1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 756   // we must set sp to zero to clear frame
 757   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 758   // must clear fp, so that compiled frames are not confused; it is
 759   // possible that we need it only for debugging
 760   if (clear_fp) {
 761     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 762   }
 763 
 764   // Always clear the pc because it could have been set by make_walkable()
 765   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 766   vzeroupper();
 767 }
 768 
 769 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 770                                          Register last_java_fp,
 771                                          address  last_java_pc) {
 772   vzeroupper();
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down including all pages in the shadow zone.
1072   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignments are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       xorptr(boxReg, boxReg);
2198       if ((EmitSync & 16) && os::is_MP()) {
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       if (os::is_MP()) { lock(); }
2231       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2232       // There's no successor so we tried to regrab the lock.
2233       // If that didn't work, then another thread grabbed the
2234       // lock so we're done (and exit was a success).
2235       jccb  (Assembler::notEqual, LSuccess);
2236       // Intentional fall-through into slow-path
2237 
2238       bind  (LGoSlowPath);
2239       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2240       jmpb  (DONE_LABEL);
2241 
2242       bind  (LSuccess);
2243       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2244       jmpb  (DONE_LABEL);
2245     }
2246 
2247     bind  (Stacked);
2248     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2249     if (os::is_MP()) { lock(); }
2250     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2251 
2252     if (EmitSync & 65536) {
2253        bind (CheckSucc);
2254     }
2255 #endif
2256     bind(DONE_LABEL);
2257   }
2258 }
2259 #endif // COMPILER2
2260 
2261 void MacroAssembler::c2bool(Register x) {
2262   // implements x == 0 ? 0 : 1
2263   // note: must only look at least-significant byte of x
2264   //       since C-style booleans are stored in one byte
2265   //       only! (was bug)
2266   andl(x, 0xFF);
2267   setb(Assembler::notZero, x);
2268 }
2269 
2270 // Wouldn't need if AddressLiteral version had new name
2271 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2272   Assembler::call(L, rtype);
2273 }
2274 
2275 void MacroAssembler::call(Register entry) {
2276   Assembler::call(entry);
2277 }
2278 
2279 void MacroAssembler::call(AddressLiteral entry) {
2280   if (reachable(entry)) {
2281     Assembler::call_literal(entry.target(), entry.rspec());
2282   } else {
2283     lea(rscratch1, entry);
2284     Assembler::call(rscratch1);
2285   }
2286 }
2287 
2288 void MacroAssembler::ic_call(address entry, jint method_index) {
2289   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2290   movptr(rax, (intptr_t)Universe::non_oop_word());
2291   call(AddressLiteral(entry, rh));
2292 }
2293 
2294 // Implementation of call_VM versions
2295 
2296 void MacroAssembler::call_VM(Register oop_result,
2297                              address entry_point,
2298                              bool check_exceptions) {
2299   Label C, E;
2300   call(C, relocInfo::none);
2301   jmp(E);
2302 
2303   bind(C);
2304   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2305   ret(0);
2306 
2307   bind(E);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result,
2311                              address entry_point,
2312                              Register arg_1,
2313                              bool check_exceptions) {
2314   Label C, E;
2315   call(C, relocInfo::none);
2316   jmp(E);
2317 
2318   bind(C);
2319   pass_arg1(this, arg_1);
2320   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2321   ret(0);
2322 
2323   bind(E);
2324 }
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              Register arg_1,
2329                              Register arg_2,
2330                              bool check_exceptions) {
2331   Label C, E;
2332   call(C, relocInfo::none);
2333   jmp(E);
2334 
2335   bind(C);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338 
2339   pass_arg2(this, arg_2);
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              address entry_point,
2349                              Register arg_1,
2350                              Register arg_2,
2351                              Register arg_3,
2352                              bool check_exceptions) {
2353   Label C, E;
2354   call(C, relocInfo::none);
2355   jmp(E);
2356 
2357   bind(C);
2358 
2359   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2360   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2361   pass_arg3(this, arg_3);
2362 
2363   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2364   pass_arg2(this, arg_2);
2365 
2366   pass_arg1(this, arg_1);
2367   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2368   ret(0);
2369 
2370   bind(E);
2371 }
2372 
2373 void MacroAssembler::call_VM(Register oop_result,
2374                              Register last_java_sp,
2375                              address entry_point,
2376                              int number_of_arguments,
2377                              bool check_exceptions) {
2378   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2379   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2380 }
2381 
2382 void MacroAssembler::call_VM(Register oop_result,
2383                              Register last_java_sp,
2384                              address entry_point,
2385                              Register arg_1,
2386                              bool check_exceptions) {
2387   pass_arg1(this, arg_1);
2388   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2389 }
2390 
2391 void MacroAssembler::call_VM(Register oop_result,
2392                              Register last_java_sp,
2393                              address entry_point,
2394                              Register arg_1,
2395                              Register arg_2,
2396                              bool check_exceptions) {
2397 
2398   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2399   pass_arg2(this, arg_2);
2400   pass_arg1(this, arg_1);
2401   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2402 }
2403 
2404 void MacroAssembler::call_VM(Register oop_result,
2405                              Register last_java_sp,
2406                              address entry_point,
2407                              Register arg_1,
2408                              Register arg_2,
2409                              Register arg_3,
2410                              bool check_exceptions) {
2411   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2412   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2413   pass_arg3(this, arg_3);
2414   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2415   pass_arg2(this, arg_2);
2416   pass_arg1(this, arg_1);
2417   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2418 }
2419 
2420 void MacroAssembler::super_call_VM(Register oop_result,
2421                                    Register last_java_sp,
2422                                    address entry_point,
2423                                    int number_of_arguments,
2424                                    bool check_exceptions) {
2425   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2426   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2427 }
2428 
2429 void MacroAssembler::super_call_VM(Register oop_result,
2430                                    Register last_java_sp,
2431                                    address entry_point,
2432                                    Register arg_1,
2433                                    bool check_exceptions) {
2434   pass_arg1(this, arg_1);
2435   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2436 }
2437 
2438 void MacroAssembler::super_call_VM(Register oop_result,
2439                                    Register last_java_sp,
2440                                    address entry_point,
2441                                    Register arg_1,
2442                                    Register arg_2,
2443                                    bool check_exceptions) {
2444 
2445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2446   pass_arg2(this, arg_2);
2447   pass_arg1(this, arg_1);
2448   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2449 }
2450 
2451 void MacroAssembler::super_call_VM(Register oop_result,
2452                                    Register last_java_sp,
2453                                    address entry_point,
2454                                    Register arg_1,
2455                                    Register arg_2,
2456                                    Register arg_3,
2457                                    bool check_exceptions) {
2458   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2459   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2460   pass_arg3(this, arg_3);
2461   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2462   pass_arg2(this, arg_2);
2463   pass_arg1(this, arg_1);
2464   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2465 }
2466 
2467 void MacroAssembler::call_VM_base(Register oop_result,
2468                                   Register java_thread,
2469                                   Register last_java_sp,
2470                                   address  entry_point,
2471                                   int      number_of_arguments,
2472                                   bool     check_exceptions) {
2473   // determine java_thread register
2474   if (!java_thread->is_valid()) {
2475 #ifdef _LP64
2476     java_thread = r15_thread;
2477 #else
2478     java_thread = rdi;
2479     get_thread(java_thread);
2480 #endif // LP64
2481   }
2482   // determine last_java_sp register
2483   if (!last_java_sp->is_valid()) {
2484     last_java_sp = rsp;
2485   }
2486   // debugging support
2487   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2488   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2489 #ifdef ASSERT
2490   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2491   // r12 is the heapbase.
2492   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2493 #endif // ASSERT
2494 
2495   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2496   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2497 
2498   // push java thread (becomes first argument of C function)
2499 
2500   NOT_LP64(push(java_thread); number_of_arguments++);
2501   LP64_ONLY(mov(c_rarg0, r15_thread));
2502 
2503   // set last Java frame before call
2504   assert(last_java_sp != rbp, "can't use ebp/rbp");
2505 
2506   // Only interpreter should have to set fp
2507   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2508 
2509   // do the call, remove parameters
2510   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2511 
2512   // restore the thread (cannot use the pushed argument since arguments
2513   // may be overwritten by C code generated by an optimizing compiler);
2514   // however can use the register value directly if it is callee saved.
2515   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2516     // rdi & rsi (also r15) are callee saved -> nothing to do
2517 #ifdef ASSERT
2518     guarantee(java_thread != rax, "change this code");
2519     push(rax);
2520     { Label L;
2521       get_thread(rax);
2522       cmpptr(java_thread, rax);
2523       jcc(Assembler::equal, L);
2524       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2525       bind(L);
2526     }
2527     pop(rax);
2528 #endif
2529   } else {
2530     get_thread(java_thread);
2531   }
2532   // reset last Java frame
2533   // Only interpreter should have to clear fp
2534   reset_last_Java_frame(java_thread, true);
2535 
2536    // C++ interp handles this in the interpreter
2537   check_and_handle_popframe(java_thread);
2538   check_and_handle_earlyret(java_thread);
2539 
2540   if (check_exceptions) {
2541     // check for pending exceptions (java_thread is set upon return)
2542     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2543 #ifndef _LP64
2544     jump_cc(Assembler::notEqual,
2545             RuntimeAddress(StubRoutines::forward_exception_entry()));
2546 #else
2547     // This used to conditionally jump to forward_exception however it is
2548     // possible if we relocate that the branch will not reach. So we must jump
2549     // around so we can always reach
2550 
2551     Label ok;
2552     jcc(Assembler::equal, ok);
2553     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2554     bind(ok);
2555 #endif // LP64
2556   }
2557 
2558   // get oop result if there is one and reset the value in the thread
2559   if (oop_result->is_valid()) {
2560     get_vm_result(oop_result, java_thread);
2561   }
2562 }
2563 
2564 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2565 
2566   // Calculate the value for last_Java_sp
2567   // somewhat subtle. call_VM does an intermediate call
2568   // which places a return address on the stack just under the
2569   // stack pointer as the user finsihed with it. This allows
2570   // use to retrieve last_Java_pc from last_Java_sp[-1].
2571   // On 32bit we then have to push additional args on the stack to accomplish
2572   // the actual requested call. On 64bit call_VM only can use register args
2573   // so the only extra space is the return address that call_VM created.
2574   // This hopefully explains the calculations here.
2575 
2576 #ifdef _LP64
2577   // We've pushed one address, correct last_Java_sp
2578   lea(rax, Address(rsp, wordSize));
2579 #else
2580   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2581 #endif // LP64
2582 
2583   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2584 
2585 }
2586 
2587 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2588 void MacroAssembler::call_VM_leaf0(address entry_point) {
2589   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2590 }
2591 
2592 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2593   call_VM_leaf_base(entry_point, number_of_arguments);
2594 }
2595 
2596 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2597   pass_arg0(this, arg_0);
2598   call_VM_leaf(entry_point, 1);
2599 }
2600 
2601 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2602 
2603   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2604   pass_arg1(this, arg_1);
2605   pass_arg0(this, arg_0);
2606   call_VM_leaf(entry_point, 2);
2607 }
2608 
2609 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2610   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2611   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2612   pass_arg2(this, arg_2);
2613   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2614   pass_arg1(this, arg_1);
2615   pass_arg0(this, arg_0);
2616   call_VM_leaf(entry_point, 3);
2617 }
2618 
2619 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2620   pass_arg0(this, arg_0);
2621   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2622 }
2623 
2624 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2625 
2626   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2627   pass_arg1(this, arg_1);
2628   pass_arg0(this, arg_0);
2629   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2630 }
2631 
2632 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2633   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2634   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2635   pass_arg2(this, arg_2);
2636   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2637   pass_arg1(this, arg_1);
2638   pass_arg0(this, arg_0);
2639   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2640 }
2641 
2642 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2643   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2644   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2645   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2646   pass_arg3(this, arg_3);
2647   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2648   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2649   pass_arg2(this, arg_2);
2650   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2651   pass_arg1(this, arg_1);
2652   pass_arg0(this, arg_0);
2653   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2654 }
2655 
2656 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2657   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2658   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2659   verify_oop(oop_result, "broken oop in call_VM_base");
2660 }
2661 
2662 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2663   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2664   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2665 }
2666 
2667 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2668 }
2669 
2670 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2671 }
2672 
2673 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2674   if (reachable(src1)) {
2675     cmpl(as_Address(src1), imm);
2676   } else {
2677     lea(rscratch1, src1);
2678     cmpl(Address(rscratch1, 0), imm);
2679   }
2680 }
2681 
2682 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2683   assert(!src2.is_lval(), "use cmpptr");
2684   if (reachable(src2)) {
2685     cmpl(src1, as_Address(src2));
2686   } else {
2687     lea(rscratch1, src2);
2688     cmpl(src1, Address(rscratch1, 0));
2689   }
2690 }
2691 
2692 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2693   Assembler::cmpl(src1, imm);
2694 }
2695 
2696 void MacroAssembler::cmp32(Register src1, Address src2) {
2697   Assembler::cmpl(src1, src2);
2698 }
2699 
2700 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2701   ucomisd(opr1, opr2);
2702 
2703   Label L;
2704   if (unordered_is_less) {
2705     movl(dst, -1);
2706     jcc(Assembler::parity, L);
2707     jcc(Assembler::below , L);
2708     movl(dst, 0);
2709     jcc(Assembler::equal , L);
2710     increment(dst);
2711   } else { // unordered is greater
2712     movl(dst, 1);
2713     jcc(Assembler::parity, L);
2714     jcc(Assembler::above , L);
2715     movl(dst, 0);
2716     jcc(Assembler::equal , L);
2717     decrementl(dst);
2718   }
2719   bind(L);
2720 }
2721 
2722 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2723   ucomiss(opr1, opr2);
2724 
2725   Label L;
2726   if (unordered_is_less) {
2727     movl(dst, -1);
2728     jcc(Assembler::parity, L);
2729     jcc(Assembler::below , L);
2730     movl(dst, 0);
2731     jcc(Assembler::equal , L);
2732     increment(dst);
2733   } else { // unordered is greater
2734     movl(dst, 1);
2735     jcc(Assembler::parity, L);
2736     jcc(Assembler::above , L);
2737     movl(dst, 0);
2738     jcc(Assembler::equal , L);
2739     decrementl(dst);
2740   }
2741   bind(L);
2742 }
2743 
2744 
2745 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2746   if (reachable(src1)) {
2747     cmpb(as_Address(src1), imm);
2748   } else {
2749     lea(rscratch1, src1);
2750     cmpb(Address(rscratch1, 0), imm);
2751   }
2752 }
2753 
2754 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2755 #ifdef _LP64
2756   if (src2.is_lval()) {
2757     movptr(rscratch1, src2);
2758     Assembler::cmpq(src1, rscratch1);
2759   } else if (reachable(src2)) {
2760     cmpq(src1, as_Address(src2));
2761   } else {
2762     lea(rscratch1, src2);
2763     Assembler::cmpq(src1, Address(rscratch1, 0));
2764   }
2765 #else
2766   if (src2.is_lval()) {
2767     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2768   } else {
2769     cmpl(src1, as_Address(src2));
2770   }
2771 #endif // _LP64
2772 }
2773 
2774 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2775   assert(src2.is_lval(), "not a mem-mem compare");
2776 #ifdef _LP64
2777   // moves src2's literal address
2778   movptr(rscratch1, src2);
2779   Assembler::cmpq(src1, rscratch1);
2780 #else
2781   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2782 #endif // _LP64
2783 }
2784 
2785 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2786   if (reachable(adr)) {
2787     if (os::is_MP())
2788       lock();
2789     cmpxchgptr(reg, as_Address(adr));
2790   } else {
2791     lea(rscratch1, adr);
2792     if (os::is_MP())
2793       lock();
2794     cmpxchgptr(reg, Address(rscratch1, 0));
2795   }
2796 }
2797 
2798 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2799   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2800 }
2801 
2802 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2803   if (reachable(src)) {
2804     Assembler::comisd(dst, as_Address(src));
2805   } else {
2806     lea(rscratch1, src);
2807     Assembler::comisd(dst, Address(rscratch1, 0));
2808   }
2809 }
2810 
2811 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2812   if (reachable(src)) {
2813     Assembler::comiss(dst, as_Address(src));
2814   } else {
2815     lea(rscratch1, src);
2816     Assembler::comiss(dst, Address(rscratch1, 0));
2817   }
2818 }
2819 
2820 
2821 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2822   Condition negated_cond = negate_condition(cond);
2823   Label L;
2824   jcc(negated_cond, L);
2825   pushf(); // Preserve flags
2826   atomic_incl(counter_addr);
2827   popf();
2828   bind(L);
2829 }
2830 
2831 int MacroAssembler::corrected_idivl(Register reg) {
2832   // Full implementation of Java idiv and irem; checks for
2833   // special case as described in JVM spec., p.243 & p.271.
2834   // The function returns the (pc) offset of the idivl
2835   // instruction - may be needed for implicit exceptions.
2836   //
2837   //         normal case                           special case
2838   //
2839   // input : rax,: dividend                         min_int
2840   //         reg: divisor   (may not be rax,/rdx)   -1
2841   //
2842   // output: rax,: quotient  (= rax, idiv reg)       min_int
2843   //         rdx: remainder (= rax, irem reg)       0
2844   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2845   const int min_int = 0x80000000;
2846   Label normal_case, special_case;
2847 
2848   // check for special case
2849   cmpl(rax, min_int);
2850   jcc(Assembler::notEqual, normal_case);
2851   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2852   cmpl(reg, -1);
2853   jcc(Assembler::equal, special_case);
2854 
2855   // handle normal case
2856   bind(normal_case);
2857   cdql();
2858   int idivl_offset = offset();
2859   idivl(reg);
2860 
2861   // normal and special case exit
2862   bind(special_case);
2863 
2864   return idivl_offset;
2865 }
2866 
2867 
2868 
2869 void MacroAssembler::decrementl(Register reg, int value) {
2870   if (value == min_jint) {subl(reg, value) ; return; }
2871   if (value <  0) { incrementl(reg, -value); return; }
2872   if (value == 0) {                        ; return; }
2873   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2874   /* else */      { subl(reg, value)       ; return; }
2875 }
2876 
2877 void MacroAssembler::decrementl(Address dst, int value) {
2878   if (value == min_jint) {subl(dst, value) ; return; }
2879   if (value <  0) { incrementl(dst, -value); return; }
2880   if (value == 0) {                        ; return; }
2881   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2882   /* else */      { subl(dst, value)       ; return; }
2883 }
2884 
2885 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2886   assert (shift_value > 0, "illegal shift value");
2887   Label _is_positive;
2888   testl (reg, reg);
2889   jcc (Assembler::positive, _is_positive);
2890   int offset = (1 << shift_value) - 1 ;
2891 
2892   if (offset == 1) {
2893     incrementl(reg);
2894   } else {
2895     addl(reg, offset);
2896   }
2897 
2898   bind (_is_positive);
2899   sarl(reg, shift_value);
2900 }
2901 
2902 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2903   if (reachable(src)) {
2904     Assembler::divsd(dst, as_Address(src));
2905   } else {
2906     lea(rscratch1, src);
2907     Assembler::divsd(dst, Address(rscratch1, 0));
2908   }
2909 }
2910 
2911 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2912   if (reachable(src)) {
2913     Assembler::divss(dst, as_Address(src));
2914   } else {
2915     lea(rscratch1, src);
2916     Assembler::divss(dst, Address(rscratch1, 0));
2917   }
2918 }
2919 
2920 // !defined(COMPILER2) is because of stupid core builds
2921 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2922 void MacroAssembler::empty_FPU_stack() {
2923   if (VM_Version::supports_mmx()) {
2924     emms();
2925   } else {
2926     for (int i = 8; i-- > 0; ) ffree(i);
2927   }
2928 }
2929 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2930 
2931 
2932 // Defines obj, preserves var_size_in_bytes
2933 void MacroAssembler::eden_allocate(Register obj,
2934                                    Register var_size_in_bytes,
2935                                    int con_size_in_bytes,
2936                                    Register t1,
2937                                    Label& slow_case) {
2938   assert(obj == rax, "obj must be in rax, for cmpxchg");
2939   assert_different_registers(obj, var_size_in_bytes, t1);
2940   if (!Universe::heap()->supports_inline_contig_alloc()) {
2941     jmp(slow_case);
2942   } else {
2943     Register end = t1;
2944     Label retry;
2945     bind(retry);
2946     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2947     movptr(obj, heap_top);
2948     if (var_size_in_bytes == noreg) {
2949       lea(end, Address(obj, con_size_in_bytes));
2950     } else {
2951       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2952     }
2953     // if end < obj then we wrapped around => object too long => slow case
2954     cmpptr(end, obj);
2955     jcc(Assembler::below, slow_case);
2956     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2957     jcc(Assembler::above, slow_case);
2958     // Compare obj with the top addr, and if still equal, store the new top addr in
2959     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2960     // it otherwise. Use lock prefix for atomicity on MPs.
2961     locked_cmpxchgptr(end, heap_top);
2962     jcc(Assembler::notEqual, retry);
2963   }
2964 }
2965 
2966 void MacroAssembler::enter() {
2967   push(rbp);
2968   mov(rbp, rsp);
2969 }
2970 
2971 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2972 void MacroAssembler::fat_nop() {
2973   if (UseAddressNop) {
2974     addr_nop_5();
2975   } else {
2976     emit_int8(0x26); // es:
2977     emit_int8(0x2e); // cs:
2978     emit_int8(0x64); // fs:
2979     emit_int8(0x65); // gs:
2980     emit_int8((unsigned char)0x90);
2981   }
2982 }
2983 
2984 void MacroAssembler::fcmp(Register tmp) {
2985   fcmp(tmp, 1, true, true);
2986 }
2987 
2988 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2989   assert(!pop_right || pop_left, "usage error");
2990   if (VM_Version::supports_cmov()) {
2991     assert(tmp == noreg, "unneeded temp");
2992     if (pop_left) {
2993       fucomip(index);
2994     } else {
2995       fucomi(index);
2996     }
2997     if (pop_right) {
2998       fpop();
2999     }
3000   } else {
3001     assert(tmp != noreg, "need temp");
3002     if (pop_left) {
3003       if (pop_right) {
3004         fcompp();
3005       } else {
3006         fcomp(index);
3007       }
3008     } else {
3009       fcom(index);
3010     }
3011     // convert FPU condition into eflags condition via rax,
3012     save_rax(tmp);
3013     fwait(); fnstsw_ax();
3014     sahf();
3015     restore_rax(tmp);
3016   }
3017   // condition codes set as follows:
3018   //
3019   // CF (corresponds to C0) if x < y
3020   // PF (corresponds to C2) if unordered
3021   // ZF (corresponds to C3) if x = y
3022 }
3023 
3024 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3025   fcmp2int(dst, unordered_is_less, 1, true, true);
3026 }
3027 
3028 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3029   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3030   Label L;
3031   if (unordered_is_less) {
3032     movl(dst, -1);
3033     jcc(Assembler::parity, L);
3034     jcc(Assembler::below , L);
3035     movl(dst, 0);
3036     jcc(Assembler::equal , L);
3037     increment(dst);
3038   } else { // unordered is greater
3039     movl(dst, 1);
3040     jcc(Assembler::parity, L);
3041     jcc(Assembler::above , L);
3042     movl(dst, 0);
3043     jcc(Assembler::equal , L);
3044     decrementl(dst);
3045   }
3046   bind(L);
3047 }
3048 
3049 void MacroAssembler::fld_d(AddressLiteral src) {
3050   fld_d(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fld_s(AddressLiteral src) {
3054   fld_s(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fld_x(AddressLiteral src) {
3058   Assembler::fld_x(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::fldcw(AddressLiteral src) {
3062   Assembler::fldcw(as_Address(src));
3063 }
3064 
3065 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3066   if (reachable(src)) {
3067     Assembler::mulpd(dst, as_Address(src));
3068   } else {
3069     lea(rscratch1, src);
3070     Assembler::mulpd(dst, Address(rscratch1, 0));
3071   }
3072 }
3073 
3074 void MacroAssembler::increase_precision() {
3075   subptr(rsp, BytesPerWord);
3076   fnstcw(Address(rsp, 0));
3077   movl(rax, Address(rsp, 0));
3078   orl(rax, 0x300);
3079   push(rax);
3080   fldcw(Address(rsp, 0));
3081   pop(rax);
3082 }
3083 
3084 void MacroAssembler::restore_precision() {
3085   fldcw(Address(rsp, 0));
3086   addptr(rsp, BytesPerWord);
3087 }
3088 
3089 void MacroAssembler::fpop() {
3090   ffree();
3091   fincstp();
3092 }
3093 
3094 void MacroAssembler::load_float(Address src) {
3095   if (UseSSE >= 1) {
3096     movflt(xmm0, src);
3097   } else {
3098     LP64_ONLY(ShouldNotReachHere());
3099     NOT_LP64(fld_s(src));
3100   }
3101 }
3102 
3103 void MacroAssembler::store_float(Address dst) {
3104   if (UseSSE >= 1) {
3105     movflt(dst, xmm0);
3106   } else {
3107     LP64_ONLY(ShouldNotReachHere());
3108     NOT_LP64(fstp_s(dst));
3109   }
3110 }
3111 
3112 void MacroAssembler::load_double(Address src) {
3113   if (UseSSE >= 2) {
3114     movdbl(xmm0, src);
3115   } else {
3116     LP64_ONLY(ShouldNotReachHere());
3117     NOT_LP64(fld_d(src));
3118   }
3119 }
3120 
3121 void MacroAssembler::store_double(Address dst) {
3122   if (UseSSE >= 2) {
3123     movdbl(dst, xmm0);
3124   } else {
3125     LP64_ONLY(ShouldNotReachHere());
3126     NOT_LP64(fstp_d(dst));
3127   }
3128 }
3129 
3130 void MacroAssembler::fremr(Register tmp) {
3131   save_rax(tmp);
3132   { Label L;
3133     bind(L);
3134     fprem();
3135     fwait(); fnstsw_ax();
3136 #ifdef _LP64
3137     testl(rax, 0x400);
3138     jcc(Assembler::notEqual, L);
3139 #else
3140     sahf();
3141     jcc(Assembler::parity, L);
3142 #endif // _LP64
3143   }
3144   restore_rax(tmp);
3145   // Result is in ST0.
3146   // Note: fxch & fpop to get rid of ST1
3147   // (otherwise FPU stack could overflow eventually)
3148   fxch(1);
3149   fpop();
3150 }
3151 
3152 // dst = c = a * b + c
3153 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3154   Assembler::vfmadd231sd(c, a, b);
3155   if (dst != c) {
3156     movdbl(dst, c);
3157   }
3158 }
3159 
3160 // dst = c = a * b + c
3161 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3162   Assembler::vfmadd231ss(c, a, b);
3163   if (dst != c) {
3164     movflt(dst, c);
3165   }
3166 }
3167 
3168 
3169 
3170 
3171 void MacroAssembler::incrementl(AddressLiteral dst) {
3172   if (reachable(dst)) {
3173     incrementl(as_Address(dst));
3174   } else {
3175     lea(rscratch1, dst);
3176     incrementl(Address(rscratch1, 0));
3177   }
3178 }
3179 
3180 void MacroAssembler::incrementl(ArrayAddress dst) {
3181   incrementl(as_Address(dst));
3182 }
3183 
3184 void MacroAssembler::incrementl(Register reg, int value) {
3185   if (value == min_jint) {addl(reg, value) ; return; }
3186   if (value <  0) { decrementl(reg, -value); return; }
3187   if (value == 0) {                        ; return; }
3188   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3189   /* else */      { addl(reg, value)       ; return; }
3190 }
3191 
3192 void MacroAssembler::incrementl(Address dst, int value) {
3193   if (value == min_jint) {addl(dst, value) ; return; }
3194   if (value <  0) { decrementl(dst, -value); return; }
3195   if (value == 0) {                        ; return; }
3196   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3197   /* else */      { addl(dst, value)       ; return; }
3198 }
3199 
3200 void MacroAssembler::jump(AddressLiteral dst) {
3201   if (reachable(dst)) {
3202     jmp_literal(dst.target(), dst.rspec());
3203   } else {
3204     lea(rscratch1, dst);
3205     jmp(rscratch1);
3206   }
3207 }
3208 
3209 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3210   if (reachable(dst)) {
3211     InstructionMark im(this);
3212     relocate(dst.reloc());
3213     const int short_size = 2;
3214     const int long_size = 6;
3215     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3216     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3217       // 0111 tttn #8-bit disp
3218       emit_int8(0x70 | cc);
3219       emit_int8((offs - short_size) & 0xFF);
3220     } else {
3221       // 0000 1111 1000 tttn #32-bit disp
3222       emit_int8(0x0F);
3223       emit_int8((unsigned char)(0x80 | cc));
3224       emit_int32(offs - long_size);
3225     }
3226   } else {
3227 #ifdef ASSERT
3228     warning("reversing conditional branch");
3229 #endif /* ASSERT */
3230     Label skip;
3231     jccb(reverse[cc], skip);
3232     lea(rscratch1, dst);
3233     Assembler::jmp(rscratch1);
3234     bind(skip);
3235   }
3236 }
3237 
3238 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3239   if (reachable(src)) {
3240     Assembler::ldmxcsr(as_Address(src));
3241   } else {
3242     lea(rscratch1, src);
3243     Assembler::ldmxcsr(Address(rscratch1, 0));
3244   }
3245 }
3246 
3247 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3248   int off;
3249   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3250     off = offset();
3251     movsbl(dst, src); // movsxb
3252   } else {
3253     off = load_unsigned_byte(dst, src);
3254     shll(dst, 24);
3255     sarl(dst, 24);
3256   }
3257   return off;
3258 }
3259 
3260 // Note: load_signed_short used to be called load_signed_word.
3261 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3262 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3263 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3264 int MacroAssembler::load_signed_short(Register dst, Address src) {
3265   int off;
3266   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3267     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3268     // version but this is what 64bit has always done. This seems to imply
3269     // that users are only using 32bits worth.
3270     off = offset();
3271     movswl(dst, src); // movsxw
3272   } else {
3273     off = load_unsigned_short(dst, src);
3274     shll(dst, 16);
3275     sarl(dst, 16);
3276   }
3277   return off;
3278 }
3279 
3280 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3281   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3282   // and "3.9 Partial Register Penalties", p. 22).
3283   int off;
3284   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3285     off = offset();
3286     movzbl(dst, src); // movzxb
3287   } else {
3288     xorl(dst, dst);
3289     off = offset();
3290     movb(dst, src);
3291   }
3292   return off;
3293 }
3294 
3295 // Note: load_unsigned_short used to be called load_unsigned_word.
3296 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3297   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3298   // and "3.9 Partial Register Penalties", p. 22).
3299   int off;
3300   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3301     off = offset();
3302     movzwl(dst, src); // movzxw
3303   } else {
3304     xorl(dst, dst);
3305     off = offset();
3306     movw(dst, src);
3307   }
3308   return off;
3309 }
3310 
3311 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3312   switch (size_in_bytes) {
3313 #ifndef _LP64
3314   case  8:
3315     assert(dst2 != noreg, "second dest register required");
3316     movl(dst,  src);
3317     movl(dst2, src.plus_disp(BytesPerInt));
3318     break;
3319 #else
3320   case  8:  movq(dst, src); break;
3321 #endif
3322   case  4:  movl(dst, src); break;
3323   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3324   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3325   default:  ShouldNotReachHere();
3326   }
3327 }
3328 
3329 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3330   switch (size_in_bytes) {
3331 #ifndef _LP64
3332   case  8:
3333     assert(src2 != noreg, "second source register required");
3334     movl(dst,                        src);
3335     movl(dst.plus_disp(BytesPerInt), src2);
3336     break;
3337 #else
3338   case  8:  movq(dst, src); break;
3339 #endif
3340   case  4:  movl(dst, src); break;
3341   case  2:  movw(dst, src); break;
3342   case  1:  movb(dst, src); break;
3343   default:  ShouldNotReachHere();
3344   }
3345 }
3346 
3347 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3348   if (reachable(dst)) {
3349     movl(as_Address(dst), src);
3350   } else {
3351     lea(rscratch1, dst);
3352     movl(Address(rscratch1, 0), src);
3353   }
3354 }
3355 
3356 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3357   if (reachable(src)) {
3358     movl(dst, as_Address(src));
3359   } else {
3360     lea(rscratch1, src);
3361     movl(dst, Address(rscratch1, 0));
3362   }
3363 }
3364 
3365 // C++ bool manipulation
3366 
3367 void MacroAssembler::movbool(Register dst, Address src) {
3368   if(sizeof(bool) == 1)
3369     movb(dst, src);
3370   else if(sizeof(bool) == 2)
3371     movw(dst, src);
3372   else if(sizeof(bool) == 4)
3373     movl(dst, src);
3374   else
3375     // unsupported
3376     ShouldNotReachHere();
3377 }
3378 
3379 void MacroAssembler::movbool(Address dst, bool boolconst) {
3380   if(sizeof(bool) == 1)
3381     movb(dst, (int) boolconst);
3382   else if(sizeof(bool) == 2)
3383     movw(dst, (int) boolconst);
3384   else if(sizeof(bool) == 4)
3385     movl(dst, (int) boolconst);
3386   else
3387     // unsupported
3388     ShouldNotReachHere();
3389 }
3390 
3391 void MacroAssembler::movbool(Address dst, Register src) {
3392   if(sizeof(bool) == 1)
3393     movb(dst, src);
3394   else if(sizeof(bool) == 2)
3395     movw(dst, src);
3396   else if(sizeof(bool) == 4)
3397     movl(dst, src);
3398   else
3399     // unsupported
3400     ShouldNotReachHere();
3401 }
3402 
3403 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3404   movb(as_Address(dst), src);
3405 }
3406 
3407 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3408   if (reachable(src)) {
3409     movdl(dst, as_Address(src));
3410   } else {
3411     lea(rscratch1, src);
3412     movdl(dst, Address(rscratch1, 0));
3413   }
3414 }
3415 
3416 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3417   if (reachable(src)) {
3418     movq(dst, as_Address(src));
3419   } else {
3420     lea(rscratch1, src);
3421     movq(dst, Address(rscratch1, 0));
3422   }
3423 }
3424 
3425 void MacroAssembler::setvectmask(Register dst, Register src) {
3426   Assembler::movl(dst, 1);
3427   Assembler::shlxl(dst, dst, src);
3428   Assembler::decl(dst);
3429   Assembler::kmovdl(k1, dst);
3430   Assembler::movl(dst, src);
3431 }
3432 
3433 void MacroAssembler::restorevectmask() {
3434   Assembler::knotwl(k1, k0);
3435 }
3436 
3437 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3438   if (reachable(src)) {
3439     if (UseXmmLoadAndClearUpper) {
3440       movsd (dst, as_Address(src));
3441     } else {
3442       movlpd(dst, as_Address(src));
3443     }
3444   } else {
3445     lea(rscratch1, src);
3446     if (UseXmmLoadAndClearUpper) {
3447       movsd (dst, Address(rscratch1, 0));
3448     } else {
3449       movlpd(dst, Address(rscratch1, 0));
3450     }
3451   }
3452 }
3453 
3454 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3455   if (reachable(src)) {
3456     movss(dst, as_Address(src));
3457   } else {
3458     lea(rscratch1, src);
3459     movss(dst, Address(rscratch1, 0));
3460   }
3461 }
3462 
3463 void MacroAssembler::movptr(Register dst, Register src) {
3464   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3465 }
3466 
3467 void MacroAssembler::movptr(Register dst, Address src) {
3468   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3469 }
3470 
3471 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3472 void MacroAssembler::movptr(Register dst, intptr_t src) {
3473   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3474 }
3475 
3476 void MacroAssembler::movptr(Address dst, Register src) {
3477   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3478 }
3479 
3480 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3481   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3482     Assembler::vextractf32x4(dst, src, 0);
3483   } else {
3484     Assembler::movdqu(dst, src);
3485   }
3486 }
3487 
3488 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3489   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3490     Assembler::vinsertf32x4(dst, dst, src, 0);
3491   } else {
3492     Assembler::movdqu(dst, src);
3493   }
3494 }
3495 
3496 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3497   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3498     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3499   } else {
3500     Assembler::movdqu(dst, src);
3501   }
3502 }
3503 
3504 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3505   if (reachable(src)) {
3506     movdqu(dst, as_Address(src));
3507   } else {
3508     lea(scratchReg, src);
3509     movdqu(dst, Address(scratchReg, 0));
3510   }
3511 }
3512 
3513 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3514   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3515     vextractf64x4_low(dst, src);
3516   } else {
3517     Assembler::vmovdqu(dst, src);
3518   }
3519 }
3520 
3521 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3522   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3523     vinsertf64x4_low(dst, src);
3524   } else {
3525     Assembler::vmovdqu(dst, src);
3526   }
3527 }
3528 
3529 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3530   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3531     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3532   }
3533   else {
3534     Assembler::vmovdqu(dst, src);
3535   }
3536 }
3537 
3538 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3539   if (reachable(src)) {
3540     vmovdqu(dst, as_Address(src));
3541   }
3542   else {
3543     lea(rscratch1, src);
3544     vmovdqu(dst, Address(rscratch1, 0));
3545   }
3546 }
3547 
3548 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3549   if (reachable(src)) {
3550     Assembler::movdqa(dst, as_Address(src));
3551   } else {
3552     lea(rscratch1, src);
3553     Assembler::movdqa(dst, Address(rscratch1, 0));
3554   }
3555 }
3556 
3557 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3558   if (reachable(src)) {
3559     Assembler::movsd(dst, as_Address(src));
3560   } else {
3561     lea(rscratch1, src);
3562     Assembler::movsd(dst, Address(rscratch1, 0));
3563   }
3564 }
3565 
3566 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3567   if (reachable(src)) {
3568     Assembler::movss(dst, as_Address(src));
3569   } else {
3570     lea(rscratch1, src);
3571     Assembler::movss(dst, Address(rscratch1, 0));
3572   }
3573 }
3574 
3575 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3576   if (reachable(src)) {
3577     Assembler::mulsd(dst, as_Address(src));
3578   } else {
3579     lea(rscratch1, src);
3580     Assembler::mulsd(dst, Address(rscratch1, 0));
3581   }
3582 }
3583 
3584 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3585   if (reachable(src)) {
3586     Assembler::mulss(dst, as_Address(src));
3587   } else {
3588     lea(rscratch1, src);
3589     Assembler::mulss(dst, Address(rscratch1, 0));
3590   }
3591 }
3592 
3593 void MacroAssembler::null_check(Register reg, int offset) {
3594   if (needs_explicit_null_check(offset)) {
3595     // provoke OS NULL exception if reg = NULL by
3596     // accessing M[reg] w/o changing any (non-CC) registers
3597     // NOTE: cmpl is plenty here to provoke a segv
3598     cmpptr(rax, Address(reg, 0));
3599     // Note: should probably use testl(rax, Address(reg, 0));
3600     //       may be shorter code (however, this version of
3601     //       testl needs to be implemented first)
3602   } else {
3603     // nothing to do, (later) access of M[reg + offset]
3604     // will provoke OS NULL exception if reg = NULL
3605   }
3606 }
3607 
3608 void MacroAssembler::os_breakpoint() {
3609   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3610   // (e.g., MSVC can't call ps() otherwise)
3611   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3612 }
3613 
3614 #ifdef _LP64
3615 #define XSTATE_BV 0x200
3616 #endif
3617 
3618 void MacroAssembler::pop_CPU_state() {
3619   pop_FPU_state();
3620   pop_IU_state();
3621 }
3622 
3623 void MacroAssembler::pop_FPU_state() {
3624 #ifndef _LP64
3625   frstor(Address(rsp, 0));
3626 #else
3627   fxrstor(Address(rsp, 0));
3628 #endif
3629   addptr(rsp, FPUStateSizeInWords * wordSize);
3630 }
3631 
3632 void MacroAssembler::pop_IU_state() {
3633   popa();
3634   LP64_ONLY(addq(rsp, 8));
3635   popf();
3636 }
3637 
3638 // Save Integer and Float state
3639 // Warning: Stack must be 16 byte aligned (64bit)
3640 void MacroAssembler::push_CPU_state() {
3641   push_IU_state();
3642   push_FPU_state();
3643 }
3644 
3645 void MacroAssembler::push_FPU_state() {
3646   subptr(rsp, FPUStateSizeInWords * wordSize);
3647 #ifndef _LP64
3648   fnsave(Address(rsp, 0));
3649   fwait();
3650 #else
3651   fxsave(Address(rsp, 0));
3652 #endif // LP64
3653 }
3654 
3655 void MacroAssembler::push_IU_state() {
3656   // Push flags first because pusha kills them
3657   pushf();
3658   // Make sure rsp stays 16-byte aligned
3659   LP64_ONLY(subq(rsp, 8));
3660   pusha();
3661 }
3662 
3663 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3664   if (!java_thread->is_valid()) {
3665     java_thread = rdi;
3666     get_thread(java_thread);
3667   }
3668   // we must set sp to zero to clear frame
3669   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3670   if (clear_fp) {
3671     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3672   }
3673 
3674   // Always clear the pc because it could have been set by make_walkable()
3675   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3676 
3677   vzeroupper();
3678 }
3679 
3680 void MacroAssembler::restore_rax(Register tmp) {
3681   if (tmp == noreg) pop(rax);
3682   else if (tmp != rax) mov(rax, tmp);
3683 }
3684 
3685 void MacroAssembler::round_to(Register reg, int modulus) {
3686   addptr(reg, modulus - 1);
3687   andptr(reg, -modulus);
3688 }
3689 
3690 void MacroAssembler::save_rax(Register tmp) {
3691   if (tmp == noreg) push(rax);
3692   else if (tmp != rax) mov(tmp, rax);
3693 }
3694 
3695 // Write serialization page so VM thread can do a pseudo remote membar.
3696 // We use the current thread pointer to calculate a thread specific
3697 // offset to write to within the page. This minimizes bus traffic
3698 // due to cache line collision.
3699 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3700   movl(tmp, thread);
3701   shrl(tmp, os::get_serialize_page_shift_count());
3702   andl(tmp, (os::vm_page_size() - sizeof(int)));
3703 
3704   Address index(noreg, tmp, Address::times_1);
3705   ExternalAddress page(os::get_memory_serialize_page());
3706 
3707   // Size of store must match masking code above
3708   movl(as_Address(ArrayAddress(page, index)), tmp);
3709 }
3710 
3711 // Calls to C land
3712 //
3713 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3714 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3715 // has to be reset to 0. This is required to allow proper stack traversal.
3716 void MacroAssembler::set_last_Java_frame(Register java_thread,
3717                                          Register last_java_sp,
3718                                          Register last_java_fp,
3719                                          address  last_java_pc) {
3720   vzeroupper();
3721   // determine java_thread register
3722   if (!java_thread->is_valid()) {
3723     java_thread = rdi;
3724     get_thread(java_thread);
3725   }
3726   // determine last_java_sp register
3727   if (!last_java_sp->is_valid()) {
3728     last_java_sp = rsp;
3729   }
3730 
3731   // last_java_fp is optional
3732 
3733   if (last_java_fp->is_valid()) {
3734     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3735   }
3736 
3737   // last_java_pc is optional
3738 
3739   if (last_java_pc != NULL) {
3740     lea(Address(java_thread,
3741                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3742         InternalAddress(last_java_pc));
3743 
3744   }
3745   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3746 }
3747 
3748 void MacroAssembler::shlptr(Register dst, int imm8) {
3749   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3750 }
3751 
3752 void MacroAssembler::shrptr(Register dst, int imm8) {
3753   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3754 }
3755 
3756 void MacroAssembler::sign_extend_byte(Register reg) {
3757   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3758     movsbl(reg, reg); // movsxb
3759   } else {
3760     shll(reg, 24);
3761     sarl(reg, 24);
3762   }
3763 }
3764 
3765 void MacroAssembler::sign_extend_short(Register reg) {
3766   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3767     movswl(reg, reg); // movsxw
3768   } else {
3769     shll(reg, 16);
3770     sarl(reg, 16);
3771   }
3772 }
3773 
3774 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3775   assert(reachable(src), "Address should be reachable");
3776   testl(dst, as_Address(src));
3777 }
3778 
3779 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3780   int dst_enc = dst->encoding();
3781   int src_enc = src->encoding();
3782   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3783     Assembler::pcmpeqb(dst, src);
3784   } else if ((dst_enc < 16) && (src_enc < 16)) {
3785     Assembler::pcmpeqb(dst, src);
3786   } else if (src_enc < 16) {
3787     subptr(rsp, 64);
3788     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3789     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3790     Assembler::pcmpeqb(xmm0, src);
3791     movdqu(dst, xmm0);
3792     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3793     addptr(rsp, 64);
3794   } else if (dst_enc < 16) {
3795     subptr(rsp, 64);
3796     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3797     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3798     Assembler::pcmpeqb(dst, xmm0);
3799     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3800     addptr(rsp, 64);
3801   } else {
3802     subptr(rsp, 64);
3803     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3804     subptr(rsp, 64);
3805     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3806     movdqu(xmm0, src);
3807     movdqu(xmm1, dst);
3808     Assembler::pcmpeqb(xmm1, xmm0);
3809     movdqu(dst, xmm1);
3810     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3811     addptr(rsp, 64);
3812     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3813     addptr(rsp, 64);
3814   }
3815 }
3816 
3817 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3818   int dst_enc = dst->encoding();
3819   int src_enc = src->encoding();
3820   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3821     Assembler::pcmpeqw(dst, src);
3822   } else if ((dst_enc < 16) && (src_enc < 16)) {
3823     Assembler::pcmpeqw(dst, src);
3824   } else if (src_enc < 16) {
3825     subptr(rsp, 64);
3826     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3827     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3828     Assembler::pcmpeqw(xmm0, src);
3829     movdqu(dst, xmm0);
3830     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3831     addptr(rsp, 64);
3832   } else if (dst_enc < 16) {
3833     subptr(rsp, 64);
3834     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3835     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3836     Assembler::pcmpeqw(dst, xmm0);
3837     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3838     addptr(rsp, 64);
3839   } else {
3840     subptr(rsp, 64);
3841     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3842     subptr(rsp, 64);
3843     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3844     movdqu(xmm0, src);
3845     movdqu(xmm1, dst);
3846     Assembler::pcmpeqw(xmm1, xmm0);
3847     movdqu(dst, xmm1);
3848     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3849     addptr(rsp, 64);
3850     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3851     addptr(rsp, 64);
3852   }
3853 }
3854 
3855 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3856   int dst_enc = dst->encoding();
3857   if (dst_enc < 16) {
3858     Assembler::pcmpestri(dst, src, imm8);
3859   } else {
3860     subptr(rsp, 64);
3861     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3862     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3863     Assembler::pcmpestri(xmm0, src, imm8);
3864     movdqu(dst, xmm0);
3865     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3866     addptr(rsp, 64);
3867   }
3868 }
3869 
3870 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3871   int dst_enc = dst->encoding();
3872   int src_enc = src->encoding();
3873   if ((dst_enc < 16) && (src_enc < 16)) {
3874     Assembler::pcmpestri(dst, src, imm8);
3875   } else if (src_enc < 16) {
3876     subptr(rsp, 64);
3877     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3878     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3879     Assembler::pcmpestri(xmm0, src, imm8);
3880     movdqu(dst, xmm0);
3881     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3882     addptr(rsp, 64);
3883   } else if (dst_enc < 16) {
3884     subptr(rsp, 64);
3885     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3886     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3887     Assembler::pcmpestri(dst, xmm0, imm8);
3888     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3889     addptr(rsp, 64);
3890   } else {
3891     subptr(rsp, 64);
3892     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3893     subptr(rsp, 64);
3894     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3895     movdqu(xmm0, src);
3896     movdqu(xmm1, dst);
3897     Assembler::pcmpestri(xmm1, xmm0, imm8);
3898     movdqu(dst, xmm1);
3899     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3900     addptr(rsp, 64);
3901     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3902     addptr(rsp, 64);
3903   }
3904 }
3905 
3906 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3907   int dst_enc = dst->encoding();
3908   int src_enc = src->encoding();
3909   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3910     Assembler::pmovzxbw(dst, src);
3911   } else if ((dst_enc < 16) && (src_enc < 16)) {
3912     Assembler::pmovzxbw(dst, src);
3913   } else if (src_enc < 16) {
3914     subptr(rsp, 64);
3915     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3916     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3917     Assembler::pmovzxbw(xmm0, src);
3918     movdqu(dst, xmm0);
3919     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3920     addptr(rsp, 64);
3921   } else if (dst_enc < 16) {
3922     subptr(rsp, 64);
3923     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3924     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3925     Assembler::pmovzxbw(dst, xmm0);
3926     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3927     addptr(rsp, 64);
3928   } else {
3929     subptr(rsp, 64);
3930     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3931     subptr(rsp, 64);
3932     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3933     movdqu(xmm0, src);
3934     movdqu(xmm1, dst);
3935     Assembler::pmovzxbw(xmm1, xmm0);
3936     movdqu(dst, xmm1);
3937     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3938     addptr(rsp, 64);
3939     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3940     addptr(rsp, 64);
3941   }
3942 }
3943 
3944 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3945   int dst_enc = dst->encoding();
3946   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3947     Assembler::pmovzxbw(dst, src);
3948   } else if (dst_enc < 16) {
3949     Assembler::pmovzxbw(dst, src);
3950   } else {
3951     subptr(rsp, 64);
3952     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3953     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3954     Assembler::pmovzxbw(xmm0, src);
3955     movdqu(dst, xmm0);
3956     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3957     addptr(rsp, 64);
3958   }
3959 }
3960 
3961 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3962   int src_enc = src->encoding();
3963   if (src_enc < 16) {
3964     Assembler::pmovmskb(dst, src);
3965   } else {
3966     subptr(rsp, 64);
3967     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3968     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3969     Assembler::pmovmskb(dst, xmm0);
3970     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3971     addptr(rsp, 64);
3972   }
3973 }
3974 
3975 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3976   int dst_enc = dst->encoding();
3977   int src_enc = src->encoding();
3978   if ((dst_enc < 16) && (src_enc < 16)) {
3979     Assembler::ptest(dst, src);
3980   } else if (src_enc < 16) {
3981     subptr(rsp, 64);
3982     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3983     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3984     Assembler::ptest(xmm0, src);
3985     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3986     addptr(rsp, 64);
3987   } else if (dst_enc < 16) {
3988     subptr(rsp, 64);
3989     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3990     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3991     Assembler::ptest(dst, xmm0);
3992     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3993     addptr(rsp, 64);
3994   } else {
3995     subptr(rsp, 64);
3996     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3997     subptr(rsp, 64);
3998     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3999     movdqu(xmm0, src);
4000     movdqu(xmm1, dst);
4001     Assembler::ptest(xmm1, xmm0);
4002     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4003     addptr(rsp, 64);
4004     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4005     addptr(rsp, 64);
4006   }
4007 }
4008 
4009 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4010   if (reachable(src)) {
4011     Assembler::sqrtsd(dst, as_Address(src));
4012   } else {
4013     lea(rscratch1, src);
4014     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4015   }
4016 }
4017 
4018 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4019   if (reachable(src)) {
4020     Assembler::sqrtss(dst, as_Address(src));
4021   } else {
4022     lea(rscratch1, src);
4023     Assembler::sqrtss(dst, Address(rscratch1, 0));
4024   }
4025 }
4026 
4027 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4028   if (reachable(src)) {
4029     Assembler::subsd(dst, as_Address(src));
4030   } else {
4031     lea(rscratch1, src);
4032     Assembler::subsd(dst, Address(rscratch1, 0));
4033   }
4034 }
4035 
4036 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4037   if (reachable(src)) {
4038     Assembler::subss(dst, as_Address(src));
4039   } else {
4040     lea(rscratch1, src);
4041     Assembler::subss(dst, Address(rscratch1, 0));
4042   }
4043 }
4044 
4045 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4046   if (reachable(src)) {
4047     Assembler::ucomisd(dst, as_Address(src));
4048   } else {
4049     lea(rscratch1, src);
4050     Assembler::ucomisd(dst, Address(rscratch1, 0));
4051   }
4052 }
4053 
4054 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4055   if (reachable(src)) {
4056     Assembler::ucomiss(dst, as_Address(src));
4057   } else {
4058     lea(rscratch1, src);
4059     Assembler::ucomiss(dst, Address(rscratch1, 0));
4060   }
4061 }
4062 
4063 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4064   // Used in sign-bit flipping with aligned address.
4065   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4066   if (reachable(src)) {
4067     Assembler::xorpd(dst, as_Address(src));
4068   } else {
4069     lea(rscratch1, src);
4070     Assembler::xorpd(dst, Address(rscratch1, 0));
4071   }
4072 }
4073 
4074 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4075   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4076     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4077   }
4078   else {
4079     Assembler::xorpd(dst, src);
4080   }
4081 }
4082 
4083 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4084   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4085     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4086   } else {
4087     Assembler::xorps(dst, src);
4088   }
4089 }
4090 
4091 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4092   // Used in sign-bit flipping with aligned address.
4093   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4094   if (reachable(src)) {
4095     Assembler::xorps(dst, as_Address(src));
4096   } else {
4097     lea(rscratch1, src);
4098     Assembler::xorps(dst, Address(rscratch1, 0));
4099   }
4100 }
4101 
4102 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4103   // Used in sign-bit flipping with aligned address.
4104   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4105   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4106   if (reachable(src)) {
4107     Assembler::pshufb(dst, as_Address(src));
4108   } else {
4109     lea(rscratch1, src);
4110     Assembler::pshufb(dst, Address(rscratch1, 0));
4111   }
4112 }
4113 
4114 // AVX 3-operands instructions
4115 
4116 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4117   if (reachable(src)) {
4118     vaddsd(dst, nds, as_Address(src));
4119   } else {
4120     lea(rscratch1, src);
4121     vaddsd(dst, nds, Address(rscratch1, 0));
4122   }
4123 }
4124 
4125 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4126   if (reachable(src)) {
4127     vaddss(dst, nds, as_Address(src));
4128   } else {
4129     lea(rscratch1, src);
4130     vaddss(dst, nds, Address(rscratch1, 0));
4131   }
4132 }
4133 
4134 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4135   int dst_enc = dst->encoding();
4136   int nds_enc = nds->encoding();
4137   int src_enc = src->encoding();
4138   if ((dst_enc < 16) && (nds_enc < 16)) {
4139     vandps(dst, nds, negate_field, vector_len);
4140   } else if ((src_enc < 16) && (dst_enc < 16)) {
4141     movss(src, nds);
4142     vandps(dst, src, negate_field, vector_len);
4143   } else if (src_enc < 16) {
4144     movss(src, nds);
4145     vandps(src, src, negate_field, vector_len);
4146     movss(dst, src);
4147   } else if (dst_enc < 16) {
4148     movdqu(src, xmm0);
4149     movss(xmm0, nds);
4150     vandps(dst, xmm0, negate_field, vector_len);
4151     movdqu(xmm0, src);
4152   } else if (nds_enc < 16) {
4153     movdqu(src, xmm0);
4154     vandps(xmm0, nds, negate_field, vector_len);
4155     movss(dst, xmm0);
4156     movdqu(xmm0, src);
4157   } else {
4158     movdqu(src, xmm0);
4159     movss(xmm0, nds);
4160     vandps(xmm0, xmm0, negate_field, vector_len);
4161     movss(dst, xmm0);
4162     movdqu(xmm0, src);
4163   }
4164 }
4165 
4166 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4167   int dst_enc = dst->encoding();
4168   int nds_enc = nds->encoding();
4169   int src_enc = src->encoding();
4170   if ((dst_enc < 16) && (nds_enc < 16)) {
4171     vandpd(dst, nds, negate_field, vector_len);
4172   } else if ((src_enc < 16) && (dst_enc < 16)) {
4173     movsd(src, nds);
4174     vandpd(dst, src, negate_field, vector_len);
4175   } else if (src_enc < 16) {
4176     movsd(src, nds);
4177     vandpd(src, src, negate_field, vector_len);
4178     movsd(dst, src);
4179   } else if (dst_enc < 16) {
4180     movdqu(src, xmm0);
4181     movsd(xmm0, nds);
4182     vandpd(dst, xmm0, negate_field, vector_len);
4183     movdqu(xmm0, src);
4184   } else if (nds_enc < 16) {
4185     movdqu(src, xmm0);
4186     vandpd(xmm0, nds, negate_field, vector_len);
4187     movsd(dst, xmm0);
4188     movdqu(xmm0, src);
4189   } else {
4190     movdqu(src, xmm0);
4191     movsd(xmm0, nds);
4192     vandpd(xmm0, xmm0, negate_field, vector_len);
4193     movsd(dst, xmm0);
4194     movdqu(xmm0, src);
4195   }
4196 }
4197 
4198 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4199   int dst_enc = dst->encoding();
4200   int nds_enc = nds->encoding();
4201   int src_enc = src->encoding();
4202   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4203     Assembler::vpaddb(dst, nds, src, vector_len);
4204   } else if ((dst_enc < 16) && (src_enc < 16)) {
4205     Assembler::vpaddb(dst, dst, src, vector_len);
4206   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4207     // use nds as scratch for src
4208     evmovdqul(nds, src, Assembler::AVX_512bit);
4209     Assembler::vpaddb(dst, dst, nds, vector_len);
4210   } else if ((src_enc < 16) && (nds_enc < 16)) {
4211     // use nds as scratch for dst
4212     evmovdqul(nds, dst, Assembler::AVX_512bit);
4213     Assembler::vpaddb(nds, nds, src, vector_len);
4214     evmovdqul(dst, nds, Assembler::AVX_512bit);
4215   } else if (dst_enc < 16) {
4216     // use nds as scatch for xmm0 to hold src
4217     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4218     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4219     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4220     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4221   } else {
4222     // worse case scenario, all regs are in the upper bank
4223     subptr(rsp, 64);
4224     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4225     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4226     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4227     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4228     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4229     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4230     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4231     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4232     addptr(rsp, 64);
4233   }
4234 }
4235 
4236 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4237   int dst_enc = dst->encoding();
4238   int nds_enc = nds->encoding();
4239   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4240     Assembler::vpaddb(dst, nds, src, vector_len);
4241   } else if (dst_enc < 16) {
4242     Assembler::vpaddb(dst, dst, src, vector_len);
4243   } else if (nds_enc < 16) {
4244     // implies dst_enc in upper bank with src as scratch
4245     evmovdqul(nds, dst, Assembler::AVX_512bit);
4246     Assembler::vpaddb(nds, nds, src, vector_len);
4247     evmovdqul(dst, nds, Assembler::AVX_512bit);
4248   } else {
4249     // worse case scenario, all regs in upper bank
4250     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4251     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4252     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4253     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4254   }
4255 }
4256 
4257 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4258   int dst_enc = dst->encoding();
4259   int nds_enc = nds->encoding();
4260   int src_enc = src->encoding();
4261   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4262     Assembler::vpaddw(dst, nds, src, vector_len);
4263   } else if ((dst_enc < 16) && (src_enc < 16)) {
4264     Assembler::vpaddw(dst, dst, src, vector_len);
4265   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4266     // use nds as scratch for src
4267     evmovdqul(nds, src, Assembler::AVX_512bit);
4268     Assembler::vpaddw(dst, dst, nds, vector_len);
4269   } else if ((src_enc < 16) && (nds_enc < 16)) {
4270     // use nds as scratch for dst
4271     evmovdqul(nds, dst, Assembler::AVX_512bit);
4272     Assembler::vpaddw(nds, nds, src, vector_len);
4273     evmovdqul(dst, nds, Assembler::AVX_512bit);
4274   } else if (dst_enc < 16) {
4275     // use nds as scatch for xmm0 to hold src
4276     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4277     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4278     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4279     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4280   } else {
4281     // worse case scenario, all regs are in the upper bank
4282     subptr(rsp, 64);
4283     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4284     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4285     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4286     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4287     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4288     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4289     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4290     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4291     addptr(rsp, 64);
4292   }
4293 }
4294 
4295 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4296   int dst_enc = dst->encoding();
4297   int nds_enc = nds->encoding();
4298   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4299     Assembler::vpaddw(dst, nds, src, vector_len);
4300   } else if (dst_enc < 16) {
4301     Assembler::vpaddw(dst, dst, src, vector_len);
4302   } else if (nds_enc < 16) {
4303     // implies dst_enc in upper bank with src as scratch
4304     evmovdqul(nds, dst, Assembler::AVX_512bit);
4305     Assembler::vpaddw(nds, nds, src, vector_len);
4306     evmovdqul(dst, nds, Assembler::AVX_512bit);
4307   } else {
4308     // worse case scenario, all regs in upper bank
4309     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4310     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4311     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4312     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4313   }
4314 }
4315 
4316 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4317   if (reachable(src)) {
4318     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4319   } else {
4320     lea(rscratch1, src);
4321     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4322   }
4323 }
4324 
4325 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4326   int dst_enc = dst->encoding();
4327   int src_enc = src->encoding();
4328   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4329     Assembler::vpbroadcastw(dst, src);
4330   } else if ((dst_enc < 16) && (src_enc < 16)) {
4331     Assembler::vpbroadcastw(dst, src);
4332   } else if (src_enc < 16) {
4333     subptr(rsp, 64);
4334     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4335     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4336     Assembler::vpbroadcastw(xmm0, src);
4337     movdqu(dst, xmm0);
4338     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4339     addptr(rsp, 64);
4340   } else if (dst_enc < 16) {
4341     subptr(rsp, 64);
4342     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4343     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4344     Assembler::vpbroadcastw(dst, xmm0);
4345     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4346     addptr(rsp, 64);
4347   } else {
4348     subptr(rsp, 64);
4349     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4350     subptr(rsp, 64);
4351     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4352     movdqu(xmm0, src);
4353     movdqu(xmm1, dst);
4354     Assembler::vpbroadcastw(xmm1, xmm0);
4355     movdqu(dst, xmm1);
4356     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4357     addptr(rsp, 64);
4358     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4359     addptr(rsp, 64);
4360   }
4361 }
4362 
4363 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4364   int dst_enc = dst->encoding();
4365   int nds_enc = nds->encoding();
4366   int src_enc = src->encoding();
4367   assert(dst_enc == nds_enc, "");
4368   if ((dst_enc < 16) && (src_enc < 16)) {
4369     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4370   } else if (src_enc < 16) {
4371     subptr(rsp, 64);
4372     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4373     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4374     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4375     movdqu(dst, xmm0);
4376     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4377     addptr(rsp, 64);
4378   } else if (dst_enc < 16) {
4379     subptr(rsp, 64);
4380     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4381     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4382     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4383     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4384     addptr(rsp, 64);
4385   } else {
4386     subptr(rsp, 64);
4387     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4388     subptr(rsp, 64);
4389     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4390     movdqu(xmm0, src);
4391     movdqu(xmm1, dst);
4392     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4393     movdqu(dst, xmm1);
4394     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4395     addptr(rsp, 64);
4396     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4397     addptr(rsp, 64);
4398   }
4399 }
4400 
4401 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4402   int dst_enc = dst->encoding();
4403   int nds_enc = nds->encoding();
4404   int src_enc = src->encoding();
4405   assert(dst_enc == nds_enc, "");
4406   if ((dst_enc < 16) && (src_enc < 16)) {
4407     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4408   } else if (src_enc < 16) {
4409     subptr(rsp, 64);
4410     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4411     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4412     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4413     movdqu(dst, xmm0);
4414     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4415     addptr(rsp, 64);
4416   } else if (dst_enc < 16) {
4417     subptr(rsp, 64);
4418     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4419     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4420     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4421     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4422     addptr(rsp, 64);
4423   } else {
4424     subptr(rsp, 64);
4425     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4426     subptr(rsp, 64);
4427     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4428     movdqu(xmm0, src);
4429     movdqu(xmm1, dst);
4430     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4431     movdqu(dst, xmm1);
4432     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4433     addptr(rsp, 64);
4434     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4435     addptr(rsp, 64);
4436   }
4437 }
4438 
4439 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4440   int dst_enc = dst->encoding();
4441   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4442     Assembler::vpmovzxbw(dst, src, vector_len);
4443   } else if (dst_enc < 16) {
4444     Assembler::vpmovzxbw(dst, src, vector_len);
4445   } else {
4446     subptr(rsp, 64);
4447     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4448     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4449     Assembler::vpmovzxbw(xmm0, src, vector_len);
4450     movdqu(dst, xmm0);
4451     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4452     addptr(rsp, 64);
4453   }
4454 }
4455 
4456 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4457   int src_enc = src->encoding();
4458   if (src_enc < 16) {
4459     Assembler::vpmovmskb(dst, src);
4460   } else {
4461     subptr(rsp, 64);
4462     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4463     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4464     Assembler::vpmovmskb(dst, xmm0);
4465     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4466     addptr(rsp, 64);
4467   }
4468 }
4469 
4470 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4471   int dst_enc = dst->encoding();
4472   int nds_enc = nds->encoding();
4473   int src_enc = src->encoding();
4474   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4475     Assembler::vpmullw(dst, nds, src, vector_len);
4476   } else if ((dst_enc < 16) && (src_enc < 16)) {
4477     Assembler::vpmullw(dst, dst, src, vector_len);
4478   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4479     // use nds as scratch for src
4480     evmovdqul(nds, src, Assembler::AVX_512bit);
4481     Assembler::vpmullw(dst, dst, nds, vector_len);
4482   } else if ((src_enc < 16) && (nds_enc < 16)) {
4483     // use nds as scratch for dst
4484     evmovdqul(nds, dst, Assembler::AVX_512bit);
4485     Assembler::vpmullw(nds, nds, src, vector_len);
4486     evmovdqul(dst, nds, Assembler::AVX_512bit);
4487   } else if (dst_enc < 16) {
4488     // use nds as scatch for xmm0 to hold src
4489     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4490     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4491     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4492     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4493   } else {
4494     // worse case scenario, all regs are in the upper bank
4495     subptr(rsp, 64);
4496     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4497     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4498     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4499     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4500     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4501     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4502     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4503     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4504     addptr(rsp, 64);
4505   }
4506 }
4507 
4508 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4509   int dst_enc = dst->encoding();
4510   int nds_enc = nds->encoding();
4511   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4512     Assembler::vpmullw(dst, nds, src, vector_len);
4513   } else if (dst_enc < 16) {
4514     Assembler::vpmullw(dst, dst, src, vector_len);
4515   } else if (nds_enc < 16) {
4516     // implies dst_enc in upper bank with src as scratch
4517     evmovdqul(nds, dst, Assembler::AVX_512bit);
4518     Assembler::vpmullw(nds, nds, src, vector_len);
4519     evmovdqul(dst, nds, Assembler::AVX_512bit);
4520   } else {
4521     // worse case scenario, all regs in upper bank
4522     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4523     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4524     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4525     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4526   }
4527 }
4528 
4529 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4530   int dst_enc = dst->encoding();
4531   int nds_enc = nds->encoding();
4532   int src_enc = src->encoding();
4533   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4534     Assembler::vpsubb(dst, nds, src, vector_len);
4535   } else if ((dst_enc < 16) && (src_enc < 16)) {
4536     Assembler::vpsubb(dst, dst, src, vector_len);
4537   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4538     // use nds as scratch for src
4539     evmovdqul(nds, src, Assembler::AVX_512bit);
4540     Assembler::vpsubb(dst, dst, nds, vector_len);
4541   } else if ((src_enc < 16) && (nds_enc < 16)) {
4542     // use nds as scratch for dst
4543     evmovdqul(nds, dst, Assembler::AVX_512bit);
4544     Assembler::vpsubb(nds, nds, src, vector_len);
4545     evmovdqul(dst, nds, Assembler::AVX_512bit);
4546   } else if (dst_enc < 16) {
4547     // use nds as scatch for xmm0 to hold src
4548     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4549     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4550     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4551     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4552   } else {
4553     // worse case scenario, all regs are in the upper bank
4554     subptr(rsp, 64);
4555     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4556     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4557     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4558     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4559     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4560     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4561     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4562     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4563     addptr(rsp, 64);
4564   }
4565 }
4566 
4567 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4568   int dst_enc = dst->encoding();
4569   int nds_enc = nds->encoding();
4570   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4571     Assembler::vpsubb(dst, nds, src, vector_len);
4572   } else if (dst_enc < 16) {
4573     Assembler::vpsubb(dst, dst, src, vector_len);
4574   } else if (nds_enc < 16) {
4575     // implies dst_enc in upper bank with src as scratch
4576     evmovdqul(nds, dst, Assembler::AVX_512bit);
4577     Assembler::vpsubb(nds, nds, src, vector_len);
4578     evmovdqul(dst, nds, Assembler::AVX_512bit);
4579   } else {
4580     // worse case scenario, all regs in upper bank
4581     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4582     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4583     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4584     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4585   }
4586 }
4587 
4588 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4589   int dst_enc = dst->encoding();
4590   int nds_enc = nds->encoding();
4591   int src_enc = src->encoding();
4592   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4593     Assembler::vpsubw(dst, nds, src, vector_len);
4594   } else if ((dst_enc < 16) && (src_enc < 16)) {
4595     Assembler::vpsubw(dst, dst, src, vector_len);
4596   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4597     // use nds as scratch for src
4598     evmovdqul(nds, src, Assembler::AVX_512bit);
4599     Assembler::vpsubw(dst, dst, nds, vector_len);
4600   } else if ((src_enc < 16) && (nds_enc < 16)) {
4601     // use nds as scratch for dst
4602     evmovdqul(nds, dst, Assembler::AVX_512bit);
4603     Assembler::vpsubw(nds, nds, src, vector_len);
4604     evmovdqul(dst, nds, Assembler::AVX_512bit);
4605   } else if (dst_enc < 16) {
4606     // use nds as scatch for xmm0 to hold src
4607     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4608     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4609     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4610     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4611   } else {
4612     // worse case scenario, all regs are in the upper bank
4613     subptr(rsp, 64);
4614     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4615     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4616     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4617     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4618     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4619     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4620     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4621     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4622     addptr(rsp, 64);
4623   }
4624 }
4625 
4626 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4627   int dst_enc = dst->encoding();
4628   int nds_enc = nds->encoding();
4629   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4630     Assembler::vpsubw(dst, nds, src, vector_len);
4631   } else if (dst_enc < 16) {
4632     Assembler::vpsubw(dst, dst, src, vector_len);
4633   } else if (nds_enc < 16) {
4634     // implies dst_enc in upper bank with src as scratch
4635     evmovdqul(nds, dst, Assembler::AVX_512bit);
4636     Assembler::vpsubw(nds, nds, src, vector_len);
4637     evmovdqul(dst, nds, Assembler::AVX_512bit);
4638   } else {
4639     // worse case scenario, all regs in upper bank
4640     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4641     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4642     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4643     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4644   }
4645 }
4646 
4647 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4648   int dst_enc = dst->encoding();
4649   int nds_enc = nds->encoding();
4650   int shift_enc = shift->encoding();
4651   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4652     Assembler::vpsraw(dst, nds, shift, vector_len);
4653   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4654     Assembler::vpsraw(dst, dst, shift, vector_len);
4655   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4656     // use nds_enc as scratch with shift
4657     evmovdqul(nds, shift, Assembler::AVX_512bit);
4658     Assembler::vpsraw(dst, dst, nds, vector_len);
4659   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4660     // use nds as scratch with dst
4661     evmovdqul(nds, dst, Assembler::AVX_512bit);
4662     Assembler::vpsraw(nds, nds, shift, vector_len);
4663     evmovdqul(dst, nds, Assembler::AVX_512bit);
4664   } else if (dst_enc < 16) {
4665     // use nds to save a copy of xmm0 and hold shift
4666     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4667     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4668     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4669     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4670   } else if (nds_enc < 16) {
4671     // use nds as dest as temps
4672     evmovdqul(nds, dst, Assembler::AVX_512bit);
4673     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4674     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4675     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4676     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4677     evmovdqul(dst, nds, Assembler::AVX_512bit);
4678   } else {
4679     // worse case scenario, all regs are in the upper bank
4680     subptr(rsp, 64);
4681     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4682     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4683     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4684     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4685     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4686     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4687     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4688     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4689     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4690     addptr(rsp, 64);
4691   }
4692 }
4693 
4694 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4695   int dst_enc = dst->encoding();
4696   int nds_enc = nds->encoding();
4697   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4698     Assembler::vpsraw(dst, nds, shift, vector_len);
4699   } else if (dst_enc < 16) {
4700     Assembler::vpsraw(dst, dst, shift, vector_len);
4701   } else if (nds_enc < 16) {
4702     // use nds as scratch
4703     evmovdqul(nds, dst, Assembler::AVX_512bit);
4704     Assembler::vpsraw(nds, nds, shift, vector_len);
4705     evmovdqul(dst, nds, Assembler::AVX_512bit);
4706   } else {
4707     // use nds as scratch for xmm0
4708     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4709     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4710     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4711     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4712   }
4713 }
4714 
4715 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4716   int dst_enc = dst->encoding();
4717   int nds_enc = nds->encoding();
4718   int shift_enc = shift->encoding();
4719   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4720     Assembler::vpsrlw(dst, nds, shift, vector_len);
4721   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4722     Assembler::vpsrlw(dst, dst, shift, vector_len);
4723   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4724     // use nds_enc as scratch with shift
4725     evmovdqul(nds, shift, Assembler::AVX_512bit);
4726     Assembler::vpsrlw(dst, dst, nds, vector_len);
4727   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4728     // use nds as scratch with dst
4729     evmovdqul(nds, dst, Assembler::AVX_512bit);
4730     Assembler::vpsrlw(nds, nds, shift, vector_len);
4731     evmovdqul(dst, nds, Assembler::AVX_512bit);
4732   } else if (dst_enc < 16) {
4733     // use nds to save a copy of xmm0 and hold shift
4734     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4735     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4736     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4737     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4738   } else if (nds_enc < 16) {
4739     // use nds as dest as temps
4740     evmovdqul(nds, dst, Assembler::AVX_512bit);
4741     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4742     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4743     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4744     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4745     evmovdqul(dst, nds, Assembler::AVX_512bit);
4746   } else {
4747     // worse case scenario, all regs are in the upper bank
4748     subptr(rsp, 64);
4749     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4750     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4751     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4752     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4753     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4754     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4755     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4756     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4757     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4758     addptr(rsp, 64);
4759   }
4760 }
4761 
4762 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4763   int dst_enc = dst->encoding();
4764   int nds_enc = nds->encoding();
4765   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4766     Assembler::vpsrlw(dst, nds, shift, vector_len);
4767   } else if (dst_enc < 16) {
4768     Assembler::vpsrlw(dst, dst, shift, vector_len);
4769   } else if (nds_enc < 16) {
4770     // use nds as scratch
4771     evmovdqul(nds, dst, Assembler::AVX_512bit);
4772     Assembler::vpsrlw(nds, nds, shift, vector_len);
4773     evmovdqul(dst, nds, Assembler::AVX_512bit);
4774   } else {
4775     // use nds as scratch for xmm0
4776     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4777     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4778     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4779     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4780   }
4781 }
4782 
4783 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4784   int dst_enc = dst->encoding();
4785   int nds_enc = nds->encoding();
4786   int shift_enc = shift->encoding();
4787   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4788     Assembler::vpsllw(dst, nds, shift, vector_len);
4789   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4790     Assembler::vpsllw(dst, dst, shift, vector_len);
4791   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4792     // use nds_enc as scratch with shift
4793     evmovdqul(nds, shift, Assembler::AVX_512bit);
4794     Assembler::vpsllw(dst, dst, nds, vector_len);
4795   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4796     // use nds as scratch with dst
4797     evmovdqul(nds, dst, Assembler::AVX_512bit);
4798     Assembler::vpsllw(nds, nds, shift, vector_len);
4799     evmovdqul(dst, nds, Assembler::AVX_512bit);
4800   } else if (dst_enc < 16) {
4801     // use nds to save a copy of xmm0 and hold shift
4802     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4803     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4804     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4805     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4806   } else if (nds_enc < 16) {
4807     // use nds as dest as temps
4808     evmovdqul(nds, dst, Assembler::AVX_512bit);
4809     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4810     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4811     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4812     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4813     evmovdqul(dst, nds, Assembler::AVX_512bit);
4814   } else {
4815     // worse case scenario, all regs are in the upper bank
4816     subptr(rsp, 64);
4817     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4818     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4819     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4820     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4821     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4822     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4823     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4824     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4825     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4826     addptr(rsp, 64);
4827   }
4828 }
4829 
4830 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4831   int dst_enc = dst->encoding();
4832   int nds_enc = nds->encoding();
4833   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4834     Assembler::vpsllw(dst, nds, shift, vector_len);
4835   } else if (dst_enc < 16) {
4836     Assembler::vpsllw(dst, dst, shift, vector_len);
4837   } else if (nds_enc < 16) {
4838     // use nds as scratch
4839     evmovdqul(nds, dst, Assembler::AVX_512bit);
4840     Assembler::vpsllw(nds, nds, shift, vector_len);
4841     evmovdqul(dst, nds, Assembler::AVX_512bit);
4842   } else {
4843     // use nds as scratch for xmm0
4844     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4845     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4846     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4847     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4848   }
4849 }
4850 
4851 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4852   int dst_enc = dst->encoding();
4853   int src_enc = src->encoding();
4854   if ((dst_enc < 16) && (src_enc < 16)) {
4855     Assembler::vptest(dst, src);
4856   } else if (src_enc < 16) {
4857     subptr(rsp, 64);
4858     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4859     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4860     Assembler::vptest(xmm0, src);
4861     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4862     addptr(rsp, 64);
4863   } else if (dst_enc < 16) {
4864     subptr(rsp, 64);
4865     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4866     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4867     Assembler::vptest(dst, xmm0);
4868     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4869     addptr(rsp, 64);
4870   } else {
4871     subptr(rsp, 64);
4872     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4873     subptr(rsp, 64);
4874     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4875     movdqu(xmm0, src);
4876     movdqu(xmm1, dst);
4877     Assembler::vptest(xmm1, xmm0);
4878     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4879     addptr(rsp, 64);
4880     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4881     addptr(rsp, 64);
4882   }
4883 }
4884 
4885 // This instruction exists within macros, ergo we cannot control its input
4886 // when emitted through those patterns.
4887 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4888   if (VM_Version::supports_avx512nobw()) {
4889     int dst_enc = dst->encoding();
4890     int src_enc = src->encoding();
4891     if (dst_enc == src_enc) {
4892       if (dst_enc < 16) {
4893         Assembler::punpcklbw(dst, src);
4894       } else {
4895         subptr(rsp, 64);
4896         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4897         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4898         Assembler::punpcklbw(xmm0, xmm0);
4899         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4900         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4901         addptr(rsp, 64);
4902       }
4903     } else {
4904       if ((src_enc < 16) && (dst_enc < 16)) {
4905         Assembler::punpcklbw(dst, src);
4906       } else if (src_enc < 16) {
4907         subptr(rsp, 64);
4908         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4909         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4910         Assembler::punpcklbw(xmm0, src);
4911         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4912         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4913         addptr(rsp, 64);
4914       } else if (dst_enc < 16) {
4915         subptr(rsp, 64);
4916         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4917         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4918         Assembler::punpcklbw(dst, xmm0);
4919         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4920         addptr(rsp, 64);
4921       } else {
4922         subptr(rsp, 64);
4923         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4924         subptr(rsp, 64);
4925         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4926         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4927         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4928         Assembler::punpcklbw(xmm0, xmm1);
4929         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4930         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4931         addptr(rsp, 64);
4932         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4933         addptr(rsp, 64);
4934       }
4935     }
4936   } else {
4937     Assembler::punpcklbw(dst, src);
4938   }
4939 }
4940 
4941 // This instruction exists within macros, ergo we cannot control its input
4942 // when emitted through those patterns.
4943 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4944   if (VM_Version::supports_avx512nobw()) {
4945     int dst_enc = dst->encoding();
4946     int src_enc = src->encoding();
4947     if (dst_enc == src_enc) {
4948       if (dst_enc < 16) {
4949         Assembler::pshuflw(dst, src, mode);
4950       } else {
4951         subptr(rsp, 64);
4952         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4953         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4954         Assembler::pshuflw(xmm0, xmm0, mode);
4955         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4956         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4957         addptr(rsp, 64);
4958       }
4959     } else {
4960       if ((src_enc < 16) && (dst_enc < 16)) {
4961         Assembler::pshuflw(dst, src, mode);
4962       } else if (src_enc < 16) {
4963         subptr(rsp, 64);
4964         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4965         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4966         Assembler::pshuflw(xmm0, src, mode);
4967         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4968         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4969         addptr(rsp, 64);
4970       } else if (dst_enc < 16) {
4971         subptr(rsp, 64);
4972         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4973         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4974         Assembler::pshuflw(dst, xmm0, mode);
4975         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4976         addptr(rsp, 64);
4977       } else {
4978         subptr(rsp, 64);
4979         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4980         subptr(rsp, 64);
4981         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4982         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4983         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4984         Assembler::pshuflw(xmm0, xmm1, mode);
4985         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4986         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4987         addptr(rsp, 64);
4988         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4989         addptr(rsp, 64);
4990       }
4991     }
4992   } else {
4993     Assembler::pshuflw(dst, src, mode);
4994   }
4995 }
4996 
4997 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4998   if (reachable(src)) {
4999     vandpd(dst, nds, as_Address(src), vector_len);
5000   } else {
5001     lea(rscratch1, src);
5002     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5003   }
5004 }
5005 
5006 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5007   if (reachable(src)) {
5008     vandps(dst, nds, as_Address(src), vector_len);
5009   } else {
5010     lea(rscratch1, src);
5011     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5012   }
5013 }
5014 
5015 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5016   if (reachable(src)) {
5017     vdivsd(dst, nds, as_Address(src));
5018   } else {
5019     lea(rscratch1, src);
5020     vdivsd(dst, nds, Address(rscratch1, 0));
5021   }
5022 }
5023 
5024 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5025   if (reachable(src)) {
5026     vdivss(dst, nds, as_Address(src));
5027   } else {
5028     lea(rscratch1, src);
5029     vdivss(dst, nds, Address(rscratch1, 0));
5030   }
5031 }
5032 
5033 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5034   if (reachable(src)) {
5035     vmulsd(dst, nds, as_Address(src));
5036   } else {
5037     lea(rscratch1, src);
5038     vmulsd(dst, nds, Address(rscratch1, 0));
5039   }
5040 }
5041 
5042 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5043   if (reachable(src)) {
5044     vmulss(dst, nds, as_Address(src));
5045   } else {
5046     lea(rscratch1, src);
5047     vmulss(dst, nds, Address(rscratch1, 0));
5048   }
5049 }
5050 
5051 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5052   if (reachable(src)) {
5053     vsubsd(dst, nds, as_Address(src));
5054   } else {
5055     lea(rscratch1, src);
5056     vsubsd(dst, nds, Address(rscratch1, 0));
5057   }
5058 }
5059 
5060 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5061   if (reachable(src)) {
5062     vsubss(dst, nds, as_Address(src));
5063   } else {
5064     lea(rscratch1, src);
5065     vsubss(dst, nds, Address(rscratch1, 0));
5066   }
5067 }
5068 
5069 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5070   int nds_enc = nds->encoding();
5071   int dst_enc = dst->encoding();
5072   bool dst_upper_bank = (dst_enc > 15);
5073   bool nds_upper_bank = (nds_enc > 15);
5074   if (VM_Version::supports_avx512novl() &&
5075       (nds_upper_bank || dst_upper_bank)) {
5076     if (dst_upper_bank) {
5077       subptr(rsp, 64);
5078       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5079       movflt(xmm0, nds);
5080       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5081       movflt(dst, xmm0);
5082       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5083       addptr(rsp, 64);
5084     } else {
5085       movflt(dst, nds);
5086       vxorps(dst, dst, src, Assembler::AVX_128bit);
5087     }
5088   } else {
5089     vxorps(dst, nds, src, Assembler::AVX_128bit);
5090   }
5091 }
5092 
5093 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5094   int nds_enc = nds->encoding();
5095   int dst_enc = dst->encoding();
5096   bool dst_upper_bank = (dst_enc > 15);
5097   bool nds_upper_bank = (nds_enc > 15);
5098   if (VM_Version::supports_avx512novl() &&
5099       (nds_upper_bank || dst_upper_bank)) {
5100     if (dst_upper_bank) {
5101       subptr(rsp, 64);
5102       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5103       movdbl(xmm0, nds);
5104       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5105       movdbl(dst, xmm0);
5106       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5107       addptr(rsp, 64);
5108     } else {
5109       movdbl(dst, nds);
5110       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5111     }
5112   } else {
5113     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5114   }
5115 }
5116 
5117 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5118   if (reachable(src)) {
5119     vxorpd(dst, nds, as_Address(src), vector_len);
5120   } else {
5121     lea(rscratch1, src);
5122     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5123   }
5124 }
5125 
5126 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5127   if (reachable(src)) {
5128     vxorps(dst, nds, as_Address(src), vector_len);
5129   } else {
5130     lea(rscratch1, src);
5131     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5132   }
5133 }
5134 
5135 
5136 void MacroAssembler::resolve_jobject(Register value,
5137                                      Register thread,
5138                                      Register tmp) {
5139   assert_different_registers(value, thread, tmp);
5140   Label done, not_weak;
5141   testptr(value, value);
5142   jcc(Assembler::zero, done);                // Use NULL as-is.
5143   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5144   jcc(Assembler::zero, not_weak);
5145   // Resolve jweak.
5146   movptr(value, Address(value, -JNIHandles::weak_tag_value));
5147   verify_oop(value);
5148 #if INCLUDE_ALL_GCS
5149   if (UseG1GC) {
5150     g1_write_barrier_pre(noreg /* obj */,
5151                          value /* pre_val */,
5152                          thread /* thread */,
5153                          tmp /* tmp */,
5154                          true /* tosca_live */,
5155                          true /* expand_call */);
5156   }
5157 #endif // INCLUDE_ALL_GCS
5158   jmp(done);
5159   bind(not_weak);
5160   // Resolve (untagged) jobject.
5161   movptr(value, Address(value, 0));
5162   verify_oop(value);
5163   bind(done);
5164 }
5165 
5166 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5167   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5168   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5169   // The inverted mask is sign-extended
5170   andptr(possibly_jweak, inverted_jweak_mask);
5171 }
5172 
5173 //////////////////////////////////////////////////////////////////////////////////
5174 #if INCLUDE_ALL_GCS
5175 
5176 void MacroAssembler::g1_write_barrier_pre(Register obj,
5177                                           Register pre_val,
5178                                           Register thread,
5179                                           Register tmp,
5180                                           bool tosca_live,
5181                                           bool expand_call) {
5182 
5183   // If expand_call is true then we expand the call_VM_leaf macro
5184   // directly to skip generating the check by
5185   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5186 
5187 #ifdef _LP64
5188   assert(thread == r15_thread, "must be");
5189 #endif // _LP64
5190 
5191   Label done;
5192   Label runtime;
5193 
5194   assert(pre_val != noreg, "check this code");
5195 
5196   if (obj != noreg) {
5197     assert_different_registers(obj, pre_val, tmp);
5198     assert(pre_val != rax, "check this code");
5199   }
5200 
5201   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5202                                        SATBMarkQueue::byte_offset_of_active()));
5203   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5204                                        SATBMarkQueue::byte_offset_of_index()));
5205   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5206                                        SATBMarkQueue::byte_offset_of_buf()));
5207 
5208 
5209   // Is marking active?
5210   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5211     cmpl(in_progress, 0);
5212   } else {
5213     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5214     cmpb(in_progress, 0);
5215   }
5216   jcc(Assembler::equal, done);
5217 
5218   // Do we need to load the previous value?
5219   if (obj != noreg) {
5220     load_heap_oop(pre_val, Address(obj, 0));
5221   }
5222 
5223   // Is the previous value null?
5224   cmpptr(pre_val, (int32_t) NULL_WORD);
5225   jcc(Assembler::equal, done);
5226 
5227   // Can we store original value in the thread's buffer?
5228   // Is index == 0?
5229   // (The index field is typed as size_t.)
5230 
5231   movptr(tmp, index);                   // tmp := *index_adr
5232   cmpptr(tmp, 0);                       // tmp == 0?
5233   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5234 
5235   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5236   movptr(index, tmp);                   // *index_adr := tmp
5237   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5238 
5239   // Record the previous value
5240   movptr(Address(tmp, 0), pre_val);
5241   jmp(done);
5242 
5243   bind(runtime);
5244   // save the live input values
5245   if(tosca_live) push(rax);
5246 
5247   if (obj != noreg && obj != rax)
5248     push(obj);
5249 
5250   if (pre_val != rax)
5251     push(pre_val);
5252 
5253   // Calling the runtime using the regular call_VM_leaf mechanism generates
5254   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5255   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5256   //
5257   // If we care generating the pre-barrier without a frame (e.g. in the
5258   // intrinsified Reference.get() routine) then ebp might be pointing to
5259   // the caller frame and so this check will most likely fail at runtime.
5260   //
5261   // Expanding the call directly bypasses the generation of the check.
5262   // So when we do not have have a full interpreter frame on the stack
5263   // expand_call should be passed true.
5264 
5265   NOT_LP64( push(thread); )
5266 
5267   if (expand_call) {
5268     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5269     pass_arg1(this, thread);
5270     pass_arg0(this, pre_val);
5271     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5272   } else {
5273     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5274   }
5275 
5276   NOT_LP64( pop(thread); )
5277 
5278   // save the live input values
5279   if (pre_val != rax)
5280     pop(pre_val);
5281 
5282   if (obj != noreg && obj != rax)
5283     pop(obj);
5284 
5285   if(tosca_live) pop(rax);
5286 
5287   bind(done);
5288 }
5289 
5290 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5291                                            Register new_val,
5292                                            Register thread,
5293                                            Register tmp,
5294                                            Register tmp2) {
5295 #ifdef _LP64
5296   assert(thread == r15_thread, "must be");
5297 #endif // _LP64
5298 
5299   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5300                                        DirtyCardQueue::byte_offset_of_index()));
5301   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5302                                        DirtyCardQueue::byte_offset_of_buf()));
5303 
5304   CardTableModRefBS* ct =
5305     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5306   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5307 
5308   Label done;
5309   Label runtime;
5310 
5311   // Does store cross heap regions?
5312 
5313   movptr(tmp, store_addr);
5314   xorptr(tmp, new_val);
5315   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5316   jcc(Assembler::equal, done);
5317 
5318   // crosses regions, storing NULL?
5319 
5320   cmpptr(new_val, (int32_t) NULL_WORD);
5321   jcc(Assembler::equal, done);
5322 
5323   // storing region crossing non-NULL, is card already dirty?
5324 
5325   const Register card_addr = tmp;
5326   const Register cardtable = tmp2;
5327 
5328   movptr(card_addr, store_addr);
5329   shrptr(card_addr, CardTableModRefBS::card_shift);
5330   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5331   // a valid address and therefore is not properly handled by the relocation code.
5332   movptr(cardtable, (intptr_t)ct->byte_map_base);
5333   addptr(card_addr, cardtable);
5334 
5335   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5336   jcc(Assembler::equal, done);
5337 
5338   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5339   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5340   jcc(Assembler::equal, done);
5341 
5342 
5343   // storing a region crossing, non-NULL oop, card is clean.
5344   // dirty card and log.
5345 
5346   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5347 
5348   cmpl(queue_index, 0);
5349   jcc(Assembler::equal, runtime);
5350   subl(queue_index, wordSize);
5351   movptr(tmp2, buffer);
5352 #ifdef _LP64
5353   movslq(rscratch1, queue_index);
5354   addq(tmp2, rscratch1);
5355   movq(Address(tmp2, 0), card_addr);
5356 #else
5357   addl(tmp2, queue_index);
5358   movl(Address(tmp2, 0), card_addr);
5359 #endif
5360   jmp(done);
5361 
5362   bind(runtime);
5363   // save the live input values
5364   push(store_addr);
5365   push(new_val);
5366 #ifdef _LP64
5367   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5368 #else
5369   push(thread);
5370   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5371   pop(thread);
5372 #endif
5373   pop(new_val);
5374   pop(store_addr);
5375 
5376   bind(done);
5377 }
5378 
5379 #endif // INCLUDE_ALL_GCS
5380 //////////////////////////////////////////////////////////////////////////////////
5381 
5382 
5383 void MacroAssembler::store_check(Register obj, Address dst) {
5384   store_check(obj);
5385 }
5386 
5387 void MacroAssembler::store_check(Register obj) {
5388   // Does a store check for the oop in register obj. The content of
5389   // register obj is destroyed afterwards.
5390   BarrierSet* bs = Universe::heap()->barrier_set();
5391   assert(bs->kind() == BarrierSet::CardTableForRS ||
5392          bs->kind() == BarrierSet::CardTableExtension,
5393          "Wrong barrier set kind");
5394 
5395   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5396   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5397 
5398   shrptr(obj, CardTableModRefBS::card_shift);
5399 
5400   Address card_addr;
5401 
5402   // The calculation for byte_map_base is as follows:
5403   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5404   // So this essentially converts an address to a displacement and it will
5405   // never need to be relocated. On 64bit however the value may be too
5406   // large for a 32bit displacement.
5407   intptr_t disp = (intptr_t) ct->byte_map_base;
5408   if (is_simm32(disp)) {
5409     card_addr = Address(noreg, obj, Address::times_1, disp);
5410   } else {
5411     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5412     // displacement and done in a single instruction given favorable mapping and a
5413     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5414     // entry and that entry is not properly handled by the relocation code.
5415     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5416     Address index(noreg, obj, Address::times_1);
5417     card_addr = as_Address(ArrayAddress(cardtable, index));
5418   }
5419 
5420   int dirty = CardTableModRefBS::dirty_card_val();
5421   if (UseCondCardMark) {
5422     Label L_already_dirty;
5423     if (UseConcMarkSweepGC) {
5424       membar(Assembler::StoreLoad);
5425     }
5426     cmpb(card_addr, dirty);
5427     jcc(Assembler::equal, L_already_dirty);
5428     movb(card_addr, dirty);
5429     bind(L_already_dirty);
5430   } else {
5431     movb(card_addr, dirty);
5432   }
5433 }
5434 
5435 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5436   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5437 }
5438 
5439 // Force generation of a 4 byte immediate value even if it fits into 8bit
5440 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5441   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5442 }
5443 
5444 void MacroAssembler::subptr(Register dst, Register src) {
5445   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5446 }
5447 
5448 // C++ bool manipulation
5449 void MacroAssembler::testbool(Register dst) {
5450   if(sizeof(bool) == 1)
5451     testb(dst, 0xff);
5452   else if(sizeof(bool) == 2) {
5453     // testw implementation needed for two byte bools
5454     ShouldNotReachHere();
5455   } else if(sizeof(bool) == 4)
5456     testl(dst, dst);
5457   else
5458     // unsupported
5459     ShouldNotReachHere();
5460 }
5461 
5462 void MacroAssembler::testptr(Register dst, Register src) {
5463   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5464 }
5465 
5466 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5467 void MacroAssembler::tlab_allocate(Register obj,
5468                                    Register var_size_in_bytes,
5469                                    int con_size_in_bytes,
5470                                    Register t1,
5471                                    Register t2,
5472                                    Label& slow_case) {
5473   assert_different_registers(obj, t1, t2);
5474   assert_different_registers(obj, var_size_in_bytes, t1);
5475   Register end = t2;
5476   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5477 
5478   verify_tlab();
5479 
5480   NOT_LP64(get_thread(thread));
5481 
5482   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5483   if (var_size_in_bytes == noreg) {
5484     lea(end, Address(obj, con_size_in_bytes));
5485   } else {
5486     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5487   }
5488   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5489   jcc(Assembler::above, slow_case);
5490 
5491   // update the tlab top pointer
5492   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5493 
5494   // recover var_size_in_bytes if necessary
5495   if (var_size_in_bytes == end) {
5496     subptr(var_size_in_bytes, obj);
5497   }
5498   verify_tlab();
5499 }
5500 
5501 // Preserves rbx, and rdx.
5502 Register MacroAssembler::tlab_refill(Label& retry,
5503                                      Label& try_eden,
5504                                      Label& slow_case) {
5505   Register top = rax;
5506   Register t1  = rcx; // object size
5507   Register t2  = rsi;
5508   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5509   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5510   Label do_refill, discard_tlab;
5511 
5512   if (!Universe::heap()->supports_inline_contig_alloc()) {
5513     // No allocation in the shared eden.
5514     jmp(slow_case);
5515   }
5516 
5517   NOT_LP64(get_thread(thread_reg));
5518 
5519   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5520   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5521 
5522   // calculate amount of free space
5523   subptr(t1, top);
5524   shrptr(t1, LogHeapWordSize);
5525 
5526   // Retain tlab and allocate object in shared space if
5527   // the amount free in the tlab is too large to discard.
5528   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5529   jcc(Assembler::lessEqual, discard_tlab);
5530 
5531   // Retain
5532   // %%% yuck as movptr...
5533   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5534   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5535   if (TLABStats) {
5536     // increment number of slow_allocations
5537     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5538   }
5539   jmp(try_eden);
5540 
5541   bind(discard_tlab);
5542   if (TLABStats) {
5543     // increment number of refills
5544     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5545     // accumulate wastage -- t1 is amount free in tlab
5546     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5547   }
5548 
5549   // if tlab is currently allocated (top or end != null) then
5550   // fill [top, end + alignment_reserve) with array object
5551   testptr(top, top);
5552   jcc(Assembler::zero, do_refill);
5553 
5554   // set up the mark word
5555   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5556   // set the length to the remaining space
5557   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5558   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5559   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5560   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5561   // set klass to intArrayKlass
5562   // dubious reloc why not an oop reloc?
5563   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5564   // store klass last.  concurrent gcs assumes klass length is valid if
5565   // klass field is not null.
5566   store_klass(top, t1);
5567 
5568   movptr(t1, top);
5569   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5570   incr_allocated_bytes(thread_reg, t1, 0);
5571 
5572   // refill the tlab with an eden allocation
5573   bind(do_refill);
5574   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5575   shlptr(t1, LogHeapWordSize);
5576   // allocate new tlab, address returned in top
5577   eden_allocate(top, t1, 0, t2, slow_case);
5578 
5579   // Check that t1 was preserved in eden_allocate.
5580 #ifdef ASSERT
5581   if (UseTLAB) {
5582     Label ok;
5583     Register tsize = rsi;
5584     assert_different_registers(tsize, thread_reg, t1);
5585     push(tsize);
5586     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5587     shlptr(tsize, LogHeapWordSize);
5588     cmpptr(t1, tsize);
5589     jcc(Assembler::equal, ok);
5590     STOP("assert(t1 != tlab size)");
5591     should_not_reach_here();
5592 
5593     bind(ok);
5594     pop(tsize);
5595   }
5596 #endif
5597   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5598   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5599   addptr(top, t1);
5600   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5601   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5602 
5603   if (ZeroTLAB) {
5604     // This is a fast TLAB refill, therefore the GC is not notified of it.
5605     // So compiled code must fill the new TLAB with zeroes.
5606     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5607     zero_memory(top, t1, 0, t2);
5608   }
5609 
5610   verify_tlab();
5611   jmp(retry);
5612 
5613   return thread_reg; // for use by caller
5614 }
5615 
5616 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5617 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5618   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5619   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5620   Label done;
5621 
5622   testptr(length_in_bytes, length_in_bytes);
5623   jcc(Assembler::zero, done);
5624 
5625   // initialize topmost word, divide index by 2, check if odd and test if zero
5626   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5627 #ifdef ASSERT
5628   {
5629     Label L;
5630     testptr(length_in_bytes, BytesPerWord - 1);
5631     jcc(Assembler::zero, L);
5632     stop("length must be a multiple of BytesPerWord");
5633     bind(L);
5634   }
5635 #endif
5636   Register index = length_in_bytes;
5637   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5638   if (UseIncDec) {
5639     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5640   } else {
5641     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5642     shrptr(index, 1);
5643   }
5644 #ifndef _LP64
5645   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5646   {
5647     Label even;
5648     // note: if index was a multiple of 8, then it cannot
5649     //       be 0 now otherwise it must have been 0 before
5650     //       => if it is even, we don't need to check for 0 again
5651     jcc(Assembler::carryClear, even);
5652     // clear topmost word (no jump would be needed if conditional assignment worked here)
5653     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5654     // index could be 0 now, must check again
5655     jcc(Assembler::zero, done);
5656     bind(even);
5657   }
5658 #endif // !_LP64
5659   // initialize remaining object fields: index is a multiple of 2 now
5660   {
5661     Label loop;
5662     bind(loop);
5663     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5664     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5665     decrement(index);
5666     jcc(Assembler::notZero, loop);
5667   }
5668 
5669   bind(done);
5670 }
5671 
5672 void MacroAssembler::incr_allocated_bytes(Register thread,
5673                                           Register var_size_in_bytes,
5674                                           int con_size_in_bytes,
5675                                           Register t1) {
5676   if (!thread->is_valid()) {
5677 #ifdef _LP64
5678     thread = r15_thread;
5679 #else
5680     assert(t1->is_valid(), "need temp reg");
5681     thread = t1;
5682     get_thread(thread);
5683 #endif
5684   }
5685 
5686 #ifdef _LP64
5687   if (var_size_in_bytes->is_valid()) {
5688     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5689   } else {
5690     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5691   }
5692 #else
5693   if (var_size_in_bytes->is_valid()) {
5694     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5695   } else {
5696     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5697   }
5698   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5699 #endif
5700 }
5701 
5702 // Look up the method for a megamorphic invokeinterface call.
5703 // The target method is determined by <intf_klass, itable_index>.
5704 // The receiver klass is in recv_klass.
5705 // On success, the result will be in method_result, and execution falls through.
5706 // On failure, execution transfers to the given label.
5707 void MacroAssembler::lookup_interface_method(Register recv_klass,
5708                                              Register intf_klass,
5709                                              RegisterOrConstant itable_index,
5710                                              Register method_result,
5711                                              Register scan_temp,
5712                                              Label& L_no_such_interface) {
5713   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5714   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5715          "caller must use same register for non-constant itable index as for method");
5716 
5717   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5718   int vtable_base = in_bytes(Klass::vtable_start_offset());
5719   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5720   int scan_step   = itableOffsetEntry::size() * wordSize;
5721   int vte_size    = vtableEntry::size_in_bytes();
5722   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5723   assert(vte_size == wordSize, "else adjust times_vte_scale");
5724 
5725   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5726 
5727   // %%% Could store the aligned, prescaled offset in the klassoop.
5728   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5729 
5730   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5731   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5732   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5733 
5734   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5735   //   if (scan->interface() == intf) {
5736   //     result = (klass + scan->offset() + itable_index);
5737   //   }
5738   // }
5739   Label search, found_method;
5740 
5741   for (int peel = 1; peel >= 0; peel--) {
5742     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5743     cmpptr(intf_klass, method_result);
5744 
5745     if (peel) {
5746       jccb(Assembler::equal, found_method);
5747     } else {
5748       jccb(Assembler::notEqual, search);
5749       // (invert the test to fall through to found_method...)
5750     }
5751 
5752     if (!peel)  break;
5753 
5754     bind(search);
5755 
5756     // Check that the previous entry is non-null.  A null entry means that
5757     // the receiver class doesn't implement the interface, and wasn't the
5758     // same as when the caller was compiled.
5759     testptr(method_result, method_result);
5760     jcc(Assembler::zero, L_no_such_interface);
5761     addptr(scan_temp, scan_step);
5762   }
5763 
5764   bind(found_method);
5765 
5766   // Got a hit.
5767   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5768   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5769 }
5770 
5771 
5772 // virtual method calling
5773 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5774                                            RegisterOrConstant vtable_index,
5775                                            Register method_result) {
5776   const int base = in_bytes(Klass::vtable_start_offset());
5777   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5778   Address vtable_entry_addr(recv_klass,
5779                             vtable_index, Address::times_ptr,
5780                             base + vtableEntry::method_offset_in_bytes());
5781   movptr(method_result, vtable_entry_addr);
5782 }
5783 
5784 
5785 void MacroAssembler::check_klass_subtype(Register sub_klass,
5786                            Register super_klass,
5787                            Register temp_reg,
5788                            Label& L_success) {
5789   Label L_failure;
5790   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5791   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5792   bind(L_failure);
5793 }
5794 
5795 
5796 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5797                                                    Register super_klass,
5798                                                    Register temp_reg,
5799                                                    Label* L_success,
5800                                                    Label* L_failure,
5801                                                    Label* L_slow_path,
5802                                         RegisterOrConstant super_check_offset) {
5803   assert_different_registers(sub_klass, super_klass, temp_reg);
5804   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5805   if (super_check_offset.is_register()) {
5806     assert_different_registers(sub_klass, super_klass,
5807                                super_check_offset.as_register());
5808   } else if (must_load_sco) {
5809     assert(temp_reg != noreg, "supply either a temp or a register offset");
5810   }
5811 
5812   Label L_fallthrough;
5813   int label_nulls = 0;
5814   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5815   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5816   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5817   assert(label_nulls <= 1, "at most one NULL in the batch");
5818 
5819   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5820   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5821   Address super_check_offset_addr(super_klass, sco_offset);
5822 
5823   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5824   // range of a jccb.  If this routine grows larger, reconsider at
5825   // least some of these.
5826 #define local_jcc(assembler_cond, label)                                \
5827   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5828   else                             jcc( assembler_cond, label) /*omit semi*/
5829 
5830   // Hacked jmp, which may only be used just before L_fallthrough.
5831 #define final_jmp(label)                                                \
5832   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5833   else                            jmp(label)                /*omit semi*/
5834 
5835   // If the pointers are equal, we are done (e.g., String[] elements).
5836   // This self-check enables sharing of secondary supertype arrays among
5837   // non-primary types such as array-of-interface.  Otherwise, each such
5838   // type would need its own customized SSA.
5839   // We move this check to the front of the fast path because many
5840   // type checks are in fact trivially successful in this manner,
5841   // so we get a nicely predicted branch right at the start of the check.
5842   cmpptr(sub_klass, super_klass);
5843   local_jcc(Assembler::equal, *L_success);
5844 
5845   // Check the supertype display:
5846   if (must_load_sco) {
5847     // Positive movl does right thing on LP64.
5848     movl(temp_reg, super_check_offset_addr);
5849     super_check_offset = RegisterOrConstant(temp_reg);
5850   }
5851   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5852   cmpptr(super_klass, super_check_addr); // load displayed supertype
5853 
5854   // This check has worked decisively for primary supers.
5855   // Secondary supers are sought in the super_cache ('super_cache_addr').
5856   // (Secondary supers are interfaces and very deeply nested subtypes.)
5857   // This works in the same check above because of a tricky aliasing
5858   // between the super_cache and the primary super display elements.
5859   // (The 'super_check_addr' can address either, as the case requires.)
5860   // Note that the cache is updated below if it does not help us find
5861   // what we need immediately.
5862   // So if it was a primary super, we can just fail immediately.
5863   // Otherwise, it's the slow path for us (no success at this point).
5864 
5865   if (super_check_offset.is_register()) {
5866     local_jcc(Assembler::equal, *L_success);
5867     cmpl(super_check_offset.as_register(), sc_offset);
5868     if (L_failure == &L_fallthrough) {
5869       local_jcc(Assembler::equal, *L_slow_path);
5870     } else {
5871       local_jcc(Assembler::notEqual, *L_failure);
5872       final_jmp(*L_slow_path);
5873     }
5874   } else if (super_check_offset.as_constant() == sc_offset) {
5875     // Need a slow path; fast failure is impossible.
5876     if (L_slow_path == &L_fallthrough) {
5877       local_jcc(Assembler::equal, *L_success);
5878     } else {
5879       local_jcc(Assembler::notEqual, *L_slow_path);
5880       final_jmp(*L_success);
5881     }
5882   } else {
5883     // No slow path; it's a fast decision.
5884     if (L_failure == &L_fallthrough) {
5885       local_jcc(Assembler::equal, *L_success);
5886     } else {
5887       local_jcc(Assembler::notEqual, *L_failure);
5888       final_jmp(*L_success);
5889     }
5890   }
5891 
5892   bind(L_fallthrough);
5893 
5894 #undef local_jcc
5895 #undef final_jmp
5896 }
5897 
5898 
5899 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5900                                                    Register super_klass,
5901                                                    Register temp_reg,
5902                                                    Register temp2_reg,
5903                                                    Label* L_success,
5904                                                    Label* L_failure,
5905                                                    bool set_cond_codes) {
5906   assert_different_registers(sub_klass, super_klass, temp_reg);
5907   if (temp2_reg != noreg)
5908     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5909 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5910 
5911   Label L_fallthrough;
5912   int label_nulls = 0;
5913   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5914   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5915   assert(label_nulls <= 1, "at most one NULL in the batch");
5916 
5917   // a couple of useful fields in sub_klass:
5918   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5919   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5920   Address secondary_supers_addr(sub_klass, ss_offset);
5921   Address super_cache_addr(     sub_klass, sc_offset);
5922 
5923   // Do a linear scan of the secondary super-klass chain.
5924   // This code is rarely used, so simplicity is a virtue here.
5925   // The repne_scan instruction uses fixed registers, which we must spill.
5926   // Don't worry too much about pre-existing connections with the input regs.
5927 
5928   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5929   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5930 
5931   // Get super_klass value into rax (even if it was in rdi or rcx).
5932   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5933   if (super_klass != rax || UseCompressedOops) {
5934     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5935     mov(rax, super_klass);
5936   }
5937   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5938   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5939 
5940 #ifndef PRODUCT
5941   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5942   ExternalAddress pst_counter_addr((address) pst_counter);
5943   NOT_LP64(  incrementl(pst_counter_addr) );
5944   LP64_ONLY( lea(rcx, pst_counter_addr) );
5945   LP64_ONLY( incrementl(Address(rcx, 0)) );
5946 #endif //PRODUCT
5947 
5948   // We will consult the secondary-super array.
5949   movptr(rdi, secondary_supers_addr);
5950   // Load the array length.  (Positive movl does right thing on LP64.)
5951   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5952   // Skip to start of data.
5953   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5954 
5955   // Scan RCX words at [RDI] for an occurrence of RAX.
5956   // Set NZ/Z based on last compare.
5957   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5958   // not change flags (only scas instruction which is repeated sets flags).
5959   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5960 
5961     testptr(rax,rax); // Set Z = 0
5962     repne_scan();
5963 
5964   // Unspill the temp. registers:
5965   if (pushed_rdi)  pop(rdi);
5966   if (pushed_rcx)  pop(rcx);
5967   if (pushed_rax)  pop(rax);
5968 
5969   if (set_cond_codes) {
5970     // Special hack for the AD files:  rdi is guaranteed non-zero.
5971     assert(!pushed_rdi, "rdi must be left non-NULL");
5972     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5973   }
5974 
5975   if (L_failure == &L_fallthrough)
5976         jccb(Assembler::notEqual, *L_failure);
5977   else  jcc(Assembler::notEqual, *L_failure);
5978 
5979   // Success.  Cache the super we found and proceed in triumph.
5980   movptr(super_cache_addr, super_klass);
5981 
5982   if (L_success != &L_fallthrough) {
5983     jmp(*L_success);
5984   }
5985 
5986 #undef IS_A_TEMP
5987 
5988   bind(L_fallthrough);
5989 }
5990 
5991 
5992 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5993   if (VM_Version::supports_cmov()) {
5994     cmovl(cc, dst, src);
5995   } else {
5996     Label L;
5997     jccb(negate_condition(cc), L);
5998     movl(dst, src);
5999     bind(L);
6000   }
6001 }
6002 
6003 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6004   if (VM_Version::supports_cmov()) {
6005     cmovl(cc, dst, src);
6006   } else {
6007     Label L;
6008     jccb(negate_condition(cc), L);
6009     movl(dst, src);
6010     bind(L);
6011   }
6012 }
6013 
6014 void MacroAssembler::verify_oop(Register reg, const char* s) {
6015   if (!VerifyOops) return;
6016 
6017   // Pass register number to verify_oop_subroutine
6018   const char* b = NULL;
6019   {
6020     ResourceMark rm;
6021     stringStream ss;
6022     ss.print("verify_oop: %s: %s", reg->name(), s);
6023     b = code_string(ss.as_string());
6024   }
6025   BLOCK_COMMENT("verify_oop {");
6026 #ifdef _LP64
6027   push(rscratch1);                    // save r10, trashed by movptr()
6028 #endif
6029   push(rax);                          // save rax,
6030   push(reg);                          // pass register argument
6031   ExternalAddress buffer((address) b);
6032   // avoid using pushptr, as it modifies scratch registers
6033   // and our contract is not to modify anything
6034   movptr(rax, buffer.addr());
6035   push(rax);
6036   // call indirectly to solve generation ordering problem
6037   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6038   call(rax);
6039   // Caller pops the arguments (oop, message) and restores rax, r10
6040   BLOCK_COMMENT("} verify_oop");
6041 }
6042 
6043 
6044 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6045                                                       Register tmp,
6046                                                       int offset) {
6047   intptr_t value = *delayed_value_addr;
6048   if (value != 0)
6049     return RegisterOrConstant(value + offset);
6050 
6051   // load indirectly to solve generation ordering problem
6052   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6053 
6054 #ifdef ASSERT
6055   { Label L;
6056     testptr(tmp, tmp);
6057     if (WizardMode) {
6058       const char* buf = NULL;
6059       {
6060         ResourceMark rm;
6061         stringStream ss;
6062         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6063         buf = code_string(ss.as_string());
6064       }
6065       jcc(Assembler::notZero, L);
6066       STOP(buf);
6067     } else {
6068       jccb(Assembler::notZero, L);
6069       hlt();
6070     }
6071     bind(L);
6072   }
6073 #endif
6074 
6075   if (offset != 0)
6076     addptr(tmp, offset);
6077 
6078   return RegisterOrConstant(tmp);
6079 }
6080 
6081 
6082 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6083                                          int extra_slot_offset) {
6084   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6085   int stackElementSize = Interpreter::stackElementSize;
6086   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6087 #ifdef ASSERT
6088   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6089   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6090 #endif
6091   Register             scale_reg    = noreg;
6092   Address::ScaleFactor scale_factor = Address::no_scale;
6093   if (arg_slot.is_constant()) {
6094     offset += arg_slot.as_constant() * stackElementSize;
6095   } else {
6096     scale_reg    = arg_slot.as_register();
6097     scale_factor = Address::times(stackElementSize);
6098   }
6099   offset += wordSize;           // return PC is on stack
6100   return Address(rsp, scale_reg, scale_factor, offset);
6101 }
6102 
6103 
6104 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6105   if (!VerifyOops) return;
6106 
6107   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6108   // Pass register number to verify_oop_subroutine
6109   const char* b = NULL;
6110   {
6111     ResourceMark rm;
6112     stringStream ss;
6113     ss.print("verify_oop_addr: %s", s);
6114     b = code_string(ss.as_string());
6115   }
6116 #ifdef _LP64
6117   push(rscratch1);                    // save r10, trashed by movptr()
6118 #endif
6119   push(rax);                          // save rax,
6120   // addr may contain rsp so we will have to adjust it based on the push
6121   // we just did (and on 64 bit we do two pushes)
6122   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6123   // stores rax into addr which is backwards of what was intended.
6124   if (addr.uses(rsp)) {
6125     lea(rax, addr);
6126     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6127   } else {
6128     pushptr(addr);
6129   }
6130 
6131   ExternalAddress buffer((address) b);
6132   // pass msg argument
6133   // avoid using pushptr, as it modifies scratch registers
6134   // and our contract is not to modify anything
6135   movptr(rax, buffer.addr());
6136   push(rax);
6137 
6138   // call indirectly to solve generation ordering problem
6139   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6140   call(rax);
6141   // Caller pops the arguments (addr, message) and restores rax, r10.
6142 }
6143 
6144 void MacroAssembler::verify_tlab() {
6145 #ifdef ASSERT
6146   if (UseTLAB && VerifyOops) {
6147     Label next, ok;
6148     Register t1 = rsi;
6149     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6150 
6151     push(t1);
6152     NOT_LP64(push(thread_reg));
6153     NOT_LP64(get_thread(thread_reg));
6154 
6155     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6156     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6157     jcc(Assembler::aboveEqual, next);
6158     STOP("assert(top >= start)");
6159     should_not_reach_here();
6160 
6161     bind(next);
6162     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6163     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6164     jcc(Assembler::aboveEqual, ok);
6165     STOP("assert(top <= end)");
6166     should_not_reach_here();
6167 
6168     bind(ok);
6169     NOT_LP64(pop(thread_reg));
6170     pop(t1);
6171   }
6172 #endif
6173 }
6174 
6175 class ControlWord {
6176  public:
6177   int32_t _value;
6178 
6179   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6180   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6181   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6182   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6183   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6184   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6185   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6186   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6187 
6188   void print() const {
6189     // rounding control
6190     const char* rc;
6191     switch (rounding_control()) {
6192       case 0: rc = "round near"; break;
6193       case 1: rc = "round down"; break;
6194       case 2: rc = "round up  "; break;
6195       case 3: rc = "chop      "; break;
6196     };
6197     // precision control
6198     const char* pc;
6199     switch (precision_control()) {
6200       case 0: pc = "24 bits "; break;
6201       case 1: pc = "reserved"; break;
6202       case 2: pc = "53 bits "; break;
6203       case 3: pc = "64 bits "; break;
6204     };
6205     // flags
6206     char f[9];
6207     f[0] = ' ';
6208     f[1] = ' ';
6209     f[2] = (precision   ()) ? 'P' : 'p';
6210     f[3] = (underflow   ()) ? 'U' : 'u';
6211     f[4] = (overflow    ()) ? 'O' : 'o';
6212     f[5] = (zero_divide ()) ? 'Z' : 'z';
6213     f[6] = (denormalized()) ? 'D' : 'd';
6214     f[7] = (invalid     ()) ? 'I' : 'i';
6215     f[8] = '\x0';
6216     // output
6217     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6218   }
6219 
6220 };
6221 
6222 class StatusWord {
6223  public:
6224   int32_t _value;
6225 
6226   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6227   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6228   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6229   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6230   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6231   int  top() const                     { return  (_value >> 11) & 7      ; }
6232   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6233   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6234   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6235   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6236   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6237   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6238   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6239   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6240 
6241   void print() const {
6242     // condition codes
6243     char c[5];
6244     c[0] = (C3()) ? '3' : '-';
6245     c[1] = (C2()) ? '2' : '-';
6246     c[2] = (C1()) ? '1' : '-';
6247     c[3] = (C0()) ? '0' : '-';
6248     c[4] = '\x0';
6249     // flags
6250     char f[9];
6251     f[0] = (error_status()) ? 'E' : '-';
6252     f[1] = (stack_fault ()) ? 'S' : '-';
6253     f[2] = (precision   ()) ? 'P' : '-';
6254     f[3] = (underflow   ()) ? 'U' : '-';
6255     f[4] = (overflow    ()) ? 'O' : '-';
6256     f[5] = (zero_divide ()) ? 'Z' : '-';
6257     f[6] = (denormalized()) ? 'D' : '-';
6258     f[7] = (invalid     ()) ? 'I' : '-';
6259     f[8] = '\x0';
6260     // output
6261     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6262   }
6263 
6264 };
6265 
6266 class TagWord {
6267  public:
6268   int32_t _value;
6269 
6270   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6271 
6272   void print() const {
6273     printf("%04x", _value & 0xFFFF);
6274   }
6275 
6276 };
6277 
6278 class FPU_Register {
6279  public:
6280   int32_t _m0;
6281   int32_t _m1;
6282   int16_t _ex;
6283 
6284   bool is_indefinite() const           {
6285     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6286   }
6287 
6288   void print() const {
6289     char  sign = (_ex < 0) ? '-' : '+';
6290     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6291     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6292   };
6293 
6294 };
6295 
6296 class FPU_State {
6297  public:
6298   enum {
6299     register_size       = 10,
6300     number_of_registers =  8,
6301     register_mask       =  7
6302   };
6303 
6304   ControlWord  _control_word;
6305   StatusWord   _status_word;
6306   TagWord      _tag_word;
6307   int32_t      _error_offset;
6308   int32_t      _error_selector;
6309   int32_t      _data_offset;
6310   int32_t      _data_selector;
6311   int8_t       _register[register_size * number_of_registers];
6312 
6313   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6314   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6315 
6316   const char* tag_as_string(int tag) const {
6317     switch (tag) {
6318       case 0: return "valid";
6319       case 1: return "zero";
6320       case 2: return "special";
6321       case 3: return "empty";
6322     }
6323     ShouldNotReachHere();
6324     return NULL;
6325   }
6326 
6327   void print() const {
6328     // print computation registers
6329     { int t = _status_word.top();
6330       for (int i = 0; i < number_of_registers; i++) {
6331         int j = (i - t) & register_mask;
6332         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6333         st(j)->print();
6334         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6335       }
6336     }
6337     printf("\n");
6338     // print control registers
6339     printf("ctrl = "); _control_word.print(); printf("\n");
6340     printf("stat = "); _status_word .print(); printf("\n");
6341     printf("tags = "); _tag_word    .print(); printf("\n");
6342   }
6343 
6344 };
6345 
6346 class Flag_Register {
6347  public:
6348   int32_t _value;
6349 
6350   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6351   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6352   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6353   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6354   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6355   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6356   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6357 
6358   void print() const {
6359     // flags
6360     char f[8];
6361     f[0] = (overflow       ()) ? 'O' : '-';
6362     f[1] = (direction      ()) ? 'D' : '-';
6363     f[2] = (sign           ()) ? 'S' : '-';
6364     f[3] = (zero           ()) ? 'Z' : '-';
6365     f[4] = (auxiliary_carry()) ? 'A' : '-';
6366     f[5] = (parity         ()) ? 'P' : '-';
6367     f[6] = (carry          ()) ? 'C' : '-';
6368     f[7] = '\x0';
6369     // output
6370     printf("%08x  flags = %s", _value, f);
6371   }
6372 
6373 };
6374 
6375 class IU_Register {
6376  public:
6377   int32_t _value;
6378 
6379   void print() const {
6380     printf("%08x  %11d", _value, _value);
6381   }
6382 
6383 };
6384 
6385 class IU_State {
6386  public:
6387   Flag_Register _eflags;
6388   IU_Register   _rdi;
6389   IU_Register   _rsi;
6390   IU_Register   _rbp;
6391   IU_Register   _rsp;
6392   IU_Register   _rbx;
6393   IU_Register   _rdx;
6394   IU_Register   _rcx;
6395   IU_Register   _rax;
6396 
6397   void print() const {
6398     // computation registers
6399     printf("rax,  = "); _rax.print(); printf("\n");
6400     printf("rbx,  = "); _rbx.print(); printf("\n");
6401     printf("rcx  = "); _rcx.print(); printf("\n");
6402     printf("rdx  = "); _rdx.print(); printf("\n");
6403     printf("rdi  = "); _rdi.print(); printf("\n");
6404     printf("rsi  = "); _rsi.print(); printf("\n");
6405     printf("rbp,  = "); _rbp.print(); printf("\n");
6406     printf("rsp  = "); _rsp.print(); printf("\n");
6407     printf("\n");
6408     // control registers
6409     printf("flgs = "); _eflags.print(); printf("\n");
6410   }
6411 };
6412 
6413 
6414 class CPU_State {
6415  public:
6416   FPU_State _fpu_state;
6417   IU_State  _iu_state;
6418 
6419   void print() const {
6420     printf("--------------------------------------------------\n");
6421     _iu_state .print();
6422     printf("\n");
6423     _fpu_state.print();
6424     printf("--------------------------------------------------\n");
6425   }
6426 
6427 };
6428 
6429 
6430 static void _print_CPU_state(CPU_State* state) {
6431   state->print();
6432 };
6433 
6434 
6435 void MacroAssembler::print_CPU_state() {
6436   push_CPU_state();
6437   push(rsp);                // pass CPU state
6438   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6439   addptr(rsp, wordSize);       // discard argument
6440   pop_CPU_state();
6441 }
6442 
6443 
6444 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6445   static int counter = 0;
6446   FPU_State* fs = &state->_fpu_state;
6447   counter++;
6448   // For leaf calls, only verify that the top few elements remain empty.
6449   // We only need 1 empty at the top for C2 code.
6450   if( stack_depth < 0 ) {
6451     if( fs->tag_for_st(7) != 3 ) {
6452       printf("FPR7 not empty\n");
6453       state->print();
6454       assert(false, "error");
6455       return false;
6456     }
6457     return true;                // All other stack states do not matter
6458   }
6459 
6460   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6461          "bad FPU control word");
6462 
6463   // compute stack depth
6464   int i = 0;
6465   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6466   int d = i;
6467   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6468   // verify findings
6469   if (i != FPU_State::number_of_registers) {
6470     // stack not contiguous
6471     printf("%s: stack not contiguous at ST%d\n", s, i);
6472     state->print();
6473     assert(false, "error");
6474     return false;
6475   }
6476   // check if computed stack depth corresponds to expected stack depth
6477   if (stack_depth < 0) {
6478     // expected stack depth is -stack_depth or less
6479     if (d > -stack_depth) {
6480       // too many elements on the stack
6481       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6482       state->print();
6483       assert(false, "error");
6484       return false;
6485     }
6486   } else {
6487     // expected stack depth is stack_depth
6488     if (d != stack_depth) {
6489       // wrong stack depth
6490       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6491       state->print();
6492       assert(false, "error");
6493       return false;
6494     }
6495   }
6496   // everything is cool
6497   return true;
6498 }
6499 
6500 
6501 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6502   if (!VerifyFPU) return;
6503   push_CPU_state();
6504   push(rsp);                // pass CPU state
6505   ExternalAddress msg((address) s);
6506   // pass message string s
6507   pushptr(msg.addr());
6508   push(stack_depth);        // pass stack depth
6509   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6510   addptr(rsp, 3 * wordSize);   // discard arguments
6511   // check for error
6512   { Label L;
6513     testl(rax, rax);
6514     jcc(Assembler::notZero, L);
6515     int3();                  // break if error condition
6516     bind(L);
6517   }
6518   pop_CPU_state();
6519 }
6520 
6521 void MacroAssembler::restore_cpu_control_state_after_jni() {
6522   // Either restore the MXCSR register after returning from the JNI Call
6523   // or verify that it wasn't changed (with -Xcheck:jni flag).
6524   if (VM_Version::supports_sse()) {
6525     if (RestoreMXCSROnJNICalls) {
6526       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6527     } else if (CheckJNICalls) {
6528       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6529     }
6530   }
6531   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6532   vzeroupper();
6533 
6534 #ifndef _LP64
6535   // Either restore the x87 floating pointer control word after returning
6536   // from the JNI call or verify that it wasn't changed.
6537   if (CheckJNICalls) {
6538     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6539   }
6540 #endif // _LP64
6541 }
6542 
6543 void MacroAssembler::load_mirror(Register mirror, Register method) {
6544   // get mirror
6545   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6546   movptr(mirror, Address(method, Method::const_offset()));
6547   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6548   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6549   movptr(mirror, Address(mirror, mirror_offset));
6550 }
6551 
6552 void MacroAssembler::load_klass(Register dst, Register src) {
6553 #ifdef _LP64
6554   if (UseCompressedClassPointers) {
6555     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6556     decode_klass_not_null(dst);
6557   } else
6558 #endif
6559     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6560 }
6561 
6562 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6563   load_klass(dst, src);
6564   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6565 }
6566 
6567 void MacroAssembler::store_klass(Register dst, Register src) {
6568 #ifdef _LP64
6569   if (UseCompressedClassPointers) {
6570     encode_klass_not_null(src);
6571     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6572   } else
6573 #endif
6574     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6575 }
6576 
6577 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6578 #ifdef _LP64
6579   // FIXME: Must change all places where we try to load the klass.
6580   if (UseCompressedOops) {
6581     movl(dst, src);
6582     decode_heap_oop(dst);
6583   } else
6584 #endif
6585     movptr(dst, src);
6586 }
6587 
6588 // Doesn't do verfication, generates fixed size code
6589 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6590 #ifdef _LP64
6591   if (UseCompressedOops) {
6592     movl(dst, src);
6593     decode_heap_oop_not_null(dst);
6594   } else
6595 #endif
6596     movptr(dst, src);
6597 }
6598 
6599 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6600 #ifdef _LP64
6601   if (UseCompressedOops) {
6602     assert(!dst.uses(src), "not enough registers");
6603     encode_heap_oop(src);
6604     movl(dst, src);
6605   } else
6606 #endif
6607     movptr(dst, src);
6608 }
6609 
6610 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6611   assert_different_registers(src1, tmp);
6612 #ifdef _LP64
6613   if (UseCompressedOops) {
6614     bool did_push = false;
6615     if (tmp == noreg) {
6616       tmp = rax;
6617       push(tmp);
6618       did_push = true;
6619       assert(!src2.uses(rsp), "can't push");
6620     }
6621     load_heap_oop(tmp, src2);
6622     cmpptr(src1, tmp);
6623     if (did_push)  pop(tmp);
6624   } else
6625 #endif
6626     cmpptr(src1, src2);
6627 }
6628 
6629 // Used for storing NULLs.
6630 void MacroAssembler::store_heap_oop_null(Address dst) {
6631 #ifdef _LP64
6632   if (UseCompressedOops) {
6633     movl(dst, (int32_t)NULL_WORD);
6634   } else {
6635     movslq(dst, (int32_t)NULL_WORD);
6636   }
6637 #else
6638   movl(dst, (int32_t)NULL_WORD);
6639 #endif
6640 }
6641 
6642 #ifdef _LP64
6643 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6644   if (UseCompressedClassPointers) {
6645     // Store to klass gap in destination
6646     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6647   }
6648 }
6649 
6650 #ifdef ASSERT
6651 void MacroAssembler::verify_heapbase(const char* msg) {
6652   assert (UseCompressedOops, "should be compressed");
6653   assert (Universe::heap() != NULL, "java heap should be initialized");
6654   if (CheckCompressedOops) {
6655     Label ok;
6656     push(rscratch1); // cmpptr trashes rscratch1
6657     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6658     jcc(Assembler::equal, ok);
6659     STOP(msg);
6660     bind(ok);
6661     pop(rscratch1);
6662   }
6663 }
6664 #endif
6665 
6666 // Algorithm must match oop.inline.hpp encode_heap_oop.
6667 void MacroAssembler::encode_heap_oop(Register r) {
6668 #ifdef ASSERT
6669   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6670 #endif
6671   verify_oop(r, "broken oop in encode_heap_oop");
6672   if (Universe::narrow_oop_base() == NULL) {
6673     if (Universe::narrow_oop_shift() != 0) {
6674       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6675       shrq(r, LogMinObjAlignmentInBytes);
6676     }
6677     return;
6678   }
6679   testq(r, r);
6680   cmovq(Assembler::equal, r, r12_heapbase);
6681   subq(r, r12_heapbase);
6682   shrq(r, LogMinObjAlignmentInBytes);
6683 }
6684 
6685 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6686 #ifdef ASSERT
6687   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6688   if (CheckCompressedOops) {
6689     Label ok;
6690     testq(r, r);
6691     jcc(Assembler::notEqual, ok);
6692     STOP("null oop passed to encode_heap_oop_not_null");
6693     bind(ok);
6694   }
6695 #endif
6696   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6697   if (Universe::narrow_oop_base() != NULL) {
6698     subq(r, r12_heapbase);
6699   }
6700   if (Universe::narrow_oop_shift() != 0) {
6701     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6702     shrq(r, LogMinObjAlignmentInBytes);
6703   }
6704 }
6705 
6706 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6707 #ifdef ASSERT
6708   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6709   if (CheckCompressedOops) {
6710     Label ok;
6711     testq(src, src);
6712     jcc(Assembler::notEqual, ok);
6713     STOP("null oop passed to encode_heap_oop_not_null2");
6714     bind(ok);
6715   }
6716 #endif
6717   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6718   if (dst != src) {
6719     movq(dst, src);
6720   }
6721   if (Universe::narrow_oop_base() != NULL) {
6722     subq(dst, r12_heapbase);
6723   }
6724   if (Universe::narrow_oop_shift() != 0) {
6725     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6726     shrq(dst, LogMinObjAlignmentInBytes);
6727   }
6728 }
6729 
6730 void  MacroAssembler::decode_heap_oop(Register r) {
6731 #ifdef ASSERT
6732   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6733 #endif
6734   if (Universe::narrow_oop_base() == NULL) {
6735     if (Universe::narrow_oop_shift() != 0) {
6736       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6737       shlq(r, LogMinObjAlignmentInBytes);
6738     }
6739   } else {
6740     Label done;
6741     shlq(r, LogMinObjAlignmentInBytes);
6742     jccb(Assembler::equal, done);
6743     addq(r, r12_heapbase);
6744     bind(done);
6745   }
6746   verify_oop(r, "broken oop in decode_heap_oop");
6747 }
6748 
6749 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6750   // Note: it will change flags
6751   assert (UseCompressedOops, "should only be used for compressed headers");
6752   assert (Universe::heap() != NULL, "java heap should be initialized");
6753   // Cannot assert, unverified entry point counts instructions (see .ad file)
6754   // vtableStubs also counts instructions in pd_code_size_limit.
6755   // Also do not verify_oop as this is called by verify_oop.
6756   if (Universe::narrow_oop_shift() != 0) {
6757     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6758     shlq(r, LogMinObjAlignmentInBytes);
6759     if (Universe::narrow_oop_base() != NULL) {
6760       addq(r, r12_heapbase);
6761     }
6762   } else {
6763     assert (Universe::narrow_oop_base() == NULL, "sanity");
6764   }
6765 }
6766 
6767 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6768   // Note: it will change flags
6769   assert (UseCompressedOops, "should only be used for compressed headers");
6770   assert (Universe::heap() != NULL, "java heap should be initialized");
6771   // Cannot assert, unverified entry point counts instructions (see .ad file)
6772   // vtableStubs also counts instructions in pd_code_size_limit.
6773   // Also do not verify_oop as this is called by verify_oop.
6774   if (Universe::narrow_oop_shift() != 0) {
6775     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6776     if (LogMinObjAlignmentInBytes == Address::times_8) {
6777       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6778     } else {
6779       if (dst != src) {
6780         movq(dst, src);
6781       }
6782       shlq(dst, LogMinObjAlignmentInBytes);
6783       if (Universe::narrow_oop_base() != NULL) {
6784         addq(dst, r12_heapbase);
6785       }
6786     }
6787   } else {
6788     assert (Universe::narrow_oop_base() == NULL, "sanity");
6789     if (dst != src) {
6790       movq(dst, src);
6791     }
6792   }
6793 }
6794 
6795 void MacroAssembler::encode_klass_not_null(Register r) {
6796   if (Universe::narrow_klass_base() != NULL) {
6797     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6798     assert(r != r12_heapbase, "Encoding a klass in r12");
6799     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6800     subq(r, r12_heapbase);
6801   }
6802   if (Universe::narrow_klass_shift() != 0) {
6803     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6804     shrq(r, LogKlassAlignmentInBytes);
6805   }
6806   if (Universe::narrow_klass_base() != NULL) {
6807     reinit_heapbase();
6808   }
6809 }
6810 
6811 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6812   if (dst == src) {
6813     encode_klass_not_null(src);
6814   } else {
6815     if (Universe::narrow_klass_base() != NULL) {
6816       mov64(dst, (int64_t)Universe::narrow_klass_base());
6817       negq(dst);
6818       addq(dst, src);
6819     } else {
6820       movptr(dst, src);
6821     }
6822     if (Universe::narrow_klass_shift() != 0) {
6823       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6824       shrq(dst, LogKlassAlignmentInBytes);
6825     }
6826   }
6827 }
6828 
6829 // Function instr_size_for_decode_klass_not_null() counts the instructions
6830 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6831 // when (Universe::heap() != NULL).  Hence, if the instructions they
6832 // generate change, then this method needs to be updated.
6833 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6834   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6835   if (Universe::narrow_klass_base() != NULL) {
6836     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6837     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6838   } else {
6839     // longest load decode klass function, mov64, leaq
6840     return 16;
6841   }
6842 }
6843 
6844 // !!! If the instructions that get generated here change then function
6845 // instr_size_for_decode_klass_not_null() needs to get updated.
6846 void  MacroAssembler::decode_klass_not_null(Register r) {
6847   // Note: it will change flags
6848   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6849   assert(r != r12_heapbase, "Decoding a klass in r12");
6850   // Cannot assert, unverified entry point counts instructions (see .ad file)
6851   // vtableStubs also counts instructions in pd_code_size_limit.
6852   // Also do not verify_oop as this is called by verify_oop.
6853   if (Universe::narrow_klass_shift() != 0) {
6854     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6855     shlq(r, LogKlassAlignmentInBytes);
6856   }
6857   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6858   if (Universe::narrow_klass_base() != NULL) {
6859     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6860     addq(r, r12_heapbase);
6861     reinit_heapbase();
6862   }
6863 }
6864 
6865 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6866   // Note: it will change flags
6867   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6868   if (dst == src) {
6869     decode_klass_not_null(dst);
6870   } else {
6871     // Cannot assert, unverified entry point counts instructions (see .ad file)
6872     // vtableStubs also counts instructions in pd_code_size_limit.
6873     // Also do not verify_oop as this is called by verify_oop.
6874     mov64(dst, (int64_t)Universe::narrow_klass_base());
6875     if (Universe::narrow_klass_shift() != 0) {
6876       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6877       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6878       leaq(dst, Address(dst, src, Address::times_8, 0));
6879     } else {
6880       addq(dst, src);
6881     }
6882   }
6883 }
6884 
6885 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6886   assert (UseCompressedOops, "should only be used for compressed headers");
6887   assert (Universe::heap() != NULL, "java heap should be initialized");
6888   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6889   int oop_index = oop_recorder()->find_index(obj);
6890   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6891   mov_narrow_oop(dst, oop_index, rspec);
6892 }
6893 
6894 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6895   assert (UseCompressedOops, "should only be used for compressed headers");
6896   assert (Universe::heap() != NULL, "java heap should be initialized");
6897   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6898   int oop_index = oop_recorder()->find_index(obj);
6899   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6900   mov_narrow_oop(dst, oop_index, rspec);
6901 }
6902 
6903 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6904   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6905   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6906   int klass_index = oop_recorder()->find_index(k);
6907   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6908   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6909 }
6910 
6911 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6912   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6913   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6914   int klass_index = oop_recorder()->find_index(k);
6915   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6916   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6917 }
6918 
6919 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6920   assert (UseCompressedOops, "should only be used for compressed headers");
6921   assert (Universe::heap() != NULL, "java heap should be initialized");
6922   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6923   int oop_index = oop_recorder()->find_index(obj);
6924   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6925   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6926 }
6927 
6928 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6929   assert (UseCompressedOops, "should only be used for compressed headers");
6930   assert (Universe::heap() != NULL, "java heap should be initialized");
6931   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6932   int oop_index = oop_recorder()->find_index(obj);
6933   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6934   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6935 }
6936 
6937 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6938   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6939   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6940   int klass_index = oop_recorder()->find_index(k);
6941   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6942   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6943 }
6944 
6945 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6946   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6947   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6948   int klass_index = oop_recorder()->find_index(k);
6949   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6950   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6951 }
6952 
6953 void MacroAssembler::reinit_heapbase() {
6954   if (UseCompressedOops || UseCompressedClassPointers) {
6955     if (Universe::heap() != NULL) {
6956       if (Universe::narrow_oop_base() == NULL) {
6957         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6958       } else {
6959         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6960       }
6961     } else {
6962       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6963     }
6964   }
6965 }
6966 
6967 #endif // _LP64
6968 
6969 
6970 // C2 compiled method's prolog code.
6971 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6972 
6973   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6974   // NativeJump::patch_verified_entry will be able to patch out the entry
6975   // code safely. The push to verify stack depth is ok at 5 bytes,
6976   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6977   // stack bang then we must use the 6 byte frame allocation even if
6978   // we have no frame. :-(
6979   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6980 
6981   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6982   // Remove word for return addr
6983   framesize -= wordSize;
6984   stack_bang_size -= wordSize;
6985 
6986   // Calls to C2R adapters often do not accept exceptional returns.
6987   // We require that their callers must bang for them.  But be careful, because
6988   // some VM calls (such as call site linkage) can use several kilobytes of
6989   // stack.  But the stack safety zone should account for that.
6990   // See bugs 4446381, 4468289, 4497237.
6991   if (stack_bang_size > 0) {
6992     generate_stack_overflow_check(stack_bang_size);
6993 
6994     // We always push rbp, so that on return to interpreter rbp, will be
6995     // restored correctly and we can correct the stack.
6996     push(rbp);
6997     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6998     if (PreserveFramePointer) {
6999       mov(rbp, rsp);
7000     }
7001     // Remove word for ebp
7002     framesize -= wordSize;
7003 
7004     // Create frame
7005     if (framesize) {
7006       subptr(rsp, framesize);
7007     }
7008   } else {
7009     // Create frame (force generation of a 4 byte immediate value)
7010     subptr_imm32(rsp, framesize);
7011 
7012     // Save RBP register now.
7013     framesize -= wordSize;
7014     movptr(Address(rsp, framesize), rbp);
7015     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7016     if (PreserveFramePointer) {
7017       movptr(rbp, rsp);
7018       if (framesize > 0) {
7019         addptr(rbp, framesize);
7020       }
7021     }
7022   }
7023 
7024   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7025     framesize -= wordSize;
7026     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7027   }
7028 
7029 #ifndef _LP64
7030   // If method sets FPU control word do it now
7031   if (fp_mode_24b) {
7032     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7033   }
7034   if (UseSSE >= 2 && VerifyFPU) {
7035     verify_FPU(0, "FPU stack must be clean on entry");
7036   }
7037 #endif
7038 
7039 #ifdef ASSERT
7040   if (VerifyStackAtCalls) {
7041     Label L;
7042     push(rax);
7043     mov(rax, rsp);
7044     andptr(rax, StackAlignmentInBytes-1);
7045     cmpptr(rax, StackAlignmentInBytes-wordSize);
7046     pop(rax);
7047     jcc(Assembler::equal, L);
7048     STOP("Stack is not properly aligned!");
7049     bind(L);
7050   }
7051 #endif
7052 
7053 }
7054 
7055 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7056   // cnt - number of qwords (8-byte words).
7057   // base - start address, qword aligned.
7058   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7059   assert(base==rdi, "base register must be edi for rep stos");
7060   assert(tmp==rax,   "tmp register must be eax for rep stos");
7061   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7062   assert(InitArrayShortSize % BytesPerLong == 0,
7063     "InitArrayShortSize should be the multiple of BytesPerLong");
7064 
7065   Label DONE;
7066 
7067   xorptr(tmp, tmp);
7068 
7069   if (!is_large) {
7070     Label LOOP, LONG;
7071     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7072     jccb(Assembler::greater, LONG);
7073 
7074     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7075 
7076     decrement(cnt);
7077     jccb(Assembler::negative, DONE); // Zero length
7078 
7079     // Use individual pointer-sized stores for small counts:
7080     BIND(LOOP);
7081     movptr(Address(base, cnt, Address::times_ptr), tmp);
7082     decrement(cnt);
7083     jccb(Assembler::greaterEqual, LOOP);
7084     jmpb(DONE);
7085 
7086     BIND(LONG);
7087   }
7088 
7089   // Use longer rep-prefixed ops for non-small counts:
7090   if (UseFastStosb) {
7091     shlptr(cnt, 3); // convert to number of bytes
7092     rep_stosb();
7093   } else {
7094     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7095     rep_stos();
7096   }
7097 
7098   BIND(DONE);
7099 }
7100 
7101 #ifdef COMPILER2
7102 
7103 // IndexOf for constant substrings with size >= 8 chars
7104 // which don't need to be loaded through stack.
7105 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7106                                       Register cnt1, Register cnt2,
7107                                       int int_cnt2,  Register result,
7108                                       XMMRegister vec, Register tmp,
7109                                       int ae) {
7110   ShortBranchVerifier sbv(this);
7111   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7112   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7113 
7114   // This method uses the pcmpestri instruction with bound registers
7115   //   inputs:
7116   //     xmm - substring
7117   //     rax - substring length (elements count)
7118   //     mem - scanned string
7119   //     rdx - string length (elements count)
7120   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7121   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7122   //   outputs:
7123   //     rcx - matched index in string
7124   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7125   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7126   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7127   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7128   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7129 
7130   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7131         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7132         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7133 
7134   // Note, inline_string_indexOf() generates checks:
7135   // if (substr.count > string.count) return -1;
7136   // if (substr.count == 0) return 0;
7137   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7138 
7139   // Load substring.
7140   if (ae == StrIntrinsicNode::UL) {
7141     pmovzxbw(vec, Address(str2, 0));
7142   } else {
7143     movdqu(vec, Address(str2, 0));
7144   }
7145   movl(cnt2, int_cnt2);
7146   movptr(result, str1); // string addr
7147 
7148   if (int_cnt2 > stride) {
7149     jmpb(SCAN_TO_SUBSTR);
7150 
7151     // Reload substr for rescan, this code
7152     // is executed only for large substrings (> 8 chars)
7153     bind(RELOAD_SUBSTR);
7154     if (ae == StrIntrinsicNode::UL) {
7155       pmovzxbw(vec, Address(str2, 0));
7156     } else {
7157       movdqu(vec, Address(str2, 0));
7158     }
7159     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7160 
7161     bind(RELOAD_STR);
7162     // We came here after the beginning of the substring was
7163     // matched but the rest of it was not so we need to search
7164     // again. Start from the next element after the previous match.
7165 
7166     // cnt2 is number of substring reminding elements and
7167     // cnt1 is number of string reminding elements when cmp failed.
7168     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7169     subl(cnt1, cnt2);
7170     addl(cnt1, int_cnt2);
7171     movl(cnt2, int_cnt2); // Now restore cnt2
7172 
7173     decrementl(cnt1);     // Shift to next element
7174     cmpl(cnt1, cnt2);
7175     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7176 
7177     addptr(result, (1<<scale1));
7178 
7179   } // (int_cnt2 > 8)
7180 
7181   // Scan string for start of substr in 16-byte vectors
7182   bind(SCAN_TO_SUBSTR);
7183   pcmpestri(vec, Address(result, 0), mode);
7184   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7185   subl(cnt1, stride);
7186   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7187   cmpl(cnt1, cnt2);
7188   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7189   addptr(result, 16);
7190   jmpb(SCAN_TO_SUBSTR);
7191 
7192   // Found a potential substr
7193   bind(FOUND_CANDIDATE);
7194   // Matched whole vector if first element matched (tmp(rcx) == 0).
7195   if (int_cnt2 == stride) {
7196     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7197   } else { // int_cnt2 > 8
7198     jccb(Assembler::overflow, FOUND_SUBSTR);
7199   }
7200   // After pcmpestri tmp(rcx) contains matched element index
7201   // Compute start addr of substr
7202   lea(result, Address(result, tmp, scale1));
7203 
7204   // Make sure string is still long enough
7205   subl(cnt1, tmp);
7206   cmpl(cnt1, cnt2);
7207   if (int_cnt2 == stride) {
7208     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7209   } else { // int_cnt2 > 8
7210     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7211   }
7212   // Left less then substring.
7213 
7214   bind(RET_NOT_FOUND);
7215   movl(result, -1);
7216   jmp(EXIT);
7217 
7218   if (int_cnt2 > stride) {
7219     // This code is optimized for the case when whole substring
7220     // is matched if its head is matched.
7221     bind(MATCH_SUBSTR_HEAD);
7222     pcmpestri(vec, Address(result, 0), mode);
7223     // Reload only string if does not match
7224     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
7225 
7226     Label CONT_SCAN_SUBSTR;
7227     // Compare the rest of substring (> 8 chars).
7228     bind(FOUND_SUBSTR);
7229     // First 8 chars are already matched.
7230     negptr(cnt2);
7231     addptr(cnt2, stride);
7232 
7233     bind(SCAN_SUBSTR);
7234     subl(cnt1, stride);
7235     cmpl(cnt2, -stride); // Do not read beyond substring
7236     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7237     // Back-up strings to avoid reading beyond substring:
7238     // cnt1 = cnt1 - cnt2 + 8
7239     addl(cnt1, cnt2); // cnt2 is negative
7240     addl(cnt1, stride);
7241     movl(cnt2, stride); negptr(cnt2);
7242     bind(CONT_SCAN_SUBSTR);
7243     if (int_cnt2 < (int)G) {
7244       int tail_off1 = int_cnt2<<scale1;
7245       int tail_off2 = int_cnt2<<scale2;
7246       if (ae == StrIntrinsicNode::UL) {
7247         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7248       } else {
7249         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7250       }
7251       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7252     } else {
7253       // calculate index in register to avoid integer overflow (int_cnt2*2)
7254       movl(tmp, int_cnt2);
7255       addptr(tmp, cnt2);
7256       if (ae == StrIntrinsicNode::UL) {
7257         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7258       } else {
7259         movdqu(vec, Address(str2, tmp, scale2, 0));
7260       }
7261       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7262     }
7263     // Need to reload strings pointers if not matched whole vector
7264     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7265     addptr(cnt2, stride);
7266     jcc(Assembler::negative, SCAN_SUBSTR);
7267     // Fall through if found full substring
7268 
7269   } // (int_cnt2 > 8)
7270 
7271   bind(RET_FOUND);
7272   // Found result if we matched full small substring.
7273   // Compute substr offset
7274   subptr(result, str1);
7275   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7276     shrl(result, 1); // index
7277   }
7278   bind(EXIT);
7279 
7280 } // string_indexofC8
7281 
7282 // Small strings are loaded through stack if they cross page boundary.
7283 void MacroAssembler::string_indexof(Register str1, Register str2,
7284                                     Register cnt1, Register cnt2,
7285                                     int int_cnt2,  Register result,
7286                                     XMMRegister vec, Register tmp,
7287                                     int ae) {
7288   ShortBranchVerifier sbv(this);
7289   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7290   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7291 
7292   //
7293   // int_cnt2 is length of small (< 8 chars) constant substring
7294   // or (-1) for non constant substring in which case its length
7295   // is in cnt2 register.
7296   //
7297   // Note, inline_string_indexOf() generates checks:
7298   // if (substr.count > string.count) return -1;
7299   // if (substr.count == 0) return 0;
7300   //
7301   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7302   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7303   // This method uses the pcmpestri instruction with bound registers
7304   //   inputs:
7305   //     xmm - substring
7306   //     rax - substring length (elements count)
7307   //     mem - scanned string
7308   //     rdx - string length (elements count)
7309   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7310   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7311   //   outputs:
7312   //     rcx - matched index in string
7313   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7314   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7315   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7316   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7317 
7318   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7319         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7320         FOUND_CANDIDATE;
7321 
7322   { //========================================================
7323     // We don't know where these strings are located
7324     // and we can't read beyond them. Load them through stack.
7325     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7326 
7327     movptr(tmp, rsp); // save old SP
7328 
7329     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7330       if (int_cnt2 == (1>>scale2)) { // One byte
7331         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7332         load_unsigned_byte(result, Address(str2, 0));
7333         movdl(vec, result); // move 32 bits
7334       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7335         // Not enough header space in 32-bit VM: 12+3 = 15.
7336         movl(result, Address(str2, -1));
7337         shrl(result, 8);
7338         movdl(vec, result); // move 32 bits
7339       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7340         load_unsigned_short(result, Address(str2, 0));
7341         movdl(vec, result); // move 32 bits
7342       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7343         movdl(vec, Address(str2, 0)); // move 32 bits
7344       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7345         movq(vec, Address(str2, 0));  // move 64 bits
7346       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7347         // Array header size is 12 bytes in 32-bit VM
7348         // + 6 bytes for 3 chars == 18 bytes,
7349         // enough space to load vec and shift.
7350         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7351         if (ae == StrIntrinsicNode::UL) {
7352           int tail_off = int_cnt2-8;
7353           pmovzxbw(vec, Address(str2, tail_off));
7354           psrldq(vec, -2*tail_off);
7355         }
7356         else {
7357           int tail_off = int_cnt2*(1<<scale2);
7358           movdqu(vec, Address(str2, tail_off-16));
7359           psrldq(vec, 16-tail_off);
7360         }
7361       }
7362     } else { // not constant substring
7363       cmpl(cnt2, stride);
7364       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7365 
7366       // We can read beyond string if srt+16 does not cross page boundary
7367       // since heaps are aligned and mapped by pages.
7368       assert(os::vm_page_size() < (int)G, "default page should be small");
7369       movl(result, str2); // We need only low 32 bits
7370       andl(result, (os::vm_page_size()-1));
7371       cmpl(result, (os::vm_page_size()-16));
7372       jccb(Assembler::belowEqual, CHECK_STR);
7373 
7374       // Move small strings to stack to allow load 16 bytes into vec.
7375       subptr(rsp, 16);
7376       int stk_offset = wordSize-(1<<scale2);
7377       push(cnt2);
7378 
7379       bind(COPY_SUBSTR);
7380       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7381         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7382         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7383       } else if (ae == StrIntrinsicNode::UU) {
7384         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7385         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7386       }
7387       decrement(cnt2);
7388       jccb(Assembler::notZero, COPY_SUBSTR);
7389 
7390       pop(cnt2);
7391       movptr(str2, rsp);  // New substring address
7392     } // non constant
7393 
7394     bind(CHECK_STR);
7395     cmpl(cnt1, stride);
7396     jccb(Assembler::aboveEqual, BIG_STRINGS);
7397 
7398     // Check cross page boundary.
7399     movl(result, str1); // We need only low 32 bits
7400     andl(result, (os::vm_page_size()-1));
7401     cmpl(result, (os::vm_page_size()-16));
7402     jccb(Assembler::belowEqual, BIG_STRINGS);
7403 
7404     subptr(rsp, 16);
7405     int stk_offset = -(1<<scale1);
7406     if (int_cnt2 < 0) { // not constant
7407       push(cnt2);
7408       stk_offset += wordSize;
7409     }
7410     movl(cnt2, cnt1);
7411 
7412     bind(COPY_STR);
7413     if (ae == StrIntrinsicNode::LL) {
7414       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7415       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7416     } else {
7417       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7418       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7419     }
7420     decrement(cnt2);
7421     jccb(Assembler::notZero, COPY_STR);
7422 
7423     if (int_cnt2 < 0) { // not constant
7424       pop(cnt2);
7425     }
7426     movptr(str1, rsp);  // New string address
7427 
7428     bind(BIG_STRINGS);
7429     // Load substring.
7430     if (int_cnt2 < 0) { // -1
7431       if (ae == StrIntrinsicNode::UL) {
7432         pmovzxbw(vec, Address(str2, 0));
7433       } else {
7434         movdqu(vec, Address(str2, 0));
7435       }
7436       push(cnt2);       // substr count
7437       push(str2);       // substr addr
7438       push(str1);       // string addr
7439     } else {
7440       // Small (< 8 chars) constant substrings are loaded already.
7441       movl(cnt2, int_cnt2);
7442     }
7443     push(tmp);  // original SP
7444 
7445   } // Finished loading
7446 
7447   //========================================================
7448   // Start search
7449   //
7450 
7451   movptr(result, str1); // string addr
7452 
7453   if (int_cnt2  < 0) {  // Only for non constant substring
7454     jmpb(SCAN_TO_SUBSTR);
7455 
7456     // SP saved at sp+0
7457     // String saved at sp+1*wordSize
7458     // Substr saved at sp+2*wordSize
7459     // Substr count saved at sp+3*wordSize
7460 
7461     // Reload substr for rescan, this code
7462     // is executed only for large substrings (> 8 chars)
7463     bind(RELOAD_SUBSTR);
7464     movptr(str2, Address(rsp, 2*wordSize));
7465     movl(cnt2, Address(rsp, 3*wordSize));
7466     if (ae == StrIntrinsicNode::UL) {
7467       pmovzxbw(vec, Address(str2, 0));
7468     } else {
7469       movdqu(vec, Address(str2, 0));
7470     }
7471     // We came here after the beginning of the substring was
7472     // matched but the rest of it was not so we need to search
7473     // again. Start from the next element after the previous match.
7474     subptr(str1, result); // Restore counter
7475     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7476       shrl(str1, 1);
7477     }
7478     addl(cnt1, str1);
7479     decrementl(cnt1);   // Shift to next element
7480     cmpl(cnt1, cnt2);
7481     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7482 
7483     addptr(result, (1<<scale1));
7484   } // non constant
7485 
7486   // Scan string for start of substr in 16-byte vectors
7487   bind(SCAN_TO_SUBSTR);
7488   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7489   pcmpestri(vec, Address(result, 0), mode);
7490   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7491   subl(cnt1, stride);
7492   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7493   cmpl(cnt1, cnt2);
7494   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7495   addptr(result, 16);
7496 
7497   bind(ADJUST_STR);
7498   cmpl(cnt1, stride); // Do not read beyond string
7499   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7500   // Back-up string to avoid reading beyond string.
7501   lea(result, Address(result, cnt1, scale1, -16));
7502   movl(cnt1, stride);
7503   jmpb(SCAN_TO_SUBSTR);
7504 
7505   // Found a potential substr
7506   bind(FOUND_CANDIDATE);
7507   // After pcmpestri tmp(rcx) contains matched element index
7508 
7509   // Make sure string is still long enough
7510   subl(cnt1, tmp);
7511   cmpl(cnt1, cnt2);
7512   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7513   // Left less then substring.
7514 
7515   bind(RET_NOT_FOUND);
7516   movl(result, -1);
7517   jmpb(CLEANUP);
7518 
7519   bind(FOUND_SUBSTR);
7520   // Compute start addr of substr
7521   lea(result, Address(result, tmp, scale1));
7522   if (int_cnt2 > 0) { // Constant substring
7523     // Repeat search for small substring (< 8 chars)
7524     // from new point without reloading substring.
7525     // Have to check that we don't read beyond string.
7526     cmpl(tmp, stride-int_cnt2);
7527     jccb(Assembler::greater, ADJUST_STR);
7528     // Fall through if matched whole substring.
7529   } else { // non constant
7530     assert(int_cnt2 == -1, "should be != 0");
7531 
7532     addl(tmp, cnt2);
7533     // Found result if we matched whole substring.
7534     cmpl(tmp, stride);
7535     jccb(Assembler::lessEqual, RET_FOUND);
7536 
7537     // Repeat search for small substring (<= 8 chars)
7538     // from new point 'str1' without reloading substring.
7539     cmpl(cnt2, stride);
7540     // Have to check that we don't read beyond string.
7541     jccb(Assembler::lessEqual, ADJUST_STR);
7542 
7543     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7544     // Compare the rest of substring (> 8 chars).
7545     movptr(str1, result);
7546 
7547     cmpl(tmp, cnt2);
7548     // First 8 chars are already matched.
7549     jccb(Assembler::equal, CHECK_NEXT);
7550 
7551     bind(SCAN_SUBSTR);
7552     pcmpestri(vec, Address(str1, 0), mode);
7553     // Need to reload strings pointers if not matched whole vector
7554     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7555 
7556     bind(CHECK_NEXT);
7557     subl(cnt2, stride);
7558     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7559     addptr(str1, 16);
7560     if (ae == StrIntrinsicNode::UL) {
7561       addptr(str2, 8);
7562     } else {
7563       addptr(str2, 16);
7564     }
7565     subl(cnt1, stride);
7566     cmpl(cnt2, stride); // Do not read beyond substring
7567     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7568     // Back-up strings to avoid reading beyond substring.
7569 
7570     if (ae == StrIntrinsicNode::UL) {
7571       lea(str2, Address(str2, cnt2, scale2, -8));
7572       lea(str1, Address(str1, cnt2, scale1, -16));
7573     } else {
7574       lea(str2, Address(str2, cnt2, scale2, -16));
7575       lea(str1, Address(str1, cnt2, scale1, -16));
7576     }
7577     subl(cnt1, cnt2);
7578     movl(cnt2, stride);
7579     addl(cnt1, stride);
7580     bind(CONT_SCAN_SUBSTR);
7581     if (ae == StrIntrinsicNode::UL) {
7582       pmovzxbw(vec, Address(str2, 0));
7583     } else {
7584       movdqu(vec, Address(str2, 0));
7585     }
7586     jmp(SCAN_SUBSTR);
7587 
7588     bind(RET_FOUND_LONG);
7589     movptr(str1, Address(rsp, wordSize));
7590   } // non constant
7591 
7592   bind(RET_FOUND);
7593   // Compute substr offset
7594   subptr(result, str1);
7595   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7596     shrl(result, 1); // index
7597   }
7598   bind(CLEANUP);
7599   pop(rsp); // restore SP
7600 
7601 } // string_indexof
7602 
7603 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7604                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7605   ShortBranchVerifier sbv(this);
7606   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7607 
7608   int stride = 8;
7609 
7610   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7611         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7612         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7613         FOUND_SEQ_CHAR, DONE_LABEL;
7614 
7615   movptr(result, str1);
7616   if (UseAVX >= 2) {
7617     cmpl(cnt1, stride);
7618     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7619     cmpl(cnt1, 2*stride);
7620     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7621     movdl(vec1, ch);
7622     vpbroadcastw(vec1, vec1);
7623     vpxor(vec2, vec2);
7624     movl(tmp, cnt1);
7625     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7626     andl(cnt1,0x0000000F);  //tail count (in chars)
7627 
7628     bind(SCAN_TO_16_CHAR_LOOP);
7629     vmovdqu(vec3, Address(result, 0));
7630     vpcmpeqw(vec3, vec3, vec1, 1);
7631     vptest(vec2, vec3);
7632     jcc(Assembler::carryClear, FOUND_CHAR);
7633     addptr(result, 32);
7634     subl(tmp, 2*stride);
7635     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7636     jmp(SCAN_TO_8_CHAR);
7637     bind(SCAN_TO_8_CHAR_INIT);
7638     movdl(vec1, ch);
7639     pshuflw(vec1, vec1, 0x00);
7640     pshufd(vec1, vec1, 0);
7641     pxor(vec2, vec2);
7642   }
7643   bind(SCAN_TO_8_CHAR);
7644   cmpl(cnt1, stride);
7645   if (UseAVX >= 2) {
7646     jcc(Assembler::less, SCAN_TO_CHAR);
7647   } else {
7648     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7649     movdl(vec1, ch);
7650     pshuflw(vec1, vec1, 0x00);
7651     pshufd(vec1, vec1, 0);
7652     pxor(vec2, vec2);
7653   }
7654   movl(tmp, cnt1);
7655   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7656   andl(cnt1,0x00000007);  //tail count (in chars)
7657 
7658   bind(SCAN_TO_8_CHAR_LOOP);
7659   movdqu(vec3, Address(result, 0));
7660   pcmpeqw(vec3, vec1);
7661   ptest(vec2, vec3);
7662   jcc(Assembler::carryClear, FOUND_CHAR);
7663   addptr(result, 16);
7664   subl(tmp, stride);
7665   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7666   bind(SCAN_TO_CHAR);
7667   testl(cnt1, cnt1);
7668   jcc(Assembler::zero, RET_NOT_FOUND);
7669   bind(SCAN_TO_CHAR_LOOP);
7670   load_unsigned_short(tmp, Address(result, 0));
7671   cmpl(ch, tmp);
7672   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7673   addptr(result, 2);
7674   subl(cnt1, 1);
7675   jccb(Assembler::zero, RET_NOT_FOUND);
7676   jmp(SCAN_TO_CHAR_LOOP);
7677 
7678   bind(RET_NOT_FOUND);
7679   movl(result, -1);
7680   jmpb(DONE_LABEL);
7681 
7682   bind(FOUND_CHAR);
7683   if (UseAVX >= 2) {
7684     vpmovmskb(tmp, vec3);
7685   } else {
7686     pmovmskb(tmp, vec3);
7687   }
7688   bsfl(ch, tmp);
7689   addl(result, ch);
7690 
7691   bind(FOUND_SEQ_CHAR);
7692   subptr(result, str1);
7693   shrl(result, 1);
7694 
7695   bind(DONE_LABEL);
7696 } // string_indexof_char
7697 
7698 // helper function for string_compare
7699 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7700                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7701                                         Address::ScaleFactor scale2, Register index, int ae) {
7702   if (ae == StrIntrinsicNode::LL) {
7703     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7704     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7705   } else if (ae == StrIntrinsicNode::UU) {
7706     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7707     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7708   } else {
7709     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7710     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7711   }
7712 }
7713 
7714 // Compare strings, used for char[] and byte[].
7715 void MacroAssembler::string_compare(Register str1, Register str2,
7716                                     Register cnt1, Register cnt2, Register result,
7717                                     XMMRegister vec1, int ae) {
7718   ShortBranchVerifier sbv(this);
7719   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7720   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7721   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7722   int stride2x2 = 0x40;
7723   Address::ScaleFactor scale = Address::no_scale;
7724   Address::ScaleFactor scale1 = Address::no_scale;
7725   Address::ScaleFactor scale2 = Address::no_scale;
7726 
7727   if (ae != StrIntrinsicNode::LL) {
7728     stride2x2 = 0x20;
7729   }
7730 
7731   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7732     shrl(cnt2, 1);
7733   }
7734   // Compute the minimum of the string lengths and the
7735   // difference of the string lengths (stack).
7736   // Do the conditional move stuff
7737   movl(result, cnt1);
7738   subl(cnt1, cnt2);
7739   push(cnt1);
7740   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7741 
7742   // Is the minimum length zero?
7743   testl(cnt2, cnt2);
7744   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7745   if (ae == StrIntrinsicNode::LL) {
7746     // Load first bytes
7747     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7748     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7749   } else if (ae == StrIntrinsicNode::UU) {
7750     // Load first characters
7751     load_unsigned_short(result, Address(str1, 0));
7752     load_unsigned_short(cnt1, Address(str2, 0));
7753   } else {
7754     load_unsigned_byte(result, Address(str1, 0));
7755     load_unsigned_short(cnt1, Address(str2, 0));
7756   }
7757   subl(result, cnt1);
7758   jcc(Assembler::notZero,  POP_LABEL);
7759 
7760   if (ae == StrIntrinsicNode::UU) {
7761     // Divide length by 2 to get number of chars
7762     shrl(cnt2, 1);
7763   }
7764   cmpl(cnt2, 1);
7765   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7766 
7767   // Check if the strings start at the same location and setup scale and stride
7768   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7769     cmpptr(str1, str2);
7770     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7771     if (ae == StrIntrinsicNode::LL) {
7772       scale = Address::times_1;
7773       stride = 16;
7774     } else {
7775       scale = Address::times_2;
7776       stride = 8;
7777     }
7778   } else {
7779     scale1 = Address::times_1;
7780     scale2 = Address::times_2;
7781     // scale not used
7782     stride = 8;
7783   }
7784 
7785   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7786     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7787     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7788     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7789     Label COMPARE_TAIL_LONG;
7790     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7791 
7792     int pcmpmask = 0x19;
7793     if (ae == StrIntrinsicNode::LL) {
7794       pcmpmask &= ~0x01;
7795     }
7796 
7797     // Setup to compare 16-chars (32-bytes) vectors,
7798     // start from first character again because it has aligned address.
7799     if (ae == StrIntrinsicNode::LL) {
7800       stride2 = 32;
7801     } else {
7802       stride2 = 16;
7803     }
7804     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7805       adr_stride = stride << scale;
7806     } else {
7807       adr_stride1 = 8;  //stride << scale1;
7808       adr_stride2 = 16; //stride << scale2;
7809     }
7810 
7811     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7812     // rax and rdx are used by pcmpestri as elements counters
7813     movl(result, cnt2);
7814     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7815     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7816 
7817     // fast path : compare first 2 8-char vectors.
7818     bind(COMPARE_16_CHARS);
7819     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7820       movdqu(vec1, Address(str1, 0));
7821     } else {
7822       pmovzxbw(vec1, Address(str1, 0));
7823     }
7824     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7825     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7826 
7827     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7828       movdqu(vec1, Address(str1, adr_stride));
7829       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7830     } else {
7831       pmovzxbw(vec1, Address(str1, adr_stride1));
7832       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7833     }
7834     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7835     addl(cnt1, stride);
7836 
7837     // Compare the characters at index in cnt1
7838     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7839     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7840     subl(result, cnt2);
7841     jmp(POP_LABEL);
7842 
7843     // Setup the registers to start vector comparison loop
7844     bind(COMPARE_WIDE_VECTORS);
7845     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7846       lea(str1, Address(str1, result, scale));
7847       lea(str2, Address(str2, result, scale));
7848     } else {
7849       lea(str1, Address(str1, result, scale1));
7850       lea(str2, Address(str2, result, scale2));
7851     }
7852     subl(result, stride2);
7853     subl(cnt2, stride2);
7854     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7855     negptr(result);
7856 
7857     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7858     bind(COMPARE_WIDE_VECTORS_LOOP);
7859 
7860 #ifdef _LP64
7861     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7862       cmpl(cnt2, stride2x2);
7863       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7864       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7865       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7866 
7867       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7868       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7869         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7870         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7871       } else {
7872         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7873         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7874       }
7875       kortestql(k7, k7);
7876       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7877       addptr(result, stride2x2);  // update since we already compared at this addr
7878       subl(cnt2, stride2x2);      // and sub the size too
7879       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7880 
7881       vpxor(vec1, vec1);
7882       jmpb(COMPARE_WIDE_TAIL);
7883     }//if (VM_Version::supports_avx512vlbw())
7884 #endif // _LP64
7885 
7886 
7887     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7888     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7889       vmovdqu(vec1, Address(str1, result, scale));
7890       vpxor(vec1, Address(str2, result, scale));
7891     } else {
7892       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7893       vpxor(vec1, Address(str2, result, scale2));
7894     }
7895     vptest(vec1, vec1);
7896     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7897     addptr(result, stride2);
7898     subl(cnt2, stride2);
7899     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7900     // clean upper bits of YMM registers
7901     vpxor(vec1, vec1);
7902 
7903     // compare wide vectors tail
7904     bind(COMPARE_WIDE_TAIL);
7905     testptr(result, result);
7906     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7907 
7908     movl(result, stride2);
7909     movl(cnt2, result);
7910     negptr(result);
7911     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7912 
7913     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7914     bind(VECTOR_NOT_EQUAL);
7915     // clean upper bits of YMM registers
7916     vpxor(vec1, vec1);
7917     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7918       lea(str1, Address(str1, result, scale));
7919       lea(str2, Address(str2, result, scale));
7920     } else {
7921       lea(str1, Address(str1, result, scale1));
7922       lea(str2, Address(str2, result, scale2));
7923     }
7924     jmp(COMPARE_16_CHARS);
7925 
7926     // Compare tail chars, length between 1 to 15 chars
7927     bind(COMPARE_TAIL_LONG);
7928     movl(cnt2, result);
7929     cmpl(cnt2, stride);
7930     jcc(Assembler::less, COMPARE_SMALL_STR);
7931 
7932     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7933       movdqu(vec1, Address(str1, 0));
7934     } else {
7935       pmovzxbw(vec1, Address(str1, 0));
7936     }
7937     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7938     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7939     subptr(cnt2, stride);
7940     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7941     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7942       lea(str1, Address(str1, result, scale));
7943       lea(str2, Address(str2, result, scale));
7944     } else {
7945       lea(str1, Address(str1, result, scale1));
7946       lea(str2, Address(str2, result, scale2));
7947     }
7948     negptr(cnt2);
7949     jmpb(WHILE_HEAD_LABEL);
7950 
7951     bind(COMPARE_SMALL_STR);
7952   } else if (UseSSE42Intrinsics) {
7953     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7954     int pcmpmask = 0x19;
7955     // Setup to compare 8-char (16-byte) vectors,
7956     // start from first character again because it has aligned address.
7957     movl(result, cnt2);
7958     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7959     if (ae == StrIntrinsicNode::LL) {
7960       pcmpmask &= ~0x01;
7961     }
7962     jcc(Assembler::zero, COMPARE_TAIL);
7963     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7964       lea(str1, Address(str1, result, scale));
7965       lea(str2, Address(str2, result, scale));
7966     } else {
7967       lea(str1, Address(str1, result, scale1));
7968       lea(str2, Address(str2, result, scale2));
7969     }
7970     negptr(result);
7971 
7972     // pcmpestri
7973     //   inputs:
7974     //     vec1- substring
7975     //     rax - negative string length (elements count)
7976     //     mem - scanned string
7977     //     rdx - string length (elements count)
7978     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7979     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7980     //   outputs:
7981     //     rcx - first mismatched element index
7982     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7983 
7984     bind(COMPARE_WIDE_VECTORS);
7985     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7986       movdqu(vec1, Address(str1, result, scale));
7987       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7988     } else {
7989       pmovzxbw(vec1, Address(str1, result, scale1));
7990       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7991     }
7992     // After pcmpestri cnt1(rcx) contains mismatched element index
7993 
7994     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7995     addptr(result, stride);
7996     subptr(cnt2, stride);
7997     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
7998 
7999     // compare wide vectors tail
8000     testptr(result, result);
8001     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8002 
8003     movl(cnt2, stride);
8004     movl(result, stride);
8005     negptr(result);
8006     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8007       movdqu(vec1, Address(str1, result, scale));
8008       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8009     } else {
8010       pmovzxbw(vec1, Address(str1, result, scale1));
8011       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8012     }
8013     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8014 
8015     // Mismatched characters in the vectors
8016     bind(VECTOR_NOT_EQUAL);
8017     addptr(cnt1, result);
8018     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8019     subl(result, cnt2);
8020     jmpb(POP_LABEL);
8021 
8022     bind(COMPARE_TAIL); // limit is zero
8023     movl(cnt2, result);
8024     // Fallthru to tail compare
8025   }
8026   // Shift str2 and str1 to the end of the arrays, negate min
8027   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8028     lea(str1, Address(str1, cnt2, scale));
8029     lea(str2, Address(str2, cnt2, scale));
8030   } else {
8031     lea(str1, Address(str1, cnt2, scale1));
8032     lea(str2, Address(str2, cnt2, scale2));
8033   }
8034   decrementl(cnt2);  // first character was compared already
8035   negptr(cnt2);
8036 
8037   // Compare the rest of the elements
8038   bind(WHILE_HEAD_LABEL);
8039   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8040   subl(result, cnt1);
8041   jccb(Assembler::notZero, POP_LABEL);
8042   increment(cnt2);
8043   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8044 
8045   // Strings are equal up to min length.  Return the length difference.
8046   bind(LENGTH_DIFF_LABEL);
8047   pop(result);
8048   if (ae == StrIntrinsicNode::UU) {
8049     // Divide diff by 2 to get number of chars
8050     sarl(result, 1);
8051   }
8052   jmpb(DONE_LABEL);
8053 
8054 #ifdef _LP64
8055   if (VM_Version::supports_avx512vlbw()) {
8056 
8057     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8058 
8059     kmovql(cnt1, k7);
8060     notq(cnt1);
8061     bsfq(cnt2, cnt1);
8062     if (ae != StrIntrinsicNode::LL) {
8063       // Divide diff by 2 to get number of chars
8064       sarl(cnt2, 1);
8065     }
8066     addq(result, cnt2);
8067     if (ae == StrIntrinsicNode::LL) {
8068       load_unsigned_byte(cnt1, Address(str2, result));
8069       load_unsigned_byte(result, Address(str1, result));
8070     } else if (ae == StrIntrinsicNode::UU) {
8071       load_unsigned_short(cnt1, Address(str2, result, scale));
8072       load_unsigned_short(result, Address(str1, result, scale));
8073     } else {
8074       load_unsigned_short(cnt1, Address(str2, result, scale2));
8075       load_unsigned_byte(result, Address(str1, result, scale1));
8076     }
8077     subl(result, cnt1);
8078     jmpb(POP_LABEL);
8079   }//if (VM_Version::supports_avx512vlbw())
8080 #endif // _LP64
8081 
8082   // Discard the stored length difference
8083   bind(POP_LABEL);
8084   pop(cnt1);
8085 
8086   // That's it
8087   bind(DONE_LABEL);
8088   if(ae == StrIntrinsicNode::UL) {
8089     negl(result);
8090   }
8091 
8092 }
8093 
8094 // Search for Non-ASCII character (Negative byte value) in a byte array,
8095 // return true if it has any and false otherwise.
8096 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8097 //   @HotSpotIntrinsicCandidate
8098 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8099 //     for (int i = off; i < off + len; i++) {
8100 //       if (ba[i] < 0) {
8101 //         return true;
8102 //       }
8103 //     }
8104 //     return false;
8105 //   }
8106 void MacroAssembler::has_negatives(Register ary1, Register len,
8107   Register result, Register tmp1,
8108   XMMRegister vec1, XMMRegister vec2) {
8109   // rsi: byte array
8110   // rcx: len
8111   // rax: result
8112   ShortBranchVerifier sbv(this);
8113   assert_different_registers(ary1, len, result, tmp1);
8114   assert_different_registers(vec1, vec2);
8115   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8116 
8117   // len == 0
8118   testl(len, len);
8119   jcc(Assembler::zero, FALSE_LABEL);
8120 
8121   if ((UseAVX > 2) && // AVX512
8122     VM_Version::supports_avx512vlbw() &&
8123     VM_Version::supports_bmi2()) {
8124 
8125     set_vector_masking();  // opening of the stub context for programming mask registers
8126 
8127     Label test_64_loop, test_tail;
8128     Register tmp3_aliased = len;
8129 
8130     movl(tmp1, len);
8131     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8132 
8133     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8134     andl(len, ~(64 - 1));    // vector count (in chars)
8135     jccb(Assembler::zero, test_tail);
8136 
8137     lea(ary1, Address(ary1, len, Address::times_1));
8138     negptr(len);
8139 
8140     bind(test_64_loop);
8141     // Check whether our 64 elements of size byte contain negatives
8142     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8143     kortestql(k2, k2);
8144     jcc(Assembler::notZero, TRUE_LABEL);
8145 
8146     addptr(len, 64);
8147     jccb(Assembler::notZero, test_64_loop);
8148 
8149 
8150     bind(test_tail);
8151     // bail out when there is nothing to be done
8152     testl(tmp1, -1);
8153     jcc(Assembler::zero, FALSE_LABEL);
8154 
8155     // Save k1
8156     kmovql(k3, k1);
8157 
8158     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8159 #ifdef _LP64
8160     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8161     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8162     notq(tmp3_aliased);
8163     kmovql(k1, tmp3_aliased);
8164 #else
8165     Label k_init;
8166     jmp(k_init);
8167 
8168     // We could not read 64-bits from a general purpose register thus we move
8169     // data required to compose 64 1's to the instruction stream
8170     // We emit 64 byte wide series of elements from 0..63 which later on would
8171     // be used as a compare targets with tail count contained in tmp1 register.
8172     // Result would be a k1 register having tmp1 consecutive number or 1
8173     // counting from least significant bit.
8174     address tmp = pc();
8175     emit_int64(0x0706050403020100);
8176     emit_int64(0x0F0E0D0C0B0A0908);
8177     emit_int64(0x1716151413121110);
8178     emit_int64(0x1F1E1D1C1B1A1918);
8179     emit_int64(0x2726252423222120);
8180     emit_int64(0x2F2E2D2C2B2A2928);
8181     emit_int64(0x3736353433323130);
8182     emit_int64(0x3F3E3D3C3B3A3938);
8183 
8184     bind(k_init);
8185     lea(len, InternalAddress(tmp));
8186     // create mask to test for negative byte inside a vector
8187     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8188     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8189 
8190 #endif
8191     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8192     ktestq(k2, k1);
8193     // Restore k1
8194     kmovql(k1, k3);
8195     jcc(Assembler::notZero, TRUE_LABEL);
8196 
8197     jmp(FALSE_LABEL);
8198 
8199     clear_vector_masking();   // closing of the stub context for programming mask registers
8200   } else {
8201     movl(result, len); // copy
8202 
8203     if (UseAVX == 2 && UseSSE >= 2) {
8204       // With AVX2, use 32-byte vector compare
8205       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8206 
8207       // Compare 32-byte vectors
8208       andl(result, 0x0000001f);  //   tail count (in bytes)
8209       andl(len, 0xffffffe0);   // vector count (in bytes)
8210       jccb(Assembler::zero, COMPARE_TAIL);
8211 
8212       lea(ary1, Address(ary1, len, Address::times_1));
8213       negptr(len);
8214 
8215       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8216       movdl(vec2, tmp1);
8217       vpbroadcastd(vec2, vec2);
8218 
8219       bind(COMPARE_WIDE_VECTORS);
8220       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8221       vptest(vec1, vec2);
8222       jccb(Assembler::notZero, TRUE_LABEL);
8223       addptr(len, 32);
8224       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8225 
8226       testl(result, result);
8227       jccb(Assembler::zero, FALSE_LABEL);
8228 
8229       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8230       vptest(vec1, vec2);
8231       jccb(Assembler::notZero, TRUE_LABEL);
8232       jmpb(FALSE_LABEL);
8233 
8234       bind(COMPARE_TAIL); // len is zero
8235       movl(len, result);
8236       // Fallthru to tail compare
8237     } else if (UseSSE42Intrinsics) {
8238       // With SSE4.2, use double quad vector compare
8239       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8240 
8241       // Compare 16-byte vectors
8242       andl(result, 0x0000000f);  //   tail count (in bytes)
8243       andl(len, 0xfffffff0);   // vector count (in bytes)
8244       jccb(Assembler::zero, COMPARE_TAIL);
8245 
8246       lea(ary1, Address(ary1, len, Address::times_1));
8247       negptr(len);
8248 
8249       movl(tmp1, 0x80808080);
8250       movdl(vec2, tmp1);
8251       pshufd(vec2, vec2, 0);
8252 
8253       bind(COMPARE_WIDE_VECTORS);
8254       movdqu(vec1, Address(ary1, len, Address::times_1));
8255       ptest(vec1, vec2);
8256       jccb(Assembler::notZero, TRUE_LABEL);
8257       addptr(len, 16);
8258       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8259 
8260       testl(result, result);
8261       jccb(Assembler::zero, FALSE_LABEL);
8262 
8263       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8264       ptest(vec1, vec2);
8265       jccb(Assembler::notZero, TRUE_LABEL);
8266       jmpb(FALSE_LABEL);
8267 
8268       bind(COMPARE_TAIL); // len is zero
8269       movl(len, result);
8270       // Fallthru to tail compare
8271     }
8272   }
8273   // Compare 4-byte vectors
8274   andl(len, 0xfffffffc); // vector count (in bytes)
8275   jccb(Assembler::zero, COMPARE_CHAR);
8276 
8277   lea(ary1, Address(ary1, len, Address::times_1));
8278   negptr(len);
8279 
8280   bind(COMPARE_VECTORS);
8281   movl(tmp1, Address(ary1, len, Address::times_1));
8282   andl(tmp1, 0x80808080);
8283   jccb(Assembler::notZero, TRUE_LABEL);
8284   addptr(len, 4);
8285   jcc(Assembler::notZero, COMPARE_VECTORS);
8286 
8287   // Compare trailing char (final 2 bytes), if any
8288   bind(COMPARE_CHAR);
8289   testl(result, 0x2);   // tail  char
8290   jccb(Assembler::zero, COMPARE_BYTE);
8291   load_unsigned_short(tmp1, Address(ary1, 0));
8292   andl(tmp1, 0x00008080);
8293   jccb(Assembler::notZero, TRUE_LABEL);
8294   subptr(result, 2);
8295   lea(ary1, Address(ary1, 2));
8296 
8297   bind(COMPARE_BYTE);
8298   testl(result, 0x1);   // tail  byte
8299   jccb(Assembler::zero, FALSE_LABEL);
8300   load_unsigned_byte(tmp1, Address(ary1, 0));
8301   andl(tmp1, 0x00000080);
8302   jccb(Assembler::notEqual, TRUE_LABEL);
8303   jmpb(FALSE_LABEL);
8304 
8305   bind(TRUE_LABEL);
8306   movl(result, 1);   // return true
8307   jmpb(DONE);
8308 
8309   bind(FALSE_LABEL);
8310   xorl(result, result); // return false
8311 
8312   // That's it
8313   bind(DONE);
8314   if (UseAVX >= 2 && UseSSE >= 2) {
8315     // clean upper bits of YMM registers
8316     vpxor(vec1, vec1);
8317     vpxor(vec2, vec2);
8318   }
8319 }
8320 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8321 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8322                                    Register limit, Register result, Register chr,
8323                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8324   ShortBranchVerifier sbv(this);
8325   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8326 
8327   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8328   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8329 
8330   if (is_array_equ) {
8331     // Check the input args
8332     cmpptr(ary1, ary2);
8333     jcc(Assembler::equal, TRUE_LABEL);
8334 
8335     // Need additional checks for arrays_equals.
8336     testptr(ary1, ary1);
8337     jcc(Assembler::zero, FALSE_LABEL);
8338     testptr(ary2, ary2);
8339     jcc(Assembler::zero, FALSE_LABEL);
8340 
8341     // Check the lengths
8342     movl(limit, Address(ary1, length_offset));
8343     cmpl(limit, Address(ary2, length_offset));
8344     jcc(Assembler::notEqual, FALSE_LABEL);
8345   }
8346 
8347   // count == 0
8348   testl(limit, limit);
8349   jcc(Assembler::zero, TRUE_LABEL);
8350 
8351   if (is_array_equ) {
8352     // Load array address
8353     lea(ary1, Address(ary1, base_offset));
8354     lea(ary2, Address(ary2, base_offset));
8355   }
8356 
8357   if (is_array_equ && is_char) {
8358     // arrays_equals when used for char[].
8359     shll(limit, 1);      // byte count != 0
8360   }
8361   movl(result, limit); // copy
8362 
8363   if (UseAVX >= 2) {
8364     // With AVX2, use 32-byte vector compare
8365     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8366 
8367     // Compare 32-byte vectors
8368     andl(result, 0x0000001f);  //   tail count (in bytes)
8369     andl(limit, 0xffffffe0);   // vector count (in bytes)
8370     jcc(Assembler::zero, COMPARE_TAIL);
8371 
8372     lea(ary1, Address(ary1, limit, Address::times_1));
8373     lea(ary2, Address(ary2, limit, Address::times_1));
8374     negptr(limit);
8375 
8376     bind(COMPARE_WIDE_VECTORS);
8377 
8378 #ifdef _LP64
8379     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8380       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8381 
8382       cmpl(limit, -64);
8383       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8384 
8385       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8386 
8387       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8388       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8389       kortestql(k7, k7);
8390       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8391       addptr(limit, 64);  // update since we already compared at this addr
8392       cmpl(limit, -64);
8393       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8394 
8395       // At this point we may still need to compare -limit+result bytes.
8396       // We could execute the next two instruction and just continue via non-wide path:
8397       //  cmpl(limit, 0);
8398       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8399       // But since we stopped at the points ary{1,2}+limit which are
8400       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8401       // (|limit| <= 32 and result < 32),
8402       // we may just compare the last 64 bytes.
8403       //
8404       addptr(result, -64);   // it is safe, bc we just came from this area
8405       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8406       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8407       kortestql(k7, k7);
8408       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8409 
8410       jmp(TRUE_LABEL);
8411 
8412       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8413 
8414     }//if (VM_Version::supports_avx512vlbw())
8415 #endif //_LP64
8416 
8417     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8418     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8419     vpxor(vec1, vec2);
8420 
8421     vptest(vec1, vec1);
8422     jcc(Assembler::notZero, FALSE_LABEL);
8423     addptr(limit, 32);
8424     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8425 
8426     testl(result, result);
8427     jcc(Assembler::zero, TRUE_LABEL);
8428 
8429     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8430     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8431     vpxor(vec1, vec2);
8432 
8433     vptest(vec1, vec1);
8434     jccb(Assembler::notZero, FALSE_LABEL);
8435     jmpb(TRUE_LABEL);
8436 
8437     bind(COMPARE_TAIL); // limit is zero
8438     movl(limit, result);
8439     // Fallthru to tail compare
8440   } else if (UseSSE42Intrinsics) {
8441     // With SSE4.2, use double quad vector compare
8442     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8443 
8444     // Compare 16-byte vectors
8445     andl(result, 0x0000000f);  //   tail count (in bytes)
8446     andl(limit, 0xfffffff0);   // vector count (in bytes)
8447     jcc(Assembler::zero, COMPARE_TAIL);
8448 
8449     lea(ary1, Address(ary1, limit, Address::times_1));
8450     lea(ary2, Address(ary2, limit, Address::times_1));
8451     negptr(limit);
8452 
8453     bind(COMPARE_WIDE_VECTORS);
8454     movdqu(vec1, Address(ary1, limit, Address::times_1));
8455     movdqu(vec2, Address(ary2, limit, Address::times_1));
8456     pxor(vec1, vec2);
8457 
8458     ptest(vec1, vec1);
8459     jcc(Assembler::notZero, FALSE_LABEL);
8460     addptr(limit, 16);
8461     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8462 
8463     testl(result, result);
8464     jcc(Assembler::zero, TRUE_LABEL);
8465 
8466     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8467     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8468     pxor(vec1, vec2);
8469 
8470     ptest(vec1, vec1);
8471     jccb(Assembler::notZero, FALSE_LABEL);
8472     jmpb(TRUE_LABEL);
8473 
8474     bind(COMPARE_TAIL); // limit is zero
8475     movl(limit, result);
8476     // Fallthru to tail compare
8477   }
8478 
8479   // Compare 4-byte vectors
8480   andl(limit, 0xfffffffc); // vector count (in bytes)
8481   jccb(Assembler::zero, COMPARE_CHAR);
8482 
8483   lea(ary1, Address(ary1, limit, Address::times_1));
8484   lea(ary2, Address(ary2, limit, Address::times_1));
8485   negptr(limit);
8486 
8487   bind(COMPARE_VECTORS);
8488   movl(chr, Address(ary1, limit, Address::times_1));
8489   cmpl(chr, Address(ary2, limit, Address::times_1));
8490   jccb(Assembler::notEqual, FALSE_LABEL);
8491   addptr(limit, 4);
8492   jcc(Assembler::notZero, COMPARE_VECTORS);
8493 
8494   // Compare trailing char (final 2 bytes), if any
8495   bind(COMPARE_CHAR);
8496   testl(result, 0x2);   // tail  char
8497   jccb(Assembler::zero, COMPARE_BYTE);
8498   load_unsigned_short(chr, Address(ary1, 0));
8499   load_unsigned_short(limit, Address(ary2, 0));
8500   cmpl(chr, limit);
8501   jccb(Assembler::notEqual, FALSE_LABEL);
8502 
8503   if (is_array_equ && is_char) {
8504     bind(COMPARE_BYTE);
8505   } else {
8506     lea(ary1, Address(ary1, 2));
8507     lea(ary2, Address(ary2, 2));
8508 
8509     bind(COMPARE_BYTE);
8510     testl(result, 0x1);   // tail  byte
8511     jccb(Assembler::zero, TRUE_LABEL);
8512     load_unsigned_byte(chr, Address(ary1, 0));
8513     load_unsigned_byte(limit, Address(ary2, 0));
8514     cmpl(chr, limit);
8515     jccb(Assembler::notEqual, FALSE_LABEL);
8516   }
8517   bind(TRUE_LABEL);
8518   movl(result, 1);   // return true
8519   jmpb(DONE);
8520 
8521   bind(FALSE_LABEL);
8522   xorl(result, result); // return false
8523 
8524   // That's it
8525   bind(DONE);
8526   if (UseAVX >= 2) {
8527     // clean upper bits of YMM registers
8528     vpxor(vec1, vec1);
8529     vpxor(vec2, vec2);
8530   }
8531 }
8532 
8533 #endif
8534 
8535 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8536                                    Register to, Register value, Register count,
8537                                    Register rtmp, XMMRegister xtmp) {
8538   ShortBranchVerifier sbv(this);
8539   assert_different_registers(to, value, count, rtmp);
8540   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8541   Label L_fill_2_bytes, L_fill_4_bytes;
8542 
8543   int shift = -1;
8544   switch (t) {
8545     case T_BYTE:
8546       shift = 2;
8547       break;
8548     case T_SHORT:
8549       shift = 1;
8550       break;
8551     case T_INT:
8552       shift = 0;
8553       break;
8554     default: ShouldNotReachHere();
8555   }
8556 
8557   if (t == T_BYTE) {
8558     andl(value, 0xff);
8559     movl(rtmp, value);
8560     shll(rtmp, 8);
8561     orl(value, rtmp);
8562   }
8563   if (t == T_SHORT) {
8564     andl(value, 0xffff);
8565   }
8566   if (t == T_BYTE || t == T_SHORT) {
8567     movl(rtmp, value);
8568     shll(rtmp, 16);
8569     orl(value, rtmp);
8570   }
8571 
8572   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8573   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8574   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8575     // align source address at 4 bytes address boundary
8576     if (t == T_BYTE) {
8577       // One byte misalignment happens only for byte arrays
8578       testptr(to, 1);
8579       jccb(Assembler::zero, L_skip_align1);
8580       movb(Address(to, 0), value);
8581       increment(to);
8582       decrement(count);
8583       BIND(L_skip_align1);
8584     }
8585     // Two bytes misalignment happens only for byte and short (char) arrays
8586     testptr(to, 2);
8587     jccb(Assembler::zero, L_skip_align2);
8588     movw(Address(to, 0), value);
8589     addptr(to, 2);
8590     subl(count, 1<<(shift-1));
8591     BIND(L_skip_align2);
8592   }
8593   if (UseSSE < 2) {
8594     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8595     // Fill 32-byte chunks
8596     subl(count, 8 << shift);
8597     jcc(Assembler::less, L_check_fill_8_bytes);
8598     align(16);
8599 
8600     BIND(L_fill_32_bytes_loop);
8601 
8602     for (int i = 0; i < 32; i += 4) {
8603       movl(Address(to, i), value);
8604     }
8605 
8606     addptr(to, 32);
8607     subl(count, 8 << shift);
8608     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8609     BIND(L_check_fill_8_bytes);
8610     addl(count, 8 << shift);
8611     jccb(Assembler::zero, L_exit);
8612     jmpb(L_fill_8_bytes);
8613 
8614     //
8615     // length is too short, just fill qwords
8616     //
8617     BIND(L_fill_8_bytes_loop);
8618     movl(Address(to, 0), value);
8619     movl(Address(to, 4), value);
8620     addptr(to, 8);
8621     BIND(L_fill_8_bytes);
8622     subl(count, 1 << (shift + 1));
8623     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8624     // fall through to fill 4 bytes
8625   } else {
8626     Label L_fill_32_bytes;
8627     if (!UseUnalignedLoadStores) {
8628       // align to 8 bytes, we know we are 4 byte aligned to start
8629       testptr(to, 4);
8630       jccb(Assembler::zero, L_fill_32_bytes);
8631       movl(Address(to, 0), value);
8632       addptr(to, 4);
8633       subl(count, 1<<shift);
8634     }
8635     BIND(L_fill_32_bytes);
8636     {
8637       assert( UseSSE >= 2, "supported cpu only" );
8638       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8639       if (UseAVX > 2) {
8640         movl(rtmp, 0xffff);
8641         kmovwl(k1, rtmp);
8642       }
8643       movdl(xtmp, value);
8644       if (UseAVX > 2 && UseUnalignedLoadStores) {
8645         // Fill 64-byte chunks
8646         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8647         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8648 
8649         subl(count, 16 << shift);
8650         jcc(Assembler::less, L_check_fill_32_bytes);
8651         align(16);
8652 
8653         BIND(L_fill_64_bytes_loop);
8654         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8655         addptr(to, 64);
8656         subl(count, 16 << shift);
8657         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8658 
8659         BIND(L_check_fill_32_bytes);
8660         addl(count, 8 << shift);
8661         jccb(Assembler::less, L_check_fill_8_bytes);
8662         vmovdqu(Address(to, 0), xtmp);
8663         addptr(to, 32);
8664         subl(count, 8 << shift);
8665 
8666         BIND(L_check_fill_8_bytes);
8667       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8668         // Fill 64-byte chunks
8669         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8670         vpbroadcastd(xtmp, xtmp);
8671 
8672         subl(count, 16 << shift);
8673         jcc(Assembler::less, L_check_fill_32_bytes);
8674         align(16);
8675 
8676         BIND(L_fill_64_bytes_loop);
8677         vmovdqu(Address(to, 0), xtmp);
8678         vmovdqu(Address(to, 32), xtmp);
8679         addptr(to, 64);
8680         subl(count, 16 << shift);
8681         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8682 
8683         BIND(L_check_fill_32_bytes);
8684         addl(count, 8 << shift);
8685         jccb(Assembler::less, L_check_fill_8_bytes);
8686         vmovdqu(Address(to, 0), xtmp);
8687         addptr(to, 32);
8688         subl(count, 8 << shift);
8689 
8690         BIND(L_check_fill_8_bytes);
8691         // clean upper bits of YMM registers
8692         movdl(xtmp, value);
8693         pshufd(xtmp, xtmp, 0);
8694       } else {
8695         // Fill 32-byte chunks
8696         pshufd(xtmp, xtmp, 0);
8697 
8698         subl(count, 8 << shift);
8699         jcc(Assembler::less, L_check_fill_8_bytes);
8700         align(16);
8701 
8702         BIND(L_fill_32_bytes_loop);
8703 
8704         if (UseUnalignedLoadStores) {
8705           movdqu(Address(to, 0), xtmp);
8706           movdqu(Address(to, 16), xtmp);
8707         } else {
8708           movq(Address(to, 0), xtmp);
8709           movq(Address(to, 8), xtmp);
8710           movq(Address(to, 16), xtmp);
8711           movq(Address(to, 24), xtmp);
8712         }
8713 
8714         addptr(to, 32);
8715         subl(count, 8 << shift);
8716         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8717 
8718         BIND(L_check_fill_8_bytes);
8719       }
8720       addl(count, 8 << shift);
8721       jccb(Assembler::zero, L_exit);
8722       jmpb(L_fill_8_bytes);
8723 
8724       //
8725       // length is too short, just fill qwords
8726       //
8727       BIND(L_fill_8_bytes_loop);
8728       movq(Address(to, 0), xtmp);
8729       addptr(to, 8);
8730       BIND(L_fill_8_bytes);
8731       subl(count, 1 << (shift + 1));
8732       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8733     }
8734   }
8735   // fill trailing 4 bytes
8736   BIND(L_fill_4_bytes);
8737   testl(count, 1<<shift);
8738   jccb(Assembler::zero, L_fill_2_bytes);
8739   movl(Address(to, 0), value);
8740   if (t == T_BYTE || t == T_SHORT) {
8741     addptr(to, 4);
8742     BIND(L_fill_2_bytes);
8743     // fill trailing 2 bytes
8744     testl(count, 1<<(shift-1));
8745     jccb(Assembler::zero, L_fill_byte);
8746     movw(Address(to, 0), value);
8747     if (t == T_BYTE) {
8748       addptr(to, 2);
8749       BIND(L_fill_byte);
8750       // fill trailing byte
8751       testl(count, 1);
8752       jccb(Assembler::zero, L_exit);
8753       movb(Address(to, 0), value);
8754     } else {
8755       BIND(L_fill_byte);
8756     }
8757   } else {
8758     BIND(L_fill_2_bytes);
8759   }
8760   BIND(L_exit);
8761 }
8762 
8763 // encode char[] to byte[] in ISO_8859_1
8764    //@HotSpotIntrinsicCandidate
8765    //private static int implEncodeISOArray(byte[] sa, int sp,
8766    //byte[] da, int dp, int len) {
8767    //  int i = 0;
8768    //  for (; i < len; i++) {
8769    //    char c = StringUTF16.getChar(sa, sp++);
8770    //    if (c > '\u00FF')
8771    //      break;
8772    //    da[dp++] = (byte)c;
8773    //  }
8774    //  return i;
8775    //}
8776 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8777   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8778   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8779   Register tmp5, Register result) {
8780 
8781   // rsi: src
8782   // rdi: dst
8783   // rdx: len
8784   // rcx: tmp5
8785   // rax: result
8786   ShortBranchVerifier sbv(this);
8787   assert_different_registers(src, dst, len, tmp5, result);
8788   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8789 
8790   // set result
8791   xorl(result, result);
8792   // check for zero length
8793   testl(len, len);
8794   jcc(Assembler::zero, L_done);
8795 
8796   movl(result, len);
8797 
8798   // Setup pointers
8799   lea(src, Address(src, len, Address::times_2)); // char[]
8800   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8801   negptr(len);
8802 
8803   if (UseSSE42Intrinsics || UseAVX >= 2) {
8804     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8805     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8806 
8807     if (UseAVX >= 2) {
8808       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8809       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8810       movdl(tmp1Reg, tmp5);
8811       vpbroadcastd(tmp1Reg, tmp1Reg);
8812       jmp(L_chars_32_check);
8813 
8814       bind(L_copy_32_chars);
8815       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8816       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8817       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8818       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8819       jccb(Assembler::notZero, L_copy_32_chars_exit);
8820       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8821       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8822       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8823 
8824       bind(L_chars_32_check);
8825       addptr(len, 32);
8826       jcc(Assembler::lessEqual, L_copy_32_chars);
8827 
8828       bind(L_copy_32_chars_exit);
8829       subptr(len, 16);
8830       jccb(Assembler::greater, L_copy_16_chars_exit);
8831 
8832     } else if (UseSSE42Intrinsics) {
8833       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8834       movdl(tmp1Reg, tmp5);
8835       pshufd(tmp1Reg, tmp1Reg, 0);
8836       jmpb(L_chars_16_check);
8837     }
8838 
8839     bind(L_copy_16_chars);
8840     if (UseAVX >= 2) {
8841       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8842       vptest(tmp2Reg, tmp1Reg);
8843       jcc(Assembler::notZero, L_copy_16_chars_exit);
8844       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8845       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8846     } else {
8847       if (UseAVX > 0) {
8848         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8849         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8850         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8851       } else {
8852         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8853         por(tmp2Reg, tmp3Reg);
8854         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8855         por(tmp2Reg, tmp4Reg);
8856       }
8857       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8858       jccb(Assembler::notZero, L_copy_16_chars_exit);
8859       packuswb(tmp3Reg, tmp4Reg);
8860     }
8861     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8862 
8863     bind(L_chars_16_check);
8864     addptr(len, 16);
8865     jcc(Assembler::lessEqual, L_copy_16_chars);
8866 
8867     bind(L_copy_16_chars_exit);
8868     if (UseAVX >= 2) {
8869       // clean upper bits of YMM registers
8870       vpxor(tmp2Reg, tmp2Reg);
8871       vpxor(tmp3Reg, tmp3Reg);
8872       vpxor(tmp4Reg, tmp4Reg);
8873       movdl(tmp1Reg, tmp5);
8874       pshufd(tmp1Reg, tmp1Reg, 0);
8875     }
8876     subptr(len, 8);
8877     jccb(Assembler::greater, L_copy_8_chars_exit);
8878 
8879     bind(L_copy_8_chars);
8880     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8881     ptest(tmp3Reg, tmp1Reg);
8882     jccb(Assembler::notZero, L_copy_8_chars_exit);
8883     packuswb(tmp3Reg, tmp1Reg);
8884     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8885     addptr(len, 8);
8886     jccb(Assembler::lessEqual, L_copy_8_chars);
8887 
8888     bind(L_copy_8_chars_exit);
8889     subptr(len, 8);
8890     jccb(Assembler::zero, L_done);
8891   }
8892 
8893   bind(L_copy_1_char);
8894   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8895   testl(tmp5, 0xff00);      // check if Unicode char
8896   jccb(Assembler::notZero, L_copy_1_char_exit);
8897   movb(Address(dst, len, Address::times_1, 0), tmp5);
8898   addptr(len, 1);
8899   jccb(Assembler::less, L_copy_1_char);
8900 
8901   bind(L_copy_1_char_exit);
8902   addptr(result, len); // len is negative count of not processed elements
8903 
8904   bind(L_done);
8905 }
8906 
8907 #ifdef _LP64
8908 /**
8909  * Helper for multiply_to_len().
8910  */
8911 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8912   addq(dest_lo, src1);
8913   adcq(dest_hi, 0);
8914   addq(dest_lo, src2);
8915   adcq(dest_hi, 0);
8916 }
8917 
8918 /**
8919  * Multiply 64 bit by 64 bit first loop.
8920  */
8921 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8922                                            Register y, Register y_idx, Register z,
8923                                            Register carry, Register product,
8924                                            Register idx, Register kdx) {
8925   //
8926   //  jlong carry, x[], y[], z[];
8927   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8928   //    huge_128 product = y[idx] * x[xstart] + carry;
8929   //    z[kdx] = (jlong)product;
8930   //    carry  = (jlong)(product >>> 64);
8931   //  }
8932   //  z[xstart] = carry;
8933   //
8934 
8935   Label L_first_loop, L_first_loop_exit;
8936   Label L_one_x, L_one_y, L_multiply;
8937 
8938   decrementl(xstart);
8939   jcc(Assembler::negative, L_one_x);
8940 
8941   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8942   rorq(x_xstart, 32); // convert big-endian to little-endian
8943 
8944   bind(L_first_loop);
8945   decrementl(idx);
8946   jcc(Assembler::negative, L_first_loop_exit);
8947   decrementl(idx);
8948   jcc(Assembler::negative, L_one_y);
8949   movq(y_idx, Address(y, idx, Address::times_4,  0));
8950   rorq(y_idx, 32); // convert big-endian to little-endian
8951   bind(L_multiply);
8952   movq(product, x_xstart);
8953   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8954   addq(product, carry);
8955   adcq(rdx, 0);
8956   subl(kdx, 2);
8957   movl(Address(z, kdx, Address::times_4,  4), product);
8958   shrq(product, 32);
8959   movl(Address(z, kdx, Address::times_4,  0), product);
8960   movq(carry, rdx);
8961   jmp(L_first_loop);
8962 
8963   bind(L_one_y);
8964   movl(y_idx, Address(y,  0));
8965   jmp(L_multiply);
8966 
8967   bind(L_one_x);
8968   movl(x_xstart, Address(x,  0));
8969   jmp(L_first_loop);
8970 
8971   bind(L_first_loop_exit);
8972 }
8973 
8974 /**
8975  * Multiply 64 bit by 64 bit and add 128 bit.
8976  */
8977 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8978                                             Register yz_idx, Register idx,
8979                                             Register carry, Register product, int offset) {
8980   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8981   //     z[kdx] = (jlong)product;
8982 
8983   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8984   rorq(yz_idx, 32); // convert big-endian to little-endian
8985   movq(product, x_xstart);
8986   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8987   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8988   rorq(yz_idx, 32); // convert big-endian to little-endian
8989 
8990   add2_with_carry(rdx, product, carry, yz_idx);
8991 
8992   movl(Address(z, idx, Address::times_4,  offset+4), product);
8993   shrq(product, 32);
8994   movl(Address(z, idx, Address::times_4,  offset), product);
8995 
8996 }
8997 
8998 /**
8999  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9000  */
9001 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9002                                              Register yz_idx, Register idx, Register jdx,
9003                                              Register carry, Register product,
9004                                              Register carry2) {
9005   //   jlong carry, x[], y[], z[];
9006   //   int kdx = ystart+1;
9007   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9008   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9009   //     z[kdx+idx+1] = (jlong)product;
9010   //     jlong carry2  = (jlong)(product >>> 64);
9011   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9012   //     z[kdx+idx] = (jlong)product;
9013   //     carry  = (jlong)(product >>> 64);
9014   //   }
9015   //   idx += 2;
9016   //   if (idx > 0) {
9017   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9018   //     z[kdx+idx] = (jlong)product;
9019   //     carry  = (jlong)(product >>> 64);
9020   //   }
9021   //
9022 
9023   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9024 
9025   movl(jdx, idx);
9026   andl(jdx, 0xFFFFFFFC);
9027   shrl(jdx, 2);
9028 
9029   bind(L_third_loop);
9030   subl(jdx, 1);
9031   jcc(Assembler::negative, L_third_loop_exit);
9032   subl(idx, 4);
9033 
9034   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9035   movq(carry2, rdx);
9036 
9037   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9038   movq(carry, rdx);
9039   jmp(L_third_loop);
9040 
9041   bind (L_third_loop_exit);
9042 
9043   andl (idx, 0x3);
9044   jcc(Assembler::zero, L_post_third_loop_done);
9045 
9046   Label L_check_1;
9047   subl(idx, 2);
9048   jcc(Assembler::negative, L_check_1);
9049 
9050   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9051   movq(carry, rdx);
9052 
9053   bind (L_check_1);
9054   addl (idx, 0x2);
9055   andl (idx, 0x1);
9056   subl(idx, 1);
9057   jcc(Assembler::negative, L_post_third_loop_done);
9058 
9059   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9060   movq(product, x_xstart);
9061   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9062   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9063 
9064   add2_with_carry(rdx, product, yz_idx, carry);
9065 
9066   movl(Address(z, idx, Address::times_4,  0), product);
9067   shrq(product, 32);
9068 
9069   shlq(rdx, 32);
9070   orq(product, rdx);
9071   movq(carry, product);
9072 
9073   bind(L_post_third_loop_done);
9074 }
9075 
9076 /**
9077  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9078  *
9079  */
9080 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9081                                                   Register carry, Register carry2,
9082                                                   Register idx, Register jdx,
9083                                                   Register yz_idx1, Register yz_idx2,
9084                                                   Register tmp, Register tmp3, Register tmp4) {
9085   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9086 
9087   //   jlong carry, x[], y[], z[];
9088   //   int kdx = ystart+1;
9089   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9090   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9091   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9092   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9093   //     carry  = (jlong)(tmp4 >>> 64);
9094   //     z[kdx+idx+1] = (jlong)tmp3;
9095   //     z[kdx+idx] = (jlong)tmp4;
9096   //   }
9097   //   idx += 2;
9098   //   if (idx > 0) {
9099   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9100   //     z[kdx+idx] = (jlong)yz_idx1;
9101   //     carry  = (jlong)(yz_idx1 >>> 64);
9102   //   }
9103   //
9104 
9105   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9106 
9107   movl(jdx, idx);
9108   andl(jdx, 0xFFFFFFFC);
9109   shrl(jdx, 2);
9110 
9111   bind(L_third_loop);
9112   subl(jdx, 1);
9113   jcc(Assembler::negative, L_third_loop_exit);
9114   subl(idx, 4);
9115 
9116   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9117   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9118   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9119   rorxq(yz_idx2, yz_idx2, 32);
9120 
9121   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9122   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9123 
9124   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9125   rorxq(yz_idx1, yz_idx1, 32);
9126   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9127   rorxq(yz_idx2, yz_idx2, 32);
9128 
9129   if (VM_Version::supports_adx()) {
9130     adcxq(tmp3, carry);
9131     adoxq(tmp3, yz_idx1);
9132 
9133     adcxq(tmp4, tmp);
9134     adoxq(tmp4, yz_idx2);
9135 
9136     movl(carry, 0); // does not affect flags
9137     adcxq(carry2, carry);
9138     adoxq(carry2, carry);
9139   } else {
9140     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9141     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9142   }
9143   movq(carry, carry2);
9144 
9145   movl(Address(z, idx, Address::times_4, 12), tmp3);
9146   shrq(tmp3, 32);
9147   movl(Address(z, idx, Address::times_4,  8), tmp3);
9148 
9149   movl(Address(z, idx, Address::times_4,  4), tmp4);
9150   shrq(tmp4, 32);
9151   movl(Address(z, idx, Address::times_4,  0), tmp4);
9152 
9153   jmp(L_third_loop);
9154 
9155   bind (L_third_loop_exit);
9156 
9157   andl (idx, 0x3);
9158   jcc(Assembler::zero, L_post_third_loop_done);
9159 
9160   Label L_check_1;
9161   subl(idx, 2);
9162   jcc(Assembler::negative, L_check_1);
9163 
9164   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9165   rorxq(yz_idx1, yz_idx1, 32);
9166   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9167   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9168   rorxq(yz_idx2, yz_idx2, 32);
9169 
9170   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9171 
9172   movl(Address(z, idx, Address::times_4,  4), tmp3);
9173   shrq(tmp3, 32);
9174   movl(Address(z, idx, Address::times_4,  0), tmp3);
9175   movq(carry, tmp4);
9176 
9177   bind (L_check_1);
9178   addl (idx, 0x2);
9179   andl (idx, 0x1);
9180   subl(idx, 1);
9181   jcc(Assembler::negative, L_post_third_loop_done);
9182   movl(tmp4, Address(y, idx, Address::times_4,  0));
9183   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9184   movl(tmp4, Address(z, idx, Address::times_4,  0));
9185 
9186   add2_with_carry(carry2, tmp3, tmp4, carry);
9187 
9188   movl(Address(z, idx, Address::times_4,  0), tmp3);
9189   shrq(tmp3, 32);
9190 
9191   shlq(carry2, 32);
9192   orq(tmp3, carry2);
9193   movq(carry, tmp3);
9194 
9195   bind(L_post_third_loop_done);
9196 }
9197 
9198 /**
9199  * Code for BigInteger::multiplyToLen() instrinsic.
9200  *
9201  * rdi: x
9202  * rax: xlen
9203  * rsi: y
9204  * rcx: ylen
9205  * r8:  z
9206  * r11: zlen
9207  * r12: tmp1
9208  * r13: tmp2
9209  * r14: tmp3
9210  * r15: tmp4
9211  * rbx: tmp5
9212  *
9213  */
9214 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9215                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9216   ShortBranchVerifier sbv(this);
9217   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9218 
9219   push(tmp1);
9220   push(tmp2);
9221   push(tmp3);
9222   push(tmp4);
9223   push(tmp5);
9224 
9225   push(xlen);
9226   push(zlen);
9227 
9228   const Register idx = tmp1;
9229   const Register kdx = tmp2;
9230   const Register xstart = tmp3;
9231 
9232   const Register y_idx = tmp4;
9233   const Register carry = tmp5;
9234   const Register product  = xlen;
9235   const Register x_xstart = zlen;  // reuse register
9236 
9237   // First Loop.
9238   //
9239   //  final static long LONG_MASK = 0xffffffffL;
9240   //  int xstart = xlen - 1;
9241   //  int ystart = ylen - 1;
9242   //  long carry = 0;
9243   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9244   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9245   //    z[kdx] = (int)product;
9246   //    carry = product >>> 32;
9247   //  }
9248   //  z[xstart] = (int)carry;
9249   //
9250 
9251   movl(idx, ylen);      // idx = ylen;
9252   movl(kdx, zlen);      // kdx = xlen+ylen;
9253   xorq(carry, carry);   // carry = 0;
9254 
9255   Label L_done;
9256 
9257   movl(xstart, xlen);
9258   decrementl(xstart);
9259   jcc(Assembler::negative, L_done);
9260 
9261   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9262 
9263   Label L_second_loop;
9264   testl(kdx, kdx);
9265   jcc(Assembler::zero, L_second_loop);
9266 
9267   Label L_carry;
9268   subl(kdx, 1);
9269   jcc(Assembler::zero, L_carry);
9270 
9271   movl(Address(z, kdx, Address::times_4,  0), carry);
9272   shrq(carry, 32);
9273   subl(kdx, 1);
9274 
9275   bind(L_carry);
9276   movl(Address(z, kdx, Address::times_4,  0), carry);
9277 
9278   // Second and third (nested) loops.
9279   //
9280   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9281   //   carry = 0;
9282   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9283   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9284   //                    (z[k] & LONG_MASK) + carry;
9285   //     z[k] = (int)product;
9286   //     carry = product >>> 32;
9287   //   }
9288   //   z[i] = (int)carry;
9289   // }
9290   //
9291   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9292 
9293   const Register jdx = tmp1;
9294 
9295   bind(L_second_loop);
9296   xorl(carry, carry);    // carry = 0;
9297   movl(jdx, ylen);       // j = ystart+1
9298 
9299   subl(xstart, 1);       // i = xstart-1;
9300   jcc(Assembler::negative, L_done);
9301 
9302   push (z);
9303 
9304   Label L_last_x;
9305   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9306   subl(xstart, 1);       // i = xstart-1;
9307   jcc(Assembler::negative, L_last_x);
9308 
9309   if (UseBMI2Instructions) {
9310     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9311     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9312   } else {
9313     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9314     rorq(x_xstart, 32);  // convert big-endian to little-endian
9315   }
9316 
9317   Label L_third_loop_prologue;
9318   bind(L_third_loop_prologue);
9319 
9320   push (x);
9321   push (xstart);
9322   push (ylen);
9323 
9324 
9325   if (UseBMI2Instructions) {
9326     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9327   } else { // !UseBMI2Instructions
9328     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9329   }
9330 
9331   pop(ylen);
9332   pop(xlen);
9333   pop(x);
9334   pop(z);
9335 
9336   movl(tmp3, xlen);
9337   addl(tmp3, 1);
9338   movl(Address(z, tmp3, Address::times_4,  0), carry);
9339   subl(tmp3, 1);
9340   jccb(Assembler::negative, L_done);
9341 
9342   shrq(carry, 32);
9343   movl(Address(z, tmp3, Address::times_4,  0), carry);
9344   jmp(L_second_loop);
9345 
9346   // Next infrequent code is moved outside loops.
9347   bind(L_last_x);
9348   if (UseBMI2Instructions) {
9349     movl(rdx, Address(x,  0));
9350   } else {
9351     movl(x_xstart, Address(x,  0));
9352   }
9353   jmp(L_third_loop_prologue);
9354 
9355   bind(L_done);
9356 
9357   pop(zlen);
9358   pop(xlen);
9359 
9360   pop(tmp5);
9361   pop(tmp4);
9362   pop(tmp3);
9363   pop(tmp2);
9364   pop(tmp1);
9365 }
9366 
9367 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9368   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9369   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9370   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9371   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9372   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9373   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9374   Label SAME_TILL_END, DONE;
9375   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9376 
9377   //scale is in rcx in both Win64 and Unix
9378   ShortBranchVerifier sbv(this);
9379 
9380   shlq(length);
9381   xorq(result, result);
9382 
9383   if ((UseAVX > 2) &&
9384       VM_Version::supports_avx512vlbw()) {
9385     set_vector_masking();  // opening of the stub context for programming mask registers
9386     cmpq(length, 64);
9387     jcc(Assembler::less, VECTOR32_TAIL);
9388     movq(tmp1, length);
9389     andq(tmp1, 0x3F);      // tail count
9390     andq(length, ~(0x3F)); //vector count
9391 
9392     bind(VECTOR64_LOOP);
9393     // AVX512 code to compare 64 byte vectors.
9394     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9395     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9396     kortestql(k7, k7);
9397     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9398     addq(result, 64);
9399     subq(length, 64);
9400     jccb(Assembler::notZero, VECTOR64_LOOP);
9401 
9402     //bind(VECTOR64_TAIL);
9403     testq(tmp1, tmp1);
9404     jcc(Assembler::zero, SAME_TILL_END);
9405 
9406     bind(VECTOR64_TAIL);
9407     // AVX512 code to compare upto 63 byte vectors.
9408     // Save k1
9409     kmovql(k3, k1);
9410     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9411     shlxq(tmp2, tmp2, tmp1);
9412     notq(tmp2);
9413     kmovql(k1, tmp2);
9414 
9415     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9416     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9417 
9418     ktestql(k7, k1);
9419     // Restore k1
9420     kmovql(k1, k3);
9421     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9422 
9423     bind(VECTOR64_NOT_EQUAL);
9424     kmovql(tmp1, k7);
9425     notq(tmp1);
9426     tzcntq(tmp1, tmp1);
9427     addq(result, tmp1);
9428     shrq(result);
9429     jmp(DONE);
9430     bind(VECTOR32_TAIL);
9431     clear_vector_masking();   // closing of the stub context for programming mask registers
9432   }
9433 
9434   cmpq(length, 8);
9435   jcc(Assembler::equal, VECTOR8_LOOP);
9436   jcc(Assembler::less, VECTOR4_TAIL);
9437 
9438   if (UseAVX >= 2) {
9439 
9440     cmpq(length, 16);
9441     jcc(Assembler::equal, VECTOR16_LOOP);
9442     jcc(Assembler::less, VECTOR8_LOOP);
9443 
9444     cmpq(length, 32);
9445     jccb(Assembler::less, VECTOR16_TAIL);
9446 
9447     subq(length, 32);
9448     bind(VECTOR32_LOOP);
9449     vmovdqu(rymm0, Address(obja, result));
9450     vmovdqu(rymm1, Address(objb, result));
9451     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9452     vptest(rymm2, rymm2);
9453     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9454     addq(result, 32);
9455     subq(length, 32);
9456     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9457     addq(length, 32);
9458     jcc(Assembler::equal, SAME_TILL_END);
9459     //falling through if less than 32 bytes left //close the branch here.
9460 
9461     bind(VECTOR16_TAIL);
9462     cmpq(length, 16);
9463     jccb(Assembler::less, VECTOR8_TAIL);
9464     bind(VECTOR16_LOOP);
9465     movdqu(rymm0, Address(obja, result));
9466     movdqu(rymm1, Address(objb, result));
9467     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9468     ptest(rymm2, rymm2);
9469     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9470     addq(result, 16);
9471     subq(length, 16);
9472     jcc(Assembler::equal, SAME_TILL_END);
9473     //falling through if less than 16 bytes left
9474   } else {//regular intrinsics
9475 
9476     cmpq(length, 16);
9477     jccb(Assembler::less, VECTOR8_TAIL);
9478 
9479     subq(length, 16);
9480     bind(VECTOR16_LOOP);
9481     movdqu(rymm0, Address(obja, result));
9482     movdqu(rymm1, Address(objb, result));
9483     pxor(rymm0, rymm1);
9484     ptest(rymm0, rymm0);
9485     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9486     addq(result, 16);
9487     subq(length, 16);
9488     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9489     addq(length, 16);
9490     jcc(Assembler::equal, SAME_TILL_END);
9491     //falling through if less than 16 bytes left
9492   }
9493 
9494   bind(VECTOR8_TAIL);
9495   cmpq(length, 8);
9496   jccb(Assembler::less, VECTOR4_TAIL);
9497   bind(VECTOR8_LOOP);
9498   movq(tmp1, Address(obja, result));
9499   movq(tmp2, Address(objb, result));
9500   xorq(tmp1, tmp2);
9501   testq(tmp1, tmp1);
9502   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9503   addq(result, 8);
9504   subq(length, 8);
9505   jcc(Assembler::equal, SAME_TILL_END);
9506   //falling through if less than 8 bytes left
9507 
9508   bind(VECTOR4_TAIL);
9509   cmpq(length, 4);
9510   jccb(Assembler::less, BYTES_TAIL);
9511   bind(VECTOR4_LOOP);
9512   movl(tmp1, Address(obja, result));
9513   xorl(tmp1, Address(objb, result));
9514   testl(tmp1, tmp1);
9515   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9516   addq(result, 4);
9517   subq(length, 4);
9518   jcc(Assembler::equal, SAME_TILL_END);
9519   //falling through if less than 4 bytes left
9520 
9521   bind(BYTES_TAIL);
9522   bind(BYTES_LOOP);
9523   load_unsigned_byte(tmp1, Address(obja, result));
9524   load_unsigned_byte(tmp2, Address(objb, result));
9525   xorl(tmp1, tmp2);
9526   testl(tmp1, tmp1);
9527   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9528   decq(length);
9529   jccb(Assembler::zero, SAME_TILL_END);
9530   incq(result);
9531   load_unsigned_byte(tmp1, Address(obja, result));
9532   load_unsigned_byte(tmp2, Address(objb, result));
9533   xorl(tmp1, tmp2);
9534   testl(tmp1, tmp1);
9535   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9536   decq(length);
9537   jccb(Assembler::zero, SAME_TILL_END);
9538   incq(result);
9539   load_unsigned_byte(tmp1, Address(obja, result));
9540   load_unsigned_byte(tmp2, Address(objb, result));
9541   xorl(tmp1, tmp2);
9542   testl(tmp1, tmp1);
9543   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9544   jmpb(SAME_TILL_END);
9545 
9546   if (UseAVX >= 2) {
9547     bind(VECTOR32_NOT_EQUAL);
9548     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9549     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9550     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9551     vpmovmskb(tmp1, rymm0);
9552     bsfq(tmp1, tmp1);
9553     addq(result, tmp1);
9554     shrq(result);
9555     jmpb(DONE);
9556   }
9557 
9558   bind(VECTOR16_NOT_EQUAL);
9559   if (UseAVX >= 2) {
9560     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9561     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9562     pxor(rymm0, rymm2);
9563   } else {
9564     pcmpeqb(rymm2, rymm2);
9565     pxor(rymm0, rymm1);
9566     pcmpeqb(rymm0, rymm1);
9567     pxor(rymm0, rymm2);
9568   }
9569   pmovmskb(tmp1, rymm0);
9570   bsfq(tmp1, tmp1);
9571   addq(result, tmp1);
9572   shrq(result);
9573   jmpb(DONE);
9574 
9575   bind(VECTOR8_NOT_EQUAL);
9576   bind(VECTOR4_NOT_EQUAL);
9577   bsfq(tmp1, tmp1);
9578   shrq(tmp1, 3);
9579   addq(result, tmp1);
9580   bind(BYTES_NOT_EQUAL);
9581   shrq(result);
9582   jmpb(DONE);
9583 
9584   bind(SAME_TILL_END);
9585   mov64(result, -1);
9586 
9587   bind(DONE);
9588 }
9589 
9590 //Helper functions for square_to_len()
9591 
9592 /**
9593  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9594  * Preserves x and z and modifies rest of the registers.
9595  */
9596 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9597   // Perform square and right shift by 1
9598   // Handle odd xlen case first, then for even xlen do the following
9599   // jlong carry = 0;
9600   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9601   //     huge_128 product = x[j:j+1] * x[j:j+1];
9602   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9603   //     z[i+2:i+3] = (jlong)(product >>> 1);
9604   //     carry = (jlong)product;
9605   // }
9606 
9607   xorq(tmp5, tmp5);     // carry
9608   xorq(rdxReg, rdxReg);
9609   xorl(tmp1, tmp1);     // index for x
9610   xorl(tmp4, tmp4);     // index for z
9611 
9612   Label L_first_loop, L_first_loop_exit;
9613 
9614   testl(xlen, 1);
9615   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9616 
9617   // Square and right shift by 1 the odd element using 32 bit multiply
9618   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9619   imulq(raxReg, raxReg);
9620   shrq(raxReg, 1);
9621   adcq(tmp5, 0);
9622   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9623   incrementl(tmp1);
9624   addl(tmp4, 2);
9625 
9626   // Square and  right shift by 1 the rest using 64 bit multiply
9627   bind(L_first_loop);
9628   cmpptr(tmp1, xlen);
9629   jccb(Assembler::equal, L_first_loop_exit);
9630 
9631   // Square
9632   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9633   rorq(raxReg, 32);    // convert big-endian to little-endian
9634   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9635 
9636   // Right shift by 1 and save carry
9637   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9638   rcrq(rdxReg, 1);
9639   rcrq(raxReg, 1);
9640   adcq(tmp5, 0);
9641 
9642   // Store result in z
9643   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9644   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9645 
9646   // Update indices for x and z
9647   addl(tmp1, 2);
9648   addl(tmp4, 4);
9649   jmp(L_first_loop);
9650 
9651   bind(L_first_loop_exit);
9652 }
9653 
9654 
9655 /**
9656  * Perform the following multiply add operation using BMI2 instructions
9657  * carry:sum = sum + op1*op2 + carry
9658  * op2 should be in rdx
9659  * op2 is preserved, all other registers are modified
9660  */
9661 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9662   // assert op2 is rdx
9663   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9664   addq(sum, carry);
9665   adcq(tmp2, 0);
9666   addq(sum, op1);
9667   adcq(tmp2, 0);
9668   movq(carry, tmp2);
9669 }
9670 
9671 /**
9672  * Perform the following multiply add operation:
9673  * carry:sum = sum + op1*op2 + carry
9674  * Preserves op1, op2 and modifies rest of registers
9675  */
9676 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9677   // rdx:rax = op1 * op2
9678   movq(raxReg, op2);
9679   mulq(op1);
9680 
9681   //  rdx:rax = sum + carry + rdx:rax
9682   addq(sum, carry);
9683   adcq(rdxReg, 0);
9684   addq(sum, raxReg);
9685   adcq(rdxReg, 0);
9686 
9687   // carry:sum = rdx:sum
9688   movq(carry, rdxReg);
9689 }
9690 
9691 /**
9692  * Add 64 bit long carry into z[] with carry propogation.
9693  * Preserves z and carry register values and modifies rest of registers.
9694  *
9695  */
9696 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9697   Label L_fourth_loop, L_fourth_loop_exit;
9698 
9699   movl(tmp1, 1);
9700   subl(zlen, 2);
9701   addq(Address(z, zlen, Address::times_4, 0), carry);
9702 
9703   bind(L_fourth_loop);
9704   jccb(Assembler::carryClear, L_fourth_loop_exit);
9705   subl(zlen, 2);
9706   jccb(Assembler::negative, L_fourth_loop_exit);
9707   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9708   jmp(L_fourth_loop);
9709   bind(L_fourth_loop_exit);
9710 }
9711 
9712 /**
9713  * Shift z[] left by 1 bit.
9714  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9715  *
9716  */
9717 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9718 
9719   Label L_fifth_loop, L_fifth_loop_exit;
9720 
9721   // Fifth loop
9722   // Perform primitiveLeftShift(z, zlen, 1)
9723 
9724   const Register prev_carry = tmp1;
9725   const Register new_carry = tmp4;
9726   const Register value = tmp2;
9727   const Register zidx = tmp3;
9728 
9729   // int zidx, carry;
9730   // long value;
9731   // carry = 0;
9732   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9733   //    (carry:value)  = (z[i] << 1) | carry ;
9734   //    z[i] = value;
9735   // }
9736 
9737   movl(zidx, zlen);
9738   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9739 
9740   bind(L_fifth_loop);
9741   decl(zidx);  // Use decl to preserve carry flag
9742   decl(zidx);
9743   jccb(Assembler::negative, L_fifth_loop_exit);
9744 
9745   if (UseBMI2Instructions) {
9746      movq(value, Address(z, zidx, Address::times_4, 0));
9747      rclq(value, 1);
9748      rorxq(value, value, 32);
9749      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9750   }
9751   else {
9752     // clear new_carry
9753     xorl(new_carry, new_carry);
9754 
9755     // Shift z[i] by 1, or in previous carry and save new carry
9756     movq(value, Address(z, zidx, Address::times_4, 0));
9757     shlq(value, 1);
9758     adcl(new_carry, 0);
9759 
9760     orq(value, prev_carry);
9761     rorq(value, 0x20);
9762     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9763 
9764     // Set previous carry = new carry
9765     movl(prev_carry, new_carry);
9766   }
9767   jmp(L_fifth_loop);
9768 
9769   bind(L_fifth_loop_exit);
9770 }
9771 
9772 
9773 /**
9774  * Code for BigInteger::squareToLen() intrinsic
9775  *
9776  * rdi: x
9777  * rsi: len
9778  * r8:  z
9779  * rcx: zlen
9780  * r12: tmp1
9781  * r13: tmp2
9782  * r14: tmp3
9783  * r15: tmp4
9784  * rbx: tmp5
9785  *
9786  */
9787 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9788 
9789   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9790   push(tmp1);
9791   push(tmp2);
9792   push(tmp3);
9793   push(tmp4);
9794   push(tmp5);
9795 
9796   // First loop
9797   // Store the squares, right shifted one bit (i.e., divided by 2).
9798   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9799 
9800   // Add in off-diagonal sums.
9801   //
9802   // Second, third (nested) and fourth loops.
9803   // zlen +=2;
9804   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9805   //    carry = 0;
9806   //    long op2 = x[xidx:xidx+1];
9807   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9808   //       k -= 2;
9809   //       long op1 = x[j:j+1];
9810   //       long sum = z[k:k+1];
9811   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9812   //       z[k:k+1] = sum;
9813   //    }
9814   //    add_one_64(z, k, carry, tmp_regs);
9815   // }
9816 
9817   const Register carry = tmp5;
9818   const Register sum = tmp3;
9819   const Register op1 = tmp4;
9820   Register op2 = tmp2;
9821 
9822   push(zlen);
9823   push(len);
9824   addl(zlen,2);
9825   bind(L_second_loop);
9826   xorq(carry, carry);
9827   subl(zlen, 4);
9828   subl(len, 2);
9829   push(zlen);
9830   push(len);
9831   cmpl(len, 0);
9832   jccb(Assembler::lessEqual, L_second_loop_exit);
9833 
9834   // Multiply an array by one 64 bit long.
9835   if (UseBMI2Instructions) {
9836     op2 = rdxReg;
9837     movq(op2, Address(x, len, Address::times_4,  0));
9838     rorxq(op2, op2, 32);
9839   }
9840   else {
9841     movq(op2, Address(x, len, Address::times_4,  0));
9842     rorq(op2, 32);
9843   }
9844 
9845   bind(L_third_loop);
9846   decrementl(len);
9847   jccb(Assembler::negative, L_third_loop_exit);
9848   decrementl(len);
9849   jccb(Assembler::negative, L_last_x);
9850 
9851   movq(op1, Address(x, len, Address::times_4,  0));
9852   rorq(op1, 32);
9853 
9854   bind(L_multiply);
9855   subl(zlen, 2);
9856   movq(sum, Address(z, zlen, Address::times_4,  0));
9857 
9858   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9859   if (UseBMI2Instructions) {
9860     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9861   }
9862   else {
9863     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9864   }
9865 
9866   movq(Address(z, zlen, Address::times_4, 0), sum);
9867 
9868   jmp(L_third_loop);
9869   bind(L_third_loop_exit);
9870 
9871   // Fourth loop
9872   // Add 64 bit long carry into z with carry propogation.
9873   // Uses offsetted zlen.
9874   add_one_64(z, zlen, carry, tmp1);
9875 
9876   pop(len);
9877   pop(zlen);
9878   jmp(L_second_loop);
9879 
9880   // Next infrequent code is moved outside loops.
9881   bind(L_last_x);
9882   movl(op1, Address(x, 0));
9883   jmp(L_multiply);
9884 
9885   bind(L_second_loop_exit);
9886   pop(len);
9887   pop(zlen);
9888   pop(len);
9889   pop(zlen);
9890 
9891   // Fifth loop
9892   // Shift z left 1 bit.
9893   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9894 
9895   // z[zlen-1] |= x[len-1] & 1;
9896   movl(tmp3, Address(x, len, Address::times_4, -4));
9897   andl(tmp3, 1);
9898   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9899 
9900   pop(tmp5);
9901   pop(tmp4);
9902   pop(tmp3);
9903   pop(tmp2);
9904   pop(tmp1);
9905 }
9906 
9907 /**
9908  * Helper function for mul_add()
9909  * Multiply the in[] by int k and add to out[] starting at offset offs using
9910  * 128 bit by 32 bit multiply and return the carry in tmp5.
9911  * Only quad int aligned length of in[] is operated on in this function.
9912  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9913  * This function preserves out, in and k registers.
9914  * len and offset point to the appropriate index in "in" & "out" correspondingly
9915  * tmp5 has the carry.
9916  * other registers are temporary and are modified.
9917  *
9918  */
9919 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9920   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9921   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9922 
9923   Label L_first_loop, L_first_loop_exit;
9924 
9925   movl(tmp1, len);
9926   shrl(tmp1, 2);
9927 
9928   bind(L_first_loop);
9929   subl(tmp1, 1);
9930   jccb(Assembler::negative, L_first_loop_exit);
9931 
9932   subl(len, 4);
9933   subl(offset, 4);
9934 
9935   Register op2 = tmp2;
9936   const Register sum = tmp3;
9937   const Register op1 = tmp4;
9938   const Register carry = tmp5;
9939 
9940   if (UseBMI2Instructions) {
9941     op2 = rdxReg;
9942   }
9943 
9944   movq(op1, Address(in, len, Address::times_4,  8));
9945   rorq(op1, 32);
9946   movq(sum, Address(out, offset, Address::times_4,  8));
9947   rorq(sum, 32);
9948   if (UseBMI2Instructions) {
9949     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9950   }
9951   else {
9952     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9953   }
9954   // Store back in big endian from little endian
9955   rorq(sum, 0x20);
9956   movq(Address(out, offset, Address::times_4,  8), sum);
9957 
9958   movq(op1, Address(in, len, Address::times_4,  0));
9959   rorq(op1, 32);
9960   movq(sum, Address(out, offset, Address::times_4,  0));
9961   rorq(sum, 32);
9962   if (UseBMI2Instructions) {
9963     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9964   }
9965   else {
9966     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9967   }
9968   // Store back in big endian from little endian
9969   rorq(sum, 0x20);
9970   movq(Address(out, offset, Address::times_4,  0), sum);
9971 
9972   jmp(L_first_loop);
9973   bind(L_first_loop_exit);
9974 }
9975 
9976 /**
9977  * Code for BigInteger::mulAdd() intrinsic
9978  *
9979  * rdi: out
9980  * rsi: in
9981  * r11: offs (out.length - offset)
9982  * rcx: len
9983  * r8:  k
9984  * r12: tmp1
9985  * r13: tmp2
9986  * r14: tmp3
9987  * r15: tmp4
9988  * rbx: tmp5
9989  * Multiply the in[] by word k and add to out[], return the carry in rax
9990  */
9991 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9992    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9993    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9994 
9995   Label L_carry, L_last_in, L_done;
9996 
9997 // carry = 0;
9998 // for (int j=len-1; j >= 0; j--) {
9999 //    long product = (in[j] & LONG_MASK) * kLong +
10000 //                   (out[offs] & LONG_MASK) + carry;
10001 //    out[offs--] = (int)product;
10002 //    carry = product >>> 32;
10003 // }
10004 //
10005   push(tmp1);
10006   push(tmp2);
10007   push(tmp3);
10008   push(tmp4);
10009   push(tmp5);
10010 
10011   Register op2 = tmp2;
10012   const Register sum = tmp3;
10013   const Register op1 = tmp4;
10014   const Register carry =  tmp5;
10015 
10016   if (UseBMI2Instructions) {
10017     op2 = rdxReg;
10018     movl(op2, k);
10019   }
10020   else {
10021     movl(op2, k);
10022   }
10023 
10024   xorq(carry, carry);
10025 
10026   //First loop
10027 
10028   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10029   //The carry is in tmp5
10030   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10031 
10032   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10033   decrementl(len);
10034   jccb(Assembler::negative, L_carry);
10035   decrementl(len);
10036   jccb(Assembler::negative, L_last_in);
10037 
10038   movq(op1, Address(in, len, Address::times_4,  0));
10039   rorq(op1, 32);
10040 
10041   subl(offs, 2);
10042   movq(sum, Address(out, offs, Address::times_4,  0));
10043   rorq(sum, 32);
10044 
10045   if (UseBMI2Instructions) {
10046     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10047   }
10048   else {
10049     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10050   }
10051 
10052   // Store back in big endian from little endian
10053   rorq(sum, 0x20);
10054   movq(Address(out, offs, Address::times_4,  0), sum);
10055 
10056   testl(len, len);
10057   jccb(Assembler::zero, L_carry);
10058 
10059   //Multiply the last in[] entry, if any
10060   bind(L_last_in);
10061   movl(op1, Address(in, 0));
10062   movl(sum, Address(out, offs, Address::times_4,  -4));
10063 
10064   movl(raxReg, k);
10065   mull(op1); //tmp4 * eax -> edx:eax
10066   addl(sum, carry);
10067   adcl(rdxReg, 0);
10068   addl(sum, raxReg);
10069   adcl(rdxReg, 0);
10070   movl(carry, rdxReg);
10071 
10072   movl(Address(out, offs, Address::times_4,  -4), sum);
10073 
10074   bind(L_carry);
10075   //return tmp5/carry as carry in rax
10076   movl(rax, carry);
10077 
10078   bind(L_done);
10079   pop(tmp5);
10080   pop(tmp4);
10081   pop(tmp3);
10082   pop(tmp2);
10083   pop(tmp1);
10084 }
10085 #endif
10086 
10087 /**
10088  * Emits code to update CRC-32 with a byte value according to constants in table
10089  *
10090  * @param [in,out]crc   Register containing the crc.
10091  * @param [in]val       Register containing the byte to fold into the CRC.
10092  * @param [in]table     Register containing the table of crc constants.
10093  *
10094  * uint32_t crc;
10095  * val = crc_table[(val ^ crc) & 0xFF];
10096  * crc = val ^ (crc >> 8);
10097  *
10098  */
10099 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10100   xorl(val, crc);
10101   andl(val, 0xFF);
10102   shrl(crc, 8); // unsigned shift
10103   xorl(crc, Address(table, val, Address::times_4, 0));
10104 }
10105 
10106 /**
10107  * Fold 128-bit data chunk
10108  */
10109 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10110   if (UseAVX > 0) {
10111     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10112     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10113     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10114     pxor(xcrc, xtmp);
10115   } else {
10116     movdqa(xtmp, xcrc);
10117     pclmulhdq(xtmp, xK);   // [123:64]
10118     pclmulldq(xcrc, xK);   // [63:0]
10119     pxor(xcrc, xtmp);
10120     movdqu(xtmp, Address(buf, offset));
10121     pxor(xcrc, xtmp);
10122   }
10123 }
10124 
10125 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10126   if (UseAVX > 0) {
10127     vpclmulhdq(xtmp, xK, xcrc);
10128     vpclmulldq(xcrc, xK, xcrc);
10129     pxor(xcrc, xbuf);
10130     pxor(xcrc, xtmp);
10131   } else {
10132     movdqa(xtmp, xcrc);
10133     pclmulhdq(xtmp, xK);
10134     pclmulldq(xcrc, xK);
10135     pxor(xcrc, xbuf);
10136     pxor(xcrc, xtmp);
10137   }
10138 }
10139 
10140 /**
10141  * 8-bit folds to compute 32-bit CRC
10142  *
10143  * uint64_t xcrc;
10144  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10145  */
10146 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10147   movdl(tmp, xcrc);
10148   andl(tmp, 0xFF);
10149   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10150   psrldq(xcrc, 1); // unsigned shift one byte
10151   pxor(xcrc, xtmp);
10152 }
10153 
10154 /**
10155  * uint32_t crc;
10156  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10157  */
10158 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10159   movl(tmp, crc);
10160   andl(tmp, 0xFF);
10161   shrl(crc, 8);
10162   xorl(crc, Address(table, tmp, Address::times_4, 0));
10163 }
10164 
10165 /**
10166  * @param crc   register containing existing CRC (32-bit)
10167  * @param buf   register pointing to input byte buffer (byte*)
10168  * @param len   register containing number of bytes
10169  * @param table register that will contain address of CRC table
10170  * @param tmp   scratch register
10171  */
10172 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10173   assert_different_registers(crc, buf, len, table, tmp, rax);
10174 
10175   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10176   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10177 
10178   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10179   // context for the registers used, where all instructions below are using 128-bit mode
10180   // On EVEX without VL and BW, these instructions will all be AVX.
10181   if (VM_Version::supports_avx512vlbw()) {
10182     movl(tmp, 0xffff);
10183     kmovwl(k1, tmp);
10184   }
10185 
10186   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10187   notl(crc); // ~crc
10188   cmpl(len, 16);
10189   jcc(Assembler::less, L_tail);
10190 
10191   // Align buffer to 16 bytes
10192   movl(tmp, buf);
10193   andl(tmp, 0xF);
10194   jccb(Assembler::zero, L_aligned);
10195   subl(tmp,  16);
10196   addl(len, tmp);
10197 
10198   align(4);
10199   BIND(L_align_loop);
10200   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10201   update_byte_crc32(crc, rax, table);
10202   increment(buf);
10203   incrementl(tmp);
10204   jccb(Assembler::less, L_align_loop);
10205 
10206   BIND(L_aligned);
10207   movl(tmp, len); // save
10208   shrl(len, 4);
10209   jcc(Assembler::zero, L_tail_restore);
10210 
10211   // Fold crc into first bytes of vector
10212   movdqa(xmm1, Address(buf, 0));
10213   movdl(rax, xmm1);
10214   xorl(crc, rax);
10215   if (VM_Version::supports_sse4_1()) {
10216     pinsrd(xmm1, crc, 0);
10217   } else {
10218     pinsrw(xmm1, crc, 0);
10219     shrl(crc, 16);
10220     pinsrw(xmm1, crc, 1);
10221   }
10222   addptr(buf, 16);
10223   subl(len, 4); // len > 0
10224   jcc(Assembler::less, L_fold_tail);
10225 
10226   movdqa(xmm2, Address(buf,  0));
10227   movdqa(xmm3, Address(buf, 16));
10228   movdqa(xmm4, Address(buf, 32));
10229   addptr(buf, 48);
10230   subl(len, 3);
10231   jcc(Assembler::lessEqual, L_fold_512b);
10232 
10233   // Fold total 512 bits of polynomial on each iteration,
10234   // 128 bits per each of 4 parallel streams.
10235   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10236 
10237   align(32);
10238   BIND(L_fold_512b_loop);
10239   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10240   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10241   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10242   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10243   addptr(buf, 64);
10244   subl(len, 4);
10245   jcc(Assembler::greater, L_fold_512b_loop);
10246 
10247   // Fold 512 bits to 128 bits.
10248   BIND(L_fold_512b);
10249   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10250   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10251   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10252   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10253 
10254   // Fold the rest of 128 bits data chunks
10255   BIND(L_fold_tail);
10256   addl(len, 3);
10257   jccb(Assembler::lessEqual, L_fold_128b);
10258   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10259 
10260   BIND(L_fold_tail_loop);
10261   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10262   addptr(buf, 16);
10263   decrementl(len);
10264   jccb(Assembler::greater, L_fold_tail_loop);
10265 
10266   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10267   BIND(L_fold_128b);
10268   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10269   if (UseAVX > 0) {
10270     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10271     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10272     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10273   } else {
10274     movdqa(xmm2, xmm0);
10275     pclmulqdq(xmm2, xmm1, 0x1);
10276     movdqa(xmm3, xmm0);
10277     pand(xmm3, xmm2);
10278     pclmulqdq(xmm0, xmm3, 0x1);
10279   }
10280   psrldq(xmm1, 8);
10281   psrldq(xmm2, 4);
10282   pxor(xmm0, xmm1);
10283   pxor(xmm0, xmm2);
10284 
10285   // 8 8-bit folds to compute 32-bit CRC.
10286   for (int j = 0; j < 4; j++) {
10287     fold_8bit_crc32(xmm0, table, xmm1, rax);
10288   }
10289   movdl(crc, xmm0); // mov 32 bits to general register
10290   for (int j = 0; j < 4; j++) {
10291     fold_8bit_crc32(crc, table, rax);
10292   }
10293 
10294   BIND(L_tail_restore);
10295   movl(len, tmp); // restore
10296   BIND(L_tail);
10297   andl(len, 0xf);
10298   jccb(Assembler::zero, L_exit);
10299 
10300   // Fold the rest of bytes
10301   align(4);
10302   BIND(L_tail_loop);
10303   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10304   update_byte_crc32(crc, rax, table);
10305   increment(buf);
10306   decrementl(len);
10307   jccb(Assembler::greater, L_tail_loop);
10308 
10309   BIND(L_exit);
10310   notl(crc); // ~c
10311 }
10312 
10313 #ifdef _LP64
10314 // S. Gueron / Information Processing Letters 112 (2012) 184
10315 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10316 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10317 // Output: the 64-bit carry-less product of B * CONST
10318 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10319                                      Register tmp1, Register tmp2, Register tmp3) {
10320   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10321   if (n > 0) {
10322     addq(tmp3, n * 256 * 8);
10323   }
10324   //    Q1 = TABLEExt[n][B & 0xFF];
10325   movl(tmp1, in);
10326   andl(tmp1, 0x000000FF);
10327   shll(tmp1, 3);
10328   addq(tmp1, tmp3);
10329   movq(tmp1, Address(tmp1, 0));
10330 
10331   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10332   movl(tmp2, in);
10333   shrl(tmp2, 8);
10334   andl(tmp2, 0x000000FF);
10335   shll(tmp2, 3);
10336   addq(tmp2, tmp3);
10337   movq(tmp2, Address(tmp2, 0));
10338 
10339   shlq(tmp2, 8);
10340   xorq(tmp1, tmp2);
10341 
10342   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10343   movl(tmp2, in);
10344   shrl(tmp2, 16);
10345   andl(tmp2, 0x000000FF);
10346   shll(tmp2, 3);
10347   addq(tmp2, tmp3);
10348   movq(tmp2, Address(tmp2, 0));
10349 
10350   shlq(tmp2, 16);
10351   xorq(tmp1, tmp2);
10352 
10353   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10354   shrl(in, 24);
10355   andl(in, 0x000000FF);
10356   shll(in, 3);
10357   addq(in, tmp3);
10358   movq(in, Address(in, 0));
10359 
10360   shlq(in, 24);
10361   xorq(in, tmp1);
10362   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10363 }
10364 
10365 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10366                                       Register in_out,
10367                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10368                                       XMMRegister w_xtmp2,
10369                                       Register tmp1,
10370                                       Register n_tmp2, Register n_tmp3) {
10371   if (is_pclmulqdq_supported) {
10372     movdl(w_xtmp1, in_out); // modified blindly
10373 
10374     movl(tmp1, const_or_pre_comp_const_index);
10375     movdl(w_xtmp2, tmp1);
10376     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10377 
10378     movdq(in_out, w_xtmp1);
10379   } else {
10380     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10381   }
10382 }
10383 
10384 // Recombination Alternative 2: No bit-reflections
10385 // T1 = (CRC_A * U1) << 1
10386 // T2 = (CRC_B * U2) << 1
10387 // C1 = T1 >> 32
10388 // C2 = T2 >> 32
10389 // T1 = T1 & 0xFFFFFFFF
10390 // T2 = T2 & 0xFFFFFFFF
10391 // T1 = CRC32(0, T1)
10392 // T2 = CRC32(0, T2)
10393 // C1 = C1 ^ T1
10394 // C2 = C2 ^ T2
10395 // CRC = C1 ^ C2 ^ CRC_C
10396 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10397                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10398                                      Register tmp1, Register tmp2,
10399                                      Register n_tmp3) {
10400   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10401   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10402   shlq(in_out, 1);
10403   movl(tmp1, in_out);
10404   shrq(in_out, 32);
10405   xorl(tmp2, tmp2);
10406   crc32(tmp2, tmp1, 4);
10407   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10408   shlq(in1, 1);
10409   movl(tmp1, in1);
10410   shrq(in1, 32);
10411   xorl(tmp2, tmp2);
10412   crc32(tmp2, tmp1, 4);
10413   xorl(in1, tmp2);
10414   xorl(in_out, in1);
10415   xorl(in_out, in2);
10416 }
10417 
10418 // Set N to predefined value
10419 // Subtract from a lenght of a buffer
10420 // execute in a loop:
10421 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10422 // for i = 1 to N do
10423 //  CRC_A = CRC32(CRC_A, A[i])
10424 //  CRC_B = CRC32(CRC_B, B[i])
10425 //  CRC_C = CRC32(CRC_C, C[i])
10426 // end for
10427 // Recombine
10428 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10429                                        Register in_out1, Register in_out2, Register in_out3,
10430                                        Register tmp1, Register tmp2, Register tmp3,
10431                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10432                                        Register tmp4, Register tmp5,
10433                                        Register n_tmp6) {
10434   Label L_processPartitions;
10435   Label L_processPartition;
10436   Label L_exit;
10437 
10438   bind(L_processPartitions);
10439   cmpl(in_out1, 3 * size);
10440   jcc(Assembler::less, L_exit);
10441     xorl(tmp1, tmp1);
10442     xorl(tmp2, tmp2);
10443     movq(tmp3, in_out2);
10444     addq(tmp3, size);
10445 
10446     bind(L_processPartition);
10447       crc32(in_out3, Address(in_out2, 0), 8);
10448       crc32(tmp1, Address(in_out2, size), 8);
10449       crc32(tmp2, Address(in_out2, size * 2), 8);
10450       addq(in_out2, 8);
10451       cmpq(in_out2, tmp3);
10452       jcc(Assembler::less, L_processPartition);
10453     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10454             w_xtmp1, w_xtmp2, w_xtmp3,
10455             tmp4, tmp5,
10456             n_tmp6);
10457     addq(in_out2, 2 * size);
10458     subl(in_out1, 3 * size);
10459     jmp(L_processPartitions);
10460 
10461   bind(L_exit);
10462 }
10463 #else
10464 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10465                                      Register tmp1, Register tmp2, Register tmp3,
10466                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10467   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10468   if (n > 0) {
10469     addl(tmp3, n * 256 * 8);
10470   }
10471   //    Q1 = TABLEExt[n][B & 0xFF];
10472   movl(tmp1, in_out);
10473   andl(tmp1, 0x000000FF);
10474   shll(tmp1, 3);
10475   addl(tmp1, tmp3);
10476   movq(xtmp1, Address(tmp1, 0));
10477 
10478   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10479   movl(tmp2, in_out);
10480   shrl(tmp2, 8);
10481   andl(tmp2, 0x000000FF);
10482   shll(tmp2, 3);
10483   addl(tmp2, tmp3);
10484   movq(xtmp2, Address(tmp2, 0));
10485 
10486   psllq(xtmp2, 8);
10487   pxor(xtmp1, xtmp2);
10488 
10489   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10490   movl(tmp2, in_out);
10491   shrl(tmp2, 16);
10492   andl(tmp2, 0x000000FF);
10493   shll(tmp2, 3);
10494   addl(tmp2, tmp3);
10495   movq(xtmp2, Address(tmp2, 0));
10496 
10497   psllq(xtmp2, 16);
10498   pxor(xtmp1, xtmp2);
10499 
10500   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10501   shrl(in_out, 24);
10502   andl(in_out, 0x000000FF);
10503   shll(in_out, 3);
10504   addl(in_out, tmp3);
10505   movq(xtmp2, Address(in_out, 0));
10506 
10507   psllq(xtmp2, 24);
10508   pxor(xtmp1, xtmp2); // Result in CXMM
10509   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10510 }
10511 
10512 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10513                                       Register in_out,
10514                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10515                                       XMMRegister w_xtmp2,
10516                                       Register tmp1,
10517                                       Register n_tmp2, Register n_tmp3) {
10518   if (is_pclmulqdq_supported) {
10519     movdl(w_xtmp1, in_out);
10520 
10521     movl(tmp1, const_or_pre_comp_const_index);
10522     movdl(w_xtmp2, tmp1);
10523     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10524     // Keep result in XMM since GPR is 32 bit in length
10525   } else {
10526     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10527   }
10528 }
10529 
10530 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10531                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10532                                      Register tmp1, Register tmp2,
10533                                      Register n_tmp3) {
10534   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10535   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10536 
10537   psllq(w_xtmp1, 1);
10538   movdl(tmp1, w_xtmp1);
10539   psrlq(w_xtmp1, 32);
10540   movdl(in_out, w_xtmp1);
10541 
10542   xorl(tmp2, tmp2);
10543   crc32(tmp2, tmp1, 4);
10544   xorl(in_out, tmp2);
10545 
10546   psllq(w_xtmp2, 1);
10547   movdl(tmp1, w_xtmp2);
10548   psrlq(w_xtmp2, 32);
10549   movdl(in1, w_xtmp2);
10550 
10551   xorl(tmp2, tmp2);
10552   crc32(tmp2, tmp1, 4);
10553   xorl(in1, tmp2);
10554   xorl(in_out, in1);
10555   xorl(in_out, in2);
10556 }
10557 
10558 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10559                                        Register in_out1, Register in_out2, Register in_out3,
10560                                        Register tmp1, Register tmp2, Register tmp3,
10561                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10562                                        Register tmp4, Register tmp5,
10563                                        Register n_tmp6) {
10564   Label L_processPartitions;
10565   Label L_processPartition;
10566   Label L_exit;
10567 
10568   bind(L_processPartitions);
10569   cmpl(in_out1, 3 * size);
10570   jcc(Assembler::less, L_exit);
10571     xorl(tmp1, tmp1);
10572     xorl(tmp2, tmp2);
10573     movl(tmp3, in_out2);
10574     addl(tmp3, size);
10575 
10576     bind(L_processPartition);
10577       crc32(in_out3, Address(in_out2, 0), 4);
10578       crc32(tmp1, Address(in_out2, size), 4);
10579       crc32(tmp2, Address(in_out2, size*2), 4);
10580       crc32(in_out3, Address(in_out2, 0+4), 4);
10581       crc32(tmp1, Address(in_out2, size+4), 4);
10582       crc32(tmp2, Address(in_out2, size*2+4), 4);
10583       addl(in_out2, 8);
10584       cmpl(in_out2, tmp3);
10585       jcc(Assembler::less, L_processPartition);
10586 
10587         push(tmp3);
10588         push(in_out1);
10589         push(in_out2);
10590         tmp4 = tmp3;
10591         tmp5 = in_out1;
10592         n_tmp6 = in_out2;
10593 
10594       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10595             w_xtmp1, w_xtmp2, w_xtmp3,
10596             tmp4, tmp5,
10597             n_tmp6);
10598 
10599         pop(in_out2);
10600         pop(in_out1);
10601         pop(tmp3);
10602 
10603     addl(in_out2, 2 * size);
10604     subl(in_out1, 3 * size);
10605     jmp(L_processPartitions);
10606 
10607   bind(L_exit);
10608 }
10609 #endif //LP64
10610 
10611 #ifdef _LP64
10612 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10613 // Input: A buffer I of L bytes.
10614 // Output: the CRC32C value of the buffer.
10615 // Notations:
10616 // Write L = 24N + r, with N = floor (L/24).
10617 // r = L mod 24 (0 <= r < 24).
10618 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10619 // N quadwords, and R consists of r bytes.
10620 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10621 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10622 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10623 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10624 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10625                                           Register tmp1, Register tmp2, Register tmp3,
10626                                           Register tmp4, Register tmp5, Register tmp6,
10627                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10628                                           bool is_pclmulqdq_supported) {
10629   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10630   Label L_wordByWord;
10631   Label L_byteByByteProlog;
10632   Label L_byteByByte;
10633   Label L_exit;
10634 
10635   if (is_pclmulqdq_supported ) {
10636     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10637     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10638 
10639     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10640     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10641 
10642     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10643     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10644     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10645   } else {
10646     const_or_pre_comp_const_index[0] = 1;
10647     const_or_pre_comp_const_index[1] = 0;
10648 
10649     const_or_pre_comp_const_index[2] = 3;
10650     const_or_pre_comp_const_index[3] = 2;
10651 
10652     const_or_pre_comp_const_index[4] = 5;
10653     const_or_pre_comp_const_index[5] = 4;
10654    }
10655   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10656                     in2, in1, in_out,
10657                     tmp1, tmp2, tmp3,
10658                     w_xtmp1, w_xtmp2, w_xtmp3,
10659                     tmp4, tmp5,
10660                     tmp6);
10661   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10662                     in2, in1, in_out,
10663                     tmp1, tmp2, tmp3,
10664                     w_xtmp1, w_xtmp2, w_xtmp3,
10665                     tmp4, tmp5,
10666                     tmp6);
10667   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10668                     in2, in1, in_out,
10669                     tmp1, tmp2, tmp3,
10670                     w_xtmp1, w_xtmp2, w_xtmp3,
10671                     tmp4, tmp5,
10672                     tmp6);
10673   movl(tmp1, in2);
10674   andl(tmp1, 0x00000007);
10675   negl(tmp1);
10676   addl(tmp1, in2);
10677   addq(tmp1, in1);
10678 
10679   BIND(L_wordByWord);
10680   cmpq(in1, tmp1);
10681   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10682     crc32(in_out, Address(in1, 0), 4);
10683     addq(in1, 4);
10684     jmp(L_wordByWord);
10685 
10686   BIND(L_byteByByteProlog);
10687   andl(in2, 0x00000007);
10688   movl(tmp2, 1);
10689 
10690   BIND(L_byteByByte);
10691   cmpl(tmp2, in2);
10692   jccb(Assembler::greater, L_exit);
10693     crc32(in_out, Address(in1, 0), 1);
10694     incq(in1);
10695     incl(tmp2);
10696     jmp(L_byteByByte);
10697 
10698   BIND(L_exit);
10699 }
10700 #else
10701 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10702                                           Register tmp1, Register  tmp2, Register tmp3,
10703                                           Register tmp4, Register  tmp5, Register tmp6,
10704                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10705                                           bool is_pclmulqdq_supported) {
10706   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10707   Label L_wordByWord;
10708   Label L_byteByByteProlog;
10709   Label L_byteByByte;
10710   Label L_exit;
10711 
10712   if (is_pclmulqdq_supported) {
10713     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10714     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10715 
10716     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10717     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10718 
10719     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10720     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10721   } else {
10722     const_or_pre_comp_const_index[0] = 1;
10723     const_or_pre_comp_const_index[1] = 0;
10724 
10725     const_or_pre_comp_const_index[2] = 3;
10726     const_or_pre_comp_const_index[3] = 2;
10727 
10728     const_or_pre_comp_const_index[4] = 5;
10729     const_or_pre_comp_const_index[5] = 4;
10730   }
10731   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10732                     in2, in1, in_out,
10733                     tmp1, tmp2, tmp3,
10734                     w_xtmp1, w_xtmp2, w_xtmp3,
10735                     tmp4, tmp5,
10736                     tmp6);
10737   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10738                     in2, in1, in_out,
10739                     tmp1, tmp2, tmp3,
10740                     w_xtmp1, w_xtmp2, w_xtmp3,
10741                     tmp4, tmp5,
10742                     tmp6);
10743   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10744                     in2, in1, in_out,
10745                     tmp1, tmp2, tmp3,
10746                     w_xtmp1, w_xtmp2, w_xtmp3,
10747                     tmp4, tmp5,
10748                     tmp6);
10749   movl(tmp1, in2);
10750   andl(tmp1, 0x00000007);
10751   negl(tmp1);
10752   addl(tmp1, in2);
10753   addl(tmp1, in1);
10754 
10755   BIND(L_wordByWord);
10756   cmpl(in1, tmp1);
10757   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10758     crc32(in_out, Address(in1,0), 4);
10759     addl(in1, 4);
10760     jmp(L_wordByWord);
10761 
10762   BIND(L_byteByByteProlog);
10763   andl(in2, 0x00000007);
10764   movl(tmp2, 1);
10765 
10766   BIND(L_byteByByte);
10767   cmpl(tmp2, in2);
10768   jccb(Assembler::greater, L_exit);
10769     movb(tmp1, Address(in1, 0));
10770     crc32(in_out, tmp1, 1);
10771     incl(in1);
10772     incl(tmp2);
10773     jmp(L_byteByByte);
10774 
10775   BIND(L_exit);
10776 }
10777 #endif // LP64
10778 #undef BIND
10779 #undef BLOCK_COMMENT
10780 
10781 // Compress char[] array to byte[].
10782 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10783 //   @HotSpotIntrinsicCandidate
10784 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10785 //     for (int i = 0; i < len; i++) {
10786 //       int c = src[srcOff++];
10787 //       if (c >>> 8 != 0) {
10788 //         return 0;
10789 //       }
10790 //       dst[dstOff++] = (byte)c;
10791 //     }
10792 //     return len;
10793 //   }
10794 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10795   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10796   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10797   Register tmp5, Register result) {
10798   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10799 
10800   // rsi: src
10801   // rdi: dst
10802   // rdx: len
10803   // rcx: tmp5
10804   // rax: result
10805 
10806   // rsi holds start addr of source char[] to be compressed
10807   // rdi holds start addr of destination byte[]
10808   // rdx holds length
10809 
10810   assert(len != result, "");
10811 
10812   // save length for return
10813   push(len);
10814 
10815   if ((UseAVX > 2) && // AVX512
10816     VM_Version::supports_avx512vlbw() &&
10817     VM_Version::supports_bmi2()) {
10818 
10819     set_vector_masking();  // opening of the stub context for programming mask registers
10820 
10821     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10822 
10823     // alignement
10824     Label post_alignement;
10825 
10826     // if length of the string is less than 16, handle it in an old fashioned
10827     // way
10828     testl(len, -32);
10829     jcc(Assembler::zero, below_threshold);
10830 
10831     // First check whether a character is compressable ( <= 0xFF).
10832     // Create mask to test for Unicode chars inside zmm vector
10833     movl(result, 0x00FF);
10834     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10835 
10836     // Save k1
10837     kmovql(k3, k1);
10838 
10839     testl(len, -64);
10840     jcc(Assembler::zero, post_alignement);
10841 
10842     movl(tmp5, dst);
10843     andl(tmp5, (32 - 1));
10844     negl(tmp5);
10845     andl(tmp5, (32 - 1));
10846 
10847     // bail out when there is nothing to be done
10848     testl(tmp5, 0xFFFFFFFF);
10849     jcc(Assembler::zero, post_alignement);
10850 
10851     // ~(~0 << len), where len is the # of remaining elements to process
10852     movl(result, 0xFFFFFFFF);
10853     shlxl(result, result, tmp5);
10854     notl(result);
10855     kmovdl(k1, result);
10856 
10857     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10858     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10859     ktestd(k2, k1);
10860     jcc(Assembler::carryClear, restore_k1_return_zero);
10861 
10862     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10863 
10864     addptr(src, tmp5);
10865     addptr(src, tmp5);
10866     addptr(dst, tmp5);
10867     subl(len, tmp5);
10868 
10869     bind(post_alignement);
10870     // end of alignement
10871 
10872     movl(tmp5, len);
10873     andl(tmp5, (32 - 1));    // tail count (in chars)
10874     andl(len, ~(32 - 1));    // vector count (in chars)
10875     jcc(Assembler::zero, copy_loop_tail);
10876 
10877     lea(src, Address(src, len, Address::times_2));
10878     lea(dst, Address(dst, len, Address::times_1));
10879     negptr(len);
10880 
10881     bind(copy_32_loop);
10882     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10883     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10884     kortestdl(k2, k2);
10885     jcc(Assembler::carryClear, restore_k1_return_zero);
10886 
10887     // All elements in current processed chunk are valid candidates for
10888     // compression. Write a truncated byte elements to the memory.
10889     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10890     addptr(len, 32);
10891     jcc(Assembler::notZero, copy_32_loop);
10892 
10893     bind(copy_loop_tail);
10894     // bail out when there is nothing to be done
10895     testl(tmp5, 0xFFFFFFFF);
10896     // Restore k1
10897     kmovql(k1, k3);
10898     jcc(Assembler::zero, return_length);
10899 
10900     movl(len, tmp5);
10901 
10902     // ~(~0 << len), where len is the # of remaining elements to process
10903     movl(result, 0xFFFFFFFF);
10904     shlxl(result, result, len);
10905     notl(result);
10906 
10907     kmovdl(k1, result);
10908 
10909     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10910     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10911     ktestd(k2, k1);
10912     jcc(Assembler::carryClear, restore_k1_return_zero);
10913 
10914     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10915     // Restore k1
10916     kmovql(k1, k3);
10917     jmp(return_length);
10918 
10919     bind(restore_k1_return_zero);
10920     // Restore k1
10921     kmovql(k1, k3);
10922     jmp(return_zero);
10923 
10924     clear_vector_masking();   // closing of the stub context for programming mask registers
10925   }
10926   if (UseSSE42Intrinsics) {
10927     Label copy_32_loop, copy_16, copy_tail;
10928 
10929     bind(below_threshold);
10930 
10931     movl(result, len);
10932 
10933     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10934 
10935     // vectored compression
10936     andl(len, 0xfffffff0);    // vector count (in chars)
10937     andl(result, 0x0000000f);    // tail count (in chars)
10938     testl(len, len);
10939     jccb(Assembler::zero, copy_16);
10940 
10941     // compress 16 chars per iter
10942     movdl(tmp1Reg, tmp5);
10943     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10944     pxor(tmp4Reg, tmp4Reg);
10945 
10946     lea(src, Address(src, len, Address::times_2));
10947     lea(dst, Address(dst, len, Address::times_1));
10948     negptr(len);
10949 
10950     bind(copy_32_loop);
10951     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10952     por(tmp4Reg, tmp2Reg);
10953     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10954     por(tmp4Reg, tmp3Reg);
10955     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10956     jcc(Assembler::notZero, return_zero);
10957     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10958     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10959     addptr(len, 16);
10960     jcc(Assembler::notZero, copy_32_loop);
10961 
10962     // compress next vector of 8 chars (if any)
10963     bind(copy_16);
10964     movl(len, result);
10965     andl(len, 0xfffffff8);    // vector count (in chars)
10966     andl(result, 0x00000007);    // tail count (in chars)
10967     testl(len, len);
10968     jccb(Assembler::zero, copy_tail);
10969 
10970     movdl(tmp1Reg, tmp5);
10971     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10972     pxor(tmp3Reg, tmp3Reg);
10973 
10974     movdqu(tmp2Reg, Address(src, 0));
10975     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10976     jccb(Assembler::notZero, return_zero);
10977     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10978     movq(Address(dst, 0), tmp2Reg);
10979     addptr(src, 16);
10980     addptr(dst, 8);
10981 
10982     bind(copy_tail);
10983     movl(len, result);
10984   }
10985   // compress 1 char per iter
10986   testl(len, len);
10987   jccb(Assembler::zero, return_length);
10988   lea(src, Address(src, len, Address::times_2));
10989   lea(dst, Address(dst, len, Address::times_1));
10990   negptr(len);
10991 
10992   bind(copy_chars_loop);
10993   load_unsigned_short(result, Address(src, len, Address::times_2));
10994   testl(result, 0xff00);      // check if Unicode char
10995   jccb(Assembler::notZero, return_zero);
10996   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10997   increment(len);
10998   jcc(Assembler::notZero, copy_chars_loop);
10999 
11000   // if compression succeeded, return length
11001   bind(return_length);
11002   pop(result);
11003   jmpb(done);
11004 
11005   // if compression failed, return 0
11006   bind(return_zero);
11007   xorl(result, result);
11008   addptr(rsp, wordSize);
11009 
11010   bind(done);
11011 }
11012 
11013 // Inflate byte[] array to char[].
11014 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
11015 //   @HotSpotIntrinsicCandidate
11016 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
11017 //     for (int i = 0; i < len; i++) {
11018 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
11019 //     }
11020 //   }
11021 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
11022   XMMRegister tmp1, Register tmp2) {
11023   Label copy_chars_loop, done, below_threshold;
11024   // rsi: src
11025   // rdi: dst
11026   // rdx: len
11027   // rcx: tmp2
11028 
11029   // rsi holds start addr of source byte[] to be inflated
11030   // rdi holds start addr of destination char[]
11031   // rdx holds length
11032   assert_different_registers(src, dst, len, tmp2);
11033 
11034   if ((UseAVX > 2) && // AVX512
11035     VM_Version::supports_avx512vlbw() &&
11036     VM_Version::supports_bmi2()) {
11037 
11038     set_vector_masking();  // opening of the stub context for programming mask registers
11039 
11040     Label copy_32_loop, copy_tail;
11041     Register tmp3_aliased = len;
11042 
11043     // if length of the string is less than 16, handle it in an old fashioned
11044     // way
11045     testl(len, -16);
11046     jcc(Assembler::zero, below_threshold);
11047 
11048     // In order to use only one arithmetic operation for the main loop we use
11049     // this pre-calculation
11050     movl(tmp2, len);
11051     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11052     andl(len, -32);     // vector count
11053     jccb(Assembler::zero, copy_tail);
11054 
11055     lea(src, Address(src, len, Address::times_1));
11056     lea(dst, Address(dst, len, Address::times_2));
11057     negptr(len);
11058 
11059 
11060     // inflate 32 chars per iter
11061     bind(copy_32_loop);
11062     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11063     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11064     addptr(len, 32);
11065     jcc(Assembler::notZero, copy_32_loop);
11066 
11067     bind(copy_tail);
11068     // bail out when there is nothing to be done
11069     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11070     jcc(Assembler::zero, done);
11071 
11072     // Save k1
11073     kmovql(k2, k1);
11074 
11075     // ~(~0 << length), where length is the # of remaining elements to process
11076     movl(tmp3_aliased, -1);
11077     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11078     notl(tmp3_aliased);
11079     kmovdl(k1, tmp3_aliased);
11080     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11081     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11082 
11083     // Restore k1
11084     kmovql(k1, k2);
11085     jmp(done);
11086 
11087     clear_vector_masking();   // closing of the stub context for programming mask registers
11088   }
11089   if (UseSSE42Intrinsics) {
11090     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11091 
11092     movl(tmp2, len);
11093 
11094     if (UseAVX > 1) {
11095       andl(tmp2, (16 - 1));
11096       andl(len, -16);
11097       jccb(Assembler::zero, copy_new_tail);
11098     } else {
11099       andl(tmp2, 0x00000007);   // tail count (in chars)
11100       andl(len, 0xfffffff8);    // vector count (in chars)
11101       jccb(Assembler::zero, copy_tail);
11102     }
11103 
11104     // vectored inflation
11105     lea(src, Address(src, len, Address::times_1));
11106     lea(dst, Address(dst, len, Address::times_2));
11107     negptr(len);
11108 
11109     if (UseAVX > 1) {
11110       bind(copy_16_loop);
11111       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11112       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11113       addptr(len, 16);
11114       jcc(Assembler::notZero, copy_16_loop);
11115 
11116       bind(below_threshold);
11117       bind(copy_new_tail);
11118       if ((UseAVX > 2) &&
11119         VM_Version::supports_avx512vlbw() &&
11120         VM_Version::supports_bmi2()) {
11121         movl(tmp2, len);
11122       } else {
11123         movl(len, tmp2);
11124       }
11125       andl(tmp2, 0x00000007);
11126       andl(len, 0xFFFFFFF8);
11127       jccb(Assembler::zero, copy_tail);
11128 
11129       pmovzxbw(tmp1, Address(src, 0));
11130       movdqu(Address(dst, 0), tmp1);
11131       addptr(src, 8);
11132       addptr(dst, 2 * 8);
11133 
11134       jmp(copy_tail, true);
11135     }
11136 
11137     // inflate 8 chars per iter
11138     bind(copy_8_loop);
11139     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11140     movdqu(Address(dst, len, Address::times_2), tmp1);
11141     addptr(len, 8);
11142     jcc(Assembler::notZero, copy_8_loop);
11143 
11144     bind(copy_tail);
11145     movl(len, tmp2);
11146 
11147     cmpl(len, 4);
11148     jccb(Assembler::less, copy_bytes);
11149 
11150     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11151     pmovzxbw(tmp1, tmp1);
11152     movq(Address(dst, 0), tmp1);
11153     subptr(len, 4);
11154     addptr(src, 4);
11155     addptr(dst, 8);
11156 
11157     bind(copy_bytes);
11158   }
11159   testl(len, len);
11160   jccb(Assembler::zero, done);
11161   lea(src, Address(src, len, Address::times_1));
11162   lea(dst, Address(dst, len, Address::times_2));
11163   negptr(len);
11164 
11165   // inflate 1 char per iter
11166   bind(copy_chars_loop);
11167   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11168   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11169   increment(len);
11170   jcc(Assembler::notZero, copy_chars_loop);
11171 
11172   bind(done);
11173 }
11174 
11175 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11176   switch (cond) {
11177     // Note some conditions are synonyms for others
11178     case Assembler::zero:         return Assembler::notZero;
11179     case Assembler::notZero:      return Assembler::zero;
11180     case Assembler::less:         return Assembler::greaterEqual;
11181     case Assembler::lessEqual:    return Assembler::greater;
11182     case Assembler::greater:      return Assembler::lessEqual;
11183     case Assembler::greaterEqual: return Assembler::less;
11184     case Assembler::below:        return Assembler::aboveEqual;
11185     case Assembler::belowEqual:   return Assembler::above;
11186     case Assembler::above:        return Assembler::belowEqual;
11187     case Assembler::aboveEqual:   return Assembler::below;
11188     case Assembler::overflow:     return Assembler::noOverflow;
11189     case Assembler::noOverflow:   return Assembler::overflow;
11190     case Assembler::negative:     return Assembler::positive;
11191     case Assembler::positive:     return Assembler::negative;
11192     case Assembler::parity:       return Assembler::noParity;
11193     case Assembler::noParity:     return Assembler::parity;
11194   }
11195   ShouldNotReachHere(); return Assembler::overflow;
11196 }
11197 
11198 SkipIfEqual::SkipIfEqual(
11199     MacroAssembler* masm, const bool* flag_addr, bool value) {
11200   _masm = masm;
11201   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11202   _masm->jcc(Assembler::equal, _label);
11203 }
11204 
11205 SkipIfEqual::~SkipIfEqual() {
11206   _masm->bind(_label);
11207 }
11208 
11209 // 32-bit Windows has its own fast-path implementation
11210 // of get_thread
11211 #if !defined(WIN32) || defined(_LP64)
11212 
11213 // This is simply a call to Thread::current()
11214 void MacroAssembler::get_thread(Register thread) {
11215   if (thread != rax) {
11216     push(rax);
11217   }
11218   LP64_ONLY(push(rdi);)
11219   LP64_ONLY(push(rsi);)
11220   push(rdx);
11221   push(rcx);
11222 #ifdef _LP64
11223   push(r8);
11224   push(r9);
11225   push(r10);
11226   push(r11);
11227 #endif
11228 
11229   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11230 
11231 #ifdef _LP64
11232   pop(r11);
11233   pop(r10);
11234   pop(r9);
11235   pop(r8);
11236 #endif
11237   pop(rcx);
11238   pop(rdx);
11239   LP64_ONLY(pop(rsi);)
11240   LP64_ONLY(pop(rdi);)
11241   if (thread != rax) {
11242     mov(thread, rax);
11243     pop(rax);
11244   }
11245 }
11246 
11247 #endif