1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MarkSweep.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.inline.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1YCTypes.hpp"
  56 #include "gc/g1/heapRegion.inline.hpp"
  57 #include "gc/g1/heapRegionRemSet.hpp"
  58 #include "gc/g1/heapRegionSet.inline.hpp"
  59 #include "gc/g1/suspendibleThreadSet.hpp"
  60 #include "gc/g1/vm_operations_g1.hpp"
  61 #include "gc/shared/gcHeapSummary.hpp"
  62 #include "gc/shared/gcId.hpp"
  63 #include "gc/shared/gcLocker.inline.hpp"
  64 #include "gc/shared/gcTimer.hpp"
  65 #include "gc/shared/gcTrace.hpp"
  66 #include "gc/shared/gcTraceTime.inline.hpp"
  67 #include "gc/shared/generationSpec.hpp"
  68 #include "gc/shared/isGCActiveMark.hpp"
  69 #include "gc/shared/preservedMarks.inline.hpp"
  70 #include "gc/shared/referenceProcessor.inline.hpp"
  71 #include "gc/shared/taskqueue.inline.hpp"
  72 #include "logging/log.hpp"
  73 #include "memory/allocation.hpp"
  74 #include "memory/iterator.hpp"
  75 #include "memory/resourceArea.hpp"
  76 #include "oops/oop.inline.hpp"
  77 #include "prims/resolvedMethodTable.hpp"
  78 #include "runtime/atomic.hpp"
  79 #include "runtime/heapMonitoring.hpp"
  80 #include "runtime/init.hpp"
  81 #include "runtime/orderAccess.inline.hpp"
  82 #include "runtime/vmThread.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 #include "utilities/stack.inline.hpp"
  85 
  86 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  87 
  88 // INVARIANTS/NOTES
  89 //
  90 // All allocation activity covered by the G1CollectedHeap interface is
  91 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  92 // and allocate_new_tlab, which are the "entry" points to the
  93 // allocation code from the rest of the JVM.  (Note that this does not
  94 // apply to TLAB allocation, which is not part of this interface: it
  95 // is done by clients of this interface.)
  96 
  97 // Local to this file.
  98 
  99 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 100   bool _concurrent;
 101 public:
 102   RefineCardTableEntryClosure() : _concurrent(true) { }
 103 
 104   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 105     G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
 106 
 107     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 108       // Caller will actually yield.
 109       return false;
 110     }
 111     // Otherwise, we finished successfully; return true.
 112     return true;
 113   }
 114 
 115   void set_concurrent(bool b) { _concurrent = b; }
 116 };
 117 
 118 
 119 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 120  private:
 121   size_t _num_dirtied;
 122   G1CollectedHeap* _g1h;
 123   G1SATBCardTableLoggingModRefBS* _g1_bs;
 124 
 125   HeapRegion* region_for_card(jbyte* card_ptr) const {
 126     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 127   }
 128 
 129   bool will_become_free(HeapRegion* hr) const {
 130     // A region will be freed by free_collection_set if the region is in the
 131     // collection set and has not had an evacuation failure.
 132     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 133   }
 134 
 135  public:
 136   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 137     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 138 
 139   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 140     HeapRegion* hr = region_for_card(card_ptr);
 141 
 142     // Should only dirty cards in regions that won't be freed.
 143     if (!will_become_free(hr)) {
 144       *card_ptr = CardTableModRefBS::dirty_card_val();
 145       _num_dirtied++;
 146     }
 147 
 148     return true;
 149   }
 150 
 151   size_t num_dirtied()   const { return _num_dirtied; }
 152 };
 153 
 154 
 155 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 156   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 160   // The from card cache is not the memory that is actually committed. So we cannot
 161   // take advantage of the zero_filled parameter.
 162   reset_from_card_cache(start_idx, num_regions);
 163 }
 164 
 165 // Returns true if the reference points to an object that
 166 // can move in an incremental collection.
 167 bool G1CollectedHeap::is_scavengable(const void* p) {
 168   HeapRegion* hr = heap_region_containing(p);
 169   return !hr->is_pinned();
 170 }
 171 
 172 // Private methods.
 173 
 174 HeapRegion*
 175 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 176   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 177   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 178     if (!_secondary_free_list.is_empty()) {
 179       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 180                                       "secondary_free_list has %u entries",
 181                                       _secondary_free_list.length());
 182       // It looks as if there are free regions available on the
 183       // secondary_free_list. Let's move them to the free_list and try
 184       // again to allocate from it.
 185       append_secondary_free_list();
 186 
 187       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 188              "empty we should have moved at least one entry to the free_list");
 189       HeapRegion* res = _hrm.allocate_free_region(is_old);
 190       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 191                                       "allocated " HR_FORMAT " from secondary_free_list",
 192                                       HR_FORMAT_PARAMS(res));
 193       return res;
 194     }
 195 
 196     // Wait here until we get notified either when (a) there are no
 197     // more free regions coming or (b) some regions have been moved on
 198     // the secondary_free_list.
 199     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 200   }
 201 
 202   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 203                                   "could not allocate from secondary_free_list");
 204   return NULL;
 205 }
 206 
 207 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 208   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 209          "the only time we use this to allocate a humongous region is "
 210          "when we are allocating a single humongous region");
 211 
 212   HeapRegion* res;
 213   if (G1StressConcRegionFreeing) {
 214     if (!_secondary_free_list.is_empty()) {
 215       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 216                                       "forced to look at the secondary_free_list");
 217       res = new_region_try_secondary_free_list(is_old);
 218       if (res != NULL) {
 219         return res;
 220       }
 221     }
 222   }
 223 
 224   res = _hrm.allocate_free_region(is_old);
 225 
 226   if (res == NULL) {
 227     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 228                                     "res == NULL, trying the secondary_free_list");
 229     res = new_region_try_secondary_free_list(is_old);
 230   }
 231   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 232     // Currently, only attempts to allocate GC alloc regions set
 233     // do_expand to true. So, we should only reach here during a
 234     // safepoint. If this assumption changes we might have to
 235     // reconsider the use of _expand_heap_after_alloc_failure.
 236     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 237 
 238     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 239                               word_size * HeapWordSize);
 240 
 241     if (expand(word_size * HeapWordSize)) {
 242       // Given that expand() succeeded in expanding the heap, and we
 243       // always expand the heap by an amount aligned to the heap
 244       // region size, the free list should in theory not be empty.
 245       // In either case allocate_free_region() will check for NULL.
 246       res = _hrm.allocate_free_region(is_old);
 247     } else {
 248       _expand_heap_after_alloc_failure = false;
 249     }
 250   }
 251   return res;
 252 }
 253 
 254 HeapWord*
 255 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 256                                                            uint num_regions,
 257                                                            size_t word_size,
 258                                                            AllocationContext_t context) {
 259   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 260   assert(is_humongous(word_size), "word_size should be humongous");
 261   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 262 
 263   // Index of last region in the series.
 264   uint last = first + num_regions - 1;
 265 
 266   // We need to initialize the region(s) we just discovered. This is
 267   // a bit tricky given that it can happen concurrently with
 268   // refinement threads refining cards on these regions and
 269   // potentially wanting to refine the BOT as they are scanning
 270   // those cards (this can happen shortly after a cleanup; see CR
 271   // 6991377). So we have to set up the region(s) carefully and in
 272   // a specific order.
 273 
 274   // The word size sum of all the regions we will allocate.
 275   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 276   assert(word_size <= word_size_sum, "sanity");
 277 
 278   // This will be the "starts humongous" region.
 279   HeapRegion* first_hr = region_at(first);
 280   // The header of the new object will be placed at the bottom of
 281   // the first region.
 282   HeapWord* new_obj = first_hr->bottom();
 283   // This will be the new top of the new object.
 284   HeapWord* obj_top = new_obj + word_size;
 285 
 286   // First, we need to zero the header of the space that we will be
 287   // allocating. When we update top further down, some refinement
 288   // threads might try to scan the region. By zeroing the header we
 289   // ensure that any thread that will try to scan the region will
 290   // come across the zero klass word and bail out.
 291   //
 292   // NOTE: It would not have been correct to have used
 293   // CollectedHeap::fill_with_object() and make the space look like
 294   // an int array. The thread that is doing the allocation will
 295   // later update the object header to a potentially different array
 296   // type and, for a very short period of time, the klass and length
 297   // fields will be inconsistent. This could cause a refinement
 298   // thread to calculate the object size incorrectly.
 299   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 300 
 301   // Next, pad out the unused tail of the last region with filler
 302   // objects, for improved usage accounting.
 303   // How many words we use for filler objects.
 304   size_t word_fill_size = word_size_sum - word_size;
 305 
 306   // How many words memory we "waste" which cannot hold a filler object.
 307   size_t words_not_fillable = 0;
 308 
 309   if (word_fill_size >= min_fill_size()) {
 310     fill_with_objects(obj_top, word_fill_size);
 311   } else if (word_fill_size > 0) {
 312     // We have space to fill, but we cannot fit an object there.
 313     words_not_fillable = word_fill_size;
 314     word_fill_size = 0;
 315   }
 316 
 317   // We will set up the first region as "starts humongous". This
 318   // will also update the BOT covering all the regions to reflect
 319   // that there is a single object that starts at the bottom of the
 320   // first region.
 321   first_hr->set_starts_humongous(obj_top, word_fill_size);
 322   first_hr->set_allocation_context(context);
 323   // Then, if there are any, we will set up the "continues
 324   // humongous" regions.
 325   HeapRegion* hr = NULL;
 326   for (uint i = first + 1; i <= last; ++i) {
 327     hr = region_at(i);
 328     hr->set_continues_humongous(first_hr);
 329     hr->set_allocation_context(context);
 330   }
 331 
 332   // Up to this point no concurrent thread would have been able to
 333   // do any scanning on any region in this series. All the top
 334   // fields still point to bottom, so the intersection between
 335   // [bottom,top] and [card_start,card_end] will be empty. Before we
 336   // update the top fields, we'll do a storestore to make sure that
 337   // no thread sees the update to top before the zeroing of the
 338   // object header and the BOT initialization.
 339   OrderAccess::storestore();
 340 
 341   // Now, we will update the top fields of the "continues humongous"
 342   // regions except the last one.
 343   for (uint i = first; i < last; ++i) {
 344     hr = region_at(i);
 345     hr->set_top(hr->end());
 346   }
 347 
 348   hr = region_at(last);
 349   // If we cannot fit a filler object, we must set top to the end
 350   // of the humongous object, otherwise we cannot iterate the heap
 351   // and the BOT will not be complete.
 352   hr->set_top(hr->end() - words_not_fillable);
 353 
 354   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 355          "obj_top should be in last region");
 356 
 357   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 358 
 359   assert(words_not_fillable == 0 ||
 360          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 361          "Miscalculation in humongous allocation");
 362 
 363   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 364 
 365   for (uint i = first; i <= last; ++i) {
 366     hr = region_at(i);
 367     _humongous_set.add(hr);
 368     _hr_printer.alloc(hr);
 369   }
 370 
 371   return new_obj;
 372 }
 373 
 374 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 375   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 376   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 377 }
 378 
 379 // If could fit into free regions w/o expansion, try.
 380 // Otherwise, if can expand, do so.
 381 // Otherwise, if using ex regions might help, try with ex given back.
 382 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 383   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   uint first = G1_NO_HRM_INDEX;
 388   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 389 
 390   if (obj_regions == 1) {
 391     // Only one region to allocate, try to use a fast path by directly allocating
 392     // from the free lists. Do not try to expand here, we will potentially do that
 393     // later.
 394     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 395     if (hr != NULL) {
 396       first = hr->hrm_index();
 397     }
 398   } else {
 399     // We can't allocate humongous regions spanning more than one region while
 400     // cleanupComplete() is running, since some of the regions we find to be
 401     // empty might not yet be added to the free list. It is not straightforward
 402     // to know in which list they are on so that we can remove them. We only
 403     // need to do this if we need to allocate more than one region to satisfy the
 404     // current humongous allocation request. If we are only allocating one region
 405     // we use the one-region region allocation code (see above), that already
 406     // potentially waits for regions from the secondary free list.
 407     wait_while_free_regions_coming();
 408     append_secondary_free_list_if_not_empty_with_lock();
 409 
 410     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 411     // are lucky enough to find some.
 412     first = _hrm.find_contiguous_only_empty(obj_regions);
 413     if (first != G1_NO_HRM_INDEX) {
 414       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 415     }
 416   }
 417 
 418   if (first == G1_NO_HRM_INDEX) {
 419     // Policy: We could not find enough regions for the humongous object in the
 420     // free list. Look through the heap to find a mix of free and uncommitted regions.
 421     // If so, try expansion.
 422     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 423     if (first != G1_NO_HRM_INDEX) {
 424       // We found something. Make sure these regions are committed, i.e. expand
 425       // the heap. Alternatively we could do a defragmentation GC.
 426       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 427                                     word_size * HeapWordSize);
 428 
 429       _hrm.expand_at(first, obj_regions, workers());
 430       g1_policy()->record_new_heap_size(num_regions());
 431 
 432 #ifdef ASSERT
 433       for (uint i = first; i < first + obj_regions; ++i) {
 434         HeapRegion* hr = region_at(i);
 435         assert(hr->is_free(), "sanity");
 436         assert(hr->is_empty(), "sanity");
 437         assert(is_on_master_free_list(hr), "sanity");
 438       }
 439 #endif
 440       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 441     } else {
 442       // Policy: Potentially trigger a defragmentation GC.
 443     }
 444   }
 445 
 446   HeapWord* result = NULL;
 447   if (first != G1_NO_HRM_INDEX) {
 448     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 449                                                        word_size, context);
 450     assert(result != NULL, "it should always return a valid result");
 451 
 452     // A successful humongous object allocation changes the used space
 453     // information of the old generation so we need to recalculate the
 454     // sizes and update the jstat counters here.
 455     g1mm()->update_sizes();
 456   }
 457 
 458   _verifier->verify_region_sets_optional();
 459 
 460   return result;
 461 }
 462 
 463 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 464   assert_heap_not_locked_and_not_at_safepoint();
 465   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 466 
 467   uint dummy_gc_count_before;
 468   uint dummy_gclocker_retry_count = 0;
 469   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 470 }
 471 
 472 HeapWord*
 473 G1CollectedHeap::mem_allocate(size_t word_size,
 474                               bool*  gc_overhead_limit_was_exceeded) {
 475   assert_heap_not_locked_and_not_at_safepoint();
 476 
 477   // Loop until the allocation is satisfied, or unsatisfied after GC.
 478   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 479     uint gc_count_before;
 480 
 481     HeapWord* result = NULL;
 482     if (!is_humongous(word_size)) {
 483       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 484     } else {
 485       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 486     }
 487     if (result != NULL) {
 488       return result;
 489     }
 490 
 491     // Create the garbage collection operation...
 492     VM_G1CollectForAllocation op(gc_count_before, word_size);
 493     op.set_allocation_context(AllocationContext::current());
 494 
 495     // ...and get the VM thread to execute it.
 496     VMThread::execute(&op);
 497 
 498     if (op.prologue_succeeded() && op.pause_succeeded()) {
 499       // If the operation was successful we'll return the result even
 500       // if it is NULL. If the allocation attempt failed immediately
 501       // after a Full GC, it's unlikely we'll be able to allocate now.
 502       HeapWord* result = op.result();
 503       if (result != NULL && !is_humongous(word_size)) {
 504         // Allocations that take place on VM operations do not do any
 505         // card dirtying and we have to do it here. We only have to do
 506         // this for non-humongous allocations, though.
 507         dirty_young_block(result, word_size);
 508       }
 509       return result;
 510     } else {
 511       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 512         return NULL;
 513       }
 514       assert(op.result() == NULL,
 515              "the result should be NULL if the VM op did not succeed");
 516     }
 517 
 518     // Give a warning if we seem to be looping forever.
 519     if ((QueuedAllocationWarningCount > 0) &&
 520         (try_count % QueuedAllocationWarningCount == 0)) {
 521       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 522     }
 523   }
 524 
 525   ShouldNotReachHere();
 526   return NULL;
 527 }
 528 
 529 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 530                                                    AllocationContext_t context,
 531                                                    uint* gc_count_before_ret,
 532                                                    uint* gclocker_retry_count_ret) {
 533   // Make sure you read the note in attempt_allocation_humongous().
 534 
 535   assert_heap_not_locked_and_not_at_safepoint();
 536   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 537          "be called for humongous allocation requests");
 538 
 539   // We should only get here after the first-level allocation attempt
 540   // (attempt_allocation()) failed to allocate.
 541 
 542   // We will loop until a) we manage to successfully perform the
 543   // allocation or b) we successfully schedule a collection which
 544   // fails to perform the allocation. b) is the only case when we'll
 545   // return NULL.
 546   HeapWord* result = NULL;
 547   for (int try_count = 1; /* we'll return */; try_count += 1) {
 548     bool should_try_gc;
 549     uint gc_count_before;
 550 
 551     {
 552       MutexLockerEx x(Heap_lock);
 553       result = _allocator->attempt_allocation_locked(word_size, context);
 554       if (result != NULL) {
 555         return result;
 556       }
 557 
 558       if (GCLocker::is_active_and_needs_gc()) {
 559         if (g1_policy()->can_expand_young_list()) {
 560           // No need for an ergo verbose message here,
 561           // can_expand_young_list() does this when it returns true.
 562           result = _allocator->attempt_allocation_force(word_size, context);
 563           if (result != NULL) {
 564             return result;
 565           }
 566         }
 567         should_try_gc = false;
 568       } else {
 569         // The GCLocker may not be active but the GCLocker initiated
 570         // GC may not yet have been performed (GCLocker::needs_gc()
 571         // returns true). In this case we do not try this GC and
 572         // wait until the GCLocker initiated GC is performed, and
 573         // then retry the allocation.
 574         if (GCLocker::needs_gc()) {
 575           should_try_gc = false;
 576         } else {
 577           // Read the GC count while still holding the Heap_lock.
 578           gc_count_before = total_collections();
 579           should_try_gc = true;
 580         }
 581       }
 582     }
 583 
 584     if (should_try_gc) {
 585       bool succeeded;
 586       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 587                                    GCCause::_g1_inc_collection_pause);
 588       if (result != NULL) {
 589         assert(succeeded, "only way to get back a non-NULL result");
 590         return result;
 591       }
 592 
 593       if (succeeded) {
 594         // If we get here we successfully scheduled a collection which
 595         // failed to allocate. No point in trying to allocate
 596         // further. We'll just return NULL.
 597         MutexLockerEx x(Heap_lock);
 598         *gc_count_before_ret = total_collections();
 599         return NULL;
 600       }
 601     } else {
 602       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 603         MutexLockerEx x(Heap_lock);
 604         *gc_count_before_ret = total_collections();
 605         return NULL;
 606       }
 607       // The GCLocker is either active or the GCLocker initiated
 608       // GC has not yet been performed. Stall until it is and
 609       // then retry the allocation.
 610       GCLocker::stall_until_clear();
 611       (*gclocker_retry_count_ret) += 1;
 612     }
 613 
 614     // We can reach here if we were unsuccessful in scheduling a
 615     // collection (because another thread beat us to it) or if we were
 616     // stalled due to the GC locker. In either can we should retry the
 617     // allocation attempt in case another thread successfully
 618     // performed a collection and reclaimed enough space. We do the
 619     // first attempt (without holding the Heap_lock) here and the
 620     // follow-on attempt will be at the start of the next loop
 621     // iteration (after taking the Heap_lock).
 622     result = _allocator->attempt_allocation(word_size, context);
 623     if (result != NULL) {
 624       return result;
 625     }
 626 
 627     // Give a warning if we seem to be looping forever.
 628     if ((QueuedAllocationWarningCount > 0) &&
 629         (try_count % QueuedAllocationWarningCount == 0)) {
 630       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 631                       "retries %d times", try_count);
 632     }
 633   }
 634 
 635   ShouldNotReachHere();
 636   return NULL;
 637 }
 638 
 639 void G1CollectedHeap::begin_archive_alloc_range() {
 640   assert_at_safepoint(true /* should_be_vm_thread */);
 641   if (_archive_allocator == NULL) {
 642     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 643   }
 644 }
 645 
 646 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 647   // Allocations in archive regions cannot be of a size that would be considered
 648   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 649   // may be different at archive-restore time.
 650   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 651 }
 652 
 653 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 654   assert_at_safepoint(true /* should_be_vm_thread */);
 655   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 656   if (is_archive_alloc_too_large(word_size)) {
 657     return NULL;
 658   }
 659   return _archive_allocator->archive_mem_allocate(word_size);
 660 }
 661 
 662 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 663                                               size_t end_alignment_in_bytes) {
 664   assert_at_safepoint(true /* should_be_vm_thread */);
 665   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 666 
 667   // Call complete_archive to do the real work, filling in the MemRegion
 668   // array with the archive regions.
 669   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 670   delete _archive_allocator;
 671   _archive_allocator = NULL;
 672 }
 673 
 674 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 675   assert(ranges != NULL, "MemRegion array NULL");
 676   assert(count != 0, "No MemRegions provided");
 677   MemRegion reserved = _hrm.reserved();
 678   for (size_t i = 0; i < count; i++) {
 679     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 680       return false;
 681     }
 682   }
 683   return true;
 684 }
 685 
 686 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 687   assert(!is_init_completed(), "Expect to be called at JVM init time");
 688   assert(ranges != NULL, "MemRegion array NULL");
 689   assert(count != 0, "No MemRegions provided");
 690   MutexLockerEx x(Heap_lock);
 691 
 692   MemRegion reserved = _hrm.reserved();
 693   HeapWord* prev_last_addr = NULL;
 694   HeapRegion* prev_last_region = NULL;
 695 
 696   // Temporarily disable pretouching of heap pages. This interface is used
 697   // when mmap'ing archived heap data in, so pre-touching is wasted.
 698   FlagSetting fs(AlwaysPreTouch, false);
 699 
 700   // Enable archive object checking used by G1MarkSweep. We have to let it know
 701   // about each archive range, so that objects in those ranges aren't marked.
 702   G1ArchiveAllocator::enable_archive_object_check();
 703 
 704   // For each specified MemRegion range, allocate the corresponding G1
 705   // regions and mark them as archive regions. We expect the ranges in
 706   // ascending starting address order, without overlap.
 707   for (size_t i = 0; i < count; i++) {
 708     MemRegion curr_range = ranges[i];
 709     HeapWord* start_address = curr_range.start();
 710     size_t word_size = curr_range.word_size();
 711     HeapWord* last_address = curr_range.last();
 712     size_t commits = 0;
 713 
 714     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 715               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 716               p2i(start_address), p2i(last_address));
 717     guarantee(start_address > prev_last_addr,
 718               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 719               p2i(start_address), p2i(prev_last_addr));
 720     prev_last_addr = last_address;
 721 
 722     // Check for ranges that start in the same G1 region in which the previous
 723     // range ended, and adjust the start address so we don't try to allocate
 724     // the same region again. If the current range is entirely within that
 725     // region, skip it, just adjusting the recorded top.
 726     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 727     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 728       start_address = start_region->end();
 729       if (start_address > last_address) {
 730         increase_used(word_size * HeapWordSize);
 731         start_region->set_top(last_address + 1);
 732         continue;
 733       }
 734       start_region->set_top(start_address);
 735       curr_range = MemRegion(start_address, last_address + 1);
 736       start_region = _hrm.addr_to_region(start_address);
 737     }
 738 
 739     // Perform the actual region allocation, exiting if it fails.
 740     // Then note how much new space we have allocated.
 741     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 742       return false;
 743     }
 744     increase_used(word_size * HeapWordSize);
 745     if (commits != 0) {
 746       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 747                                 HeapRegion::GrainWords * HeapWordSize * commits);
 748 
 749     }
 750 
 751     // Mark each G1 region touched by the range as archive, add it to the old set,
 752     // and set the allocation context and top.
 753     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 754     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 755     prev_last_region = last_region;
 756 
 757     while (curr_region != NULL) {
 758       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 759              "Region already in use (index %u)", curr_region->hrm_index());
 760       curr_region->set_allocation_context(AllocationContext::system());
 761       curr_region->set_archive();
 762       _hr_printer.alloc(curr_region);
 763       _old_set.add(curr_region);
 764       if (curr_region != last_region) {
 765         curr_region->set_top(curr_region->end());
 766         curr_region = _hrm.next_region_in_heap(curr_region);
 767       } else {
 768         curr_region->set_top(last_address + 1);
 769         curr_region = NULL;
 770       }
 771     }
 772 
 773     // Notify mark-sweep of the archive range.
 774     G1ArchiveAllocator::set_range_archive(curr_range, true);
 775   }
 776   return true;
 777 }
 778 
 779 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 780   assert(!is_init_completed(), "Expect to be called at JVM init time");
 781   assert(ranges != NULL, "MemRegion array NULL");
 782   assert(count != 0, "No MemRegions provided");
 783   MemRegion reserved = _hrm.reserved();
 784   HeapWord *prev_last_addr = NULL;
 785   HeapRegion* prev_last_region = NULL;
 786 
 787   // For each MemRegion, create filler objects, if needed, in the G1 regions
 788   // that contain the address range. The address range actually within the
 789   // MemRegion will not be modified. That is assumed to have been initialized
 790   // elsewhere, probably via an mmap of archived heap data.
 791   MutexLockerEx x(Heap_lock);
 792   for (size_t i = 0; i < count; i++) {
 793     HeapWord* start_address = ranges[i].start();
 794     HeapWord* last_address = ranges[i].last();
 795 
 796     assert(reserved.contains(start_address) && reserved.contains(last_address),
 797            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 798            p2i(start_address), p2i(last_address));
 799     assert(start_address > prev_last_addr,
 800            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 801            p2i(start_address), p2i(prev_last_addr));
 802 
 803     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 804     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 805     HeapWord* bottom_address = start_region->bottom();
 806 
 807     // Check for a range beginning in the same region in which the
 808     // previous one ended.
 809     if (start_region == prev_last_region) {
 810       bottom_address = prev_last_addr + 1;
 811     }
 812 
 813     // Verify that the regions were all marked as archive regions by
 814     // alloc_archive_regions.
 815     HeapRegion* curr_region = start_region;
 816     while (curr_region != NULL) {
 817       guarantee(curr_region->is_archive(),
 818                 "Expected archive region at index %u", curr_region->hrm_index());
 819       if (curr_region != last_region) {
 820         curr_region = _hrm.next_region_in_heap(curr_region);
 821       } else {
 822         curr_region = NULL;
 823       }
 824     }
 825 
 826     prev_last_addr = last_address;
 827     prev_last_region = last_region;
 828 
 829     // Fill the memory below the allocated range with dummy object(s),
 830     // if the region bottom does not match the range start, or if the previous
 831     // range ended within the same G1 region, and there is a gap.
 832     if (start_address != bottom_address) {
 833       size_t fill_size = pointer_delta(start_address, bottom_address);
 834       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 835       increase_used(fill_size * HeapWordSize);
 836     }
 837   }
 838 }
 839 
 840 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 841                                                      uint* gc_count_before_ret,
 842                                                      uint* gclocker_retry_count_ret) {
 843   assert_heap_not_locked_and_not_at_safepoint();
 844   assert(!is_humongous(word_size), "attempt_allocation() should not "
 845          "be called for humongous allocation requests");
 846 
 847   AllocationContext_t context = AllocationContext::current();
 848   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 849 
 850   if (result == NULL) {
 851     result = attempt_allocation_slow(word_size,
 852                                      context,
 853                                      gc_count_before_ret,
 854                                      gclocker_retry_count_ret);
 855   }
 856   assert_heap_not_locked();
 857   if (result != NULL) {
 858     dirty_young_block(result, word_size);
 859   }
 860   return result;
 861 }
 862 
 863 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 864   assert(!is_init_completed(), "Expect to be called at JVM init time");
 865   assert(ranges != NULL, "MemRegion array NULL");
 866   assert(count != 0, "No MemRegions provided");
 867   MemRegion reserved = _hrm.reserved();
 868   HeapWord* prev_last_addr = NULL;
 869   HeapRegion* prev_last_region = NULL;
 870   size_t size_used = 0;
 871   size_t uncommitted_regions = 0;
 872 
 873   // For each Memregion, free the G1 regions that constitute it, and
 874   // notify mark-sweep that the range is no longer to be considered 'archive.'
 875   MutexLockerEx x(Heap_lock);
 876   for (size_t i = 0; i < count; i++) {
 877     HeapWord* start_address = ranges[i].start();
 878     HeapWord* last_address = ranges[i].last();
 879 
 880     assert(reserved.contains(start_address) && reserved.contains(last_address),
 881            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 882            p2i(start_address), p2i(last_address));
 883     assert(start_address > prev_last_addr,
 884            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 885            p2i(start_address), p2i(prev_last_addr));
 886     size_used += ranges[i].byte_size();
 887     prev_last_addr = last_address;
 888 
 889     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 890     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 891 
 892     // Check for ranges that start in the same G1 region in which the previous
 893     // range ended, and adjust the start address so we don't try to free
 894     // the same region again. If the current range is entirely within that
 895     // region, skip it.
 896     if (start_region == prev_last_region) {
 897       start_address = start_region->end();
 898       if (start_address > last_address) {
 899         continue;
 900       }
 901       start_region = _hrm.addr_to_region(start_address);
 902     }
 903     prev_last_region = last_region;
 904 
 905     // After verifying that each region was marked as an archive region by
 906     // alloc_archive_regions, set it free and empty and uncommit it.
 907     HeapRegion* curr_region = start_region;
 908     while (curr_region != NULL) {
 909       guarantee(curr_region->is_archive(),
 910                 "Expected archive region at index %u", curr_region->hrm_index());
 911       uint curr_index = curr_region->hrm_index();
 912       _old_set.remove(curr_region);
 913       curr_region->set_free();
 914       curr_region->set_top(curr_region->bottom());
 915       if (curr_region != last_region) {
 916         curr_region = _hrm.next_region_in_heap(curr_region);
 917       } else {
 918         curr_region = NULL;
 919       }
 920       _hrm.shrink_at(curr_index, 1);
 921       uncommitted_regions++;
 922     }
 923 
 924     // Notify mark-sweep that this is no longer an archive range.
 925     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 926   }
 927 
 928   if (uncommitted_regions != 0) {
 929     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 930                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 931   }
 932   decrease_used(size_used);
 933 }
 934 
 935 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 936                                                         uint* gc_count_before_ret,
 937                                                         uint* gclocker_retry_count_ret) {
 938   // The structure of this method has a lot of similarities to
 939   // attempt_allocation_slow(). The reason these two were not merged
 940   // into a single one is that such a method would require several "if
 941   // allocation is not humongous do this, otherwise do that"
 942   // conditional paths which would obscure its flow. In fact, an early
 943   // version of this code did use a unified method which was harder to
 944   // follow and, as a result, it had subtle bugs that were hard to
 945   // track down. So keeping these two methods separate allows each to
 946   // be more readable. It will be good to keep these two in sync as
 947   // much as possible.
 948 
 949   assert_heap_not_locked_and_not_at_safepoint();
 950   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 951          "should only be called for humongous allocations");
 952 
 953   // Humongous objects can exhaust the heap quickly, so we should check if we
 954   // need to start a marking cycle at each humongous object allocation. We do
 955   // the check before we do the actual allocation. The reason for doing it
 956   // before the allocation is that we avoid having to keep track of the newly
 957   // allocated memory while we do a GC.
 958   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 959                                            word_size)) {
 960     collect(GCCause::_g1_humongous_allocation);
 961   }
 962 
 963   // We will loop until a) we manage to successfully perform the
 964   // allocation or b) we successfully schedule a collection which
 965   // fails to perform the allocation. b) is the only case when we'll
 966   // return NULL.
 967   HeapWord* result = NULL;
 968   for (int try_count = 1; /* we'll return */; try_count += 1) {
 969     bool should_try_gc;
 970     uint gc_count_before;
 971 
 972     {
 973       MutexLockerEx x(Heap_lock);
 974 
 975       // Given that humongous objects are not allocated in young
 976       // regions, we'll first try to do the allocation without doing a
 977       // collection hoping that there's enough space in the heap.
 978       result = humongous_obj_allocate(word_size, AllocationContext::current());
 979       if (result != NULL) {
 980         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 981         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 982         return result;
 983       }
 984 
 985       if (GCLocker::is_active_and_needs_gc()) {
 986         should_try_gc = false;
 987       } else {
 988          // The GCLocker may not be active but the GCLocker initiated
 989         // GC may not yet have been performed (GCLocker::needs_gc()
 990         // returns true). In this case we do not try this GC and
 991         // wait until the GCLocker initiated GC is performed, and
 992         // then retry the allocation.
 993         if (GCLocker::needs_gc()) {
 994           should_try_gc = false;
 995         } else {
 996           // Read the GC count while still holding the Heap_lock.
 997           gc_count_before = total_collections();
 998           should_try_gc = true;
 999         }
1000       }
1001     }
1002 
1003     if (should_try_gc) {
1004       // If we failed to allocate the humongous object, we should try to
1005       // do a collection pause (if we're allowed) in case it reclaims
1006       // enough space for the allocation to succeed after the pause.
1007 
1008       bool succeeded;
1009       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1010                                    GCCause::_g1_humongous_allocation);
1011       if (result != NULL) {
1012         assert(succeeded, "only way to get back a non-NULL result");
1013         return result;
1014       }
1015 
1016       if (succeeded) {
1017         // If we get here we successfully scheduled a collection which
1018         // failed to allocate. No point in trying to allocate
1019         // further. We'll just return NULL.
1020         MutexLockerEx x(Heap_lock);
1021         *gc_count_before_ret = total_collections();
1022         return NULL;
1023       }
1024     } else {
1025       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1026         MutexLockerEx x(Heap_lock);
1027         *gc_count_before_ret = total_collections();
1028         return NULL;
1029       }
1030       // The GCLocker is either active or the GCLocker initiated
1031       // GC has not yet been performed. Stall until it is and
1032       // then retry the allocation.
1033       GCLocker::stall_until_clear();
1034       (*gclocker_retry_count_ret) += 1;
1035     }
1036 
1037     // We can reach here if we were unsuccessful in scheduling a
1038     // collection (because another thread beat us to it) or if we were
1039     // stalled due to the GC locker. In either can we should retry the
1040     // allocation attempt in case another thread successfully
1041     // performed a collection and reclaimed enough space.  Give a
1042     // warning if we seem to be looping forever.
1043 
1044     if ((QueuedAllocationWarningCount > 0) &&
1045         (try_count % QueuedAllocationWarningCount == 0)) {
1046       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1047                       "retries %d times", try_count);
1048     }
1049   }
1050 
1051   ShouldNotReachHere();
1052   return NULL;
1053 }
1054 
1055 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1056                                                            AllocationContext_t context,
1057                                                            bool expect_null_mutator_alloc_region) {
1058   assert_at_safepoint(true /* should_be_vm_thread */);
1059   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1060          "the current alloc region was unexpectedly found to be non-NULL");
1061 
1062   if (!is_humongous(word_size)) {
1063     return _allocator->attempt_allocation_locked(word_size, context);
1064   } else {
1065     HeapWord* result = humongous_obj_allocate(word_size, context);
1066     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1067       collector_state()->set_initiate_conc_mark_if_possible(true);
1068     }
1069     return result;
1070   }
1071 
1072   ShouldNotReachHere();
1073 }
1074 
1075 class PostMCRemSetClearClosure: public HeapRegionClosure {
1076   G1CollectedHeap* _g1h;
1077   ModRefBarrierSet* _mr_bs;
1078 public:
1079   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1080     _g1h(g1h), _mr_bs(mr_bs) {}
1081 
1082   bool doHeapRegion(HeapRegion* r) {
1083     HeapRegionRemSet* hrrs = r->rem_set();
1084 
1085     _g1h->reset_gc_time_stamps(r);
1086 
1087     if (r->is_continues_humongous()) {
1088       // We'll assert that the strong code root list and RSet is empty
1089       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1090       assert(hrrs->occupied() == 0, "RSet should be empty");
1091     } else {
1092       hrrs->clear();
1093     }
1094     // You might think here that we could clear just the cards
1095     // corresponding to the used region.  But no: if we leave a dirty card
1096     // in a region we might allocate into, then it would prevent that card
1097     // from being enqueued, and cause it to be missed.
1098     // Re: the performance cost: we shouldn't be doing full GC anyway!
1099     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1100 
1101     return false;
1102   }
1103 };
1104 
1105 void G1CollectedHeap::clear_rsets_post_compaction() {
1106   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1107   heap_region_iterate(&rs_clear);
1108 }
1109 
1110 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1111   G1CollectedHeap*   _g1h;
1112   UpdateRSOopClosure _cl;
1113 public:
1114   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1115     _cl(g1->g1_rem_set(), worker_i),
1116     _g1h(g1)
1117   { }
1118 
1119   bool doHeapRegion(HeapRegion* r) {
1120     if (!r->is_continues_humongous()) {
1121       _cl.set_from(r);
1122       r->oop_iterate(&_cl);
1123     }
1124     return false;
1125   }
1126 };
1127 
1128 class ParRebuildRSTask: public AbstractGangTask {
1129   G1CollectedHeap* _g1;
1130   HeapRegionClaimer _hrclaimer;
1131 
1132 public:
1133   ParRebuildRSTask(G1CollectedHeap* g1) :
1134       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1135 
1136   void work(uint worker_id) {
1137     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1138     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1139   }
1140 };
1141 
1142 class PostCompactionPrinterClosure: public HeapRegionClosure {
1143 private:
1144   G1HRPrinter* _hr_printer;
1145 public:
1146   bool doHeapRegion(HeapRegion* hr) {
1147     assert(!hr->is_young(), "not expecting to find young regions");
1148     _hr_printer->post_compaction(hr);
1149     return false;
1150   }
1151 
1152   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1153     : _hr_printer(hr_printer) { }
1154 };
1155 
1156 void G1CollectedHeap::print_hrm_post_compaction() {
1157   if (_hr_printer.is_active()) {
1158     PostCompactionPrinterClosure cl(hr_printer());
1159     heap_region_iterate(&cl);
1160   }
1161 
1162 }
1163 
1164 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1165                                          bool clear_all_soft_refs) {
1166   assert_at_safepoint(true /* should_be_vm_thread */);
1167 
1168   if (GCLocker::check_active_before_gc()) {
1169     return false;
1170   }
1171 
1172   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1173   gc_timer->register_gc_start();
1174 
1175   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1176   GCIdMark gc_id_mark;
1177   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1178 
1179   SvcGCMarker sgcm(SvcGCMarker::FULL);
1180   ResourceMark rm;
1181 
1182   print_heap_before_gc();
1183   print_heap_regions();
1184   trace_heap_before_gc(gc_tracer);
1185 
1186   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1187 
1188   _verifier->verify_region_sets_optional();
1189 
1190   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1191                            collector_policy()->should_clear_all_soft_refs();
1192 
1193   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1194 
1195   {
1196     IsGCActiveMark x;
1197 
1198     // Timing
1199     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1200     GCTraceCPUTime tcpu;
1201 
1202     {
1203       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1204       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1205       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1206 
1207       G1HeapTransition heap_transition(this);
1208       g1_policy()->record_full_collection_start();
1209 
1210       // Note: When we have a more flexible GC logging framework that
1211       // allows us to add optional attributes to a GC log record we
1212       // could consider timing and reporting how long we wait in the
1213       // following two methods.
1214       wait_while_free_regions_coming();
1215       // If we start the compaction before the CM threads finish
1216       // scanning the root regions we might trip them over as we'll
1217       // be moving objects / updating references. So let's wait until
1218       // they are done. By telling them to abort, they should complete
1219       // early.
1220       _cm->root_regions()->abort();
1221       _cm->root_regions()->wait_until_scan_finished();
1222       append_secondary_free_list_if_not_empty_with_lock();
1223 
1224       gc_prologue(true);
1225       increment_total_collections(true /* full gc */);
1226       increment_old_marking_cycles_started();
1227 
1228       assert(used() == recalculate_used(), "Should be equal");
1229 
1230       _verifier->verify_before_gc();
1231 
1232       _verifier->check_bitmaps("Full GC Start");
1233       pre_full_gc_dump(gc_timer);
1234 
1235 #if defined(COMPILER2) || INCLUDE_JVMCI
1236       DerivedPointerTable::clear();
1237 #endif
1238 
1239       // Disable discovery and empty the discovered lists
1240       // for the CM ref processor.
1241       ref_processor_cm()->disable_discovery();
1242       ref_processor_cm()->abandon_partial_discovery();
1243       ref_processor_cm()->verify_no_references_recorded();
1244 
1245       // Abandon current iterations of concurrent marking and concurrent
1246       // refinement, if any are in progress.
1247       concurrent_mark()->abort();
1248 
1249       // Make sure we'll choose a new allocation region afterwards.
1250       _allocator->release_mutator_alloc_region();
1251       _allocator->abandon_gc_alloc_regions();
1252       g1_rem_set()->cleanupHRRS();
1253 
1254       // We may have added regions to the current incremental collection
1255       // set between the last GC or pause and now. We need to clear the
1256       // incremental collection set and then start rebuilding it afresh
1257       // after this full GC.
1258       abandon_collection_set(collection_set());
1259 
1260       tear_down_region_sets(false /* free_list_only */);
1261       collector_state()->set_gcs_are_young(true);
1262 
1263       // See the comments in g1CollectedHeap.hpp and
1264       // G1CollectedHeap::ref_processing_init() about
1265       // how reference processing currently works in G1.
1266 
1267       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1268       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1269 
1270       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1271       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1272 
1273       ref_processor_stw()->enable_discovery();
1274       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1275 
1276       // Do collection work
1277       {
1278         HandleMark hm;  // Discard invalid handles created during gc
1279         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1280       }
1281 
1282       assert(num_free_regions() == 0, "we should not have added any free regions");
1283       rebuild_region_sets(false /* free_list_only */);
1284 
1285       // Enqueue any discovered reference objects that have
1286       // not been removed from the discovered lists.
1287       ref_processor_stw()->enqueue_discovered_references();
1288 
1289 #if defined(COMPILER2) || INCLUDE_JVMCI
1290       DerivedPointerTable::update_pointers();
1291 #endif
1292 
1293       MemoryService::track_memory_usage();
1294 
1295       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1296       ref_processor_stw()->verify_no_references_recorded();
1297 
1298       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1299       ClassLoaderDataGraph::purge();
1300       MetaspaceAux::verify_metrics();
1301 
1302       // Note: since we've just done a full GC, concurrent
1303       // marking is no longer active. Therefore we need not
1304       // re-enable reference discovery for the CM ref processor.
1305       // That will be done at the start of the next marking cycle.
1306       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1307       ref_processor_cm()->verify_no_references_recorded();
1308 
1309       reset_gc_time_stamp();
1310       // Since everything potentially moved, we will clear all remembered
1311       // sets, and clear all cards.  Later we will rebuild remembered
1312       // sets. We will also reset the GC time stamps of the regions.
1313       clear_rsets_post_compaction();
1314       check_gc_time_stamps();
1315 
1316       resize_if_necessary_after_full_collection();
1317 
1318       // We should do this after we potentially resize the heap so
1319       // that all the COMMIT / UNCOMMIT events are generated before
1320       // the compaction events.
1321       print_hrm_post_compaction();
1322 
1323       if (_hot_card_cache->use_cache()) {
1324         _hot_card_cache->reset_card_counts();
1325         _hot_card_cache->reset_hot_cache();
1326       }
1327 
1328       // Rebuild remembered sets of all regions.
1329       uint n_workers =
1330         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1331                                                 workers()->active_workers(),
1332                                                 Threads::number_of_non_daemon_threads());
1333       workers()->update_active_workers(n_workers);
1334       log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1335 
1336       ParRebuildRSTask rebuild_rs_task(this);
1337       workers()->run_task(&rebuild_rs_task);
1338 
1339       // Rebuild the strong code root lists for each region
1340       rebuild_strong_code_roots();
1341 
1342       if (true) { // FIXME
1343         MetaspaceGC::compute_new_size();
1344       }
1345 
1346 #ifdef TRACESPINNING
1347       ParallelTaskTerminator::print_termination_counts();
1348 #endif
1349 
1350       // Discard all rset updates
1351       JavaThread::dirty_card_queue_set().abandon_logs();
1352       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1353 
1354       // At this point there should be no regions in the
1355       // entire heap tagged as young.
1356       assert(check_young_list_empty(), "young list should be empty at this point");
1357 
1358       // Update the number of full collections that have been completed.
1359       increment_old_marking_cycles_completed(false /* concurrent */);
1360 
1361       _hrm.verify_optional();
1362       _verifier->verify_region_sets_optional();
1363 
1364       _verifier->verify_after_gc();
1365 
1366       // Clear the previous marking bitmap, if needed for bitmap verification.
1367       // Note we cannot do this when we clear the next marking bitmap in
1368       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1369       // objects marked during a full GC against the previous bitmap.
1370       // But we need to clear it before calling check_bitmaps below since
1371       // the full GC has compacted objects and updated TAMS but not updated
1372       // the prev bitmap.
1373       if (G1VerifyBitmaps) {
1374         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1375         _cm->clear_prev_bitmap(workers());
1376       }
1377       _verifier->check_bitmaps("Full GC End");
1378 
1379       start_new_collection_set();
1380 
1381       _allocator->init_mutator_alloc_region();
1382 
1383       g1_policy()->record_full_collection_end();
1384 
1385       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1386       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1387       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1388       // before any GC notifications are raised.
1389       g1mm()->update_sizes();
1390 
1391       gc_epilogue(true);
1392 
1393       heap_transition.print();
1394 
1395       print_heap_after_gc();
1396       print_heap_regions();
1397       trace_heap_after_gc(gc_tracer);
1398 
1399       post_full_gc_dump(gc_timer);
1400     }
1401 
1402     gc_timer->register_gc_end();
1403     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1404   }
1405 
1406   return true;
1407 }
1408 
1409 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1410   // Currently, there is no facility in the do_full_collection(bool) API to notify
1411   // the caller that the collection did not succeed (e.g., because it was locked
1412   // out by the GC locker). So, right now, we'll ignore the return value.
1413   bool dummy = do_full_collection(true,                /* explicit_gc */
1414                                   clear_all_soft_refs);
1415 }
1416 
1417 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1418   // Include bytes that will be pre-allocated to support collections, as "used".
1419   const size_t used_after_gc = used();
1420   const size_t capacity_after_gc = capacity();
1421   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1422 
1423   // This is enforced in arguments.cpp.
1424   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1425          "otherwise the code below doesn't make sense");
1426 
1427   // We don't have floating point command-line arguments
1428   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1429   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1430   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1431   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1432 
1433   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1434   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1435 
1436   // We have to be careful here as these two calculations can overflow
1437   // 32-bit size_t's.
1438   double used_after_gc_d = (double) used_after_gc;
1439   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1440   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1441 
1442   // Let's make sure that they are both under the max heap size, which
1443   // by default will make them fit into a size_t.
1444   double desired_capacity_upper_bound = (double) max_heap_size;
1445   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1446                                     desired_capacity_upper_bound);
1447   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1448                                     desired_capacity_upper_bound);
1449 
1450   // We can now safely turn them into size_t's.
1451   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1452   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1453 
1454   // This assert only makes sense here, before we adjust them
1455   // with respect to the min and max heap size.
1456   assert(minimum_desired_capacity <= maximum_desired_capacity,
1457          "minimum_desired_capacity = " SIZE_FORMAT ", "
1458          "maximum_desired_capacity = " SIZE_FORMAT,
1459          minimum_desired_capacity, maximum_desired_capacity);
1460 
1461   // Should not be greater than the heap max size. No need to adjust
1462   // it with respect to the heap min size as it's a lower bound (i.e.,
1463   // we'll try to make the capacity larger than it, not smaller).
1464   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1465   // Should not be less than the heap min size. No need to adjust it
1466   // with respect to the heap max size as it's an upper bound (i.e.,
1467   // we'll try to make the capacity smaller than it, not greater).
1468   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1469 
1470   if (capacity_after_gc < minimum_desired_capacity) {
1471     // Don't expand unless it's significant
1472     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1473 
1474     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1475                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1476                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1477 
1478     expand(expand_bytes, _workers);
1479 
1480     // No expansion, now see if we want to shrink
1481   } else if (capacity_after_gc > maximum_desired_capacity) {
1482     // Capacity too large, compute shrinking size
1483     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1484 
1485     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1486                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1487                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1488 
1489     shrink(shrink_bytes);
1490   }
1491 }
1492 
1493 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1494                                                             AllocationContext_t context,
1495                                                             bool do_gc,
1496                                                             bool clear_all_soft_refs,
1497                                                             bool expect_null_mutator_alloc_region,
1498                                                             bool* gc_succeeded) {
1499   *gc_succeeded = true;
1500   // Let's attempt the allocation first.
1501   HeapWord* result =
1502     attempt_allocation_at_safepoint(word_size,
1503                                     context,
1504                                     expect_null_mutator_alloc_region);
1505   if (result != NULL) {
1506     assert(*gc_succeeded, "sanity");
1507     return result;
1508   }
1509 
1510   // In a G1 heap, we're supposed to keep allocation from failing by
1511   // incremental pauses.  Therefore, at least for now, we'll favor
1512   // expansion over collection.  (This might change in the future if we can
1513   // do something smarter than full collection to satisfy a failed alloc.)
1514   result = expand_and_allocate(word_size, context);
1515   if (result != NULL) {
1516     assert(*gc_succeeded, "sanity");
1517     return result;
1518   }
1519 
1520   if (do_gc) {
1521     // Expansion didn't work, we'll try to do a Full GC.
1522     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1523                                        clear_all_soft_refs);
1524   }
1525 
1526   return NULL;
1527 }
1528 
1529 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1530                                                      AllocationContext_t context,
1531                                                      bool* succeeded) {
1532   assert_at_safepoint(true /* should_be_vm_thread */);
1533 
1534   // Attempts to allocate followed by Full GC.
1535   HeapWord* result =
1536     satisfy_failed_allocation_helper(word_size,
1537                                      context,
1538                                      true,  /* do_gc */
1539                                      false, /* clear_all_soft_refs */
1540                                      false, /* expect_null_mutator_alloc_region */
1541                                      succeeded);
1542 
1543   if (result != NULL || !*succeeded) {
1544     return result;
1545   }
1546 
1547   // Attempts to allocate followed by Full GC that will collect all soft references.
1548   result = satisfy_failed_allocation_helper(word_size,
1549                                             context,
1550                                             true, /* do_gc */
1551                                             true, /* clear_all_soft_refs */
1552                                             true, /* expect_null_mutator_alloc_region */
1553                                             succeeded);
1554 
1555   if (result != NULL || !*succeeded) {
1556     return result;
1557   }
1558 
1559   // Attempts to allocate, no GC
1560   result = satisfy_failed_allocation_helper(word_size,
1561                                             context,
1562                                             false, /* do_gc */
1563                                             false, /* clear_all_soft_refs */
1564                                             true,  /* expect_null_mutator_alloc_region */
1565                                             succeeded);
1566 
1567   if (result != NULL) {
1568     assert(*succeeded, "sanity");
1569     return result;
1570   }
1571 
1572   assert(!collector_policy()->should_clear_all_soft_refs(),
1573          "Flag should have been handled and cleared prior to this point");
1574 
1575   // What else?  We might try synchronous finalization later.  If the total
1576   // space available is large enough for the allocation, then a more
1577   // complete compaction phase than we've tried so far might be
1578   // appropriate.
1579   assert(*succeeded, "sanity");
1580   return NULL;
1581 }
1582 
1583 // Attempting to expand the heap sufficiently
1584 // to support an allocation of the given "word_size".  If
1585 // successful, perform the allocation and return the address of the
1586 // allocated block, or else "NULL".
1587 
1588 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1589   assert_at_safepoint(true /* should_be_vm_thread */);
1590 
1591   _verifier->verify_region_sets_optional();
1592 
1593   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1594   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1595                             word_size * HeapWordSize);
1596 
1597 
1598   if (expand(expand_bytes, _workers)) {
1599     _hrm.verify_optional();
1600     _verifier->verify_region_sets_optional();
1601     return attempt_allocation_at_safepoint(word_size,
1602                                            context,
1603                                            false /* expect_null_mutator_alloc_region */);
1604   }
1605   return NULL;
1606 }
1607 
1608 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1609   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1610   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1611                                        HeapRegion::GrainBytes);
1612 
1613   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1614                             expand_bytes, aligned_expand_bytes);
1615 
1616   if (is_maximal_no_gc()) {
1617     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1618     return false;
1619   }
1620 
1621   double expand_heap_start_time_sec = os::elapsedTime();
1622   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1623   assert(regions_to_expand > 0, "Must expand by at least one region");
1624 
1625   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1626   if (expand_time_ms != NULL) {
1627     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1628   }
1629 
1630   if (expanded_by > 0) {
1631     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1632     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1633     g1_policy()->record_new_heap_size(num_regions());
1634   } else {
1635     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1636 
1637     // The expansion of the virtual storage space was unsuccessful.
1638     // Let's see if it was because we ran out of swap.
1639     if (G1ExitOnExpansionFailure &&
1640         _hrm.available() >= regions_to_expand) {
1641       // We had head room...
1642       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1643     }
1644   }
1645   return regions_to_expand > 0;
1646 }
1647 
1648 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1649   size_t aligned_shrink_bytes =
1650     ReservedSpace::page_align_size_down(shrink_bytes);
1651   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1652                                          HeapRegion::GrainBytes);
1653   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1654 
1655   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1656   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1657 
1658 
1659   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1660                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1661   if (num_regions_removed > 0) {
1662     g1_policy()->record_new_heap_size(num_regions());
1663   } else {
1664     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1665   }
1666 }
1667 
1668 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1669   _verifier->verify_region_sets_optional();
1670 
1671   // We should only reach here at the end of a Full GC which means we
1672   // should not not be holding to any GC alloc regions. The method
1673   // below will make sure of that and do any remaining clean up.
1674   _allocator->abandon_gc_alloc_regions();
1675 
1676   // Instead of tearing down / rebuilding the free lists here, we
1677   // could instead use the remove_all_pending() method on free_list to
1678   // remove only the ones that we need to remove.
1679   tear_down_region_sets(true /* free_list_only */);
1680   shrink_helper(shrink_bytes);
1681   rebuild_region_sets(true /* free_list_only */);
1682 
1683   _hrm.verify_optional();
1684   _verifier->verify_region_sets_optional();
1685 }
1686 
1687 // Public methods.
1688 
1689 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1690   CollectedHeap(),
1691   _collector_policy(collector_policy),
1692   _g1_policy(create_g1_policy()),
1693   _collection_set(this, _g1_policy),
1694   _dirty_card_queue_set(false),
1695   _is_alive_closure_cm(this),
1696   _is_alive_closure_stw(this),
1697   _ref_processor_cm(NULL),
1698   _ref_processor_stw(NULL),
1699   _bot(NULL),
1700   _hot_card_cache(NULL),
1701   _g1_rem_set(NULL),
1702   _cg1r(NULL),
1703   _g1mm(NULL),
1704   _refine_cte_cl(NULL),
1705   _preserved_marks_set(true /* in_c_heap */),
1706   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1707   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1708   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1709   _humongous_reclaim_candidates(),
1710   _has_humongous_reclaim_candidates(false),
1711   _archive_allocator(NULL),
1712   _free_regions_coming(false),
1713   _gc_time_stamp(0),
1714   _summary_bytes_used(0),
1715   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1716   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1717   _expand_heap_after_alloc_failure(true),
1718   _old_marking_cycles_started(0),
1719   _old_marking_cycles_completed(0),
1720   _in_cset_fast_test(),
1721   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1722   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1723 
1724   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1725                           /* are_GC_task_threads */true,
1726                           /* are_ConcurrentGC_threads */false);
1727   _workers->initialize_workers();
1728   _verifier = new G1HeapVerifier(this);
1729 
1730   _allocator = G1Allocator::create_allocator(this);
1731 
1732   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1733 
1734   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1735 
1736   // Override the default _filler_array_max_size so that no humongous filler
1737   // objects are created.
1738   _filler_array_max_size = _humongous_object_threshold_in_words;
1739 
1740   uint n_queues = ParallelGCThreads;
1741   _task_queues = new RefToScanQueueSet(n_queues);
1742 
1743   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1744 
1745   for (uint i = 0; i < n_queues; i++) {
1746     RefToScanQueue* q = new RefToScanQueue();
1747     q->initialize();
1748     _task_queues->register_queue(i, q);
1749     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1750   }
1751 
1752   // Initialize the G1EvacuationFailureALot counters and flags.
1753   NOT_PRODUCT(reset_evacuation_should_fail();)
1754 
1755   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1756 }
1757 
1758 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1759                                                                  size_t size,
1760                                                                  size_t translation_factor) {
1761   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1762   // Allocate a new reserved space, preferring to use large pages.
1763   ReservedSpace rs(size, preferred_page_size);
1764   G1RegionToSpaceMapper* result  =
1765     G1RegionToSpaceMapper::create_mapper(rs,
1766                                          size,
1767                                          rs.alignment(),
1768                                          HeapRegion::GrainBytes,
1769                                          translation_factor,
1770                                          mtGC);
1771 
1772   os::trace_page_sizes_for_requested_size(description,
1773                                           size,
1774                                           preferred_page_size,
1775                                           rs.alignment(),
1776                                           rs.base(),
1777                                           rs.size());
1778 
1779   return result;
1780 }
1781 
1782 jint G1CollectedHeap::initialize() {
1783   CollectedHeap::pre_initialize();
1784   os::enable_vtime();
1785 
1786   // Necessary to satisfy locking discipline assertions.
1787 
1788   MutexLocker x(Heap_lock);
1789 
1790   // While there are no constraints in the GC code that HeapWordSize
1791   // be any particular value, there are multiple other areas in the
1792   // system which believe this to be true (e.g. oop->object_size in some
1793   // cases incorrectly returns the size in wordSize units rather than
1794   // HeapWordSize).
1795   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1796 
1797   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1798   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1799   size_t heap_alignment = collector_policy()->heap_alignment();
1800 
1801   // Ensure that the sizes are properly aligned.
1802   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1803   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1804   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1805 
1806   _refine_cte_cl = new RefineCardTableEntryClosure();
1807 
1808   jint ecode = JNI_OK;
1809   _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1810   if (_cg1r == NULL) {
1811     return ecode;
1812   }
1813 
1814   // Reserve the maximum.
1815 
1816   // When compressed oops are enabled, the preferred heap base
1817   // is calculated by subtracting the requested size from the
1818   // 32Gb boundary and using the result as the base address for
1819   // heap reservation. If the requested size is not aligned to
1820   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1821   // into the ReservedHeapSpace constructor) then the actual
1822   // base of the reserved heap may end up differing from the
1823   // address that was requested (i.e. the preferred heap base).
1824   // If this happens then we could end up using a non-optimal
1825   // compressed oops mode.
1826 
1827   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1828                                                  heap_alignment);
1829 
1830   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1831 
1832   // Create the barrier set for the entire reserved region.
1833   G1SATBCardTableLoggingModRefBS* bs
1834     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1835   bs->initialize();
1836   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1837   set_barrier_set(bs);
1838 
1839   // Create the hot card cache.
1840   _hot_card_cache = new G1HotCardCache(this);
1841 
1842   // Also create a G1 rem set.
1843   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1844 
1845   // Carve out the G1 part of the heap.
1846   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1847   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1848   G1RegionToSpaceMapper* heap_storage =
1849     G1RegionToSpaceMapper::create_mapper(g1_rs,
1850                                          g1_rs.size(),
1851                                          page_size,
1852                                          HeapRegion::GrainBytes,
1853                                          1,
1854                                          mtJavaHeap);
1855   os::trace_page_sizes("Heap",
1856                        collector_policy()->min_heap_byte_size(),
1857                        max_byte_size,
1858                        page_size,
1859                        heap_rs.base(),
1860                        heap_rs.size());
1861   heap_storage->set_mapping_changed_listener(&_listener);
1862 
1863   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1864   G1RegionToSpaceMapper* bot_storage =
1865     create_aux_memory_mapper("Block Offset Table",
1866                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1867                              G1BlockOffsetTable::heap_map_factor());
1868 
1869   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1870   G1RegionToSpaceMapper* cardtable_storage =
1871     create_aux_memory_mapper("Card Table",
1872                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1873                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1874 
1875   G1RegionToSpaceMapper* card_counts_storage =
1876     create_aux_memory_mapper("Card Counts Table",
1877                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1878                              G1CardCounts::heap_map_factor());
1879 
1880   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1881   G1RegionToSpaceMapper* prev_bitmap_storage =
1882     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1883   G1RegionToSpaceMapper* next_bitmap_storage =
1884     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1885 
1886   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1887   g1_barrier_set()->initialize(cardtable_storage);
1888   // Do later initialization work for concurrent refinement.
1889   _hot_card_cache->initialize(card_counts_storage);
1890 
1891   // 6843694 - ensure that the maximum region index can fit
1892   // in the remembered set structures.
1893   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1894   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1895 
1896   g1_rem_set()->initialize(max_capacity(), max_regions());
1897 
1898   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1899   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1900   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1901             "too many cards per region");
1902 
1903   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1904 
1905   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1906 
1907   {
1908     HeapWord* start = _hrm.reserved().start();
1909     HeapWord* end = _hrm.reserved().end();
1910     size_t granularity = HeapRegion::GrainBytes;
1911 
1912     _in_cset_fast_test.initialize(start, end, granularity);
1913     _humongous_reclaim_candidates.initialize(start, end, granularity);
1914   }
1915 
1916   // Create the G1ConcurrentMark data structure and thread.
1917   // (Must do this late, so that "max_regions" is defined.)
1918   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1919   if (_cm == NULL || !_cm->completed_initialization()) {
1920     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1921     return JNI_ENOMEM;
1922   }
1923   _cmThread = _cm->cmThread();
1924 
1925   // Now expand into the initial heap size.
1926   if (!expand(init_byte_size, _workers)) {
1927     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1928     return JNI_ENOMEM;
1929   }
1930 
1931   // Perform any initialization actions delegated to the policy.
1932   g1_policy()->init(this, &_collection_set);
1933 
1934   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1935                                                SATB_Q_FL_lock,
1936                                                G1SATBProcessCompletedThreshold,
1937                                                Shared_SATB_Q_lock);
1938 
1939   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1940                                                 DirtyCardQ_CBL_mon,
1941                                                 DirtyCardQ_FL_lock,
1942                                                 (int)concurrent_g1_refine()->yellow_zone(),
1943                                                 (int)concurrent_g1_refine()->red_zone(),
1944                                                 Shared_DirtyCardQ_lock,
1945                                                 NULL,  // fl_owner
1946                                                 true); // init_free_ids
1947 
1948   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1949                                     DirtyCardQ_CBL_mon,
1950                                     DirtyCardQ_FL_lock,
1951                                     -1, // never trigger processing
1952                                     -1, // no limit on length
1953                                     Shared_DirtyCardQ_lock,
1954                                     &JavaThread::dirty_card_queue_set());
1955 
1956   // Here we allocate the dummy HeapRegion that is required by the
1957   // G1AllocRegion class.
1958   HeapRegion* dummy_region = _hrm.get_dummy_region();
1959 
1960   // We'll re-use the same region whether the alloc region will
1961   // require BOT updates or not and, if it doesn't, then a non-young
1962   // region will complain that it cannot support allocations without
1963   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1964   dummy_region->set_eden();
1965   // Make sure it's full.
1966   dummy_region->set_top(dummy_region->end());
1967   G1AllocRegion::setup(this, dummy_region);
1968 
1969   _allocator->init_mutator_alloc_region();
1970 
1971   // Do create of the monitoring and management support so that
1972   // values in the heap have been properly initialized.
1973   _g1mm = new G1MonitoringSupport(this);
1974 
1975   G1StringDedup::initialize();
1976 
1977   _preserved_marks_set.init(ParallelGCThreads);
1978 
1979   _collection_set.initialize(max_regions());
1980 
1981   return JNI_OK;
1982 }
1983 
1984 void G1CollectedHeap::stop() {
1985   // Stop all concurrent threads. We do this to make sure these threads
1986   // do not continue to execute and access resources (e.g. logging)
1987   // that are destroyed during shutdown.
1988   _cg1r->stop();
1989   _cmThread->stop();
1990   if (G1StringDedup::is_enabled()) {
1991     G1StringDedup::stop();
1992   }
1993 }
1994 
1995 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1996   return HeapRegion::max_region_size();
1997 }
1998 
1999 void G1CollectedHeap::post_initialize() {
2000   ref_processing_init();
2001 }
2002 
2003 void G1CollectedHeap::ref_processing_init() {
2004   // Reference processing in G1 currently works as follows:
2005   //
2006   // * There are two reference processor instances. One is
2007   //   used to record and process discovered references
2008   //   during concurrent marking; the other is used to
2009   //   record and process references during STW pauses
2010   //   (both full and incremental).
2011   // * Both ref processors need to 'span' the entire heap as
2012   //   the regions in the collection set may be dotted around.
2013   //
2014   // * For the concurrent marking ref processor:
2015   //   * Reference discovery is enabled at initial marking.
2016   //   * Reference discovery is disabled and the discovered
2017   //     references processed etc during remarking.
2018   //   * Reference discovery is MT (see below).
2019   //   * Reference discovery requires a barrier (see below).
2020   //   * Reference processing may or may not be MT
2021   //     (depending on the value of ParallelRefProcEnabled
2022   //     and ParallelGCThreads).
2023   //   * A full GC disables reference discovery by the CM
2024   //     ref processor and abandons any entries on it's
2025   //     discovered lists.
2026   //
2027   // * For the STW processor:
2028   //   * Non MT discovery is enabled at the start of a full GC.
2029   //   * Processing and enqueueing during a full GC is non-MT.
2030   //   * During a full GC, references are processed after marking.
2031   //
2032   //   * Discovery (may or may not be MT) is enabled at the start
2033   //     of an incremental evacuation pause.
2034   //   * References are processed near the end of a STW evacuation pause.
2035   //   * For both types of GC:
2036   //     * Discovery is atomic - i.e. not concurrent.
2037   //     * Reference discovery will not need a barrier.
2038 
2039   MemRegion mr = reserved_region();
2040 
2041   // Concurrent Mark ref processor
2042   _ref_processor_cm =
2043     new ReferenceProcessor(mr,    // span
2044                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2045                                 // mt processing
2046                            ParallelGCThreads,
2047                                 // degree of mt processing
2048                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2049                                 // mt discovery
2050                            MAX2(ParallelGCThreads, ConcGCThreads),
2051                                 // degree of mt discovery
2052                            false,
2053                                 // Reference discovery is not atomic
2054                            &_is_alive_closure_cm);
2055                                 // is alive closure
2056                                 // (for efficiency/performance)
2057 
2058   // STW ref processor
2059   _ref_processor_stw =
2060     new ReferenceProcessor(mr,    // span
2061                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2062                                 // mt processing
2063                            ParallelGCThreads,
2064                                 // degree of mt processing
2065                            (ParallelGCThreads > 1),
2066                                 // mt discovery
2067                            ParallelGCThreads,
2068                                 // degree of mt discovery
2069                            true,
2070                                 // Reference discovery is atomic
2071                            &_is_alive_closure_stw);
2072                                 // is alive closure
2073                                 // (for efficiency/performance)
2074 }
2075 
2076 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2077   return _collector_policy;
2078 }
2079 
2080 size_t G1CollectedHeap::capacity() const {
2081   return _hrm.length() * HeapRegion::GrainBytes;
2082 }
2083 
2084 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2085   hr->reset_gc_time_stamp();
2086 }
2087 
2088 #ifndef PRODUCT
2089 
2090 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2091 private:
2092   unsigned _gc_time_stamp;
2093   bool _failures;
2094 
2095 public:
2096   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2097     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2098 
2099   virtual bool doHeapRegion(HeapRegion* hr) {
2100     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2101     if (_gc_time_stamp != region_gc_time_stamp) {
2102       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2103                             region_gc_time_stamp, _gc_time_stamp);
2104       _failures = true;
2105     }
2106     return false;
2107   }
2108 
2109   bool failures() { return _failures; }
2110 };
2111 
2112 void G1CollectedHeap::check_gc_time_stamps() {
2113   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2114   heap_region_iterate(&cl);
2115   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2116 }
2117 #endif // PRODUCT
2118 
2119 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2120   _hot_card_cache->drain(cl, worker_i);
2121 }
2122 
2123 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2124   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2125   size_t n_completed_buffers = 0;
2126   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2127     n_completed_buffers++;
2128   }
2129   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2130   dcqs.clear_n_completed_buffers();
2131   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2132 }
2133 
2134 // Computes the sum of the storage used by the various regions.
2135 size_t G1CollectedHeap::used() const {
2136   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2137   if (_archive_allocator != NULL) {
2138     result += _archive_allocator->used();
2139   }
2140   return result;
2141 }
2142 
2143 size_t G1CollectedHeap::used_unlocked() const {
2144   return _summary_bytes_used;
2145 }
2146 
2147 class SumUsedClosure: public HeapRegionClosure {
2148   size_t _used;
2149 public:
2150   SumUsedClosure() : _used(0) {}
2151   bool doHeapRegion(HeapRegion* r) {
2152     _used += r->used();
2153     return false;
2154   }
2155   size_t result() { return _used; }
2156 };
2157 
2158 size_t G1CollectedHeap::recalculate_used() const {
2159   double recalculate_used_start = os::elapsedTime();
2160 
2161   SumUsedClosure blk;
2162   heap_region_iterate(&blk);
2163 
2164   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2165   return blk.result();
2166 }
2167 
2168 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2169   switch (cause) {
2170     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2171     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2172     case GCCause::_update_allocation_context_stats_inc: return true;
2173     case GCCause::_wb_conc_mark:                        return true;
2174     default :                                           return false;
2175   }
2176 }
2177 
2178 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2179   switch (cause) {
2180     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2181     case GCCause::_g1_humongous_allocation: return true;
2182     default:                                return is_user_requested_concurrent_full_gc(cause);
2183   }
2184 }
2185 
2186 #ifndef PRODUCT
2187 void G1CollectedHeap::allocate_dummy_regions() {
2188   // Let's fill up most of the region
2189   size_t word_size = HeapRegion::GrainWords - 1024;
2190   // And as a result the region we'll allocate will be humongous.
2191   guarantee(is_humongous(word_size), "sanity");
2192 
2193   // _filler_array_max_size is set to humongous object threshold
2194   // but temporarily change it to use CollectedHeap::fill_with_object().
2195   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2196 
2197   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2198     // Let's use the existing mechanism for the allocation
2199     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2200                                                  AllocationContext::system());
2201     if (dummy_obj != NULL) {
2202       MemRegion mr(dummy_obj, word_size);
2203       CollectedHeap::fill_with_object(mr);
2204     } else {
2205       // If we can't allocate once, we probably cannot allocate
2206       // again. Let's get out of the loop.
2207       break;
2208     }
2209   }
2210 }
2211 #endif // !PRODUCT
2212 
2213 void G1CollectedHeap::increment_old_marking_cycles_started() {
2214   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2215          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2216          "Wrong marking cycle count (started: %d, completed: %d)",
2217          _old_marking_cycles_started, _old_marking_cycles_completed);
2218 
2219   _old_marking_cycles_started++;
2220 }
2221 
2222 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2223   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2224 
2225   // We assume that if concurrent == true, then the caller is a
2226   // concurrent thread that was joined the Suspendible Thread
2227   // Set. If there's ever a cheap way to check this, we should add an
2228   // assert here.
2229 
2230   // Given that this method is called at the end of a Full GC or of a
2231   // concurrent cycle, and those can be nested (i.e., a Full GC can
2232   // interrupt a concurrent cycle), the number of full collections
2233   // completed should be either one (in the case where there was no
2234   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2235   // behind the number of full collections started.
2236 
2237   // This is the case for the inner caller, i.e. a Full GC.
2238   assert(concurrent ||
2239          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2240          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2241          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2242          "is inconsistent with _old_marking_cycles_completed = %u",
2243          _old_marking_cycles_started, _old_marking_cycles_completed);
2244 
2245   // This is the case for the outer caller, i.e. the concurrent cycle.
2246   assert(!concurrent ||
2247          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2248          "for outer caller (concurrent cycle): "
2249          "_old_marking_cycles_started = %u "
2250          "is inconsistent with _old_marking_cycles_completed = %u",
2251          _old_marking_cycles_started, _old_marking_cycles_completed);
2252 
2253   _old_marking_cycles_completed += 1;
2254 
2255   // We need to clear the "in_progress" flag in the CM thread before
2256   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2257   // is set) so that if a waiter requests another System.gc() it doesn't
2258   // incorrectly see that a marking cycle is still in progress.
2259   if (concurrent) {
2260     _cmThread->set_idle();
2261   }
2262 
2263   // This notify_all() will ensure that a thread that called
2264   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2265   // and it's waiting for a full GC to finish will be woken up. It is
2266   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2267   FullGCCount_lock->notify_all();
2268 }
2269 
2270 void G1CollectedHeap::collect(GCCause::Cause cause) {
2271   assert_heap_not_locked();
2272 
2273   uint gc_count_before;
2274   uint old_marking_count_before;
2275   uint full_gc_count_before;
2276   bool retry_gc;
2277 
2278   do {
2279     retry_gc = false;
2280 
2281     {
2282       MutexLocker ml(Heap_lock);
2283 
2284       // Read the GC count while holding the Heap_lock
2285       gc_count_before = total_collections();
2286       full_gc_count_before = total_full_collections();
2287       old_marking_count_before = _old_marking_cycles_started;
2288     }
2289 
2290     if (should_do_concurrent_full_gc(cause)) {
2291       // Schedule an initial-mark evacuation pause that will start a
2292       // concurrent cycle. We're setting word_size to 0 which means that
2293       // we are not requesting a post-GC allocation.
2294       VM_G1IncCollectionPause op(gc_count_before,
2295                                  0,     /* word_size */
2296                                  true,  /* should_initiate_conc_mark */
2297                                  g1_policy()->max_pause_time_ms(),
2298                                  cause);
2299       op.set_allocation_context(AllocationContext::current());
2300 
2301       VMThread::execute(&op);
2302       if (!op.pause_succeeded()) {
2303         if (old_marking_count_before == _old_marking_cycles_started) {
2304           retry_gc = op.should_retry_gc();
2305         } else {
2306           // A Full GC happened while we were trying to schedule the
2307           // initial-mark GC. No point in starting a new cycle given
2308           // that the whole heap was collected anyway.
2309         }
2310 
2311         if (retry_gc) {
2312           if (GCLocker::is_active_and_needs_gc()) {
2313             GCLocker::stall_until_clear();
2314           }
2315         }
2316       }
2317     } else {
2318       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2319           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2320 
2321         // Schedule a standard evacuation pause. We're setting word_size
2322         // to 0 which means that we are not requesting a post-GC allocation.
2323         VM_G1IncCollectionPause op(gc_count_before,
2324                                    0,     /* word_size */
2325                                    false, /* should_initiate_conc_mark */
2326                                    g1_policy()->max_pause_time_ms(),
2327                                    cause);
2328         VMThread::execute(&op);
2329       } else {
2330         // Schedule a Full GC.
2331         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2332         VMThread::execute(&op);
2333       }
2334     }
2335   } while (retry_gc);
2336 }
2337 
2338 bool G1CollectedHeap::is_in(const void* p) const {
2339   if (_hrm.reserved().contains(p)) {
2340     // Given that we know that p is in the reserved space,
2341     // heap_region_containing() should successfully
2342     // return the containing region.
2343     HeapRegion* hr = heap_region_containing(p);
2344     return hr->is_in(p);
2345   } else {
2346     return false;
2347   }
2348 }
2349 
2350 #ifdef ASSERT
2351 bool G1CollectedHeap::is_in_exact(const void* p) const {
2352   bool contains = reserved_region().contains(p);
2353   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2354   if (contains && available) {
2355     return true;
2356   } else {
2357     return false;
2358   }
2359 }
2360 #endif
2361 
2362 // Iteration functions.
2363 
2364 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2365 
2366 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2367   ExtendedOopClosure* _cl;
2368 public:
2369   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2370   bool doHeapRegion(HeapRegion* r) {
2371     if (!r->is_continues_humongous()) {
2372       r->oop_iterate(_cl);
2373     }
2374     return false;
2375   }
2376 };
2377 
2378 // Iterates an ObjectClosure over all objects within a HeapRegion.
2379 
2380 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2381   ObjectClosure* _cl;
2382 public:
2383   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2384   bool doHeapRegion(HeapRegion* r) {
2385     if (!r->is_continues_humongous()) {
2386       r->object_iterate(_cl);
2387     }
2388     return false;
2389   }
2390 };
2391 
2392 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2393   IterateObjectClosureRegionClosure blk(cl);
2394   heap_region_iterate(&blk);
2395 }
2396 
2397 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2398   _hrm.iterate(cl);
2399 }
2400 
2401 void
2402 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2403                                          uint worker_id,
2404                                          HeapRegionClaimer *hrclaimer,
2405                                          bool concurrent) const {
2406   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2407 }
2408 
2409 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2410   _collection_set.iterate(cl);
2411 }
2412 
2413 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2414   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2415 }
2416 
2417 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2418   HeapRegion* result = _hrm.next_region_in_heap(from);
2419   while (result != NULL && result->is_pinned()) {
2420     result = _hrm.next_region_in_heap(result);
2421   }
2422   return result;
2423 }
2424 
2425 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2426   HeapRegion* hr = heap_region_containing(addr);
2427   return hr->block_start(addr);
2428 }
2429 
2430 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2431   HeapRegion* hr = heap_region_containing(addr);
2432   return hr->block_size(addr);
2433 }
2434 
2435 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2436   HeapRegion* hr = heap_region_containing(addr);
2437   return hr->block_is_obj(addr);
2438 }
2439 
2440 bool G1CollectedHeap::supports_tlab_allocation() const {
2441   return true;
2442 }
2443 
2444 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2445   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2446 }
2447 
2448 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2449   return _eden.length() * HeapRegion::GrainBytes;
2450 }
2451 
2452 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2453 // must be equal to the humongous object limit.
2454 size_t G1CollectedHeap::max_tlab_size() const {
2455   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2456 }
2457 
2458 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2459   AllocationContext_t context = AllocationContext::current();
2460   return _allocator->unsafe_max_tlab_alloc(context);
2461 }
2462 
2463 size_t G1CollectedHeap::max_capacity() const {
2464   return _hrm.reserved().byte_size();
2465 }
2466 
2467 jlong G1CollectedHeap::millis_since_last_gc() {
2468   // See the notes in GenCollectedHeap::millis_since_last_gc()
2469   // for more information about the implementation.
2470   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2471     _g1_policy->collection_pause_end_millis();
2472   if (ret_val < 0) {
2473     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2474       ". returning zero instead.", ret_val);
2475     return 0;
2476   }
2477   return ret_val;
2478 }
2479 
2480 void G1CollectedHeap::prepare_for_verify() {
2481   _verifier->prepare_for_verify();
2482 }
2483 
2484 void G1CollectedHeap::verify(VerifyOption vo) {
2485   _verifier->verify(vo);
2486 }
2487 
2488 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2489   return true;
2490 }
2491 
2492 const char* const* G1CollectedHeap::concurrent_phases() const {
2493   return _cmThread->concurrent_phases();
2494 }
2495 
2496 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2497   return _cmThread->request_concurrent_phase(phase);
2498 }
2499 
2500 class PrintRegionClosure: public HeapRegionClosure {
2501   outputStream* _st;
2502 public:
2503   PrintRegionClosure(outputStream* st) : _st(st) {}
2504   bool doHeapRegion(HeapRegion* r) {
2505     r->print_on(_st);
2506     return false;
2507   }
2508 };
2509 
2510 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2511                                        const HeapRegion* hr,
2512                                        const VerifyOption vo) const {
2513   switch (vo) {
2514   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2515   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2516   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2517   default:                            ShouldNotReachHere();
2518   }
2519   return false; // keep some compilers happy
2520 }
2521 
2522 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2523                                        const VerifyOption vo) const {
2524   switch (vo) {
2525   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2526   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2527   case VerifyOption_G1UseMarkWord: {
2528     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2529     return !obj->is_gc_marked() && !hr->is_archive();
2530   }
2531   default:                            ShouldNotReachHere();
2532   }
2533   return false; // keep some compilers happy
2534 }
2535 
2536 void G1CollectedHeap::print_heap_regions() const {
2537   Log(gc, heap, region) log;
2538   if (log.is_trace()) {
2539     ResourceMark rm;
2540     print_regions_on(log.trace_stream());
2541   }
2542 }
2543 
2544 void G1CollectedHeap::print_on(outputStream* st) const {
2545   st->print(" %-20s", "garbage-first heap");
2546   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2547             capacity()/K, used_unlocked()/K);
2548   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2549             p2i(_hrm.reserved().start()),
2550             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2551             p2i(_hrm.reserved().end()));
2552   st->cr();
2553   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2554   uint young_regions = young_regions_count();
2555   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2556             (size_t) young_regions * HeapRegion::GrainBytes / K);
2557   uint survivor_regions = survivor_regions_count();
2558   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2559             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2560   st->cr();
2561   MetaspaceAux::print_on(st);
2562 }
2563 
2564 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2565   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2566                "HS=humongous(starts), HC=humongous(continues), "
2567                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2568                "AC=allocation context, "
2569                "TAMS=top-at-mark-start (previous, next)");
2570   PrintRegionClosure blk(st);
2571   heap_region_iterate(&blk);
2572 }
2573 
2574 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2575   print_on(st);
2576 
2577   // Print the per-region information.
2578   print_regions_on(st);
2579 }
2580 
2581 void G1CollectedHeap::print_on_error(outputStream* st) const {
2582   this->CollectedHeap::print_on_error(st);
2583 
2584   if (_cm != NULL) {
2585     st->cr();
2586     _cm->print_on_error(st);
2587   }
2588 }
2589 
2590 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2591   workers()->print_worker_threads_on(st);
2592   _cmThread->print_on(st);
2593   st->cr();
2594   _cm->print_worker_threads_on(st);
2595   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2596   if (G1StringDedup::is_enabled()) {
2597     G1StringDedup::print_worker_threads_on(st);
2598   }
2599 }
2600 
2601 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2602   workers()->threads_do(tc);
2603   tc->do_thread(_cmThread);
2604   _cm->threads_do(tc);
2605   _cg1r->threads_do(tc); // also iterates over the sample thread
2606   if (G1StringDedup::is_enabled()) {
2607     G1StringDedup::threads_do(tc);
2608   }
2609 }
2610 
2611 void G1CollectedHeap::print_tracing_info() const {
2612   g1_rem_set()->print_summary_info();
2613   concurrent_mark()->print_summary_info();
2614 }
2615 
2616 #ifndef PRODUCT
2617 // Helpful for debugging RSet issues.
2618 
2619 class PrintRSetsClosure : public HeapRegionClosure {
2620 private:
2621   const char* _msg;
2622   size_t _occupied_sum;
2623 
2624 public:
2625   bool doHeapRegion(HeapRegion* r) {
2626     HeapRegionRemSet* hrrs = r->rem_set();
2627     size_t occupied = hrrs->occupied();
2628     _occupied_sum += occupied;
2629 
2630     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2631     if (occupied == 0) {
2632       tty->print_cr("  RSet is empty");
2633     } else {
2634       hrrs->print();
2635     }
2636     tty->print_cr("----------");
2637     return false;
2638   }
2639 
2640   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2641     tty->cr();
2642     tty->print_cr("========================================");
2643     tty->print_cr("%s", msg);
2644     tty->cr();
2645   }
2646 
2647   ~PrintRSetsClosure() {
2648     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2649     tty->print_cr("========================================");
2650     tty->cr();
2651   }
2652 };
2653 
2654 void G1CollectedHeap::print_cset_rsets() {
2655   PrintRSetsClosure cl("Printing CSet RSets");
2656   collection_set_iterate(&cl);
2657 }
2658 
2659 void G1CollectedHeap::print_all_rsets() {
2660   PrintRSetsClosure cl("Printing All RSets");;
2661   heap_region_iterate(&cl);
2662 }
2663 #endif // PRODUCT
2664 
2665 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2666 
2667   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2668   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2669   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2670 
2671   size_t eden_capacity_bytes =
2672     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2673 
2674   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2675   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2676                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2677 }
2678 
2679 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2680   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2681                        stats->unused(), stats->used(), stats->region_end_waste(),
2682                        stats->regions_filled(), stats->direct_allocated(),
2683                        stats->failure_used(), stats->failure_waste());
2684 }
2685 
2686 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2687   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2688   gc_tracer->report_gc_heap_summary(when, heap_summary);
2689 
2690   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2691   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2692 }
2693 
2694 G1CollectedHeap* G1CollectedHeap::heap() {
2695   CollectedHeap* heap = Universe::heap();
2696   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2697   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2698   return (G1CollectedHeap*)heap;
2699 }
2700 
2701 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2702   // always_do_update_barrier = false;
2703   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2704 
2705   double start = os::elapsedTime();
2706   // Fill TLAB's and such
2707   accumulate_statistics_all_tlabs();
2708   ensure_parsability(true);
2709   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2710 
2711   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2712 }
2713 
2714 void G1CollectedHeap::gc_epilogue(bool full) {
2715   // we are at the end of the GC. Total collections has already been increased.
2716   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2717 
2718   // FIXME: what is this about?
2719   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2720   // is set.
2721 #if defined(COMPILER2) || INCLUDE_JVMCI
2722   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2723 #endif
2724   // always_do_update_barrier = true;
2725 
2726   double start = os::elapsedTime();
2727   resize_all_tlabs();
2728   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2729 
2730   allocation_context_stats().update(full);
2731 
2732   // We have just completed a GC. Update the soft reference
2733   // policy with the new heap occupancy
2734   Universe::update_heap_info_at_gc();
2735 }
2736 
2737 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2738                                                uint gc_count_before,
2739                                                bool* succeeded,
2740                                                GCCause::Cause gc_cause) {
2741   assert_heap_not_locked_and_not_at_safepoint();
2742   VM_G1IncCollectionPause op(gc_count_before,
2743                              word_size,
2744                              false, /* should_initiate_conc_mark */
2745                              g1_policy()->max_pause_time_ms(),
2746                              gc_cause);
2747 
2748   op.set_allocation_context(AllocationContext::current());
2749   VMThread::execute(&op);
2750 
2751   HeapWord* result = op.result();
2752   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2753   assert(result == NULL || ret_succeeded,
2754          "the result should be NULL if the VM did not succeed");
2755   *succeeded = ret_succeeded;
2756 
2757   assert_heap_not_locked();
2758   return result;
2759 }
2760 
2761 void
2762 G1CollectedHeap::doConcurrentMark() {
2763   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2764   if (!_cmThread->in_progress()) {
2765     _cmThread->set_started();
2766     CGC_lock->notify();
2767   }
2768 }
2769 
2770 size_t G1CollectedHeap::pending_card_num() {
2771   size_t extra_cards = 0;
2772   JavaThread *curr = Threads::first();
2773   while (curr != NULL) {
2774     DirtyCardQueue& dcq = curr->dirty_card_queue();
2775     extra_cards += dcq.size();
2776     curr = curr->next();
2777   }
2778   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2779   size_t buffer_size = dcqs.buffer_size();
2780   size_t buffer_num = dcqs.completed_buffers_num();
2781 
2782   return buffer_size * buffer_num + extra_cards;
2783 }
2784 
2785 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2786  private:
2787   size_t _total_humongous;
2788   size_t _candidate_humongous;
2789 
2790   DirtyCardQueue _dcq;
2791 
2792   // We don't nominate objects with many remembered set entries, on
2793   // the assumption that such objects are likely still live.
2794   bool is_remset_small(HeapRegion* region) const {
2795     HeapRegionRemSet* const rset = region->rem_set();
2796     return G1EagerReclaimHumongousObjectsWithStaleRefs
2797       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2798       : rset->is_empty();
2799   }
2800 
2801   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2802     assert(region->is_starts_humongous(), "Must start a humongous object");
2803 
2804     oop obj = oop(region->bottom());
2805 
2806     // Dead objects cannot be eager reclaim candidates. Due to class
2807     // unloading it is unsafe to query their classes so we return early.
2808     if (heap->is_obj_dead(obj, region)) {
2809       return false;
2810     }
2811 
2812     // Candidate selection must satisfy the following constraints
2813     // while concurrent marking is in progress:
2814     //
2815     // * In order to maintain SATB invariants, an object must not be
2816     // reclaimed if it was allocated before the start of marking and
2817     // has not had its references scanned.  Such an object must have
2818     // its references (including type metadata) scanned to ensure no
2819     // live objects are missed by the marking process.  Objects
2820     // allocated after the start of concurrent marking don't need to
2821     // be scanned.
2822     //
2823     // * An object must not be reclaimed if it is on the concurrent
2824     // mark stack.  Objects allocated after the start of concurrent
2825     // marking are never pushed on the mark stack.
2826     //
2827     // Nominating only objects allocated after the start of concurrent
2828     // marking is sufficient to meet both constraints.  This may miss
2829     // some objects that satisfy the constraints, but the marking data
2830     // structures don't support efficiently performing the needed
2831     // additional tests or scrubbing of the mark stack.
2832     //
2833     // However, we presently only nominate is_typeArray() objects.
2834     // A humongous object containing references induces remembered
2835     // set entries on other regions.  In order to reclaim such an
2836     // object, those remembered sets would need to be cleaned up.
2837     //
2838     // We also treat is_typeArray() objects specially, allowing them
2839     // to be reclaimed even if allocated before the start of
2840     // concurrent mark.  For this we rely on mark stack insertion to
2841     // exclude is_typeArray() objects, preventing reclaiming an object
2842     // that is in the mark stack.  We also rely on the metadata for
2843     // such objects to be built-in and so ensured to be kept live.
2844     // Frequent allocation and drop of large binary blobs is an
2845     // important use case for eager reclaim, and this special handling
2846     // may reduce needed headroom.
2847 
2848     return obj->is_typeArray() && is_remset_small(region);
2849   }
2850 
2851  public:
2852   RegisterHumongousWithInCSetFastTestClosure()
2853   : _total_humongous(0),
2854     _candidate_humongous(0),
2855     _dcq(&JavaThread::dirty_card_queue_set()) {
2856   }
2857 
2858   virtual bool doHeapRegion(HeapRegion* r) {
2859     if (!r->is_starts_humongous()) {
2860       return false;
2861     }
2862     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2863 
2864     bool is_candidate = humongous_region_is_candidate(g1h, r);
2865     uint rindex = r->hrm_index();
2866     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2867     if (is_candidate) {
2868       _candidate_humongous++;
2869       g1h->register_humongous_region_with_cset(rindex);
2870       // Is_candidate already filters out humongous object with large remembered sets.
2871       // If we have a humongous object with a few remembered sets, we simply flush these
2872       // remembered set entries into the DCQS. That will result in automatic
2873       // re-evaluation of their remembered set entries during the following evacuation
2874       // phase.
2875       if (!r->rem_set()->is_empty()) {
2876         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2877                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2878         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2879         HeapRegionRemSetIterator hrrs(r->rem_set());
2880         size_t card_index;
2881         while (hrrs.has_next(card_index)) {
2882           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2883           // The remembered set might contain references to already freed
2884           // regions. Filter out such entries to avoid failing card table
2885           // verification.
2886           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2887             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2888               *card_ptr = CardTableModRefBS::dirty_card_val();
2889               _dcq.enqueue(card_ptr);
2890             }
2891           }
2892         }
2893         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2894                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2895                hrrs.n_yielded(), r->rem_set()->occupied());
2896         r->rem_set()->clear_locked();
2897       }
2898       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2899     }
2900     _total_humongous++;
2901 
2902     return false;
2903   }
2904 
2905   size_t total_humongous() const { return _total_humongous; }
2906   size_t candidate_humongous() const { return _candidate_humongous; }
2907 
2908   void flush_rem_set_entries() { _dcq.flush(); }
2909 };
2910 
2911 void G1CollectedHeap::register_humongous_regions_with_cset() {
2912   if (!G1EagerReclaimHumongousObjects) {
2913     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2914     return;
2915   }
2916   double time = os::elapsed_counter();
2917 
2918   // Collect reclaim candidate information and register candidates with cset.
2919   RegisterHumongousWithInCSetFastTestClosure cl;
2920   heap_region_iterate(&cl);
2921 
2922   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2923   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2924                                                                   cl.total_humongous(),
2925                                                                   cl.candidate_humongous());
2926   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2927 
2928   // Finally flush all remembered set entries to re-check into the global DCQS.
2929   cl.flush_rem_set_entries();
2930 }
2931 
2932 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2933   public:
2934     bool doHeapRegion(HeapRegion* hr) {
2935       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2936         hr->verify_rem_set();
2937       }
2938       return false;
2939     }
2940 };
2941 
2942 uint G1CollectedHeap::num_task_queues() const {
2943   return _task_queues->size();
2944 }
2945 
2946 #if TASKQUEUE_STATS
2947 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2948   st->print_raw_cr("GC Task Stats");
2949   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2950   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2951 }
2952 
2953 void G1CollectedHeap::print_taskqueue_stats() const {
2954   if (!log_is_enabled(Trace, gc, task, stats)) {
2955     return;
2956   }
2957   Log(gc, task, stats) log;
2958   ResourceMark rm;
2959   outputStream* st = log.trace_stream();
2960 
2961   print_taskqueue_stats_hdr(st);
2962 
2963   TaskQueueStats totals;
2964   const uint n = num_task_queues();
2965   for (uint i = 0; i < n; ++i) {
2966     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2967     totals += task_queue(i)->stats;
2968   }
2969   st->print_raw("tot "); totals.print(st); st->cr();
2970 
2971   DEBUG_ONLY(totals.verify());
2972 }
2973 
2974 void G1CollectedHeap::reset_taskqueue_stats() {
2975   const uint n = num_task_queues();
2976   for (uint i = 0; i < n; ++i) {
2977     task_queue(i)->stats.reset();
2978   }
2979 }
2980 #endif // TASKQUEUE_STATS
2981 
2982 void G1CollectedHeap::wait_for_root_region_scanning() {
2983   double scan_wait_start = os::elapsedTime();
2984   // We have to wait until the CM threads finish scanning the
2985   // root regions as it's the only way to ensure that all the
2986   // objects on them have been correctly scanned before we start
2987   // moving them during the GC.
2988   bool waited = _cm->root_regions()->wait_until_scan_finished();
2989   double wait_time_ms = 0.0;
2990   if (waited) {
2991     double scan_wait_end = os::elapsedTime();
2992     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2993   }
2994   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2995 }
2996 
2997 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2998 private:
2999   G1HRPrinter* _hr_printer;
3000 public:
3001   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
3002 
3003   virtual bool doHeapRegion(HeapRegion* r) {
3004     _hr_printer->cset(r);
3005     return false;
3006   }
3007 };
3008 
3009 void G1CollectedHeap::start_new_collection_set() {
3010   collection_set()->start_incremental_building();
3011 
3012   clear_cset_fast_test();
3013 
3014   guarantee(_eden.length() == 0, "eden should have been cleared");
3015   g1_policy()->transfer_survivors_to_cset(survivor());
3016 }
3017 
3018 bool
3019 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3020   assert_at_safepoint(true /* should_be_vm_thread */);
3021   guarantee(!is_gc_active(), "collection is not reentrant");
3022 
3023   if (GCLocker::check_active_before_gc()) {
3024     return false;
3025   }
3026 
3027   _gc_timer_stw->register_gc_start();
3028 
3029   GCIdMark gc_id_mark;
3030   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3031 
3032   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3033   ResourceMark rm;
3034 
3035   g1_policy()->note_gc_start();
3036 
3037   wait_for_root_region_scanning();
3038 
3039   print_heap_before_gc();
3040   print_heap_regions();
3041   trace_heap_before_gc(_gc_tracer_stw);
3042 
3043   _verifier->verify_region_sets_optional();
3044   _verifier->verify_dirty_young_regions();
3045 
3046   // We should not be doing initial mark unless the conc mark thread is running
3047   if (!_cmThread->should_terminate()) {
3048     // This call will decide whether this pause is an initial-mark
3049     // pause. If it is, during_initial_mark_pause() will return true
3050     // for the duration of this pause.
3051     g1_policy()->decide_on_conc_mark_initiation();
3052   }
3053 
3054   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3055   assert(!collector_state()->during_initial_mark_pause() ||
3056           collector_state()->gcs_are_young(), "sanity");
3057 
3058   // We also do not allow mixed GCs during marking.
3059   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3060 
3061   // Record whether this pause is an initial mark. When the current
3062   // thread has completed its logging output and it's safe to signal
3063   // the CM thread, the flag's value in the policy has been reset.
3064   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3065 
3066   // Inner scope for scope based logging, timers, and stats collection
3067   {
3068     EvacuationInfo evacuation_info;
3069 
3070     if (collector_state()->during_initial_mark_pause()) {
3071       // We are about to start a marking cycle, so we increment the
3072       // full collection counter.
3073       increment_old_marking_cycles_started();
3074       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3075     }
3076 
3077     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3078 
3079     GCTraceCPUTime tcpu;
3080 
3081     FormatBuffer<> gc_string("Pause ");
3082     if (collector_state()->during_initial_mark_pause()) {
3083       gc_string.append("Initial Mark");
3084     } else if (collector_state()->gcs_are_young()) {
3085       gc_string.append("Young");
3086     } else {
3087       gc_string.append("Mixed");
3088     }
3089     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3090 
3091     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3092                                                                   workers()->active_workers(),
3093                                                                   Threads::number_of_non_daemon_threads());
3094     workers()->update_active_workers(active_workers);
3095     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3096 
3097     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3098     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3099 
3100     // If the secondary_free_list is not empty, append it to the
3101     // free_list. No need to wait for the cleanup operation to finish;
3102     // the region allocation code will check the secondary_free_list
3103     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3104     // set, skip this step so that the region allocation code has to
3105     // get entries from the secondary_free_list.
3106     if (!G1StressConcRegionFreeing) {
3107       append_secondary_free_list_if_not_empty_with_lock();
3108     }
3109 
3110     G1HeapTransition heap_transition(this);
3111     size_t heap_used_bytes_before_gc = used();
3112 
3113     // Don't dynamically change the number of GC threads this early.  A value of
3114     // 0 is used to indicate serial work.  When parallel work is done,
3115     // it will be set.
3116 
3117     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3118       IsGCActiveMark x;
3119 
3120       gc_prologue(false);
3121       increment_total_collections(false /* full gc */);
3122       increment_gc_time_stamp();
3123 
3124       if (VerifyRememberedSets) {
3125         log_info(gc, verify)("[Verifying RemSets before GC]");
3126         VerifyRegionRemSetClosure v_cl;
3127         heap_region_iterate(&v_cl);
3128       }
3129 
3130       _verifier->verify_before_gc();
3131 
3132       _verifier->check_bitmaps("GC Start");
3133 
3134 #if defined(COMPILER2) || INCLUDE_JVMCI
3135       DerivedPointerTable::clear();
3136 #endif
3137 
3138       // Please see comment in g1CollectedHeap.hpp and
3139       // G1CollectedHeap::ref_processing_init() to see how
3140       // reference processing currently works in G1.
3141 
3142       // Enable discovery in the STW reference processor
3143       if (g1_policy()->should_process_references()) {
3144         ref_processor_stw()->enable_discovery();
3145       } else {
3146         ref_processor_stw()->disable_discovery();
3147       }
3148 
3149       {
3150         // We want to temporarily turn off discovery by the
3151         // CM ref processor, if necessary, and turn it back on
3152         // on again later if we do. Using a scoped
3153         // NoRefDiscovery object will do this.
3154         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3155 
3156         // Forget the current alloc region (we might even choose it to be part
3157         // of the collection set!).
3158         _allocator->release_mutator_alloc_region();
3159 
3160         // This timing is only used by the ergonomics to handle our pause target.
3161         // It is unclear why this should not include the full pause. We will
3162         // investigate this in CR 7178365.
3163         //
3164         // Preserving the old comment here if that helps the investigation:
3165         //
3166         // The elapsed time induced by the start time below deliberately elides
3167         // the possible verification above.
3168         double sample_start_time_sec = os::elapsedTime();
3169 
3170         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3171 
3172         if (collector_state()->during_initial_mark_pause()) {
3173           concurrent_mark()->checkpointRootsInitialPre();
3174         }
3175 
3176         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3177 
3178         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3179 
3180         // Make sure the remembered sets are up to date. This needs to be
3181         // done before register_humongous_regions_with_cset(), because the
3182         // remembered sets are used there to choose eager reclaim candidates.
3183         // If the remembered sets are not up to date we might miss some
3184         // entries that need to be handled.
3185         g1_rem_set()->cleanupHRRS();
3186 
3187         register_humongous_regions_with_cset();
3188 
3189         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3190 
3191         // We call this after finalize_cset() to
3192         // ensure that the CSet has been finalized.
3193         _cm->verify_no_cset_oops();
3194 
3195         if (_hr_printer.is_active()) {
3196           G1PrintCollectionSetClosure cl(&_hr_printer);
3197           _collection_set.iterate(&cl);
3198         }
3199 
3200         // Initialize the GC alloc regions.
3201         _allocator->init_gc_alloc_regions(evacuation_info);
3202 
3203         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3204         pre_evacuate_collection_set();
3205 
3206         // Actually do the work...
3207         evacuate_collection_set(evacuation_info, &per_thread_states);
3208 
3209         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3210 
3211         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3212         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3213 
3214         eagerly_reclaim_humongous_regions();
3215 
3216         record_obj_copy_mem_stats();
3217         _survivor_evac_stats.adjust_desired_plab_sz();
3218         _old_evac_stats.adjust_desired_plab_sz();
3219 
3220         double start = os::elapsedTime();
3221         start_new_collection_set();
3222         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3223 
3224         if (evacuation_failed()) {
3225           set_used(recalculate_used());
3226           if (_archive_allocator != NULL) {
3227             _archive_allocator->clear_used();
3228           }
3229           for (uint i = 0; i < ParallelGCThreads; i++) {
3230             if (_evacuation_failed_info_array[i].has_failed()) {
3231               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3232             }
3233           }
3234         } else {
3235           // The "used" of the the collection set have already been subtracted
3236           // when they were freed.  Add in the bytes evacuated.
3237           increase_used(g1_policy()->bytes_copied_during_gc());
3238         }
3239 
3240         if (collector_state()->during_initial_mark_pause()) {
3241           // We have to do this before we notify the CM threads that
3242           // they can start working to make sure that all the
3243           // appropriate initialization is done on the CM object.
3244           concurrent_mark()->checkpointRootsInitialPost();
3245           collector_state()->set_mark_in_progress(true);
3246           // Note that we don't actually trigger the CM thread at
3247           // this point. We do that later when we're sure that
3248           // the current thread has completed its logging output.
3249         }
3250 
3251         allocate_dummy_regions();
3252 
3253         _allocator->init_mutator_alloc_region();
3254 
3255         {
3256           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3257           if (expand_bytes > 0) {
3258             size_t bytes_before = capacity();
3259             // No need for an ergo logging here,
3260             // expansion_amount() does this when it returns a value > 0.
3261             double expand_ms;
3262             if (!expand(expand_bytes, _workers, &expand_ms)) {
3263               // We failed to expand the heap. Cannot do anything about it.
3264             }
3265             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3266           }
3267         }
3268 
3269         // We redo the verification but now wrt to the new CSet which
3270         // has just got initialized after the previous CSet was freed.
3271         _cm->verify_no_cset_oops();
3272 
3273         // This timing is only used by the ergonomics to handle our pause target.
3274         // It is unclear why this should not include the full pause. We will
3275         // investigate this in CR 7178365.
3276         double sample_end_time_sec = os::elapsedTime();
3277         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3278         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3279         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3280 
3281         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3282         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3283 
3284         MemoryService::track_memory_usage();
3285 
3286         // In prepare_for_verify() below we'll need to scan the deferred
3287         // update buffers to bring the RSets up-to-date if
3288         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3289         // the update buffers we'll probably need to scan cards on the
3290         // regions we just allocated to (i.e., the GC alloc
3291         // regions). However, during the last GC we called
3292         // set_saved_mark() on all the GC alloc regions, so card
3293         // scanning might skip the [saved_mark_word()...top()] area of
3294         // those regions (i.e., the area we allocated objects into
3295         // during the last GC). But it shouldn't. Given that
3296         // saved_mark_word() is conditional on whether the GC time stamp
3297         // on the region is current or not, by incrementing the GC time
3298         // stamp here we invalidate all the GC time stamps on all the
3299         // regions and saved_mark_word() will simply return top() for
3300         // all the regions. This is a nicer way of ensuring this rather
3301         // than iterating over the regions and fixing them. In fact, the
3302         // GC time stamp increment here also ensures that
3303         // saved_mark_word() will return top() between pauses, i.e.,
3304         // during concurrent refinement. So we don't need the
3305         // is_gc_active() check to decided which top to use when
3306         // scanning cards (see CR 7039627).
3307         increment_gc_time_stamp();
3308 
3309         if (VerifyRememberedSets) {
3310           log_info(gc, verify)("[Verifying RemSets after GC]");
3311           VerifyRegionRemSetClosure v_cl;
3312           heap_region_iterate(&v_cl);
3313         }
3314 
3315         _verifier->verify_after_gc();
3316         _verifier->check_bitmaps("GC End");
3317 
3318         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3319         ref_processor_stw()->verify_no_references_recorded();
3320 
3321         // CM reference discovery will be re-enabled if necessary.
3322       }
3323 
3324 #ifdef TRACESPINNING
3325       ParallelTaskTerminator::print_termination_counts();
3326 #endif
3327 
3328       gc_epilogue(false);
3329     }
3330 
3331     // Print the remainder of the GC log output.
3332     if (evacuation_failed()) {
3333       log_info(gc)("To-space exhausted");
3334     }
3335 
3336     g1_policy()->print_phases();
3337     heap_transition.print();
3338 
3339     // It is not yet to safe to tell the concurrent mark to
3340     // start as we have some optional output below. We don't want the
3341     // output from the concurrent mark thread interfering with this
3342     // logging output either.
3343 
3344     _hrm.verify_optional();
3345     _verifier->verify_region_sets_optional();
3346 
3347     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3348     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3349 
3350     print_heap_after_gc();
3351     print_heap_regions();
3352     trace_heap_after_gc(_gc_tracer_stw);
3353 
3354     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3355     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3356     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3357     // before any GC notifications are raised.
3358     g1mm()->update_sizes();
3359 
3360     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3361     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3362     _gc_timer_stw->register_gc_end();
3363     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3364   }
3365   // It should now be safe to tell the concurrent mark thread to start
3366   // without its logging output interfering with the logging output
3367   // that came from the pause.
3368 
3369   if (should_start_conc_mark) {
3370     // CAUTION: after the doConcurrentMark() call below,
3371     // the concurrent marking thread(s) could be running
3372     // concurrently with us. Make sure that anything after
3373     // this point does not assume that we are the only GC thread
3374     // running. Note: of course, the actual marking work will
3375     // not start until the safepoint itself is released in
3376     // SuspendibleThreadSet::desynchronize().
3377     doConcurrentMark();
3378   }
3379 
3380   return true;
3381 }
3382 
3383 void G1CollectedHeap::remove_self_forwarding_pointers() {
3384   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3385   workers()->run_task(&rsfp_task);
3386 }
3387 
3388 void G1CollectedHeap::restore_after_evac_failure() {
3389   double remove_self_forwards_start = os::elapsedTime();
3390 
3391   remove_self_forwarding_pointers();
3392   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3393   _preserved_marks_set.restore(&task_executor);
3394 
3395   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3396 }
3397 
3398 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3399   if (!_evacuation_failed) {
3400     _evacuation_failed = true;
3401   }
3402 
3403   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3404   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3405 }
3406 
3407 bool G1ParEvacuateFollowersClosure::offer_termination() {
3408   G1ParScanThreadState* const pss = par_scan_state();
3409   start_term_time();
3410   const bool res = terminator()->offer_termination();
3411   end_term_time();
3412   return res;
3413 }
3414 
3415 void G1ParEvacuateFollowersClosure::do_void() {
3416   G1ParScanThreadState* const pss = par_scan_state();
3417   pss->trim_queue();
3418   do {
3419     pss->steal_and_trim_queue(queues());
3420   } while (!offer_termination());
3421 }
3422 
3423 class G1ParTask : public AbstractGangTask {
3424 protected:
3425   G1CollectedHeap*         _g1h;
3426   G1ParScanThreadStateSet* _pss;
3427   RefToScanQueueSet*       _queues;
3428   G1RootProcessor*         _root_processor;
3429   ParallelTaskTerminator   _terminator;
3430   uint                     _n_workers;
3431 
3432 public:
3433   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3434     : AbstractGangTask("G1 collection"),
3435       _g1h(g1h),
3436       _pss(per_thread_states),
3437       _queues(task_queues),
3438       _root_processor(root_processor),
3439       _terminator(n_workers, _queues),
3440       _n_workers(n_workers)
3441   {}
3442 
3443   void work(uint worker_id) {
3444     if (worker_id >= _n_workers) return;  // no work needed this round
3445 
3446     double start_sec = os::elapsedTime();
3447     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3448 
3449     {
3450       ResourceMark rm;
3451       HandleMark   hm;
3452 
3453       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3454 
3455       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3456       pss->set_ref_processor(rp);
3457 
3458       double start_strong_roots_sec = os::elapsedTime();
3459 
3460       _root_processor->evacuate_roots(pss->closures(), worker_id);
3461 
3462       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3463 
3464       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3465       // treating the nmethods visited to act as roots for concurrent marking.
3466       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3467       // objects copied by the current evacuation.
3468       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3469                                                                              pss->closures()->weak_codeblobs(),
3470                                                                              worker_id);
3471 
3472       _pss->add_cards_scanned(worker_id, cards_scanned);
3473 
3474       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3475 
3476       double term_sec = 0.0;
3477       size_t evac_term_attempts = 0;
3478       {
3479         double start = os::elapsedTime();
3480         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3481         evac.do_void();
3482 
3483         evac_term_attempts = evac.term_attempts();
3484         term_sec = evac.term_time();
3485         double elapsed_sec = os::elapsedTime() - start;
3486         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3487         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3488         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3489       }
3490 
3491       assert(pss->queue_is_empty(), "should be empty");
3492 
3493       if (log_is_enabled(Debug, gc, task, stats)) {
3494         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3495         size_t lab_waste;
3496         size_t lab_undo_waste;
3497         pss->waste(lab_waste, lab_undo_waste);
3498         _g1h->print_termination_stats(worker_id,
3499                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3500                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3501                                       term_sec * 1000.0,                          /* evac term time */
3502                                       evac_term_attempts,                         /* evac term attempts */
3503                                       lab_waste,                                  /* alloc buffer waste */
3504                                       lab_undo_waste                              /* undo waste */
3505                                       );
3506       }
3507 
3508       // Close the inner scope so that the ResourceMark and HandleMark
3509       // destructors are executed here and are included as part of the
3510       // "GC Worker Time".
3511     }
3512     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3513   }
3514 };
3515 
3516 void G1CollectedHeap::print_termination_stats_hdr() {
3517   log_debug(gc, task, stats)("GC Termination Stats");
3518   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3519   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3520   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3521 }
3522 
3523 void G1CollectedHeap::print_termination_stats(uint worker_id,
3524                                               double elapsed_ms,
3525                                               double strong_roots_ms,
3526                                               double term_ms,
3527                                               size_t term_attempts,
3528                                               size_t alloc_buffer_waste,
3529                                               size_t undo_waste) const {
3530   log_debug(gc, task, stats)
3531               ("%3d %9.2f %9.2f %6.2f "
3532                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3533                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3534                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3535                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3536                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3537                alloc_buffer_waste * HeapWordSize / K,
3538                undo_waste * HeapWordSize / K);
3539 }
3540 
3541 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3542 private:
3543   BoolObjectClosure* _is_alive;
3544   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3545 
3546   int _initial_string_table_size;
3547   int _initial_symbol_table_size;
3548 
3549   bool  _process_strings;
3550   int _strings_processed;
3551   int _strings_removed;
3552 
3553   bool  _process_symbols;
3554   int _symbols_processed;
3555   int _symbols_removed;
3556 
3557   bool _process_string_dedup;
3558 
3559 public:
3560   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3561     AbstractGangTask("String/Symbol Unlinking"),
3562     _is_alive(is_alive),
3563     _dedup_closure(is_alive, NULL, false),
3564     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3565     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3566     _process_string_dedup(process_string_dedup) {
3567 
3568     _initial_string_table_size = StringTable::the_table()->table_size();
3569     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3570     if (process_strings) {
3571       StringTable::clear_parallel_claimed_index();
3572     }
3573     if (process_symbols) {
3574       SymbolTable::clear_parallel_claimed_index();
3575     }
3576   }
3577 
3578   ~G1StringAndSymbolCleaningTask() {
3579     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3580               "claim value %d after unlink less than initial string table size %d",
3581               StringTable::parallel_claimed_index(), _initial_string_table_size);
3582     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3583               "claim value %d after unlink less than initial symbol table size %d",
3584               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3585 
3586     log_info(gc, stringtable)(
3587         "Cleaned string and symbol table, "
3588         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3589         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3590         strings_processed(), strings_removed(),
3591         symbols_processed(), symbols_removed());
3592   }
3593 
3594   void work(uint worker_id) {
3595     int strings_processed = 0;
3596     int strings_removed = 0;
3597     int symbols_processed = 0;
3598     int symbols_removed = 0;
3599     if (_process_strings) {
3600       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3601       Atomic::add(strings_processed, &_strings_processed);
3602       Atomic::add(strings_removed, &_strings_removed);
3603     }
3604     if (_process_symbols) {
3605       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3606       Atomic::add(symbols_processed, &_symbols_processed);
3607       Atomic::add(symbols_removed, &_symbols_removed);
3608     }
3609     if (_process_string_dedup) {
3610       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3611     }
3612   }
3613 
3614   size_t strings_processed() const { return (size_t)_strings_processed; }
3615   size_t strings_removed()   const { return (size_t)_strings_removed; }
3616 
3617   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3618   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3619 };
3620 
3621 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3622 private:
3623   static Monitor* _lock;
3624 
3625   BoolObjectClosure* const _is_alive;
3626   const bool               _unloading_occurred;
3627   const uint               _num_workers;
3628 
3629   // Variables used to claim nmethods.
3630   CompiledMethod* _first_nmethod;
3631   volatile CompiledMethod* _claimed_nmethod;
3632 
3633   // The list of nmethods that need to be processed by the second pass.
3634   volatile CompiledMethod* _postponed_list;
3635   volatile uint            _num_entered_barrier;
3636 
3637  public:
3638   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3639       _is_alive(is_alive),
3640       _unloading_occurred(unloading_occurred),
3641       _num_workers(num_workers),
3642       _first_nmethod(NULL),
3643       _claimed_nmethod(NULL),
3644       _postponed_list(NULL),
3645       _num_entered_barrier(0)
3646   {
3647     CompiledMethod::increase_unloading_clock();
3648     // Get first alive nmethod
3649     CompiledMethodIterator iter = CompiledMethodIterator();
3650     if(iter.next_alive()) {
3651       _first_nmethod = iter.method();
3652     }
3653     _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3654   }
3655 
3656   ~G1CodeCacheUnloadingTask() {
3657     CodeCache::verify_clean_inline_caches();
3658 
3659     CodeCache::set_needs_cache_clean(false);
3660     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3661 
3662     CodeCache::verify_icholder_relocations();
3663   }
3664 
3665  private:
3666   void add_to_postponed_list(CompiledMethod* nm) {
3667       CompiledMethod* old;
3668       do {
3669         old = (CompiledMethod*)_postponed_list;
3670         nm->set_unloading_next(old);
3671       } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3672   }
3673 
3674   void clean_nmethod(CompiledMethod* nm) {
3675     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3676 
3677     if (postponed) {
3678       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3679       add_to_postponed_list(nm);
3680     }
3681 
3682     // Mark that this thread has been cleaned/unloaded.
3683     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3684     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3685   }
3686 
3687   void clean_nmethod_postponed(CompiledMethod* nm) {
3688     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3689   }
3690 
3691   static const int MaxClaimNmethods = 16;
3692 
3693   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3694     CompiledMethod* first;
3695     CompiledMethodIterator last;
3696 
3697     do {
3698       *num_claimed_nmethods = 0;
3699 
3700       first = (CompiledMethod*)_claimed_nmethod;
3701       last = CompiledMethodIterator(first);
3702 
3703       if (first != NULL) {
3704 
3705         for (int i = 0; i < MaxClaimNmethods; i++) {
3706           if (!last.next_alive()) {
3707             break;
3708           }
3709           claimed_nmethods[i] = last.method();
3710           (*num_claimed_nmethods)++;
3711         }
3712       }
3713 
3714     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3715   }
3716 
3717   CompiledMethod* claim_postponed_nmethod() {
3718     CompiledMethod* claim;
3719     CompiledMethod* next;
3720 
3721     do {
3722       claim = (CompiledMethod*)_postponed_list;
3723       if (claim == NULL) {
3724         return NULL;
3725       }
3726 
3727       next = claim->unloading_next();
3728 
3729     } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3730 
3731     return claim;
3732   }
3733 
3734  public:
3735   // Mark that we're done with the first pass of nmethod cleaning.
3736   void barrier_mark(uint worker_id) {
3737     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3738     _num_entered_barrier++;
3739     if (_num_entered_barrier == _num_workers) {
3740       ml.notify_all();
3741     }
3742   }
3743 
3744   // See if we have to wait for the other workers to
3745   // finish their first-pass nmethod cleaning work.
3746   void barrier_wait(uint worker_id) {
3747     if (_num_entered_barrier < _num_workers) {
3748       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3749       while (_num_entered_barrier < _num_workers) {
3750           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3751       }
3752     }
3753   }
3754 
3755   // Cleaning and unloading of nmethods. Some work has to be postponed
3756   // to the second pass, when we know which nmethods survive.
3757   void work_first_pass(uint worker_id) {
3758     // The first nmethods is claimed by the first worker.
3759     if (worker_id == 0 && _first_nmethod != NULL) {
3760       clean_nmethod(_first_nmethod);
3761       _first_nmethod = NULL;
3762     }
3763 
3764     int num_claimed_nmethods;
3765     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3766 
3767     while (true) {
3768       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3769 
3770       if (num_claimed_nmethods == 0) {
3771         break;
3772       }
3773 
3774       for (int i = 0; i < num_claimed_nmethods; i++) {
3775         clean_nmethod(claimed_nmethods[i]);
3776       }
3777     }
3778   }
3779 
3780   void work_second_pass(uint worker_id) {
3781     CompiledMethod* nm;
3782     // Take care of postponed nmethods.
3783     while ((nm = claim_postponed_nmethod()) != NULL) {
3784       clean_nmethod_postponed(nm);
3785     }
3786   }
3787 };
3788 
3789 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3790 
3791 class G1KlassCleaningTask : public StackObj {
3792   BoolObjectClosure*                      _is_alive;
3793   volatile jint                           _clean_klass_tree_claimed;
3794   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3795 
3796  public:
3797   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3798       _is_alive(is_alive),
3799       _clean_klass_tree_claimed(0),
3800       _klass_iterator() {
3801   }
3802 
3803  private:
3804   bool claim_clean_klass_tree_task() {
3805     if (_clean_klass_tree_claimed) {
3806       return false;
3807     }
3808 
3809     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3810   }
3811 
3812   InstanceKlass* claim_next_klass() {
3813     Klass* klass;
3814     do {
3815       klass =_klass_iterator.next_klass();
3816     } while (klass != NULL && !klass->is_instance_klass());
3817 
3818     // this can be null so don't call InstanceKlass::cast
3819     return static_cast<InstanceKlass*>(klass);
3820   }
3821 
3822 public:
3823 
3824   void clean_klass(InstanceKlass* ik) {
3825     ik->clean_weak_instanceklass_links(_is_alive);
3826   }
3827 
3828   void work() {
3829     ResourceMark rm;
3830 
3831     // One worker will clean the subklass/sibling klass tree.
3832     if (claim_clean_klass_tree_task()) {
3833       Klass::clean_subklass_tree(_is_alive);
3834     }
3835 
3836     // All workers will help cleaning the classes,
3837     InstanceKlass* klass;
3838     while ((klass = claim_next_klass()) != NULL) {
3839       clean_klass(klass);
3840     }
3841   }
3842 };
3843 
3844 class G1ResolvedMethodCleaningTask : public StackObj {
3845   BoolObjectClosure* _is_alive;
3846   volatile jint      _resolved_method_task_claimed;
3847 public:
3848   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3849       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3850 
3851   bool claim_resolved_method_task() {
3852     if (_resolved_method_task_claimed) {
3853       return false;
3854     }
3855     return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3856   }
3857 
3858   // These aren't big, one thread can do it all.
3859   void work() {
3860     if (claim_resolved_method_task()) {
3861       ResolvedMethodTable::unlink(_is_alive);
3862     }
3863   }
3864 };
3865 
3866 
3867 // To minimize the remark pause times, the tasks below are done in parallel.
3868 class G1ParallelCleaningTask : public AbstractGangTask {
3869 private:
3870   G1StringAndSymbolCleaningTask _string_symbol_task;
3871   G1CodeCacheUnloadingTask      _code_cache_task;
3872   G1KlassCleaningTask           _klass_cleaning_task;
3873   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3874 
3875 public:
3876   // The constructor is run in the VMThread.
3877   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3878       AbstractGangTask("Parallel Cleaning"),
3879       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3880       _code_cache_task(num_workers, is_alive, unloading_occurred),
3881       _klass_cleaning_task(is_alive),
3882       _resolved_method_cleaning_task(is_alive) {
3883   }
3884 
3885   // The parallel work done by all worker threads.
3886   void work(uint worker_id) {
3887     // Do first pass of code cache cleaning.
3888     _code_cache_task.work_first_pass(worker_id);
3889 
3890     // Let the threads mark that the first pass is done.
3891     _code_cache_task.barrier_mark(worker_id);
3892 
3893     // Clean the Strings and Symbols.
3894     _string_symbol_task.work(worker_id);
3895 
3896     // Clean unreferenced things in the ResolvedMethodTable
3897     _resolved_method_cleaning_task.work();
3898 
3899     // Wait for all workers to finish the first code cache cleaning pass.
3900     _code_cache_task.barrier_wait(worker_id);
3901 
3902     // Do the second code cache cleaning work, which realize on
3903     // the liveness information gathered during the first pass.
3904     _code_cache_task.work_second_pass(worker_id);
3905 
3906     // Clean all klasses that were not unloaded.
3907     _klass_cleaning_task.work();
3908   }
3909 };
3910 
3911 
3912 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3913                                         bool class_unloading_occurred) {
3914   uint n_workers = workers()->active_workers();
3915 
3916   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3917   workers()->run_task(&g1_unlink_task);
3918 }
3919 
3920 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3921                                        bool process_strings,
3922                                        bool process_symbols,
3923                                        bool process_string_dedup) {
3924   if (!process_strings && !process_symbols && !process_string_dedup) {
3925     // Nothing to clean.
3926     return;
3927   }
3928 
3929   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3930   workers()->run_task(&g1_unlink_task);
3931 
3932 }
3933 
3934 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3935  private:
3936   DirtyCardQueueSet* _queue;
3937   G1CollectedHeap* _g1h;
3938  public:
3939   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3940     _queue(queue), _g1h(g1h) { }
3941 
3942   virtual void work(uint worker_id) {
3943     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3944     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3945 
3946     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3947     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3948 
3949     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3950   }
3951 };
3952 
3953 void G1CollectedHeap::redirty_logged_cards() {
3954   double redirty_logged_cards_start = os::elapsedTime();
3955 
3956   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3957   dirty_card_queue_set().reset_for_par_iteration();
3958   workers()->run_task(&redirty_task);
3959 
3960   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3961   dcq.merge_bufferlists(&dirty_card_queue_set());
3962   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3963 
3964   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3965 }
3966 
3967 // Weak Reference Processing support
3968 
3969 // An always "is_alive" closure that is used to preserve referents.
3970 // If the object is non-null then it's alive.  Used in the preservation
3971 // of referent objects that are pointed to by reference objects
3972 // discovered by the CM ref processor.
3973 class G1AlwaysAliveClosure: public BoolObjectClosure {
3974   G1CollectedHeap* _g1;
3975 public:
3976   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3977   bool do_object_b(oop p) {
3978     if (p != NULL) {
3979       return true;
3980     }
3981     return false;
3982   }
3983 };
3984 
3985 bool G1STWIsAliveClosure::do_object_b(oop p) {
3986   // An object is reachable if it is outside the collection set,
3987   // or is inside and copied.
3988   return !_g1->is_in_cset(p) || p->is_forwarded();
3989 }
3990 
3991 // Non Copying Keep Alive closure
3992 class G1KeepAliveClosure: public OopClosure {
3993   G1CollectedHeap* _g1;
3994 public:
3995   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3996   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3997   void do_oop(oop* p) {
3998     oop obj = *p;
3999     assert(obj != NULL, "the caller should have filtered out NULL values");
4000 
4001     const InCSetState cset_state = _g1->in_cset_state(obj);
4002     if (!cset_state.is_in_cset_or_humongous()) {
4003       return;
4004     }
4005     if (cset_state.is_in_cset()) {
4006       assert( obj->is_forwarded(), "invariant" );
4007       *p = obj->forwardee();
4008     } else {
4009       assert(!obj->is_forwarded(), "invariant" );
4010       assert(cset_state.is_humongous(),
4011              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4012       _g1->set_humongous_is_live(obj);
4013     }
4014   }
4015 };
4016 
4017 // Copying Keep Alive closure - can be called from both
4018 // serial and parallel code as long as different worker
4019 // threads utilize different G1ParScanThreadState instances
4020 // and different queues.
4021 
4022 class G1CopyingKeepAliveClosure: public OopClosure {
4023   G1CollectedHeap*         _g1h;
4024   OopClosure*              _copy_non_heap_obj_cl;
4025   G1ParScanThreadState*    _par_scan_state;
4026 
4027 public:
4028   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4029                             OopClosure* non_heap_obj_cl,
4030                             G1ParScanThreadState* pss):
4031     _g1h(g1h),
4032     _copy_non_heap_obj_cl(non_heap_obj_cl),
4033     _par_scan_state(pss)
4034   {}
4035 
4036   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4037   virtual void do_oop(      oop* p) { do_oop_work(p); }
4038 
4039   template <class T> void do_oop_work(T* p) {
4040     oop obj = oopDesc::load_decode_heap_oop(p);
4041 
4042     if (_g1h->is_in_cset_or_humongous(obj)) {
4043       // If the referent object has been forwarded (either copied
4044       // to a new location or to itself in the event of an
4045       // evacuation failure) then we need to update the reference
4046       // field and, if both reference and referent are in the G1
4047       // heap, update the RSet for the referent.
4048       //
4049       // If the referent has not been forwarded then we have to keep
4050       // it alive by policy. Therefore we have copy the referent.
4051       //
4052       // If the reference field is in the G1 heap then we can push
4053       // on the PSS queue. When the queue is drained (after each
4054       // phase of reference processing) the object and it's followers
4055       // will be copied, the reference field set to point to the
4056       // new location, and the RSet updated. Otherwise we need to
4057       // use the the non-heap or metadata closures directly to copy
4058       // the referent object and update the pointer, while avoiding
4059       // updating the RSet.
4060 
4061       if (_g1h->is_in_g1_reserved(p)) {
4062         _par_scan_state->push_on_queue(p);
4063       } else {
4064         assert(!Metaspace::contains((const void*)p),
4065                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4066         _copy_non_heap_obj_cl->do_oop(p);
4067       }
4068     }
4069   }
4070 };
4071 
4072 // Serial drain queue closure. Called as the 'complete_gc'
4073 // closure for each discovered list in some of the
4074 // reference processing phases.
4075 
4076 class G1STWDrainQueueClosure: public VoidClosure {
4077 protected:
4078   G1CollectedHeap* _g1h;
4079   G1ParScanThreadState* _par_scan_state;
4080 
4081   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4082 
4083 public:
4084   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4085     _g1h(g1h),
4086     _par_scan_state(pss)
4087   { }
4088 
4089   void do_void() {
4090     G1ParScanThreadState* const pss = par_scan_state();
4091     pss->trim_queue();
4092   }
4093 };
4094 
4095 // Parallel Reference Processing closures
4096 
4097 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4098 // processing during G1 evacuation pauses.
4099 
4100 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4101 private:
4102   G1CollectedHeap*          _g1h;
4103   G1ParScanThreadStateSet*  _pss;
4104   RefToScanQueueSet*        _queues;
4105   WorkGang*                 _workers;
4106   uint                      _active_workers;
4107 
4108 public:
4109   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4110                            G1ParScanThreadStateSet* per_thread_states,
4111                            WorkGang* workers,
4112                            RefToScanQueueSet *task_queues,
4113                            uint n_workers) :
4114     _g1h(g1h),
4115     _pss(per_thread_states),
4116     _queues(task_queues),
4117     _workers(workers),
4118     _active_workers(n_workers)
4119   {
4120     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4121   }
4122 
4123   // Executes the given task using concurrent marking worker threads.
4124   virtual void execute(ProcessTask& task);
4125   virtual void execute(EnqueueTask& task);
4126 };
4127 
4128 // Gang task for possibly parallel reference processing
4129 
4130 class G1STWRefProcTaskProxy: public AbstractGangTask {
4131   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4132   ProcessTask&     _proc_task;
4133   G1CollectedHeap* _g1h;
4134   G1ParScanThreadStateSet* _pss;
4135   RefToScanQueueSet* _task_queues;
4136   ParallelTaskTerminator* _terminator;
4137 
4138 public:
4139   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4140                         G1CollectedHeap* g1h,
4141                         G1ParScanThreadStateSet* per_thread_states,
4142                         RefToScanQueueSet *task_queues,
4143                         ParallelTaskTerminator* terminator) :
4144     AbstractGangTask("Process reference objects in parallel"),
4145     _proc_task(proc_task),
4146     _g1h(g1h),
4147     _pss(per_thread_states),
4148     _task_queues(task_queues),
4149     _terminator(terminator)
4150   {}
4151 
4152   virtual void work(uint worker_id) {
4153     // The reference processing task executed by a single worker.
4154     ResourceMark rm;
4155     HandleMark   hm;
4156 
4157     G1STWIsAliveClosure is_alive(_g1h);
4158 
4159     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4160     pss->set_ref_processor(NULL);
4161 
4162     // Keep alive closure.
4163     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4164 
4165     // Complete GC closure
4166     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4167 
4168     // Call the reference processing task's work routine.
4169     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4170 
4171     // Note we cannot assert that the refs array is empty here as not all
4172     // of the processing tasks (specifically phase2 - pp2_work) execute
4173     // the complete_gc closure (which ordinarily would drain the queue) so
4174     // the queue may not be empty.
4175   }
4176 };
4177 
4178 // Driver routine for parallel reference processing.
4179 // Creates an instance of the ref processing gang
4180 // task and has the worker threads execute it.
4181 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4182   assert(_workers != NULL, "Need parallel worker threads.");
4183 
4184   ParallelTaskTerminator terminator(_active_workers, _queues);
4185   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4186 
4187   _workers->run_task(&proc_task_proxy);
4188 }
4189 
4190 // Gang task for parallel reference enqueueing.
4191 
4192 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4193   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4194   EnqueueTask& _enq_task;
4195 
4196 public:
4197   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4198     AbstractGangTask("Enqueue reference objects in parallel"),
4199     _enq_task(enq_task)
4200   { }
4201 
4202   virtual void work(uint worker_id) {
4203     _enq_task.work(worker_id);
4204   }
4205 };
4206 
4207 // Driver routine for parallel reference enqueueing.
4208 // Creates an instance of the ref enqueueing gang
4209 // task and has the worker threads execute it.
4210 
4211 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4212   assert(_workers != NULL, "Need parallel worker threads.");
4213 
4214   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4215 
4216   _workers->run_task(&enq_task_proxy);
4217 }
4218 
4219 // End of weak reference support closures
4220 
4221 // Abstract task used to preserve (i.e. copy) any referent objects
4222 // that are in the collection set and are pointed to by reference
4223 // objects discovered by the CM ref processor.
4224 
4225 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4226 protected:
4227   G1CollectedHeap*         _g1h;
4228   G1ParScanThreadStateSet* _pss;
4229   RefToScanQueueSet*       _queues;
4230   ParallelTaskTerminator   _terminator;
4231   uint                     _n_workers;
4232 
4233 public:
4234   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4235     AbstractGangTask("ParPreserveCMReferents"),
4236     _g1h(g1h),
4237     _pss(per_thread_states),
4238     _queues(task_queues),
4239     _terminator(workers, _queues),
4240     _n_workers(workers)
4241   {
4242     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4243   }
4244 
4245   void work(uint worker_id) {
4246     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4247 
4248     ResourceMark rm;
4249     HandleMark   hm;
4250 
4251     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4252     pss->set_ref_processor(NULL);
4253     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4254 
4255     // Is alive closure
4256     G1AlwaysAliveClosure always_alive(_g1h);
4257 
4258     // Copying keep alive closure. Applied to referent objects that need
4259     // to be copied.
4260     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4261 
4262     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4263 
4264     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4265     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4266 
4267     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4268     // So this must be true - but assert just in case someone decides to
4269     // change the worker ids.
4270     assert(worker_id < limit, "sanity");
4271     assert(!rp->discovery_is_atomic(), "check this code");
4272 
4273     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4274     for (uint idx = worker_id; idx < limit; idx += stride) {
4275       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4276 
4277       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4278       while (iter.has_next()) {
4279         // Since discovery is not atomic for the CM ref processor, we
4280         // can see some null referent objects.
4281         iter.load_ptrs(DEBUG_ONLY(true));
4282         oop ref = iter.obj();
4283 
4284         // This will filter nulls.
4285         if (iter.is_referent_alive()) {
4286           iter.make_referent_alive();
4287         }
4288         iter.move_to_next();
4289       }
4290     }
4291 
4292     // Drain the queue - which may cause stealing
4293     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4294     drain_queue.do_void();
4295     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4296     assert(pss->queue_is_empty(), "should be");
4297   }
4298 };
4299 
4300 void G1CollectedHeap::process_weak_jni_handles() {
4301   double ref_proc_start = os::elapsedTime();
4302 
4303   G1STWIsAliveClosure is_alive(this);
4304   G1KeepAliveClosure keep_alive(this);
4305   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4306 
4307   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4308   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4309 }
4310 
4311 void G1CollectedHeap::process_heap_monitoring() {
4312   log_develop_trace(gc, ref)("HeapSampling [other] : heap monitoring processing");
4313   G1STWIsAliveClosure is_alive(this);
4314   G1KeepAliveClosure keep_alive(this);
4315   HeapMonitoring::weak_oops_do(&is_alive, &keep_alive);
4316 }
4317 
4318 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4319   // Any reference objects, in the collection set, that were 'discovered'
4320   // by the CM ref processor should have already been copied (either by
4321   // applying the external root copy closure to the discovered lists, or
4322   // by following an RSet entry).
4323   //
4324   // But some of the referents, that are in the collection set, that these
4325   // reference objects point to may not have been copied: the STW ref
4326   // processor would have seen that the reference object had already
4327   // been 'discovered' and would have skipped discovering the reference,
4328   // but would not have treated the reference object as a regular oop.
4329   // As a result the copy closure would not have been applied to the
4330   // referent object.
4331   //
4332   // We need to explicitly copy these referent objects - the references
4333   // will be processed at the end of remarking.
4334   //
4335   // We also need to do this copying before we process the reference
4336   // objects discovered by the STW ref processor in case one of these
4337   // referents points to another object which is also referenced by an
4338   // object discovered by the STW ref processor.
4339   double preserve_cm_referents_time = 0.0;
4340 
4341   // To avoid spawning task when there is no work to do, check that
4342   // a concurrent cycle is active and that some references have been
4343   // discovered.
4344   if (concurrent_mark()->cmThread()->during_cycle() &&
4345       ref_processor_cm()->has_discovered_references()) {
4346     double preserve_cm_referents_start = os::elapsedTime();
4347     uint no_of_gc_workers = workers()->active_workers();
4348     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4349                                                    per_thread_states,
4350                                                    no_of_gc_workers,
4351                                                    _task_queues);
4352     workers()->run_task(&keep_cm_referents);
4353     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4354   }
4355 
4356   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4357 }
4358 
4359 // Weak Reference processing during an evacuation pause (part 1).
4360 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4361   double ref_proc_start = os::elapsedTime();
4362 
4363   ReferenceProcessor* rp = _ref_processor_stw;
4364   assert(rp->discovery_enabled(), "should have been enabled");
4365 
4366   // Closure to test whether a referent is alive.
4367   G1STWIsAliveClosure is_alive(this);
4368 
4369   // Even when parallel reference processing is enabled, the processing
4370   // of JNI refs is serial and performed serially by the current thread
4371   // rather than by a worker. The following PSS will be used for processing
4372   // JNI refs.
4373 
4374   // Use only a single queue for this PSS.
4375   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4376   pss->set_ref_processor(NULL);
4377   assert(pss->queue_is_empty(), "pre-condition");
4378 
4379   // Keep alive closure.
4380   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4381 
4382   // Serial Complete GC closure
4383   G1STWDrainQueueClosure drain_queue(this, pss);
4384 
4385   // Setup the soft refs policy...
4386   rp->setup_policy(false);
4387 
4388   ReferenceProcessorStats stats;
4389   if (!rp->processing_is_mt()) {
4390     // Serial reference processing...
4391     stats = rp->process_discovered_references(&is_alive,
4392                                               &keep_alive,
4393                                               &drain_queue,
4394                                               NULL,
4395                                               _gc_timer_stw);
4396   } else {
4397     uint no_of_gc_workers = workers()->active_workers();
4398 
4399     // Parallel reference processing
4400     assert(no_of_gc_workers <= rp->max_num_q(),
4401            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4402            no_of_gc_workers,  rp->max_num_q());
4403 
4404     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4405     stats = rp->process_discovered_references(&is_alive,
4406                                               &keep_alive,
4407                                               &drain_queue,
4408                                               &par_task_executor,
4409                                               _gc_timer_stw);
4410   }
4411 
4412   _gc_tracer_stw->report_gc_reference_stats(stats);
4413 
4414   // We have completed copying any necessary live referent objects.
4415   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4416 
4417   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4418   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4419 }
4420 
4421 // Weak Reference processing during an evacuation pause (part 2).
4422 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4423   double ref_enq_start = os::elapsedTime();
4424 
4425   ReferenceProcessor* rp = _ref_processor_stw;
4426   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4427 
4428   // Now enqueue any remaining on the discovered lists on to
4429   // the pending list.
4430   if (!rp->processing_is_mt()) {
4431     // Serial reference processing...
4432     rp->enqueue_discovered_references();
4433   } else {
4434     // Parallel reference enqueueing
4435 
4436     uint n_workers = workers()->active_workers();
4437 
4438     assert(n_workers <= rp->max_num_q(),
4439            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4440            n_workers,  rp->max_num_q());
4441 
4442     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4443     rp->enqueue_discovered_references(&par_task_executor);
4444   }
4445 
4446   rp->verify_no_references_recorded();
4447   assert(!rp->discovery_enabled(), "should have been disabled");
4448 
4449   // FIXME
4450   // CM's reference processing also cleans up the string and symbol tables.
4451   // Should we do that here also? We could, but it is a serial operation
4452   // and could significantly increase the pause time.
4453 
4454   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4455   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4456 }
4457 
4458 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4459   double merge_pss_time_start = os::elapsedTime();
4460   per_thread_states->flush();
4461   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4462 }
4463 
4464 void G1CollectedHeap::pre_evacuate_collection_set() {
4465   _expand_heap_after_alloc_failure = true;
4466   _evacuation_failed = false;
4467 
4468   // Disable the hot card cache.
4469   _hot_card_cache->reset_hot_cache_claimed_index();
4470   _hot_card_cache->set_use_cache(false);
4471 
4472   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4473   _preserved_marks_set.assert_empty();
4474 
4475   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4476 
4477   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4478   if (collector_state()->during_initial_mark_pause()) {
4479     double start_clear_claimed_marks = os::elapsedTime();
4480 
4481     ClassLoaderDataGraph::clear_claimed_marks();
4482 
4483     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4484     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4485   }
4486 }
4487 
4488 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4489   // Should G1EvacuationFailureALot be in effect for this GC?
4490   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4491 
4492   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4493 
4494   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4495 
4496   double start_par_time_sec = os::elapsedTime();
4497   double end_par_time_sec;
4498 
4499   {
4500     const uint n_workers = workers()->active_workers();
4501     G1RootProcessor root_processor(this, n_workers);
4502     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4503 
4504     print_termination_stats_hdr();
4505 
4506     workers()->run_task(&g1_par_task);
4507     end_par_time_sec = os::elapsedTime();
4508 
4509     // Closing the inner scope will execute the destructor
4510     // for the G1RootProcessor object. We record the current
4511     // elapsed time before closing the scope so that time
4512     // taken for the destructor is NOT included in the
4513     // reported parallel time.
4514   }
4515 
4516   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4517   phase_times->record_par_time(par_time_ms);
4518 
4519   double code_root_fixup_time_ms =
4520         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4521   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4522 }
4523 
4524 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4525   // Process any discovered reference objects - we have
4526   // to do this _before_ we retire the GC alloc regions
4527   // as we may have to copy some 'reachable' referent
4528   // objects (and their reachable sub-graphs) that were
4529   // not copied during the pause.
4530   if (g1_policy()->should_process_references()) {
4531     preserve_cm_referents(per_thread_states);
4532     process_discovered_references(per_thread_states);
4533   } else {
4534     ref_processor_stw()->verify_no_references_recorded();
4535     process_weak_jni_handles();
4536     process_heap_monitoring();
4537   }
4538 
4539   if (G1StringDedup::is_enabled()) {
4540     double fixup_start = os::elapsedTime();
4541 
4542     G1STWIsAliveClosure is_alive(this);
4543     G1KeepAliveClosure keep_alive(this);
4544     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4545 
4546     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4547     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4548   }
4549 
4550   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4551 
4552   if (evacuation_failed()) {
4553     restore_after_evac_failure();
4554 
4555     // Reset the G1EvacuationFailureALot counters and flags
4556     // Note: the values are reset only when an actual
4557     // evacuation failure occurs.
4558     NOT_PRODUCT(reset_evacuation_should_fail();)
4559   }
4560 
4561   _preserved_marks_set.assert_empty();
4562 
4563   // Enqueue any remaining references remaining on the STW
4564   // reference processor's discovered lists. We need to do
4565   // this after the card table is cleaned (and verified) as
4566   // the act of enqueueing entries on to the pending list
4567   // will log these updates (and dirty their associated
4568   // cards). We need these updates logged to update any
4569   // RSets.
4570   if (g1_policy()->should_process_references()) {
4571     enqueue_discovered_references(per_thread_states);
4572   } else {
4573     g1_policy()->phase_times()->record_ref_enq_time(0);
4574   }
4575 
4576   _allocator->release_gc_alloc_regions(evacuation_info);
4577 
4578   merge_per_thread_state_info(per_thread_states);
4579 
4580   // Reset and re-enable the hot card cache.
4581   // Note the counts for the cards in the regions in the
4582   // collection set are reset when the collection set is freed.
4583   _hot_card_cache->reset_hot_cache();
4584   _hot_card_cache->set_use_cache(true);
4585 
4586   purge_code_root_memory();
4587 
4588   redirty_logged_cards();
4589 #if defined(COMPILER2) || INCLUDE_JVMCI
4590   double start = os::elapsedTime();
4591   DerivedPointerTable::update_pointers();
4592   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4593 #endif
4594   g1_policy()->print_age_table();
4595 }
4596 
4597 void G1CollectedHeap::record_obj_copy_mem_stats() {
4598   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4599 
4600   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4601                                                create_g1_evac_summary(&_old_evac_stats));
4602 }
4603 
4604 void G1CollectedHeap::free_region(HeapRegion* hr,
4605                                   FreeRegionList* free_list,
4606                                   bool skip_remset,
4607                                   bool skip_hot_card_cache,
4608                                   bool locked) {
4609   assert(!hr->is_free(), "the region should not be free");
4610   assert(!hr->is_empty(), "the region should not be empty");
4611   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4612   assert(free_list != NULL, "pre-condition");
4613 
4614   if (G1VerifyBitmaps) {
4615     MemRegion mr(hr->bottom(), hr->end());
4616     concurrent_mark()->clearRangePrevBitmap(mr);
4617   }
4618 
4619   // Clear the card counts for this region.
4620   // Note: we only need to do this if the region is not young
4621   // (since we don't refine cards in young regions).
4622   if (!skip_hot_card_cache && !hr->is_young()) {
4623     _hot_card_cache->reset_card_counts(hr);
4624   }
4625   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4626   free_list->add_ordered(hr);
4627 }
4628 
4629 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4630                                             FreeRegionList* free_list,
4631                                             bool skip_remset) {
4632   assert(hr->is_humongous(), "this is only for humongous regions");
4633   assert(free_list != NULL, "pre-condition");
4634   hr->clear_humongous();
4635   free_region(hr, free_list, skip_remset);
4636 }
4637 
4638 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4639                                            const uint humongous_regions_removed) {
4640   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4641     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4642     _old_set.bulk_remove(old_regions_removed);
4643     _humongous_set.bulk_remove(humongous_regions_removed);
4644   }
4645 
4646 }
4647 
4648 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4649   assert(list != NULL, "list can't be null");
4650   if (!list->is_empty()) {
4651     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4652     _hrm.insert_list_into_free_list(list);
4653   }
4654 }
4655 
4656 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4657   decrease_used(bytes);
4658 }
4659 
4660 class G1ParScrubRemSetTask: public AbstractGangTask {
4661 protected:
4662   G1RemSet* _g1rs;
4663   HeapRegionClaimer _hrclaimer;
4664 
4665 public:
4666   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4667     AbstractGangTask("G1 ScrubRS"),
4668     _g1rs(g1_rs),
4669     _hrclaimer(num_workers) {
4670   }
4671 
4672   void work(uint worker_id) {
4673     _g1rs->scrub(worker_id, &_hrclaimer);
4674   }
4675 };
4676 
4677 void G1CollectedHeap::scrub_rem_set() {
4678   uint num_workers = workers()->active_workers();
4679   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4680   workers()->run_task(&g1_par_scrub_rs_task);
4681 }
4682 
4683 class G1FreeCollectionSetTask : public AbstractGangTask {
4684 private:
4685 
4686   // Closure applied to all regions in the collection set to do work that needs to
4687   // be done serially in a single thread.
4688   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4689   private:
4690     EvacuationInfo* _evacuation_info;
4691     const size_t* _surviving_young_words;
4692 
4693     // Bytes used in successfully evacuated regions before the evacuation.
4694     size_t _before_used_bytes;
4695     // Bytes used in unsucessfully evacuated regions before the evacuation
4696     size_t _after_used_bytes;
4697 
4698     size_t _bytes_allocated_in_old_since_last_gc;
4699 
4700     size_t _failure_used_words;
4701     size_t _failure_waste_words;
4702 
4703     FreeRegionList _local_free_list;
4704   public:
4705     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4706       HeapRegionClosure(),
4707       _evacuation_info(evacuation_info),
4708       _surviving_young_words(surviving_young_words),
4709       _before_used_bytes(0),
4710       _after_used_bytes(0),
4711       _bytes_allocated_in_old_since_last_gc(0),
4712       _failure_used_words(0),
4713       _failure_waste_words(0),
4714       _local_free_list("Local Region List for CSet Freeing") {
4715     }
4716 
4717     virtual bool doHeapRegion(HeapRegion* r) {
4718       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4719 
4720       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4721       g1h->clear_in_cset(r);
4722 
4723       if (r->is_young()) {
4724         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4725                "Young index %d is wrong for region %u of type %s with %u young regions",
4726                r->young_index_in_cset(),
4727                r->hrm_index(),
4728                r->get_type_str(),
4729                g1h->collection_set()->young_region_length());
4730         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4731         r->record_surv_words_in_group(words_survived);
4732       }
4733 
4734       if (!r->evacuation_failed()) {
4735         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4736         _before_used_bytes += r->used();
4737         g1h->free_region(r,
4738                          &_local_free_list,
4739                          true, /* skip_remset */
4740                          true, /* skip_hot_card_cache */
4741                          true  /* locked */);
4742       } else {
4743         r->uninstall_surv_rate_group();
4744         r->set_young_index_in_cset(-1);
4745         r->set_evacuation_failed(false);
4746         // When moving a young gen region to old gen, we "allocate" that whole region
4747         // there. This is in addition to any already evacuated objects. Notify the
4748         // policy about that.
4749         // Old gen regions do not cause an additional allocation: both the objects
4750         // still in the region and the ones already moved are accounted for elsewhere.
4751         if (r->is_young()) {
4752           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4753         }
4754         // The region is now considered to be old.
4755         r->set_old();
4756         // Do some allocation statistics accounting. Regions that failed evacuation
4757         // are always made old, so there is no need to update anything in the young
4758         // gen statistics, but we need to update old gen statistics.
4759         size_t used_words = r->marked_bytes() / HeapWordSize;
4760 
4761         _failure_used_words += used_words;
4762         _failure_waste_words += HeapRegion::GrainWords - used_words;
4763 
4764         g1h->old_set_add(r);
4765         _after_used_bytes += r->used();
4766       }
4767       return false;
4768     }
4769 
4770     void complete_work() {
4771       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4772 
4773       _evacuation_info->set_regions_freed(_local_free_list.length());
4774       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4775 
4776       g1h->prepend_to_freelist(&_local_free_list);
4777       g1h->decrement_summary_bytes(_before_used_bytes);
4778 
4779       G1Policy* policy = g1h->g1_policy();
4780       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4781 
4782       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4783     }
4784   };
4785 
4786   G1CollectionSet* _collection_set;
4787   G1SerialFreeCollectionSetClosure _cl;
4788   const size_t* _surviving_young_words;
4789 
4790   size_t _rs_lengths;
4791 
4792   volatile jint _serial_work_claim;
4793 
4794   struct WorkItem {
4795     uint region_idx;
4796     bool is_young;
4797     bool evacuation_failed;
4798 
4799     WorkItem(HeapRegion* r) {
4800       region_idx = r->hrm_index();
4801       is_young = r->is_young();
4802       evacuation_failed = r->evacuation_failed();
4803     }
4804   };
4805 
4806   volatile size_t _parallel_work_claim;
4807   size_t _num_work_items;
4808   WorkItem* _work_items;
4809 
4810   void do_serial_work() {
4811     // Need to grab the lock to be allowed to modify the old region list.
4812     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4813     _collection_set->iterate(&_cl);
4814   }
4815 
4816   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4817     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4818 
4819     HeapRegion* r = g1h->region_at(region_idx);
4820     assert(!g1h->is_on_master_free_list(r), "sanity");
4821 
4822     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4823 
4824     if (!is_young) {
4825       g1h->_hot_card_cache->reset_card_counts(r);
4826     }
4827 
4828     if (!evacuation_failed) {
4829       r->rem_set()->clear_locked();
4830     }
4831   }
4832 
4833   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4834   private:
4835     size_t _cur_idx;
4836     WorkItem* _work_items;
4837   public:
4838     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4839 
4840     virtual bool doHeapRegion(HeapRegion* r) {
4841       _work_items[_cur_idx++] = WorkItem(r);
4842       return false;
4843     }
4844   };
4845 
4846   void prepare_work() {
4847     G1PrepareFreeCollectionSetClosure cl(_work_items);
4848     _collection_set->iterate(&cl);
4849   }
4850 
4851   void complete_work() {
4852     _cl.complete_work();
4853 
4854     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4855     policy->record_max_rs_lengths(_rs_lengths);
4856     policy->cset_regions_freed();
4857   }
4858 public:
4859   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4860     AbstractGangTask("G1 Free Collection Set"),
4861     _cl(evacuation_info, surviving_young_words),
4862     _collection_set(collection_set),
4863     _surviving_young_words(surviving_young_words),
4864     _serial_work_claim(0),
4865     _rs_lengths(0),
4866     _parallel_work_claim(0),
4867     _num_work_items(collection_set->region_length()),
4868     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4869     prepare_work();
4870   }
4871 
4872   ~G1FreeCollectionSetTask() {
4873     complete_work();
4874     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4875   }
4876 
4877   // Chunk size for work distribution. The chosen value has been determined experimentally
4878   // to be a good tradeoff between overhead and achievable parallelism.
4879   static uint chunk_size() { return 32; }
4880 
4881   virtual void work(uint worker_id) {
4882     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4883 
4884     // Claim serial work.
4885     if (_serial_work_claim == 0) {
4886       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4887       if (value == 0) {
4888         double serial_time = os::elapsedTime();
4889         do_serial_work();
4890         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4891       }
4892     }
4893 
4894     // Start parallel work.
4895     double young_time = 0.0;
4896     bool has_young_time = false;
4897     double non_young_time = 0.0;
4898     bool has_non_young_time = false;
4899 
4900     while (true) {
4901       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4902       size_t cur = end - chunk_size();
4903 
4904       if (cur >= _num_work_items) {
4905         break;
4906       }
4907 
4908       double start_time = os::elapsedTime();
4909 
4910       end = MIN2(end, _num_work_items);
4911 
4912       for (; cur < end; cur++) {
4913         bool is_young = _work_items[cur].is_young;
4914 
4915         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4916 
4917         double end_time = os::elapsedTime();
4918         double time_taken = end_time - start_time;
4919         if (is_young) {
4920           young_time += time_taken;
4921           has_young_time = true;
4922         } else {
4923           non_young_time += time_taken;
4924           has_non_young_time = true;
4925         }
4926         start_time = end_time;
4927       }
4928     }
4929 
4930     if (has_young_time) {
4931       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4932     }
4933     if (has_non_young_time) {
4934       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4935     }
4936   }
4937 };
4938 
4939 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4940   _eden.clear();
4941 
4942   double free_cset_start_time = os::elapsedTime();
4943 
4944   {
4945     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4946     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4947 
4948     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4949 
4950     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4951                         cl.name(),
4952                         num_workers,
4953                         _collection_set.region_length());
4954     workers()->run_task(&cl, num_workers);
4955   }
4956   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4957 
4958   collection_set->clear();
4959 }
4960 
4961 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4962  private:
4963   FreeRegionList* _free_region_list;
4964   HeapRegionSet* _proxy_set;
4965   uint _humongous_objects_reclaimed;
4966   uint _humongous_regions_reclaimed;
4967   size_t _freed_bytes;
4968  public:
4969 
4970   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4971     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4972   }
4973 
4974   virtual bool doHeapRegion(HeapRegion* r) {
4975     if (!r->is_starts_humongous()) {
4976       return false;
4977     }
4978 
4979     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4980 
4981     oop obj = (oop)r->bottom();
4982     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4983 
4984     // The following checks whether the humongous object is live are sufficient.
4985     // The main additional check (in addition to having a reference from the roots
4986     // or the young gen) is whether the humongous object has a remembered set entry.
4987     //
4988     // A humongous object cannot be live if there is no remembered set for it
4989     // because:
4990     // - there can be no references from within humongous starts regions referencing
4991     // the object because we never allocate other objects into them.
4992     // (I.e. there are no intra-region references that may be missed by the
4993     // remembered set)
4994     // - as soon there is a remembered set entry to the humongous starts region
4995     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4996     // until the end of a concurrent mark.
4997     //
4998     // It is not required to check whether the object has been found dead by marking
4999     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5000     // all objects allocated during that time are considered live.
5001     // SATB marking is even more conservative than the remembered set.
5002     // So if at this point in the collection there is no remembered set entry,
5003     // nobody has a reference to it.
5004     // At the start of collection we flush all refinement logs, and remembered sets
5005     // are completely up-to-date wrt to references to the humongous object.
5006     //
5007     // Other implementation considerations:
5008     // - never consider object arrays at this time because they would pose
5009     // considerable effort for cleaning up the the remembered sets. This is
5010     // required because stale remembered sets might reference locations that
5011     // are currently allocated into.
5012     uint region_idx = r->hrm_index();
5013     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5014         !r->rem_set()->is_empty()) {
5015       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5016                                region_idx,
5017                                (size_t)obj->size() * HeapWordSize,
5018                                p2i(r->bottom()),
5019                                r->rem_set()->occupied(),
5020                                r->rem_set()->strong_code_roots_list_length(),
5021                                next_bitmap->isMarked(r->bottom()),
5022                                g1h->is_humongous_reclaim_candidate(region_idx),
5023                                obj->is_typeArray()
5024                               );
5025       return false;
5026     }
5027 
5028     guarantee(obj->is_typeArray(),
5029               "Only eagerly reclaiming type arrays is supported, but the object "
5030               PTR_FORMAT " is not.", p2i(r->bottom()));
5031 
5032     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5033                              region_idx,
5034                              (size_t)obj->size() * HeapWordSize,
5035                              p2i(r->bottom()),
5036                              r->rem_set()->occupied(),
5037                              r->rem_set()->strong_code_roots_list_length(),
5038                              next_bitmap->isMarked(r->bottom()),
5039                              g1h->is_humongous_reclaim_candidate(region_idx),
5040                              obj->is_typeArray()
5041                             );
5042 
5043     // Need to clear mark bit of the humongous object if already set.
5044     if (next_bitmap->isMarked(r->bottom())) {
5045       next_bitmap->clear(r->bottom());
5046     }
5047     _humongous_objects_reclaimed++;
5048     do {
5049       HeapRegion* next = g1h->next_region_in_humongous(r);
5050       _freed_bytes += r->used();
5051       r->set_containing_set(NULL);
5052       _humongous_regions_reclaimed++;
5053       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5054       r = next;
5055     } while (r != NULL);
5056 
5057     return false;
5058   }
5059 
5060   uint humongous_objects_reclaimed() {
5061     return _humongous_objects_reclaimed;
5062   }
5063 
5064   uint humongous_regions_reclaimed() {
5065     return _humongous_regions_reclaimed;
5066   }
5067 
5068   size_t bytes_freed() const {
5069     return _freed_bytes;
5070   }
5071 };
5072 
5073 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5074   assert_at_safepoint(true);
5075 
5076   if (!G1EagerReclaimHumongousObjects ||
5077       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5078     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5079     return;
5080   }
5081 
5082   double start_time = os::elapsedTime();
5083 
5084   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5085 
5086   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5087   heap_region_iterate(&cl);
5088 
5089   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5090 
5091   G1HRPrinter* hrp = hr_printer();
5092   if (hrp->is_active()) {
5093     FreeRegionListIterator iter(&local_cleanup_list);
5094     while (iter.more_available()) {
5095       HeapRegion* hr = iter.get_next();
5096       hrp->cleanup(hr);
5097     }
5098   }
5099 
5100   prepend_to_freelist(&local_cleanup_list);
5101   decrement_summary_bytes(cl.bytes_freed());
5102 
5103   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5104                                                                     cl.humongous_objects_reclaimed());
5105 }
5106 
5107 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5108 public:
5109   virtual bool doHeapRegion(HeapRegion* r) {
5110     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5111     G1CollectedHeap::heap()->clear_in_cset(r);
5112     r->set_young_index_in_cset(-1);
5113     return false;
5114   }
5115 };
5116 
5117 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5118   G1AbandonCollectionSetClosure cl;
5119   collection_set->iterate(&cl);
5120 
5121   collection_set->clear();
5122   collection_set->stop_incremental_building();
5123 }
5124 
5125 void G1CollectedHeap::set_free_regions_coming() {
5126   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5127 
5128   assert(!free_regions_coming(), "pre-condition");
5129   _free_regions_coming = true;
5130 }
5131 
5132 void G1CollectedHeap::reset_free_regions_coming() {
5133   assert(free_regions_coming(), "pre-condition");
5134 
5135   {
5136     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5137     _free_regions_coming = false;
5138     SecondaryFreeList_lock->notify_all();
5139   }
5140 
5141   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5142 }
5143 
5144 void G1CollectedHeap::wait_while_free_regions_coming() {
5145   // Most of the time we won't have to wait, so let's do a quick test
5146   // first before we take the lock.
5147   if (!free_regions_coming()) {
5148     return;
5149   }
5150 
5151   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5152 
5153   {
5154     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5155     while (free_regions_coming()) {
5156       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5157     }
5158   }
5159 
5160   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5161 }
5162 
5163 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5164   return _allocator->is_retained_old_region(hr);
5165 }
5166 
5167 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5168   _eden.add(hr);
5169   _g1_policy->set_region_eden(hr);
5170 }
5171 
5172 #ifdef ASSERT
5173 
5174 class NoYoungRegionsClosure: public HeapRegionClosure {
5175 private:
5176   bool _success;
5177 public:
5178   NoYoungRegionsClosure() : _success(true) { }
5179   bool doHeapRegion(HeapRegion* r) {
5180     if (r->is_young()) {
5181       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5182                             p2i(r->bottom()), p2i(r->end()));
5183       _success = false;
5184     }
5185     return false;
5186   }
5187   bool success() { return _success; }
5188 };
5189 
5190 bool G1CollectedHeap::check_young_list_empty() {
5191   bool ret = (young_regions_count() == 0);
5192 
5193   NoYoungRegionsClosure closure;
5194   heap_region_iterate(&closure);
5195   ret = ret && closure.success();
5196 
5197   return ret;
5198 }
5199 
5200 #endif // ASSERT
5201 
5202 class TearDownRegionSetsClosure : public HeapRegionClosure {
5203 private:
5204   HeapRegionSet *_old_set;
5205 
5206 public:
5207   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5208 
5209   bool doHeapRegion(HeapRegion* r) {
5210     if (r->is_old()) {
5211       _old_set->remove(r);
5212     } else if(r->is_young()) {
5213       r->uninstall_surv_rate_group();
5214     } else {
5215       // We ignore free regions, we'll empty the free list afterwards.
5216       // We ignore humongous regions, we're not tearing down the
5217       // humongous regions set.
5218       assert(r->is_free() || r->is_humongous(),
5219              "it cannot be another type");
5220     }
5221     return false;
5222   }
5223 
5224   ~TearDownRegionSetsClosure() {
5225     assert(_old_set->is_empty(), "post-condition");
5226   }
5227 };
5228 
5229 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5230   assert_at_safepoint(true /* should_be_vm_thread */);
5231 
5232   if (!free_list_only) {
5233     TearDownRegionSetsClosure cl(&_old_set);
5234     heap_region_iterate(&cl);
5235 
5236     // Note that emptying the _young_list is postponed and instead done as
5237     // the first step when rebuilding the regions sets again. The reason for
5238     // this is that during a full GC string deduplication needs to know if
5239     // a collected region was young or old when the full GC was initiated.
5240   }
5241   _hrm.remove_all_free_regions();
5242 }
5243 
5244 void G1CollectedHeap::increase_used(size_t bytes) {
5245   _summary_bytes_used += bytes;
5246 }
5247 
5248 void G1CollectedHeap::decrease_used(size_t bytes) {
5249   assert(_summary_bytes_used >= bytes,
5250          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5251          _summary_bytes_used, bytes);
5252   _summary_bytes_used -= bytes;
5253 }
5254 
5255 void G1CollectedHeap::set_used(size_t bytes) {
5256   _summary_bytes_used = bytes;
5257 }
5258 
5259 class RebuildRegionSetsClosure : public HeapRegionClosure {
5260 private:
5261   bool            _free_list_only;
5262   HeapRegionSet*   _old_set;
5263   HeapRegionManager*   _hrm;
5264   size_t          _total_used;
5265 
5266 public:
5267   RebuildRegionSetsClosure(bool free_list_only,
5268                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5269     _free_list_only(free_list_only),
5270     _old_set(old_set), _hrm(hrm), _total_used(0) {
5271     assert(_hrm->num_free_regions() == 0, "pre-condition");
5272     if (!free_list_only) {
5273       assert(_old_set->is_empty(), "pre-condition");
5274     }
5275   }
5276 
5277   bool doHeapRegion(HeapRegion* r) {
5278     if (r->is_empty()) {
5279       // Add free regions to the free list
5280       r->set_free();
5281       r->set_allocation_context(AllocationContext::system());
5282       _hrm->insert_into_free_list(r);
5283     } else if (!_free_list_only) {
5284 
5285       if (r->is_humongous()) {
5286         // We ignore humongous regions. We left the humongous set unchanged.
5287       } else {
5288         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5289         // We now consider all regions old, so register as such. Leave
5290         // archive regions set that way, however, while still adding
5291         // them to the old set.
5292         if (!r->is_archive()) {
5293           r->set_old();
5294         }
5295         _old_set->add(r);
5296       }
5297       _total_used += r->used();
5298     }
5299 
5300     return false;
5301   }
5302 
5303   size_t total_used() {
5304     return _total_used;
5305   }
5306 };
5307 
5308 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5309   assert_at_safepoint(true /* should_be_vm_thread */);
5310 
5311   if (!free_list_only) {
5312     _eden.clear();
5313     _survivor.clear();
5314   }
5315 
5316   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5317   heap_region_iterate(&cl);
5318 
5319   if (!free_list_only) {
5320     set_used(cl.total_used());
5321     if (_archive_allocator != NULL) {
5322       _archive_allocator->clear_used();
5323     }
5324   }
5325   assert(used_unlocked() == recalculate_used(),
5326          "inconsistent used_unlocked(), "
5327          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5328          used_unlocked(), recalculate_used());
5329 }
5330 
5331 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5332   _refine_cte_cl->set_concurrent(concurrent);
5333 }
5334 
5335 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5336   HeapRegion* hr = heap_region_containing(p);
5337   return hr->is_in(p);
5338 }
5339 
5340 // Methods for the mutator alloc region
5341 
5342 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5343                                                       bool force) {
5344   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5345   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5346   if (force || should_allocate) {
5347     HeapRegion* new_alloc_region = new_region(word_size,
5348                                               false /* is_old */,
5349                                               false /* do_expand */);
5350     if (new_alloc_region != NULL) {
5351       set_region_short_lived_locked(new_alloc_region);
5352       _hr_printer.alloc(new_alloc_region, !should_allocate);
5353       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5354       return new_alloc_region;
5355     }
5356   }
5357   return NULL;
5358 }
5359 
5360 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5361                                                   size_t allocated_bytes) {
5362   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5363   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5364 
5365   collection_set()->add_eden_region(alloc_region);
5366   increase_used(allocated_bytes);
5367   _hr_printer.retire(alloc_region);
5368   // We update the eden sizes here, when the region is retired,
5369   // instead of when it's allocated, since this is the point that its
5370   // used space has been recored in _summary_bytes_used.
5371   g1mm()->update_eden_size();
5372 }
5373 
5374 // Methods for the GC alloc regions
5375 
5376 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5377   if (dest.is_old()) {
5378     return true;
5379   } else {
5380     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5381   }
5382 }
5383 
5384 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5385   assert(FreeList_lock->owned_by_self(), "pre-condition");
5386 
5387   if (!has_more_regions(dest)) {
5388     return NULL;
5389   }
5390 
5391   const bool is_survivor = dest.is_young();
5392 
5393   HeapRegion* new_alloc_region = new_region(word_size,
5394                                             !is_survivor,
5395                                             true /* do_expand */);
5396   if (new_alloc_region != NULL) {
5397     // We really only need to do this for old regions given that we
5398     // should never scan survivors. But it doesn't hurt to do it
5399     // for survivors too.
5400     new_alloc_region->record_timestamp();
5401     if (is_survivor) {
5402       new_alloc_region->set_survivor();
5403       _survivor.add(new_alloc_region);
5404       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5405     } else {
5406       new_alloc_region->set_old();
5407       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5408     }
5409     _hr_printer.alloc(new_alloc_region);
5410     bool during_im = collector_state()->during_initial_mark_pause();
5411     new_alloc_region->note_start_of_copying(during_im);
5412     return new_alloc_region;
5413   }
5414   return NULL;
5415 }
5416 
5417 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5418                                              size_t allocated_bytes,
5419                                              InCSetState dest) {
5420   bool during_im = collector_state()->during_initial_mark_pause();
5421   alloc_region->note_end_of_copying(during_im);
5422   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5423   if (dest.is_old()) {
5424     _old_set.add(alloc_region);
5425   }
5426   _hr_printer.retire(alloc_region);
5427 }
5428 
5429 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5430   bool expanded = false;
5431   uint index = _hrm.find_highest_free(&expanded);
5432 
5433   if (index != G1_NO_HRM_INDEX) {
5434     if (expanded) {
5435       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5436                                 HeapRegion::GrainWords * HeapWordSize);
5437     }
5438     _hrm.allocate_free_regions_starting_at(index, 1);
5439     return region_at(index);
5440   }
5441   return NULL;
5442 }
5443 
5444 // Optimized nmethod scanning
5445 
5446 class RegisterNMethodOopClosure: public OopClosure {
5447   G1CollectedHeap* _g1h;
5448   nmethod* _nm;
5449 
5450   template <class T> void do_oop_work(T* p) {
5451     T heap_oop = oopDesc::load_heap_oop(p);
5452     if (!oopDesc::is_null(heap_oop)) {
5453       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5454       HeapRegion* hr = _g1h->heap_region_containing(obj);
5455       assert(!hr->is_continues_humongous(),
5456              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5457              " starting at " HR_FORMAT,
5458              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5459 
5460       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5461       hr->add_strong_code_root_locked(_nm);
5462     }
5463   }
5464 
5465 public:
5466   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5467     _g1h(g1h), _nm(nm) {}
5468 
5469   void do_oop(oop* p)       { do_oop_work(p); }
5470   void do_oop(narrowOop* p) { do_oop_work(p); }
5471 };
5472 
5473 class UnregisterNMethodOopClosure: public OopClosure {
5474   G1CollectedHeap* _g1h;
5475   nmethod* _nm;
5476 
5477   template <class T> void do_oop_work(T* p) {
5478     T heap_oop = oopDesc::load_heap_oop(p);
5479     if (!oopDesc::is_null(heap_oop)) {
5480       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5481       HeapRegion* hr = _g1h->heap_region_containing(obj);
5482       assert(!hr->is_continues_humongous(),
5483              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5484              " starting at " HR_FORMAT,
5485              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5486 
5487       hr->remove_strong_code_root(_nm);
5488     }
5489   }
5490 
5491 public:
5492   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5493     _g1h(g1h), _nm(nm) {}
5494 
5495   void do_oop(oop* p)       { do_oop_work(p); }
5496   void do_oop(narrowOop* p) { do_oop_work(p); }
5497 };
5498 
5499 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5500   CollectedHeap::register_nmethod(nm);
5501 
5502   guarantee(nm != NULL, "sanity");
5503   RegisterNMethodOopClosure reg_cl(this, nm);
5504   nm->oops_do(&reg_cl);
5505 }
5506 
5507 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5508   CollectedHeap::unregister_nmethod(nm);
5509 
5510   guarantee(nm != NULL, "sanity");
5511   UnregisterNMethodOopClosure reg_cl(this, nm);
5512   nm->oops_do(&reg_cl, true);
5513 }
5514 
5515 void G1CollectedHeap::purge_code_root_memory() {
5516   double purge_start = os::elapsedTime();
5517   G1CodeRootSet::purge();
5518   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5519   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5520 }
5521 
5522 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5523   G1CollectedHeap* _g1h;
5524 
5525 public:
5526   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5527     _g1h(g1h) {}
5528 
5529   void do_code_blob(CodeBlob* cb) {
5530     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5531     if (nm == NULL) {
5532       return;
5533     }
5534 
5535     if (ScavengeRootsInCode) {
5536       _g1h->register_nmethod(nm);
5537     }
5538   }
5539 };
5540 
5541 void G1CollectedHeap::rebuild_strong_code_roots() {
5542   RebuildStrongCodeRootClosure blob_cl(this);
5543   CodeCache::blobs_do(&blob_cl);
5544 }