans";
2878   case _thread_in_vm:             return "_thread_in_vm";
2879   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2880   case _thread_in_Java:           return "_thread_in_Java";
2881   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2882   case _thread_blocked:           return "_thread_blocked";
2883   case _thread_blocked_trans:     return "_thread_blocked_trans";
2884   default:                        return "unknown thread state";
2885   }
2886 }
2887 
2888 #ifndef PRODUCT
2889 void JavaThread::print_thread_state_on(outputStream *st) const {
2890   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2891 };
2892 void JavaThread::print_thread_state() const {
2893   print_thread_state_on(tty);
2894 }
2895 #endif // PRODUCT
2896 
2897 // Called by Threads::print() for VM_PrintThreads operation
2898 void JavaThread::print_on(outputStream *st) const {
2899   st->print_raw("\"");
2900   st->print_raw(get_thread_name());
2901   st->print_raw("\" ");
2902   oop thread_oop = threadObj();
2903   if (thread_oop != NULL) {
2904     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2905     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2906     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2907   }
2908   Thread::print_on(st);
2909   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2910   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2911   if (thread_oop != NULL) {
2912     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2913   }
2914 #ifndef PRODUCT
2915   print_thread_state_on(st);
2916   _safepoint_state->print_on(st);
2917 #endif // PRODUCT
2918   if (is_Compiler_thread()) {
2919     CompilerThread* ct = (CompilerThread*)this;
2920     if (ct->task() != NULL) {
2921       st->print("   Compiling: ");
2922       ct->task()->print(st, NULL, true, false);
2923     } else {
2924       st->print("   No compile task");
2925     }
2926     st->cr();
2927   }
2928 }
2929 
2930 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2931   st->print("%s", get_thread_name_string(buf, buflen));
2932 }
2933 
2934 // Called by fatal error handler. The difference between this and
2935 // JavaThread::print() is that we can't grab lock or allocate memory.
2936 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2937   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2938   oop thread_obj = threadObj();
2939   if (thread_obj != NULL) {
2940     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2941   }
2942   st->print(" [");
2943   st->print("%s", _get_thread_state_name(_thread_state));
2944   if (osthread()) {
2945     st->print(", id=%d", osthread()->thread_id());
2946   }
2947   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2948             p2i(stack_end()), p2i(stack_base()));
2949   st->print("]");
2950   return;
2951 }
2952 
2953 // Verification
2954 
2955 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2956 
2957 void JavaThread::verify() {
2958   // Verify oops in the thread.
2959   oops_do(&VerifyOopClosure::verify_oop, NULL);
2960 
2961   // Verify the stack frames.
2962   frames_do(frame_verify);
2963 }
2964 
2965 // CR 6300358 (sub-CR 2137150)
2966 // Most callers of this method assume that it can't return NULL but a
2967 // thread may not have a name whilst it is in the process of attaching to
2968 // the VM - see CR 6412693, and there are places where a JavaThread can be
2969 // seen prior to having it's threadObj set (eg JNI attaching threads and
2970 // if vm exit occurs during initialization). These cases can all be accounted
2971 // for such that this method never returns NULL.
2972 const char* JavaThread::get_thread_name() const {
2973 #ifdef ASSERT
2974   // early safepoints can hit while current thread does not yet have TLS
2975   if (!SafepointSynchronize::is_at_safepoint()) {
2976     Thread *cur = Thread::current();
2977     if (!(cur->is_Java_thread() && cur == this)) {
2978       // Current JavaThreads are allowed to get their own name without
2979       // the Threads_lock.
2980       assert_locked_or_safepoint(Threads_lock);
2981     }
2982   }
2983 #endif // ASSERT
2984   return get_thread_name_string();
2985 }
2986 
2987 // Returns a non-NULL representation of this thread's name, or a suitable
2988 // descriptive string if there is no set name
2989 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2990   const char* name_str;
2991   oop thread_obj = threadObj();
2992   if (thread_obj != NULL) {
2993     oop name = java_lang_Thread::name(thread_obj);
2994     if (name != NULL) {
2995       if (buf == NULL) {
2996         name_str = java_lang_String::as_utf8_string(name);
2997       } else {
2998         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2999       }
3000     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3001       name_str = "<no-name - thread is attaching>";
3002     } else {
3003       name_str = Thread::name();
3004     }
3005   } else {
3006     name_str = Thread::name();
3007   }
3008   assert(name_str != NULL, "unexpected NULL thread name");
3009   return name_str;
3010 }
3011 
3012 
3013 const char* JavaThread::get_threadgroup_name() const {
3014   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3015   oop thread_obj = threadObj();
3016   if (thread_obj != NULL) {
3017     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3018     if (thread_group != NULL) {
3019       // ThreadGroup.name can be null
3020       return java_lang_ThreadGroup::name(thread_group);
3021     }
3022   }
3023   return NULL;
3024 }
3025 
3026 const char* JavaThread::get_parent_name() const {
3027   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3028   oop thread_obj = threadObj();
3029   if (thread_obj != NULL) {
3030     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3031     if (thread_group != NULL) {
3032       oop parent = java_lang_ThreadGroup::parent(thread_group);
3033       if (parent != NULL) {
3034         // ThreadGroup.name can be null
3035         return java_lang_ThreadGroup::name(parent);
3036       }
3037     }
3038   }
3039   return NULL;
3040 }
3041 
3042 ThreadPriority JavaThread::java_priority() const {
3043   oop thr_oop = threadObj();
3044   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3045   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3046   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3047   return priority;
3048 }
3049 
3050 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3051 
3052   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3053   // Link Java Thread object <-> C++ Thread
3054 
3055   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3056   // and put it into a new Handle.  The Handle "thread_oop" can then
3057   // be used to pass the C++ thread object to other methods.
3058 
3059   // Set the Java level thread object (jthread) field of the
3060   // new thread (a JavaThread *) to C++ thread object using the
3061   // "thread_oop" handle.
3062 
3063   // Set the thread field (a JavaThread *) of the
3064   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3065 
3066   Handle thread_oop(Thread::current(),
3067                     JNIHandles::resolve_non_null(jni_thread));
3068   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3069          "must be initialized");
3070   set_threadObj(thread_oop());
3071   java_lang_Thread::set_thread(thread_oop(), this);
3072 
3073   if (prio == NoPriority) {
3074     prio = java_lang_Thread::priority(thread_oop());
3075     assert(prio != NoPriority, "A valid priority should be present");
3076   }
3077 
3078   // Push the Java priority down to the native thread; needs Threads_lock
3079   Thread::set_priority(this, prio);
3080 
3081   prepare_ext();
3082 
3083   // Add the new thread to the Threads list and set it in motion.
3084   // We must have threads lock in order to call Threads::add.
3085   // It is crucial that we do not block before the thread is
3086   // added to the Threads list for if a GC happens, then the java_thread oop
3087   // will not be visited by GC.
3088   Threads::add(this);
3089 }
3090 
3091 oop JavaThread::current_park_blocker() {
3092   // Support for JSR-166 locks
3093   oop thread_oop = threadObj();
3094   if (thread_oop != NULL &&
3095       JDK_Version::current().supports_thread_park_blocker()) {
3096     return java_lang_Thread::park_blocker(thread_oop);
3097   }
3098   return NULL;
3099 }
3100 
3101 
3102 void JavaThread::print_stack_on(outputStream* st) {
3103   if (!has_last_Java_frame()) return;
3104   ResourceMark rm;
3105   HandleMark   hm;
3106 
3107   RegisterMap reg_map(this);
3108   vframe* start_vf = last_java_vframe(&reg_map);
3109   int count = 0;
3110   for (vframe* f = start_vf; f; f = f->sender()) {
3111     if (f->is_java_frame()) {
3112       javaVFrame* jvf = javaVFrame::cast(f);
3113       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3114 
3115       // Print out lock information
3116       if (JavaMonitorsInStackTrace) {
3117         jvf->print_lock_info_on(st, count);
3118       }
3119     } else {
3120       // Ignore non-Java frames
3121     }
3122 
3123     // Bail-out case for too deep stacks
3124     count++;
3125     if (MaxJavaStackTraceDepth == count) return;
3126   }
3127 }
3128 
3129 
3130 // JVMTI PopFrame support
3131 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3132   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3133   if (in_bytes(size_in_bytes) != 0) {
3134     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3135     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3136     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3137   }
3138 }
3139 
3140 void* JavaThread::popframe_preserved_args() {
3141   return _popframe_preserved_args;
3142 }
3143 
3144 ByteSize JavaThread::popframe_preserved_args_size() {
3145   return in_ByteSize(_popframe_preserved_args_size);
3146 }
3147 
3148 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3149   int sz = in_bytes(popframe_preserved_args_size());
3150   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3151   return in_WordSize(sz / wordSize);
3152 }
3153 
3154 void JavaThread::popframe_free_preserved_args() {
3155   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3156   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3157   _popframe_preserved_args = NULL;
3158   _popframe_preserved_args_size = 0;
3159 }
3160 
3161 #ifndef PRODUCT
3162 
3163 void JavaThread::trace_frames() {
3164   tty->print_cr("[Describe stack]");
3165   int frame_no = 1;
3166   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3167     tty->print("  %d. ", frame_no++);
3168     fst.current()->print_value_on(tty, this);
3169     tty->cr();
3170   }
3171 }
3172 
3173 class PrintAndVerifyOopClosure: public OopClosure {
3174  protected:
3175   template <class T> inline void do_oop_work(T* p) {
3176     oop obj = oopDesc::load_decode_heap_oop(p);
3177     if (obj == NULL) return;
3178     tty->print(INTPTR_FORMAT ": ", p2i(p));
3179     if (obj->is_oop_or_null()) {
3180       if (obj->is_objArray()) {
3181         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3182       } else {
3183         obj->print();
3184       }
3185     } else {
3186       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3187     }
3188     tty->cr();
3189   }
3190  public:
3191   virtual void do_oop(oop* p) { do_oop_work(p); }
3192   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3193 };
3194 
3195 
3196 static void oops_print(frame* f, const RegisterMap *map) {
3197   PrintAndVerifyOopClosure print;
3198   f->print_value();
3199   f->oops_do(&print, NULL, (RegisterMap*)map);
3200 }
3201 
3202 // Print our all the locations that contain oops and whether they are
3203 // valid or not.  This useful when trying to find the oldest frame
3204 // where an oop has gone bad since the frame walk is from youngest to
3205 // oldest.
3206 void JavaThread::trace_oops() {
3207   tty->print_cr("[Trace oops]");
3208   frames_do(oops_print);
3209 }
3210 
3211 
3212 #ifdef ASSERT
3213 // Print or validate the layout of stack frames
3214 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3215   ResourceMark rm;
3216   PRESERVE_EXCEPTION_MARK;
3217   FrameValues values;
3218   int frame_no = 0;
3219   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3220     fst.current()->describe(values, ++frame_no);
3221     if (depth == frame_no) break;
3222   }
3223   if (validate_only) {
3224     values.validate();
3225   } else {
3226     tty->print_cr("[Describe stack layout]");
3227     values.print(this);
3228   }
3229 }
3230 #endif
3231 
3232 void JavaThread::trace_stack_from(vframe* start_vf) {
3233   ResourceMark rm;
3234   int vframe_no = 1;
3235   for (vframe* f = start_vf; f; f = f->sender()) {
3236     if (f->is_java_frame()) {
3237       javaVFrame::cast(f)->print_activation(vframe_no++);
3238     } else {
3239       f->print();
3240     }
3241     if (vframe_no > StackPrintLimit) {
3242       tty->print_cr("...<more frames>...");
3243       return;
3244     }
3245   }
3246 }
3247 
3248 
3249 void JavaThread::trace_stack() {
3250   if (!has_last_Java_frame()) return;
3251   ResourceMark rm;
3252   HandleMark   hm;
3253   RegisterMap reg_map(this);
3254   trace_stack_from(last_java_vframe(&reg_map));
3255 }
3256 
3257 
3258 #endif // PRODUCT
3259 
3260 
3261 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3262   assert(reg_map != NULL, "a map must be given");
3263   frame f = last_frame();
3264   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3265     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3266   }
3267   return NULL;
3268 }
3269 
3270 
3271 Klass* JavaThread::security_get_caller_class(int depth) {
3272   vframeStream vfst(this);
3273   vfst.security_get_caller_frame(depth);
3274   if (!vfst.at_end()) {
3275     return vfst.method()->method_holder();
3276   }
3277   return NULL;
3278 }
3279 
3280 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3281   assert(thread->is_Compiler_thread(), "must be compiler thread");
3282   CompileBroker::compiler_thread_loop();
3283 }
3284 
3285 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3286   NMethodSweeper::sweeper_loop();
3287 }
3288 
3289 // Create a CompilerThread
3290 CompilerThread::CompilerThread(CompileQueue* queue,
3291                                CompilerCounters* counters)
3292                                : JavaThread(&compiler_thread_entry) {
3293   _env   = NULL;
3294   _log   = NULL;
3295   _task  = NULL;
3296   _queue = queue;
3297   _counters = counters;
3298   _buffer_blob = NULL;
3299   _compiler = NULL;
3300 
3301 #ifndef PRODUCT
3302   _ideal_graph_printer = NULL;
3303 #endif
3304 }
3305 
3306 bool CompilerThread::can_call_java() const {
3307   return _compiler != NULL && _compiler->is_jvmci();
3308 }
3309 
3310 // Create sweeper thread
3311 CodeCacheSweeperThread::CodeCacheSweeperThread()
3312 : JavaThread(&sweeper_thread_entry) {
3313   _scanned_compiled_method = NULL;
3314 }
3315 
3316 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3317   JavaThread::oops_do(f, cf);
3318   if (_scanned_compiled_method != NULL && cf != NULL) {
3319     // Safepoints can occur when the sweeper is scanning an nmethod so
3320     // process it here to make sure it isn't unloaded in the middle of
3321     // a scan.
3322     cf->do_code_blob(_scanned_compiled_method);
3323   }
3324 }
3325 
3326 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3327   JavaThread::nmethods_do(cf);
3328   if (_scanned_compiled_method != NULL && cf != NULL) {
3329     // Safepoints can occur when the sweeper is scanning an nmethod so
3330     // process it here to make sure it isn't unloaded in the middle of
3331     // a scan.
3332     cf->do_code_blob(_scanned_compiled_method);
3333   }
3334 }
3335 
3336 
3337 // ======= Threads ========
3338 
3339 // The Threads class links together all active threads, and provides
3340 // operations over all threads.  It is protected by its own Mutex
3341 // lock, which is also used in other contexts to protect thread
3342 // operations from having the thread being operated on from exiting
3343 // and going away unexpectedly (e.g., safepoint synchronization)
3344 
3345 JavaThread* Threads::_thread_list = NULL;
3346 int         Threads::_number_of_threads = 0;
3347 int         Threads::_number_of_non_daemon_threads = 0;
3348 int         Threads::_return_code = 0;
3349 int         Threads::_thread_claim_parity = 0;
3350 size_t      JavaThread::_stack_size_at_create = 0;
3351 #ifdef ASSERT
3352 bool        Threads::_vm_complete = false;
3353 #endif
3354 
3355 // All JavaThreads
3356 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3357 
3358 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3359 void Threads::threads_do(ThreadClosure* tc) {
3360   assert_locked_or_safepoint(Threads_lock);
3361   // ALL_JAVA_THREADS iterates through all JavaThreads
3362   ALL_JAVA_THREADS(p) {
3363     tc->do_thread(p);
3364   }
3365   // Someday we could have a table or list of all non-JavaThreads.
3366   // For now, just manually iterate through them.
3367   tc->do_thread(VMThread::vm_thread());
3368   Universe::heap()->gc_threads_do(tc);
3369   WatcherThread *wt = WatcherThread::watcher_thread();
3370   // Strictly speaking, the following NULL check isn't sufficient to make sure
3371   // the data for WatcherThread is still valid upon being examined. However,
3372   // considering that WatchThread terminates when the VM is on the way to
3373   // exit at safepoint, the chance of the above is extremely small. The right
3374   // way to prevent termination of WatcherThread would be to acquire
3375   // Terminator_lock, but we can't do that without violating the lock rank
3376   // checking in some cases.
3377   if (wt != NULL) {
3378     tc->do_thread(wt);
3379   }
3380 
3381   // If CompilerThreads ever become non-JavaThreads, add them here
3382 }
3383 
3384 // The system initialization in the library has three phases.
3385 //
3386 // Phase 1: java.lang.System class initialization
3387 //     java.lang.System is a primordial class loaded and initialized
3388 //     by the VM early during startup.  java.lang.System.<clinit>
3389 //     only does registerNatives and keeps the rest of the class
3390 //     initialization work later until thread initialization completes.
3391 //
3392 //     System.initPhase1 initializes the system properties, the static
3393 //     fields in, out, and err. Set up java signal handlers, OS-specific
3394 //     system settings, and thread group of the main thread.
3395 static void call_initPhase1(TRAPS) {
3396   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3397   JavaValue result(T_VOID);
3398   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3399                                          vmSymbols::void_method_signature(), CHECK);
3400 }
3401 
3402 // Phase 2. Module system initialization
3403 //     This will initialize the module system.  Only java.base classes
3404 //     can be loaded until phase 2 completes.
3405 //
3406 //     Call System.initPhase2 after the compiler initialization and jsr292
3407 //     classes get initialized because module initialization runs a lot of java
3408 //     code, that for performance reasons, should be compiled.  Also, this will
3409 //     enable the startup code to use lambda and other language features in this
3410 //     phase and onward.
3411 //
3412 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3413 static void call_initPhase2(TRAPS) {
3414   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, module, startuptime));
3415 
3416   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3417 
3418   JavaValue result(T_INT);
3419   JavaCallArguments args;
3420   args.push_int(DisplayVMOutputToStderr);
3421   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3422   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3423                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3424   if (result.get_jint() != JNI_OK) {
3425     vm_exit_during_initialization(); // no message or exception
3426   }
3427 
3428   universe_post_module_init();
3429 }
3430 
3431 // Phase 3. final setup - set security manager, system class loader and TCCL
3432 //
3433 //     This will instantiate and set the security manager, set the system class
3434 //     loader as well as the thread context class loader.  The security manager
3435 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3436 //     other modules or the application's classpath.
3437 static void call_initPhase3(TRAPS) {
3438   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3439   JavaValue result(T_VOID);
3440   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3441                                          vmSymbols::void_method_signature(), CHECK);
3442 }
3443 
3444 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3445   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3446 
3447   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3448     create_vm_init_libraries();
3449   }
3450 
3451   initialize_class(vmSymbols::java_lang_String(), CHECK);
3452 
3453   // Inject CompactStrings value after the static initializers for String ran.
3454   java_lang_String::set_compact_strings(CompactStrings);
3455 
3456   // Initialize java_lang.System (needed before creating the thread)
3457   initialize_class(vmSymbols::java_lang_System(), CHECK);
3458   // The VM creates & returns objects of this class. Make sure it's initialized.
3459   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3460   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3461   Handle thread_group = create_initial_thread_group(CHECK);
3462   Universe::set_main_thread_group(thread_group());
3463   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3464   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3465   main_thread->set_threadObj(thread_object);
3466   // Set thread status to running since main thread has
3467   // been started and running.
3468   java_lang_Thread::set_thread_status(thread_object,
3469                                       java_lang_Thread::RUNNABLE);
3470 
3471   // The VM creates objects of this class.
3472   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3473 
3474   // The VM preresolves methods to these classes. Make sure that they get initialized
3475   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3476   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3477 
3478   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3479   call_initPhase1(CHECK);
3480 
3481   // get the Java runtime name after java.lang.System is initialized
3482   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3483   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3484 
3485   // an instance of OutOfMemory exception has been allocated earlier
3486   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3487   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3488   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3489   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3490   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3491   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3492   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3493   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3494 }
3495 
3496 void Threads::initialize_jsr292_core_classes(TRAPS) {
3497   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3498 
3499   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3500   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3501   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3502 }
3503 
3504 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3505   extern void JDK_Version_init();
3506 
3507   // Preinitialize version info.
3508   VM_Version::early_initialize();
3509 
3510   // Check version
3511   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3512 
3513   // Initialize library-based TLS
3514   ThreadLocalStorage::init();
3515 
3516   // Initialize the output stream module
3517   ostream_init();
3518 
3519   // Process java launcher properties.
3520   Arguments::process_sun_java_launcher_properties(args);
3521 
3522   // Initialize the os module
3523   os::init();
3524 
3525   // Record VM creation timing statistics
3526   TraceVmCreationTime create_vm_timer;
3527   create_vm_timer.start();
3528 
3529   // Initialize system properties.
3530   Arguments::init_system_properties();
3531 
3532   // So that JDK version can be used as a discriminator when parsing arguments
3533   JDK_Version_init();
3534 
3535   // Update/Initialize System properties after JDK version number is known
3536   Arguments::init_version_specific_system_properties();
3537 
3538   // Make sure to initialize log configuration *before* parsing arguments
3539   LogConfiguration::initialize(create_vm_timer.begin_time());
3540 
3541   // Parse arguments
3542   jint parse_result = Arguments::parse(args);
3543   if (parse_result != JNI_OK) return parse_result;
3544 
3545   os::init_before_ergo();
3546 
3547   jint ergo_result = Arguments::apply_ergo();
3548   if (ergo_result != JNI_OK) return ergo_result;
3549 
3550   // Final check of all ranges after ergonomics which may change values.
3551   if (!CommandLineFlagRangeList::check_ranges()) {
3552     return JNI_EINVAL;
3553   }
3554 
3555   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3556   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3557   if (!constraint_result) {
3558     return JNI_EINVAL;
3559   }
3560 
3561   CommandLineFlagWriteableList::mark_startup();
3562 
3563   if (PauseAtStartup) {
3564     os::pause();
3565   }
3566 
3567   HOTSPOT_VM_INIT_BEGIN();
3568 
3569   // Timing (must come after argument parsing)
3570   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3571 
3572   // Initialize the os module after parsing the args
3573   jint os_init_2_result = os::init_2();
3574   if (os_init_2_result != JNI_OK) return os_init_2_result;
3575 
3576   jint adjust_after_os_result = Arguments::adjust_after_os();
3577   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3578 
3579   // Initialize output stream logging
3580   ostream_init_log();
3581 
3582   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3583   // Must be before create_vm_init_agents()
3584   if (Arguments::init_libraries_at_startup()) {
3585     convert_vm_init_libraries_to_agents();
3586   }
3587 
3588   // Launch -agentlib/-agentpath and converted -Xrun agents
3589   if (Arguments::init_agents_at_startup()) {
3590     create_vm_init_agents();
3591   }
3592 
3593   // Initialize Threads state
3594   _thread_list = NULL;
3595   _number_of_threads = 0;
3596   _number_of_non_daemon_threads = 0;
3597 
3598   // Initialize global data structures and create system classes in heap
3599   vm_init_globals();
3600 
3601 #if INCLUDE_JVMCI
3602   if (JVMCICounterSize > 0) {
3603     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3604     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3605   } else {
3606     JavaThread::_jvmci_old_thread_counters = NULL;
3607   }
3608 #endif // INCLUDE_JVMCI
3609 
3610   // Attach the main thread to this os thread
3611   JavaThread* main_thread = new JavaThread();
3612   main_thread->set_thread_state(_thread_in_vm);
3613   main_thread->initialize_thread_current();
3614   // must do this before set_active_handles
3615   main_thread->record_stack_base_and_size();
3616   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3617 
3618   if (!main_thread->set_as_starting_thread()) {
3619     vm_shutdown_during_initialization(
3620                                       "Failed necessary internal allocation. Out of swap space");
3621     delete main_thread;
3622     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3623     return JNI_ENOMEM;
3624   }
3625 
3626   // Enable guard page *after* os::create_main_thread(), otherwise it would
3627   // crash Linux VM, see notes in os_linux.cpp.
3628   main_thread->create_stack_guard_pages();
3629 
3630   // Initialize Java-Level synchronization subsystem
3631   ObjectMonitor::Initialize();
3632 
3633   // Initialize global modules
3634   jint status = init_globals();
3635   if (status != JNI_OK) {
3636     delete main_thread;
3637     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3638     return status;
3639   }
3640 
3641   if (TRACE_INITIALIZE() != JNI_OK) {
3642     vm_exit_during_initialization("Failed to initialize tracing backend");
3643   }
3644 
3645   // Should be done after the heap is fully created
3646   main_thread->cache_global_variables();
3647 
3648   HandleMark hm;
3649 
3650   { MutexLocker mu(Threads_lock);
3651     Threads::add(main_thread);
3652   }
3653 
3654   // Any JVMTI raw monitors entered in onload will transition into
3655   // real raw monitor. VM is setup enough here for raw monitor enter.
3656   JvmtiExport::transition_pending_onload_raw_monitors();
3657 
3658   // Create the VMThread
3659   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3660 
3661   VMThread::create();
3662     Thread* vmthread = VMThread::vm_thread();
3663 
3664     if (!os::create_thread(vmthread, os::vm_thread)) {
3665       vm_exit_during_initialization("Cannot create VM thread. "
3666                                     "Out of system resources.");
3667     }
3668 
3669     // Wait for the VM thread to become ready, and VMThread::run to initialize
3670     // Monitors can have spurious returns, must always check another state flag
3671     {
3672       MutexLocker ml(Notify_lock);
3673       os::start_thread(vmthread);
3674       while (vmthread->active_handles() == NULL) {
3675         Notify_lock->wait();
3676       }
3677     }
3678   }
3679 
3680   assert(Universe::is_fully_initialized(), "not initialized");
3681   if (VerifyDuringStartup) {
3682     // Make sure we're starting with a clean slate.
3683     VM_Verify verify_op;
3684     VMThread::execute(&verify_op);
3685   }
3686 
3687   Thread* THREAD = Thread::current();
3688 
3689   // At this point, the Universe is initialized, but we have not executed
3690   // any byte code.  Now is a good time (the only time) to dump out the
3691   // internal state of the JVM for sharing.
3692   if (DumpSharedSpaces) {
3693     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3694     ShouldNotReachHere();
3695   }
3696 
3697   // Always call even when there are not JVMTI environments yet, since environments
3698   // may be attached late and JVMTI must track phases of VM execution
3699   JvmtiExport::enter_early_start_phase();
3700 
3701   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3702   JvmtiExport::post_early_vm_start();
3703 
3704   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3705 
3706   // We need this for ClassDataSharing - the initial vm.info property is set
3707   // with the default value of CDS "sharing" which may be reset through
3708   // command line options.
3709   reset_vm_info_property(CHECK_JNI_ERR);
3710 
3711   quicken_jni_functions();
3712 
3713   // No more stub generation allowed after that point.
3714   StubCodeDesc::freeze();
3715 
3716   // Set flag that basic initialization has completed. Used by exceptions and various
3717   // debug stuff, that does not work until all basic classes have been initialized.
3718   set_init_completed();
3719 
3720   LogConfiguration::post_initialize();
3721   Metaspace::post_initialize();
3722 
3723   HOTSPOT_VM_INIT_END();
3724 
3725   // record VM initialization completion time
3726 #if INCLUDE_MANAGEMENT
3727   Management::record_vm_init_completed();
3728 #endif // INCLUDE_MANAGEMENT
3729 
3730   // Signal Dispatcher needs to be started before VMInit event is posted
3731   os::signal_init(CHECK_JNI_ERR);
3732 
3733   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3734   if (!DisableAttachMechanism) {
3735     AttachListener::vm_start();
3736     if (StartAttachListener || AttachListener::init_at_startup()) {
3737       AttachListener::init();
3738     }
3739   }
3740 
3741   // Launch -Xrun agents
3742   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3743   // back-end can launch with -Xdebug -Xrunjdwp.
3744   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3745     create_vm_init_libraries();
3746   }
3747 
3748   if (CleanChunkPoolAsync) {
3749     Chunk::start_chunk_pool_cleaner_task();
3750   }
3751 
3752   // initialize compiler(s)
3753 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3754   CompileBroker::compilation_init(CHECK_JNI_ERR);
3755 #endif
3756 
3757   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3758   // It is done after compilers are initialized, because otherwise compilations of
3759   // signature polymorphic MH intrinsics can be missed
3760   // (see SystemDictionary::find_method_handle_intrinsic).
3761   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3762 
3763   // This will initialize the module system.  Only java.base classes can be
3764   // loaded until phase 2 completes
3765   call_initPhase2(CHECK_JNI_ERR);
3766 
3767   // Always call even when there are not JVMTI environments yet, since environments
3768   // may be attached late and JVMTI must track phases of VM execution
3769   JvmtiExport::enter_start_phase();
3770 
3771   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3772   JvmtiExport::post_vm_start();
3773 
3774   // Final system initialization including security manager and system class loader
3775   call_initPhase3(CHECK_JNI_ERR);
3776 
3777   // cache the system class loader
3778   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3779 
3780 #if INCLUDE_JVMCI
3781   if (EnableJVMCI) {
3782     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3783     // The JVMCI Java initialization code will read this flag and
3784     // do the printing if it's set.
3785     bool init = JVMCIPrintProperties;
3786 
3787     if (!init) {
3788       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3789       // compilations via JVMCI will not actually block until JVMCI is initialized.
3790       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3791     }
3792 
3793     if (init) {
3794       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3795     }
3796   }
3797 #endif
3798 
3799   // Always call even when there are not JVMTI environments yet, since environments
3800   // may be attached late and JVMTI must track phases of VM execution
3801   JvmtiExport::enter_live_phase();
3802 
3803   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3804   JvmtiExport::post_vm_initialized();
3805 
3806   if (TRACE_START() != JNI_OK) {
3807     vm_exit_during_initialization("Failed to start tracing backend.");
3808   }
3809 
3810 #if INCLUDE_MANAGEMENT
3811   Management::initialize(THREAD);
3812 
3813   if (HAS_PENDING_EXCEPTION) {
3814     // management agent fails to start possibly due to
3815     // configuration problem and is responsible for printing
3816     // stack trace if appropriate. Simply exit VM.
3817     vm_exit(1);
3818   }
3819 #endif // INCLUDE_MANAGEMENT
3820 
3821   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3822   if (MemProfiling)                   MemProfiler::engage();
3823   StatSampler::engage();
3824   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3825 
3826   BiasedLocking::init();
3827 
3828 #if INCLUDE_RTM_OPT
3829   RTMLockingCounters::init();
3830 #endif
3831 
3832   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3833     call_postVMInitHook(THREAD);
3834     // The Java side of PostVMInitHook.run must deal with all
3835     // exceptions and provide means of diagnosis.
3836     if (HAS_PENDING_EXCEPTION) {
3837       CLEAR_PENDING_EXCEPTION;
3838     }
3839   }
3840 
3841   {
3842     MutexLocker ml(PeriodicTask_lock);
3843     // Make sure the WatcherThread can be started by WatcherThread::start()
3844     // or by dynamic enrollment.
3845     WatcherThread::make_startable();
3846     // Start up the WatcherThread if there are any periodic tasks
3847     // NOTE:  All PeriodicTasks should be registered by now. If they
3848     //   aren't, late joiners might appear to start slowly (we might
3849     //   take a while to process their first tick).
3850     if (PeriodicTask::num_tasks() > 0) {
3851       WatcherThread::start();
3852     }
3853   }
3854 
3855   create_vm_timer.end();
3856 #ifdef ASSERT
3857   _vm_complete = true;
3858 #endif
3859   return JNI_OK;
3860 }
3861 
3862 // type for the Agent_OnLoad and JVM_OnLoad entry points
3863 extern "C" {
3864   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3865 }
3866 // Find a command line agent library and return its entry point for
3867 //         -agentlib:  -agentpath:   -Xrun
3868 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3869 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3870                                     const char *on_load_symbols[],
3871                                     size_t num_symbol_entries) {
3872   OnLoadEntry_t on_load_entry = NULL;
3873   void *library = NULL;
3874 
3875   if (!agent->valid()) {
3876     char buffer[JVM_MAXPATHLEN];
3877     char ebuf[1024] = "";
3878     const char *name = agent->name();
3879     const char *msg = "Could not find agent library ";
3880 
3881     // First check to see if agent is statically linked into executable
3882     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3883       library = agent->os_lib();
3884     } else if (agent->is_absolute_path()) {
3885       library = os::dll_load(name, ebuf, sizeof ebuf);
3886       if (library == NULL) {
3887         const char *sub_msg = " in absolute path, with error: ";
3888         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3889         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3890         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3891         // If we can't find the agent, exit.
3892         vm_exit_during_initialization(buf, NULL);
3893         FREE_C_HEAP_ARRAY(char, buf);
3894       }
3895     } else {
3896       // Try to load the agent from the standard dll directory
3897       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3898                              name)) {
3899         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3900       }
3901       if (library == NULL) { // Try the local directory
3902         char ns[1] = {0};
3903         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3904           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3905         }
3906         if (library == NULL) {
3907           const char *sub_msg = " on the library path, with error: ";
3908           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3909           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3910           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3911           // If we can't find the agent, exit.
3912           vm_exit_during_initialization(buf, NULL);
3913           FREE_C_HEAP_ARRAY(char, buf);
3914         }
3915       }
3916     }
3917     agent->set_os_lib(library);
3918     agent->set_valid();
3919   }
3920 
3921   // Find the OnLoad function.
3922   on_load_entry =
3923     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3924                                                           false,
3925                                                           on_load_symbols,
3926                                                           num_symbol_entries));
3927   return on_load_entry;
3928 }
3929 
3930 // Find the JVM_OnLoad entry point
3931 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3932   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3933   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3934 }
3935 
3936 // Find the Agent_OnLoad entry point
3937 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3938   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3939   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3940 }
3941 
3942 // For backwards compatibility with -Xrun
3943 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3944 // treated like -agentpath:
3945 // Must be called before agent libraries are created
3946 void Threads::convert_vm_init_libraries_to_agents() {
3947   AgentLibrary* agent;
3948   AgentLibrary* next;
3949 
3950   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3951     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3952     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3953 
3954     // If there is an JVM_OnLoad function it will get called later,
3955     // otherwise see if there is an Agent_OnLoad
3956     if (on_load_entry == NULL) {
3957       on_load_entry = lookup_agent_on_load(agent);
3958       if (on_load_entry != NULL) {
3959         // switch it to the agent list -- so that Agent_OnLoad will be called,
3960         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3961         Arguments::convert_library_to_agent(agent);
3962       } else {
3963         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3964       }
3965     }
3966   }
3967 }
3968 
3969 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3970 // Invokes Agent_OnLoad
3971 // Called very early -- before JavaThreads exist
3972 void Threads::create_vm_init_agents() {
3973   extern struct JavaVM_ main_vm;
3974   AgentLibrary* agent;
3975 
3976   JvmtiExport::enter_onload_phase();
3977 
3978   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3979     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3980 
3981     if (on_load_entry != NULL) {
3982       // Invoke the Agent_OnLoad function
3983       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3984       if (err != JNI_OK) {
3985         vm_exit_during_initialization("agent library failed to init", agent->name());
3986       }
3987     } else {
3988       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3989     }
3990   }
3991   JvmtiExport::enter_primordial_phase();
3992 }
3993 
3994 extern "C" {
3995   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3996 }
3997 
3998 void Threads::shutdown_vm_agents() {
3999   // Send any Agent_OnUnload notifications
4000   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4001   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4002   extern struct JavaVM_ main_vm;
4003   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4004 
4005     // Find the Agent_OnUnload function.
4006     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4007                                                    os::find_agent_function(agent,
4008                                                    false,
4009                                                    on_unload_symbols,
4010                                                    num_symbol_entries));
4011 
4012     // Invoke the Agent_OnUnload function
4013     if (unload_entry != NULL) {
4014       JavaThread* thread = JavaThread::current();
4015       ThreadToNativeFromVM ttn(thread);
4016       HandleMark hm(thread);
4017       (*unload_entry)(&main_vm);
4018     }
4019   }
4020 }
4021 
4022 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4023 // Invokes JVM_OnLoad
4024 void Threads::create_vm_init_libraries() {
4025   extern struct JavaVM_ main_vm;
4026   AgentLibrary* agent;
4027 
4028   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4029     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4030 
4031     if (on_load_entry != NULL) {
4032       // Invoke the JVM_OnLoad function
4033       JavaThread* thread = JavaThread::current();
4034       ThreadToNativeFromVM ttn(thread);
4035       HandleMark hm(thread);
4036       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4037       if (err != JNI_OK) {
4038         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4039       }
4040     } else {
4041       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4042     }
4043   }
4044 }
4045 
4046 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4047   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4048 
4049   JavaThread* java_thread = NULL;
4050   // Sequential search for now.  Need to do better optimization later.
4051   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4052     oop tobj = thread->threadObj();
4053     if (!thread->is_exiting() &&
4054         tobj != NULL &&
4055         java_tid == java_lang_Thread::thread_id(tobj)) {
4056       java_thread = thread;
4057       break;
4058     }
4059   }
4060   return java_thread;
4061 }
4062 
4063 
4064 // Last thread running calls java.lang.Shutdown.shutdown()
4065 void JavaThread::invoke_shutdown_hooks() {
4066   HandleMark hm(this);
4067 
4068   // We could get here with a pending exception, if so clear it now.
4069   if (this->has_pending_exception()) {
4070     this->clear_pending_exception();
4071   }
4072 
4073   EXCEPTION_MARK;
4074   Klass* shutdown_klass =
4075     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4076                                       THREAD);
4077   if (shutdown_klass != NULL) {
4078     // SystemDictionary::resolve_or_null will return null if there was
4079     // an exception.  If we cannot load the Shutdown class, just don't
4080     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4081     // and finalizers (if runFinalizersOnExit is set) won't be run.
4082     // Note that if a shutdown hook was registered or runFinalizersOnExit
4083     // was called, the Shutdown class would have already been loaded
4084     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4085     JavaValue result(T_VOID);
4086     JavaCalls::call_static(&result,
4087                            shutdown_klass,
4088                            vmSymbols::shutdown_method_name(),
4089                            vmSymbols::void_method_signature(),
4090                            THREAD);
4091   }
4092   CLEAR_PENDING_EXCEPTION;
4093 }
4094 
4095 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4096 // the program falls off the end of main(). Another VM exit path is through
4097 // vm_exit() when the program calls System.exit() to return a value or when
4098 // there is a serious error in VM. The two shutdown paths are not exactly
4099 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4100 // and VM_Exit op at VM level.
4101 //
4102 // Shutdown sequence:
4103 //   + Shutdown native memory tracking if it is on
4104 //   + Wait until we are the last non-daemon thread to execute
4105 //     <-- every thing is still working at this moment -->
4106 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4107 //        shutdown hooks, run finalizers if finalization-on-exit
4108 //   + Call before_exit(), prepare for VM exit
4109 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4110 //        currently the only user of this mechanism is File.deleteOnExit())
4111 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4112 //        post thread end and vm death events to JVMTI,
4113 //        stop signal thread
4114 //   + Call JavaThread::exit(), it will:
4115 //      > release JNI handle blocks, remove stack guard pages
4116 //      > remove this thread from Threads list
4117 //     <-- no more Java code from this thread after this point -->
4118 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4119 //     the compiler threads at safepoint
4120 //     <-- do not use anything that could get blocked by Safepoint -->
4121 //   + Disable tracing at JNI/JVM barriers
4122 //   + Set _vm_exited flag for threads that are still running native code
4123 //   + Delete this thread
4124 //   + Call exit_globals()
4125 //      > deletes tty
4126 //      > deletes PerfMemory resources
4127 //   + Return to caller
4128 
4129 bool Threads::destroy_vm() {
4130   JavaThread* thread = JavaThread::current();
4131 
4132 #ifdef ASSERT
4133   _vm_complete = false;
4134 #endif
4135   // Wait until we are the last non-daemon thread to execute
4136   { MutexLocker nu(Threads_lock);
4137     while (Threads::number_of_non_daemon_threads() > 1)
4138       // This wait should make safepoint checks, wait without a timeout,
4139       // and wait as a suspend-equivalent condition.
4140       //
4141       // Note: If the FlatProfiler is running and this thread is waiting
4142       // for another non-daemon thread to finish, then the FlatProfiler
4143       // is waiting for the external suspend request on this thread to
4144       // complete. wait_for_ext_suspend_completion() will eventually
4145       // timeout, but that takes time. Making this wait a suspend-
4146       // equivalent condition solves that timeout problem.
4147       //
4148       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4149                          Mutex::_as_suspend_equivalent_flag);
4150   }
4151 
4152   // Hang forever on exit if we are reporting an error.
4153   if (ShowMessageBoxOnError && is_error_reported()) {
4154     os::infinite_sleep();
4155   }
4156   os::wait_for_keypress_at_exit();
4157 
4158   // run Java level shutdown hooks
4159   thread->invoke_shutdown_hooks();
4160 
4161   before_exit(thread);
4162 
4163   thread->exit(true);
4164 
4165   // Stop VM thread.
4166   {
4167     // 4945125 The vm thread comes to a safepoint during exit.
4168     // GC vm_operations can get caught at the safepoint, and the
4169     // heap is unparseable if they are caught. Grab the Heap_lock
4170     // to prevent this. The GC vm_operations will not be able to
4171     // queue until after the vm thread is dead. After this point,
4172     // we'll never emerge out of the safepoint before the VM exits.
4173 
4174     MutexLocker ml(Heap_lock);
4175 
4176     VMThread::wait_for_vm_thread_exit();
4177     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4178     VMThread::destroy();
4179   }
4180 
4181   // clean up ideal graph printers
4182 #if defined(COMPILER2) && !defined(PRODUCT)
4183   IdealGraphPrinter::clean_up();
4184 #endif
4185 
4186   // Now, all Java threads are gone except daemon threads. Daemon threads
4187   // running Java code or in VM are stopped by the Safepoint. However,
4188   // daemon threads executing native code are still running.  But they
4189   // will be stopped at native=>Java/VM barriers. Note that we can't
4190   // simply kill or suspend them, as it is inherently deadlock-prone.
4191 
4192   VM_Exit::set_vm_exited();
4193 
4194   notify_vm_shutdown();
4195 
4196   delete thread;
4197 
4198 #if INCLUDE_JVMCI
4199   if (JVMCICounterSize > 0) {
4200     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4201   }
4202 #endif
4203 
4204   // exit_globals() will delete tty
4205   exit_globals();
4206 
4207   LogConfiguration::finalize();
4208 
4209   return true;
4210 }
4211 
4212 
4213 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4214   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4215   return is_supported_jni_version(version);
4216 }
4217 
4218 
4219 jboolean Threads::is_supported_jni_version(jint version) {
4220   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4221   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4222   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4223   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4224   if (version == JNI_VERSION_9) return JNI_TRUE;
4225   return JNI_FALSE;
4226 }
4227 
4228 
4229 void Threads::add(JavaThread* p, bool force_daemon) {
4230   // The threads lock must be owned at this point
4231   assert_locked_or_safepoint(Threads_lock);
4232 
4233   // See the comment for this method in thread.hpp for its purpose and
4234   // why it is called here.
4235   p->initialize_queues();
4236   p->set_next(_thread_list);
4237   _thread_list = p;
4238   _number_of_threads++;
4239   oop threadObj = p->threadObj();
4240   bool daemon = true;
4241   // Bootstrapping problem: threadObj can be null for initial
4242   // JavaThread (or for threads attached via JNI)
4243   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4244     _number_of_non_daemon_threads++;
4245     daemon = false;
4246   }
4247 
4248   ThreadService::add_thread(p, daemon);
4249 
4250   // Possible GC point.
4251   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4252 }
4253 
4254 void Threads::remove(JavaThread* p) {
4255   // Extra scope needed for Thread_lock, so we can check
4256   // that we do not remove thread without safepoint code notice
4257   { MutexLocker ml(Threads_lock);
4258 
4259     assert(includes(p), "p must be present");
4260 
4261     JavaThread* current = _thread_list;
4262     JavaThread* prev    = NULL;
4263 
4264     while (current != p) {
4265       prev    = current;
4266       current = current->next();
4267     }
4268 
4269     if (prev) {
4270       prev->set_next(current->next());
4271     } else {
4272       _thread_list = p->next();
4273     }
4274     _number_of_threads--;
4275     oop threadObj = p->threadObj();
4276     bool daemon = true;
4277     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4278       _number_of_non_daemon_threads--;
4279       daemon = false;
4280 
4281       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4282       // on destroy_vm will wake up.
4283       if (number_of_non_daemon_threads() == 1) {
4284         Threads_lock->notify_all();
4285       }
4286     }
4287     ThreadService::remove_thread(p, daemon);
4288 
4289     // Make sure that safepoint code disregard this thread. This is needed since
4290     // the thread might mess around with locks after this point. This can cause it
4291     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4292     // of this thread since it is removed from the queue.
4293     p->set_terminated_value();
4294   } // unlock Threads_lock
4295 
4296   // Since Events::log uses a lock, we grab it outside the Threads_lock
4297   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4298 }
4299 
4300 // Threads_lock must be held when this is called (or must be called during a safepoint)
4301 bool Threads::includes(JavaThread* p) {
4302   assert(Threads_lock->is_locked(), "sanity check");
4303   ALL_JAVA_THREADS(q) {
4304     if (q == p) {
4305       return true;
4306     }
4307   }
4308   return false;
4309 }
4310 
4311 // Operations on the Threads list for GC.  These are not explicitly locked,
4312 // but the garbage collector must provide a safe context for them to run.
4313 // In particular, these things should never be called when the Threads_lock
4314 // is held by some other thread. (Note: the Safepoint abstraction also
4315 // uses the Threads_lock to guarantee this property. It also makes sure that
4316 // all threads gets blocked when exiting or starting).
4317 
4318 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4319   ALL_JAVA_THREADS(p) {
4320     p->oops_do(f, cf);
4321   }
4322   VMThread::vm_thread()->oops_do(f, cf);
4323 }
4324 
4325 void Threads::change_thread_claim_parity() {
4326   // Set the new claim parity.
4327   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4328          "Not in range.");
4329   _thread_claim_parity++;
4330   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4331   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4332          "Not in range.");
4333 }
4334 
4335 #ifdef ASSERT
4336 void Threads::assert_all_threads_claimed() {
4337   ALL_JAVA_THREADS(p) {
4338     const int thread_parity = p->oops_do_parity();
4339     assert((thread_parity == _thread_claim_parity),
4340            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4341   }
4342 }
4343 #endif // ASSERT
4344 
4345 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4346   int cp = Threads::thread_claim_parity();
4347   ALL_JAVA_THREADS(p) {
4348     if (p->claim_oops_do(is_par, cp)) {
4349       p->oops_do(f, cf);
4350     }
4351   }
4352   VMThread* vmt = VMThread::vm_thread();
4353   if (vmt->claim_oops_do(is_par, cp)) {
4354     vmt->oops_do(f, cf);
4355   }
4356 }
4357 
4358 #if INCLUDE_ALL_GCS
4359 // Used by ParallelScavenge
4360 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4361   ALL_JAVA_THREADS(p) {
4362     q->enqueue(new ThreadRootsTask(p));
4363   }
4364   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4365 }
4366 
4367 // Used by Parallel Old
4368 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4369   ALL_JAVA_THREADS(p) {
4370     q->enqueue(new ThreadRootsMarkingTask(p));
4371   }
4372   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4373 }
4374 #endif // INCLUDE_ALL_GCS
4375 
4376 void Threads::nmethods_do(CodeBlobClosure* cf) {
4377   ALL_JAVA_THREADS(p) {
4378     // This is used by the code cache sweeper to mark nmethods that are active
4379     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4380     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4381     if(!p->is_Code_cache_sweeper_thread()) {
4382       p->nmethods_do(cf);
4383     }
4384   }
4385 }
4386 
4387 void Threads::metadata_do(void f(Metadata*)) {
4388   ALL_JAVA_THREADS(p) {
4389     p->metadata_do(f);
4390   }
4391 }
4392 
4393 class ThreadHandlesClosure : public ThreadClosure {
4394   void (*_f)(Metadata*);
4395  public:
4396   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4397   virtual void do_thread(Thread* thread) {
4398     thread->metadata_handles_do(_f);
4399   }
4400 };
4401 
4402 void Threads::metadata_handles_do(void f(Metadata*)) {
4403   // Only walk the Handles in Thread.
4404   ThreadHandlesClosure handles_closure(f);
4405   threads_do(&handles_closure);
4406 }
4407 
4408 void Threads::deoptimized_wrt_marked_nmethods() {
4409   ALL_JAVA_THREADS(p) {
4410     p->deoptimized_wrt_marked_nmethods();
4411   }
4412 }
4413 
4414 
4415 // Get count Java threads that are waiting to enter the specified monitor.
4416 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4417                                                          address monitor,
4418                                                          bool doLock) {
4419   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4420          "must grab Threads_lock or be at safepoint");
4421   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4422 
4423   int i = 0;
4424   {
4425     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4426     ALL_JAVA_THREADS(p) {
4427       if (!p->can_call_java()) continue;
4428 
4429       address pending = (address)p->current_pending_monitor();
4430       if (pending == monitor) {             // found a match
4431         if (i < count) result->append(p);   // save the first count matches
4432         i++;
4433       }
4434     }
4435   }
4436   return result;
4437 }
4438 
4439 
4440 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4441                                                       bool doLock) {
4442   assert(doLock ||
4443          Threads_lock->owned_by_self() ||
4444          SafepointSynchronize::is_at_safepoint(),
4445          "must grab Threads_lock or be at safepoint");
4446 
4447   // NULL owner means not locked so we can skip the search
4448   if (owner == NULL) return NULL;
4449 
4450   {
4451     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4452     ALL_JAVA_THREADS(p) {
4453       // first, see if owner is the address of a Java thread
4454       if (owner == (address)p) return p;
4455     }
4456   }
4457   // Cannot assert on lack of success here since this function may be
4458   // used by code that is trying to report useful problem information
4459   // like deadlock detection.
4460   if (UseHeavyMonitors) return NULL;
4461 
4462   // If we didn't find a matching Java thread and we didn't force use of
4463   // heavyweight monitors, then the owner is the stack address of the
4464   // Lock Word in the owning Java thread's stack.
4465   //
4466   JavaThread* the_owner = NULL;
4467   {
4468     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4469     ALL_JAVA_THREADS(q) {
4470       if (q->is_lock_owned(owner)) {
4471         the_owner = q;
4472         break;
4473       }
4474     }
4475   }
4476   // cannot assert on lack of success here; see above comment
4477   return the_owner;
4478 }
4479 
4480 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4481 void Threads::print_on(outputStream* st, bool print_stacks,
4482                        bool internal_format, bool print_concurrent_locks) {
4483   char buf[32];
4484   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4485 
4486   st->print_cr("Full thread dump %s (%s %s):",
4487                Abstract_VM_Version::vm_name(),
4488                Abstract_VM_Version::vm_release(),
4489                Abstract_VM_Version::vm_info_string());
4490   st->cr();
4491 
4492 #if INCLUDE_SERVICES
4493   // Dump concurrent locks
4494   ConcurrentLocksDump concurrent_locks;
4495   if (print_concurrent_locks) {
4496     concurrent_locks.dump_at_safepoint();
4497   }
4498 #endif // INCLUDE_SERVICES
4499 
4500   ALL_JAVA_THREADS(p) {
4501     ResourceMark rm;
4502     p->print_on(st);
4503     if (print_stacks) {
4504       if (internal_format) {
4505         p->trace_stack();
4506       } else {
4507         p->print_stack_on(st);
4508       }
4509     }
4510     st->cr();
4511 #if INCLUDE_SERVICES
4512     if (print_concurrent_locks) {
4513       concurrent_locks.print_locks_on(p, st);
4514     }
4515 #endif // INCLUDE_SERVICES
4516   }
4517 
4518   VMThread::vm_thread()->print_on(st);
4519   st->cr();
4520   Universe::heap()->print_gc_threads_on(st);
4521   WatcherThread* wt = WatcherThread::watcher_thread();
4522   if (wt != NULL) {
4523     wt->print_on(st);
4524     st->cr();
4525   }
4526   st->flush();
4527 }
4528 
4529 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4530                              int buflen, bool* found_current) {
4531   if (this_thread != NULL) {
4532     bool is_current = (current == this_thread);
4533     *found_current = *found_current || is_current;
4534     st->print("%s", is_current ? "=>" : "  ");
4535 
4536     st->print(PTR_FORMAT, p2i(this_thread));
4537     st->print(" ");
4538     this_thread->print_on_error(st, buf, buflen);
4539     st->cr();
4540   }
4541 }
4542 
4543 class PrintOnErrorClosure : public ThreadClosure {
4544   outputStream* _st;
4545   Thread* _current;
4546   char* _buf;
4547   int _buflen;
4548   bool* _found_current;
4549  public:
4550   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4551                       int buflen, bool* found_current) :
4552    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4553 
4554   virtual void do_thread(Thread* thread) {
4555     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4556   }
4557 };
4558 
4559 // Threads::print_on_error() is called by fatal error handler. It's possible
4560 // that VM is not at safepoint and/or current thread is inside signal handler.
4561 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4562 // memory (even in resource area), it might deadlock the error handler.
4563 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4564                              int buflen) {
4565   bool found_current = false;
4566   st->print_cr("Java Threads: ( => current thread )");
4567   ALL_JAVA_THREADS(thread) {
4568     print_on_error(thread, st, current, buf, buflen, &found_current);
4569   }
4570   st->cr();
4571 
4572   st->print_cr("Other Threads:");
4573   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4574   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4575 
4576   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4577   Universe::heap()->gc_threads_do(&print_closure);
4578 
4579   if (!found_current) {
4580     st->cr();
4581     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4582     current->print_on_error(st, buf, buflen);
4583     st->cr();
4584   }
4585   st->cr();
4586   st->print_cr("Threads with active compile tasks:");
4587   print_threads_compiling(st, buf, buflen);
4588 }
4589 
4590 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4591   ALL_JAVA_THREADS(thread) {
4592     if (thread->is_Compiler_thread()) {
4593       CompilerThread* ct = (CompilerThread*) thread;
4594       if (ct->task() != NULL) {
4595         thread->print_name_on_error(st, buf, buflen);
4596         ct->task()->print(st, NULL, true, true);
4597       }
4598     }
4599   }
4600 }
4601 
4602 
4603 // Internal SpinLock and Mutex
4604 // Based on ParkEvent
4605 
4606 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4607 //
4608 // We employ SpinLocks _only for low-contention, fixed-length
4609 // short-duration critical sections where we're concerned
4610 // about native mutex_t or HotSpot Mutex:: latency.
4611 // The mux construct provides a spin-then-block mutual exclusion
4612 // mechanism.
4613 //
4614 // Testing has shown that contention on the ListLock guarding gFreeList
4615 // is common.  If we implement ListLock as a simple SpinLock it's common
4616 // for the JVM to devolve to yielding with little progress.  This is true
4617 // despite the fact that the critical sections protected by ListLock are
4618 // extremely short.
4619 //
4620 // TODO-FIXME: ListLock should be of type SpinLock.
4621 // We should make this a 1st-class type, integrated into the lock
4622 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4623 // should have sufficient padding to avoid false-sharing and excessive
4624 // cache-coherency traffic.
4625 
4626 
4627 typedef volatile int SpinLockT;
4628 
4629 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4630   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4631     return;   // normal fast-path return
4632   }
4633 
4634   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4635   TEVENT(SpinAcquire - ctx);
4636   int ctr = 0;
4637   int Yields = 0;
4638   for (;;) {
4639     while (*adr != 0) {
4640       ++ctr;
4641       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4642         if (Yields > 5) {
4643           os::naked_short_sleep(1);
4644         } else {
4645           os::naked_yield();
4646           ++Yields;
4647         }
4648       } else {
4649         SpinPause();
4650       }
4651     }
4652     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4653   }
4654 }
4655 
4656 void Thread::SpinRelease(volatile int * adr) {
4657   assert(*adr != 0, "invariant");
4658   OrderAccess::fence();      // guarantee at least release consistency.
4659   // Roach-motel semantics.
4660   // It's safe if subsequent LDs and STs float "up" into the critical section,
4661   // but prior LDs and STs within the critical section can't be allowed
4662   // to reorder or float past the ST that releases the lock.
4663   // Loads and stores in the critical section - which appear in program
4664   // order before the store that releases the lock - must also appear
4665   // before the store that releases the lock in memory visibility order.
4666   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4667   // the ST of 0 into the lock-word which releases the lock, so fence
4668   // more than covers this on all platforms.
4669   *adr = 0;
4670 }
4671 
4672 // muxAcquire and muxRelease:
4673 //
4674 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4675 //    The LSB of the word is set IFF the lock is held.
4676 //    The remainder of the word points to the head of a singly-linked list
4677 //    of threads blocked on the lock.
4678 //
4679 // *  The current implementation of muxAcquire-muxRelease uses its own
4680 //    dedicated Thread._MuxEvent instance.  If we're interested in
4681 //    minimizing the peak number of extant ParkEvent instances then
4682 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4683 //    as certain invariants were satisfied.  Specifically, care would need
4684 //    to be taken with regards to consuming unpark() "permits".
4685 //    A safe rule of thumb is that a thread would never call muxAcquire()
4686 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4687 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4688 //    consume an unpark() permit intended for monitorenter, for instance.
4689 //    One way around this would be to widen the restricted-range semaphore
4690 //    implemented in park().  Another alternative would be to provide
4691 //    multiple instances of the PlatformEvent() for each thread.  One
4692 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4693 //
4694 // *  Usage:
4695 //    -- Only as leaf locks
4696 //    -- for short-term locking only as muxAcquire does not perform
4697 //       thread state transitions.
4698 //
4699 // Alternatives:
4700 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4701 //    but with parking or spin-then-park instead of pure spinning.
4702 // *  Use Taura-Oyama-Yonenzawa locks.
4703 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4704 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4705 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4706 //    acquiring threads use timers (ParkTimed) to detect and recover from
4707 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4708 //    boundaries by using placement-new.
4709 // *  Augment MCS with advisory back-link fields maintained with CAS().
4710 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4711 //    The validity of the backlinks must be ratified before we trust the value.
4712 //    If the backlinks are invalid the exiting thread must back-track through the
4713 //    the forward links, which are always trustworthy.
4714 // *  Add a successor indication.  The LockWord is currently encoded as
4715 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4716 //    to provide the usual futile-wakeup optimization.
4717 //    See RTStt for details.
4718 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4719 //
4720 
4721 
4722 typedef volatile intptr_t MutexT;      // Mux Lock-word
4723 enum MuxBits { LOCKBIT = 1 };
4724 
4725 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4726   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4727   if (w == 0) return;
4728   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4729     return;
4730   }
4731 
4732   TEVENT(muxAcquire - Contention);
4733   ParkEvent * const Self = Thread::current()->_MuxEvent;
4734   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4735   for (;;) {
4736     int its = (os::is_MP() ? 100 : 0) + 1;
4737 
4738     // Optional spin phase: spin-then-park strategy
4739     while (--its >= 0) {
4740       w = *Lock;
4741       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4742         return;
4743       }
4744     }
4745 
4746     Self->reset();
4747     Self->OnList = intptr_t(Lock);
4748     // The following fence() isn't _strictly necessary as the subsequent
4749     // CAS() both serializes execution and ratifies the fetched *Lock value.
4750     OrderAccess::fence();
4751     for (;;) {
4752       w = *Lock;
4753       if ((w & LOCKBIT) == 0) {
4754         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4755           Self->OnList = 0;   // hygiene - allows stronger asserts
4756           return;
4757         }
4758         continue;      // Interference -- *Lock changed -- Just retry
4759       }
4760       assert(w & LOCKBIT, "invariant");
4761       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4762       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4763     }
4764 
4765     while (Self->OnList != 0) {
4766       Self->park();
4767     }
4768   }
4769 }
4770 
4771 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4772   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4773   if (w == 0) return;
4774   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4775     return;
4776   }
4777 
4778   TEVENT(muxAcquire - Contention);
4779   ParkEvent * ReleaseAfter = NULL;
4780   if (ev == NULL) {
4781     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4782   }
4783   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4784   for (;;) {
4785     guarantee(ev->OnList == 0, "invariant");
4786     int its = (os::is_MP() ? 100 : 0) + 1;
4787 
4788     // Optional spin phase: spin-then-park strategy
4789     while (--its >= 0) {
4790       w = *Lock;
4791       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4792         if (ReleaseAfter != NULL) {
4793           ParkEvent::Release(ReleaseAfter);
4794         }
4795         return;
4796       }
4797     }
4798 
4799     ev->reset();
4800     ev->OnList = intptr_t(Lock);
4801     // The following fence() isn't _strictly necessary as the subsequent
4802     // CAS() both serializes execution and ratifies the fetched *Lock value.
4803     OrderAccess::fence();
4804     for (;;) {
4805       w = *Lock;
4806       if ((w & LOCKBIT) == 0) {
4807         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4808           ev->OnList = 0;
4809           // We call ::Release while holding the outer lock, thus
4810           // artificially lengthening the critical section.
4811           // Consider deferring the ::Release() until the subsequent unlock(),
4812           // after we've dropped the outer lock.
4813           if (ReleaseAfter != NULL) {
4814             ParkEvent::Release(ReleaseAfter);
4815           }
4816           return;
4817         }
4818         continue;      // Interference -- *Lock changed -- Just retry
4819       }
4820       assert(w & LOCKBIT, "invariant");
4821       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4822       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4823     }
4824 
4825     while (ev->OnList != 0) {
4826       ev->park();
4827     }
4828   }
4829 }
4830 
4831 // Release() must extract a successor from the list and then wake that thread.
4832 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4833 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4834 // Release() would :
4835 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4836 // (B) Extract a successor from the private list "in-hand"
4837 // (C) attempt to CAS() the residual back into *Lock over null.
4838 //     If there were any newly arrived threads and the CAS() would fail.
4839 //     In that case Release() would detach the RATs, re-merge the list in-hand
4840 //     with the RATs and repeat as needed.  Alternately, Release() might
4841 //     detach and extract a successor, but then pass the residual list to the wakee.
4842 //     The wakee would be responsible for reattaching and remerging before it
4843 //     competed for the lock.
4844 //
4845 // Both "pop" and DMR are immune from ABA corruption -- there can be
4846 // multiple concurrent pushers, but only one popper or detacher.
4847 // This implementation pops from the head of the list.  This is unfair,
4848 // but tends to provide excellent throughput as hot threads remain hot.
4849 // (We wake recently run threads first).
4850 //
4851 // All paths through muxRelease() will execute a CAS.
4852 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4853 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4854 // executed within the critical section are complete and globally visible before the
4855 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4856 void Thread::muxRelease(volatile intptr_t * Lock)  {
4857   for (;;) {
4858     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4859     assert(w & LOCKBIT, "invariant");
4860     if (w == LOCKBIT) return;
4861     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4862     assert(List != NULL, "invariant");
4863     assert(List->OnList == intptr_t(Lock), "invariant");
4864     ParkEvent * const nxt = List->ListNext;
4865     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4866 
4867     // The following CAS() releases the lock and pops the head element.
4868     // The CAS() also ratifies the previously fetched lock-word value.
4869     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4870       continue;
4871     }
4872     List->OnList = 0;
4873     OrderAccess::fence();
4874     List->unpark();
4875     return;
4876   }
4877 }
4878 
4879 
4880 void Threads::verify() {
4881   ALL_JAVA_THREADS(p) {
4882     p->verify();
4883   }
4884   VMThread* thread = VMThread::vm_thread();
4885   if (thread != NULL) thread->verify();
4886 }