1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "runtime/atomic.hpp"
  78 #include "runtime/init.hpp"
  79 #include "runtime/orderAccess.inline.hpp"
  80 #include "runtime/vmThread.hpp"
  81 #include "utilities/globalDefinitions.hpp"
  82 #include "utilities/stack.inline.hpp"
  83 
  84 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  85 
  86 // INVARIANTS/NOTES
  87 //
  88 // All allocation activity covered by the G1CollectedHeap interface is
  89 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  90 // and allocate_new_tlab, which are the "entry" points to the
  91 // allocation code from the rest of the JVM.  (Note that this does not
  92 // apply to TLAB allocation, which is not part of this interface: it
  93 // is done by clients of this interface.)
  94 
  95 // Local to this file.
  96 
  97 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  98   bool _concurrent;
  99 public:
 100   RefineCardTableEntryClosure() : _concurrent(true) { }
 101 
 102   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 103     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, NULL);
 104     // This path is executed by the concurrent refine or mutator threads,
 105     // concurrently, and so we do not care if card_ptr contains references
 106     // that point into the collection set.
 107     assert(!oops_into_cset, "should be");
 108 
 109     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 110       // Caller will actually yield.
 111       return false;
 112     }
 113     // Otherwise, we finished successfully; return true.
 114     return true;
 115   }
 116 
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 122  private:
 123   size_t _num_dirtied;
 124   G1CollectedHeap* _g1h;
 125   G1SATBCardTableLoggingModRefBS* _g1_bs;
 126 
 127   HeapRegion* region_for_card(jbyte* card_ptr) const {
 128     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 129   }
 130 
 131   bool will_become_free(HeapRegion* hr) const {
 132     // A region will be freed by free_collection_set if the region is in the
 133     // collection set and has not had an evacuation failure.
 134     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 135   }
 136 
 137  public:
 138   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 139     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 140 
 141   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 142     HeapRegion* hr = region_for_card(card_ptr);
 143 
 144     // Should only dirty cards in regions that won't be freed.
 145     if (!will_become_free(hr)) {
 146       *card_ptr = CardTableModRefBS::dirty_card_val();
 147       _num_dirtied++;
 148     }
 149 
 150     return true;
 151   }
 152 
 153   size_t num_dirtied()   const { return _num_dirtied; }
 154 };
 155 
 156 
 157 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 158   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 159 }
 160 
 161 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 162   // The from card cache is not the memory that is actually committed. So we cannot
 163   // take advantage of the zero_filled parameter.
 164   reset_from_card_cache(start_idx, num_regions);
 165 }
 166 
 167 // Returns true if the reference points to an object that
 168 // can move in an incremental collection.
 169 bool G1CollectedHeap::is_scavengable(const void* p) {
 170   HeapRegion* hr = heap_region_containing(p);
 171   return !hr->is_pinned();
 172 }
 173 
 174 // Private methods.
 175 
 176 HeapRegion*
 177 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 178   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 179   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 180     if (!_secondary_free_list.is_empty()) {
 181       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 182                                       "secondary_free_list has %u entries",
 183                                       _secondary_free_list.length());
 184       // It looks as if there are free regions available on the
 185       // secondary_free_list. Let's move them to the free_list and try
 186       // again to allocate from it.
 187       append_secondary_free_list();
 188 
 189       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 190              "empty we should have moved at least one entry to the free_list");
 191       HeapRegion* res = _hrm.allocate_free_region(is_old);
 192       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 193                                       "allocated " HR_FORMAT " from secondary_free_list",
 194                                       HR_FORMAT_PARAMS(res));
 195       return res;
 196     }
 197 
 198     // Wait here until we get notified either when (a) there are no
 199     // more free regions coming or (b) some regions have been moved on
 200     // the secondary_free_list.
 201     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 202   }
 203 
 204   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 205                                   "could not allocate from secondary_free_list");
 206   return NULL;
 207 }
 208 
 209 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 210   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 211          "the only time we use this to allocate a humongous region is "
 212          "when we are allocating a single humongous region");
 213 
 214   HeapRegion* res;
 215   if (G1StressConcRegionFreeing) {
 216     if (!_secondary_free_list.is_empty()) {
 217       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 218                                       "forced to look at the secondary_free_list");
 219       res = new_region_try_secondary_free_list(is_old);
 220       if (res != NULL) {
 221         return res;
 222       }
 223     }
 224   }
 225 
 226   res = _hrm.allocate_free_region(is_old);
 227 
 228   if (res == NULL) {
 229     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 230                                     "res == NULL, trying the secondary_free_list");
 231     res = new_region_try_secondary_free_list(is_old);
 232   }
 233   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 234     // Currently, only attempts to allocate GC alloc regions set
 235     // do_expand to true. So, we should only reach here during a
 236     // safepoint. If this assumption changes we might have to
 237     // reconsider the use of _expand_heap_after_alloc_failure.
 238     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 239 
 240     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 241                               word_size * HeapWordSize);
 242 
 243     if (expand(word_size * HeapWordSize)) {
 244       // Given that expand() succeeded in expanding the heap, and we
 245       // always expand the heap by an amount aligned to the heap
 246       // region size, the free list should in theory not be empty.
 247       // In either case allocate_free_region() will check for NULL.
 248       res = _hrm.allocate_free_region(is_old);
 249     } else {
 250       _expand_heap_after_alloc_failure = false;
 251     }
 252   }
 253   return res;
 254 }
 255 
 256 HeapWord*
 257 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 258                                                            uint num_regions,
 259                                                            size_t word_size,
 260                                                            AllocationContext_t context) {
 261   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 262   assert(is_humongous(word_size), "word_size should be humongous");
 263   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 264 
 265   // Index of last region in the series.
 266   uint last = first + num_regions - 1;
 267 
 268   // We need to initialize the region(s) we just discovered. This is
 269   // a bit tricky given that it can happen concurrently with
 270   // refinement threads refining cards on these regions and
 271   // potentially wanting to refine the BOT as they are scanning
 272   // those cards (this can happen shortly after a cleanup; see CR
 273   // 6991377). So we have to set up the region(s) carefully and in
 274   // a specific order.
 275 
 276   // The word size sum of all the regions we will allocate.
 277   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 278   assert(word_size <= word_size_sum, "sanity");
 279 
 280   // This will be the "starts humongous" region.
 281   HeapRegion* first_hr = region_at(first);
 282   // The header of the new object will be placed at the bottom of
 283   // the first region.
 284   HeapWord* new_obj = first_hr->bottom();
 285   // This will be the new top of the new object.
 286   HeapWord* obj_top = new_obj + word_size;
 287 
 288   // First, we need to zero the header of the space that we will be
 289   // allocating. When we update top further down, some refinement
 290   // threads might try to scan the region. By zeroing the header we
 291   // ensure that any thread that will try to scan the region will
 292   // come across the zero klass word and bail out.
 293   //
 294   // NOTE: It would not have been correct to have used
 295   // CollectedHeap::fill_with_object() and make the space look like
 296   // an int array. The thread that is doing the allocation will
 297   // later update the object header to a potentially different array
 298   // type and, for a very short period of time, the klass and length
 299   // fields will be inconsistent. This could cause a refinement
 300   // thread to calculate the object size incorrectly.
 301   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 302 
 303   // Next, pad out the unused tail of the last region with filler
 304   // objects, for improved usage accounting.
 305   // How many words we use for filler objects.
 306   size_t word_fill_size = word_size_sum - word_size;
 307 
 308   // How many words memory we "waste" which cannot hold a filler object.
 309   size_t words_not_fillable = 0;
 310 
 311   if (word_fill_size >= min_fill_size()) {
 312     fill_with_objects(obj_top, word_fill_size);
 313   } else if (word_fill_size > 0) {
 314     // We have space to fill, but we cannot fit an object there.
 315     words_not_fillable = word_fill_size;
 316     word_fill_size = 0;
 317   }
 318 
 319   // We will set up the first region as "starts humongous". This
 320   // will also update the BOT covering all the regions to reflect
 321   // that there is a single object that starts at the bottom of the
 322   // first region.
 323   first_hr->set_starts_humongous(obj_top, word_fill_size);
 324   first_hr->set_allocation_context(context);
 325   // Then, if there are any, we will set up the "continues
 326   // humongous" regions.
 327   HeapRegion* hr = NULL;
 328   for (uint i = first + 1; i <= last; ++i) {
 329     hr = region_at(i);
 330     hr->set_continues_humongous(first_hr);
 331     hr->set_allocation_context(context);
 332   }
 333 
 334   // Up to this point no concurrent thread would have been able to
 335   // do any scanning on any region in this series. All the top
 336   // fields still point to bottom, so the intersection between
 337   // [bottom,top] and [card_start,card_end] will be empty. Before we
 338   // update the top fields, we'll do a storestore to make sure that
 339   // no thread sees the update to top before the zeroing of the
 340   // object header and the BOT initialization.
 341   OrderAccess::storestore();
 342 
 343   // Now, we will update the top fields of the "continues humongous"
 344   // regions except the last one.
 345   for (uint i = first; i < last; ++i) {
 346     hr = region_at(i);
 347     hr->set_top(hr->end());
 348   }
 349 
 350   hr = region_at(last);
 351   // If we cannot fit a filler object, we must set top to the end
 352   // of the humongous object, otherwise we cannot iterate the heap
 353   // and the BOT will not be complete.
 354   hr->set_top(hr->end() - words_not_fillable);
 355 
 356   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 357          "obj_top should be in last region");
 358 
 359   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 360 
 361   assert(words_not_fillable == 0 ||
 362          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 363          "Miscalculation in humongous allocation");
 364 
 365   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 366 
 367   for (uint i = first; i <= last; ++i) {
 368     hr = region_at(i);
 369     _humongous_set.add(hr);
 370     _hr_printer.alloc(hr);
 371   }
 372 
 373   return new_obj;
 374 }
 375 
 376 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 377   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 378   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 379 }
 380 
 381 // If could fit into free regions w/o expansion, try.
 382 // Otherwise, if can expand, do so.
 383 // Otherwise, if using ex regions might help, try with ex given back.
 384 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 385   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 386 
 387   _verifier->verify_region_sets_optional();
 388 
 389   uint first = G1_NO_HRM_INDEX;
 390   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 391 
 392   if (obj_regions == 1) {
 393     // Only one region to allocate, try to use a fast path by directly allocating
 394     // from the free lists. Do not try to expand here, we will potentially do that
 395     // later.
 396     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 397     if (hr != NULL) {
 398       first = hr->hrm_index();
 399     }
 400   } else {
 401     // We can't allocate humongous regions spanning more than one region while
 402     // cleanupComplete() is running, since some of the regions we find to be
 403     // empty might not yet be added to the free list. It is not straightforward
 404     // to know in which list they are on so that we can remove them. We only
 405     // need to do this if we need to allocate more than one region to satisfy the
 406     // current humongous allocation request. If we are only allocating one region
 407     // we use the one-region region allocation code (see above), that already
 408     // potentially waits for regions from the secondary free list.
 409     wait_while_free_regions_coming();
 410     append_secondary_free_list_if_not_empty_with_lock();
 411 
 412     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 413     // are lucky enough to find some.
 414     first = _hrm.find_contiguous_only_empty(obj_regions);
 415     if (first != G1_NO_HRM_INDEX) {
 416       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 417     }
 418   }
 419 
 420   if (first == G1_NO_HRM_INDEX) {
 421     // Policy: We could not find enough regions for the humongous object in the
 422     // free list. Look through the heap to find a mix of free and uncommitted regions.
 423     // If so, try expansion.
 424     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 425     if (first != G1_NO_HRM_INDEX) {
 426       // We found something. Make sure these regions are committed, i.e. expand
 427       // the heap. Alternatively we could do a defragmentation GC.
 428       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 429                                     word_size * HeapWordSize);
 430 
 431       _hrm.expand_at(first, obj_regions, workers());
 432       g1_policy()->record_new_heap_size(num_regions());
 433 
 434 #ifdef ASSERT
 435       for (uint i = first; i < first + obj_regions; ++i) {
 436         HeapRegion* hr = region_at(i);
 437         assert(hr->is_free(), "sanity");
 438         assert(hr->is_empty(), "sanity");
 439         assert(is_on_master_free_list(hr), "sanity");
 440       }
 441 #endif
 442       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 443     } else {
 444       // Policy: Potentially trigger a defragmentation GC.
 445     }
 446   }
 447 
 448   HeapWord* result = NULL;
 449   if (first != G1_NO_HRM_INDEX) {
 450     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 451                                                        word_size, context);
 452     assert(result != NULL, "it should always return a valid result");
 453 
 454     // A successful humongous object allocation changes the used space
 455     // information of the old generation so we need to recalculate the
 456     // sizes and update the jstat counters here.
 457     g1mm()->update_sizes();
 458   }
 459 
 460   _verifier->verify_region_sets_optional();
 461 
 462   return result;
 463 }
 464 
 465 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 466   assert_heap_not_locked_and_not_at_safepoint();
 467   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 468 
 469   uint dummy_gc_count_before;
 470   uint dummy_gclocker_retry_count = 0;
 471   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 472 }
 473 
 474 HeapWord*
 475 G1CollectedHeap::mem_allocate(size_t word_size,
 476                               bool*  gc_overhead_limit_was_exceeded) {
 477   assert_heap_not_locked_and_not_at_safepoint();
 478 
 479   // Loop until the allocation is satisfied, or unsatisfied after GC.
 480   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 481     uint gc_count_before;
 482 
 483     HeapWord* result = NULL;
 484     if (!is_humongous(word_size)) {
 485       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 486     } else {
 487       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 488     }
 489     if (result != NULL) {
 490       return result;
 491     }
 492 
 493     // Create the garbage collection operation...
 494     VM_G1CollectForAllocation op(gc_count_before, word_size);
 495     op.set_allocation_context(AllocationContext::current());
 496 
 497     // ...and get the VM thread to execute it.
 498     VMThread::execute(&op);
 499 
 500     if (op.prologue_succeeded() && op.pause_succeeded()) {
 501       // If the operation was successful we'll return the result even
 502       // if it is NULL. If the allocation attempt failed immediately
 503       // after a Full GC, it's unlikely we'll be able to allocate now.
 504       HeapWord* result = op.result();
 505       if (result != NULL && !is_humongous(word_size)) {
 506         // Allocations that take place on VM operations do not do any
 507         // card dirtying and we have to do it here. We only have to do
 508         // this for non-humongous allocations, though.
 509         dirty_young_block(result, word_size);
 510       }
 511       return result;
 512     } else {
 513       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 514         return NULL;
 515       }
 516       assert(op.result() == NULL,
 517              "the result should be NULL if the VM op did not succeed");
 518     }
 519 
 520     // Give a warning if we seem to be looping forever.
 521     if ((QueuedAllocationWarningCount > 0) &&
 522         (try_count % QueuedAllocationWarningCount == 0)) {
 523       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 524     }
 525   }
 526 
 527   ShouldNotReachHere();
 528   return NULL;
 529 }
 530 
 531 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 532                                                    AllocationContext_t context,
 533                                                    uint* gc_count_before_ret,
 534                                                    uint* gclocker_retry_count_ret) {
 535   // Make sure you read the note in attempt_allocation_humongous().
 536 
 537   assert_heap_not_locked_and_not_at_safepoint();
 538   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 539          "be called for humongous allocation requests");
 540 
 541   // We should only get here after the first-level allocation attempt
 542   // (attempt_allocation()) failed to allocate.
 543 
 544   // We will loop until a) we manage to successfully perform the
 545   // allocation or b) we successfully schedule a collection which
 546   // fails to perform the allocation. b) is the only case when we'll
 547   // return NULL.
 548   HeapWord* result = NULL;
 549   for (int try_count = 1; /* we'll return */; try_count += 1) {
 550     bool should_try_gc;
 551     uint gc_count_before;
 552 
 553     {
 554       MutexLockerEx x(Heap_lock);
 555       result = _allocator->attempt_allocation_locked(word_size, context);
 556       if (result != NULL) {
 557         return result;
 558       }
 559 
 560       if (GCLocker::is_active_and_needs_gc()) {
 561         if (g1_policy()->can_expand_young_list()) {
 562           // No need for an ergo verbose message here,
 563           // can_expand_young_list() does this when it returns true.
 564           result = _allocator->attempt_allocation_force(word_size, context);
 565           if (result != NULL) {
 566             return result;
 567           }
 568         }
 569         should_try_gc = false;
 570       } else {
 571         // The GCLocker may not be active but the GCLocker initiated
 572         // GC may not yet have been performed (GCLocker::needs_gc()
 573         // returns true). In this case we do not try this GC and
 574         // wait until the GCLocker initiated GC is performed, and
 575         // then retry the allocation.
 576         if (GCLocker::needs_gc()) {
 577           should_try_gc = false;
 578         } else {
 579           // Read the GC count while still holding the Heap_lock.
 580           gc_count_before = total_collections();
 581           should_try_gc = true;
 582         }
 583       }
 584     }
 585 
 586     if (should_try_gc) {
 587       bool succeeded;
 588       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 589                                    GCCause::_g1_inc_collection_pause);
 590       if (result != NULL) {
 591         assert(succeeded, "only way to get back a non-NULL result");
 592         return result;
 593       }
 594 
 595       if (succeeded) {
 596         // If we get here we successfully scheduled a collection which
 597         // failed to allocate. No point in trying to allocate
 598         // further. We'll just return NULL.
 599         MutexLockerEx x(Heap_lock);
 600         *gc_count_before_ret = total_collections();
 601         return NULL;
 602       }
 603     } else {
 604       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 605         MutexLockerEx x(Heap_lock);
 606         *gc_count_before_ret = total_collections();
 607         return NULL;
 608       }
 609       // The GCLocker is either active or the GCLocker initiated
 610       // GC has not yet been performed. Stall until it is and
 611       // then retry the allocation.
 612       GCLocker::stall_until_clear();
 613       (*gclocker_retry_count_ret) += 1;
 614     }
 615 
 616     // We can reach here if we were unsuccessful in scheduling a
 617     // collection (because another thread beat us to it) or if we were
 618     // stalled due to the GC locker. In either can we should retry the
 619     // allocation attempt in case another thread successfully
 620     // performed a collection and reclaimed enough space. We do the
 621     // first attempt (without holding the Heap_lock) here and the
 622     // follow-on attempt will be at the start of the next loop
 623     // iteration (after taking the Heap_lock).
 624     result = _allocator->attempt_allocation(word_size, context);
 625     if (result != NULL) {
 626       return result;
 627     }
 628 
 629     // Give a warning if we seem to be looping forever.
 630     if ((QueuedAllocationWarningCount > 0) &&
 631         (try_count % QueuedAllocationWarningCount == 0)) {
 632       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 633                       "retries %d times", try_count);
 634     }
 635   }
 636 
 637   ShouldNotReachHere();
 638   return NULL;
 639 }
 640 
 641 void G1CollectedHeap::begin_archive_alloc_range() {
 642   assert_at_safepoint(true /* should_be_vm_thread */);
 643   if (_archive_allocator == NULL) {
 644     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 645   }
 646 }
 647 
 648 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 649   // Allocations in archive regions cannot be of a size that would be considered
 650   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 651   // may be different at archive-restore time.
 652   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 653 }
 654 
 655 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 656   assert_at_safepoint(true /* should_be_vm_thread */);
 657   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 658   if (is_archive_alloc_too_large(word_size)) {
 659     return NULL;
 660   }
 661   return _archive_allocator->archive_mem_allocate(word_size);
 662 }
 663 
 664 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 665                                               size_t end_alignment_in_bytes) {
 666   assert_at_safepoint(true /* should_be_vm_thread */);
 667   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 668 
 669   // Call complete_archive to do the real work, filling in the MemRegion
 670   // array with the archive regions.
 671   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 672   delete _archive_allocator;
 673   _archive_allocator = NULL;
 674 }
 675 
 676 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 677   assert(ranges != NULL, "MemRegion array NULL");
 678   assert(count != 0, "No MemRegions provided");
 679   MemRegion reserved = _hrm.reserved();
 680   for (size_t i = 0; i < count; i++) {
 681     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 682       return false;
 683     }
 684   }
 685   return true;
 686 }
 687 
 688 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 689   assert(!is_init_completed(), "Expect to be called at JVM init time");
 690   assert(ranges != NULL, "MemRegion array NULL");
 691   assert(count != 0, "No MemRegions provided");
 692   MutexLockerEx x(Heap_lock);
 693 
 694   MemRegion reserved = _hrm.reserved();
 695   HeapWord* prev_last_addr = NULL;
 696   HeapRegion* prev_last_region = NULL;
 697 
 698   // Temporarily disable pretouching of heap pages. This interface is used
 699   // when mmap'ing archived heap data in, so pre-touching is wasted.
 700   FlagSetting fs(AlwaysPreTouch, false);
 701 
 702   // Enable archive object checking used by G1MarkSweep. We have to let it know
 703   // about each archive range, so that objects in those ranges aren't marked.
 704   G1ArchiveAllocator::enable_archive_object_check();
 705 
 706   // For each specified MemRegion range, allocate the corresponding G1
 707   // regions and mark them as archive regions. We expect the ranges in
 708   // ascending starting address order, without overlap.
 709   for (size_t i = 0; i < count; i++) {
 710     MemRegion curr_range = ranges[i];
 711     HeapWord* start_address = curr_range.start();
 712     size_t word_size = curr_range.word_size();
 713     HeapWord* last_address = curr_range.last();
 714     size_t commits = 0;
 715 
 716     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 717               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 718               p2i(start_address), p2i(last_address));
 719     guarantee(start_address > prev_last_addr,
 720               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 721               p2i(start_address), p2i(prev_last_addr));
 722     prev_last_addr = last_address;
 723 
 724     // Check for ranges that start in the same G1 region in which the previous
 725     // range ended, and adjust the start address so we don't try to allocate
 726     // the same region again. If the current range is entirely within that
 727     // region, skip it, just adjusting the recorded top.
 728     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 729     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 730       start_address = start_region->end();
 731       if (start_address > last_address) {
 732         increase_used(word_size * HeapWordSize);
 733         start_region->set_top(last_address + 1);
 734         continue;
 735       }
 736       start_region->set_top(start_address);
 737       curr_range = MemRegion(start_address, last_address + 1);
 738       start_region = _hrm.addr_to_region(start_address);
 739     }
 740 
 741     // Perform the actual region allocation, exiting if it fails.
 742     // Then note how much new space we have allocated.
 743     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 744       return false;
 745     }
 746     increase_used(word_size * HeapWordSize);
 747     if (commits != 0) {
 748       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 749                                 HeapRegion::GrainWords * HeapWordSize * commits);
 750 
 751     }
 752 
 753     // Mark each G1 region touched by the range as archive, add it to the old set,
 754     // and set the allocation context and top.
 755     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 756     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 757     prev_last_region = last_region;
 758 
 759     while (curr_region != NULL) {
 760       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 761              "Region already in use (index %u)", curr_region->hrm_index());
 762       curr_region->set_allocation_context(AllocationContext::system());
 763       curr_region->set_archive();
 764       _hr_printer.alloc(curr_region);
 765       _old_set.add(curr_region);
 766       if (curr_region != last_region) {
 767         curr_region->set_top(curr_region->end());
 768         curr_region = _hrm.next_region_in_heap(curr_region);
 769       } else {
 770         curr_region->set_top(last_address + 1);
 771         curr_region = NULL;
 772       }
 773     }
 774 
 775     // Notify mark-sweep of the archive range.
 776     G1ArchiveAllocator::set_range_archive(curr_range, true);
 777   }
 778   return true;
 779 }
 780 
 781 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 782   assert(!is_init_completed(), "Expect to be called at JVM init time");
 783   assert(ranges != NULL, "MemRegion array NULL");
 784   assert(count != 0, "No MemRegions provided");
 785   MemRegion reserved = _hrm.reserved();
 786   HeapWord *prev_last_addr = NULL;
 787   HeapRegion* prev_last_region = NULL;
 788 
 789   // For each MemRegion, create filler objects, if needed, in the G1 regions
 790   // that contain the address range. The address range actually within the
 791   // MemRegion will not be modified. That is assumed to have been initialized
 792   // elsewhere, probably via an mmap of archived heap data.
 793   MutexLockerEx x(Heap_lock);
 794   for (size_t i = 0; i < count; i++) {
 795     HeapWord* start_address = ranges[i].start();
 796     HeapWord* last_address = ranges[i].last();
 797 
 798     assert(reserved.contains(start_address) && reserved.contains(last_address),
 799            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 800            p2i(start_address), p2i(last_address));
 801     assert(start_address > prev_last_addr,
 802            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 803            p2i(start_address), p2i(prev_last_addr));
 804 
 805     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 806     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 807     HeapWord* bottom_address = start_region->bottom();
 808 
 809     // Check for a range beginning in the same region in which the
 810     // previous one ended.
 811     if (start_region == prev_last_region) {
 812       bottom_address = prev_last_addr + 1;
 813     }
 814 
 815     // Verify that the regions were all marked as archive regions by
 816     // alloc_archive_regions.
 817     HeapRegion* curr_region = start_region;
 818     while (curr_region != NULL) {
 819       guarantee(curr_region->is_archive(),
 820                 "Expected archive region at index %u", curr_region->hrm_index());
 821       if (curr_region != last_region) {
 822         curr_region = _hrm.next_region_in_heap(curr_region);
 823       } else {
 824         curr_region = NULL;
 825       }
 826     }
 827 
 828     prev_last_addr = last_address;
 829     prev_last_region = last_region;
 830 
 831     // Fill the memory below the allocated range with dummy object(s),
 832     // if the region bottom does not match the range start, or if the previous
 833     // range ended within the same G1 region, and there is a gap.
 834     if (start_address != bottom_address) {
 835       size_t fill_size = pointer_delta(start_address, bottom_address);
 836       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 837       increase_used(fill_size * HeapWordSize);
 838     }
 839   }
 840 }
 841 
 842 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 843                                                      uint* gc_count_before_ret,
 844                                                      uint* gclocker_retry_count_ret) {
 845   assert_heap_not_locked_and_not_at_safepoint();
 846   assert(!is_humongous(word_size), "attempt_allocation() should not "
 847          "be called for humongous allocation requests");
 848 
 849   AllocationContext_t context = AllocationContext::current();
 850   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 851 
 852   if (result == NULL) {
 853     result = attempt_allocation_slow(word_size,
 854                                      context,
 855                                      gc_count_before_ret,
 856                                      gclocker_retry_count_ret);
 857   }
 858   assert_heap_not_locked();
 859   if (result != NULL) {
 860     dirty_young_block(result, word_size);
 861   }
 862   return result;
 863 }
 864 
 865 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 866   assert(!is_init_completed(), "Expect to be called at JVM init time");
 867   assert(ranges != NULL, "MemRegion array NULL");
 868   assert(count != 0, "No MemRegions provided");
 869   MemRegion reserved = _hrm.reserved();
 870   HeapWord* prev_last_addr = NULL;
 871   HeapRegion* prev_last_region = NULL;
 872   size_t size_used = 0;
 873   size_t uncommitted_regions = 0;
 874 
 875   // For each Memregion, free the G1 regions that constitute it, and
 876   // notify mark-sweep that the range is no longer to be considered 'archive.'
 877   MutexLockerEx x(Heap_lock);
 878   for (size_t i = 0; i < count; i++) {
 879     HeapWord* start_address = ranges[i].start();
 880     HeapWord* last_address = ranges[i].last();
 881 
 882     assert(reserved.contains(start_address) && reserved.contains(last_address),
 883            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 884            p2i(start_address), p2i(last_address));
 885     assert(start_address > prev_last_addr,
 886            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 887            p2i(start_address), p2i(prev_last_addr));
 888     size_used += ranges[i].byte_size();
 889     prev_last_addr = last_address;
 890 
 891     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 892     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 893 
 894     // Check for ranges that start in the same G1 region in which the previous
 895     // range ended, and adjust the start address so we don't try to free
 896     // the same region again. If the current range is entirely within that
 897     // region, skip it.
 898     if (start_region == prev_last_region) {
 899       start_address = start_region->end();
 900       if (start_address > last_address) {
 901         continue;
 902       }
 903       start_region = _hrm.addr_to_region(start_address);
 904     }
 905     prev_last_region = last_region;
 906 
 907     // After verifying that each region was marked as an archive region by
 908     // alloc_archive_regions, set it free and empty and uncommit it.
 909     HeapRegion* curr_region = start_region;
 910     while (curr_region != NULL) {
 911       guarantee(curr_region->is_archive(),
 912                 "Expected archive region at index %u", curr_region->hrm_index());
 913       uint curr_index = curr_region->hrm_index();
 914       _old_set.remove(curr_region);
 915       curr_region->set_free();
 916       curr_region->set_top(curr_region->bottom());
 917       if (curr_region != last_region) {
 918         curr_region = _hrm.next_region_in_heap(curr_region);
 919       } else {
 920         curr_region = NULL;
 921       }
 922       _hrm.shrink_at(curr_index, 1);
 923       uncommitted_regions++;
 924     }
 925 
 926     // Notify mark-sweep that this is no longer an archive range.
 927     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 928   }
 929 
 930   if (uncommitted_regions != 0) {
 931     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 932                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 933   }
 934   decrease_used(size_used);
 935 }
 936 
 937 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 938                                                         uint* gc_count_before_ret,
 939                                                         uint* gclocker_retry_count_ret) {
 940   // The structure of this method has a lot of similarities to
 941   // attempt_allocation_slow(). The reason these two were not merged
 942   // into a single one is that such a method would require several "if
 943   // allocation is not humongous do this, otherwise do that"
 944   // conditional paths which would obscure its flow. In fact, an early
 945   // version of this code did use a unified method which was harder to
 946   // follow and, as a result, it had subtle bugs that were hard to
 947   // track down. So keeping these two methods separate allows each to
 948   // be more readable. It will be good to keep these two in sync as
 949   // much as possible.
 950 
 951   assert_heap_not_locked_and_not_at_safepoint();
 952   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 953          "should only be called for humongous allocations");
 954 
 955   // Humongous objects can exhaust the heap quickly, so we should check if we
 956   // need to start a marking cycle at each humongous object allocation. We do
 957   // the check before we do the actual allocation. The reason for doing it
 958   // before the allocation is that we avoid having to keep track of the newly
 959   // allocated memory while we do a GC.
 960   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 961                                            word_size)) {
 962     collect(GCCause::_g1_humongous_allocation);
 963   }
 964 
 965   // We will loop until a) we manage to successfully perform the
 966   // allocation or b) we successfully schedule a collection which
 967   // fails to perform the allocation. b) is the only case when we'll
 968   // return NULL.
 969   HeapWord* result = NULL;
 970   for (int try_count = 1; /* we'll return */; try_count += 1) {
 971     bool should_try_gc;
 972     uint gc_count_before;
 973 
 974     {
 975       MutexLockerEx x(Heap_lock);
 976 
 977       // Given that humongous objects are not allocated in young
 978       // regions, we'll first try to do the allocation without doing a
 979       // collection hoping that there's enough space in the heap.
 980       result = humongous_obj_allocate(word_size, AllocationContext::current());
 981       if (result != NULL) {
 982         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 983         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 984         return result;
 985       }
 986 
 987       if (GCLocker::is_active_and_needs_gc()) {
 988         should_try_gc = false;
 989       } else {
 990          // The GCLocker may not be active but the GCLocker initiated
 991         // GC may not yet have been performed (GCLocker::needs_gc()
 992         // returns true). In this case we do not try this GC and
 993         // wait until the GCLocker initiated GC is performed, and
 994         // then retry the allocation.
 995         if (GCLocker::needs_gc()) {
 996           should_try_gc = false;
 997         } else {
 998           // Read the GC count while still holding the Heap_lock.
 999           gc_count_before = total_collections();
1000           should_try_gc = true;
1001         }
1002       }
1003     }
1004 
1005     if (should_try_gc) {
1006       // If we failed to allocate the humongous object, we should try to
1007       // do a collection pause (if we're allowed) in case it reclaims
1008       // enough space for the allocation to succeed after the pause.
1009 
1010       bool succeeded;
1011       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1012                                    GCCause::_g1_humongous_allocation);
1013       if (result != NULL) {
1014         assert(succeeded, "only way to get back a non-NULL result");
1015         return result;
1016       }
1017 
1018       if (succeeded) {
1019         // If we get here we successfully scheduled a collection which
1020         // failed to allocate. No point in trying to allocate
1021         // further. We'll just return NULL.
1022         MutexLockerEx x(Heap_lock);
1023         *gc_count_before_ret = total_collections();
1024         return NULL;
1025       }
1026     } else {
1027       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1028         MutexLockerEx x(Heap_lock);
1029         *gc_count_before_ret = total_collections();
1030         return NULL;
1031       }
1032       // The GCLocker is either active or the GCLocker initiated
1033       // GC has not yet been performed. Stall until it is and
1034       // then retry the allocation.
1035       GCLocker::stall_until_clear();
1036       (*gclocker_retry_count_ret) += 1;
1037     }
1038 
1039     // We can reach here if we were unsuccessful in scheduling a
1040     // collection (because another thread beat us to it) or if we were
1041     // stalled due to the GC locker. In either can we should retry the
1042     // allocation attempt in case another thread successfully
1043     // performed a collection and reclaimed enough space.  Give a
1044     // warning if we seem to be looping forever.
1045 
1046     if ((QueuedAllocationWarningCount > 0) &&
1047         (try_count % QueuedAllocationWarningCount == 0)) {
1048       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1049                       "retries %d times", try_count);
1050     }
1051   }
1052 
1053   ShouldNotReachHere();
1054   return NULL;
1055 }
1056 
1057 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1058                                                            AllocationContext_t context,
1059                                                            bool expect_null_mutator_alloc_region) {
1060   assert_at_safepoint(true /* should_be_vm_thread */);
1061   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1062          "the current alloc region was unexpectedly found to be non-NULL");
1063 
1064   if (!is_humongous(word_size)) {
1065     return _allocator->attempt_allocation_locked(word_size, context);
1066   } else {
1067     HeapWord* result = humongous_obj_allocate(word_size, context);
1068     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1069       collector_state()->set_initiate_conc_mark_if_possible(true);
1070     }
1071     return result;
1072   }
1073 
1074   ShouldNotReachHere();
1075 }
1076 
1077 class PostMCRemSetClearClosure: public HeapRegionClosure {
1078   G1CollectedHeap* _g1h;
1079   ModRefBarrierSet* _mr_bs;
1080 public:
1081   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1082     _g1h(g1h), _mr_bs(mr_bs) {}
1083 
1084   bool doHeapRegion(HeapRegion* r) {
1085     HeapRegionRemSet* hrrs = r->rem_set();
1086 
1087     _g1h->reset_gc_time_stamps(r);
1088 
1089     if (r->is_continues_humongous()) {
1090       // We'll assert that the strong code root list and RSet is empty
1091       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1092       assert(hrrs->occupied() == 0, "RSet should be empty");
1093     } else {
1094       hrrs->clear();
1095     }
1096     // You might think here that we could clear just the cards
1097     // corresponding to the used region.  But no: if we leave a dirty card
1098     // in a region we might allocate into, then it would prevent that card
1099     // from being enqueued, and cause it to be missed.
1100     // Re: the performance cost: we shouldn't be doing full GC anyway!
1101     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1102 
1103     return false;
1104   }
1105 };
1106 
1107 void G1CollectedHeap::clear_rsets_post_compaction() {
1108   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1109   heap_region_iterate(&rs_clear);
1110 }
1111 
1112 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1113   G1CollectedHeap*   _g1h;
1114   UpdateRSOopClosure _cl;
1115 public:
1116   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1117     _cl(g1->g1_rem_set(), worker_i),
1118     _g1h(g1)
1119   { }
1120 
1121   bool doHeapRegion(HeapRegion* r) {
1122     if (!r->is_continues_humongous()) {
1123       _cl.set_from(r);
1124       r->oop_iterate(&_cl);
1125     }
1126     return false;
1127   }
1128 };
1129 
1130 class ParRebuildRSTask: public AbstractGangTask {
1131   G1CollectedHeap* _g1;
1132   HeapRegionClaimer _hrclaimer;
1133 
1134 public:
1135   ParRebuildRSTask(G1CollectedHeap* g1) :
1136       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1137 
1138   void work(uint worker_id) {
1139     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1140     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1141   }
1142 };
1143 
1144 class PostCompactionPrinterClosure: public HeapRegionClosure {
1145 private:
1146   G1HRPrinter* _hr_printer;
1147 public:
1148   bool doHeapRegion(HeapRegion* hr) {
1149     assert(!hr->is_young(), "not expecting to find young regions");
1150     _hr_printer->post_compaction(hr);
1151     return false;
1152   }
1153 
1154   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1155     : _hr_printer(hr_printer) { }
1156 };
1157 
1158 void G1CollectedHeap::print_hrm_post_compaction() {
1159   if (_hr_printer.is_active()) {
1160     PostCompactionPrinterClosure cl(hr_printer());
1161     heap_region_iterate(&cl);
1162   }
1163 
1164 }
1165 
1166 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1167                                          bool clear_all_soft_refs) {
1168   assert_at_safepoint(true /* should_be_vm_thread */);
1169 
1170   if (GCLocker::check_active_before_gc()) {
1171     return false;
1172   }
1173 
1174   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1175   gc_timer->register_gc_start();
1176 
1177   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1178   GCIdMark gc_id_mark;
1179   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1180 
1181   SvcGCMarker sgcm(SvcGCMarker::FULL);
1182   ResourceMark rm;
1183 
1184   print_heap_before_gc();
1185   print_heap_regions();
1186   trace_heap_before_gc(gc_tracer);
1187 
1188   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1189 
1190   _verifier->verify_region_sets_optional();
1191 
1192   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1193                            collector_policy()->should_clear_all_soft_refs();
1194 
1195   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1196 
1197   {
1198     IsGCActiveMark x;
1199 
1200     // Timing
1201     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1202     GCTraceCPUTime tcpu;
1203 
1204     {
1205       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1206       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1207       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1208 
1209       G1HeapTransition heap_transition(this);
1210       g1_policy()->record_full_collection_start();
1211 
1212       // Note: When we have a more flexible GC logging framework that
1213       // allows us to add optional attributes to a GC log record we
1214       // could consider timing and reporting how long we wait in the
1215       // following two methods.
1216       wait_while_free_regions_coming();
1217       // If we start the compaction before the CM threads finish
1218       // scanning the root regions we might trip them over as we'll
1219       // be moving objects / updating references. So let's wait until
1220       // they are done. By telling them to abort, they should complete
1221       // early.
1222       _cm->root_regions()->abort();
1223       _cm->root_regions()->wait_until_scan_finished();
1224       append_secondary_free_list_if_not_empty_with_lock();
1225 
1226       gc_prologue(true);
1227       increment_total_collections(true /* full gc */);
1228       increment_old_marking_cycles_started();
1229 
1230       assert(used() == recalculate_used(), "Should be equal");
1231 
1232       _verifier->verify_before_gc();
1233 
1234       _verifier->check_bitmaps("Full GC Start");
1235       pre_full_gc_dump(gc_timer);
1236 
1237 #if defined(COMPILER2) || INCLUDE_JVMCI
1238       DerivedPointerTable::clear();
1239 #endif
1240 
1241       // Disable discovery and empty the discovered lists
1242       // for the CM ref processor.
1243       ref_processor_cm()->disable_discovery();
1244       ref_processor_cm()->abandon_partial_discovery();
1245       ref_processor_cm()->verify_no_references_recorded();
1246 
1247       // Abandon current iterations of concurrent marking and concurrent
1248       // refinement, if any are in progress.
1249       concurrent_mark()->abort();
1250 
1251       // Make sure we'll choose a new allocation region afterwards.
1252       _allocator->release_mutator_alloc_region();
1253       _allocator->abandon_gc_alloc_regions();
1254       g1_rem_set()->cleanupHRRS();
1255 
1256       // We may have added regions to the current incremental collection
1257       // set between the last GC or pause and now. We need to clear the
1258       // incremental collection set and then start rebuilding it afresh
1259       // after this full GC.
1260       abandon_collection_set(collection_set());
1261 
1262       tear_down_region_sets(false /* free_list_only */);
1263       collector_state()->set_gcs_are_young(true);
1264 
1265       // See the comments in g1CollectedHeap.hpp and
1266       // G1CollectedHeap::ref_processing_init() about
1267       // how reference processing currently works in G1.
1268 
1269       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1270       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1271 
1272       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1273       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1274 
1275       ref_processor_stw()->enable_discovery();
1276       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1277 
1278       // Do collection work
1279       {
1280         HandleMark hm;  // Discard invalid handles created during gc
1281         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1282       }
1283 
1284       assert(num_free_regions() == 0, "we should not have added any free regions");
1285       rebuild_region_sets(false /* free_list_only */);
1286 
1287       // Enqueue any discovered reference objects that have
1288       // not been removed from the discovered lists.
1289       ref_processor_stw()->enqueue_discovered_references();
1290 
1291 #if defined(COMPILER2) || INCLUDE_JVMCI
1292       DerivedPointerTable::update_pointers();
1293 #endif
1294 
1295       MemoryService::track_memory_usage();
1296 
1297       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1298       ref_processor_stw()->verify_no_references_recorded();
1299 
1300       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1301       ClassLoaderDataGraph::purge();
1302       MetaspaceAux::verify_metrics();
1303 
1304       // Note: since we've just done a full GC, concurrent
1305       // marking is no longer active. Therefore we need not
1306       // re-enable reference discovery for the CM ref processor.
1307       // That will be done at the start of the next marking cycle.
1308       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1309       ref_processor_cm()->verify_no_references_recorded();
1310 
1311       reset_gc_time_stamp();
1312       // Since everything potentially moved, we will clear all remembered
1313       // sets, and clear all cards.  Later we will rebuild remembered
1314       // sets. We will also reset the GC time stamps of the regions.
1315       clear_rsets_post_compaction();
1316       check_gc_time_stamps();
1317 
1318       resize_if_necessary_after_full_collection();
1319 
1320       // We should do this after we potentially resize the heap so
1321       // that all the COMMIT / UNCOMMIT events are generated before
1322       // the compaction events.
1323       print_hrm_post_compaction();
1324 
1325       if (_hot_card_cache->use_cache()) {
1326         _hot_card_cache->reset_card_counts();
1327         _hot_card_cache->reset_hot_cache();
1328       }
1329 
1330       // Rebuild remembered sets of all regions.
1331       uint n_workers =
1332         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1333                                                 workers()->active_workers(),
1334                                                 Threads::number_of_non_daemon_threads());
1335       workers()->update_active_workers(n_workers);
1336       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1337 
1338       ParRebuildRSTask rebuild_rs_task(this);
1339       workers()->run_task(&rebuild_rs_task);
1340 
1341       // Rebuild the strong code root lists for each region
1342       rebuild_strong_code_roots();
1343 
1344       if (true) { // FIXME
1345         MetaspaceGC::compute_new_size();
1346       }
1347 
1348 #ifdef TRACESPINNING
1349       ParallelTaskTerminator::print_termination_counts();
1350 #endif
1351 
1352       // Discard all rset updates
1353       JavaThread::dirty_card_queue_set().abandon_logs();
1354       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1355 
1356       // At this point there should be no regions in the
1357       // entire heap tagged as young.
1358       assert(check_young_list_empty(), "young list should be empty at this point");
1359 
1360       // Update the number of full collections that have been completed.
1361       increment_old_marking_cycles_completed(false /* concurrent */);
1362 
1363       _hrm.verify_optional();
1364       _verifier->verify_region_sets_optional();
1365 
1366       _verifier->verify_after_gc();
1367 
1368       // Clear the previous marking bitmap, if needed for bitmap verification.
1369       // Note we cannot do this when we clear the next marking bitmap in
1370       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1371       // objects marked during a full GC against the previous bitmap.
1372       // But we need to clear it before calling check_bitmaps below since
1373       // the full GC has compacted objects and updated TAMS but not updated
1374       // the prev bitmap.
1375       if (G1VerifyBitmaps) {
1376         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1377         _cm->clear_prev_bitmap(workers());
1378       }
1379       _verifier->check_bitmaps("Full GC End");
1380 
1381       start_new_collection_set();
1382 
1383       _allocator->init_mutator_alloc_region();
1384 
1385       g1_policy()->record_full_collection_end();
1386 
1387       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1388       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1389       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1390       // before any GC notifications are raised.
1391       g1mm()->update_sizes();
1392 
1393       gc_epilogue(true);
1394 
1395       heap_transition.print();
1396 
1397       print_heap_after_gc();
1398       print_heap_regions();
1399       trace_heap_after_gc(gc_tracer);
1400 
1401       post_full_gc_dump(gc_timer);
1402     }
1403 
1404     gc_timer->register_gc_end();
1405     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1406   }
1407 
1408   return true;
1409 }
1410 
1411 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1412   // Currently, there is no facility in the do_full_collection(bool) API to notify
1413   // the caller that the collection did not succeed (e.g., because it was locked
1414   // out by the GC locker). So, right now, we'll ignore the return value.
1415   bool dummy = do_full_collection(true,                /* explicit_gc */
1416                                   clear_all_soft_refs);
1417 }
1418 
1419 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1420   // Include bytes that will be pre-allocated to support collections, as "used".
1421   const size_t used_after_gc = used();
1422   const size_t capacity_after_gc = capacity();
1423   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1424 
1425   // This is enforced in arguments.cpp.
1426   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1427          "otherwise the code below doesn't make sense");
1428 
1429   // We don't have floating point command-line arguments
1430   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1431   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1432   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1433   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1434 
1435   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1436   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1437 
1438   // We have to be careful here as these two calculations can overflow
1439   // 32-bit size_t's.
1440   double used_after_gc_d = (double) used_after_gc;
1441   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1442   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1443 
1444   // Let's make sure that they are both under the max heap size, which
1445   // by default will make them fit into a size_t.
1446   double desired_capacity_upper_bound = (double) max_heap_size;
1447   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1448                                     desired_capacity_upper_bound);
1449   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1450                                     desired_capacity_upper_bound);
1451 
1452   // We can now safely turn them into size_t's.
1453   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1454   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1455 
1456   // This assert only makes sense here, before we adjust them
1457   // with respect to the min and max heap size.
1458   assert(minimum_desired_capacity <= maximum_desired_capacity,
1459          "minimum_desired_capacity = " SIZE_FORMAT ", "
1460          "maximum_desired_capacity = " SIZE_FORMAT,
1461          minimum_desired_capacity, maximum_desired_capacity);
1462 
1463   // Should not be greater than the heap max size. No need to adjust
1464   // it with respect to the heap min size as it's a lower bound (i.e.,
1465   // we'll try to make the capacity larger than it, not smaller).
1466   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1467   // Should not be less than the heap min size. No need to adjust it
1468   // with respect to the heap max size as it's an upper bound (i.e.,
1469   // we'll try to make the capacity smaller than it, not greater).
1470   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1471 
1472   if (capacity_after_gc < minimum_desired_capacity) {
1473     // Don't expand unless it's significant
1474     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1475 
1476     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1477                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1478                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1479 
1480     expand(expand_bytes, _workers);
1481 
1482     // No expansion, now see if we want to shrink
1483   } else if (capacity_after_gc > maximum_desired_capacity) {
1484     // Capacity too large, compute shrinking size
1485     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1486 
1487     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1488                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1489                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1490 
1491     shrink(shrink_bytes);
1492   }
1493 }
1494 
1495 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1496                                                             AllocationContext_t context,
1497                                                             bool do_gc,
1498                                                             bool clear_all_soft_refs,
1499                                                             bool expect_null_mutator_alloc_region,
1500                                                             bool* gc_succeeded) {
1501   *gc_succeeded = true;
1502   // Let's attempt the allocation first.
1503   HeapWord* result =
1504     attempt_allocation_at_safepoint(word_size,
1505                                     context,
1506                                     expect_null_mutator_alloc_region);
1507   if (result != NULL) {
1508     assert(*gc_succeeded, "sanity");
1509     return result;
1510   }
1511 
1512   // In a G1 heap, we're supposed to keep allocation from failing by
1513   // incremental pauses.  Therefore, at least for now, we'll favor
1514   // expansion over collection.  (This might change in the future if we can
1515   // do something smarter than full collection to satisfy a failed alloc.)
1516   result = expand_and_allocate(word_size, context);
1517   if (result != NULL) {
1518     assert(*gc_succeeded, "sanity");
1519     return result;
1520   }
1521 
1522   if (do_gc) {
1523     // Expansion didn't work, we'll try to do a Full GC.
1524     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1525                                        clear_all_soft_refs);
1526   }
1527 
1528   return NULL;
1529 }
1530 
1531 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1532                                                      AllocationContext_t context,
1533                                                      bool* succeeded) {
1534   assert_at_safepoint(true /* should_be_vm_thread */);
1535 
1536   // Attempts to allocate followed by Full GC.
1537   HeapWord* result =
1538     satisfy_failed_allocation_helper(word_size,
1539                                      context,
1540                                      true,  /* do_gc */
1541                                      false, /* clear_all_soft_refs */
1542                                      false, /* expect_null_mutator_alloc_region */
1543                                      succeeded);
1544 
1545   if (result != NULL || !*succeeded) {
1546     return result;
1547   }
1548 
1549   // Attempts to allocate followed by Full GC that will collect all soft references.
1550   result = satisfy_failed_allocation_helper(word_size,
1551                                             context,
1552                                             true, /* do_gc */
1553                                             true, /* clear_all_soft_refs */
1554                                             true, /* expect_null_mutator_alloc_region */
1555                                             succeeded);
1556 
1557   if (result != NULL || !*succeeded) {
1558     return result;
1559   }
1560 
1561   // Attempts to allocate, no GC
1562   result = satisfy_failed_allocation_helper(word_size,
1563                                             context,
1564                                             false, /* do_gc */
1565                                             false, /* clear_all_soft_refs */
1566                                             true,  /* expect_null_mutator_alloc_region */
1567                                             succeeded);
1568 
1569   if (result != NULL) {
1570     assert(*succeeded, "sanity");
1571     return result;
1572   }
1573 
1574   assert(!collector_policy()->should_clear_all_soft_refs(),
1575          "Flag should have been handled and cleared prior to this point");
1576 
1577   // What else?  We might try synchronous finalization later.  If the total
1578   // space available is large enough for the allocation, then a more
1579   // complete compaction phase than we've tried so far might be
1580   // appropriate.
1581   assert(*succeeded, "sanity");
1582   return NULL;
1583 }
1584 
1585 // Attempting to expand the heap sufficiently
1586 // to support an allocation of the given "word_size".  If
1587 // successful, perform the allocation and return the address of the
1588 // allocated block, or else "NULL".
1589 
1590 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1591   assert_at_safepoint(true /* should_be_vm_thread */);
1592 
1593   _verifier->verify_region_sets_optional();
1594 
1595   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1596   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1597                             word_size * HeapWordSize);
1598 
1599 
1600   if (expand(expand_bytes, _workers)) {
1601     _hrm.verify_optional();
1602     _verifier->verify_region_sets_optional();
1603     return attempt_allocation_at_safepoint(word_size,
1604                                            context,
1605                                            false /* expect_null_mutator_alloc_region */);
1606   }
1607   return NULL;
1608 }
1609 
1610 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1611   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1612   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1613                                        HeapRegion::GrainBytes);
1614 
1615   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1616                             expand_bytes, aligned_expand_bytes);
1617 
1618   if (is_maximal_no_gc()) {
1619     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1620     return false;
1621   }
1622 
1623   double expand_heap_start_time_sec = os::elapsedTime();
1624   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1625   assert(regions_to_expand > 0, "Must expand by at least one region");
1626 
1627   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1628   if (expand_time_ms != NULL) {
1629     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1630   }
1631 
1632   if (expanded_by > 0) {
1633     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1634     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1635     g1_policy()->record_new_heap_size(num_regions());
1636   } else {
1637     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1638 
1639     // The expansion of the virtual storage space was unsuccessful.
1640     // Let's see if it was because we ran out of swap.
1641     if (G1ExitOnExpansionFailure &&
1642         _hrm.available() >= regions_to_expand) {
1643       // We had head room...
1644       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1645     }
1646   }
1647   return regions_to_expand > 0;
1648 }
1649 
1650 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1651   size_t aligned_shrink_bytes =
1652     ReservedSpace::page_align_size_down(shrink_bytes);
1653   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1654                                          HeapRegion::GrainBytes);
1655   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1656 
1657   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1658   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1659 
1660 
1661   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1662                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1663   if (num_regions_removed > 0) {
1664     g1_policy()->record_new_heap_size(num_regions());
1665   } else {
1666     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1667   }
1668 }
1669 
1670 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1671   _verifier->verify_region_sets_optional();
1672 
1673   // We should only reach here at the end of a Full GC which means we
1674   // should not not be holding to any GC alloc regions. The method
1675   // below will make sure of that and do any remaining clean up.
1676   _allocator->abandon_gc_alloc_regions();
1677 
1678   // Instead of tearing down / rebuilding the free lists here, we
1679   // could instead use the remove_all_pending() method on free_list to
1680   // remove only the ones that we need to remove.
1681   tear_down_region_sets(true /* free_list_only */);
1682   shrink_helper(shrink_bytes);
1683   rebuild_region_sets(true /* free_list_only */);
1684 
1685   _hrm.verify_optional();
1686   _verifier->verify_region_sets_optional();
1687 }
1688 
1689 // Public methods.
1690 
1691 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1692   CollectedHeap(),
1693   _collector_policy(collector_policy),
1694   _g1_policy(create_g1_policy()),
1695   _collection_set(this, _g1_policy),
1696   _dirty_card_queue_set(false),
1697   _is_alive_closure_cm(this),
1698   _is_alive_closure_stw(this),
1699   _ref_processor_cm(NULL),
1700   _ref_processor_stw(NULL),
1701   _bot(NULL),
1702   _hot_card_cache(NULL),
1703   _g1_rem_set(NULL),
1704   _cg1r(NULL),
1705   _g1mm(NULL),
1706   _refine_cte_cl(NULL),
1707   _preserved_marks_set(true /* in_c_heap */),
1708   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1709   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1710   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1711   _humongous_reclaim_candidates(),
1712   _has_humongous_reclaim_candidates(false),
1713   _archive_allocator(NULL),
1714   _free_regions_coming(false),
1715   _gc_time_stamp(0),
1716   _summary_bytes_used(0),
1717   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1718   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1719   _expand_heap_after_alloc_failure(true),
1720   _old_marking_cycles_started(0),
1721   _old_marking_cycles_completed(0),
1722   _in_cset_fast_test(),
1723   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1724   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1725 
1726   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1727                           /* are_GC_task_threads */true,
1728                           /* are_ConcurrentGC_threads */false);
1729   _workers->initialize_workers();
1730   _verifier = new G1HeapVerifier(this);
1731 
1732   _allocator = G1Allocator::create_allocator(this);
1733 
1734   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1735 
1736   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1737 
1738   // Override the default _filler_array_max_size so that no humongous filler
1739   // objects are created.
1740   _filler_array_max_size = _humongous_object_threshold_in_words;
1741 
1742   uint n_queues = ParallelGCThreads;
1743   _task_queues = new RefToScanQueueSet(n_queues);
1744 
1745   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1746 
1747   for (uint i = 0; i < n_queues; i++) {
1748     RefToScanQueue* q = new RefToScanQueue();
1749     q->initialize();
1750     _task_queues->register_queue(i, q);
1751     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1752   }
1753 
1754   // Initialize the G1EvacuationFailureALot counters and flags.
1755   NOT_PRODUCT(reset_evacuation_should_fail();)
1756 
1757   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1758 }
1759 
1760 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1761                                                                  size_t size,
1762                                                                  size_t translation_factor) {
1763   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1764   // Allocate a new reserved space, preferring to use large pages.
1765   ReservedSpace rs(size, preferred_page_size);
1766   G1RegionToSpaceMapper* result  =
1767     G1RegionToSpaceMapper::create_mapper(rs,
1768                                          size,
1769                                          rs.alignment(),
1770                                          HeapRegion::GrainBytes,
1771                                          translation_factor,
1772                                          mtGC);
1773 
1774   os::trace_page_sizes_for_requested_size(description,
1775                                           size,
1776                                           preferred_page_size,
1777                                           rs.alignment(),
1778                                           rs.base(),
1779                                           rs.size());
1780 
1781   return result;
1782 }
1783 
1784 jint G1CollectedHeap::initialize() {
1785   CollectedHeap::pre_initialize();
1786   os::enable_vtime();
1787 
1788   // Necessary to satisfy locking discipline assertions.
1789 
1790   MutexLocker x(Heap_lock);
1791 
1792   // While there are no constraints in the GC code that HeapWordSize
1793   // be any particular value, there are multiple other areas in the
1794   // system which believe this to be true (e.g. oop->object_size in some
1795   // cases incorrectly returns the size in wordSize units rather than
1796   // HeapWordSize).
1797   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1798 
1799   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1800   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1801   size_t heap_alignment = collector_policy()->heap_alignment();
1802 
1803   // Ensure that the sizes are properly aligned.
1804   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1805   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1806   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1807 
1808   _refine_cte_cl = new RefineCardTableEntryClosure();
1809 
1810   jint ecode = JNI_OK;
1811   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1812   if (_cg1r == NULL) {
1813     return ecode;
1814   }
1815 
1816   // Reserve the maximum.
1817 
1818   // When compressed oops are enabled, the preferred heap base
1819   // is calculated by subtracting the requested size from the
1820   // 32Gb boundary and using the result as the base address for
1821   // heap reservation. If the requested size is not aligned to
1822   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1823   // into the ReservedHeapSpace constructor) then the actual
1824   // base of the reserved heap may end up differing from the
1825   // address that was requested (i.e. the preferred heap base).
1826   // If this happens then we could end up using a non-optimal
1827   // compressed oops mode.
1828 
1829   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1830                                                  heap_alignment);
1831 
1832   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1833 
1834   // Create the barrier set for the entire reserved region.
1835   G1SATBCardTableLoggingModRefBS* bs
1836     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1837   bs->initialize();
1838   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1839   set_barrier_set(bs);
1840 
1841   // Create the hot card cache.
1842   _hot_card_cache = new G1HotCardCache(this);
1843 
1844   // Also create a G1 rem set.
1845   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1846 
1847   // Carve out the G1 part of the heap.
1848   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1849   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1850   G1RegionToSpaceMapper* heap_storage =
1851     G1RegionToSpaceMapper::create_mapper(g1_rs,
1852                                          g1_rs.size(),
1853                                          page_size,
1854                                          HeapRegion::GrainBytes,
1855                                          1,
1856                                          mtJavaHeap);
1857   os::trace_page_sizes("Heap",
1858                        collector_policy()->min_heap_byte_size(),
1859                        max_byte_size,
1860                        page_size,
1861                        heap_rs.base(),
1862                        heap_rs.size());
1863   heap_storage->set_mapping_changed_listener(&_listener);
1864 
1865   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1866   G1RegionToSpaceMapper* bot_storage =
1867     create_aux_memory_mapper("Block Offset Table",
1868                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1869                              G1BlockOffsetTable::heap_map_factor());
1870 
1871   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1872   G1RegionToSpaceMapper* cardtable_storage =
1873     create_aux_memory_mapper("Card Table",
1874                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1875                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1876 
1877   G1RegionToSpaceMapper* card_counts_storage =
1878     create_aux_memory_mapper("Card Counts Table",
1879                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1880                              G1CardCounts::heap_map_factor());
1881 
1882   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1883   G1RegionToSpaceMapper* prev_bitmap_storage =
1884     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1885   G1RegionToSpaceMapper* next_bitmap_storage =
1886     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1887 
1888   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1889   g1_barrier_set()->initialize(cardtable_storage);
1890   // Do later initialization work for concurrent refinement.
1891   _hot_card_cache->initialize(card_counts_storage);
1892 
1893   // 6843694 - ensure that the maximum region index can fit
1894   // in the remembered set structures.
1895   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1896   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1897 
1898   g1_rem_set()->initialize(max_capacity(), max_regions());
1899 
1900   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1901   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1902   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1903             "too many cards per region");
1904 
1905   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1906 
1907   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1908 
1909   {
1910     HeapWord* start = _hrm.reserved().start();
1911     HeapWord* end = _hrm.reserved().end();
1912     size_t granularity = HeapRegion::GrainBytes;
1913 
1914     _in_cset_fast_test.initialize(start, end, granularity);
1915     _humongous_reclaim_candidates.initialize(start, end, granularity);
1916   }
1917 
1918   // Create the G1ConcurrentMark data structure and thread.
1919   // (Must do this late, so that "max_regions" is defined.)
1920   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1921   if (_cm == NULL || !_cm->completed_initialization()) {
1922     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1923     return JNI_ENOMEM;
1924   }
1925   _cmThread = _cm->cmThread();
1926 
1927   // Now expand into the initial heap size.
1928   if (!expand(init_byte_size, _workers)) {
1929     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1930     return JNI_ENOMEM;
1931   }
1932 
1933   // Perform any initialization actions delegated to the policy.
1934   g1_policy()->init(this, &_collection_set);
1935 
1936   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1937                                                SATB_Q_FL_lock,
1938                                                G1SATBProcessCompletedThreshold,
1939                                                Shared_SATB_Q_lock);
1940 
1941   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1942                                                 DirtyCardQ_CBL_mon,
1943                                                 DirtyCardQ_FL_lock,
1944                                                 (int)concurrent_g1_refine()->yellow_zone(),
1945                                                 (int)concurrent_g1_refine()->red_zone(),
1946                                                 Shared_DirtyCardQ_lock,
1947                                                 NULL,  // fl_owner
1948                                                 true); // init_free_ids
1949 
1950   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1951                                     DirtyCardQ_CBL_mon,
1952                                     DirtyCardQ_FL_lock,
1953                                     -1, // never trigger processing
1954                                     -1, // no limit on length
1955                                     Shared_DirtyCardQ_lock,
1956                                     &JavaThread::dirty_card_queue_set());
1957 
1958   // Here we allocate the dummy HeapRegion that is required by the
1959   // G1AllocRegion class.
1960   HeapRegion* dummy_region = _hrm.get_dummy_region();
1961 
1962   // We'll re-use the same region whether the alloc region will
1963   // require BOT updates or not and, if it doesn't, then a non-young
1964   // region will complain that it cannot support allocations without
1965   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1966   dummy_region->set_eden();
1967   // Make sure it's full.
1968   dummy_region->set_top(dummy_region->end());
1969   G1AllocRegion::setup(this, dummy_region);
1970 
1971   _allocator->init_mutator_alloc_region();
1972 
1973   // Do create of the monitoring and management support so that
1974   // values in the heap have been properly initialized.
1975   _g1mm = new G1MonitoringSupport(this);
1976 
1977   G1StringDedup::initialize();
1978 
1979   _preserved_marks_set.init(ParallelGCThreads);
1980 
1981   _collection_set.initialize(max_regions());
1982 
1983   return JNI_OK;
1984 }
1985 
1986 void G1CollectedHeap::stop() {
1987   // Stop all concurrent threads. We do this to make sure these threads
1988   // do not continue to execute and access resources (e.g. logging)
1989   // that are destroyed during shutdown.
1990   _cg1r->stop();
1991   _cmThread->stop();
1992   if (G1StringDedup::is_enabled()) {
1993     G1StringDedup::stop();
1994   }
1995 }
1996 
1997 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1998   return HeapRegion::max_region_size();
1999 }
2000 
2001 void G1CollectedHeap::post_initialize() {
2002   ref_processing_init();
2003 }
2004 
2005 void G1CollectedHeap::ref_processing_init() {
2006   // Reference processing in G1 currently works as follows:
2007   //
2008   // * There are two reference processor instances. One is
2009   //   used to record and process discovered references
2010   //   during concurrent marking; the other is used to
2011   //   record and process references during STW pauses
2012   //   (both full and incremental).
2013   // * Both ref processors need to 'span' the entire heap as
2014   //   the regions in the collection set may be dotted around.
2015   //
2016   // * For the concurrent marking ref processor:
2017   //   * Reference discovery is enabled at initial marking.
2018   //   * Reference discovery is disabled and the discovered
2019   //     references processed etc during remarking.
2020   //   * Reference discovery is MT (see below).
2021   //   * Reference discovery requires a barrier (see below).
2022   //   * Reference processing may or may not be MT
2023   //     (depending on the value of ParallelRefProcEnabled
2024   //     and ParallelGCThreads).
2025   //   * A full GC disables reference discovery by the CM
2026   //     ref processor and abandons any entries on it's
2027   //     discovered lists.
2028   //
2029   // * For the STW processor:
2030   //   * Non MT discovery is enabled at the start of a full GC.
2031   //   * Processing and enqueueing during a full GC is non-MT.
2032   //   * During a full GC, references are processed after marking.
2033   //
2034   //   * Discovery (may or may not be MT) is enabled at the start
2035   //     of an incremental evacuation pause.
2036   //   * References are processed near the end of a STW evacuation pause.
2037   //   * For both types of GC:
2038   //     * Discovery is atomic - i.e. not concurrent.
2039   //     * Reference discovery will not need a barrier.
2040 
2041   MemRegion mr = reserved_region();
2042 
2043   // Concurrent Mark ref processor
2044   _ref_processor_cm =
2045     new ReferenceProcessor(mr,    // span
2046                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2047                                 // mt processing
2048                            ParallelGCThreads,
2049                                 // degree of mt processing
2050                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2051                                 // mt discovery
2052                            MAX2(ParallelGCThreads, ConcGCThreads),
2053                                 // degree of mt discovery
2054                            false,
2055                                 // Reference discovery is not atomic
2056                            &_is_alive_closure_cm);
2057                                 // is alive closure
2058                                 // (for efficiency/performance)
2059 
2060   // STW ref processor
2061   _ref_processor_stw =
2062     new ReferenceProcessor(mr,    // span
2063                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2064                                 // mt processing
2065                            ParallelGCThreads,
2066                                 // degree of mt processing
2067                            (ParallelGCThreads > 1),
2068                                 // mt discovery
2069                            ParallelGCThreads,
2070                                 // degree of mt discovery
2071                            true,
2072                                 // Reference discovery is atomic
2073                            &_is_alive_closure_stw);
2074                                 // is alive closure
2075                                 // (for efficiency/performance)
2076 }
2077 
2078 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2079   return _collector_policy;
2080 }
2081 
2082 size_t G1CollectedHeap::capacity() const {
2083   return _hrm.length() * HeapRegion::GrainBytes;
2084 }
2085 
2086 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2087   hr->reset_gc_time_stamp();
2088 }
2089 
2090 #ifndef PRODUCT
2091 
2092 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2093 private:
2094   unsigned _gc_time_stamp;
2095   bool _failures;
2096 
2097 public:
2098   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2099     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2100 
2101   virtual bool doHeapRegion(HeapRegion* hr) {
2102     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2103     if (_gc_time_stamp != region_gc_time_stamp) {
2104       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2105                             region_gc_time_stamp, _gc_time_stamp);
2106       _failures = true;
2107     }
2108     return false;
2109   }
2110 
2111   bool failures() { return _failures; }
2112 };
2113 
2114 void G1CollectedHeap::check_gc_time_stamps() {
2115   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2116   heap_region_iterate(&cl);
2117   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2118 }
2119 #endif // PRODUCT
2120 
2121 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2122   _hot_card_cache->drain(cl, worker_i);
2123 }
2124 
2125 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2126   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2127   size_t n_completed_buffers = 0;
2128   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2129     n_completed_buffers++;
2130   }
2131   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2132   dcqs.clear_n_completed_buffers();
2133   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2134 }
2135 
2136 // Computes the sum of the storage used by the various regions.
2137 size_t G1CollectedHeap::used() const {
2138   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2139   if (_archive_allocator != NULL) {
2140     result += _archive_allocator->used();
2141   }
2142   return result;
2143 }
2144 
2145 size_t G1CollectedHeap::used_unlocked() const {
2146   return _summary_bytes_used;
2147 }
2148 
2149 class SumUsedClosure: public HeapRegionClosure {
2150   size_t _used;
2151 public:
2152   SumUsedClosure() : _used(0) {}
2153   bool doHeapRegion(HeapRegion* r) {
2154     _used += r->used();
2155     return false;
2156   }
2157   size_t result() { return _used; }
2158 };
2159 
2160 size_t G1CollectedHeap::recalculate_used() const {
2161   double recalculate_used_start = os::elapsedTime();
2162 
2163   SumUsedClosure blk;
2164   heap_region_iterate(&blk);
2165 
2166   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2167   return blk.result();
2168 }
2169 
2170 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2171   switch (cause) {
2172     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2173     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2174     case GCCause::_update_allocation_context_stats_inc: return true;
2175     case GCCause::_wb_conc_mark:                        return true;
2176     default :                                           return false;
2177   }
2178 }
2179 
2180 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2181   switch (cause) {
2182     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2183     case GCCause::_g1_humongous_allocation: return true;
2184     default:                                return is_user_requested_concurrent_full_gc(cause);
2185   }
2186 }
2187 
2188 #ifndef PRODUCT
2189 void G1CollectedHeap::allocate_dummy_regions() {
2190   // Let's fill up most of the region
2191   size_t word_size = HeapRegion::GrainWords - 1024;
2192   // And as a result the region we'll allocate will be humongous.
2193   guarantee(is_humongous(word_size), "sanity");
2194 
2195   // _filler_array_max_size is set to humongous object threshold
2196   // but temporarily change it to use CollectedHeap::fill_with_object().
2197   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2198 
2199   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2200     // Let's use the existing mechanism for the allocation
2201     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2202                                                  AllocationContext::system());
2203     if (dummy_obj != NULL) {
2204       MemRegion mr(dummy_obj, word_size);
2205       CollectedHeap::fill_with_object(mr);
2206     } else {
2207       // If we can't allocate once, we probably cannot allocate
2208       // again. Let's get out of the loop.
2209       break;
2210     }
2211   }
2212 }
2213 #endif // !PRODUCT
2214 
2215 void G1CollectedHeap::increment_old_marking_cycles_started() {
2216   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2217          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2218          "Wrong marking cycle count (started: %d, completed: %d)",
2219          _old_marking_cycles_started, _old_marking_cycles_completed);
2220 
2221   _old_marking_cycles_started++;
2222 }
2223 
2224 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2225   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2226 
2227   // We assume that if concurrent == true, then the caller is a
2228   // concurrent thread that was joined the Suspendible Thread
2229   // Set. If there's ever a cheap way to check this, we should add an
2230   // assert here.
2231 
2232   // Given that this method is called at the end of a Full GC or of a
2233   // concurrent cycle, and those can be nested (i.e., a Full GC can
2234   // interrupt a concurrent cycle), the number of full collections
2235   // completed should be either one (in the case where there was no
2236   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2237   // behind the number of full collections started.
2238 
2239   // This is the case for the inner caller, i.e. a Full GC.
2240   assert(concurrent ||
2241          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2242          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2243          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2244          "is inconsistent with _old_marking_cycles_completed = %u",
2245          _old_marking_cycles_started, _old_marking_cycles_completed);
2246 
2247   // This is the case for the outer caller, i.e. the concurrent cycle.
2248   assert(!concurrent ||
2249          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2250          "for outer caller (concurrent cycle): "
2251          "_old_marking_cycles_started = %u "
2252          "is inconsistent with _old_marking_cycles_completed = %u",
2253          _old_marking_cycles_started, _old_marking_cycles_completed);
2254 
2255   _old_marking_cycles_completed += 1;
2256 
2257   // We need to clear the "in_progress" flag in the CM thread before
2258   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2259   // is set) so that if a waiter requests another System.gc() it doesn't
2260   // incorrectly see that a marking cycle is still in progress.
2261   if (concurrent) {
2262     _cmThread->set_idle();
2263   }
2264 
2265   // This notify_all() will ensure that a thread that called
2266   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2267   // and it's waiting for a full GC to finish will be woken up. It is
2268   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2269   FullGCCount_lock->notify_all();
2270 }
2271 
2272 void G1CollectedHeap::collect(GCCause::Cause cause) {
2273   assert_heap_not_locked();
2274 
2275   uint gc_count_before;
2276   uint old_marking_count_before;
2277   uint full_gc_count_before;
2278   bool retry_gc;
2279 
2280   do {
2281     retry_gc = false;
2282 
2283     {
2284       MutexLocker ml(Heap_lock);
2285 
2286       // Read the GC count while holding the Heap_lock
2287       gc_count_before = total_collections();
2288       full_gc_count_before = total_full_collections();
2289       old_marking_count_before = _old_marking_cycles_started;
2290     }
2291 
2292     if (should_do_concurrent_full_gc(cause)) {
2293       // Schedule an initial-mark evacuation pause that will start a
2294       // concurrent cycle. We're setting word_size to 0 which means that
2295       // we are not requesting a post-GC allocation.
2296       VM_G1IncCollectionPause op(gc_count_before,
2297                                  0,     /* word_size */
2298                                  true,  /* should_initiate_conc_mark */
2299                                  g1_policy()->max_pause_time_ms(),
2300                                  cause);
2301       op.set_allocation_context(AllocationContext::current());
2302 
2303       VMThread::execute(&op);
2304       if (!op.pause_succeeded()) {
2305         if (old_marking_count_before == _old_marking_cycles_started) {
2306           retry_gc = op.should_retry_gc();
2307         } else {
2308           // A Full GC happened while we were trying to schedule the
2309           // initial-mark GC. No point in starting a new cycle given
2310           // that the whole heap was collected anyway.
2311         }
2312 
2313         if (retry_gc) {
2314           if (GCLocker::is_active_and_needs_gc()) {
2315             GCLocker::stall_until_clear();
2316           }
2317         }
2318       }
2319     } else {
2320       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2321           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2322 
2323         // Schedule a standard evacuation pause. We're setting word_size
2324         // to 0 which means that we are not requesting a post-GC allocation.
2325         VM_G1IncCollectionPause op(gc_count_before,
2326                                    0,     /* word_size */
2327                                    false, /* should_initiate_conc_mark */
2328                                    g1_policy()->max_pause_time_ms(),
2329                                    cause);
2330         VMThread::execute(&op);
2331       } else {
2332         // Schedule a Full GC.
2333         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2334         VMThread::execute(&op);
2335       }
2336     }
2337   } while (retry_gc);
2338 }
2339 
2340 bool G1CollectedHeap::is_in(const void* p) const {
2341   if (_hrm.reserved().contains(p)) {
2342     // Given that we know that p is in the reserved space,
2343     // heap_region_containing() should successfully
2344     // return the containing region.
2345     HeapRegion* hr = heap_region_containing(p);
2346     return hr->is_in(p);
2347   } else {
2348     return false;
2349   }
2350 }
2351 
2352 #ifdef ASSERT
2353 bool G1CollectedHeap::is_in_exact(const void* p) const {
2354   bool contains = reserved_region().contains(p);
2355   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2356   if (contains && available) {
2357     return true;
2358   } else {
2359     return false;
2360   }
2361 }
2362 #endif
2363 
2364 // Iteration functions.
2365 
2366 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2367 
2368 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2369   ExtendedOopClosure* _cl;
2370 public:
2371   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2372   bool doHeapRegion(HeapRegion* r) {
2373     if (!r->is_continues_humongous()) {
2374       r->oop_iterate(_cl);
2375     }
2376     return false;
2377   }
2378 };
2379 
2380 // Iterates an ObjectClosure over all objects within a HeapRegion.
2381 
2382 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2383   ObjectClosure* _cl;
2384 public:
2385   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2386   bool doHeapRegion(HeapRegion* r) {
2387     if (!r->is_continues_humongous()) {
2388       r->object_iterate(_cl);
2389     }
2390     return false;
2391   }
2392 };
2393 
2394 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2395   IterateObjectClosureRegionClosure blk(cl);
2396   heap_region_iterate(&blk);
2397 }
2398 
2399 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2400   _hrm.iterate(cl);
2401 }
2402 
2403 void
2404 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2405                                          uint worker_id,
2406                                          HeapRegionClaimer *hrclaimer,
2407                                          bool concurrent) const {
2408   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2409 }
2410 
2411 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2412   _collection_set.iterate(cl);
2413 }
2414 
2415 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2416   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2417 }
2418 
2419 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2420   HeapRegion* result = _hrm.next_region_in_heap(from);
2421   while (result != NULL && result->is_pinned()) {
2422     result = _hrm.next_region_in_heap(result);
2423   }
2424   return result;
2425 }
2426 
2427 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2428   HeapRegion* hr = heap_region_containing(addr);
2429   return hr->block_start(addr);
2430 }
2431 
2432 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2433   HeapRegion* hr = heap_region_containing(addr);
2434   return hr->block_size(addr);
2435 }
2436 
2437 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2438   HeapRegion* hr = heap_region_containing(addr);
2439   return hr->block_is_obj(addr);
2440 }
2441 
2442 bool G1CollectedHeap::supports_tlab_allocation() const {
2443   return true;
2444 }
2445 
2446 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2447   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2448 }
2449 
2450 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2451   return _eden.length() * HeapRegion::GrainBytes;
2452 }
2453 
2454 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2455 // must be equal to the humongous object limit.
2456 size_t G1CollectedHeap::max_tlab_size() const {
2457   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2458 }
2459 
2460 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2461   AllocationContext_t context = AllocationContext::current();
2462   return _allocator->unsafe_max_tlab_alloc(context);
2463 }
2464 
2465 size_t G1CollectedHeap::max_capacity() const {
2466   return _hrm.reserved().byte_size();
2467 }
2468 
2469 jlong G1CollectedHeap::millis_since_last_gc() {
2470   // See the notes in GenCollectedHeap::millis_since_last_gc()
2471   // for more information about the implementation.
2472   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2473     _g1_policy->collection_pause_end_millis();
2474   if (ret_val < 0) {
2475     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2476       ". returning zero instead.", ret_val);
2477     return 0;
2478   }
2479   return ret_val;
2480 }
2481 
2482 void G1CollectedHeap::prepare_for_verify() {
2483   _verifier->prepare_for_verify();
2484 }
2485 
2486 void G1CollectedHeap::verify(VerifyOption vo) {
2487   _verifier->verify(vo);
2488 }
2489 
2490 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2491   return true;
2492 }
2493 
2494 const char* const* G1CollectedHeap::concurrent_phases() const {
2495   return _cmThread->concurrent_phases();
2496 }
2497 
2498 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2499   return _cmThread->request_concurrent_phase(phase);
2500 }
2501 
2502 class PrintRegionClosure: public HeapRegionClosure {
2503   outputStream* _st;
2504 public:
2505   PrintRegionClosure(outputStream* st) : _st(st) {}
2506   bool doHeapRegion(HeapRegion* r) {
2507     r->print_on(_st);
2508     return false;
2509   }
2510 };
2511 
2512 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2513                                        const HeapRegion* hr,
2514                                        const VerifyOption vo) const {
2515   switch (vo) {
2516   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2517   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2518   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2519   default:                            ShouldNotReachHere();
2520   }
2521   return false; // keep some compilers happy
2522 }
2523 
2524 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2525                                        const VerifyOption vo) const {
2526   switch (vo) {
2527   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2528   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2529   case VerifyOption_G1UseMarkWord: {
2530     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2531     return !obj->is_gc_marked() && !hr->is_archive();
2532   }
2533   default:                            ShouldNotReachHere();
2534   }
2535   return false; // keep some compilers happy
2536 }
2537 
2538 void G1CollectedHeap::print_heap_regions() const {
2539   Log(gc, heap, region) log;
2540   if (log.is_trace()) {
2541     ResourceMark rm;
2542     print_regions_on(log.trace_stream());
2543   }
2544 }
2545 
2546 void G1CollectedHeap::print_on(outputStream* st) const {
2547   st->print(" %-20s", "garbage-first heap");
2548   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2549             capacity()/K, used_unlocked()/K);
2550   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2551             p2i(_hrm.reserved().start()),
2552             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2553             p2i(_hrm.reserved().end()));
2554   st->cr();
2555   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2556   uint young_regions = young_regions_count();
2557   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2558             (size_t) young_regions * HeapRegion::GrainBytes / K);
2559   uint survivor_regions = survivor_regions_count();
2560   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2561             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2562   st->cr();
2563   MetaspaceAux::print_on(st);
2564 }
2565 
2566 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2567   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2568                "HS=humongous(starts), HC=humongous(continues), "
2569                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2570                "AC=allocation context, "
2571                "TAMS=top-at-mark-start (previous, next)");
2572   PrintRegionClosure blk(st);
2573   heap_region_iterate(&blk);
2574 }
2575 
2576 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2577   print_on(st);
2578 
2579   // Print the per-region information.
2580   print_regions_on(st);
2581 }
2582 
2583 void G1CollectedHeap::print_on_error(outputStream* st) const {
2584   this->CollectedHeap::print_on_error(st);
2585 
2586   if (_cm != NULL) {
2587     st->cr();
2588     _cm->print_on_error(st);
2589   }
2590 }
2591 
2592 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2593   workers()->print_worker_threads_on(st);
2594   _cmThread->print_on(st);
2595   st->cr();
2596   _cm->print_worker_threads_on(st);
2597   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2598   if (G1StringDedup::is_enabled()) {
2599     G1StringDedup::print_worker_threads_on(st);
2600   }
2601 }
2602 
2603 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2604   workers()->threads_do(tc);
2605   tc->do_thread(_cmThread);
2606   _cm->threads_do(tc);
2607   _cg1r->threads_do(tc); // also iterates over the sample thread
2608   if (G1StringDedup::is_enabled()) {
2609     G1StringDedup::threads_do(tc);
2610   }
2611 }
2612 
2613 void G1CollectedHeap::print_tracing_info() const {
2614   g1_rem_set()->print_summary_info();
2615   concurrent_mark()->print_summary_info();
2616 }
2617 
2618 #ifndef PRODUCT
2619 // Helpful for debugging RSet issues.
2620 
2621 class PrintRSetsClosure : public HeapRegionClosure {
2622 private:
2623   const char* _msg;
2624   size_t _occupied_sum;
2625 
2626 public:
2627   bool doHeapRegion(HeapRegion* r) {
2628     HeapRegionRemSet* hrrs = r->rem_set();
2629     size_t occupied = hrrs->occupied();
2630     _occupied_sum += occupied;
2631 
2632     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2633     if (occupied == 0) {
2634       tty->print_cr("  RSet is empty");
2635     } else {
2636       hrrs->print();
2637     }
2638     tty->print_cr("----------");
2639     return false;
2640   }
2641 
2642   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2643     tty->cr();
2644     tty->print_cr("========================================");
2645     tty->print_cr("%s", msg);
2646     tty->cr();
2647   }
2648 
2649   ~PrintRSetsClosure() {
2650     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2651     tty->print_cr("========================================");
2652     tty->cr();
2653   }
2654 };
2655 
2656 void G1CollectedHeap::print_cset_rsets() {
2657   PrintRSetsClosure cl("Printing CSet RSets");
2658   collection_set_iterate(&cl);
2659 }
2660 
2661 void G1CollectedHeap::print_all_rsets() {
2662   PrintRSetsClosure cl("Printing All RSets");;
2663   heap_region_iterate(&cl);
2664 }
2665 #endif // PRODUCT
2666 
2667 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2668 
2669   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2670   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2671   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2672 
2673   size_t eden_capacity_bytes =
2674     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2675 
2676   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2677   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2678                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2679 }
2680 
2681 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2682   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2683                        stats->unused(), stats->used(), stats->region_end_waste(),
2684                        stats->regions_filled(), stats->direct_allocated(),
2685                        stats->failure_used(), stats->failure_waste());
2686 }
2687 
2688 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2689   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2690   gc_tracer->report_gc_heap_summary(when, heap_summary);
2691 
2692   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2693   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2694 }
2695 
2696 G1CollectedHeap* G1CollectedHeap::heap() {
2697   CollectedHeap* heap = Universe::heap();
2698   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2699   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2700   return (G1CollectedHeap*)heap;
2701 }
2702 
2703 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2704   // always_do_update_barrier = false;
2705   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2706 
2707   double start = os::elapsedTime();
2708   // Fill TLAB's and such
2709   accumulate_statistics_all_tlabs();
2710   ensure_parsability(true);
2711   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2712 
2713   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2714 }
2715 
2716 void G1CollectedHeap::gc_epilogue(bool full) {
2717   // we are at the end of the GC. Total collections has already been increased.
2718   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2719 
2720   // FIXME: what is this about?
2721   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2722   // is set.
2723 #if defined(COMPILER2) || INCLUDE_JVMCI
2724   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2725 #endif
2726   // always_do_update_barrier = true;
2727 
2728   double start = os::elapsedTime();
2729   resize_all_tlabs();
2730   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2731 
2732   allocation_context_stats().update(full);
2733 
2734   // We have just completed a GC. Update the soft reference
2735   // policy with the new heap occupancy
2736   Universe::update_heap_info_at_gc();
2737 }
2738 
2739 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2740                                                uint gc_count_before,
2741                                                bool* succeeded,
2742                                                GCCause::Cause gc_cause) {
2743   assert_heap_not_locked_and_not_at_safepoint();
2744   VM_G1IncCollectionPause op(gc_count_before,
2745                              word_size,
2746                              false, /* should_initiate_conc_mark */
2747                              g1_policy()->max_pause_time_ms(),
2748                              gc_cause);
2749 
2750   op.set_allocation_context(AllocationContext::current());
2751   VMThread::execute(&op);
2752 
2753   HeapWord* result = op.result();
2754   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2755   assert(result == NULL || ret_succeeded,
2756          "the result should be NULL if the VM did not succeed");
2757   *succeeded = ret_succeeded;
2758 
2759   assert_heap_not_locked();
2760   return result;
2761 }
2762 
2763 void
2764 G1CollectedHeap::doConcurrentMark() {
2765   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2766   if (!_cmThread->in_progress()) {
2767     _cmThread->set_started();
2768     CGC_lock->notify();
2769   }
2770 }
2771 
2772 size_t G1CollectedHeap::pending_card_num() {
2773   size_t extra_cards = 0;
2774   JavaThread *curr = Threads::first();
2775   while (curr != NULL) {
2776     DirtyCardQueue& dcq = curr->dirty_card_queue();
2777     extra_cards += dcq.size();
2778     curr = curr->next();
2779   }
2780   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2781   size_t buffer_size = dcqs.buffer_size();
2782   size_t buffer_num = dcqs.completed_buffers_num();
2783 
2784   return buffer_size * buffer_num + extra_cards;
2785 }
2786 
2787 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2788  private:
2789   size_t _total_humongous;
2790   size_t _candidate_humongous;
2791 
2792   DirtyCardQueue _dcq;
2793 
2794   // We don't nominate objects with many remembered set entries, on
2795   // the assumption that such objects are likely still live.
2796   bool is_remset_small(HeapRegion* region) const {
2797     HeapRegionRemSet* const rset = region->rem_set();
2798     return G1EagerReclaimHumongousObjectsWithStaleRefs
2799       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2800       : rset->is_empty();
2801   }
2802 
2803   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2804     assert(region->is_starts_humongous(), "Must start a humongous object");
2805 
2806     oop obj = oop(region->bottom());
2807 
2808     // Dead objects cannot be eager reclaim candidates. Due to class
2809     // unloading it is unsafe to query their classes so we return early.
2810     if (heap->is_obj_dead(obj, region)) {
2811       return false;
2812     }
2813 
2814     // Candidate selection must satisfy the following constraints
2815     // while concurrent marking is in progress:
2816     //
2817     // * In order to maintain SATB invariants, an object must not be
2818     // reclaimed if it was allocated before the start of marking and
2819     // has not had its references scanned.  Such an object must have
2820     // its references (including type metadata) scanned to ensure no
2821     // live objects are missed by the marking process.  Objects
2822     // allocated after the start of concurrent marking don't need to
2823     // be scanned.
2824     //
2825     // * An object must not be reclaimed if it is on the concurrent
2826     // mark stack.  Objects allocated after the start of concurrent
2827     // marking are never pushed on the mark stack.
2828     //
2829     // Nominating only objects allocated after the start of concurrent
2830     // marking is sufficient to meet both constraints.  This may miss
2831     // some objects that satisfy the constraints, but the marking data
2832     // structures don't support efficiently performing the needed
2833     // additional tests or scrubbing of the mark stack.
2834     //
2835     // However, we presently only nominate is_typeArray() objects.
2836     // A humongous object containing references induces remembered
2837     // set entries on other regions.  In order to reclaim such an
2838     // object, those remembered sets would need to be cleaned up.
2839     //
2840     // We also treat is_typeArray() objects specially, allowing them
2841     // to be reclaimed even if allocated before the start of
2842     // concurrent mark.  For this we rely on mark stack insertion to
2843     // exclude is_typeArray() objects, preventing reclaiming an object
2844     // that is in the mark stack.  We also rely on the metadata for
2845     // such objects to be built-in and so ensured to be kept live.
2846     // Frequent allocation and drop of large binary blobs is an
2847     // important use case for eager reclaim, and this special handling
2848     // may reduce needed headroom.
2849 
2850     return obj->is_typeArray() && is_remset_small(region);
2851   }
2852 
2853  public:
2854   RegisterHumongousWithInCSetFastTestClosure()
2855   : _total_humongous(0),
2856     _candidate_humongous(0),
2857     _dcq(&JavaThread::dirty_card_queue_set()) {
2858   }
2859 
2860   virtual bool doHeapRegion(HeapRegion* r) {
2861     if (!r->is_starts_humongous()) {
2862       return false;
2863     }
2864     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2865 
2866     bool is_candidate = humongous_region_is_candidate(g1h, r);
2867     uint rindex = r->hrm_index();
2868     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2869     if (is_candidate) {
2870       _candidate_humongous++;
2871       g1h->register_humongous_region_with_cset(rindex);
2872       // Is_candidate already filters out humongous object with large remembered sets.
2873       // If we have a humongous object with a few remembered sets, we simply flush these
2874       // remembered set entries into the DCQS. That will result in automatic
2875       // re-evaluation of their remembered set entries during the following evacuation
2876       // phase.
2877       if (!r->rem_set()->is_empty()) {
2878         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2879                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2880         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2881         HeapRegionRemSetIterator hrrs(r->rem_set());
2882         size_t card_index;
2883         while (hrrs.has_next(card_index)) {
2884           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2885           // The remembered set might contain references to already freed
2886           // regions. Filter out such entries to avoid failing card table
2887           // verification.
2888           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2889             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2890               *card_ptr = CardTableModRefBS::dirty_card_val();
2891               _dcq.enqueue(card_ptr);
2892             }
2893           }
2894         }
2895         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2896                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2897                hrrs.n_yielded(), r->rem_set()->occupied());
2898         r->rem_set()->clear_locked();
2899       }
2900       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2901     }
2902     _total_humongous++;
2903 
2904     return false;
2905   }
2906 
2907   size_t total_humongous() const { return _total_humongous; }
2908   size_t candidate_humongous() const { return _candidate_humongous; }
2909 
2910   void flush_rem_set_entries() { _dcq.flush(); }
2911 };
2912 
2913 void G1CollectedHeap::register_humongous_regions_with_cset() {
2914   if (!G1EagerReclaimHumongousObjects) {
2915     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2916     return;
2917   }
2918   double time = os::elapsed_counter();
2919 
2920   // Collect reclaim candidate information and register candidates with cset.
2921   RegisterHumongousWithInCSetFastTestClosure cl;
2922   heap_region_iterate(&cl);
2923 
2924   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2925   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2926                                                                   cl.total_humongous(),
2927                                                                   cl.candidate_humongous());
2928   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2929 
2930   // Finally flush all remembered set entries to re-check into the global DCQS.
2931   cl.flush_rem_set_entries();
2932 }
2933 
2934 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2935   public:
2936     bool doHeapRegion(HeapRegion* hr) {
2937       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2938         hr->verify_rem_set();
2939       }
2940       return false;
2941     }
2942 };
2943 
2944 uint G1CollectedHeap::num_task_queues() const {
2945   return _task_queues->size();
2946 }
2947 
2948 #if TASKQUEUE_STATS
2949 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2950   st->print_raw_cr("GC Task Stats");
2951   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2952   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2953 }
2954 
2955 void G1CollectedHeap::print_taskqueue_stats() const {
2956   if (!log_is_enabled(Trace, gc, task, stats)) {
2957     return;
2958   }
2959   Log(gc, task, stats) log;
2960   ResourceMark rm;
2961   outputStream* st = log.trace_stream();
2962 
2963   print_taskqueue_stats_hdr(st);
2964 
2965   TaskQueueStats totals;
2966   const uint n = num_task_queues();
2967   for (uint i = 0; i < n; ++i) {
2968     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2969     totals += task_queue(i)->stats;
2970   }
2971   st->print_raw("tot "); totals.print(st); st->cr();
2972 
2973   DEBUG_ONLY(totals.verify());
2974 }
2975 
2976 void G1CollectedHeap::reset_taskqueue_stats() {
2977   const uint n = num_task_queues();
2978   for (uint i = 0; i < n; ++i) {
2979     task_queue(i)->stats.reset();
2980   }
2981 }
2982 #endif // TASKQUEUE_STATS
2983 
2984 void G1CollectedHeap::wait_for_root_region_scanning() {
2985   double scan_wait_start = os::elapsedTime();
2986   // We have to wait until the CM threads finish scanning the
2987   // root regions as it's the only way to ensure that all the
2988   // objects on them have been correctly scanned before we start
2989   // moving them during the GC.
2990   bool waited = _cm->root_regions()->wait_until_scan_finished();
2991   double wait_time_ms = 0.0;
2992   if (waited) {
2993     double scan_wait_end = os::elapsedTime();
2994     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2995   }
2996   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2997 }
2998 
2999 class G1PrintCollectionSetClosure : public HeapRegionClosure {
3000 private:
3001   G1HRPrinter* _hr_printer;
3002 public:
3003   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
3004 
3005   virtual bool doHeapRegion(HeapRegion* r) {
3006     _hr_printer->cset(r);
3007     return false;
3008   }
3009 };
3010 
3011 void G1CollectedHeap::start_new_collection_set() {
3012   collection_set()->start_incremental_building();
3013 
3014   clear_cset_fast_test();
3015 
3016   guarantee(_eden.length() == 0, "eden should have been cleared");
3017   g1_policy()->transfer_survivors_to_cset(survivor());
3018 }
3019 
3020 bool
3021 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3022   assert_at_safepoint(true /* should_be_vm_thread */);
3023   guarantee(!is_gc_active(), "collection is not reentrant");
3024 
3025   if (GCLocker::check_active_before_gc()) {
3026     return false;
3027   }
3028 
3029   _gc_timer_stw->register_gc_start();
3030 
3031   GCIdMark gc_id_mark;
3032   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3033 
3034   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3035   ResourceMark rm;
3036 
3037   g1_policy()->note_gc_start();
3038 
3039   wait_for_root_region_scanning();
3040 
3041   print_heap_before_gc();
3042   print_heap_regions();
3043   trace_heap_before_gc(_gc_tracer_stw);
3044 
3045   _verifier->verify_region_sets_optional();
3046   _verifier->verify_dirty_young_regions();
3047 
3048   // We should not be doing initial mark unless the conc mark thread is running
3049   if (!_cmThread->should_terminate()) {
3050     // This call will decide whether this pause is an initial-mark
3051     // pause. If it is, during_initial_mark_pause() will return true
3052     // for the duration of this pause.
3053     g1_policy()->decide_on_conc_mark_initiation();
3054   }
3055 
3056   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3057   assert(!collector_state()->during_initial_mark_pause() ||
3058           collector_state()->gcs_are_young(), "sanity");
3059 
3060   // We also do not allow mixed GCs during marking.
3061   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3062 
3063   // Record whether this pause is an initial mark. When the current
3064   // thread has completed its logging output and it's safe to signal
3065   // the CM thread, the flag's value in the policy has been reset.
3066   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3067 
3068   // Inner scope for scope based logging, timers, and stats collection
3069   {
3070     EvacuationInfo evacuation_info;
3071 
3072     if (collector_state()->during_initial_mark_pause()) {
3073       // We are about to start a marking cycle, so we increment the
3074       // full collection counter.
3075       increment_old_marking_cycles_started();
3076       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3077     }
3078 
3079     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3080 
3081     GCTraceCPUTime tcpu;
3082 
3083     FormatBuffer<> gc_string("Pause ");
3084     if (collector_state()->during_initial_mark_pause()) {
3085       gc_string.append("Initial Mark");
3086     } else if (collector_state()->gcs_are_young()) {
3087       gc_string.append("Young");
3088     } else {
3089       gc_string.append("Mixed");
3090     }
3091     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3092 
3093     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3094                                                                   workers()->active_workers(),
3095                                                                   Threads::number_of_non_daemon_threads());
3096     workers()->update_active_workers(active_workers);
3097     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3098 
3099     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3100     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3101 
3102     // If the secondary_free_list is not empty, append it to the
3103     // free_list. No need to wait for the cleanup operation to finish;
3104     // the region allocation code will check the secondary_free_list
3105     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3106     // set, skip this step so that the region allocation code has to
3107     // get entries from the secondary_free_list.
3108     if (!G1StressConcRegionFreeing) {
3109       append_secondary_free_list_if_not_empty_with_lock();
3110     }
3111 
3112     G1HeapTransition heap_transition(this);
3113     size_t heap_used_bytes_before_gc = used();
3114 
3115     // Don't dynamically change the number of GC threads this early.  A value of
3116     // 0 is used to indicate serial work.  When parallel work is done,
3117     // it will be set.
3118 
3119     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3120       IsGCActiveMark x;
3121 
3122       gc_prologue(false);
3123       increment_total_collections(false /* full gc */);
3124       increment_gc_time_stamp();
3125 
3126       if (VerifyRememberedSets) {
3127         log_info(gc, verify)("[Verifying RemSets before GC]");
3128         VerifyRegionRemSetClosure v_cl;
3129         heap_region_iterate(&v_cl);
3130       }
3131 
3132       _verifier->verify_before_gc();
3133 
3134       _verifier->check_bitmaps("GC Start");
3135 
3136 #if defined(COMPILER2) || INCLUDE_JVMCI
3137       DerivedPointerTable::clear();
3138 #endif
3139 
3140       // Please see comment in g1CollectedHeap.hpp and
3141       // G1CollectedHeap::ref_processing_init() to see how
3142       // reference processing currently works in G1.
3143 
3144       // Enable discovery in the STW reference processor
3145       if (g1_policy()->should_process_references()) {
3146         ref_processor_stw()->enable_discovery();
3147       } else {
3148         ref_processor_stw()->disable_discovery();
3149       }
3150 
3151       {
3152         // We want to temporarily turn off discovery by the
3153         // CM ref processor, if necessary, and turn it back on
3154         // on again later if we do. Using a scoped
3155         // NoRefDiscovery object will do this.
3156         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3157 
3158         // Forget the current alloc region (we might even choose it to be part
3159         // of the collection set!).
3160         _allocator->release_mutator_alloc_region();
3161 
3162         // This timing is only used by the ergonomics to handle our pause target.
3163         // It is unclear why this should not include the full pause. We will
3164         // investigate this in CR 7178365.
3165         //
3166         // Preserving the old comment here if that helps the investigation:
3167         //
3168         // The elapsed time induced by the start time below deliberately elides
3169         // the possible verification above.
3170         double sample_start_time_sec = os::elapsedTime();
3171 
3172         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3173 
3174         if (collector_state()->during_initial_mark_pause()) {
3175           concurrent_mark()->checkpointRootsInitialPre();
3176         }
3177 
3178         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3179 
3180         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3181 
3182         // Make sure the remembered sets are up to date. This needs to be
3183         // done before register_humongous_regions_with_cset(), because the
3184         // remembered sets are used there to choose eager reclaim candidates.
3185         // If the remembered sets are not up to date we might miss some
3186         // entries that need to be handled.
3187         g1_rem_set()->cleanupHRRS();
3188 
3189         register_humongous_regions_with_cset();
3190 
3191         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3192 
3193         // We call this after finalize_cset() to
3194         // ensure that the CSet has been finalized.
3195         _cm->verify_no_cset_oops();
3196 
3197         if (_hr_printer.is_active()) {
3198           G1PrintCollectionSetClosure cl(&_hr_printer);
3199           _collection_set.iterate(&cl);
3200         }
3201 
3202         // Initialize the GC alloc regions.
3203         _allocator->init_gc_alloc_regions(evacuation_info);
3204 
3205         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3206         pre_evacuate_collection_set();
3207 
3208         // Actually do the work...
3209         evacuate_collection_set(evacuation_info, &per_thread_states);
3210 
3211         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3212 
3213         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3214         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3215 
3216         eagerly_reclaim_humongous_regions();
3217 
3218         record_obj_copy_mem_stats();
3219         _survivor_evac_stats.adjust_desired_plab_sz();
3220         _old_evac_stats.adjust_desired_plab_sz();
3221 
3222         double start = os::elapsedTime();
3223         start_new_collection_set();
3224         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3225 
3226         if (evacuation_failed()) {
3227           set_used(recalculate_used());
3228           if (_archive_allocator != NULL) {
3229             _archive_allocator->clear_used();
3230           }
3231           for (uint i = 0; i < ParallelGCThreads; i++) {
3232             if (_evacuation_failed_info_array[i].has_failed()) {
3233               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3234             }
3235           }
3236         } else {
3237           // The "used" of the the collection set have already been subtracted
3238           // when they were freed.  Add in the bytes evacuated.
3239           increase_used(g1_policy()->bytes_copied_during_gc());
3240         }
3241 
3242         if (collector_state()->during_initial_mark_pause()) {
3243           // We have to do this before we notify the CM threads that
3244           // they can start working to make sure that all the
3245           // appropriate initialization is done on the CM object.
3246           concurrent_mark()->checkpointRootsInitialPost();
3247           collector_state()->set_mark_in_progress(true);
3248           // Note that we don't actually trigger the CM thread at
3249           // this point. We do that later when we're sure that
3250           // the current thread has completed its logging output.
3251         }
3252 
3253         allocate_dummy_regions();
3254 
3255         _allocator->init_mutator_alloc_region();
3256 
3257         {
3258           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3259           if (expand_bytes > 0) {
3260             size_t bytes_before = capacity();
3261             // No need for an ergo logging here,
3262             // expansion_amount() does this when it returns a value > 0.
3263             double expand_ms;
3264             if (!expand(expand_bytes, _workers, &expand_ms)) {
3265               // We failed to expand the heap. Cannot do anything about it.
3266             }
3267             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3268           }
3269         }
3270 
3271         // We redo the verification but now wrt to the new CSet which
3272         // has just got initialized after the previous CSet was freed.
3273         _cm->verify_no_cset_oops();
3274 
3275         // This timing is only used by the ergonomics to handle our pause target.
3276         // It is unclear why this should not include the full pause. We will
3277         // investigate this in CR 7178365.
3278         double sample_end_time_sec = os::elapsedTime();
3279         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3280         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3281         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3282 
3283         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3284         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3285 
3286         MemoryService::track_memory_usage();
3287 
3288         // In prepare_for_verify() below we'll need to scan the deferred
3289         // update buffers to bring the RSets up-to-date if
3290         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3291         // the update buffers we'll probably need to scan cards on the
3292         // regions we just allocated to (i.e., the GC alloc
3293         // regions). However, during the last GC we called
3294         // set_saved_mark() on all the GC alloc regions, so card
3295         // scanning might skip the [saved_mark_word()...top()] area of
3296         // those regions (i.e., the area we allocated objects into
3297         // during the last GC). But it shouldn't. Given that
3298         // saved_mark_word() is conditional on whether the GC time stamp
3299         // on the region is current or not, by incrementing the GC time
3300         // stamp here we invalidate all the GC time stamps on all the
3301         // regions and saved_mark_word() will simply return top() for
3302         // all the regions. This is a nicer way of ensuring this rather
3303         // than iterating over the regions and fixing them. In fact, the
3304         // GC time stamp increment here also ensures that
3305         // saved_mark_word() will return top() between pauses, i.e.,
3306         // during concurrent refinement. So we don't need the
3307         // is_gc_active() check to decided which top to use when
3308         // scanning cards (see CR 7039627).
3309         increment_gc_time_stamp();
3310 
3311         if (VerifyRememberedSets) {
3312           log_info(gc, verify)("[Verifying RemSets after GC]");
3313           VerifyRegionRemSetClosure v_cl;
3314           heap_region_iterate(&v_cl);
3315         }
3316 
3317         _verifier->verify_after_gc();
3318         _verifier->check_bitmaps("GC End");
3319 
3320         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3321         ref_processor_stw()->verify_no_references_recorded();
3322 
3323         // CM reference discovery will be re-enabled if necessary.
3324       }
3325 
3326 #ifdef TRACESPINNING
3327       ParallelTaskTerminator::print_termination_counts();
3328 #endif
3329 
3330       gc_epilogue(false);
3331     }
3332 
3333     // Print the remainder of the GC log output.
3334     if (evacuation_failed()) {
3335       log_info(gc)("To-space exhausted");
3336     }
3337 
3338     g1_policy()->print_phases();
3339     heap_transition.print();
3340 
3341     // It is not yet to safe to tell the concurrent mark to
3342     // start as we have some optional output below. We don't want the
3343     // output from the concurrent mark thread interfering with this
3344     // logging output either.
3345 
3346     _hrm.verify_optional();
3347     _verifier->verify_region_sets_optional();
3348 
3349     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3350     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3351 
3352     print_heap_after_gc();
3353     print_heap_regions();
3354     trace_heap_after_gc(_gc_tracer_stw);
3355 
3356     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3357     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3358     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3359     // before any GC notifications are raised.
3360     g1mm()->update_sizes();
3361 
3362     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3363     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3364     _gc_timer_stw->register_gc_end();
3365     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3366   }
3367   // It should now be safe to tell the concurrent mark thread to start
3368   // without its logging output interfering with the logging output
3369   // that came from the pause.
3370 
3371   if (should_start_conc_mark) {
3372     // CAUTION: after the doConcurrentMark() call below,
3373     // the concurrent marking thread(s) could be running
3374     // concurrently with us. Make sure that anything after
3375     // this point does not assume that we are the only GC thread
3376     // running. Note: of course, the actual marking work will
3377     // not start until the safepoint itself is released in
3378     // SuspendibleThreadSet::desynchronize().
3379     doConcurrentMark();
3380   }
3381 
3382   return true;
3383 }
3384 
3385 void G1CollectedHeap::remove_self_forwarding_pointers() {
3386   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3387   workers()->run_task(&rsfp_task);
3388 }
3389 
3390 void G1CollectedHeap::restore_after_evac_failure() {
3391   double remove_self_forwards_start = os::elapsedTime();
3392 
3393   remove_self_forwarding_pointers();
3394   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3395   _preserved_marks_set.restore(&task_executor);
3396 
3397   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3398 }
3399 
3400 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3401   if (!_evacuation_failed) {
3402     _evacuation_failed = true;
3403   }
3404 
3405   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3406   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3407 }
3408 
3409 bool G1ParEvacuateFollowersClosure::offer_termination() {
3410   G1ParScanThreadState* const pss = par_scan_state();
3411   start_term_time();
3412   const bool res = terminator()->offer_termination();
3413   end_term_time();
3414   return res;
3415 }
3416 
3417 void G1ParEvacuateFollowersClosure::do_void() {
3418   G1ParScanThreadState* const pss = par_scan_state();
3419   pss->trim_queue();
3420   do {
3421     pss->steal_and_trim_queue(queues());
3422   } while (!offer_termination());
3423 }
3424 
3425 class G1ParTask : public AbstractGangTask {
3426 protected:
3427   G1CollectedHeap*         _g1h;
3428   G1ParScanThreadStateSet* _pss;
3429   RefToScanQueueSet*       _queues;
3430   G1RootProcessor*         _root_processor;
3431   ParallelTaskTerminator   _terminator;
3432   uint                     _n_workers;
3433 
3434 public:
3435   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3436     : AbstractGangTask("G1 collection"),
3437       _g1h(g1h),
3438       _pss(per_thread_states),
3439       _queues(task_queues),
3440       _root_processor(root_processor),
3441       _terminator(n_workers, _queues),
3442       _n_workers(n_workers)
3443   {}
3444 
3445   void work(uint worker_id) {
3446     if (worker_id >= _n_workers) return;  // no work needed this round
3447 
3448     double start_sec = os::elapsedTime();
3449     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3450 
3451     {
3452       ResourceMark rm;
3453       HandleMark   hm;
3454 
3455       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3456 
3457       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3458       pss->set_ref_processor(rp);
3459 
3460       double start_strong_roots_sec = os::elapsedTime();
3461 
3462       _root_processor->evacuate_roots(pss->closures(), worker_id);
3463 
3464       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3465 
3466       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3467       // treating the nmethods visited to act as roots for concurrent marking.
3468       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3469       // objects copied by the current evacuation.
3470       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3471                                                                              pss->closures()->weak_codeblobs(),
3472                                                                              worker_id);
3473 
3474       _pss->add_cards_scanned(worker_id, cards_scanned);
3475 
3476       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3477 
3478       double term_sec = 0.0;
3479       size_t evac_term_attempts = 0;
3480       {
3481         double start = os::elapsedTime();
3482         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3483         evac.do_void();
3484 
3485         evac_term_attempts = evac.term_attempts();
3486         term_sec = evac.term_time();
3487         double elapsed_sec = os::elapsedTime() - start;
3488         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3489         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3490         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3491       }
3492 
3493       assert(pss->queue_is_empty(), "should be empty");
3494 
3495       if (log_is_enabled(Debug, gc, task, stats)) {
3496         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3497         size_t lab_waste;
3498         size_t lab_undo_waste;
3499         pss->waste(lab_waste, lab_undo_waste);
3500         _g1h->print_termination_stats(worker_id,
3501                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3502                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3503                                       term_sec * 1000.0,                          /* evac term time */
3504                                       evac_term_attempts,                         /* evac term attempts */
3505                                       lab_waste,                                  /* alloc buffer waste */
3506                                       lab_undo_waste                              /* undo waste */
3507                                       );
3508       }
3509 
3510       // Close the inner scope so that the ResourceMark and HandleMark
3511       // destructors are executed here and are included as part of the
3512       // "GC Worker Time".
3513     }
3514     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3515   }
3516 };
3517 
3518 void G1CollectedHeap::print_termination_stats_hdr() {
3519   log_debug(gc, task, stats)("GC Termination Stats");
3520   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3521   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3522   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3523 }
3524 
3525 void G1CollectedHeap::print_termination_stats(uint worker_id,
3526                                               double elapsed_ms,
3527                                               double strong_roots_ms,
3528                                               double term_ms,
3529                                               size_t term_attempts,
3530                                               size_t alloc_buffer_waste,
3531                                               size_t undo_waste) const {
3532   log_debug(gc, task, stats)
3533               ("%3d %9.2f %9.2f %6.2f "
3534                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3535                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3536                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3537                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3538                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3539                alloc_buffer_waste * HeapWordSize / K,
3540                undo_waste * HeapWordSize / K);
3541 }
3542 
3543 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3544 private:
3545   BoolObjectClosure* _is_alive;
3546   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3547 
3548   int _initial_string_table_size;
3549   int _initial_symbol_table_size;
3550 
3551   bool  _process_strings;
3552   int _strings_processed;
3553   int _strings_removed;
3554 
3555   bool  _process_symbols;
3556   int _symbols_processed;
3557   int _symbols_removed;
3558 
3559   bool _process_string_dedup;
3560 
3561 public:
3562   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3563     AbstractGangTask("String/Symbol Unlinking"),
3564     _is_alive(is_alive),
3565     _dedup_closure(is_alive, NULL, false),
3566     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3567     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3568     _process_string_dedup(process_string_dedup) {
3569 
3570     _initial_string_table_size = StringTable::the_table()->table_size();
3571     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3572     if (process_strings) {
3573       StringTable::clear_parallel_claimed_index();
3574     }
3575     if (process_symbols) {
3576       SymbolTable::clear_parallel_claimed_index();
3577     }
3578   }
3579 
3580   ~G1StringAndSymbolCleaningTask() {
3581     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3582               "claim value %d after unlink less than initial string table size %d",
3583               StringTable::parallel_claimed_index(), _initial_string_table_size);
3584     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3585               "claim value %d after unlink less than initial symbol table size %d",
3586               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3587 
3588     log_info(gc, stringtable)(
3589         "Cleaned string and symbol table, "
3590         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3591         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3592         strings_processed(), strings_removed(),
3593         symbols_processed(), symbols_removed());
3594   }
3595 
3596   void work(uint worker_id) {
3597     int strings_processed = 0;
3598     int strings_removed = 0;
3599     int symbols_processed = 0;
3600     int symbols_removed = 0;
3601     if (_process_strings) {
3602       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3603       Atomic::add(strings_processed, &_strings_processed);
3604       Atomic::add(strings_removed, &_strings_removed);
3605     }
3606     if (_process_symbols) {
3607       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3608       Atomic::add(symbols_processed, &_symbols_processed);
3609       Atomic::add(symbols_removed, &_symbols_removed);
3610     }
3611     if (_process_string_dedup) {
3612       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3613     }
3614   }
3615 
3616   size_t strings_processed() const { return (size_t)_strings_processed; }
3617   size_t strings_removed()   const { return (size_t)_strings_removed; }
3618 
3619   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3620   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3621 };
3622 
3623 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3624 private:
3625   static Monitor* _lock;
3626 
3627   BoolObjectClosure* const _is_alive;
3628   const bool               _unloading_occurred;
3629   const uint               _num_workers;
3630 
3631   // Variables used to claim nmethods.
3632   CompiledMethod* _first_nmethod;
3633   volatile CompiledMethod* _claimed_nmethod;
3634 
3635   // The list of nmethods that need to be processed by the second pass.
3636   volatile CompiledMethod* _postponed_list;
3637   volatile uint            _num_entered_barrier;
3638 
3639  public:
3640   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3641       _is_alive(is_alive),
3642       _unloading_occurred(unloading_occurred),
3643       _num_workers(num_workers),
3644       _first_nmethod(NULL),
3645       _claimed_nmethod(NULL),
3646       _postponed_list(NULL),
3647       _num_entered_barrier(0)
3648   {
3649     CompiledMethod::increase_unloading_clock();
3650     // Get first alive nmethod
3651     CompiledMethodIterator iter = CompiledMethodIterator();
3652     if(iter.next_alive()) {
3653       _first_nmethod = iter.method();
3654     }
3655     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3656   }
3657 
3658   ~G1CodeCacheUnloadingTask() {
3659     CodeCache::verify_clean_inline_caches();
3660 
3661     CodeCache::set_needs_cache_clean(false);
3662     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3663 
3664     CodeCache::verify_icholder_relocations();
3665   }
3666 
3667  private:
3668   void add_to_postponed_list(CompiledMethod* nm) {
3669       CompiledMethod* old;
3670       do {
3671         old = (CompiledMethod*)_postponed_list;
3672         nm->set_unloading_next(old);
3673       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3674   }
3675 
3676   void clean_nmethod(CompiledMethod* nm) {
3677     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3678 
3679     if (postponed) {
3680       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3681       add_to_postponed_list(nm);
3682     }
3683 
3684     // Mark that this thread has been cleaned/unloaded.
3685     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3686     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3687   }
3688 
3689   void clean_nmethod_postponed(CompiledMethod* nm) {
3690     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3691   }
3692 
3693   static const int MaxClaimNmethods = 16;
3694 
3695   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3696     CompiledMethod* first;
3697     CompiledMethodIterator last;
3698 
3699     do {
3700       *num_claimed_nmethods = 0;
3701 
3702       first = (CompiledMethod*)_claimed_nmethod;
3703       last = CompiledMethodIterator(first);
3704 
3705       if (first != NULL) {
3706 
3707         for (int i = 0; i < MaxClaimNmethods; i++) {
3708           if (!last.next_alive()) {
3709             break;
3710           }
3711           claimed_nmethods[i] = last.method();
3712           (*num_claimed_nmethods)++;
3713         }
3714       }
3715 
3716     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3717   }
3718 
3719   CompiledMethod* claim_postponed_nmethod() {
3720     CompiledMethod* claim;
3721     CompiledMethod* next;
3722 
3723     do {
3724       claim = (CompiledMethod*)_postponed_list;
3725       if (claim == NULL) {
3726         return NULL;
3727       }
3728 
3729       next = claim->unloading_next();
3730 
3731     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3732 
3733     return claim;
3734   }
3735 
3736  public:
3737   // Mark that we're done with the first pass of nmethod cleaning.
3738   void barrier_mark(uint worker_id) {
3739     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3740     _num_entered_barrier++;
3741     if (_num_entered_barrier == _num_workers) {
3742       ml.notify_all();
3743     }
3744   }
3745 
3746   // See if we have to wait for the other workers to
3747   // finish their first-pass nmethod cleaning work.
3748   void barrier_wait(uint worker_id) {
3749     if (_num_entered_barrier < _num_workers) {
3750       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3751       while (_num_entered_barrier < _num_workers) {
3752           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3753       }
3754     }
3755   }
3756 
3757   // Cleaning and unloading of nmethods. Some work has to be postponed
3758   // to the second pass, when we know which nmethods survive.
3759   void work_first_pass(uint worker_id) {
3760     // The first nmethods is claimed by the first worker.
3761     if (worker_id == 0 && _first_nmethod != NULL) {
3762       clean_nmethod(_first_nmethod);
3763       _first_nmethod = NULL;
3764     }
3765 
3766     int num_claimed_nmethods;
3767     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3768 
3769     while (true) {
3770       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3771 
3772       if (num_claimed_nmethods == 0) {
3773         break;
3774       }
3775 
3776       for (int i = 0; i < num_claimed_nmethods; i++) {
3777         clean_nmethod(claimed_nmethods[i]);
3778       }
3779     }
3780   }
3781 
3782   void work_second_pass(uint worker_id) {
3783     CompiledMethod* nm;
3784     // Take care of postponed nmethods.
3785     while ((nm = claim_postponed_nmethod()) != NULL) {
3786       clean_nmethod_postponed(nm);
3787     }
3788   }
3789 };
3790 
3791 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3792 
3793 class G1KlassCleaningTask : public StackObj {
3794   BoolObjectClosure*                      _is_alive;
3795   volatile jint                           _clean_klass_tree_claimed;
3796   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3797 
3798  public:
3799   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3800       _is_alive(is_alive),
3801       _clean_klass_tree_claimed(0),
3802       _klass_iterator() {
3803   }
3804 
3805  private:
3806   bool claim_clean_klass_tree_task() {
3807     if (_clean_klass_tree_claimed) {
3808       return false;
3809     }
3810 
3811     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3812   }
3813 
3814   InstanceKlass* claim_next_klass() {
3815     Klass* klass;
3816     do {
3817       klass =_klass_iterator.next_klass();
3818     } while (klass != NULL && !klass->is_instance_klass());
3819 
3820     // this can be null so don't call InstanceKlass::cast
3821     return static_cast<InstanceKlass*>(klass);
3822   }
3823 
3824 public:
3825 
3826   void clean_klass(InstanceKlass* ik) {
3827     ik->clean_weak_instanceklass_links(_is_alive);
3828   }
3829 
3830   void work() {
3831     ResourceMark rm;
3832 
3833     // One worker will clean the subklass/sibling klass tree.
3834     if (claim_clean_klass_tree_task()) {
3835       Klass::clean_subklass_tree(_is_alive);
3836     }
3837 
3838     // All workers will help cleaning the classes,
3839     InstanceKlass* klass;
3840     while ((klass = claim_next_klass()) != NULL) {
3841       clean_klass(klass);
3842     }
3843   }
3844 };
3845 
3846 // To minimize the remark pause times, the tasks below are done in parallel.
3847 class G1ParallelCleaningTask : public AbstractGangTask {
3848 private:
3849   G1StringAndSymbolCleaningTask _string_symbol_task;
3850   G1CodeCacheUnloadingTask      _code_cache_task;
3851   G1KlassCleaningTask           _klass_cleaning_task;
3852 
3853 public:
3854   // The constructor is run in the VMThread.
3855   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3856       AbstractGangTask("Parallel Cleaning"),
3857       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3858       _code_cache_task(num_workers, is_alive, unloading_occurred),
3859       _klass_cleaning_task(is_alive) {
3860   }
3861 
3862   // The parallel work done by all worker threads.
3863   void work(uint worker_id) {
3864     // Do first pass of code cache cleaning.
3865     _code_cache_task.work_first_pass(worker_id);
3866 
3867     // Let the threads mark that the first pass is done.
3868     _code_cache_task.barrier_mark(worker_id);
3869 
3870     // Clean the Strings and Symbols.
3871     _string_symbol_task.work(worker_id);
3872 
3873     // Wait for all workers to finish the first code cache cleaning pass.
3874     _code_cache_task.barrier_wait(worker_id);
3875 
3876     // Do the second code cache cleaning work, which realize on
3877     // the liveness information gathered during the first pass.
3878     _code_cache_task.work_second_pass(worker_id);
3879 
3880     // Clean all klasses that were not unloaded.
3881     _klass_cleaning_task.work();
3882   }
3883 };
3884 
3885 
3886 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3887                                         bool class_unloading_occurred) {
3888   uint n_workers = workers()->active_workers();
3889 
3890   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3891   workers()->run_task(&g1_unlink_task);
3892 }
3893 
3894 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3895                                        bool process_strings,
3896                                        bool process_symbols,
3897                                        bool process_string_dedup) {
3898   if (!process_strings && !process_symbols && !process_string_dedup) {
3899     // Nothing to clean.
3900     return;
3901   }
3902 
3903   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3904   workers()->run_task(&g1_unlink_task);
3905 
3906 }
3907 
3908 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3909  private:
3910   DirtyCardQueueSet* _queue;
3911   G1CollectedHeap* _g1h;
3912  public:
3913   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3914     _queue(queue), _g1h(g1h) { }
3915 
3916   virtual void work(uint worker_id) {
3917     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3918     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3919 
3920     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3921     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3922 
3923     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3924   }
3925 };
3926 
3927 void G1CollectedHeap::redirty_logged_cards() {
3928   double redirty_logged_cards_start = os::elapsedTime();
3929 
3930   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3931   dirty_card_queue_set().reset_for_par_iteration();
3932   workers()->run_task(&redirty_task);
3933 
3934   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3935   dcq.merge_bufferlists(&dirty_card_queue_set());
3936   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3937 
3938   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3939 }
3940 
3941 // Weak Reference Processing support
3942 
3943 // An always "is_alive" closure that is used to preserve referents.
3944 // If the object is non-null then it's alive.  Used in the preservation
3945 // of referent objects that are pointed to by reference objects
3946 // discovered by the CM ref processor.
3947 class G1AlwaysAliveClosure: public BoolObjectClosure {
3948   G1CollectedHeap* _g1;
3949 public:
3950   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3951   bool do_object_b(oop p) {
3952     if (p != NULL) {
3953       return true;
3954     }
3955     return false;
3956   }
3957 };
3958 
3959 bool G1STWIsAliveClosure::do_object_b(oop p) {
3960   // An object is reachable if it is outside the collection set,
3961   // or is inside and copied.
3962   return !_g1->is_in_cset(p) || p->is_forwarded();
3963 }
3964 
3965 // Non Copying Keep Alive closure
3966 class G1KeepAliveClosure: public OopClosure {
3967   G1CollectedHeap* _g1;
3968 public:
3969   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3970   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3971   void do_oop(oop* p) {
3972     oop obj = *p;
3973     assert(obj != NULL, "the caller should have filtered out NULL values");
3974 
3975     const InCSetState cset_state = _g1->in_cset_state(obj);
3976     if (!cset_state.is_in_cset_or_humongous()) {
3977       return;
3978     }
3979     if (cset_state.is_in_cset()) {
3980       assert( obj->is_forwarded(), "invariant" );
3981       *p = obj->forwardee();
3982     } else {
3983       assert(!obj->is_forwarded(), "invariant" );
3984       assert(cset_state.is_humongous(),
3985              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3986       _g1->set_humongous_is_live(obj);
3987     }
3988   }
3989 };
3990 
3991 // Copying Keep Alive closure - can be called from both
3992 // serial and parallel code as long as different worker
3993 // threads utilize different G1ParScanThreadState instances
3994 // and different queues.
3995 
3996 class G1CopyingKeepAliveClosure: public OopClosure {
3997   G1CollectedHeap*         _g1h;
3998   OopClosure*              _copy_non_heap_obj_cl;
3999   G1ParScanThreadState*    _par_scan_state;
4000 
4001 public:
4002   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4003                             OopClosure* non_heap_obj_cl,
4004                             G1ParScanThreadState* pss):
4005     _g1h(g1h),
4006     _copy_non_heap_obj_cl(non_heap_obj_cl),
4007     _par_scan_state(pss)
4008   {}
4009 
4010   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4011   virtual void do_oop(      oop* p) { do_oop_work(p); }
4012 
4013   template <class T> void do_oop_work(T* p) {
4014     oop obj = oopDesc::load_decode_heap_oop(p);
4015 
4016     if (_g1h->is_in_cset_or_humongous(obj)) {
4017       // If the referent object has been forwarded (either copied
4018       // to a new location or to itself in the event of an
4019       // evacuation failure) then we need to update the reference
4020       // field and, if both reference and referent are in the G1
4021       // heap, update the RSet for the referent.
4022       //
4023       // If the referent has not been forwarded then we have to keep
4024       // it alive by policy. Therefore we have copy the referent.
4025       //
4026       // If the reference field is in the G1 heap then we can push
4027       // on the PSS queue. When the queue is drained (after each
4028       // phase of reference processing) the object and it's followers
4029       // will be copied, the reference field set to point to the
4030       // new location, and the RSet updated. Otherwise we need to
4031       // use the the non-heap or metadata closures directly to copy
4032       // the referent object and update the pointer, while avoiding
4033       // updating the RSet.
4034 
4035       if (_g1h->is_in_g1_reserved(p)) {
4036         _par_scan_state->push_on_queue(p);
4037       } else {
4038         assert(!Metaspace::contains((const void*)p),
4039                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4040         _copy_non_heap_obj_cl->do_oop(p);
4041       }
4042     }
4043   }
4044 };
4045 
4046 // Serial drain queue closure. Called as the 'complete_gc'
4047 // closure for each discovered list in some of the
4048 // reference processing phases.
4049 
4050 class G1STWDrainQueueClosure: public VoidClosure {
4051 protected:
4052   G1CollectedHeap* _g1h;
4053   G1ParScanThreadState* _par_scan_state;
4054 
4055   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4056 
4057 public:
4058   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4059     _g1h(g1h),
4060     _par_scan_state(pss)
4061   { }
4062 
4063   void do_void() {
4064     G1ParScanThreadState* const pss = par_scan_state();
4065     pss->trim_queue();
4066   }
4067 };
4068 
4069 // Parallel Reference Processing closures
4070 
4071 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4072 // processing during G1 evacuation pauses.
4073 
4074 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4075 private:
4076   G1CollectedHeap*          _g1h;
4077   G1ParScanThreadStateSet*  _pss;
4078   RefToScanQueueSet*        _queues;
4079   WorkGang*                 _workers;
4080   uint                      _active_workers;
4081 
4082 public:
4083   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4084                            G1ParScanThreadStateSet* per_thread_states,
4085                            WorkGang* workers,
4086                            RefToScanQueueSet *task_queues,
4087                            uint n_workers) :
4088     _g1h(g1h),
4089     _pss(per_thread_states),
4090     _queues(task_queues),
4091     _workers(workers),
4092     _active_workers(n_workers)
4093   {
4094     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4095   }
4096 
4097   // Executes the given task using concurrent marking worker threads.
4098   virtual void execute(ProcessTask& task);
4099   virtual void execute(EnqueueTask& task);
4100 };
4101 
4102 // Gang task for possibly parallel reference processing
4103 
4104 class G1STWRefProcTaskProxy: public AbstractGangTask {
4105   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4106   ProcessTask&     _proc_task;
4107   G1CollectedHeap* _g1h;
4108   G1ParScanThreadStateSet* _pss;
4109   RefToScanQueueSet* _task_queues;
4110   ParallelTaskTerminator* _terminator;
4111 
4112 public:
4113   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4114                         G1CollectedHeap* g1h,
4115                         G1ParScanThreadStateSet* per_thread_states,
4116                         RefToScanQueueSet *task_queues,
4117                         ParallelTaskTerminator* terminator) :
4118     AbstractGangTask("Process reference objects in parallel"),
4119     _proc_task(proc_task),
4120     _g1h(g1h),
4121     _pss(per_thread_states),
4122     _task_queues(task_queues),
4123     _terminator(terminator)
4124   {}
4125 
4126   virtual void work(uint worker_id) {
4127     // The reference processing task executed by a single worker.
4128     ResourceMark rm;
4129     HandleMark   hm;
4130 
4131     G1STWIsAliveClosure is_alive(_g1h);
4132 
4133     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4134     pss->set_ref_processor(NULL);
4135 
4136     // Keep alive closure.
4137     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4138 
4139     // Complete GC closure
4140     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4141 
4142     // Call the reference processing task's work routine.
4143     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4144 
4145     // Note we cannot assert that the refs array is empty here as not all
4146     // of the processing tasks (specifically phase2 - pp2_work) execute
4147     // the complete_gc closure (which ordinarily would drain the queue) so
4148     // the queue may not be empty.
4149   }
4150 };
4151 
4152 // Driver routine for parallel reference processing.
4153 // Creates an instance of the ref processing gang
4154 // task and has the worker threads execute it.
4155 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4156   assert(_workers != NULL, "Need parallel worker threads.");
4157 
4158   ParallelTaskTerminator terminator(_active_workers, _queues);
4159   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4160 
4161   _workers->run_task(&proc_task_proxy);
4162 }
4163 
4164 // Gang task for parallel reference enqueueing.
4165 
4166 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4167   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4168   EnqueueTask& _enq_task;
4169 
4170 public:
4171   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4172     AbstractGangTask("Enqueue reference objects in parallel"),
4173     _enq_task(enq_task)
4174   { }
4175 
4176   virtual void work(uint worker_id) {
4177     _enq_task.work(worker_id);
4178   }
4179 };
4180 
4181 // Driver routine for parallel reference enqueueing.
4182 // Creates an instance of the ref enqueueing gang
4183 // task and has the worker threads execute it.
4184 
4185 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4186   assert(_workers != NULL, "Need parallel worker threads.");
4187 
4188   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4189 
4190   _workers->run_task(&enq_task_proxy);
4191 }
4192 
4193 // End of weak reference support closures
4194 
4195 // Abstract task used to preserve (i.e. copy) any referent objects
4196 // that are in the collection set and are pointed to by reference
4197 // objects discovered by the CM ref processor.
4198 
4199 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4200 protected:
4201   G1CollectedHeap*         _g1h;
4202   G1ParScanThreadStateSet* _pss;
4203   RefToScanQueueSet*       _queues;
4204   ParallelTaskTerminator   _terminator;
4205   uint                     _n_workers;
4206 
4207 public:
4208   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4209     AbstractGangTask("ParPreserveCMReferents"),
4210     _g1h(g1h),
4211     _pss(per_thread_states),
4212     _queues(task_queues),
4213     _terminator(workers, _queues),
4214     _n_workers(workers)
4215   {
4216     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4217   }
4218 
4219   void work(uint worker_id) {
4220     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4221 
4222     ResourceMark rm;
4223     HandleMark   hm;
4224 
4225     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4226     pss->set_ref_processor(NULL);
4227     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4228 
4229     // Is alive closure
4230     G1AlwaysAliveClosure always_alive(_g1h);
4231 
4232     // Copying keep alive closure. Applied to referent objects that need
4233     // to be copied.
4234     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4235 
4236     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4237 
4238     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4239     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4240 
4241     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4242     // So this must be true - but assert just in case someone decides to
4243     // change the worker ids.
4244     assert(worker_id < limit, "sanity");
4245     assert(!rp->discovery_is_atomic(), "check this code");
4246 
4247     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4248     for (uint idx = worker_id; idx < limit; idx += stride) {
4249       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4250 
4251       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4252       while (iter.has_next()) {
4253         // Since discovery is not atomic for the CM ref processor, we
4254         // can see some null referent objects.
4255         iter.load_ptrs(DEBUG_ONLY(true));
4256         oop ref = iter.obj();
4257 
4258         // This will filter nulls.
4259         if (iter.is_referent_alive()) {
4260           iter.make_referent_alive();
4261         }
4262         iter.move_to_next();
4263       }
4264     }
4265 
4266     // Drain the queue - which may cause stealing
4267     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4268     drain_queue.do_void();
4269     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4270     assert(pss->queue_is_empty(), "should be");
4271   }
4272 };
4273 
4274 void G1CollectedHeap::process_weak_jni_handles() {
4275   double ref_proc_start = os::elapsedTime();
4276 
4277   G1STWIsAliveClosure is_alive(this);
4278   G1KeepAliveClosure keep_alive(this);
4279   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4280 
4281   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4282   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4283 }
4284 
4285 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4286   // Any reference objects, in the collection set, that were 'discovered'
4287   // by the CM ref processor should have already been copied (either by
4288   // applying the external root copy closure to the discovered lists, or
4289   // by following an RSet entry).
4290   //
4291   // But some of the referents, that are in the collection set, that these
4292   // reference objects point to may not have been copied: the STW ref
4293   // processor would have seen that the reference object had already
4294   // been 'discovered' and would have skipped discovering the reference,
4295   // but would not have treated the reference object as a regular oop.
4296   // As a result the copy closure would not have been applied to the
4297   // referent object.
4298   //
4299   // We need to explicitly copy these referent objects - the references
4300   // will be processed at the end of remarking.
4301   //
4302   // We also need to do this copying before we process the reference
4303   // objects discovered by the STW ref processor in case one of these
4304   // referents points to another object which is also referenced by an
4305   // object discovered by the STW ref processor.
4306   double preserve_cm_referents_time = 0.0;
4307 
4308   // To avoid spawning task when there is no work to do, check that
4309   // a concurrent cycle is active and that some references have been
4310   // discovered.
4311   if (concurrent_mark()->cmThread()->during_cycle() &&
4312       ref_processor_cm()->has_discovered_references()) {
4313     double preserve_cm_referents_start = os::elapsedTime();
4314     uint no_of_gc_workers = workers()->active_workers();
4315     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4316                                                    per_thread_states,
4317                                                    no_of_gc_workers,
4318                                                    _task_queues);
4319     workers()->run_task(&keep_cm_referents);
4320     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4321   }
4322 
4323   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4324 }
4325 
4326 // Weak Reference processing during an evacuation pause (part 1).
4327 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4328   double ref_proc_start = os::elapsedTime();
4329 
4330   ReferenceProcessor* rp = _ref_processor_stw;
4331   assert(rp->discovery_enabled(), "should have been enabled");
4332 
4333   // Closure to test whether a referent is alive.
4334   G1STWIsAliveClosure is_alive(this);
4335 
4336   // Even when parallel reference processing is enabled, the processing
4337   // of JNI refs is serial and performed serially by the current thread
4338   // rather than by a worker. The following PSS will be used for processing
4339   // JNI refs.
4340 
4341   // Use only a single queue for this PSS.
4342   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4343   pss->set_ref_processor(NULL);
4344   assert(pss->queue_is_empty(), "pre-condition");
4345 
4346   // Keep alive closure.
4347   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4348 
4349   // Serial Complete GC closure
4350   G1STWDrainQueueClosure drain_queue(this, pss);
4351 
4352   // Setup the soft refs policy...
4353   rp->setup_policy(false);
4354 
4355   ReferenceProcessorStats stats;
4356   if (!rp->processing_is_mt()) {
4357     // Serial reference processing...
4358     stats = rp->process_discovered_references(&is_alive,
4359                                               &keep_alive,
4360                                               &drain_queue,
4361                                               NULL,
4362                                               _gc_timer_stw);
4363   } else {
4364     uint no_of_gc_workers = workers()->active_workers();
4365 
4366     // Parallel reference processing
4367     assert(no_of_gc_workers <= rp->max_num_q(),
4368            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4369            no_of_gc_workers,  rp->max_num_q());
4370 
4371     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4372     stats = rp->process_discovered_references(&is_alive,
4373                                               &keep_alive,
4374                                               &drain_queue,
4375                                               &par_task_executor,
4376                                               _gc_timer_stw);
4377   }
4378 
4379   _gc_tracer_stw->report_gc_reference_stats(stats);
4380 
4381   // We have completed copying any necessary live referent objects.
4382   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4383 
4384   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4385   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4386 }
4387 
4388 // Weak Reference processing during an evacuation pause (part 2).
4389 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4390   double ref_enq_start = os::elapsedTime();
4391 
4392   ReferenceProcessor* rp = _ref_processor_stw;
4393   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4394 
4395   // Now enqueue any remaining on the discovered lists on to
4396   // the pending list.
4397   if (!rp->processing_is_mt()) {
4398     // Serial reference processing...
4399     rp->enqueue_discovered_references();
4400   } else {
4401     // Parallel reference enqueueing
4402 
4403     uint n_workers = workers()->active_workers();
4404 
4405     assert(n_workers <= rp->max_num_q(),
4406            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4407            n_workers,  rp->max_num_q());
4408 
4409     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4410     rp->enqueue_discovered_references(&par_task_executor);
4411   }
4412 
4413   rp->verify_no_references_recorded();
4414   assert(!rp->discovery_enabled(), "should have been disabled");
4415 
4416   // FIXME
4417   // CM's reference processing also cleans up the string and symbol tables.
4418   // Should we do that here also? We could, but it is a serial operation
4419   // and could significantly increase the pause time.
4420 
4421   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4422   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4423 }
4424 
4425 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4426   double merge_pss_time_start = os::elapsedTime();
4427   per_thread_states->flush();
4428   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4429 }
4430 
4431 void G1CollectedHeap::pre_evacuate_collection_set() {
4432   _expand_heap_after_alloc_failure = true;
4433   _evacuation_failed = false;
4434 
4435   // Disable the hot card cache.
4436   _hot_card_cache->reset_hot_cache_claimed_index();
4437   _hot_card_cache->set_use_cache(false);
4438 
4439   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4440   _preserved_marks_set.assert_empty();
4441 
4442   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4443 
4444   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4445   if (collector_state()->during_initial_mark_pause()) {
4446     double start_clear_claimed_marks = os::elapsedTime();
4447 
4448     ClassLoaderDataGraph::clear_claimed_marks();
4449 
4450     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4451     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4452   }
4453 }
4454 
4455 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4456   // Should G1EvacuationFailureALot be in effect for this GC?
4457   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4458 
4459   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4460 
4461   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4462 
4463   double start_par_time_sec = os::elapsedTime();
4464   double end_par_time_sec;
4465 
4466   {
4467     const uint n_workers = workers()->active_workers();
4468     G1RootProcessor root_processor(this, n_workers);
4469     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4470 
4471     print_termination_stats_hdr();
4472 
4473     workers()->run_task(&g1_par_task);
4474     end_par_time_sec = os::elapsedTime();
4475 
4476     // Closing the inner scope will execute the destructor
4477     // for the G1RootProcessor object. We record the current
4478     // elapsed time before closing the scope so that time
4479     // taken for the destructor is NOT included in the
4480     // reported parallel time.
4481   }
4482 
4483   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4484   phase_times->record_par_time(par_time_ms);
4485 
4486   double code_root_fixup_time_ms =
4487         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4488   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4489 }
4490 
4491 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4492   // Process any discovered reference objects - we have
4493   // to do this _before_ we retire the GC alloc regions
4494   // as we may have to copy some 'reachable' referent
4495   // objects (and their reachable sub-graphs) that were
4496   // not copied during the pause.
4497   if (g1_policy()->should_process_references()) {
4498     preserve_cm_referents(per_thread_states);
4499     process_discovered_references(per_thread_states);
4500   } else {
4501     ref_processor_stw()->verify_no_references_recorded();
4502     process_weak_jni_handles();
4503   }
4504 
4505   if (G1StringDedup::is_enabled()) {
4506     double fixup_start = os::elapsedTime();
4507 
4508     G1STWIsAliveClosure is_alive(this);
4509     G1KeepAliveClosure keep_alive(this);
4510     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4511 
4512     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4513     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4514   }
4515 
4516   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4517 
4518   if (evacuation_failed()) {
4519     restore_after_evac_failure();
4520 
4521     // Reset the G1EvacuationFailureALot counters and flags
4522     // Note: the values are reset only when an actual
4523     // evacuation failure occurs.
4524     NOT_PRODUCT(reset_evacuation_should_fail();)
4525   }
4526 
4527   _preserved_marks_set.assert_empty();
4528 
4529   // Enqueue any remaining references remaining on the STW
4530   // reference processor's discovered lists. We need to do
4531   // this after the card table is cleaned (and verified) as
4532   // the act of enqueueing entries on to the pending list
4533   // will log these updates (and dirty their associated
4534   // cards). We need these updates logged to update any
4535   // RSets.
4536   if (g1_policy()->should_process_references()) {
4537     enqueue_discovered_references(per_thread_states);
4538   } else {
4539     g1_policy()->phase_times()->record_ref_enq_time(0);
4540   }
4541 
4542   _allocator->release_gc_alloc_regions(evacuation_info);
4543 
4544   merge_per_thread_state_info(per_thread_states);
4545 
4546   // Reset and re-enable the hot card cache.
4547   // Note the counts for the cards in the regions in the
4548   // collection set are reset when the collection set is freed.
4549   _hot_card_cache->reset_hot_cache();
4550   _hot_card_cache->set_use_cache(true);
4551 
4552   purge_code_root_memory();
4553 
4554   redirty_logged_cards();
4555 #if defined(COMPILER2) || INCLUDE_JVMCI
4556   double start = os::elapsedTime();
4557   DerivedPointerTable::update_pointers();
4558   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4559 #endif
4560   g1_policy()->print_age_table();
4561 }
4562 
4563 void G1CollectedHeap::record_obj_copy_mem_stats() {
4564   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4565 
4566   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4567                                                create_g1_evac_summary(&_old_evac_stats));
4568 }
4569 
4570 void G1CollectedHeap::free_region(HeapRegion* hr,
4571                                   FreeRegionList* free_list,
4572                                   bool skip_remset,
4573                                   bool skip_hot_card_cache,
4574                                   bool locked) {
4575   assert(!hr->is_free(), "the region should not be free");
4576   assert(!hr->is_empty(), "the region should not be empty");
4577   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4578   assert(free_list != NULL, "pre-condition");
4579 
4580   if (G1VerifyBitmaps) {
4581     MemRegion mr(hr->bottom(), hr->end());
4582     concurrent_mark()->clearRangePrevBitmap(mr);
4583   }
4584 
4585   // Clear the card counts for this region.
4586   // Note: we only need to do this if the region is not young
4587   // (since we don't refine cards in young regions).
4588   if (!skip_hot_card_cache && !hr->is_young()) {
4589     _hot_card_cache->reset_card_counts(hr);
4590   }
4591   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4592   free_list->add_ordered(hr);
4593 }
4594 
4595 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4596                                             FreeRegionList* free_list,
4597                                             bool skip_remset) {
4598   assert(hr->is_humongous(), "this is only for humongous regions");
4599   assert(free_list != NULL, "pre-condition");
4600   hr->clear_humongous();
4601   free_region(hr, free_list, skip_remset);
4602 }
4603 
4604 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4605                                            const uint humongous_regions_removed) {
4606   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4607     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4608     _old_set.bulk_remove(old_regions_removed);
4609     _humongous_set.bulk_remove(humongous_regions_removed);
4610   }
4611 
4612 }
4613 
4614 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4615   assert(list != NULL, "list can't be null");
4616   if (!list->is_empty()) {
4617     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4618     _hrm.insert_list_into_free_list(list);
4619   }
4620 }
4621 
4622 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4623   decrease_used(bytes);
4624 }
4625 
4626 class G1ParScrubRemSetTask: public AbstractGangTask {
4627 protected:
4628   G1RemSet* _g1rs;
4629   HeapRegionClaimer _hrclaimer;
4630 
4631 public:
4632   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4633     AbstractGangTask("G1 ScrubRS"),
4634     _g1rs(g1_rs),
4635     _hrclaimer(num_workers) {
4636   }
4637 
4638   void work(uint worker_id) {
4639     _g1rs->scrub(worker_id, &_hrclaimer);
4640   }
4641 };
4642 
4643 void G1CollectedHeap::scrub_rem_set() {
4644   uint num_workers = workers()->active_workers();
4645   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4646   workers()->run_task(&g1_par_scrub_rs_task);
4647 }
4648 
4649 class G1FreeCollectionSetTask : public AbstractGangTask {
4650 private:
4651 
4652   // Closure applied to all regions in the collection set to do work that needs to
4653   // be done serially in a single thread.
4654   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4655   private:
4656     EvacuationInfo* _evacuation_info;
4657     const size_t* _surviving_young_words;
4658 
4659     // Bytes used in successfully evacuated regions before the evacuation.
4660     size_t _before_used_bytes;
4661     // Bytes used in unsucessfully evacuated regions before the evacuation
4662     size_t _after_used_bytes;
4663 
4664     size_t _bytes_allocated_in_old_since_last_gc;
4665 
4666     size_t _failure_used_words;
4667     size_t _failure_waste_words;
4668 
4669     FreeRegionList _local_free_list;
4670   public:
4671     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4672       HeapRegionClosure(),
4673       _evacuation_info(evacuation_info),
4674       _surviving_young_words(surviving_young_words),
4675       _before_used_bytes(0),
4676       _after_used_bytes(0),
4677       _bytes_allocated_in_old_since_last_gc(0),
4678       _failure_used_words(0),
4679       _failure_waste_words(0),
4680       _local_free_list("Local Region List for CSet Freeing") {
4681     }
4682 
4683     virtual bool doHeapRegion(HeapRegion* r) {
4684       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4685 
4686       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4687       g1h->clear_in_cset(r);
4688 
4689       if (r->is_young()) {
4690         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4691                "Young index %d is wrong for region %u of type %s with %u young regions",
4692                r->young_index_in_cset(),
4693                r->hrm_index(),
4694                r->get_type_str(),
4695                g1h->collection_set()->young_region_length());
4696         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4697         r->record_surv_words_in_group(words_survived);
4698       }
4699 
4700       if (!r->evacuation_failed()) {
4701         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4702         _before_used_bytes += r->used();
4703         g1h->free_region(r,
4704                          &_local_free_list,
4705                          true, /* skip_remset */
4706                          true, /* skip_hot_card_cache */
4707                          true  /* locked */);
4708       } else {
4709         r->uninstall_surv_rate_group();
4710         r->set_young_index_in_cset(-1);
4711         r->set_evacuation_failed(false);
4712         // When moving a young gen region to old gen, we "allocate" that whole region
4713         // there. This is in addition to any already evacuated objects. Notify the
4714         // policy about that.
4715         // Old gen regions do not cause an additional allocation: both the objects
4716         // still in the region and the ones already moved are accounted for elsewhere.
4717         if (r->is_young()) {
4718           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4719         }
4720         // The region is now considered to be old.
4721         r->set_old();
4722         // Do some allocation statistics accounting. Regions that failed evacuation
4723         // are always made old, so there is no need to update anything in the young
4724         // gen statistics, but we need to update old gen statistics.
4725         size_t used_words = r->marked_bytes() / HeapWordSize;
4726 
4727         _failure_used_words += used_words;
4728         _failure_waste_words += HeapRegion::GrainWords - used_words;
4729 
4730         g1h->old_set_add(r);
4731         _after_used_bytes += r->used();
4732       }
4733       return false;
4734     }
4735 
4736     void complete_work() {
4737       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4738 
4739       _evacuation_info->set_regions_freed(_local_free_list.length());
4740       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4741 
4742       g1h->prepend_to_freelist(&_local_free_list);
4743       g1h->decrement_summary_bytes(_before_used_bytes);
4744 
4745       G1Policy* policy = g1h->g1_policy();
4746       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4747 
4748       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4749     }
4750   };
4751 
4752   G1CollectionSet* _collection_set;
4753   G1SerialFreeCollectionSetClosure _cl;
4754   const size_t* _surviving_young_words;
4755 
4756   size_t _rs_lengths;
4757 
4758   volatile jint _serial_work_claim;
4759 
4760   struct WorkItem {
4761     uint region_idx;
4762     bool is_young;
4763     bool evacuation_failed;
4764 
4765     WorkItem(HeapRegion* r) {
4766       region_idx = r->hrm_index();
4767       is_young = r->is_young();
4768       evacuation_failed = r->evacuation_failed();
4769     }
4770   };
4771 
4772   volatile size_t _parallel_work_claim;
4773   size_t _num_work_items;
4774   WorkItem* _work_items;
4775 
4776   void do_serial_work() {
4777     // Need to grab the lock to be allowed to modify the old region list.
4778     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4779     _collection_set->iterate(&_cl);
4780   }
4781 
4782   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4783     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4784 
4785     HeapRegion* r = g1h->region_at(region_idx);
4786     assert(!g1h->is_on_master_free_list(r), "sanity");
4787 
4788     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4789 
4790     if (!is_young) {
4791       g1h->_hot_card_cache->reset_card_counts(r);
4792     }
4793 
4794     if (!evacuation_failed) {
4795       r->rem_set()->clear_locked();
4796     }
4797   }
4798 
4799   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4800   private:
4801     size_t _cur_idx;
4802     WorkItem* _work_items;
4803   public:
4804     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4805 
4806     virtual bool doHeapRegion(HeapRegion* r) {
4807       _work_items[_cur_idx++] = WorkItem(r);
4808       return false;
4809     }
4810   };
4811 
4812   void prepare_work() {
4813     G1PrepareFreeCollectionSetClosure cl(_work_items);
4814     _collection_set->iterate(&cl);
4815   }
4816 
4817   void complete_work() {
4818     _cl.complete_work();
4819 
4820     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4821     policy->record_max_rs_lengths(_rs_lengths);
4822     policy->cset_regions_freed();
4823   }
4824 public:
4825   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4826     AbstractGangTask("G1 Free Collection Set"),
4827     _cl(evacuation_info, surviving_young_words),
4828     _collection_set(collection_set),
4829     _surviving_young_words(surviving_young_words),
4830     _serial_work_claim(0),
4831     _rs_lengths(0),
4832     _parallel_work_claim(0),
4833     _num_work_items(collection_set->region_length()),
4834     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4835     prepare_work();
4836   }
4837 
4838   ~G1FreeCollectionSetTask() {
4839     complete_work();
4840     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4841   }
4842 
4843   // Chunk size for work distribution. The chosen value has been determined experimentally
4844   // to be a good tradeoff between overhead and achievable parallelism.
4845   static uint chunk_size() { return 32; }
4846 
4847   virtual void work(uint worker_id) {
4848     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4849 
4850     // Claim serial work.
4851     if (_serial_work_claim == 0) {
4852       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4853       if (value == 0) {
4854         double serial_time = os::elapsedTime();
4855         do_serial_work();
4856         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4857       }
4858     }
4859 
4860     // Start parallel work.
4861     double young_time = 0.0;
4862     bool has_young_time = false;
4863     double non_young_time = 0.0;
4864     bool has_non_young_time = false;
4865 
4866     while (true) {
4867       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4868       size_t cur = end - chunk_size();
4869 
4870       if (cur >= _num_work_items) {
4871         break;
4872       }
4873 
4874       double start_time = os::elapsedTime();
4875 
4876       end = MIN2(end, _num_work_items);
4877 
4878       for (; cur < end; cur++) {
4879         bool is_young = _work_items[cur].is_young;
4880 
4881         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4882 
4883         double end_time = os::elapsedTime();
4884         double time_taken = end_time - start_time;
4885         if (is_young) {
4886           young_time += time_taken;
4887           has_young_time = true;
4888         } else {
4889           non_young_time += time_taken;
4890           has_non_young_time = true;
4891         }
4892         start_time = end_time;
4893       }
4894     }
4895 
4896     if (has_young_time) {
4897       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4898     }
4899     if (has_non_young_time) {
4900       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4901     }
4902   }
4903 };
4904 
4905 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4906   _eden.clear();
4907 
4908   double free_cset_start_time = os::elapsedTime();
4909 
4910   {
4911     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4912     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4913 
4914     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4915 
4916     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4917                         cl.name(),
4918                         num_workers,
4919                         _collection_set.region_length());
4920     workers()->run_task(&cl, num_workers);
4921   }
4922   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4923 
4924   collection_set->clear();
4925 }
4926 
4927 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4928  private:
4929   FreeRegionList* _free_region_list;
4930   HeapRegionSet* _proxy_set;
4931   uint _humongous_objects_reclaimed;
4932   uint _humongous_regions_reclaimed;
4933   size_t _freed_bytes;
4934  public:
4935 
4936   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4937     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4938   }
4939 
4940   virtual bool doHeapRegion(HeapRegion* r) {
4941     if (!r->is_starts_humongous()) {
4942       return false;
4943     }
4944 
4945     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4946 
4947     oop obj = (oop)r->bottom();
4948     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4949 
4950     // The following checks whether the humongous object is live are sufficient.
4951     // The main additional check (in addition to having a reference from the roots
4952     // or the young gen) is whether the humongous object has a remembered set entry.
4953     //
4954     // A humongous object cannot be live if there is no remembered set for it
4955     // because:
4956     // - there can be no references from within humongous starts regions referencing
4957     // the object because we never allocate other objects into them.
4958     // (I.e. there are no intra-region references that may be missed by the
4959     // remembered set)
4960     // - as soon there is a remembered set entry to the humongous starts region
4961     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4962     // until the end of a concurrent mark.
4963     //
4964     // It is not required to check whether the object has been found dead by marking
4965     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4966     // all objects allocated during that time are considered live.
4967     // SATB marking is even more conservative than the remembered set.
4968     // So if at this point in the collection there is no remembered set entry,
4969     // nobody has a reference to it.
4970     // At the start of collection we flush all refinement logs, and remembered sets
4971     // are completely up-to-date wrt to references to the humongous object.
4972     //
4973     // Other implementation considerations:
4974     // - never consider object arrays at this time because they would pose
4975     // considerable effort for cleaning up the the remembered sets. This is
4976     // required because stale remembered sets might reference locations that
4977     // are currently allocated into.
4978     uint region_idx = r->hrm_index();
4979     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4980         !r->rem_set()->is_empty()) {
4981       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4982                                region_idx,
4983                                (size_t)obj->size() * HeapWordSize,
4984                                p2i(r->bottom()),
4985                                r->rem_set()->occupied(),
4986                                r->rem_set()->strong_code_roots_list_length(),
4987                                next_bitmap->isMarked(r->bottom()),
4988                                g1h->is_humongous_reclaim_candidate(region_idx),
4989                                obj->is_typeArray()
4990                               );
4991       return false;
4992     }
4993 
4994     guarantee(obj->is_typeArray(),
4995               "Only eagerly reclaiming type arrays is supported, but the object "
4996               PTR_FORMAT " is not.", p2i(r->bottom()));
4997 
4998     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4999                              region_idx,
5000                              (size_t)obj->size() * HeapWordSize,
5001                              p2i(r->bottom()),
5002                              r->rem_set()->occupied(),
5003                              r->rem_set()->strong_code_roots_list_length(),
5004                              next_bitmap->isMarked(r->bottom()),
5005                              g1h->is_humongous_reclaim_candidate(region_idx),
5006                              obj->is_typeArray()
5007                             );
5008 
5009     // Need to clear mark bit of the humongous object if already set.
5010     if (next_bitmap->isMarked(r->bottom())) {
5011       next_bitmap->clear(r->bottom());
5012     }
5013     _humongous_objects_reclaimed++;
5014     do {
5015       HeapRegion* next = g1h->next_region_in_humongous(r);
5016       _freed_bytes += r->used();
5017       r->set_containing_set(NULL);
5018       _humongous_regions_reclaimed++;
5019       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5020       r = next;
5021     } while (r != NULL);
5022 
5023     return false;
5024   }
5025 
5026   uint humongous_objects_reclaimed() {
5027     return _humongous_objects_reclaimed;
5028   }
5029 
5030   uint humongous_regions_reclaimed() {
5031     return _humongous_regions_reclaimed;
5032   }
5033 
5034   size_t bytes_freed() const {
5035     return _freed_bytes;
5036   }
5037 };
5038 
5039 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5040   assert_at_safepoint(true);
5041 
5042   if (!G1EagerReclaimHumongousObjects ||
5043       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5044     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5045     return;
5046   }
5047 
5048   double start_time = os::elapsedTime();
5049 
5050   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5051 
5052   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5053   heap_region_iterate(&cl);
5054 
5055   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5056 
5057   G1HRPrinter* hrp = hr_printer();
5058   if (hrp->is_active()) {
5059     FreeRegionListIterator iter(&local_cleanup_list);
5060     while (iter.more_available()) {
5061       HeapRegion* hr = iter.get_next();
5062       hrp->cleanup(hr);
5063     }
5064   }
5065 
5066   prepend_to_freelist(&local_cleanup_list);
5067   decrement_summary_bytes(cl.bytes_freed());
5068 
5069   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5070                                                                     cl.humongous_objects_reclaimed());
5071 }
5072 
5073 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5074 public:
5075   virtual bool doHeapRegion(HeapRegion* r) {
5076     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5077     G1CollectedHeap::heap()->clear_in_cset(r);
5078     r->set_young_index_in_cset(-1);
5079     return false;
5080   }
5081 };
5082 
5083 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5084   G1AbandonCollectionSetClosure cl;
5085   collection_set->iterate(&cl);
5086 
5087   collection_set->clear();
5088   collection_set->stop_incremental_building();
5089 }
5090 
5091 void G1CollectedHeap::set_free_regions_coming() {
5092   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5093 
5094   assert(!free_regions_coming(), "pre-condition");
5095   _free_regions_coming = true;
5096 }
5097 
5098 void G1CollectedHeap::reset_free_regions_coming() {
5099   assert(free_regions_coming(), "pre-condition");
5100 
5101   {
5102     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5103     _free_regions_coming = false;
5104     SecondaryFreeList_lock->notify_all();
5105   }
5106 
5107   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5108 }
5109 
5110 void G1CollectedHeap::wait_while_free_regions_coming() {
5111   // Most of the time we won't have to wait, so let's do a quick test
5112   // first before we take the lock.
5113   if (!free_regions_coming()) {
5114     return;
5115   }
5116 
5117   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5118 
5119   {
5120     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5121     while (free_regions_coming()) {
5122       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5123     }
5124   }
5125 
5126   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5127 }
5128 
5129 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5130   return _allocator->is_retained_old_region(hr);
5131 }
5132 
5133 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5134   _eden.add(hr);
5135   _g1_policy->set_region_eden(hr);
5136 }
5137 
5138 #ifdef ASSERT
5139 
5140 class NoYoungRegionsClosure: public HeapRegionClosure {
5141 private:
5142   bool _success;
5143 public:
5144   NoYoungRegionsClosure() : _success(true) { }
5145   bool doHeapRegion(HeapRegion* r) {
5146     if (r->is_young()) {
5147       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5148                             p2i(r->bottom()), p2i(r->end()));
5149       _success = false;
5150     }
5151     return false;
5152   }
5153   bool success() { return _success; }
5154 };
5155 
5156 bool G1CollectedHeap::check_young_list_empty() {
5157   bool ret = (young_regions_count() == 0);
5158 
5159   NoYoungRegionsClosure closure;
5160   heap_region_iterate(&closure);
5161   ret = ret && closure.success();
5162 
5163   return ret;
5164 }
5165 
5166 #endif // ASSERT
5167 
5168 class TearDownRegionSetsClosure : public HeapRegionClosure {
5169 private:
5170   HeapRegionSet *_old_set;
5171 
5172 public:
5173   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5174 
5175   bool doHeapRegion(HeapRegion* r) {
5176     if (r->is_old()) {
5177       _old_set->remove(r);
5178     } else if(r->is_young()) {
5179       r->uninstall_surv_rate_group();
5180     } else {
5181       // We ignore free regions, we'll empty the free list afterwards.
5182       // We ignore humongous regions, we're not tearing down the
5183       // humongous regions set.
5184       assert(r->is_free() || r->is_humongous(),
5185              "it cannot be another type");
5186     }
5187     return false;
5188   }
5189 
5190   ~TearDownRegionSetsClosure() {
5191     assert(_old_set->is_empty(), "post-condition");
5192   }
5193 };
5194 
5195 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5196   assert_at_safepoint(true /* should_be_vm_thread */);
5197 
5198   if (!free_list_only) {
5199     TearDownRegionSetsClosure cl(&_old_set);
5200     heap_region_iterate(&cl);
5201 
5202     // Note that emptying the _young_list is postponed and instead done as
5203     // the first step when rebuilding the regions sets again. The reason for
5204     // this is that during a full GC string deduplication needs to know if
5205     // a collected region was young or old when the full GC was initiated.
5206   }
5207   _hrm.remove_all_free_regions();
5208 }
5209 
5210 void G1CollectedHeap::increase_used(size_t bytes) {
5211   _summary_bytes_used += bytes;
5212 }
5213 
5214 void G1CollectedHeap::decrease_used(size_t bytes) {
5215   assert(_summary_bytes_used >= bytes,
5216          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5217          _summary_bytes_used, bytes);
5218   _summary_bytes_used -= bytes;
5219 }
5220 
5221 void G1CollectedHeap::set_used(size_t bytes) {
5222   _summary_bytes_used = bytes;
5223 }
5224 
5225 class RebuildRegionSetsClosure : public HeapRegionClosure {
5226 private:
5227   bool            _free_list_only;
5228   HeapRegionSet*   _old_set;
5229   HeapRegionManager*   _hrm;
5230   size_t          _total_used;
5231 
5232 public:
5233   RebuildRegionSetsClosure(bool free_list_only,
5234                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5235     _free_list_only(free_list_only),
5236     _old_set(old_set), _hrm(hrm), _total_used(0) {
5237     assert(_hrm->num_free_regions() == 0, "pre-condition");
5238     if (!free_list_only) {
5239       assert(_old_set->is_empty(), "pre-condition");
5240     }
5241   }
5242 
5243   bool doHeapRegion(HeapRegion* r) {
5244     if (r->is_empty()) {
5245       // Add free regions to the free list
5246       r->set_free();
5247       r->set_allocation_context(AllocationContext::system());
5248       _hrm->insert_into_free_list(r);
5249     } else if (!_free_list_only) {
5250 
5251       if (r->is_humongous()) {
5252         // We ignore humongous regions. We left the humongous set unchanged.
5253       } else {
5254         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5255         // We now consider all regions old, so register as such. Leave
5256         // archive regions set that way, however, while still adding
5257         // them to the old set.
5258         if (!r->is_archive()) {
5259           r->set_old();
5260         }
5261         _old_set->add(r);
5262       }
5263       _total_used += r->used();
5264     }
5265 
5266     return false;
5267   }
5268 
5269   size_t total_used() {
5270     return _total_used;
5271   }
5272 };
5273 
5274 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5275   assert_at_safepoint(true /* should_be_vm_thread */);
5276 
5277   if (!free_list_only) {
5278     _eden.clear();
5279     _survivor.clear();
5280   }
5281 
5282   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5283   heap_region_iterate(&cl);
5284 
5285   if (!free_list_only) {
5286     set_used(cl.total_used());
5287     if (_archive_allocator != NULL) {
5288       _archive_allocator->clear_used();
5289     }
5290   }
5291   assert(used_unlocked() == recalculate_used(),
5292          "inconsistent used_unlocked(), "
5293          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5294          used_unlocked(), recalculate_used());
5295 }
5296 
5297 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5298   _refine_cte_cl->set_concurrent(concurrent);
5299 }
5300 
5301 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5302   HeapRegion* hr = heap_region_containing(p);
5303   return hr->is_in(p);
5304 }
5305 
5306 // Methods for the mutator alloc region
5307 
5308 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5309                                                       bool force) {
5310   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5311   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5312   if (force || should_allocate) {
5313     HeapRegion* new_alloc_region = new_region(word_size,
5314                                               false /* is_old */,
5315                                               false /* do_expand */);
5316     if (new_alloc_region != NULL) {
5317       set_region_short_lived_locked(new_alloc_region);
5318       _hr_printer.alloc(new_alloc_region, !should_allocate);
5319       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5320       return new_alloc_region;
5321     }
5322   }
5323   return NULL;
5324 }
5325 
5326 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5327                                                   size_t allocated_bytes) {
5328   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5329   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5330 
5331   collection_set()->add_eden_region(alloc_region);
5332   increase_used(allocated_bytes);
5333   _hr_printer.retire(alloc_region);
5334   // We update the eden sizes here, when the region is retired,
5335   // instead of when it's allocated, since this is the point that its
5336   // used space has been recored in _summary_bytes_used.
5337   g1mm()->update_eden_size();
5338 }
5339 
5340 // Methods for the GC alloc regions
5341 
5342 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5343   if (dest.is_old()) {
5344     return true;
5345   } else {
5346     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5347   }
5348 }
5349 
5350 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5351   assert(FreeList_lock->owned_by_self(), "pre-condition");
5352 
5353   if (!has_more_regions(dest)) {
5354     return NULL;
5355   }
5356 
5357   const bool is_survivor = dest.is_young();
5358 
5359   HeapRegion* new_alloc_region = new_region(word_size,
5360                                             !is_survivor,
5361                                             true /* do_expand */);
5362   if (new_alloc_region != NULL) {
5363     // We really only need to do this for old regions given that we
5364     // should never scan survivors. But it doesn't hurt to do it
5365     // for survivors too.
5366     new_alloc_region->record_timestamp();
5367     if (is_survivor) {
5368       new_alloc_region->set_survivor();
5369       _survivor.add(new_alloc_region);
5370       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5371     } else {
5372       new_alloc_region->set_old();
5373       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5374     }
5375     _hr_printer.alloc(new_alloc_region);
5376     bool during_im = collector_state()->during_initial_mark_pause();
5377     new_alloc_region->note_start_of_copying(during_im);
5378     return new_alloc_region;
5379   }
5380   return NULL;
5381 }
5382 
5383 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5384                                              size_t allocated_bytes,
5385                                              InCSetState dest) {
5386   bool during_im = collector_state()->during_initial_mark_pause();
5387   alloc_region->note_end_of_copying(during_im);
5388   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5389   if (dest.is_old()) {
5390     _old_set.add(alloc_region);
5391   }
5392   _hr_printer.retire(alloc_region);
5393 }
5394 
5395 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5396   bool expanded = false;
5397   uint index = _hrm.find_highest_free(&expanded);
5398 
5399   if (index != G1_NO_HRM_INDEX) {
5400     if (expanded) {
5401       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5402                                 HeapRegion::GrainWords * HeapWordSize);
5403     }
5404     _hrm.allocate_free_regions_starting_at(index, 1);
5405     return region_at(index);
5406   }
5407   return NULL;
5408 }
5409 
5410 // Optimized nmethod scanning
5411 
5412 class RegisterNMethodOopClosure: public OopClosure {
5413   G1CollectedHeap* _g1h;
5414   nmethod* _nm;
5415 
5416   template <class T> void do_oop_work(T* p) {
5417     T heap_oop = oopDesc::load_heap_oop(p);
5418     if (!oopDesc::is_null(heap_oop)) {
5419       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5420       HeapRegion* hr = _g1h->heap_region_containing(obj);
5421       assert(!hr->is_continues_humongous(),
5422              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5423              " starting at " HR_FORMAT,
5424              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5425 
5426       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5427       hr->add_strong_code_root_locked(_nm);
5428     }
5429   }
5430 
5431 public:
5432   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5433     _g1h(g1h), _nm(nm) {}
5434 
5435   void do_oop(oop* p)       { do_oop_work(p); }
5436   void do_oop(narrowOop* p) { do_oop_work(p); }
5437 };
5438 
5439 class UnregisterNMethodOopClosure: public OopClosure {
5440   G1CollectedHeap* _g1h;
5441   nmethod* _nm;
5442 
5443   template <class T> void do_oop_work(T* p) {
5444     T heap_oop = oopDesc::load_heap_oop(p);
5445     if (!oopDesc::is_null(heap_oop)) {
5446       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5447       HeapRegion* hr = _g1h->heap_region_containing(obj);
5448       assert(!hr->is_continues_humongous(),
5449              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5450              " starting at " HR_FORMAT,
5451              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5452 
5453       hr->remove_strong_code_root(_nm);
5454     }
5455   }
5456 
5457 public:
5458   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5459     _g1h(g1h), _nm(nm) {}
5460 
5461   void do_oop(oop* p)       { do_oop_work(p); }
5462   void do_oop(narrowOop* p) { do_oop_work(p); }
5463 };
5464 
5465 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5466   CollectedHeap::register_nmethod(nm);
5467 
5468   guarantee(nm != NULL, "sanity");
5469   RegisterNMethodOopClosure reg_cl(this, nm);
5470   nm->oops_do(&reg_cl);
5471 }
5472 
5473 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5474   CollectedHeap::unregister_nmethod(nm);
5475 
5476   guarantee(nm != NULL, "sanity");
5477   UnregisterNMethodOopClosure reg_cl(this, nm);
5478   nm->oops_do(&reg_cl, true);
5479 }
5480 
5481 void G1CollectedHeap::purge_code_root_memory() {
5482   double purge_start = os::elapsedTime();
5483   G1CodeRootSet::purge();
5484   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5485   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5486 }
5487 
5488 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5489   G1CollectedHeap* _g1h;
5490 
5491 public:
5492   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5493     _g1h(g1h) {}
5494 
5495   void do_code_blob(CodeBlob* cb) {
5496     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5497     if (nm == NULL) {
5498       return;
5499     }
5500 
5501     if (ScavengeRootsInCode) {
5502       _g1h->register_nmethod(nm);
5503     }
5504   }
5505 };
5506 
5507 void G1CollectedHeap::rebuild_strong_code_roots() {
5508   RebuildStrongCodeRootClosure blob_cl(this);
5509   CodeCache::blobs_do(&blob_cl);
5510 }