1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "runtime/atomic.hpp"
  78 #include "runtime/heapMonitoring.hpp"
  79 #include "runtime/init.hpp"
  80 #include "runtime/orderAccess.inline.hpp"
  81 #include "runtime/vmThread.hpp"
  82 #include "utilities/globalDefinitions.hpp"
  83 #include "utilities/stack.inline.hpp"
  84 
  85 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  86 
  87 // INVARIANTS/NOTES
  88 //
  89 // All allocation activity covered by the G1CollectedHeap interface is
  90 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  91 // and allocate_new_tlab, which are the "entry" points to the
  92 // allocation code from the rest of the JVM.  (Note that this does not
  93 // apply to TLAB allocation, which is not part of this interface: it
  94 // is done by clients of this interface.)
  95 
  96 // Local to this file.
  97 
  98 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  99   bool _concurrent;
 100 public:
 101   RefineCardTableEntryClosure() : _concurrent(true) { }
 102 
 103   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 104     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, NULL);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117 
 118   void set_concurrent(bool b) { _concurrent = b; }
 119 };
 120 
 121 
 122 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 123  private:
 124   size_t _num_dirtied;
 125   G1CollectedHeap* _g1h;
 126   G1SATBCardTableLoggingModRefBS* _g1_bs;
 127 
 128   HeapRegion* region_for_card(jbyte* card_ptr) const {
 129     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 130   }
 131 
 132   bool will_become_free(HeapRegion* hr) const {
 133     // A region will be freed by free_collection_set if the region is in the
 134     // collection set and has not had an evacuation failure.
 135     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 136   }
 137 
 138  public:
 139   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 140     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 141 
 142   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 143     HeapRegion* hr = region_for_card(card_ptr);
 144 
 145     // Should only dirty cards in regions that won't be freed.
 146     if (!will_become_free(hr)) {
 147       *card_ptr = CardTableModRefBS::dirty_card_val();
 148       _num_dirtied++;
 149     }
 150 
 151     return true;
 152   }
 153 
 154   size_t num_dirtied()   const { return _num_dirtied; }
 155 };
 156 
 157 
 158 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 159   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 160 }
 161 
 162 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 163   // The from card cache is not the memory that is actually committed. So we cannot
 164   // take advantage of the zero_filled parameter.
 165   reset_from_card_cache(start_idx, num_regions);
 166 }
 167 
 168 // Returns true if the reference points to an object that
 169 // can move in an incremental collection.
 170 bool G1CollectedHeap::is_scavengable(const void* p) {
 171   HeapRegion* hr = heap_region_containing(p);
 172   return !hr->is_pinned();
 173 }
 174 
 175 // Private methods.
 176 
 177 HeapRegion*
 178 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 179   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 180   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 181     if (!_secondary_free_list.is_empty()) {
 182       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 183                                       "secondary_free_list has %u entries",
 184                                       _secondary_free_list.length());
 185       // It looks as if there are free regions available on the
 186       // secondary_free_list. Let's move them to the free_list and try
 187       // again to allocate from it.
 188       append_secondary_free_list();
 189 
 190       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 191              "empty we should have moved at least one entry to the free_list");
 192       HeapRegion* res = _hrm.allocate_free_region(is_old);
 193       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 194                                       "allocated " HR_FORMAT " from secondary_free_list",
 195                                       HR_FORMAT_PARAMS(res));
 196       return res;
 197     }
 198 
 199     // Wait here until we get notified either when (a) there are no
 200     // more free regions coming or (b) some regions have been moved on
 201     // the secondary_free_list.
 202     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 203   }
 204 
 205   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 206                                   "could not allocate from secondary_free_list");
 207   return NULL;
 208 }
 209 
 210 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 211   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 212          "the only time we use this to allocate a humongous region is "
 213          "when we are allocating a single humongous region");
 214 
 215   HeapRegion* res;
 216   if (G1StressConcRegionFreeing) {
 217     if (!_secondary_free_list.is_empty()) {
 218       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 219                                       "forced to look at the secondary_free_list");
 220       res = new_region_try_secondary_free_list(is_old);
 221       if (res != NULL) {
 222         return res;
 223       }
 224     }
 225   }
 226 
 227   res = _hrm.allocate_free_region(is_old);
 228 
 229   if (res == NULL) {
 230     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 231                                     "res == NULL, trying the secondary_free_list");
 232     res = new_region_try_secondary_free_list(is_old);
 233   }
 234   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 235     // Currently, only attempts to allocate GC alloc regions set
 236     // do_expand to true. So, we should only reach here during a
 237     // safepoint. If this assumption changes we might have to
 238     // reconsider the use of _expand_heap_after_alloc_failure.
 239     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 240 
 241     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 242                               word_size * HeapWordSize);
 243 
 244     if (expand(word_size * HeapWordSize)) {
 245       // Given that expand() succeeded in expanding the heap, and we
 246       // always expand the heap by an amount aligned to the heap
 247       // region size, the free list should in theory not be empty.
 248       // In either case allocate_free_region() will check for NULL.
 249       res = _hrm.allocate_free_region(is_old);
 250     } else {
 251       _expand_heap_after_alloc_failure = false;
 252     }
 253   }
 254   return res;
 255 }
 256 
 257 HeapWord*
 258 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 259                                                            uint num_regions,
 260                                                            size_t word_size,
 261                                                            AllocationContext_t context) {
 262   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 263   assert(is_humongous(word_size), "word_size should be humongous");
 264   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 265 
 266   // Index of last region in the series.
 267   uint last = first + num_regions - 1;
 268 
 269   // We need to initialize the region(s) we just discovered. This is
 270   // a bit tricky given that it can happen concurrently with
 271   // refinement threads refining cards on these regions and
 272   // potentially wanting to refine the BOT as they are scanning
 273   // those cards (this can happen shortly after a cleanup; see CR
 274   // 6991377). So we have to set up the region(s) carefully and in
 275   // a specific order.
 276 
 277   // The word size sum of all the regions we will allocate.
 278   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 279   assert(word_size <= word_size_sum, "sanity");
 280 
 281   // This will be the "starts humongous" region.
 282   HeapRegion* first_hr = region_at(first);
 283   // The header of the new object will be placed at the bottom of
 284   // the first region.
 285   HeapWord* new_obj = first_hr->bottom();
 286   // This will be the new top of the new object.
 287   HeapWord* obj_top = new_obj + word_size;
 288 
 289   // First, we need to zero the header of the space that we will be
 290   // allocating. When we update top further down, some refinement
 291   // threads might try to scan the region. By zeroing the header we
 292   // ensure that any thread that will try to scan the region will
 293   // come across the zero klass word and bail out.
 294   //
 295   // NOTE: It would not have been correct to have used
 296   // CollectedHeap::fill_with_object() and make the space look like
 297   // an int array. The thread that is doing the allocation will
 298   // later update the object header to a potentially different array
 299   // type and, for a very short period of time, the klass and length
 300   // fields will be inconsistent. This could cause a refinement
 301   // thread to calculate the object size incorrectly.
 302   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 303 
 304   // Next, pad out the unused tail of the last region with filler
 305   // objects, for improved usage accounting.
 306   // How many words we use for filler objects.
 307   size_t word_fill_size = word_size_sum - word_size;
 308 
 309   // How many words memory we "waste" which cannot hold a filler object.
 310   size_t words_not_fillable = 0;
 311 
 312   if (word_fill_size >= min_fill_size()) {
 313     fill_with_objects(obj_top, word_fill_size);
 314   } else if (word_fill_size > 0) {
 315     // We have space to fill, but we cannot fit an object there.
 316     words_not_fillable = word_fill_size;
 317     word_fill_size = 0;
 318   }
 319 
 320   // We will set up the first region as "starts humongous". This
 321   // will also update the BOT covering all the regions to reflect
 322   // that there is a single object that starts at the bottom of the
 323   // first region.
 324   first_hr->set_starts_humongous(obj_top, word_fill_size);
 325   first_hr->set_allocation_context(context);
 326   // Then, if there are any, we will set up the "continues
 327   // humongous" regions.
 328   HeapRegion* hr = NULL;
 329   for (uint i = first + 1; i <= last; ++i) {
 330     hr = region_at(i);
 331     hr->set_continues_humongous(first_hr);
 332     hr->set_allocation_context(context);
 333   }
 334 
 335   // Up to this point no concurrent thread would have been able to
 336   // do any scanning on any region in this series. All the top
 337   // fields still point to bottom, so the intersection between
 338   // [bottom,top] and [card_start,card_end] will be empty. Before we
 339   // update the top fields, we'll do a storestore to make sure that
 340   // no thread sees the update to top before the zeroing of the
 341   // object header and the BOT initialization.
 342   OrderAccess::storestore();
 343 
 344   // Now, we will update the top fields of the "continues humongous"
 345   // regions except the last one.
 346   for (uint i = first; i < last; ++i) {
 347     hr = region_at(i);
 348     hr->set_top(hr->end());
 349   }
 350 
 351   hr = region_at(last);
 352   // If we cannot fit a filler object, we must set top to the end
 353   // of the humongous object, otherwise we cannot iterate the heap
 354   // and the BOT will not be complete.
 355   hr->set_top(hr->end() - words_not_fillable);
 356 
 357   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 358          "obj_top should be in last region");
 359 
 360   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 361 
 362   assert(words_not_fillable == 0 ||
 363          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 364          "Miscalculation in humongous allocation");
 365 
 366   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 367 
 368   for (uint i = first; i <= last; ++i) {
 369     hr = region_at(i);
 370     _humongous_set.add(hr);
 371     _hr_printer.alloc(hr);
 372   }
 373 
 374   return new_obj;
 375 }
 376 
 377 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 378   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 379   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 380 }
 381 
 382 // If could fit into free regions w/o expansion, try.
 383 // Otherwise, if can expand, do so.
 384 // Otherwise, if using ex regions might help, try with ex given back.
 385 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 386   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 387 
 388   _verifier->verify_region_sets_optional();
 389 
 390   uint first = G1_NO_HRM_INDEX;
 391   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 392 
 393   if (obj_regions == 1) {
 394     // Only one region to allocate, try to use a fast path by directly allocating
 395     // from the free lists. Do not try to expand here, we will potentially do that
 396     // later.
 397     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 398     if (hr != NULL) {
 399       first = hr->hrm_index();
 400     }
 401   } else {
 402     // We can't allocate humongous regions spanning more than one region while
 403     // cleanupComplete() is running, since some of the regions we find to be
 404     // empty might not yet be added to the free list. It is not straightforward
 405     // to know in which list they are on so that we can remove them. We only
 406     // need to do this if we need to allocate more than one region to satisfy the
 407     // current humongous allocation request. If we are only allocating one region
 408     // we use the one-region region allocation code (see above), that already
 409     // potentially waits for regions from the secondary free list.
 410     wait_while_free_regions_coming();
 411     append_secondary_free_list_if_not_empty_with_lock();
 412 
 413     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 414     // are lucky enough to find some.
 415     first = _hrm.find_contiguous_only_empty(obj_regions);
 416     if (first != G1_NO_HRM_INDEX) {
 417       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 418     }
 419   }
 420 
 421   if (first == G1_NO_HRM_INDEX) {
 422     // Policy: We could not find enough regions for the humongous object in the
 423     // free list. Look through the heap to find a mix of free and uncommitted regions.
 424     // If so, try expansion.
 425     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 426     if (first != G1_NO_HRM_INDEX) {
 427       // We found something. Make sure these regions are committed, i.e. expand
 428       // the heap. Alternatively we could do a defragmentation GC.
 429       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 430                                     word_size * HeapWordSize);
 431 
 432       _hrm.expand_at(first, obj_regions, workers());
 433       g1_policy()->record_new_heap_size(num_regions());
 434 
 435 #ifdef ASSERT
 436       for (uint i = first; i < first + obj_regions; ++i) {
 437         HeapRegion* hr = region_at(i);
 438         assert(hr->is_free(), "sanity");
 439         assert(hr->is_empty(), "sanity");
 440         assert(is_on_master_free_list(hr), "sanity");
 441       }
 442 #endif
 443       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 444     } else {
 445       // Policy: Potentially trigger a defragmentation GC.
 446     }
 447   }
 448 
 449   HeapWord* result = NULL;
 450   if (first != G1_NO_HRM_INDEX) {
 451     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 452                                                        word_size, context);
 453     assert(result != NULL, "it should always return a valid result");
 454 
 455     // A successful humongous object allocation changes the used space
 456     // information of the old generation so we need to recalculate the
 457     // sizes and update the jstat counters here.
 458     g1mm()->update_sizes();
 459   }
 460 
 461   _verifier->verify_region_sets_optional();
 462 
 463   return result;
 464 }
 465 
 466 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 467   assert_heap_not_locked_and_not_at_safepoint();
 468   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 469 
 470   uint dummy_gc_count_before;
 471   uint dummy_gclocker_retry_count = 0;
 472   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 473 }
 474 
 475 HeapWord*
 476 G1CollectedHeap::mem_allocate(size_t word_size,
 477                               bool*  gc_overhead_limit_was_exceeded) {
 478   assert_heap_not_locked_and_not_at_safepoint();
 479 
 480   // Loop until the allocation is satisfied, or unsatisfied after GC.
 481   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 482     uint gc_count_before;
 483 
 484     HeapWord* result = NULL;
 485     if (!is_humongous(word_size)) {
 486       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 487     } else {
 488       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 489     }
 490     if (result != NULL) {
 491       return result;
 492     }
 493 
 494     // Create the garbage collection operation...
 495     VM_G1CollectForAllocation op(gc_count_before, word_size);
 496     op.set_allocation_context(AllocationContext::current());
 497 
 498     // ...and get the VM thread to execute it.
 499     VMThread::execute(&op);
 500 
 501     if (op.prologue_succeeded() && op.pause_succeeded()) {
 502       // If the operation was successful we'll return the result even
 503       // if it is NULL. If the allocation attempt failed immediately
 504       // after a Full GC, it's unlikely we'll be able to allocate now.
 505       HeapWord* result = op.result();
 506       if (result != NULL && !is_humongous(word_size)) {
 507         // Allocations that take place on VM operations do not do any
 508         // card dirtying and we have to do it here. We only have to do
 509         // this for non-humongous allocations, though.
 510         dirty_young_block(result, word_size);
 511       }
 512       return result;
 513     } else {
 514       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 515         return NULL;
 516       }
 517       assert(op.result() == NULL,
 518              "the result should be NULL if the VM op did not succeed");
 519     }
 520 
 521     // Give a warning if we seem to be looping forever.
 522     if ((QueuedAllocationWarningCount > 0) &&
 523         (try_count % QueuedAllocationWarningCount == 0)) {
 524       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 525     }
 526   }
 527 
 528   ShouldNotReachHere();
 529   return NULL;
 530 }
 531 
 532 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 533                                                    AllocationContext_t context,
 534                                                    uint* gc_count_before_ret,
 535                                                    uint* gclocker_retry_count_ret) {
 536   // Make sure you read the note in attempt_allocation_humongous().
 537 
 538   assert_heap_not_locked_and_not_at_safepoint();
 539   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 540          "be called for humongous allocation requests");
 541 
 542   // We should only get here after the first-level allocation attempt
 543   // (attempt_allocation()) failed to allocate.
 544 
 545   // We will loop until a) we manage to successfully perform the
 546   // allocation or b) we successfully schedule a collection which
 547   // fails to perform the allocation. b) is the only case when we'll
 548   // return NULL.
 549   HeapWord* result = NULL;
 550   for (int try_count = 1; /* we'll return */; try_count += 1) {
 551     bool should_try_gc;
 552     uint gc_count_before;
 553 
 554     {
 555       MutexLockerEx x(Heap_lock);
 556       result = _allocator->attempt_allocation_locked(word_size, context);
 557       if (result != NULL) {
 558         return result;
 559       }
 560 
 561       if (GCLocker::is_active_and_needs_gc()) {
 562         if (g1_policy()->can_expand_young_list()) {
 563           // No need for an ergo verbose message here,
 564           // can_expand_young_list() does this when it returns true.
 565           result = _allocator->attempt_allocation_force(word_size, context);
 566           if (result != NULL) {
 567             return result;
 568           }
 569         }
 570         should_try_gc = false;
 571       } else {
 572         // The GCLocker may not be active but the GCLocker initiated
 573         // GC may not yet have been performed (GCLocker::needs_gc()
 574         // returns true). In this case we do not try this GC and
 575         // wait until the GCLocker initiated GC is performed, and
 576         // then retry the allocation.
 577         if (GCLocker::needs_gc()) {
 578           should_try_gc = false;
 579         } else {
 580           // Read the GC count while still holding the Heap_lock.
 581           gc_count_before = total_collections();
 582           should_try_gc = true;
 583         }
 584       }
 585     }
 586 
 587     if (should_try_gc) {
 588       bool succeeded;
 589       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 590                                    GCCause::_g1_inc_collection_pause);
 591       if (result != NULL) {
 592         assert(succeeded, "only way to get back a non-NULL result");
 593         return result;
 594       }
 595 
 596       if (succeeded) {
 597         // If we get here we successfully scheduled a collection which
 598         // failed to allocate. No point in trying to allocate
 599         // further. We'll just return NULL.
 600         MutexLockerEx x(Heap_lock);
 601         *gc_count_before_ret = total_collections();
 602         return NULL;
 603       }
 604     } else {
 605       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 606         MutexLockerEx x(Heap_lock);
 607         *gc_count_before_ret = total_collections();
 608         return NULL;
 609       }
 610       // The GCLocker is either active or the GCLocker initiated
 611       // GC has not yet been performed. Stall until it is and
 612       // then retry the allocation.
 613       GCLocker::stall_until_clear();
 614       (*gclocker_retry_count_ret) += 1;
 615     }
 616 
 617     // We can reach here if we were unsuccessful in scheduling a
 618     // collection (because another thread beat us to it) or if we were
 619     // stalled due to the GC locker. In either can we should retry the
 620     // allocation attempt in case another thread successfully
 621     // performed a collection and reclaimed enough space. We do the
 622     // first attempt (without holding the Heap_lock) here and the
 623     // follow-on attempt will be at the start of the next loop
 624     // iteration (after taking the Heap_lock).
 625     result = _allocator->attempt_allocation(word_size, context);
 626     if (result != NULL) {
 627       return result;
 628     }
 629 
 630     // Give a warning if we seem to be looping forever.
 631     if ((QueuedAllocationWarningCount > 0) &&
 632         (try_count % QueuedAllocationWarningCount == 0)) {
 633       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 634                       "retries %d times", try_count);
 635     }
 636   }
 637 
 638   ShouldNotReachHere();
 639   return NULL;
 640 }
 641 
 642 void G1CollectedHeap::begin_archive_alloc_range() {
 643   assert_at_safepoint(true /* should_be_vm_thread */);
 644   if (_archive_allocator == NULL) {
 645     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 646   }
 647 }
 648 
 649 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 650   // Allocations in archive regions cannot be of a size that would be considered
 651   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 652   // may be different at archive-restore time.
 653   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 654 }
 655 
 656 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 657   assert_at_safepoint(true /* should_be_vm_thread */);
 658   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 659   if (is_archive_alloc_too_large(word_size)) {
 660     return NULL;
 661   }
 662   return _archive_allocator->archive_mem_allocate(word_size);
 663 }
 664 
 665 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 666                                               size_t end_alignment_in_bytes) {
 667   assert_at_safepoint(true /* should_be_vm_thread */);
 668   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 669 
 670   // Call complete_archive to do the real work, filling in the MemRegion
 671   // array with the archive regions.
 672   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 673   delete _archive_allocator;
 674   _archive_allocator = NULL;
 675 }
 676 
 677 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 678   assert(ranges != NULL, "MemRegion array NULL");
 679   assert(count != 0, "No MemRegions provided");
 680   MemRegion reserved = _hrm.reserved();
 681   for (size_t i = 0; i < count; i++) {
 682     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 683       return false;
 684     }
 685   }
 686   return true;
 687 }
 688 
 689 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 690   assert(!is_init_completed(), "Expect to be called at JVM init time");
 691   assert(ranges != NULL, "MemRegion array NULL");
 692   assert(count != 0, "No MemRegions provided");
 693   MutexLockerEx x(Heap_lock);
 694 
 695   MemRegion reserved = _hrm.reserved();
 696   HeapWord* prev_last_addr = NULL;
 697   HeapRegion* prev_last_region = NULL;
 698 
 699   // Temporarily disable pretouching of heap pages. This interface is used
 700   // when mmap'ing archived heap data in, so pre-touching is wasted.
 701   FlagSetting fs(AlwaysPreTouch, false);
 702 
 703   // Enable archive object checking used by G1MarkSweep. We have to let it know
 704   // about each archive range, so that objects in those ranges aren't marked.
 705   G1ArchiveAllocator::enable_archive_object_check();
 706 
 707   // For each specified MemRegion range, allocate the corresponding G1
 708   // regions and mark them as archive regions. We expect the ranges in
 709   // ascending starting address order, without overlap.
 710   for (size_t i = 0; i < count; i++) {
 711     MemRegion curr_range = ranges[i];
 712     HeapWord* start_address = curr_range.start();
 713     size_t word_size = curr_range.word_size();
 714     HeapWord* last_address = curr_range.last();
 715     size_t commits = 0;
 716 
 717     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 718               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 719               p2i(start_address), p2i(last_address));
 720     guarantee(start_address > prev_last_addr,
 721               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 722               p2i(start_address), p2i(prev_last_addr));
 723     prev_last_addr = last_address;
 724 
 725     // Check for ranges that start in the same G1 region in which the previous
 726     // range ended, and adjust the start address so we don't try to allocate
 727     // the same region again. If the current range is entirely within that
 728     // region, skip it, just adjusting the recorded top.
 729     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 730     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 731       start_address = start_region->end();
 732       if (start_address > last_address) {
 733         increase_used(word_size * HeapWordSize);
 734         start_region->set_top(last_address + 1);
 735         continue;
 736       }
 737       start_region->set_top(start_address);
 738       curr_range = MemRegion(start_address, last_address + 1);
 739       start_region = _hrm.addr_to_region(start_address);
 740     }
 741 
 742     // Perform the actual region allocation, exiting if it fails.
 743     // Then note how much new space we have allocated.
 744     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 745       return false;
 746     }
 747     increase_used(word_size * HeapWordSize);
 748     if (commits != 0) {
 749       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 750                                 HeapRegion::GrainWords * HeapWordSize * commits);
 751 
 752     }
 753 
 754     // Mark each G1 region touched by the range as archive, add it to the old set,
 755     // and set the allocation context and top.
 756     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 757     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 758     prev_last_region = last_region;
 759 
 760     while (curr_region != NULL) {
 761       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 762              "Region already in use (index %u)", curr_region->hrm_index());
 763       curr_region->set_allocation_context(AllocationContext::system());
 764       curr_region->set_archive();
 765       _hr_printer.alloc(curr_region);
 766       _old_set.add(curr_region);
 767       if (curr_region != last_region) {
 768         curr_region->set_top(curr_region->end());
 769         curr_region = _hrm.next_region_in_heap(curr_region);
 770       } else {
 771         curr_region->set_top(last_address + 1);
 772         curr_region = NULL;
 773       }
 774     }
 775 
 776     // Notify mark-sweep of the archive range.
 777     G1ArchiveAllocator::set_range_archive(curr_range, true);
 778   }
 779   return true;
 780 }
 781 
 782 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 783   assert(!is_init_completed(), "Expect to be called at JVM init time");
 784   assert(ranges != NULL, "MemRegion array NULL");
 785   assert(count != 0, "No MemRegions provided");
 786   MemRegion reserved = _hrm.reserved();
 787   HeapWord *prev_last_addr = NULL;
 788   HeapRegion* prev_last_region = NULL;
 789 
 790   // For each MemRegion, create filler objects, if needed, in the G1 regions
 791   // that contain the address range. The address range actually within the
 792   // MemRegion will not be modified. That is assumed to have been initialized
 793   // elsewhere, probably via an mmap of archived heap data.
 794   MutexLockerEx x(Heap_lock);
 795   for (size_t i = 0; i < count; i++) {
 796     HeapWord* start_address = ranges[i].start();
 797     HeapWord* last_address = ranges[i].last();
 798 
 799     assert(reserved.contains(start_address) && reserved.contains(last_address),
 800            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 801            p2i(start_address), p2i(last_address));
 802     assert(start_address > prev_last_addr,
 803            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 804            p2i(start_address), p2i(prev_last_addr));
 805 
 806     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 807     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 808     HeapWord* bottom_address = start_region->bottom();
 809 
 810     // Check for a range beginning in the same region in which the
 811     // previous one ended.
 812     if (start_region == prev_last_region) {
 813       bottom_address = prev_last_addr + 1;
 814     }
 815 
 816     // Verify that the regions were all marked as archive regions by
 817     // alloc_archive_regions.
 818     HeapRegion* curr_region = start_region;
 819     while (curr_region != NULL) {
 820       guarantee(curr_region->is_archive(),
 821                 "Expected archive region at index %u", curr_region->hrm_index());
 822       if (curr_region != last_region) {
 823         curr_region = _hrm.next_region_in_heap(curr_region);
 824       } else {
 825         curr_region = NULL;
 826       }
 827     }
 828 
 829     prev_last_addr = last_address;
 830     prev_last_region = last_region;
 831 
 832     // Fill the memory below the allocated range with dummy object(s),
 833     // if the region bottom does not match the range start, or if the previous
 834     // range ended within the same G1 region, and there is a gap.
 835     if (start_address != bottom_address) {
 836       size_t fill_size = pointer_delta(start_address, bottom_address);
 837       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 838       increase_used(fill_size * HeapWordSize);
 839     }
 840   }
 841 }
 842 
 843 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 844                                                      uint* gc_count_before_ret,
 845                                                      uint* gclocker_retry_count_ret) {
 846   assert_heap_not_locked_and_not_at_safepoint();
 847   assert(!is_humongous(word_size), "attempt_allocation() should not "
 848          "be called for humongous allocation requests");
 849 
 850   AllocationContext_t context = AllocationContext::current();
 851   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 852 
 853   if (result == NULL) {
 854     result = attempt_allocation_slow(word_size,
 855                                      context,
 856                                      gc_count_before_ret,
 857                                      gclocker_retry_count_ret);
 858   }
 859   assert_heap_not_locked();
 860   if (result != NULL) {
 861     dirty_young_block(result, word_size);
 862   }
 863   return result;
 864 }
 865 
 866 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 867   assert(!is_init_completed(), "Expect to be called at JVM init time");
 868   assert(ranges != NULL, "MemRegion array NULL");
 869   assert(count != 0, "No MemRegions provided");
 870   MemRegion reserved = _hrm.reserved();
 871   HeapWord* prev_last_addr = NULL;
 872   HeapRegion* prev_last_region = NULL;
 873   size_t size_used = 0;
 874   size_t uncommitted_regions = 0;
 875 
 876   // For each Memregion, free the G1 regions that constitute it, and
 877   // notify mark-sweep that the range is no longer to be considered 'archive.'
 878   MutexLockerEx x(Heap_lock);
 879   for (size_t i = 0; i < count; i++) {
 880     HeapWord* start_address = ranges[i].start();
 881     HeapWord* last_address = ranges[i].last();
 882 
 883     assert(reserved.contains(start_address) && reserved.contains(last_address),
 884            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 885            p2i(start_address), p2i(last_address));
 886     assert(start_address > prev_last_addr,
 887            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 888            p2i(start_address), p2i(prev_last_addr));
 889     size_used += ranges[i].byte_size();
 890     prev_last_addr = last_address;
 891 
 892     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 893     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 894 
 895     // Check for ranges that start in the same G1 region in which the previous
 896     // range ended, and adjust the start address so we don't try to free
 897     // the same region again. If the current range is entirely within that
 898     // region, skip it.
 899     if (start_region == prev_last_region) {
 900       start_address = start_region->end();
 901       if (start_address > last_address) {
 902         continue;
 903       }
 904       start_region = _hrm.addr_to_region(start_address);
 905     }
 906     prev_last_region = last_region;
 907 
 908     // After verifying that each region was marked as an archive region by
 909     // alloc_archive_regions, set it free and empty and uncommit it.
 910     HeapRegion* curr_region = start_region;
 911     while (curr_region != NULL) {
 912       guarantee(curr_region->is_archive(),
 913                 "Expected archive region at index %u", curr_region->hrm_index());
 914       uint curr_index = curr_region->hrm_index();
 915       _old_set.remove(curr_region);
 916       curr_region->set_free();
 917       curr_region->set_top(curr_region->bottom());
 918       if (curr_region != last_region) {
 919         curr_region = _hrm.next_region_in_heap(curr_region);
 920       } else {
 921         curr_region = NULL;
 922       }
 923       _hrm.shrink_at(curr_index, 1);
 924       uncommitted_regions++;
 925     }
 926 
 927     // Notify mark-sweep that this is no longer an archive range.
 928     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 929   }
 930 
 931   if (uncommitted_regions != 0) {
 932     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 933                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 934   }
 935   decrease_used(size_used);
 936 }
 937 
 938 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 939                                                         uint* gc_count_before_ret,
 940                                                         uint* gclocker_retry_count_ret) {
 941   // The structure of this method has a lot of similarities to
 942   // attempt_allocation_slow(). The reason these two were not merged
 943   // into a single one is that such a method would require several "if
 944   // allocation is not humongous do this, otherwise do that"
 945   // conditional paths which would obscure its flow. In fact, an early
 946   // version of this code did use a unified method which was harder to
 947   // follow and, as a result, it had subtle bugs that were hard to
 948   // track down. So keeping these two methods separate allows each to
 949   // be more readable. It will be good to keep these two in sync as
 950   // much as possible.
 951 
 952   assert_heap_not_locked_and_not_at_safepoint();
 953   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 954          "should only be called for humongous allocations");
 955 
 956   // Humongous objects can exhaust the heap quickly, so we should check if we
 957   // need to start a marking cycle at each humongous object allocation. We do
 958   // the check before we do the actual allocation. The reason for doing it
 959   // before the allocation is that we avoid having to keep track of the newly
 960   // allocated memory while we do a GC.
 961   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 962                                            word_size)) {
 963     collect(GCCause::_g1_humongous_allocation);
 964   }
 965 
 966   // We will loop until a) we manage to successfully perform the
 967   // allocation or b) we successfully schedule a collection which
 968   // fails to perform the allocation. b) is the only case when we'll
 969   // return NULL.
 970   HeapWord* result = NULL;
 971   for (int try_count = 1; /* we'll return */; try_count += 1) {
 972     bool should_try_gc;
 973     uint gc_count_before;
 974 
 975     {
 976       MutexLockerEx x(Heap_lock);
 977 
 978       // Given that humongous objects are not allocated in young
 979       // regions, we'll first try to do the allocation without doing a
 980       // collection hoping that there's enough space in the heap.
 981       result = humongous_obj_allocate(word_size, AllocationContext::current());
 982       if (result != NULL) {
 983         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 984         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 985         return result;
 986       }
 987 
 988       if (GCLocker::is_active_and_needs_gc()) {
 989         should_try_gc = false;
 990       } else {
 991          // The GCLocker may not be active but the GCLocker initiated
 992         // GC may not yet have been performed (GCLocker::needs_gc()
 993         // returns true). In this case we do not try this GC and
 994         // wait until the GCLocker initiated GC is performed, and
 995         // then retry the allocation.
 996         if (GCLocker::needs_gc()) {
 997           should_try_gc = false;
 998         } else {
 999           // Read the GC count while still holding the Heap_lock.
1000           gc_count_before = total_collections();
1001           should_try_gc = true;
1002         }
1003       }
1004     }
1005 
1006     if (should_try_gc) {
1007       // If we failed to allocate the humongous object, we should try to
1008       // do a collection pause (if we're allowed) in case it reclaims
1009       // enough space for the allocation to succeed after the pause.
1010 
1011       bool succeeded;
1012       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1013                                    GCCause::_g1_humongous_allocation);
1014       if (result != NULL) {
1015         assert(succeeded, "only way to get back a non-NULL result");
1016         return result;
1017       }
1018 
1019       if (succeeded) {
1020         // If we get here we successfully scheduled a collection which
1021         // failed to allocate. No point in trying to allocate
1022         // further. We'll just return NULL.
1023         MutexLockerEx x(Heap_lock);
1024         *gc_count_before_ret = total_collections();
1025         return NULL;
1026       }
1027     } else {
1028       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1029         MutexLockerEx x(Heap_lock);
1030         *gc_count_before_ret = total_collections();
1031         return NULL;
1032       }
1033       // The GCLocker is either active or the GCLocker initiated
1034       // GC has not yet been performed. Stall until it is and
1035       // then retry the allocation.
1036       GCLocker::stall_until_clear();
1037       (*gclocker_retry_count_ret) += 1;
1038     }
1039 
1040     // We can reach here if we were unsuccessful in scheduling a
1041     // collection (because another thread beat us to it) or if we were
1042     // stalled due to the GC locker. In either can we should retry the
1043     // allocation attempt in case another thread successfully
1044     // performed a collection and reclaimed enough space.  Give a
1045     // warning if we seem to be looping forever.
1046 
1047     if ((QueuedAllocationWarningCount > 0) &&
1048         (try_count % QueuedAllocationWarningCount == 0)) {
1049       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1050                       "retries %d times", try_count);
1051     }
1052   }
1053 
1054   ShouldNotReachHere();
1055   return NULL;
1056 }
1057 
1058 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1059                                                            AllocationContext_t context,
1060                                                            bool expect_null_mutator_alloc_region) {
1061   assert_at_safepoint(true /* should_be_vm_thread */);
1062   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1063          "the current alloc region was unexpectedly found to be non-NULL");
1064 
1065   if (!is_humongous(word_size)) {
1066     return _allocator->attempt_allocation_locked(word_size, context);
1067   } else {
1068     HeapWord* result = humongous_obj_allocate(word_size, context);
1069     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1070       collector_state()->set_initiate_conc_mark_if_possible(true);
1071     }
1072     return result;
1073   }
1074 
1075   ShouldNotReachHere();
1076 }
1077 
1078 class PostMCRemSetClearClosure: public HeapRegionClosure {
1079   G1CollectedHeap* _g1h;
1080   ModRefBarrierSet* _mr_bs;
1081 public:
1082   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1083     _g1h(g1h), _mr_bs(mr_bs) {}
1084 
1085   bool doHeapRegion(HeapRegion* r) {
1086     HeapRegionRemSet* hrrs = r->rem_set();
1087 
1088     _g1h->reset_gc_time_stamps(r);
1089 
1090     if (r->is_continues_humongous()) {
1091       // We'll assert that the strong code root list and RSet is empty
1092       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1093       assert(hrrs->occupied() == 0, "RSet should be empty");
1094     } else {
1095       hrrs->clear();
1096     }
1097     // You might think here that we could clear just the cards
1098     // corresponding to the used region.  But no: if we leave a dirty card
1099     // in a region we might allocate into, then it would prevent that card
1100     // from being enqueued, and cause it to be missed.
1101     // Re: the performance cost: we shouldn't be doing full GC anyway!
1102     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1103 
1104     return false;
1105   }
1106 };
1107 
1108 void G1CollectedHeap::clear_rsets_post_compaction() {
1109   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1110   heap_region_iterate(&rs_clear);
1111 }
1112 
1113 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1114   G1CollectedHeap*   _g1h;
1115   UpdateRSOopClosure _cl;
1116 public:
1117   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1118     _cl(g1->g1_rem_set(), worker_i),
1119     _g1h(g1)
1120   { }
1121 
1122   bool doHeapRegion(HeapRegion* r) {
1123     if (!r->is_continues_humongous()) {
1124       _cl.set_from(r);
1125       r->oop_iterate(&_cl);
1126     }
1127     return false;
1128   }
1129 };
1130 
1131 class ParRebuildRSTask: public AbstractGangTask {
1132   G1CollectedHeap* _g1;
1133   HeapRegionClaimer _hrclaimer;
1134 
1135 public:
1136   ParRebuildRSTask(G1CollectedHeap* g1) :
1137       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1138 
1139   void work(uint worker_id) {
1140     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1141     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1142   }
1143 };
1144 
1145 class PostCompactionPrinterClosure: public HeapRegionClosure {
1146 private:
1147   G1HRPrinter* _hr_printer;
1148 public:
1149   bool doHeapRegion(HeapRegion* hr) {
1150     assert(!hr->is_young(), "not expecting to find young regions");
1151     _hr_printer->post_compaction(hr);
1152     return false;
1153   }
1154 
1155   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1156     : _hr_printer(hr_printer) { }
1157 };
1158 
1159 void G1CollectedHeap::print_hrm_post_compaction() {
1160   if (_hr_printer.is_active()) {
1161     PostCompactionPrinterClosure cl(hr_printer());
1162     heap_region_iterate(&cl);
1163   }
1164 
1165 }
1166 
1167 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1168                                          bool clear_all_soft_refs) {
1169   assert_at_safepoint(true /* should_be_vm_thread */);
1170 
1171   if (GCLocker::check_active_before_gc()) {
1172     return false;
1173   }
1174 
1175   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1176   gc_timer->register_gc_start();
1177 
1178   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1179   GCIdMark gc_id_mark;
1180   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1181 
1182   SvcGCMarker sgcm(SvcGCMarker::FULL);
1183   ResourceMark rm;
1184 
1185   print_heap_before_gc();
1186   print_heap_regions();
1187   trace_heap_before_gc(gc_tracer);
1188 
1189   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1190 
1191   _verifier->verify_region_sets_optional();
1192 
1193   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1194                            collector_policy()->should_clear_all_soft_refs();
1195 
1196   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1197 
1198   {
1199     IsGCActiveMark x;
1200 
1201     // Timing
1202     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1203     GCTraceCPUTime tcpu;
1204 
1205     {
1206       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1207       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1208       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1209 
1210       G1HeapTransition heap_transition(this);
1211       g1_policy()->record_full_collection_start();
1212 
1213       // Note: When we have a more flexible GC logging framework that
1214       // allows us to add optional attributes to a GC log record we
1215       // could consider timing and reporting how long we wait in the
1216       // following two methods.
1217       wait_while_free_regions_coming();
1218       // If we start the compaction before the CM threads finish
1219       // scanning the root regions we might trip them over as we'll
1220       // be moving objects / updating references. So let's wait until
1221       // they are done. By telling them to abort, they should complete
1222       // early.
1223       _cm->root_regions()->abort();
1224       _cm->root_regions()->wait_until_scan_finished();
1225       append_secondary_free_list_if_not_empty_with_lock();
1226 
1227       gc_prologue(true);
1228       increment_total_collections(true /* full gc */);
1229       increment_old_marking_cycles_started();
1230 
1231       assert(used() == recalculate_used(), "Should be equal");
1232 
1233       _verifier->verify_before_gc();
1234 
1235       _verifier->check_bitmaps("Full GC Start");
1236       pre_full_gc_dump(gc_timer);
1237 
1238 #if defined(COMPILER2) || INCLUDE_JVMCI
1239       DerivedPointerTable::clear();
1240 #endif
1241 
1242       // Disable discovery and empty the discovered lists
1243       // for the CM ref processor.
1244       ref_processor_cm()->disable_discovery();
1245       ref_processor_cm()->abandon_partial_discovery();
1246       ref_processor_cm()->verify_no_references_recorded();
1247 
1248       // Abandon current iterations of concurrent marking and concurrent
1249       // refinement, if any are in progress.
1250       concurrent_mark()->abort();
1251 
1252       // Make sure we'll choose a new allocation region afterwards.
1253       _allocator->release_mutator_alloc_region();
1254       _allocator->abandon_gc_alloc_regions();
1255       g1_rem_set()->cleanupHRRS();
1256 
1257       // We may have added regions to the current incremental collection
1258       // set between the last GC or pause and now. We need to clear the
1259       // incremental collection set and then start rebuilding it afresh
1260       // after this full GC.
1261       abandon_collection_set(collection_set());
1262 
1263       tear_down_region_sets(false /* free_list_only */);
1264       collector_state()->set_gcs_are_young(true);
1265 
1266       // See the comments in g1CollectedHeap.hpp and
1267       // G1CollectedHeap::ref_processing_init() about
1268       // how reference processing currently works in G1.
1269 
1270       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1271       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1272 
1273       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1274       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1275 
1276       ref_processor_stw()->enable_discovery();
1277       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1278 
1279       // Do collection work
1280       {
1281         HandleMark hm;  // Discard invalid handles created during gc
1282         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1283       }
1284 
1285       assert(num_free_regions() == 0, "we should not have added any free regions");
1286       rebuild_region_sets(false /* free_list_only */);
1287 
1288       // Enqueue any discovered reference objects that have
1289       // not been removed from the discovered lists.
1290       ref_processor_stw()->enqueue_discovered_references();
1291 
1292 #if defined(COMPILER2) || INCLUDE_JVMCI
1293       DerivedPointerTable::update_pointers();
1294 #endif
1295 
1296       MemoryService::track_memory_usage();
1297 
1298       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1299       ref_processor_stw()->verify_no_references_recorded();
1300 
1301       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1302       ClassLoaderDataGraph::purge();
1303       MetaspaceAux::verify_metrics();
1304 
1305       // Note: since we've just done a full GC, concurrent
1306       // marking is no longer active. Therefore we need not
1307       // re-enable reference discovery for the CM ref processor.
1308       // That will be done at the start of the next marking cycle.
1309       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1310       ref_processor_cm()->verify_no_references_recorded();
1311 
1312       reset_gc_time_stamp();
1313       // Since everything potentially moved, we will clear all remembered
1314       // sets, and clear all cards.  Later we will rebuild remembered
1315       // sets. We will also reset the GC time stamps of the regions.
1316       clear_rsets_post_compaction();
1317       check_gc_time_stamps();
1318 
1319       resize_if_necessary_after_full_collection();
1320 
1321       // We should do this after we potentially resize the heap so
1322       // that all the COMMIT / UNCOMMIT events are generated before
1323       // the compaction events.
1324       print_hrm_post_compaction();
1325 
1326       if (_hot_card_cache->use_cache()) {
1327         _hot_card_cache->reset_card_counts();
1328         _hot_card_cache->reset_hot_cache();
1329       }
1330 
1331       // Rebuild remembered sets of all regions.
1332       uint n_workers =
1333         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1334                                                 workers()->active_workers(),
1335                                                 Threads::number_of_non_daemon_threads());
1336       workers()->update_active_workers(n_workers);
1337       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1338 
1339       ParRebuildRSTask rebuild_rs_task(this);
1340       workers()->run_task(&rebuild_rs_task);
1341 
1342       // Rebuild the strong code root lists for each region
1343       rebuild_strong_code_roots();
1344 
1345       if (true) { // FIXME
1346         MetaspaceGC::compute_new_size();
1347       }
1348 
1349 #ifdef TRACESPINNING
1350       ParallelTaskTerminator::print_termination_counts();
1351 #endif
1352 
1353       // Discard all rset updates
1354       JavaThread::dirty_card_queue_set().abandon_logs();
1355       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1356 
1357       // At this point there should be no regions in the
1358       // entire heap tagged as young.
1359       assert(check_young_list_empty(), "young list should be empty at this point");
1360 
1361       // Update the number of full collections that have been completed.
1362       increment_old_marking_cycles_completed(false /* concurrent */);
1363 
1364       _hrm.verify_optional();
1365       _verifier->verify_region_sets_optional();
1366 
1367       _verifier->verify_after_gc();
1368 
1369       // Clear the previous marking bitmap, if needed for bitmap verification.
1370       // Note we cannot do this when we clear the next marking bitmap in
1371       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1372       // objects marked during a full GC against the previous bitmap.
1373       // But we need to clear it before calling check_bitmaps below since
1374       // the full GC has compacted objects and updated TAMS but not updated
1375       // the prev bitmap.
1376       if (G1VerifyBitmaps) {
1377         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1378         _cm->clear_prev_bitmap(workers());
1379       }
1380       _verifier->check_bitmaps("Full GC End");
1381 
1382       start_new_collection_set();
1383 
1384       _allocator->init_mutator_alloc_region();
1385 
1386       g1_policy()->record_full_collection_end();
1387 
1388       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1389       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1390       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1391       // before any GC notifications are raised.
1392       g1mm()->update_sizes();
1393 
1394       gc_epilogue(true);
1395 
1396       heap_transition.print();
1397 
1398       print_heap_after_gc();
1399       print_heap_regions();
1400       trace_heap_after_gc(gc_tracer);
1401 
1402       post_full_gc_dump(gc_timer);
1403     }
1404 
1405     gc_timer->register_gc_end();
1406     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1407   }
1408 
1409   return true;
1410 }
1411 
1412 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1413   // Currently, there is no facility in the do_full_collection(bool) API to notify
1414   // the caller that the collection did not succeed (e.g., because it was locked
1415   // out by the GC locker). So, right now, we'll ignore the return value.
1416   bool dummy = do_full_collection(true,                /* explicit_gc */
1417                                   clear_all_soft_refs);
1418 }
1419 
1420 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1421   // Include bytes that will be pre-allocated to support collections, as "used".
1422   const size_t used_after_gc = used();
1423   const size_t capacity_after_gc = capacity();
1424   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1425 
1426   // This is enforced in arguments.cpp.
1427   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1428          "otherwise the code below doesn't make sense");
1429 
1430   // We don't have floating point command-line arguments
1431   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1432   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1433   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1434   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1435 
1436   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1437   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1438 
1439   // We have to be careful here as these two calculations can overflow
1440   // 32-bit size_t's.
1441   double used_after_gc_d = (double) used_after_gc;
1442   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1443   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1444 
1445   // Let's make sure that they are both under the max heap size, which
1446   // by default will make them fit into a size_t.
1447   double desired_capacity_upper_bound = (double) max_heap_size;
1448   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1449                                     desired_capacity_upper_bound);
1450   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1451                                     desired_capacity_upper_bound);
1452 
1453   // We can now safely turn them into size_t's.
1454   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1455   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1456 
1457   // This assert only makes sense here, before we adjust them
1458   // with respect to the min and max heap size.
1459   assert(minimum_desired_capacity <= maximum_desired_capacity,
1460          "minimum_desired_capacity = " SIZE_FORMAT ", "
1461          "maximum_desired_capacity = " SIZE_FORMAT,
1462          minimum_desired_capacity, maximum_desired_capacity);
1463 
1464   // Should not be greater than the heap max size. No need to adjust
1465   // it with respect to the heap min size as it's a lower bound (i.e.,
1466   // we'll try to make the capacity larger than it, not smaller).
1467   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1468   // Should not be less than the heap min size. No need to adjust it
1469   // with respect to the heap max size as it's an upper bound (i.e.,
1470   // we'll try to make the capacity smaller than it, not greater).
1471   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1472 
1473   if (capacity_after_gc < minimum_desired_capacity) {
1474     // Don't expand unless it's significant
1475     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1476 
1477     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1478                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1479                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1480 
1481     expand(expand_bytes, _workers);
1482 
1483     // No expansion, now see if we want to shrink
1484   } else if (capacity_after_gc > maximum_desired_capacity) {
1485     // Capacity too large, compute shrinking size
1486     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1487 
1488     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1489                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1490                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1491 
1492     shrink(shrink_bytes);
1493   }
1494 }
1495 
1496 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1497                                                             AllocationContext_t context,
1498                                                             bool do_gc,
1499                                                             bool clear_all_soft_refs,
1500                                                             bool expect_null_mutator_alloc_region,
1501                                                             bool* gc_succeeded) {
1502   *gc_succeeded = true;
1503   // Let's attempt the allocation first.
1504   HeapWord* result =
1505     attempt_allocation_at_safepoint(word_size,
1506                                     context,
1507                                     expect_null_mutator_alloc_region);
1508   if (result != NULL) {
1509     assert(*gc_succeeded, "sanity");
1510     return result;
1511   }
1512 
1513   // In a G1 heap, we're supposed to keep allocation from failing by
1514   // incremental pauses.  Therefore, at least for now, we'll favor
1515   // expansion over collection.  (This might change in the future if we can
1516   // do something smarter than full collection to satisfy a failed alloc.)
1517   result = expand_and_allocate(word_size, context);
1518   if (result != NULL) {
1519     assert(*gc_succeeded, "sanity");
1520     return result;
1521   }
1522 
1523   if (do_gc) {
1524     // Expansion didn't work, we'll try to do a Full GC.
1525     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1526                                        clear_all_soft_refs);
1527   }
1528 
1529   return NULL;
1530 }
1531 
1532 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1533                                                      AllocationContext_t context,
1534                                                      bool* succeeded) {
1535   assert_at_safepoint(true /* should_be_vm_thread */);
1536 
1537   // Attempts to allocate followed by Full GC.
1538   HeapWord* result =
1539     satisfy_failed_allocation_helper(word_size,
1540                                      context,
1541                                      true,  /* do_gc */
1542                                      false, /* clear_all_soft_refs */
1543                                      false, /* expect_null_mutator_alloc_region */
1544                                      succeeded);
1545 
1546   if (result != NULL || !*succeeded) {
1547     return result;
1548   }
1549 
1550   // Attempts to allocate followed by Full GC that will collect all soft references.
1551   result = satisfy_failed_allocation_helper(word_size,
1552                                             context,
1553                                             true, /* do_gc */
1554                                             true, /* clear_all_soft_refs */
1555                                             true, /* expect_null_mutator_alloc_region */
1556                                             succeeded);
1557 
1558   if (result != NULL || !*succeeded) {
1559     return result;
1560   }
1561 
1562   // Attempts to allocate, no GC
1563   result = satisfy_failed_allocation_helper(word_size,
1564                                             context,
1565                                             false, /* do_gc */
1566                                             false, /* clear_all_soft_refs */
1567                                             true,  /* expect_null_mutator_alloc_region */
1568                                             succeeded);
1569 
1570   if (result != NULL) {
1571     assert(*succeeded, "sanity");
1572     return result;
1573   }
1574 
1575   assert(!collector_policy()->should_clear_all_soft_refs(),
1576          "Flag should have been handled and cleared prior to this point");
1577 
1578   // What else?  We might try synchronous finalization later.  If the total
1579   // space available is large enough for the allocation, then a more
1580   // complete compaction phase than we've tried so far might be
1581   // appropriate.
1582   assert(*succeeded, "sanity");
1583   return NULL;
1584 }
1585 
1586 // Attempting to expand the heap sufficiently
1587 // to support an allocation of the given "word_size".  If
1588 // successful, perform the allocation and return the address of the
1589 // allocated block, or else "NULL".
1590 
1591 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1592   assert_at_safepoint(true /* should_be_vm_thread */);
1593 
1594   _verifier->verify_region_sets_optional();
1595 
1596   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1597   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1598                             word_size * HeapWordSize);
1599 
1600 
1601   if (expand(expand_bytes, _workers)) {
1602     _hrm.verify_optional();
1603     _verifier->verify_region_sets_optional();
1604     return attempt_allocation_at_safepoint(word_size,
1605                                            context,
1606                                            false /* expect_null_mutator_alloc_region */);
1607   }
1608   return NULL;
1609 }
1610 
1611 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1612   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1613   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1614                                        HeapRegion::GrainBytes);
1615 
1616   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1617                             expand_bytes, aligned_expand_bytes);
1618 
1619   if (is_maximal_no_gc()) {
1620     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1621     return false;
1622   }
1623 
1624   double expand_heap_start_time_sec = os::elapsedTime();
1625   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1626   assert(regions_to_expand > 0, "Must expand by at least one region");
1627 
1628   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1629   if (expand_time_ms != NULL) {
1630     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1631   }
1632 
1633   if (expanded_by > 0) {
1634     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1635     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1636     g1_policy()->record_new_heap_size(num_regions());
1637   } else {
1638     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1639 
1640     // The expansion of the virtual storage space was unsuccessful.
1641     // Let's see if it was because we ran out of swap.
1642     if (G1ExitOnExpansionFailure &&
1643         _hrm.available() >= regions_to_expand) {
1644       // We had head room...
1645       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1646     }
1647   }
1648   return regions_to_expand > 0;
1649 }
1650 
1651 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1652   size_t aligned_shrink_bytes =
1653     ReservedSpace::page_align_size_down(shrink_bytes);
1654   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1655                                          HeapRegion::GrainBytes);
1656   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1657 
1658   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1659   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1660 
1661 
1662   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1663                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1664   if (num_regions_removed > 0) {
1665     g1_policy()->record_new_heap_size(num_regions());
1666   } else {
1667     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1668   }
1669 }
1670 
1671 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1672   _verifier->verify_region_sets_optional();
1673 
1674   // We should only reach here at the end of a Full GC which means we
1675   // should not not be holding to any GC alloc regions. The method
1676   // below will make sure of that and do any remaining clean up.
1677   _allocator->abandon_gc_alloc_regions();
1678 
1679   // Instead of tearing down / rebuilding the free lists here, we
1680   // could instead use the remove_all_pending() method on free_list to
1681   // remove only the ones that we need to remove.
1682   tear_down_region_sets(true /* free_list_only */);
1683   shrink_helper(shrink_bytes);
1684   rebuild_region_sets(true /* free_list_only */);
1685 
1686   _hrm.verify_optional();
1687   _verifier->verify_region_sets_optional();
1688 }
1689 
1690 // Public methods.
1691 
1692 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1693   CollectedHeap(),
1694   _collector_policy(collector_policy),
1695   _g1_policy(create_g1_policy()),
1696   _collection_set(this, _g1_policy),
1697   _dirty_card_queue_set(false),
1698   _is_alive_closure_cm(this),
1699   _is_alive_closure_stw(this),
1700   _ref_processor_cm(NULL),
1701   _ref_processor_stw(NULL),
1702   _bot(NULL),
1703   _hot_card_cache(NULL),
1704   _g1_rem_set(NULL),
1705   _cg1r(NULL),
1706   _g1mm(NULL),
1707   _refine_cte_cl(NULL),
1708   _preserved_marks_set(true /* in_c_heap */),
1709   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1710   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1711   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1712   _humongous_reclaim_candidates(),
1713   _has_humongous_reclaim_candidates(false),
1714   _archive_allocator(NULL),
1715   _free_regions_coming(false),
1716   _gc_time_stamp(0),
1717   _summary_bytes_used(0),
1718   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1719   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1720   _expand_heap_after_alloc_failure(true),
1721   _old_marking_cycles_started(0),
1722   _old_marking_cycles_completed(0),
1723   _in_cset_fast_test(),
1724   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1725   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1726 
1727   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1728                           /* are_GC_task_threads */true,
1729                           /* are_ConcurrentGC_threads */false);
1730   _workers->initialize_workers();
1731   _verifier = new G1HeapVerifier(this);
1732 
1733   _allocator = G1Allocator::create_allocator(this);
1734 
1735   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1736 
1737   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1738 
1739   // Override the default _filler_array_max_size so that no humongous filler
1740   // objects are created.
1741   _filler_array_max_size = _humongous_object_threshold_in_words;
1742 
1743   uint n_queues = ParallelGCThreads;
1744   _task_queues = new RefToScanQueueSet(n_queues);
1745 
1746   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1747 
1748   for (uint i = 0; i < n_queues; i++) {
1749     RefToScanQueue* q = new RefToScanQueue();
1750     q->initialize();
1751     _task_queues->register_queue(i, q);
1752     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1753   }
1754 
1755   // Initialize the G1EvacuationFailureALot counters and flags.
1756   NOT_PRODUCT(reset_evacuation_should_fail();)
1757 
1758   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1759 }
1760 
1761 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1762                                                                  size_t size,
1763                                                                  size_t translation_factor) {
1764   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1765   // Allocate a new reserved space, preferring to use large pages.
1766   ReservedSpace rs(size, preferred_page_size);
1767   G1RegionToSpaceMapper* result  =
1768     G1RegionToSpaceMapper::create_mapper(rs,
1769                                          size,
1770                                          rs.alignment(),
1771                                          HeapRegion::GrainBytes,
1772                                          translation_factor,
1773                                          mtGC);
1774 
1775   os::trace_page_sizes_for_requested_size(description,
1776                                           size,
1777                                           preferred_page_size,
1778                                           rs.alignment(),
1779                                           rs.base(),
1780                                           rs.size());
1781 
1782   return result;
1783 }
1784 
1785 jint G1CollectedHeap::initialize() {
1786   CollectedHeap::pre_initialize();
1787   os::enable_vtime();
1788 
1789   // Necessary to satisfy locking discipline assertions.
1790 
1791   MutexLocker x(Heap_lock);
1792 
1793   // While there are no constraints in the GC code that HeapWordSize
1794   // be any particular value, there are multiple other areas in the
1795   // system which believe this to be true (e.g. oop->object_size in some
1796   // cases incorrectly returns the size in wordSize units rather than
1797   // HeapWordSize).
1798   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1799 
1800   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1801   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1802   size_t heap_alignment = collector_policy()->heap_alignment();
1803 
1804   // Ensure that the sizes are properly aligned.
1805   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1806   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1807   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1808 
1809   _refine_cte_cl = new RefineCardTableEntryClosure();
1810 
1811   jint ecode = JNI_OK;
1812   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1813   if (_cg1r == NULL) {
1814     return ecode;
1815   }
1816 
1817   // Reserve the maximum.
1818 
1819   // When compressed oops are enabled, the preferred heap base
1820   // is calculated by subtracting the requested size from the
1821   // 32Gb boundary and using the result as the base address for
1822   // heap reservation. If the requested size is not aligned to
1823   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1824   // into the ReservedHeapSpace constructor) then the actual
1825   // base of the reserved heap may end up differing from the
1826   // address that was requested (i.e. the preferred heap base).
1827   // If this happens then we could end up using a non-optimal
1828   // compressed oops mode.
1829 
1830   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1831                                                  heap_alignment);
1832 
1833   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1834 
1835   // Create the barrier set for the entire reserved region.
1836   G1SATBCardTableLoggingModRefBS* bs
1837     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1838   bs->initialize();
1839   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1840   set_barrier_set(bs);
1841 
1842   // Create the hot card cache.
1843   _hot_card_cache = new G1HotCardCache(this);
1844 
1845   // Also create a G1 rem set.
1846   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1847 
1848   // Carve out the G1 part of the heap.
1849   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1850   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1851   G1RegionToSpaceMapper* heap_storage =
1852     G1RegionToSpaceMapper::create_mapper(g1_rs,
1853                                          g1_rs.size(),
1854                                          page_size,
1855                                          HeapRegion::GrainBytes,
1856                                          1,
1857                                          mtJavaHeap);
1858   os::trace_page_sizes("Heap",
1859                        collector_policy()->min_heap_byte_size(),
1860                        max_byte_size,
1861                        page_size,
1862                        heap_rs.base(),
1863                        heap_rs.size());
1864   heap_storage->set_mapping_changed_listener(&_listener);
1865 
1866   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1867   G1RegionToSpaceMapper* bot_storage =
1868     create_aux_memory_mapper("Block Offset Table",
1869                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1870                              G1BlockOffsetTable::heap_map_factor());
1871 
1872   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1873   G1RegionToSpaceMapper* cardtable_storage =
1874     create_aux_memory_mapper("Card Table",
1875                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1876                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1877 
1878   G1RegionToSpaceMapper* card_counts_storage =
1879     create_aux_memory_mapper("Card Counts Table",
1880                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1881                              G1CardCounts::heap_map_factor());
1882 
1883   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1884   G1RegionToSpaceMapper* prev_bitmap_storage =
1885     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1886   G1RegionToSpaceMapper* next_bitmap_storage =
1887     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1888 
1889   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1890   g1_barrier_set()->initialize(cardtable_storage);
1891   // Do later initialization work for concurrent refinement.
1892   _hot_card_cache->initialize(card_counts_storage);
1893 
1894   // 6843694 - ensure that the maximum region index can fit
1895   // in the remembered set structures.
1896   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1897   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1898 
1899   g1_rem_set()->initialize(max_capacity(), max_regions());
1900 
1901   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1902   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1903   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1904             "too many cards per region");
1905 
1906   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1907 
1908   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1909 
1910   {
1911     HeapWord* start = _hrm.reserved().start();
1912     HeapWord* end = _hrm.reserved().end();
1913     size_t granularity = HeapRegion::GrainBytes;
1914 
1915     _in_cset_fast_test.initialize(start, end, granularity);
1916     _humongous_reclaim_candidates.initialize(start, end, granularity);
1917   }
1918 
1919   // Create the G1ConcurrentMark data structure and thread.
1920   // (Must do this late, so that "max_regions" is defined.)
1921   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1922   if (_cm == NULL || !_cm->completed_initialization()) {
1923     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1924     return JNI_ENOMEM;
1925   }
1926   _cmThread = _cm->cmThread();
1927 
1928   // Now expand into the initial heap size.
1929   if (!expand(init_byte_size, _workers)) {
1930     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1931     return JNI_ENOMEM;
1932   }
1933 
1934   // Perform any initialization actions delegated to the policy.
1935   g1_policy()->init(this, &_collection_set);
1936 
1937   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1938                                                SATB_Q_FL_lock,
1939                                                G1SATBProcessCompletedThreshold,
1940                                                Shared_SATB_Q_lock);
1941 
1942   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1943                                                 DirtyCardQ_CBL_mon,
1944                                                 DirtyCardQ_FL_lock,
1945                                                 (int)concurrent_g1_refine()->yellow_zone(),
1946                                                 (int)concurrent_g1_refine()->red_zone(),
1947                                                 Shared_DirtyCardQ_lock,
1948                                                 NULL,  // fl_owner
1949                                                 true); // init_free_ids
1950 
1951   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1952                                     DirtyCardQ_CBL_mon,
1953                                     DirtyCardQ_FL_lock,
1954                                     -1, // never trigger processing
1955                                     -1, // no limit on length
1956                                     Shared_DirtyCardQ_lock,
1957                                     &JavaThread::dirty_card_queue_set());
1958 
1959   // Here we allocate the dummy HeapRegion that is required by the
1960   // G1AllocRegion class.
1961   HeapRegion* dummy_region = _hrm.get_dummy_region();
1962 
1963   // We'll re-use the same region whether the alloc region will
1964   // require BOT updates or not and, if it doesn't, then a non-young
1965   // region will complain that it cannot support allocations without
1966   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1967   dummy_region->set_eden();
1968   // Make sure it's full.
1969   dummy_region->set_top(dummy_region->end());
1970   G1AllocRegion::setup(this, dummy_region);
1971 
1972   _allocator->init_mutator_alloc_region();
1973 
1974   // Do create of the monitoring and management support so that
1975   // values in the heap have been properly initialized.
1976   _g1mm = new G1MonitoringSupport(this);
1977 
1978   G1StringDedup::initialize();
1979 
1980   _preserved_marks_set.init(ParallelGCThreads);
1981 
1982   _collection_set.initialize(max_regions());
1983 
1984   return JNI_OK;
1985 }
1986 
1987 void G1CollectedHeap::stop() {
1988   // Stop all concurrent threads. We do this to make sure these threads
1989   // do not continue to execute and access resources (e.g. logging)
1990   // that are destroyed during shutdown.
1991   _cg1r->stop();
1992   _cmThread->stop();
1993   if (G1StringDedup::is_enabled()) {
1994     G1StringDedup::stop();
1995   }
1996 }
1997 
1998 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1999   return HeapRegion::max_region_size();
2000 }
2001 
2002 void G1CollectedHeap::post_initialize() {
2003   ref_processing_init();
2004 }
2005 
2006 void G1CollectedHeap::ref_processing_init() {
2007   // Reference processing in G1 currently works as follows:
2008   //
2009   // * There are two reference processor instances. One is
2010   //   used to record and process discovered references
2011   //   during concurrent marking; the other is used to
2012   //   record and process references during STW pauses
2013   //   (both full and incremental).
2014   // * Both ref processors need to 'span' the entire heap as
2015   //   the regions in the collection set may be dotted around.
2016   //
2017   // * For the concurrent marking ref processor:
2018   //   * Reference discovery is enabled at initial marking.
2019   //   * Reference discovery is disabled and the discovered
2020   //     references processed etc during remarking.
2021   //   * Reference discovery is MT (see below).
2022   //   * Reference discovery requires a barrier (see below).
2023   //   * Reference processing may or may not be MT
2024   //     (depending on the value of ParallelRefProcEnabled
2025   //     and ParallelGCThreads).
2026   //   * A full GC disables reference discovery by the CM
2027   //     ref processor and abandons any entries on it's
2028   //     discovered lists.
2029   //
2030   // * For the STW processor:
2031   //   * Non MT discovery is enabled at the start of a full GC.
2032   //   * Processing and enqueueing during a full GC is non-MT.
2033   //   * During a full GC, references are processed after marking.
2034   //
2035   //   * Discovery (may or may not be MT) is enabled at the start
2036   //     of an incremental evacuation pause.
2037   //   * References are processed near the end of a STW evacuation pause.
2038   //   * For both types of GC:
2039   //     * Discovery is atomic - i.e. not concurrent.
2040   //     * Reference discovery will not need a barrier.
2041 
2042   MemRegion mr = reserved_region();
2043 
2044   // Concurrent Mark ref processor
2045   _ref_processor_cm =
2046     new ReferenceProcessor(mr,    // span
2047                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2048                                 // mt processing
2049                            ParallelGCThreads,
2050                                 // degree of mt processing
2051                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2052                                 // mt discovery
2053                            MAX2(ParallelGCThreads, ConcGCThreads),
2054                                 // degree of mt discovery
2055                            false,
2056                                 // Reference discovery is not atomic
2057                            &_is_alive_closure_cm);
2058                                 // is alive closure
2059                                 // (for efficiency/performance)
2060 
2061   // STW ref processor
2062   _ref_processor_stw =
2063     new ReferenceProcessor(mr,    // span
2064                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2065                                 // mt processing
2066                            ParallelGCThreads,
2067                                 // degree of mt processing
2068                            (ParallelGCThreads > 1),
2069                                 // mt discovery
2070                            ParallelGCThreads,
2071                                 // degree of mt discovery
2072                            true,
2073                                 // Reference discovery is atomic
2074                            &_is_alive_closure_stw);
2075                                 // is alive closure
2076                                 // (for efficiency/performance)
2077 }
2078 
2079 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2080   return _collector_policy;
2081 }
2082 
2083 size_t G1CollectedHeap::capacity() const {
2084   return _hrm.length() * HeapRegion::GrainBytes;
2085 }
2086 
2087 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2088   hr->reset_gc_time_stamp();
2089 }
2090 
2091 #ifndef PRODUCT
2092 
2093 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2094 private:
2095   unsigned _gc_time_stamp;
2096   bool _failures;
2097 
2098 public:
2099   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2100     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2101 
2102   virtual bool doHeapRegion(HeapRegion* hr) {
2103     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2104     if (_gc_time_stamp != region_gc_time_stamp) {
2105       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2106                             region_gc_time_stamp, _gc_time_stamp);
2107       _failures = true;
2108     }
2109     return false;
2110   }
2111 
2112   bool failures() { return _failures; }
2113 };
2114 
2115 void G1CollectedHeap::check_gc_time_stamps() {
2116   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2117   heap_region_iterate(&cl);
2118   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2119 }
2120 #endif // PRODUCT
2121 
2122 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2123   _hot_card_cache->drain(cl, worker_i);
2124 }
2125 
2126 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2127   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2128   size_t n_completed_buffers = 0;
2129   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2130     n_completed_buffers++;
2131   }
2132   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2133   dcqs.clear_n_completed_buffers();
2134   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2135 }
2136 
2137 // Computes the sum of the storage used by the various regions.
2138 size_t G1CollectedHeap::used() const {
2139   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2140   if (_archive_allocator != NULL) {
2141     result += _archive_allocator->used();
2142   }
2143   return result;
2144 }
2145 
2146 size_t G1CollectedHeap::used_unlocked() const {
2147   return _summary_bytes_used;
2148 }
2149 
2150 class SumUsedClosure: public HeapRegionClosure {
2151   size_t _used;
2152 public:
2153   SumUsedClosure() : _used(0) {}
2154   bool doHeapRegion(HeapRegion* r) {
2155     _used += r->used();
2156     return false;
2157   }
2158   size_t result() { return _used; }
2159 };
2160 
2161 size_t G1CollectedHeap::recalculate_used() const {
2162   double recalculate_used_start = os::elapsedTime();
2163 
2164   SumUsedClosure blk;
2165   heap_region_iterate(&blk);
2166 
2167   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2168   return blk.result();
2169 }
2170 
2171 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2172   switch (cause) {
2173     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2174     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2175     case GCCause::_update_allocation_context_stats_inc: return true;
2176     case GCCause::_wb_conc_mark:                        return true;
2177     default :                                           return false;
2178   }
2179 }
2180 
2181 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2182   switch (cause) {
2183     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2184     case GCCause::_g1_humongous_allocation: return true;
2185     default:                                return is_user_requested_concurrent_full_gc(cause);
2186   }
2187 }
2188 
2189 #ifndef PRODUCT
2190 void G1CollectedHeap::allocate_dummy_regions() {
2191   // Let's fill up most of the region
2192   size_t word_size = HeapRegion::GrainWords - 1024;
2193   // And as a result the region we'll allocate will be humongous.
2194   guarantee(is_humongous(word_size), "sanity");
2195 
2196   // _filler_array_max_size is set to humongous object threshold
2197   // but temporarily change it to use CollectedHeap::fill_with_object().
2198   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2199 
2200   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2201     // Let's use the existing mechanism for the allocation
2202     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2203                                                  AllocationContext::system());
2204     if (dummy_obj != NULL) {
2205       MemRegion mr(dummy_obj, word_size);
2206       CollectedHeap::fill_with_object(mr);
2207     } else {
2208       // If we can't allocate once, we probably cannot allocate
2209       // again. Let's get out of the loop.
2210       break;
2211     }
2212   }
2213 }
2214 #endif // !PRODUCT
2215 
2216 void G1CollectedHeap::increment_old_marking_cycles_started() {
2217   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2218          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2219          "Wrong marking cycle count (started: %d, completed: %d)",
2220          _old_marking_cycles_started, _old_marking_cycles_completed);
2221 
2222   _old_marking_cycles_started++;
2223 }
2224 
2225 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2226   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2227 
2228   // We assume that if concurrent == true, then the caller is a
2229   // concurrent thread that was joined the Suspendible Thread
2230   // Set. If there's ever a cheap way to check this, we should add an
2231   // assert here.
2232 
2233   // Given that this method is called at the end of a Full GC or of a
2234   // concurrent cycle, and those can be nested (i.e., a Full GC can
2235   // interrupt a concurrent cycle), the number of full collections
2236   // completed should be either one (in the case where there was no
2237   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2238   // behind the number of full collections started.
2239 
2240   // This is the case for the inner caller, i.e. a Full GC.
2241   assert(concurrent ||
2242          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2243          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2244          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2245          "is inconsistent with _old_marking_cycles_completed = %u",
2246          _old_marking_cycles_started, _old_marking_cycles_completed);
2247 
2248   // This is the case for the outer caller, i.e. the concurrent cycle.
2249   assert(!concurrent ||
2250          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2251          "for outer caller (concurrent cycle): "
2252          "_old_marking_cycles_started = %u "
2253          "is inconsistent with _old_marking_cycles_completed = %u",
2254          _old_marking_cycles_started, _old_marking_cycles_completed);
2255 
2256   _old_marking_cycles_completed += 1;
2257 
2258   // We need to clear the "in_progress" flag in the CM thread before
2259   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2260   // is set) so that if a waiter requests another System.gc() it doesn't
2261   // incorrectly see that a marking cycle is still in progress.
2262   if (concurrent) {
2263     _cmThread->set_idle();
2264   }
2265 
2266   // This notify_all() will ensure that a thread that called
2267   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2268   // and it's waiting for a full GC to finish will be woken up. It is
2269   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2270   FullGCCount_lock->notify_all();
2271 }
2272 
2273 void G1CollectedHeap::collect(GCCause::Cause cause) {
2274   assert_heap_not_locked();
2275 
2276   uint gc_count_before;
2277   uint old_marking_count_before;
2278   uint full_gc_count_before;
2279   bool retry_gc;
2280 
2281   do {
2282     retry_gc = false;
2283 
2284     {
2285       MutexLocker ml(Heap_lock);
2286 
2287       // Read the GC count while holding the Heap_lock
2288       gc_count_before = total_collections();
2289       full_gc_count_before = total_full_collections();
2290       old_marking_count_before = _old_marking_cycles_started;
2291     }
2292 
2293     if (should_do_concurrent_full_gc(cause)) {
2294       // Schedule an initial-mark evacuation pause that will start a
2295       // concurrent cycle. We're setting word_size to 0 which means that
2296       // we are not requesting a post-GC allocation.
2297       VM_G1IncCollectionPause op(gc_count_before,
2298                                  0,     /* word_size */
2299                                  true,  /* should_initiate_conc_mark */
2300                                  g1_policy()->max_pause_time_ms(),
2301                                  cause);
2302       op.set_allocation_context(AllocationContext::current());
2303 
2304       VMThread::execute(&op);
2305       if (!op.pause_succeeded()) {
2306         if (old_marking_count_before == _old_marking_cycles_started) {
2307           retry_gc = op.should_retry_gc();
2308         } else {
2309           // A Full GC happened while we were trying to schedule the
2310           // initial-mark GC. No point in starting a new cycle given
2311           // that the whole heap was collected anyway.
2312         }
2313 
2314         if (retry_gc) {
2315           if (GCLocker::is_active_and_needs_gc()) {
2316             GCLocker::stall_until_clear();
2317           }
2318         }
2319       }
2320     } else {
2321       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2322           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2323 
2324         // Schedule a standard evacuation pause. We're setting word_size
2325         // to 0 which means that we are not requesting a post-GC allocation.
2326         VM_G1IncCollectionPause op(gc_count_before,
2327                                    0,     /* word_size */
2328                                    false, /* should_initiate_conc_mark */
2329                                    g1_policy()->max_pause_time_ms(),
2330                                    cause);
2331         VMThread::execute(&op);
2332       } else {
2333         // Schedule a Full GC.
2334         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2335         VMThread::execute(&op);
2336       }
2337     }
2338   } while (retry_gc);
2339 }
2340 
2341 bool G1CollectedHeap::is_in(const void* p) const {
2342   if (_hrm.reserved().contains(p)) {
2343     // Given that we know that p is in the reserved space,
2344     // heap_region_containing() should successfully
2345     // return the containing region.
2346     HeapRegion* hr = heap_region_containing(p);
2347     return hr->is_in(p);
2348   } else {
2349     return false;
2350   }
2351 }
2352 
2353 #ifdef ASSERT
2354 bool G1CollectedHeap::is_in_exact(const void* p) const {
2355   bool contains = reserved_region().contains(p);
2356   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2357   if (contains && available) {
2358     return true;
2359   } else {
2360     return false;
2361   }
2362 }
2363 #endif
2364 
2365 // Iteration functions.
2366 
2367 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2368 
2369 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2370   ExtendedOopClosure* _cl;
2371 public:
2372   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2373   bool doHeapRegion(HeapRegion* r) {
2374     if (!r->is_continues_humongous()) {
2375       r->oop_iterate(_cl);
2376     }
2377     return false;
2378   }
2379 };
2380 
2381 // Iterates an ObjectClosure over all objects within a HeapRegion.
2382 
2383 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2384   ObjectClosure* _cl;
2385 public:
2386   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2387   bool doHeapRegion(HeapRegion* r) {
2388     if (!r->is_continues_humongous()) {
2389       r->object_iterate(_cl);
2390     }
2391     return false;
2392   }
2393 };
2394 
2395 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2396   IterateObjectClosureRegionClosure blk(cl);
2397   heap_region_iterate(&blk);
2398 }
2399 
2400 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2401   _hrm.iterate(cl);
2402 }
2403 
2404 void
2405 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2406                                          uint worker_id,
2407                                          HeapRegionClaimer *hrclaimer,
2408                                          bool concurrent) const {
2409   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2410 }
2411 
2412 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2413   _collection_set.iterate(cl);
2414 }
2415 
2416 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2417   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2418 }
2419 
2420 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2421   HeapRegion* result = _hrm.next_region_in_heap(from);
2422   while (result != NULL && result->is_pinned()) {
2423     result = _hrm.next_region_in_heap(result);
2424   }
2425   return result;
2426 }
2427 
2428 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2429   HeapRegion* hr = heap_region_containing(addr);
2430   return hr->block_start(addr);
2431 }
2432 
2433 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2434   HeapRegion* hr = heap_region_containing(addr);
2435   return hr->block_size(addr);
2436 }
2437 
2438 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2439   HeapRegion* hr = heap_region_containing(addr);
2440   return hr->block_is_obj(addr);
2441 }
2442 
2443 bool G1CollectedHeap::supports_tlab_allocation() const {
2444   return true;
2445 }
2446 
2447 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2448   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2449 }
2450 
2451 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2452   return _eden.length() * HeapRegion::GrainBytes;
2453 }
2454 
2455 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2456 // must be equal to the humongous object limit.
2457 size_t G1CollectedHeap::max_tlab_size() const {
2458   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2459 }
2460 
2461 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2462   AllocationContext_t context = AllocationContext::current();
2463   return _allocator->unsafe_max_tlab_alloc(context);
2464 }
2465 
2466 size_t G1CollectedHeap::max_capacity() const {
2467   return _hrm.reserved().byte_size();
2468 }
2469 
2470 jlong G1CollectedHeap::millis_since_last_gc() {
2471   // See the notes in GenCollectedHeap::millis_since_last_gc()
2472   // for more information about the implementation.
2473   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2474     _g1_policy->collection_pause_end_millis();
2475   if (ret_val < 0) {
2476     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2477       ". returning zero instead.", ret_val);
2478     return 0;
2479   }
2480   return ret_val;
2481 }
2482 
2483 void G1CollectedHeap::prepare_for_verify() {
2484   _verifier->prepare_for_verify();
2485 }
2486 
2487 void G1CollectedHeap::verify(VerifyOption vo) {
2488   _verifier->verify(vo);
2489 }
2490 
2491 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2492   return true;
2493 }
2494 
2495 const char* const* G1CollectedHeap::concurrent_phases() const {
2496   return _cmThread->concurrent_phases();
2497 }
2498 
2499 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2500   return _cmThread->request_concurrent_phase(phase);
2501 }
2502 
2503 class PrintRegionClosure: public HeapRegionClosure {
2504   outputStream* _st;
2505 public:
2506   PrintRegionClosure(outputStream* st) : _st(st) {}
2507   bool doHeapRegion(HeapRegion* r) {
2508     r->print_on(_st);
2509     return false;
2510   }
2511 };
2512 
2513 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2514                                        const HeapRegion* hr,
2515                                        const VerifyOption vo) const {
2516   switch (vo) {
2517   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2518   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2519   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2520   default:                            ShouldNotReachHere();
2521   }
2522   return false; // keep some compilers happy
2523 }
2524 
2525 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2526                                        const VerifyOption vo) const {
2527   switch (vo) {
2528   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2529   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2530   case VerifyOption_G1UseMarkWord: {
2531     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2532     return !obj->is_gc_marked() && !hr->is_archive();
2533   }
2534   default:                            ShouldNotReachHere();
2535   }
2536   return false; // keep some compilers happy
2537 }
2538 
2539 void G1CollectedHeap::print_heap_regions() const {
2540   Log(gc, heap, region) log;
2541   if (log.is_trace()) {
2542     ResourceMark rm;
2543     print_regions_on(log.trace_stream());
2544   }
2545 }
2546 
2547 void G1CollectedHeap::print_on(outputStream* st) const {
2548   st->print(" %-20s", "garbage-first heap");
2549   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2550             capacity()/K, used_unlocked()/K);
2551   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2552             p2i(_hrm.reserved().start()),
2553             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2554             p2i(_hrm.reserved().end()));
2555   st->cr();
2556   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2557   uint young_regions = young_regions_count();
2558   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2559             (size_t) young_regions * HeapRegion::GrainBytes / K);
2560   uint survivor_regions = survivor_regions_count();
2561   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2562             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2563   st->cr();
2564   MetaspaceAux::print_on(st);
2565 }
2566 
2567 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2568   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2569                "HS=humongous(starts), HC=humongous(continues), "
2570                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2571                "AC=allocation context, "
2572                "TAMS=top-at-mark-start (previous, next)");
2573   PrintRegionClosure blk(st);
2574   heap_region_iterate(&blk);
2575 }
2576 
2577 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2578   print_on(st);
2579 
2580   // Print the per-region information.
2581   print_regions_on(st);
2582 }
2583 
2584 void G1CollectedHeap::print_on_error(outputStream* st) const {
2585   this->CollectedHeap::print_on_error(st);
2586 
2587   if (_cm != NULL) {
2588     st->cr();
2589     _cm->print_on_error(st);
2590   }
2591 }
2592 
2593 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2594   workers()->print_worker_threads_on(st);
2595   _cmThread->print_on(st);
2596   st->cr();
2597   _cm->print_worker_threads_on(st);
2598   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2599   if (G1StringDedup::is_enabled()) {
2600     G1StringDedup::print_worker_threads_on(st);
2601   }
2602 }
2603 
2604 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2605   workers()->threads_do(tc);
2606   tc->do_thread(_cmThread);
2607   _cm->threads_do(tc);
2608   _cg1r->threads_do(tc); // also iterates over the sample thread
2609   if (G1StringDedup::is_enabled()) {
2610     G1StringDedup::threads_do(tc);
2611   }
2612 }
2613 
2614 void G1CollectedHeap::print_tracing_info() const {
2615   g1_rem_set()->print_summary_info();
2616   concurrent_mark()->print_summary_info();
2617 }
2618 
2619 #ifndef PRODUCT
2620 // Helpful for debugging RSet issues.
2621 
2622 class PrintRSetsClosure : public HeapRegionClosure {
2623 private:
2624   const char* _msg;
2625   size_t _occupied_sum;
2626 
2627 public:
2628   bool doHeapRegion(HeapRegion* r) {
2629     HeapRegionRemSet* hrrs = r->rem_set();
2630     size_t occupied = hrrs->occupied();
2631     _occupied_sum += occupied;
2632 
2633     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2634     if (occupied == 0) {
2635       tty->print_cr("  RSet is empty");
2636     } else {
2637       hrrs->print();
2638     }
2639     tty->print_cr("----------");
2640     return false;
2641   }
2642 
2643   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2644     tty->cr();
2645     tty->print_cr("========================================");
2646     tty->print_cr("%s", msg);
2647     tty->cr();
2648   }
2649 
2650   ~PrintRSetsClosure() {
2651     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2652     tty->print_cr("========================================");
2653     tty->cr();
2654   }
2655 };
2656 
2657 void G1CollectedHeap::print_cset_rsets() {
2658   PrintRSetsClosure cl("Printing CSet RSets");
2659   collection_set_iterate(&cl);
2660 }
2661 
2662 void G1CollectedHeap::print_all_rsets() {
2663   PrintRSetsClosure cl("Printing All RSets");;
2664   heap_region_iterate(&cl);
2665 }
2666 #endif // PRODUCT
2667 
2668 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2669 
2670   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2671   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2672   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2673 
2674   size_t eden_capacity_bytes =
2675     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2676 
2677   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2678   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2679                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2680 }
2681 
2682 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2683   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2684                        stats->unused(), stats->used(), stats->region_end_waste(),
2685                        stats->regions_filled(), stats->direct_allocated(),
2686                        stats->failure_used(), stats->failure_waste());
2687 }
2688 
2689 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2690   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2691   gc_tracer->report_gc_heap_summary(when, heap_summary);
2692 
2693   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2694   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2695 }
2696 
2697 G1CollectedHeap* G1CollectedHeap::heap() {
2698   CollectedHeap* heap = Universe::heap();
2699   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2700   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2701   return (G1CollectedHeap*)heap;
2702 }
2703 
2704 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2705   // always_do_update_barrier = false;
2706   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2707 
2708   double start = os::elapsedTime();
2709   // Fill TLAB's and such
2710   accumulate_statistics_all_tlabs();
2711   ensure_parsability(true);
2712   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2713 
2714   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2715 }
2716 
2717 void G1CollectedHeap::gc_epilogue(bool full) {
2718   // we are at the end of the GC. Total collections has already been increased.
2719   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2720 
2721   // FIXME: what is this about?
2722   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2723   // is set.
2724 #if defined(COMPILER2) || INCLUDE_JVMCI
2725   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2726 #endif
2727   // always_do_update_barrier = true;
2728 
2729   double start = os::elapsedTime();
2730   resize_all_tlabs();
2731   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2732 
2733   allocation_context_stats().update(full);
2734 
2735   // We have just completed a GC. Update the soft reference
2736   // policy with the new heap occupancy
2737   Universe::update_heap_info_at_gc();
2738 }
2739 
2740 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2741                                                uint gc_count_before,
2742                                                bool* succeeded,
2743                                                GCCause::Cause gc_cause) {
2744   assert_heap_not_locked_and_not_at_safepoint();
2745   VM_G1IncCollectionPause op(gc_count_before,
2746                              word_size,
2747                              false, /* should_initiate_conc_mark */
2748                              g1_policy()->max_pause_time_ms(),
2749                              gc_cause);
2750 
2751   op.set_allocation_context(AllocationContext::current());
2752   VMThread::execute(&op);
2753 
2754   HeapWord* result = op.result();
2755   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2756   assert(result == NULL || ret_succeeded,
2757          "the result should be NULL if the VM did not succeed");
2758   *succeeded = ret_succeeded;
2759 
2760   assert_heap_not_locked();
2761   return result;
2762 }
2763 
2764 void
2765 G1CollectedHeap::doConcurrentMark() {
2766   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2767   if (!_cmThread->in_progress()) {
2768     _cmThread->set_started();
2769     CGC_lock->notify();
2770   }
2771 }
2772 
2773 size_t G1CollectedHeap::pending_card_num() {
2774   size_t extra_cards = 0;
2775   JavaThread *curr = Threads::first();
2776   while (curr != NULL) {
2777     DirtyCardQueue& dcq = curr->dirty_card_queue();
2778     extra_cards += dcq.size();
2779     curr = curr->next();
2780   }
2781   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2782   size_t buffer_size = dcqs.buffer_size();
2783   size_t buffer_num = dcqs.completed_buffers_num();
2784 
2785   return buffer_size * buffer_num + extra_cards;
2786 }
2787 
2788 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2789  private:
2790   size_t _total_humongous;
2791   size_t _candidate_humongous;
2792 
2793   DirtyCardQueue _dcq;
2794 
2795   // We don't nominate objects with many remembered set entries, on
2796   // the assumption that such objects are likely still live.
2797   bool is_remset_small(HeapRegion* region) const {
2798     HeapRegionRemSet* const rset = region->rem_set();
2799     return G1EagerReclaimHumongousObjectsWithStaleRefs
2800       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2801       : rset->is_empty();
2802   }
2803 
2804   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2805     assert(region->is_starts_humongous(), "Must start a humongous object");
2806 
2807     oop obj = oop(region->bottom());
2808 
2809     // Dead objects cannot be eager reclaim candidates. Due to class
2810     // unloading it is unsafe to query their classes so we return early.
2811     if (heap->is_obj_dead(obj, region)) {
2812       return false;
2813     }
2814 
2815     // Candidate selection must satisfy the following constraints
2816     // while concurrent marking is in progress:
2817     //
2818     // * In order to maintain SATB invariants, an object must not be
2819     // reclaimed if it was allocated before the start of marking and
2820     // has not had its references scanned.  Such an object must have
2821     // its references (including type metadata) scanned to ensure no
2822     // live objects are missed by the marking process.  Objects
2823     // allocated after the start of concurrent marking don't need to
2824     // be scanned.
2825     //
2826     // * An object must not be reclaimed if it is on the concurrent
2827     // mark stack.  Objects allocated after the start of concurrent
2828     // marking are never pushed on the mark stack.
2829     //
2830     // Nominating only objects allocated after the start of concurrent
2831     // marking is sufficient to meet both constraints.  This may miss
2832     // some objects that satisfy the constraints, but the marking data
2833     // structures don't support efficiently performing the needed
2834     // additional tests or scrubbing of the mark stack.
2835     //
2836     // However, we presently only nominate is_typeArray() objects.
2837     // A humongous object containing references induces remembered
2838     // set entries on other regions.  In order to reclaim such an
2839     // object, those remembered sets would need to be cleaned up.
2840     //
2841     // We also treat is_typeArray() objects specially, allowing them
2842     // to be reclaimed even if allocated before the start of
2843     // concurrent mark.  For this we rely on mark stack insertion to
2844     // exclude is_typeArray() objects, preventing reclaiming an object
2845     // that is in the mark stack.  We also rely on the metadata for
2846     // such objects to be built-in and so ensured to be kept live.
2847     // Frequent allocation and drop of large binary blobs is an
2848     // important use case for eager reclaim, and this special handling
2849     // may reduce needed headroom.
2850 
2851     return obj->is_typeArray() && is_remset_small(region);
2852   }
2853 
2854  public:
2855   RegisterHumongousWithInCSetFastTestClosure()
2856   : _total_humongous(0),
2857     _candidate_humongous(0),
2858     _dcq(&JavaThread::dirty_card_queue_set()) {
2859   }
2860 
2861   virtual bool doHeapRegion(HeapRegion* r) {
2862     if (!r->is_starts_humongous()) {
2863       return false;
2864     }
2865     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2866 
2867     bool is_candidate = humongous_region_is_candidate(g1h, r);
2868     uint rindex = r->hrm_index();
2869     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2870     if (is_candidate) {
2871       _candidate_humongous++;
2872       g1h->register_humongous_region_with_cset(rindex);
2873       // Is_candidate already filters out humongous object with large remembered sets.
2874       // If we have a humongous object with a few remembered sets, we simply flush these
2875       // remembered set entries into the DCQS. That will result in automatic
2876       // re-evaluation of their remembered set entries during the following evacuation
2877       // phase.
2878       if (!r->rem_set()->is_empty()) {
2879         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2880                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2881         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2882         HeapRegionRemSetIterator hrrs(r->rem_set());
2883         size_t card_index;
2884         while (hrrs.has_next(card_index)) {
2885           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2886           // The remembered set might contain references to already freed
2887           // regions. Filter out such entries to avoid failing card table
2888           // verification.
2889           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2890             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2891               *card_ptr = CardTableModRefBS::dirty_card_val();
2892               _dcq.enqueue(card_ptr);
2893             }
2894           }
2895         }
2896         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2897                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2898                hrrs.n_yielded(), r->rem_set()->occupied());
2899         r->rem_set()->clear_locked();
2900       }
2901       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2902     }
2903     _total_humongous++;
2904 
2905     return false;
2906   }
2907 
2908   size_t total_humongous() const { return _total_humongous; }
2909   size_t candidate_humongous() const { return _candidate_humongous; }
2910 
2911   void flush_rem_set_entries() { _dcq.flush(); }
2912 };
2913 
2914 void G1CollectedHeap::register_humongous_regions_with_cset() {
2915   if (!G1EagerReclaimHumongousObjects) {
2916     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2917     return;
2918   }
2919   double time = os::elapsed_counter();
2920 
2921   // Collect reclaim candidate information and register candidates with cset.
2922   RegisterHumongousWithInCSetFastTestClosure cl;
2923   heap_region_iterate(&cl);
2924 
2925   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2926   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2927                                                                   cl.total_humongous(),
2928                                                                   cl.candidate_humongous());
2929   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2930 
2931   // Finally flush all remembered set entries to re-check into the global DCQS.
2932   cl.flush_rem_set_entries();
2933 }
2934 
2935 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2936   public:
2937     bool doHeapRegion(HeapRegion* hr) {
2938       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2939         hr->verify_rem_set();
2940       }
2941       return false;
2942     }
2943 };
2944 
2945 uint G1CollectedHeap::num_task_queues() const {
2946   return _task_queues->size();
2947 }
2948 
2949 #if TASKQUEUE_STATS
2950 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2951   st->print_raw_cr("GC Task Stats");
2952   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2953   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2954 }
2955 
2956 void G1CollectedHeap::print_taskqueue_stats() const {
2957   if (!log_is_enabled(Trace, gc, task, stats)) {
2958     return;
2959   }
2960   Log(gc, task, stats) log;
2961   ResourceMark rm;
2962   outputStream* st = log.trace_stream();
2963 
2964   print_taskqueue_stats_hdr(st);
2965 
2966   TaskQueueStats totals;
2967   const uint n = num_task_queues();
2968   for (uint i = 0; i < n; ++i) {
2969     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2970     totals += task_queue(i)->stats;
2971   }
2972   st->print_raw("tot "); totals.print(st); st->cr();
2973 
2974   DEBUG_ONLY(totals.verify());
2975 }
2976 
2977 void G1CollectedHeap::reset_taskqueue_stats() {
2978   const uint n = num_task_queues();
2979   for (uint i = 0; i < n; ++i) {
2980     task_queue(i)->stats.reset();
2981   }
2982 }
2983 #endif // TASKQUEUE_STATS
2984 
2985 void G1CollectedHeap::wait_for_root_region_scanning() {
2986   double scan_wait_start = os::elapsedTime();
2987   // We have to wait until the CM threads finish scanning the
2988   // root regions as it's the only way to ensure that all the
2989   // objects on them have been correctly scanned before we start
2990   // moving them during the GC.
2991   bool waited = _cm->root_regions()->wait_until_scan_finished();
2992   double wait_time_ms = 0.0;
2993   if (waited) {
2994     double scan_wait_end = os::elapsedTime();
2995     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2996   }
2997   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2998 }
2999 
3000 class G1PrintCollectionSetClosure : public HeapRegionClosure {
3001 private:
3002   G1HRPrinter* _hr_printer;
3003 public:
3004   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
3005 
3006   virtual bool doHeapRegion(HeapRegion* r) {
3007     _hr_printer->cset(r);
3008     return false;
3009   }
3010 };
3011 
3012 void G1CollectedHeap::start_new_collection_set() {
3013   collection_set()->start_incremental_building();
3014 
3015   clear_cset_fast_test();
3016 
3017   guarantee(_eden.length() == 0, "eden should have been cleared");
3018   g1_policy()->transfer_survivors_to_cset(survivor());
3019 }
3020 
3021 bool
3022 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3023   assert_at_safepoint(true /* should_be_vm_thread */);
3024   guarantee(!is_gc_active(), "collection is not reentrant");
3025 
3026   if (GCLocker::check_active_before_gc()) {
3027     return false;
3028   }
3029 
3030   _gc_timer_stw->register_gc_start();
3031 
3032   GCIdMark gc_id_mark;
3033   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3034 
3035   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3036   ResourceMark rm;
3037 
3038   g1_policy()->note_gc_start();
3039 
3040   wait_for_root_region_scanning();
3041 
3042   print_heap_before_gc();
3043   print_heap_regions();
3044   trace_heap_before_gc(_gc_tracer_stw);
3045 
3046   _verifier->verify_region_sets_optional();
3047   _verifier->verify_dirty_young_regions();
3048 
3049   // We should not be doing initial mark unless the conc mark thread is running
3050   if (!_cmThread->should_terminate()) {
3051     // This call will decide whether this pause is an initial-mark
3052     // pause. If it is, during_initial_mark_pause() will return true
3053     // for the duration of this pause.
3054     g1_policy()->decide_on_conc_mark_initiation();
3055   }
3056 
3057   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3058   assert(!collector_state()->during_initial_mark_pause() ||
3059           collector_state()->gcs_are_young(), "sanity");
3060 
3061   // We also do not allow mixed GCs during marking.
3062   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3063 
3064   // Record whether this pause is an initial mark. When the current
3065   // thread has completed its logging output and it's safe to signal
3066   // the CM thread, the flag's value in the policy has been reset.
3067   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3068 
3069   // Inner scope for scope based logging, timers, and stats collection
3070   {
3071     EvacuationInfo evacuation_info;
3072 
3073     if (collector_state()->during_initial_mark_pause()) {
3074       // We are about to start a marking cycle, so we increment the
3075       // full collection counter.
3076       increment_old_marking_cycles_started();
3077       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3078     }
3079 
3080     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3081 
3082     GCTraceCPUTime tcpu;
3083 
3084     FormatBuffer<> gc_string("Pause ");
3085     if (collector_state()->during_initial_mark_pause()) {
3086       gc_string.append("Initial Mark");
3087     } else if (collector_state()->gcs_are_young()) {
3088       gc_string.append("Young");
3089     } else {
3090       gc_string.append("Mixed");
3091     }
3092     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3093 
3094     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3095                                                                   workers()->active_workers(),
3096                                                                   Threads::number_of_non_daemon_threads());
3097     workers()->update_active_workers(active_workers);
3098     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3099 
3100     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3101     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3102 
3103     // If the secondary_free_list is not empty, append it to the
3104     // free_list. No need to wait for the cleanup operation to finish;
3105     // the region allocation code will check the secondary_free_list
3106     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3107     // set, skip this step so that the region allocation code has to
3108     // get entries from the secondary_free_list.
3109     if (!G1StressConcRegionFreeing) {
3110       append_secondary_free_list_if_not_empty_with_lock();
3111     }
3112 
3113     G1HeapTransition heap_transition(this);
3114     size_t heap_used_bytes_before_gc = used();
3115 
3116     // Don't dynamically change the number of GC threads this early.  A value of
3117     // 0 is used to indicate serial work.  When parallel work is done,
3118     // it will be set.
3119 
3120     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3121       IsGCActiveMark x;
3122 
3123       gc_prologue(false);
3124       increment_total_collections(false /* full gc */);
3125       increment_gc_time_stamp();
3126 
3127       if (VerifyRememberedSets) {
3128         log_info(gc, verify)("[Verifying RemSets before GC]");
3129         VerifyRegionRemSetClosure v_cl;
3130         heap_region_iterate(&v_cl);
3131       }
3132 
3133       _verifier->verify_before_gc();
3134 
3135       _verifier->check_bitmaps("GC Start");
3136 
3137 #if defined(COMPILER2) || INCLUDE_JVMCI
3138       DerivedPointerTable::clear();
3139 #endif
3140 
3141       // Please see comment in g1CollectedHeap.hpp and
3142       // G1CollectedHeap::ref_processing_init() to see how
3143       // reference processing currently works in G1.
3144 
3145       // Enable discovery in the STW reference processor
3146       if (g1_policy()->should_process_references()) {
3147         ref_processor_stw()->enable_discovery();
3148       } else {
3149         ref_processor_stw()->disable_discovery();
3150       }
3151 
3152       {
3153         // We want to temporarily turn off discovery by the
3154         // CM ref processor, if necessary, and turn it back on
3155         // on again later if we do. Using a scoped
3156         // NoRefDiscovery object will do this.
3157         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3158 
3159         // Forget the current alloc region (we might even choose it to be part
3160         // of the collection set!).
3161         _allocator->release_mutator_alloc_region();
3162 
3163         // This timing is only used by the ergonomics to handle our pause target.
3164         // It is unclear why this should not include the full pause. We will
3165         // investigate this in CR 7178365.
3166         //
3167         // Preserving the old comment here if that helps the investigation:
3168         //
3169         // The elapsed time induced by the start time below deliberately elides
3170         // the possible verification above.
3171         double sample_start_time_sec = os::elapsedTime();
3172 
3173         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3174 
3175         if (collector_state()->during_initial_mark_pause()) {
3176           concurrent_mark()->checkpointRootsInitialPre();
3177         }
3178 
3179         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3180 
3181         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3182 
3183         // Make sure the remembered sets are up to date. This needs to be
3184         // done before register_humongous_regions_with_cset(), because the
3185         // remembered sets are used there to choose eager reclaim candidates.
3186         // If the remembered sets are not up to date we might miss some
3187         // entries that need to be handled.
3188         g1_rem_set()->cleanupHRRS();
3189 
3190         register_humongous_regions_with_cset();
3191 
3192         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3193 
3194         // We call this after finalize_cset() to
3195         // ensure that the CSet has been finalized.
3196         _cm->verify_no_cset_oops();
3197 
3198         if (_hr_printer.is_active()) {
3199           G1PrintCollectionSetClosure cl(&_hr_printer);
3200           _collection_set.iterate(&cl);
3201         }
3202 
3203         // Initialize the GC alloc regions.
3204         _allocator->init_gc_alloc_regions(evacuation_info);
3205 
3206         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3207         pre_evacuate_collection_set();
3208 
3209         // Actually do the work...
3210         evacuate_collection_set(evacuation_info, &per_thread_states);
3211 
3212         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3213 
3214         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3215         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3216 
3217         eagerly_reclaim_humongous_regions();
3218 
3219         record_obj_copy_mem_stats();
3220         _survivor_evac_stats.adjust_desired_plab_sz();
3221         _old_evac_stats.adjust_desired_plab_sz();
3222 
3223         double start = os::elapsedTime();
3224         start_new_collection_set();
3225         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3226 
3227         if (evacuation_failed()) {
3228           set_used(recalculate_used());
3229           if (_archive_allocator != NULL) {
3230             _archive_allocator->clear_used();
3231           }
3232           for (uint i = 0; i < ParallelGCThreads; i++) {
3233             if (_evacuation_failed_info_array[i].has_failed()) {
3234               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3235             }
3236           }
3237         } else {
3238           // The "used" of the the collection set have already been subtracted
3239           // when they were freed.  Add in the bytes evacuated.
3240           increase_used(g1_policy()->bytes_copied_during_gc());
3241         }
3242 
3243         if (collector_state()->during_initial_mark_pause()) {
3244           // We have to do this before we notify the CM threads that
3245           // they can start working to make sure that all the
3246           // appropriate initialization is done on the CM object.
3247           concurrent_mark()->checkpointRootsInitialPost();
3248           collector_state()->set_mark_in_progress(true);
3249           // Note that we don't actually trigger the CM thread at
3250           // this point. We do that later when we're sure that
3251           // the current thread has completed its logging output.
3252         }
3253 
3254         allocate_dummy_regions();
3255 
3256         _allocator->init_mutator_alloc_region();
3257 
3258         {
3259           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3260           if (expand_bytes > 0) {
3261             size_t bytes_before = capacity();
3262             // No need for an ergo logging here,
3263             // expansion_amount() does this when it returns a value > 0.
3264             double expand_ms;
3265             if (!expand(expand_bytes, _workers, &expand_ms)) {
3266               // We failed to expand the heap. Cannot do anything about it.
3267             }
3268             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3269           }
3270         }
3271 
3272         // We redo the verification but now wrt to the new CSet which
3273         // has just got initialized after the previous CSet was freed.
3274         _cm->verify_no_cset_oops();
3275 
3276         // This timing is only used by the ergonomics to handle our pause target.
3277         // It is unclear why this should not include the full pause. We will
3278         // investigate this in CR 7178365.
3279         double sample_end_time_sec = os::elapsedTime();
3280         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3281         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3282         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3283 
3284         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3285         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3286 
3287         MemoryService::track_memory_usage();
3288 
3289         // In prepare_for_verify() below we'll need to scan the deferred
3290         // update buffers to bring the RSets up-to-date if
3291         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3292         // the update buffers we'll probably need to scan cards on the
3293         // regions we just allocated to (i.e., the GC alloc
3294         // regions). However, during the last GC we called
3295         // set_saved_mark() on all the GC alloc regions, so card
3296         // scanning might skip the [saved_mark_word()...top()] area of
3297         // those regions (i.e., the area we allocated objects into
3298         // during the last GC). But it shouldn't. Given that
3299         // saved_mark_word() is conditional on whether the GC time stamp
3300         // on the region is current or not, by incrementing the GC time
3301         // stamp here we invalidate all the GC time stamps on all the
3302         // regions and saved_mark_word() will simply return top() for
3303         // all the regions. This is a nicer way of ensuring this rather
3304         // than iterating over the regions and fixing them. In fact, the
3305         // GC time stamp increment here also ensures that
3306         // saved_mark_word() will return top() between pauses, i.e.,
3307         // during concurrent refinement. So we don't need the
3308         // is_gc_active() check to decided which top to use when
3309         // scanning cards (see CR 7039627).
3310         increment_gc_time_stamp();
3311 
3312         if (VerifyRememberedSets) {
3313           log_info(gc, verify)("[Verifying RemSets after GC]");
3314           VerifyRegionRemSetClosure v_cl;
3315           heap_region_iterate(&v_cl);
3316         }
3317 
3318         _verifier->verify_after_gc();
3319         _verifier->check_bitmaps("GC End");
3320 
3321         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3322         ref_processor_stw()->verify_no_references_recorded();
3323 
3324         // CM reference discovery will be re-enabled if necessary.
3325       }
3326 
3327 #ifdef TRACESPINNING
3328       ParallelTaskTerminator::print_termination_counts();
3329 #endif
3330 
3331       gc_epilogue(false);
3332     }
3333 
3334     // Print the remainder of the GC log output.
3335     if (evacuation_failed()) {
3336       log_info(gc)("To-space exhausted");
3337     }
3338 
3339     g1_policy()->print_phases();
3340     heap_transition.print();
3341 
3342     // It is not yet to safe to tell the concurrent mark to
3343     // start as we have some optional output below. We don't want the
3344     // output from the concurrent mark thread interfering with this
3345     // logging output either.
3346 
3347     _hrm.verify_optional();
3348     _verifier->verify_region_sets_optional();
3349 
3350     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3351     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3352 
3353     print_heap_after_gc();
3354     print_heap_regions();
3355     trace_heap_after_gc(_gc_tracer_stw);
3356 
3357     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3358     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3359     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3360     // before any GC notifications are raised.
3361     g1mm()->update_sizes();
3362 
3363     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3364     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3365     _gc_timer_stw->register_gc_end();
3366     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3367   }
3368   // It should now be safe to tell the concurrent mark thread to start
3369   // without its logging output interfering with the logging output
3370   // that came from the pause.
3371 
3372   if (should_start_conc_mark) {
3373     // CAUTION: after the doConcurrentMark() call below,
3374     // the concurrent marking thread(s) could be running
3375     // concurrently with us. Make sure that anything after
3376     // this point does not assume that we are the only GC thread
3377     // running. Note: of course, the actual marking work will
3378     // not start until the safepoint itself is released in
3379     // SuspendibleThreadSet::desynchronize().
3380     doConcurrentMark();
3381   }
3382 
3383   return true;
3384 }
3385 
3386 void G1CollectedHeap::remove_self_forwarding_pointers() {
3387   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3388   workers()->run_task(&rsfp_task);
3389 }
3390 
3391 void G1CollectedHeap::restore_after_evac_failure() {
3392   double remove_self_forwards_start = os::elapsedTime();
3393 
3394   remove_self_forwarding_pointers();
3395   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3396   _preserved_marks_set.restore(&task_executor);
3397 
3398   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3399 }
3400 
3401 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3402   if (!_evacuation_failed) {
3403     _evacuation_failed = true;
3404   }
3405 
3406   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3407   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3408 }
3409 
3410 bool G1ParEvacuateFollowersClosure::offer_termination() {
3411   G1ParScanThreadState* const pss = par_scan_state();
3412   start_term_time();
3413   const bool res = terminator()->offer_termination();
3414   end_term_time();
3415   return res;
3416 }
3417 
3418 void G1ParEvacuateFollowersClosure::do_void() {
3419   G1ParScanThreadState* const pss = par_scan_state();
3420   pss->trim_queue();
3421   do {
3422     pss->steal_and_trim_queue(queues());
3423   } while (!offer_termination());
3424 }
3425 
3426 class G1ParTask : public AbstractGangTask {
3427 protected:
3428   G1CollectedHeap*         _g1h;
3429   G1ParScanThreadStateSet* _pss;
3430   RefToScanQueueSet*       _queues;
3431   G1RootProcessor*         _root_processor;
3432   ParallelTaskTerminator   _terminator;
3433   uint                     _n_workers;
3434 
3435 public:
3436   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3437     : AbstractGangTask("G1 collection"),
3438       _g1h(g1h),
3439       _pss(per_thread_states),
3440       _queues(task_queues),
3441       _root_processor(root_processor),
3442       _terminator(n_workers, _queues),
3443       _n_workers(n_workers)
3444   {}
3445 
3446   void work(uint worker_id) {
3447     if (worker_id >= _n_workers) return;  // no work needed this round
3448 
3449     double start_sec = os::elapsedTime();
3450     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3451 
3452     {
3453       ResourceMark rm;
3454       HandleMark   hm;
3455 
3456       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3457 
3458       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3459       pss->set_ref_processor(rp);
3460 
3461       double start_strong_roots_sec = os::elapsedTime();
3462 
3463       _root_processor->evacuate_roots(pss->closures(), worker_id);
3464 
3465       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3466 
3467       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3468       // treating the nmethods visited to act as roots for concurrent marking.
3469       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3470       // objects copied by the current evacuation.
3471       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3472                                                                              pss->closures()->weak_codeblobs(),
3473                                                                              worker_id);
3474 
3475       _pss->add_cards_scanned(worker_id, cards_scanned);
3476 
3477       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3478 
3479       double term_sec = 0.0;
3480       size_t evac_term_attempts = 0;
3481       {
3482         double start = os::elapsedTime();
3483         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3484         evac.do_void();
3485 
3486         evac_term_attempts = evac.term_attempts();
3487         term_sec = evac.term_time();
3488         double elapsed_sec = os::elapsedTime() - start;
3489         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3490         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3491         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3492       }
3493 
3494       assert(pss->queue_is_empty(), "should be empty");
3495 
3496       if (log_is_enabled(Debug, gc, task, stats)) {
3497         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3498         size_t lab_waste;
3499         size_t lab_undo_waste;
3500         pss->waste(lab_waste, lab_undo_waste);
3501         _g1h->print_termination_stats(worker_id,
3502                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3503                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3504                                       term_sec * 1000.0,                          /* evac term time */
3505                                       evac_term_attempts,                         /* evac term attempts */
3506                                       lab_waste,                                  /* alloc buffer waste */
3507                                       lab_undo_waste                              /* undo waste */
3508                                       );
3509       }
3510 
3511       // Close the inner scope so that the ResourceMark and HandleMark
3512       // destructors are executed here and are included as part of the
3513       // "GC Worker Time".
3514     }
3515     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3516   }
3517 };
3518 
3519 void G1CollectedHeap::print_termination_stats_hdr() {
3520   log_debug(gc, task, stats)("GC Termination Stats");
3521   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3522   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3523   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3524 }
3525 
3526 void G1CollectedHeap::print_termination_stats(uint worker_id,
3527                                               double elapsed_ms,
3528                                               double strong_roots_ms,
3529                                               double term_ms,
3530                                               size_t term_attempts,
3531                                               size_t alloc_buffer_waste,
3532                                               size_t undo_waste) const {
3533   log_debug(gc, task, stats)
3534               ("%3d %9.2f %9.2f %6.2f "
3535                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3536                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3537                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3538                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3539                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3540                alloc_buffer_waste * HeapWordSize / K,
3541                undo_waste * HeapWordSize / K);
3542 }
3543 
3544 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3545 private:
3546   BoolObjectClosure* _is_alive;
3547   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3548 
3549   int _initial_string_table_size;
3550   int _initial_symbol_table_size;
3551 
3552   bool  _process_strings;
3553   int _strings_processed;
3554   int _strings_removed;
3555 
3556   bool  _process_symbols;
3557   int _symbols_processed;
3558   int _symbols_removed;
3559 
3560   bool _process_string_dedup;
3561 
3562 public:
3563   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3564     AbstractGangTask("String/Symbol Unlinking"),
3565     _is_alive(is_alive),
3566     _dedup_closure(is_alive, NULL, false),
3567     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3568     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3569     _process_string_dedup(process_string_dedup) {
3570 
3571     _initial_string_table_size = StringTable::the_table()->table_size();
3572     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3573     if (process_strings) {
3574       StringTable::clear_parallel_claimed_index();
3575     }
3576     if (process_symbols) {
3577       SymbolTable::clear_parallel_claimed_index();
3578     }
3579   }
3580 
3581   ~G1StringAndSymbolCleaningTask() {
3582     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3583               "claim value %d after unlink less than initial string table size %d",
3584               StringTable::parallel_claimed_index(), _initial_string_table_size);
3585     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3586               "claim value %d after unlink less than initial symbol table size %d",
3587               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3588 
3589     log_info(gc, stringtable)(
3590         "Cleaned string and symbol table, "
3591         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3592         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3593         strings_processed(), strings_removed(),
3594         symbols_processed(), symbols_removed());
3595   }
3596 
3597   void work(uint worker_id) {
3598     int strings_processed = 0;
3599     int strings_removed = 0;
3600     int symbols_processed = 0;
3601     int symbols_removed = 0;
3602     if (_process_strings) {
3603       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3604       Atomic::add(strings_processed, &_strings_processed);
3605       Atomic::add(strings_removed, &_strings_removed);
3606     }
3607     if (_process_symbols) {
3608       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3609       Atomic::add(symbols_processed, &_symbols_processed);
3610       Atomic::add(symbols_removed, &_symbols_removed);
3611     }
3612     if (_process_string_dedup) {
3613       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3614     }
3615   }
3616 
3617   size_t strings_processed() const { return (size_t)_strings_processed; }
3618   size_t strings_removed()   const { return (size_t)_strings_removed; }
3619 
3620   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3621   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3622 };
3623 
3624 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3625 private:
3626   static Monitor* _lock;
3627 
3628   BoolObjectClosure* const _is_alive;
3629   const bool               _unloading_occurred;
3630   const uint               _num_workers;
3631 
3632   // Variables used to claim nmethods.
3633   CompiledMethod* _first_nmethod;
3634   volatile CompiledMethod* _claimed_nmethod;
3635 
3636   // The list of nmethods that need to be processed by the second pass.
3637   volatile CompiledMethod* _postponed_list;
3638   volatile uint            _num_entered_barrier;
3639 
3640  public:
3641   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3642       _is_alive(is_alive),
3643       _unloading_occurred(unloading_occurred),
3644       _num_workers(num_workers),
3645       _first_nmethod(NULL),
3646       _claimed_nmethod(NULL),
3647       _postponed_list(NULL),
3648       _num_entered_barrier(0)
3649   {
3650     CompiledMethod::increase_unloading_clock();
3651     // Get first alive nmethod
3652     CompiledMethodIterator iter = CompiledMethodIterator();
3653     if(iter.next_alive()) {
3654       _first_nmethod = iter.method();
3655     }
3656     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3657   }
3658 
3659   ~G1CodeCacheUnloadingTask() {
3660     CodeCache::verify_clean_inline_caches();
3661 
3662     CodeCache::set_needs_cache_clean(false);
3663     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3664 
3665     CodeCache::verify_icholder_relocations();
3666   }
3667 
3668  private:
3669   void add_to_postponed_list(CompiledMethod* nm) {
3670       CompiledMethod* old;
3671       do {
3672         old = (CompiledMethod*)_postponed_list;
3673         nm->set_unloading_next(old);
3674       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3675   }
3676 
3677   void clean_nmethod(CompiledMethod* nm) {
3678     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3679 
3680     if (postponed) {
3681       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3682       add_to_postponed_list(nm);
3683     }
3684 
3685     // Mark that this thread has been cleaned/unloaded.
3686     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3687     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3688   }
3689 
3690   void clean_nmethod_postponed(CompiledMethod* nm) {
3691     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3692   }
3693 
3694   static const int MaxClaimNmethods = 16;
3695 
3696   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3697     CompiledMethod* first;
3698     CompiledMethodIterator last;
3699 
3700     do {
3701       *num_claimed_nmethods = 0;
3702 
3703       first = (CompiledMethod*)_claimed_nmethod;
3704       last = CompiledMethodIterator(first);
3705 
3706       if (first != NULL) {
3707 
3708         for (int i = 0; i < MaxClaimNmethods; i++) {
3709           if (!last.next_alive()) {
3710             break;
3711           }
3712           claimed_nmethods[i] = last.method();
3713           (*num_claimed_nmethods)++;
3714         }
3715       }
3716 
3717     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3718   }
3719 
3720   CompiledMethod* claim_postponed_nmethod() {
3721     CompiledMethod* claim;
3722     CompiledMethod* next;
3723 
3724     do {
3725       claim = (CompiledMethod*)_postponed_list;
3726       if (claim == NULL) {
3727         return NULL;
3728       }
3729 
3730       next = claim->unloading_next();
3731 
3732     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3733 
3734     return claim;
3735   }
3736 
3737  public:
3738   // Mark that we're done with the first pass of nmethod cleaning.
3739   void barrier_mark(uint worker_id) {
3740     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3741     _num_entered_barrier++;
3742     if (_num_entered_barrier == _num_workers) {
3743       ml.notify_all();
3744     }
3745   }
3746 
3747   // See if we have to wait for the other workers to
3748   // finish their first-pass nmethod cleaning work.
3749   void barrier_wait(uint worker_id) {
3750     if (_num_entered_barrier < _num_workers) {
3751       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3752       while (_num_entered_barrier < _num_workers) {
3753           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3754       }
3755     }
3756   }
3757 
3758   // Cleaning and unloading of nmethods. Some work has to be postponed
3759   // to the second pass, when we know which nmethods survive.
3760   void work_first_pass(uint worker_id) {
3761     // The first nmethods is claimed by the first worker.
3762     if (worker_id == 0 && _first_nmethod != NULL) {
3763       clean_nmethod(_first_nmethod);
3764       _first_nmethod = NULL;
3765     }
3766 
3767     int num_claimed_nmethods;
3768     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3769 
3770     while (true) {
3771       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3772 
3773       if (num_claimed_nmethods == 0) {
3774         break;
3775       }
3776 
3777       for (int i = 0; i < num_claimed_nmethods; i++) {
3778         clean_nmethod(claimed_nmethods[i]);
3779       }
3780     }
3781   }
3782 
3783   void work_second_pass(uint worker_id) {
3784     CompiledMethod* nm;
3785     // Take care of postponed nmethods.
3786     while ((nm = claim_postponed_nmethod()) != NULL) {
3787       clean_nmethod_postponed(nm);
3788     }
3789   }
3790 };
3791 
3792 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3793 
3794 class G1KlassCleaningTask : public StackObj {
3795   BoolObjectClosure*                      _is_alive;
3796   volatile jint                           _clean_klass_tree_claimed;
3797   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3798 
3799  public:
3800   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3801       _is_alive(is_alive),
3802       _clean_klass_tree_claimed(0),
3803       _klass_iterator() {
3804   }
3805 
3806  private:
3807   bool claim_clean_klass_tree_task() {
3808     if (_clean_klass_tree_claimed) {
3809       return false;
3810     }
3811 
3812     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3813   }
3814 
3815   InstanceKlass* claim_next_klass() {
3816     Klass* klass;
3817     do {
3818       klass =_klass_iterator.next_klass();
3819     } while (klass != NULL && !klass->is_instance_klass());
3820 
3821     // this can be null so don't call InstanceKlass::cast
3822     return static_cast<InstanceKlass*>(klass);
3823   }
3824 
3825 public:
3826 
3827   void clean_klass(InstanceKlass* ik) {
3828     ik->clean_weak_instanceklass_links(_is_alive);
3829   }
3830 
3831   void work() {
3832     ResourceMark rm;
3833 
3834     // One worker will clean the subklass/sibling klass tree.
3835     if (claim_clean_klass_tree_task()) {
3836       Klass::clean_subklass_tree(_is_alive);
3837     }
3838 
3839     // All workers will help cleaning the classes,
3840     InstanceKlass* klass;
3841     while ((klass = claim_next_klass()) != NULL) {
3842       clean_klass(klass);
3843     }
3844   }
3845 };
3846 
3847 // To minimize the remark pause times, the tasks below are done in parallel.
3848 class G1ParallelCleaningTask : public AbstractGangTask {
3849 private:
3850   G1StringAndSymbolCleaningTask _string_symbol_task;
3851   G1CodeCacheUnloadingTask      _code_cache_task;
3852   G1KlassCleaningTask           _klass_cleaning_task;
3853 
3854 public:
3855   // The constructor is run in the VMThread.
3856   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3857       AbstractGangTask("Parallel Cleaning"),
3858       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3859       _code_cache_task(num_workers, is_alive, unloading_occurred),
3860       _klass_cleaning_task(is_alive) {
3861   }
3862 
3863   // The parallel work done by all worker threads.
3864   void work(uint worker_id) {
3865     // Do first pass of code cache cleaning.
3866     _code_cache_task.work_first_pass(worker_id);
3867 
3868     // Let the threads mark that the first pass is done.
3869     _code_cache_task.barrier_mark(worker_id);
3870 
3871     // Clean the Strings and Symbols.
3872     _string_symbol_task.work(worker_id);
3873 
3874     // Wait for all workers to finish the first code cache cleaning pass.
3875     _code_cache_task.barrier_wait(worker_id);
3876 
3877     // Do the second code cache cleaning work, which realize on
3878     // the liveness information gathered during the first pass.
3879     _code_cache_task.work_second_pass(worker_id);
3880 
3881     // Clean all klasses that were not unloaded.
3882     _klass_cleaning_task.work();
3883   }
3884 };
3885 
3886 
3887 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3888                                         bool class_unloading_occurred) {
3889   uint n_workers = workers()->active_workers();
3890 
3891   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3892   workers()->run_task(&g1_unlink_task);
3893 }
3894 
3895 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3896                                        bool process_strings,
3897                                        bool process_symbols,
3898                                        bool process_string_dedup) {
3899   if (!process_strings && !process_symbols && !process_string_dedup) {
3900     // Nothing to clean.
3901     return;
3902   }
3903 
3904   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3905   workers()->run_task(&g1_unlink_task);
3906 
3907 }
3908 
3909 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3910  private:
3911   DirtyCardQueueSet* _queue;
3912   G1CollectedHeap* _g1h;
3913  public:
3914   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3915     _queue(queue), _g1h(g1h) { }
3916 
3917   virtual void work(uint worker_id) {
3918     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3919     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3920 
3921     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3922     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3923 
3924     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3925   }
3926 };
3927 
3928 void G1CollectedHeap::redirty_logged_cards() {
3929   double redirty_logged_cards_start = os::elapsedTime();
3930 
3931   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3932   dirty_card_queue_set().reset_for_par_iteration();
3933   workers()->run_task(&redirty_task);
3934 
3935   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3936   dcq.merge_bufferlists(&dirty_card_queue_set());
3937   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3938 
3939   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3940 }
3941 
3942 // Weak Reference Processing support
3943 
3944 // An always "is_alive" closure that is used to preserve referents.
3945 // If the object is non-null then it's alive.  Used in the preservation
3946 // of referent objects that are pointed to by reference objects
3947 // discovered by the CM ref processor.
3948 class G1AlwaysAliveClosure: public BoolObjectClosure {
3949   G1CollectedHeap* _g1;
3950 public:
3951   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3952   bool do_object_b(oop p) {
3953     if (p != NULL) {
3954       return true;
3955     }
3956     return false;
3957   }
3958 };
3959 
3960 bool G1STWIsAliveClosure::do_object_b(oop p) {
3961   // An object is reachable if it is outside the collection set,
3962   // or is inside and copied.
3963   return !_g1->is_in_cset(p) || p->is_forwarded();
3964 }
3965 
3966 // Non Copying Keep Alive closure
3967 class G1KeepAliveClosure: public OopClosure {
3968   G1CollectedHeap* _g1;
3969 public:
3970   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3971   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3972   void do_oop(oop* p) {
3973     oop obj = *p;
3974     assert(obj != NULL, "the caller should have filtered out NULL values");
3975 
3976     const InCSetState cset_state = _g1->in_cset_state(obj);
3977     if (!cset_state.is_in_cset_or_humongous()) {
3978       return;
3979     }
3980     if (cset_state.is_in_cset()) {
3981       assert( obj->is_forwarded(), "invariant" );
3982       *p = obj->forwardee();
3983     } else {
3984       assert(!obj->is_forwarded(), "invariant" );
3985       assert(cset_state.is_humongous(),
3986              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3987       _g1->set_humongous_is_live(obj);
3988     }
3989   }
3990 };
3991 
3992 // Copying Keep Alive closure - can be called from both
3993 // serial and parallel code as long as different worker
3994 // threads utilize different G1ParScanThreadState instances
3995 // and different queues.
3996 
3997 class G1CopyingKeepAliveClosure: public OopClosure {
3998   G1CollectedHeap*         _g1h;
3999   OopClosure*              _copy_non_heap_obj_cl;
4000   G1ParScanThreadState*    _par_scan_state;
4001 
4002 public:
4003   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4004                             OopClosure* non_heap_obj_cl,
4005                             G1ParScanThreadState* pss):
4006     _g1h(g1h),
4007     _copy_non_heap_obj_cl(non_heap_obj_cl),
4008     _par_scan_state(pss)
4009   {}
4010 
4011   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4012   virtual void do_oop(      oop* p) { do_oop_work(p); }
4013 
4014   template <class T> void do_oop_work(T* p) {
4015     oop obj = oopDesc::load_decode_heap_oop(p);
4016 
4017     if (_g1h->is_in_cset_or_humongous(obj)) {
4018       // If the referent object has been forwarded (either copied
4019       // to a new location or to itself in the event of an
4020       // evacuation failure) then we need to update the reference
4021       // field and, if both reference and referent are in the G1
4022       // heap, update the RSet for the referent.
4023       //
4024       // If the referent has not been forwarded then we have to keep
4025       // it alive by policy. Therefore we have copy the referent.
4026       //
4027       // If the reference field is in the G1 heap then we can push
4028       // on the PSS queue. When the queue is drained (after each
4029       // phase of reference processing) the object and it's followers
4030       // will be copied, the reference field set to point to the
4031       // new location, and the RSet updated. Otherwise we need to
4032       // use the the non-heap or metadata closures directly to copy
4033       // the referent object and update the pointer, while avoiding
4034       // updating the RSet.
4035 
4036       if (_g1h->is_in_g1_reserved(p)) {
4037         _par_scan_state->push_on_queue(p);
4038       } else {
4039         assert(!Metaspace::contains((const void*)p),
4040                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4041         _copy_non_heap_obj_cl->do_oop(p);
4042       }
4043     }
4044   }
4045 };
4046 
4047 // Serial drain queue closure. Called as the 'complete_gc'
4048 // closure for each discovered list in some of the
4049 // reference processing phases.
4050 
4051 class G1STWDrainQueueClosure: public VoidClosure {
4052 protected:
4053   G1CollectedHeap* _g1h;
4054   G1ParScanThreadState* _par_scan_state;
4055 
4056   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4057 
4058 public:
4059   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4060     _g1h(g1h),
4061     _par_scan_state(pss)
4062   { }
4063 
4064   void do_void() {
4065     G1ParScanThreadState* const pss = par_scan_state();
4066     pss->trim_queue();
4067   }
4068 };
4069 
4070 // Parallel Reference Processing closures
4071 
4072 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4073 // processing during G1 evacuation pauses.
4074 
4075 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4076 private:
4077   G1CollectedHeap*          _g1h;
4078   G1ParScanThreadStateSet*  _pss;
4079   RefToScanQueueSet*        _queues;
4080   WorkGang*                 _workers;
4081   uint                      _active_workers;
4082 
4083 public:
4084   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4085                            G1ParScanThreadStateSet* per_thread_states,
4086                            WorkGang* workers,
4087                            RefToScanQueueSet *task_queues,
4088                            uint n_workers) :
4089     _g1h(g1h),
4090     _pss(per_thread_states),
4091     _queues(task_queues),
4092     _workers(workers),
4093     _active_workers(n_workers)
4094   {
4095     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4096   }
4097 
4098   // Executes the given task using concurrent marking worker threads.
4099   virtual void execute(ProcessTask& task);
4100   virtual void execute(EnqueueTask& task);
4101 };
4102 
4103 // Gang task for possibly parallel reference processing
4104 
4105 class G1STWRefProcTaskProxy: public AbstractGangTask {
4106   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4107   ProcessTask&     _proc_task;
4108   G1CollectedHeap* _g1h;
4109   G1ParScanThreadStateSet* _pss;
4110   RefToScanQueueSet* _task_queues;
4111   ParallelTaskTerminator* _terminator;
4112 
4113 public:
4114   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4115                         G1CollectedHeap* g1h,
4116                         G1ParScanThreadStateSet* per_thread_states,
4117                         RefToScanQueueSet *task_queues,
4118                         ParallelTaskTerminator* terminator) :
4119     AbstractGangTask("Process reference objects in parallel"),
4120     _proc_task(proc_task),
4121     _g1h(g1h),
4122     _pss(per_thread_states),
4123     _task_queues(task_queues),
4124     _terminator(terminator)
4125   {}
4126 
4127   virtual void work(uint worker_id) {
4128     // The reference processing task executed by a single worker.
4129     ResourceMark rm;
4130     HandleMark   hm;
4131 
4132     G1STWIsAliveClosure is_alive(_g1h);
4133 
4134     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4135     pss->set_ref_processor(NULL);
4136 
4137     // Keep alive closure.
4138     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4139 
4140     // Complete GC closure
4141     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4142 
4143     // Call the reference processing task's work routine.
4144     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4145 
4146     // Note we cannot assert that the refs array is empty here as not all
4147     // of the processing tasks (specifically phase2 - pp2_work) execute
4148     // the complete_gc closure (which ordinarily would drain the queue) so
4149     // the queue may not be empty.
4150   }
4151 };
4152 
4153 // Driver routine for parallel reference processing.
4154 // Creates an instance of the ref processing gang
4155 // task and has the worker threads execute it.
4156 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4157   assert(_workers != NULL, "Need parallel worker threads.");
4158 
4159   ParallelTaskTerminator terminator(_active_workers, _queues);
4160   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4161 
4162   _workers->run_task(&proc_task_proxy);
4163 }
4164 
4165 // Gang task for parallel reference enqueueing.
4166 
4167 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4168   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4169   EnqueueTask& _enq_task;
4170 
4171 public:
4172   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4173     AbstractGangTask("Enqueue reference objects in parallel"),
4174     _enq_task(enq_task)
4175   { }
4176 
4177   virtual void work(uint worker_id) {
4178     _enq_task.work(worker_id);
4179   }
4180 };
4181 
4182 // Driver routine for parallel reference enqueueing.
4183 // Creates an instance of the ref enqueueing gang
4184 // task and has the worker threads execute it.
4185 
4186 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4187   assert(_workers != NULL, "Need parallel worker threads.");
4188 
4189   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4190 
4191   _workers->run_task(&enq_task_proxy);
4192 }
4193 
4194 // End of weak reference support closures
4195 
4196 // Abstract task used to preserve (i.e. copy) any referent objects
4197 // that are in the collection set and are pointed to by reference
4198 // objects discovered by the CM ref processor.
4199 
4200 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4201 protected:
4202   G1CollectedHeap*         _g1h;
4203   G1ParScanThreadStateSet* _pss;
4204   RefToScanQueueSet*       _queues;
4205   ParallelTaskTerminator   _terminator;
4206   uint                     _n_workers;
4207 
4208 public:
4209   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4210     AbstractGangTask("ParPreserveCMReferents"),
4211     _g1h(g1h),
4212     _pss(per_thread_states),
4213     _queues(task_queues),
4214     _terminator(workers, _queues),
4215     _n_workers(workers)
4216   {
4217     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4218   }
4219 
4220   void work(uint worker_id) {
4221     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4222 
4223     ResourceMark rm;
4224     HandleMark   hm;
4225 
4226     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4227     pss->set_ref_processor(NULL);
4228     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4229 
4230     // Is alive closure
4231     G1AlwaysAliveClosure always_alive(_g1h);
4232 
4233     // Copying keep alive closure. Applied to referent objects that need
4234     // to be copied.
4235     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4236 
4237     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4238 
4239     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4240     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4241 
4242     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4243     // So this must be true - but assert just in case someone decides to
4244     // change the worker ids.
4245     assert(worker_id < limit, "sanity");
4246     assert(!rp->discovery_is_atomic(), "check this code");
4247 
4248     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4249     for (uint idx = worker_id; idx < limit; idx += stride) {
4250       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4251 
4252       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4253       while (iter.has_next()) {
4254         // Since discovery is not atomic for the CM ref processor, we
4255         // can see some null referent objects.
4256         iter.load_ptrs(DEBUG_ONLY(true));
4257         oop ref = iter.obj();
4258 
4259         // This will filter nulls.
4260         if (iter.is_referent_alive()) {
4261           iter.make_referent_alive();
4262         }
4263         iter.move_to_next();
4264       }
4265     }
4266 
4267     // Drain the queue - which may cause stealing
4268     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4269     drain_queue.do_void();
4270     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4271     assert(pss->queue_is_empty(), "should be");
4272   }
4273 };
4274 
4275 void G1CollectedHeap::process_weak_jni_handles() {
4276   double ref_proc_start = os::elapsedTime();
4277 
4278   G1STWIsAliveClosure is_alive(this);
4279   G1KeepAliveClosure keep_alive(this);
4280   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4281 
4282   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4283   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4284 }
4285 
4286 void G1CollectedHeap::process_heap_monitoring() {
4287   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : heap monitoring");
4288   G1STWIsAliveClosure is_alive(this);
4289   G1KeepAliveClosure keep_alive(this);
4290   HeapMonitoring::weak_oops_do(NULL, &is_alive, &keep_alive, NULL);
4291 }
4292 
4293 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4294   // Any reference objects, in the collection set, that were 'discovered'
4295   // by the CM ref processor should have already been copied (either by
4296   // applying the external root copy closure to the discovered lists, or
4297   // by following an RSet entry).
4298   //
4299   // But some of the referents, that are in the collection set, that these
4300   // reference objects point to may not have been copied: the STW ref
4301   // processor would have seen that the reference object had already
4302   // been 'discovered' and would have skipped discovering the reference,
4303   // but would not have treated the reference object as a regular oop.
4304   // As a result the copy closure would not have been applied to the
4305   // referent object.
4306   //
4307   // We need to explicitly copy these referent objects - the references
4308   // will be processed at the end of remarking.
4309   //
4310   // We also need to do this copying before we process the reference
4311   // objects discovered by the STW ref processor in case one of these
4312   // referents points to another object which is also referenced by an
4313   // object discovered by the STW ref processor.
4314   double preserve_cm_referents_time = 0.0;
4315 
4316   // To avoid spawning task when there is no work to do, check that
4317   // a concurrent cycle is active and that some references have been
4318   // discovered.
4319   if (concurrent_mark()->cmThread()->during_cycle() &&
4320       ref_processor_cm()->has_discovered_references()) {
4321     double preserve_cm_referents_start = os::elapsedTime();
4322     uint no_of_gc_workers = workers()->active_workers();
4323     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4324                                                    per_thread_states,
4325                                                    no_of_gc_workers,
4326                                                    _task_queues);
4327     workers()->run_task(&keep_cm_referents);
4328     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4329   }
4330 
4331   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4332 }
4333 
4334 // Weak Reference processing during an evacuation pause (part 1).
4335 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4336   double ref_proc_start = os::elapsedTime();
4337 
4338   ReferenceProcessor* rp = _ref_processor_stw;
4339   assert(rp->discovery_enabled(), "should have been enabled");
4340 
4341   // Closure to test whether a referent is alive.
4342   G1STWIsAliveClosure is_alive(this);
4343 
4344   // Even when parallel reference processing is enabled, the processing
4345   // of JNI refs is serial and performed serially by the current thread
4346   // rather than by a worker. The following PSS will be used for processing
4347   // JNI refs.
4348 
4349   // Use only a single queue for this PSS.
4350   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4351   pss->set_ref_processor(NULL);
4352   assert(pss->queue_is_empty(), "pre-condition");
4353 
4354   // Keep alive closure.
4355   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4356 
4357   // Serial Complete GC closure
4358   G1STWDrainQueueClosure drain_queue(this, pss);
4359 
4360   // Setup the soft refs policy...
4361   rp->setup_policy(false);
4362 
4363   ReferenceProcessorStats stats;
4364   if (!rp->processing_is_mt()) {
4365     // Serial reference processing...
4366     stats = rp->process_discovered_references(&is_alive,
4367                                               &keep_alive,
4368                                               &drain_queue,
4369                                               NULL,
4370                                               _gc_timer_stw);
4371   } else {
4372     uint no_of_gc_workers = workers()->active_workers();
4373 
4374     // Parallel reference processing
4375     assert(no_of_gc_workers <= rp->max_num_q(),
4376            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4377            no_of_gc_workers,  rp->max_num_q());
4378 
4379     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4380     stats = rp->process_discovered_references(&is_alive,
4381                                               &keep_alive,
4382                                               &drain_queue,
4383                                               &par_task_executor,
4384                                               _gc_timer_stw);
4385   }
4386 
4387   _gc_tracer_stw->report_gc_reference_stats(stats);
4388 
4389   // We have completed copying any necessary live referent objects.
4390   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4391 
4392   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4393   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4394 }
4395 
4396 // Weak Reference processing during an evacuation pause (part 2).
4397 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4398   double ref_enq_start = os::elapsedTime();
4399 
4400   ReferenceProcessor* rp = _ref_processor_stw;
4401   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4402 
4403   // Now enqueue any remaining on the discovered lists on to
4404   // the pending list.
4405   if (!rp->processing_is_mt()) {
4406     // Serial reference processing...
4407     rp->enqueue_discovered_references();
4408   } else {
4409     // Parallel reference enqueueing
4410 
4411     uint n_workers = workers()->active_workers();
4412 
4413     assert(n_workers <= rp->max_num_q(),
4414            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4415            n_workers,  rp->max_num_q());
4416 
4417     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4418     rp->enqueue_discovered_references(&par_task_executor);
4419   }
4420 
4421   rp->verify_no_references_recorded();
4422   assert(!rp->discovery_enabled(), "should have been disabled");
4423 
4424   // FIXME
4425   // CM's reference processing also cleans up the string and symbol tables.
4426   // Should we do that here also? We could, but it is a serial operation
4427   // and could significantly increase the pause time.
4428 
4429   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4430   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4431 }
4432 
4433 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4434   double merge_pss_time_start = os::elapsedTime();
4435   per_thread_states->flush();
4436   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4437 }
4438 
4439 void G1CollectedHeap::pre_evacuate_collection_set() {
4440   _expand_heap_after_alloc_failure = true;
4441   _evacuation_failed = false;
4442 
4443   // Disable the hot card cache.
4444   _hot_card_cache->reset_hot_cache_claimed_index();
4445   _hot_card_cache->set_use_cache(false);
4446 
4447   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4448   _preserved_marks_set.assert_empty();
4449 
4450   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4451 
4452   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4453   if (collector_state()->during_initial_mark_pause()) {
4454     double start_clear_claimed_marks = os::elapsedTime();
4455 
4456     ClassLoaderDataGraph::clear_claimed_marks();
4457 
4458     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4459     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4460   }
4461 }
4462 
4463 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4464   // Should G1EvacuationFailureALot be in effect for this GC?
4465   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4466 
4467   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4468 
4469   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4470 
4471   double start_par_time_sec = os::elapsedTime();
4472   double end_par_time_sec;
4473 
4474   {
4475     const uint n_workers = workers()->active_workers();
4476     G1RootProcessor root_processor(this, n_workers);
4477     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4478 
4479     print_termination_stats_hdr();
4480 
4481     workers()->run_task(&g1_par_task);
4482     end_par_time_sec = os::elapsedTime();
4483 
4484     // Closing the inner scope will execute the destructor
4485     // for the G1RootProcessor object. We record the current
4486     // elapsed time before closing the scope so that time
4487     // taken for the destructor is NOT included in the
4488     // reported parallel time.
4489   }
4490 
4491   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4492   phase_times->record_par_time(par_time_ms);
4493 
4494   double code_root_fixup_time_ms =
4495         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4496   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4497 }
4498 
4499 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4500   // Process any discovered reference objects - we have
4501   // to do this _before_ we retire the GC alloc regions
4502   // as we may have to copy some 'reachable' referent
4503   // objects (and their reachable sub-graphs) that were
4504   // not copied during the pause.
4505   if (g1_policy()->should_process_references()) {
4506     preserve_cm_referents(per_thread_states);
4507     process_discovered_references(per_thread_states);
4508   } else {
4509     ref_processor_stw()->verify_no_references_recorded();
4510     process_weak_jni_handles();
4511     process_heap_monitoring();
4512   }
4513 
4514   if (G1StringDedup::is_enabled()) {
4515     double fixup_start = os::elapsedTime();
4516 
4517     G1STWIsAliveClosure is_alive(this);
4518     G1KeepAliveClosure keep_alive(this);
4519     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4520 
4521     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4522     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4523   }
4524 
4525   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4526 
4527   if (evacuation_failed()) {
4528     restore_after_evac_failure();
4529 
4530     // Reset the G1EvacuationFailureALot counters and flags
4531     // Note: the values are reset only when an actual
4532     // evacuation failure occurs.
4533     NOT_PRODUCT(reset_evacuation_should_fail();)
4534   }
4535 
4536   _preserved_marks_set.assert_empty();
4537 
4538   // Enqueue any remaining references remaining on the STW
4539   // reference processor's discovered lists. We need to do
4540   // this after the card table is cleaned (and verified) as
4541   // the act of enqueueing entries on to the pending list
4542   // will log these updates (and dirty their associated
4543   // cards). We need these updates logged to update any
4544   // RSets.
4545   if (g1_policy()->should_process_references()) {
4546     enqueue_discovered_references(per_thread_states);
4547   } else {
4548     g1_policy()->phase_times()->record_ref_enq_time(0);
4549   }
4550 
4551   _allocator->release_gc_alloc_regions(evacuation_info);
4552 
4553   merge_per_thread_state_info(per_thread_states);
4554 
4555   // Reset and re-enable the hot card cache.
4556   // Note the counts for the cards in the regions in the
4557   // collection set are reset when the collection set is freed.
4558   _hot_card_cache->reset_hot_cache();
4559   _hot_card_cache->set_use_cache(true);
4560 
4561   purge_code_root_memory();
4562 
4563   redirty_logged_cards();
4564 #if defined(COMPILER2) || INCLUDE_JVMCI
4565   double start = os::elapsedTime();
4566   DerivedPointerTable::update_pointers();
4567   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4568 #endif
4569   g1_policy()->print_age_table();
4570 }
4571 
4572 void G1CollectedHeap::record_obj_copy_mem_stats() {
4573   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4574 
4575   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4576                                                create_g1_evac_summary(&_old_evac_stats));
4577 }
4578 
4579 void G1CollectedHeap::free_region(HeapRegion* hr,
4580                                   FreeRegionList* free_list,
4581                                   bool skip_remset,
4582                                   bool skip_hot_card_cache,
4583                                   bool locked) {
4584   assert(!hr->is_free(), "the region should not be free");
4585   assert(!hr->is_empty(), "the region should not be empty");
4586   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4587   assert(free_list != NULL, "pre-condition");
4588 
4589   if (G1VerifyBitmaps) {
4590     MemRegion mr(hr->bottom(), hr->end());
4591     concurrent_mark()->clearRangePrevBitmap(mr);
4592   }
4593 
4594   // Clear the card counts for this region.
4595   // Note: we only need to do this if the region is not young
4596   // (since we don't refine cards in young regions).
4597   if (!skip_hot_card_cache && !hr->is_young()) {
4598     _hot_card_cache->reset_card_counts(hr);
4599   }
4600   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4601   free_list->add_ordered(hr);
4602 }
4603 
4604 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4605                                             FreeRegionList* free_list,
4606                                             bool skip_remset) {
4607   assert(hr->is_humongous(), "this is only for humongous regions");
4608   assert(free_list != NULL, "pre-condition");
4609   hr->clear_humongous();
4610   free_region(hr, free_list, skip_remset);
4611 }
4612 
4613 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4614                                            const uint humongous_regions_removed) {
4615   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4616     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4617     _old_set.bulk_remove(old_regions_removed);
4618     _humongous_set.bulk_remove(humongous_regions_removed);
4619   }
4620 
4621 }
4622 
4623 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4624   assert(list != NULL, "list can't be null");
4625   if (!list->is_empty()) {
4626     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4627     _hrm.insert_list_into_free_list(list);
4628   }
4629 }
4630 
4631 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4632   decrease_used(bytes);
4633 }
4634 
4635 class G1ParScrubRemSetTask: public AbstractGangTask {
4636 protected:
4637   G1RemSet* _g1rs;
4638   HeapRegionClaimer _hrclaimer;
4639 
4640 public:
4641   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4642     AbstractGangTask("G1 ScrubRS"),
4643     _g1rs(g1_rs),
4644     _hrclaimer(num_workers) {
4645   }
4646 
4647   void work(uint worker_id) {
4648     _g1rs->scrub(worker_id, &_hrclaimer);
4649   }
4650 };
4651 
4652 void G1CollectedHeap::scrub_rem_set() {
4653   uint num_workers = workers()->active_workers();
4654   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4655   workers()->run_task(&g1_par_scrub_rs_task);
4656 }
4657 
4658 class G1FreeCollectionSetTask : public AbstractGangTask {
4659 private:
4660 
4661   // Closure applied to all regions in the collection set to do work that needs to
4662   // be done serially in a single thread.
4663   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4664   private:
4665     EvacuationInfo* _evacuation_info;
4666     const size_t* _surviving_young_words;
4667 
4668     // Bytes used in successfully evacuated regions before the evacuation.
4669     size_t _before_used_bytes;
4670     // Bytes used in unsucessfully evacuated regions before the evacuation
4671     size_t _after_used_bytes;
4672 
4673     size_t _bytes_allocated_in_old_since_last_gc;
4674 
4675     size_t _failure_used_words;
4676     size_t _failure_waste_words;
4677 
4678     FreeRegionList _local_free_list;
4679   public:
4680     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4681       HeapRegionClosure(),
4682       _evacuation_info(evacuation_info),
4683       _surviving_young_words(surviving_young_words),
4684       _before_used_bytes(0),
4685       _after_used_bytes(0),
4686       _bytes_allocated_in_old_since_last_gc(0),
4687       _failure_used_words(0),
4688       _failure_waste_words(0),
4689       _local_free_list("Local Region List for CSet Freeing") {
4690     }
4691 
4692     virtual bool doHeapRegion(HeapRegion* r) {
4693       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4694 
4695       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4696       g1h->clear_in_cset(r);
4697 
4698       if (r->is_young()) {
4699         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4700                "Young index %d is wrong for region %u of type %s with %u young regions",
4701                r->young_index_in_cset(),
4702                r->hrm_index(),
4703                r->get_type_str(),
4704                g1h->collection_set()->young_region_length());
4705         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4706         r->record_surv_words_in_group(words_survived);
4707       }
4708 
4709       if (!r->evacuation_failed()) {
4710         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4711         _before_used_bytes += r->used();
4712         g1h->free_region(r,
4713                          &_local_free_list,
4714                          true, /* skip_remset */
4715                          true, /* skip_hot_card_cache */
4716                          true  /* locked */);
4717       } else {
4718         r->uninstall_surv_rate_group();
4719         r->set_young_index_in_cset(-1);
4720         r->set_evacuation_failed(false);
4721         // When moving a young gen region to old gen, we "allocate" that whole region
4722         // there. This is in addition to any already evacuated objects. Notify the
4723         // policy about that.
4724         // Old gen regions do not cause an additional allocation: both the objects
4725         // still in the region and the ones already moved are accounted for elsewhere.
4726         if (r->is_young()) {
4727           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4728         }
4729         // The region is now considered to be old.
4730         r->set_old();
4731         // Do some allocation statistics accounting. Regions that failed evacuation
4732         // are always made old, so there is no need to update anything in the young
4733         // gen statistics, but we need to update old gen statistics.
4734         size_t used_words = r->marked_bytes() / HeapWordSize;
4735 
4736         _failure_used_words += used_words;
4737         _failure_waste_words += HeapRegion::GrainWords - used_words;
4738 
4739         g1h->old_set_add(r);
4740         _after_used_bytes += r->used();
4741       }
4742       return false;
4743     }
4744 
4745     void complete_work() {
4746       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4747 
4748       _evacuation_info->set_regions_freed(_local_free_list.length());
4749       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4750 
4751       g1h->prepend_to_freelist(&_local_free_list);
4752       g1h->decrement_summary_bytes(_before_used_bytes);
4753 
4754       G1Policy* policy = g1h->g1_policy();
4755       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4756 
4757       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4758     }
4759   };
4760 
4761   G1CollectionSet* _collection_set;
4762   G1SerialFreeCollectionSetClosure _cl;
4763   const size_t* _surviving_young_words;
4764 
4765   size_t _rs_lengths;
4766 
4767   volatile jint _serial_work_claim;
4768 
4769   struct WorkItem {
4770     uint region_idx;
4771     bool is_young;
4772     bool evacuation_failed;
4773 
4774     WorkItem(HeapRegion* r) {
4775       region_idx = r->hrm_index();
4776       is_young = r->is_young();
4777       evacuation_failed = r->evacuation_failed();
4778     }
4779   };
4780 
4781   volatile size_t _parallel_work_claim;
4782   size_t _num_work_items;
4783   WorkItem* _work_items;
4784 
4785   void do_serial_work() {
4786     // Need to grab the lock to be allowed to modify the old region list.
4787     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4788     _collection_set->iterate(&_cl);
4789   }
4790 
4791   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4792     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4793 
4794     HeapRegion* r = g1h->region_at(region_idx);
4795     assert(!g1h->is_on_master_free_list(r), "sanity");
4796 
4797     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4798 
4799     if (!is_young) {
4800       g1h->_hot_card_cache->reset_card_counts(r);
4801     }
4802 
4803     if (!evacuation_failed) {
4804       r->rem_set()->clear_locked();
4805     }
4806   }
4807 
4808   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4809   private:
4810     size_t _cur_idx;
4811     WorkItem* _work_items;
4812   public:
4813     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4814 
4815     virtual bool doHeapRegion(HeapRegion* r) {
4816       _work_items[_cur_idx++] = WorkItem(r);
4817       return false;
4818     }
4819   };
4820 
4821   void prepare_work() {
4822     G1PrepareFreeCollectionSetClosure cl(_work_items);
4823     _collection_set->iterate(&cl);
4824   }
4825 
4826   void complete_work() {
4827     _cl.complete_work();
4828 
4829     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4830     policy->record_max_rs_lengths(_rs_lengths);
4831     policy->cset_regions_freed();
4832   }
4833 public:
4834   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4835     AbstractGangTask("G1 Free Collection Set"),
4836     _cl(evacuation_info, surviving_young_words),
4837     _collection_set(collection_set),
4838     _surviving_young_words(surviving_young_words),
4839     _serial_work_claim(0),
4840     _rs_lengths(0),
4841     _parallel_work_claim(0),
4842     _num_work_items(collection_set->region_length()),
4843     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4844     prepare_work();
4845   }
4846 
4847   ~G1FreeCollectionSetTask() {
4848     complete_work();
4849     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4850   }
4851 
4852   // Chunk size for work distribution. The chosen value has been determined experimentally
4853   // to be a good tradeoff between overhead and achievable parallelism.
4854   static uint chunk_size() { return 32; }
4855 
4856   virtual void work(uint worker_id) {
4857     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4858 
4859     // Claim serial work.
4860     if (_serial_work_claim == 0) {
4861       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4862       if (value == 0) {
4863         double serial_time = os::elapsedTime();
4864         do_serial_work();
4865         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4866       }
4867     }
4868 
4869     // Start parallel work.
4870     double young_time = 0.0;
4871     bool has_young_time = false;
4872     double non_young_time = 0.0;
4873     bool has_non_young_time = false;
4874 
4875     while (true) {
4876       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4877       size_t cur = end - chunk_size();
4878 
4879       if (cur >= _num_work_items) {
4880         break;
4881       }
4882 
4883       double start_time = os::elapsedTime();
4884 
4885       end = MIN2(end, _num_work_items);
4886 
4887       for (; cur < end; cur++) {
4888         bool is_young = _work_items[cur].is_young;
4889 
4890         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4891 
4892         double end_time = os::elapsedTime();
4893         double time_taken = end_time - start_time;
4894         if (is_young) {
4895           young_time += time_taken;
4896           has_young_time = true;
4897         } else {
4898           non_young_time += time_taken;
4899           has_non_young_time = true;
4900         }
4901         start_time = end_time;
4902       }
4903     }
4904 
4905     if (has_young_time) {
4906       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4907     }
4908     if (has_non_young_time) {
4909       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4910     }
4911   }
4912 };
4913 
4914 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4915   _eden.clear();
4916 
4917   double free_cset_start_time = os::elapsedTime();
4918 
4919   {
4920     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4921     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4922 
4923     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4924 
4925     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4926                         cl.name(),
4927                         num_workers,
4928                         _collection_set.region_length());
4929     workers()->run_task(&cl, num_workers);
4930   }
4931   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4932 
4933   collection_set->clear();
4934 }
4935 
4936 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4937  private:
4938   FreeRegionList* _free_region_list;
4939   HeapRegionSet* _proxy_set;
4940   uint _humongous_objects_reclaimed;
4941   uint _humongous_regions_reclaimed;
4942   size_t _freed_bytes;
4943  public:
4944 
4945   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4946     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4947   }
4948 
4949   virtual bool doHeapRegion(HeapRegion* r) {
4950     if (!r->is_starts_humongous()) {
4951       return false;
4952     }
4953 
4954     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4955 
4956     oop obj = (oop)r->bottom();
4957     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4958 
4959     // The following checks whether the humongous object is live are sufficient.
4960     // The main additional check (in addition to having a reference from the roots
4961     // or the young gen) is whether the humongous object has a remembered set entry.
4962     //
4963     // A humongous object cannot be live if there is no remembered set for it
4964     // because:
4965     // - there can be no references from within humongous starts regions referencing
4966     // the object because we never allocate other objects into them.
4967     // (I.e. there are no intra-region references that may be missed by the
4968     // remembered set)
4969     // - as soon there is a remembered set entry to the humongous starts region
4970     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4971     // until the end of a concurrent mark.
4972     //
4973     // It is not required to check whether the object has been found dead by marking
4974     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4975     // all objects allocated during that time are considered live.
4976     // SATB marking is even more conservative than the remembered set.
4977     // So if at this point in the collection there is no remembered set entry,
4978     // nobody has a reference to it.
4979     // At the start of collection we flush all refinement logs, and remembered sets
4980     // are completely up-to-date wrt to references to the humongous object.
4981     //
4982     // Other implementation considerations:
4983     // - never consider object arrays at this time because they would pose
4984     // considerable effort for cleaning up the the remembered sets. This is
4985     // required because stale remembered sets might reference locations that
4986     // are currently allocated into.
4987     uint region_idx = r->hrm_index();
4988     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4989         !r->rem_set()->is_empty()) {
4990       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4991                                region_idx,
4992                                (size_t)obj->size() * HeapWordSize,
4993                                p2i(r->bottom()),
4994                                r->rem_set()->occupied(),
4995                                r->rem_set()->strong_code_roots_list_length(),
4996                                next_bitmap->isMarked(r->bottom()),
4997                                g1h->is_humongous_reclaim_candidate(region_idx),
4998                                obj->is_typeArray()
4999                               );
5000       return false;
5001     }
5002 
5003     guarantee(obj->is_typeArray(),
5004               "Only eagerly reclaiming type arrays is supported, but the object "
5005               PTR_FORMAT " is not.", p2i(r->bottom()));
5006 
5007     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5008                              region_idx,
5009                              (size_t)obj->size() * HeapWordSize,
5010                              p2i(r->bottom()),
5011                              r->rem_set()->occupied(),
5012                              r->rem_set()->strong_code_roots_list_length(),
5013                              next_bitmap->isMarked(r->bottom()),
5014                              g1h->is_humongous_reclaim_candidate(region_idx),
5015                              obj->is_typeArray()
5016                             );
5017 
5018     // Need to clear mark bit of the humongous object if already set.
5019     if (next_bitmap->isMarked(r->bottom())) {
5020       next_bitmap->clear(r->bottom());
5021     }
5022     _humongous_objects_reclaimed++;
5023     do {
5024       HeapRegion* next = g1h->next_region_in_humongous(r);
5025       _freed_bytes += r->used();
5026       r->set_containing_set(NULL);
5027       _humongous_regions_reclaimed++;
5028       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5029       r = next;
5030     } while (r != NULL);
5031 
5032     return false;
5033   }
5034 
5035   uint humongous_objects_reclaimed() {
5036     return _humongous_objects_reclaimed;
5037   }
5038 
5039   uint humongous_regions_reclaimed() {
5040     return _humongous_regions_reclaimed;
5041   }
5042 
5043   size_t bytes_freed() const {
5044     return _freed_bytes;
5045   }
5046 };
5047 
5048 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5049   assert_at_safepoint(true);
5050 
5051   if (!G1EagerReclaimHumongousObjects ||
5052       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5053     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5054     return;
5055   }
5056 
5057   double start_time = os::elapsedTime();
5058 
5059   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5060 
5061   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5062   heap_region_iterate(&cl);
5063 
5064   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5065 
5066   G1HRPrinter* hrp = hr_printer();
5067   if (hrp->is_active()) {
5068     FreeRegionListIterator iter(&local_cleanup_list);
5069     while (iter.more_available()) {
5070       HeapRegion* hr = iter.get_next();
5071       hrp->cleanup(hr);
5072     }
5073   }
5074 
5075   prepend_to_freelist(&local_cleanup_list);
5076   decrement_summary_bytes(cl.bytes_freed());
5077 
5078   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5079                                                                     cl.humongous_objects_reclaimed());
5080 }
5081 
5082 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5083 public:
5084   virtual bool doHeapRegion(HeapRegion* r) {
5085     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5086     G1CollectedHeap::heap()->clear_in_cset(r);
5087     r->set_young_index_in_cset(-1);
5088     return false;
5089   }
5090 };
5091 
5092 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5093   G1AbandonCollectionSetClosure cl;
5094   collection_set->iterate(&cl);
5095 
5096   collection_set->clear();
5097   collection_set->stop_incremental_building();
5098 }
5099 
5100 void G1CollectedHeap::set_free_regions_coming() {
5101   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5102 
5103   assert(!free_regions_coming(), "pre-condition");
5104   _free_regions_coming = true;
5105 }
5106 
5107 void G1CollectedHeap::reset_free_regions_coming() {
5108   assert(free_regions_coming(), "pre-condition");
5109 
5110   {
5111     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5112     _free_regions_coming = false;
5113     SecondaryFreeList_lock->notify_all();
5114   }
5115 
5116   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5117 }
5118 
5119 void G1CollectedHeap::wait_while_free_regions_coming() {
5120   // Most of the time we won't have to wait, so let's do a quick test
5121   // first before we take the lock.
5122   if (!free_regions_coming()) {
5123     return;
5124   }
5125 
5126   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5127 
5128   {
5129     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5130     while (free_regions_coming()) {
5131       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5132     }
5133   }
5134 
5135   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5136 }
5137 
5138 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5139   return _allocator->is_retained_old_region(hr);
5140 }
5141 
5142 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5143   _eden.add(hr);
5144   _g1_policy->set_region_eden(hr);
5145 }
5146 
5147 #ifdef ASSERT
5148 
5149 class NoYoungRegionsClosure: public HeapRegionClosure {
5150 private:
5151   bool _success;
5152 public:
5153   NoYoungRegionsClosure() : _success(true) { }
5154   bool doHeapRegion(HeapRegion* r) {
5155     if (r->is_young()) {
5156       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5157                             p2i(r->bottom()), p2i(r->end()));
5158       _success = false;
5159     }
5160     return false;
5161   }
5162   bool success() { return _success; }
5163 };
5164 
5165 bool G1CollectedHeap::check_young_list_empty() {
5166   bool ret = (young_regions_count() == 0);
5167 
5168   NoYoungRegionsClosure closure;
5169   heap_region_iterate(&closure);
5170   ret = ret && closure.success();
5171 
5172   return ret;
5173 }
5174 
5175 #endif // ASSERT
5176 
5177 class TearDownRegionSetsClosure : public HeapRegionClosure {
5178 private:
5179   HeapRegionSet *_old_set;
5180 
5181 public:
5182   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5183 
5184   bool doHeapRegion(HeapRegion* r) {
5185     if (r->is_old()) {
5186       _old_set->remove(r);
5187     } else if(r->is_young()) {
5188       r->uninstall_surv_rate_group();
5189     } else {
5190       // We ignore free regions, we'll empty the free list afterwards.
5191       // We ignore humongous regions, we're not tearing down the
5192       // humongous regions set.
5193       assert(r->is_free() || r->is_humongous(),
5194              "it cannot be another type");
5195     }
5196     return false;
5197   }
5198 
5199   ~TearDownRegionSetsClosure() {
5200     assert(_old_set->is_empty(), "post-condition");
5201   }
5202 };
5203 
5204 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5205   assert_at_safepoint(true /* should_be_vm_thread */);
5206 
5207   if (!free_list_only) {
5208     TearDownRegionSetsClosure cl(&_old_set);
5209     heap_region_iterate(&cl);
5210 
5211     // Note that emptying the _young_list is postponed and instead done as
5212     // the first step when rebuilding the regions sets again. The reason for
5213     // this is that during a full GC string deduplication needs to know if
5214     // a collected region was young or old when the full GC was initiated.
5215   }
5216   _hrm.remove_all_free_regions();
5217 }
5218 
5219 void G1CollectedHeap::increase_used(size_t bytes) {
5220   _summary_bytes_used += bytes;
5221 }
5222 
5223 void G1CollectedHeap::decrease_used(size_t bytes) {
5224   assert(_summary_bytes_used >= bytes,
5225          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5226          _summary_bytes_used, bytes);
5227   _summary_bytes_used -= bytes;
5228 }
5229 
5230 void G1CollectedHeap::set_used(size_t bytes) {
5231   _summary_bytes_used = bytes;
5232 }
5233 
5234 class RebuildRegionSetsClosure : public HeapRegionClosure {
5235 private:
5236   bool            _free_list_only;
5237   HeapRegionSet*   _old_set;
5238   HeapRegionManager*   _hrm;
5239   size_t          _total_used;
5240 
5241 public:
5242   RebuildRegionSetsClosure(bool free_list_only,
5243                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5244     _free_list_only(free_list_only),
5245     _old_set(old_set), _hrm(hrm), _total_used(0) {
5246     assert(_hrm->num_free_regions() == 0, "pre-condition");
5247     if (!free_list_only) {
5248       assert(_old_set->is_empty(), "pre-condition");
5249     }
5250   }
5251 
5252   bool doHeapRegion(HeapRegion* r) {
5253     if (r->is_empty()) {
5254       // Add free regions to the free list
5255       r->set_free();
5256       r->set_allocation_context(AllocationContext::system());
5257       _hrm->insert_into_free_list(r);
5258     } else if (!_free_list_only) {
5259 
5260       if (r->is_humongous()) {
5261         // We ignore humongous regions. We left the humongous set unchanged.
5262       } else {
5263         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5264         // We now consider all regions old, so register as such. Leave
5265         // archive regions set that way, however, while still adding
5266         // them to the old set.
5267         if (!r->is_archive()) {
5268           r->set_old();
5269         }
5270         _old_set->add(r);
5271       }
5272       _total_used += r->used();
5273     }
5274 
5275     return false;
5276   }
5277 
5278   size_t total_used() {
5279     return _total_used;
5280   }
5281 };
5282 
5283 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5284   assert_at_safepoint(true /* should_be_vm_thread */);
5285 
5286   if (!free_list_only) {
5287     _eden.clear();
5288     _survivor.clear();
5289   }
5290 
5291   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5292   heap_region_iterate(&cl);
5293 
5294   if (!free_list_only) {
5295     set_used(cl.total_used());
5296     if (_archive_allocator != NULL) {
5297       _archive_allocator->clear_used();
5298     }
5299   }
5300   assert(used_unlocked() == recalculate_used(),
5301          "inconsistent used_unlocked(), "
5302          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5303          used_unlocked(), recalculate_used());
5304 }
5305 
5306 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5307   _refine_cte_cl->set_concurrent(concurrent);
5308 }
5309 
5310 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5311   HeapRegion* hr = heap_region_containing(p);
5312   return hr->is_in(p);
5313 }
5314 
5315 // Methods for the mutator alloc region
5316 
5317 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5318                                                       bool force) {
5319   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5320   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5321   if (force || should_allocate) {
5322     HeapRegion* new_alloc_region = new_region(word_size,
5323                                               false /* is_old */,
5324                                               false /* do_expand */);
5325     if (new_alloc_region != NULL) {
5326       set_region_short_lived_locked(new_alloc_region);
5327       _hr_printer.alloc(new_alloc_region, !should_allocate);
5328       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5329       return new_alloc_region;
5330     }
5331   }
5332   return NULL;
5333 }
5334 
5335 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5336                                                   size_t allocated_bytes) {
5337   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5338   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5339 
5340   collection_set()->add_eden_region(alloc_region);
5341   increase_used(allocated_bytes);
5342   _hr_printer.retire(alloc_region);
5343   // We update the eden sizes here, when the region is retired,
5344   // instead of when it's allocated, since this is the point that its
5345   // used space has been recored in _summary_bytes_used.
5346   g1mm()->update_eden_size();
5347 }
5348 
5349 // Methods for the GC alloc regions
5350 
5351 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5352   if (dest.is_old()) {
5353     return true;
5354   } else {
5355     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5356   }
5357 }
5358 
5359 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5360   assert(FreeList_lock->owned_by_self(), "pre-condition");
5361 
5362   if (!has_more_regions(dest)) {
5363     return NULL;
5364   }
5365 
5366   const bool is_survivor = dest.is_young();
5367 
5368   HeapRegion* new_alloc_region = new_region(word_size,
5369                                             !is_survivor,
5370                                             true /* do_expand */);
5371   if (new_alloc_region != NULL) {
5372     // We really only need to do this for old regions given that we
5373     // should never scan survivors. But it doesn't hurt to do it
5374     // for survivors too.
5375     new_alloc_region->record_timestamp();
5376     if (is_survivor) {
5377       new_alloc_region->set_survivor();
5378       _survivor.add(new_alloc_region);
5379       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5380     } else {
5381       new_alloc_region->set_old();
5382       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5383     }
5384     _hr_printer.alloc(new_alloc_region);
5385     bool during_im = collector_state()->during_initial_mark_pause();
5386     new_alloc_region->note_start_of_copying(during_im);
5387     return new_alloc_region;
5388   }
5389   return NULL;
5390 }
5391 
5392 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5393                                              size_t allocated_bytes,
5394                                              InCSetState dest) {
5395   bool during_im = collector_state()->during_initial_mark_pause();
5396   alloc_region->note_end_of_copying(during_im);
5397   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5398   if (dest.is_old()) {
5399     _old_set.add(alloc_region);
5400   }
5401   _hr_printer.retire(alloc_region);
5402 }
5403 
5404 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5405   bool expanded = false;
5406   uint index = _hrm.find_highest_free(&expanded);
5407 
5408   if (index != G1_NO_HRM_INDEX) {
5409     if (expanded) {
5410       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5411                                 HeapRegion::GrainWords * HeapWordSize);
5412     }
5413     _hrm.allocate_free_regions_starting_at(index, 1);
5414     return region_at(index);
5415   }
5416   return NULL;
5417 }
5418 
5419 // Optimized nmethod scanning
5420 
5421 class RegisterNMethodOopClosure: public OopClosure {
5422   G1CollectedHeap* _g1h;
5423   nmethod* _nm;
5424 
5425   template <class T> void do_oop_work(T* p) {
5426     T heap_oop = oopDesc::load_heap_oop(p);
5427     if (!oopDesc::is_null(heap_oop)) {
5428       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5429       HeapRegion* hr = _g1h->heap_region_containing(obj);
5430       assert(!hr->is_continues_humongous(),
5431              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5432              " starting at " HR_FORMAT,
5433              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5434 
5435       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5436       hr->add_strong_code_root_locked(_nm);
5437     }
5438   }
5439 
5440 public:
5441   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5442     _g1h(g1h), _nm(nm) {}
5443 
5444   void do_oop(oop* p)       { do_oop_work(p); }
5445   void do_oop(narrowOop* p) { do_oop_work(p); }
5446 };
5447 
5448 class UnregisterNMethodOopClosure: public OopClosure {
5449   G1CollectedHeap* _g1h;
5450   nmethod* _nm;
5451 
5452   template <class T> void do_oop_work(T* p) {
5453     T heap_oop = oopDesc::load_heap_oop(p);
5454     if (!oopDesc::is_null(heap_oop)) {
5455       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5456       HeapRegion* hr = _g1h->heap_region_containing(obj);
5457       assert(!hr->is_continues_humongous(),
5458              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5459              " starting at " HR_FORMAT,
5460              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5461 
5462       hr->remove_strong_code_root(_nm);
5463     }
5464   }
5465 
5466 public:
5467   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5468     _g1h(g1h), _nm(nm) {}
5469 
5470   void do_oop(oop* p)       { do_oop_work(p); }
5471   void do_oop(narrowOop* p) { do_oop_work(p); }
5472 };
5473 
5474 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5475   CollectedHeap::register_nmethod(nm);
5476 
5477   guarantee(nm != NULL, "sanity");
5478   RegisterNMethodOopClosure reg_cl(this, nm);
5479   nm->oops_do(&reg_cl);
5480 }
5481 
5482 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5483   CollectedHeap::unregister_nmethod(nm);
5484 
5485   guarantee(nm != NULL, "sanity");
5486   UnregisterNMethodOopClosure reg_cl(this, nm);
5487   nm->oops_do(&reg_cl, true);
5488 }
5489 
5490 void G1CollectedHeap::purge_code_root_memory() {
5491   double purge_start = os::elapsedTime();
5492   G1CodeRootSet::purge();
5493   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5494   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5495 }
5496 
5497 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5498   G1CollectedHeap* _g1h;
5499 
5500 public:
5501   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5502     _g1h(g1h) {}
5503 
5504   void do_code_blob(CodeBlob* cb) {
5505     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5506     if (nm == NULL) {
5507       return;
5508     }
5509 
5510     if (ScavengeRootsInCode) {
5511       _g1h->register_nmethod(nm);
5512     }
5513   }
5514 };
5515 
5516 void G1CollectedHeap::rebuild_strong_code_roots() {
5517   RebuildStrongCodeRootClosure blob_cl(this);
5518   CodeCache::blobs_do(&blob_cl);
5519 }