1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc/shared/gcTrace.hpp"
  29 #include "gc/shared/referencePolicy.hpp"
  30 #include "gc/shared/referenceProcessorStats.hpp"
  31 #include "memory/referenceType.hpp"
  32 #include "oops/instanceRefKlass.hpp"
  33 
  34 class GCTimer;
  35 
  36 // ReferenceProcessor class encapsulates the per-"collector" processing
  37 // of java.lang.Reference objects for GC. The interface is useful for supporting
  38 // a generational abstraction, in particular when there are multiple
  39 // generations that are being independently collected -- possibly
  40 // concurrently and/or incrementally.  Note, however, that the
  41 // ReferenceProcessor class abstracts away from a generational setting
  42 // by using only a heap interval (called "span" below), thus allowing
  43 // its use in a straightforward manner in a general, non-generational
  44 // setting.
  45 //
  46 // The basic idea is that each ReferenceProcessor object concerns
  47 // itself with ("weak") reference processing in a specific "span"
  48 // of the heap of interest to a specific collector. Currently,
  49 // the span is a convex interval of the heap, but, efficiency
  50 // apart, there seems to be no reason it couldn't be extended
  51 // (with appropriate modifications) to any "non-convex interval".
  52 
  53 // forward references
  54 class ReferencePolicy;
  55 class AbstractRefProcTaskExecutor;
  56 
  57 // List of discovered references.
  58 class DiscoveredList {
  59 public:
  60   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  61   inline oop head() const;
  62   HeapWord* adr_head() {
  63     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  64                                (HeapWord*)&_oop_head;
  65   }
  66   inline void set_head(oop o);
  67   inline bool is_empty() const;
  68   size_t length()               { return _len; }
  69   void   set_length(size_t len) { _len = len;  }
  70   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  71   void   dec_length(size_t dec) { _len -= dec; }
  72 private:
  73   // Set value depending on UseCompressedOops. This could be a template class
  74   // but then we have to fix all the instantiations and declarations that use this class.
  75   oop       _oop_head;
  76   narrowOop _compressed_head;
  77   size_t _len;
  78 };
  79 
  80 // Iterator for the list of discovered references.
  81 class DiscoveredListIterator {
  82 private:
  83   DiscoveredList&    _refs_list;
  84   HeapWord*          _prev_next;
  85   oop                _prev;
  86   oop                _ref;
  87   HeapWord*          _discovered_addr;
  88   oop                _next;
  89   HeapWord*          _referent_addr;
  90   oop                _referent;
  91   OopClosure*        _keep_alive;
  92   BoolObjectClosure* _is_alive;
  93 
  94   DEBUG_ONLY(
  95   oop                _first_seen; // cyclic linked list check
  96   )
  97 
  98   NOT_PRODUCT(
  99   size_t             _processed;
 100   size_t             _removed;
 101   )
 102 
 103 public:
 104   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 105                                 OopClosure*        keep_alive,
 106                                 BoolObjectClosure* is_alive);
 107 
 108   // End Of List.
 109   inline bool has_next() const { return _ref != NULL; }
 110 
 111   // Get oop to the Reference object.
 112   inline oop obj() const { return _ref; }
 113 
 114   // Get oop to the referent object.
 115   inline oop referent() const { return _referent; }
 116 
 117   // Returns true if referent is alive.
 118   inline bool is_referent_alive() const {
 119     return _is_alive->do_object_b(_referent);
 120   }
 121 
 122   // Loads data for the current reference.
 123   // The "allow_null_referent" argument tells us to allow for the possibility
 124   // of a NULL referent in the discovered Reference object. This typically
 125   // happens in the case of concurrent collectors that may have done the
 126   // discovery concurrently, or interleaved, with mutator execution.
 127   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 128 
 129   // Move to the next discovered reference.
 130   inline void next() {
 131     _prev_next = _discovered_addr;
 132     _prev = _ref;
 133     move_to_next();
 134   }
 135 
 136   // Remove the current reference from the list
 137   void remove();
 138 
 139   // Make the referent alive.
 140   inline void make_referent_alive() {
 141     if (UseCompressedOops) {
 142       _keep_alive->do_oop((narrowOop*)_referent_addr);
 143     } else {
 144       _keep_alive->do_oop((oop*)_referent_addr);
 145     }
 146   }
 147 
 148   // NULL out referent pointer.
 149   void clear_referent();
 150 
 151   // Statistics
 152   NOT_PRODUCT(
 153   inline size_t processed() const { return _processed; }
 154   inline size_t removed() const   { return _removed; }
 155   )
 156 
 157   inline void move_to_next() {
 158     if (_ref == _next) {
 159       // End of the list.
 160       _ref = NULL;
 161     } else {
 162       _ref = _next;
 163     }
 164     assert(_ref != _first_seen, "cyclic ref_list found");
 165     NOT_PRODUCT(_processed++);
 166   }
 167 };
 168 
 169 class ReferenceProcessor : public CHeapObj<mtGC> {
 170 
 171  private:
 172   size_t total_count(DiscoveredList lists[]);
 173 
 174  protected:
 175   // The SoftReference master timestamp clock
 176   static jlong _soft_ref_timestamp_clock;
 177 
 178   MemRegion   _span;                    // (right-open) interval of heap
 179                                         // subject to wkref discovery
 180 
 181   bool        _discovering_refs;        // true when discovery enabled
 182   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 183                                         // other collectors in configuration
 184   bool        _discovery_is_mt;         // true if reference discovery is MT.
 185 
 186   bool        _enqueuing_is_done;       // true if all weak references enqueued
 187   bool        _processing_is_mt;        // true during phases when
 188                                         // reference processing is MT.
 189   uint        _next_id;                 // round-robin mod _num_q counter in
 190                                         // support of work distribution
 191 
 192   // For collectors that do not keep GC liveness information
 193   // in the object header, this field holds a closure that
 194   // helps the reference processor determine the reachability
 195   // of an oop. It is currently initialized to NULL for all
 196   // collectors except for CMS and G1.
 197   BoolObjectClosure* _is_alive_non_header;
 198 
 199   // Soft ref clearing policies
 200   // . the default policy
 201   static ReferencePolicy*   _default_soft_ref_policy;
 202   // . the "clear all" policy
 203   static ReferencePolicy*   _always_clear_soft_ref_policy;
 204   // . the current policy below is either one of the above
 205   ReferencePolicy*          _current_soft_ref_policy;
 206 
 207   // The discovered ref lists themselves
 208 
 209   // The active MT'ness degree of the queues below
 210   uint             _num_q;
 211   // The maximum MT'ness degree of the queues below
 212   uint             _max_num_q;
 213 
 214   // Master array of discovered oops
 215   DiscoveredList* _discovered_refs;
 216 
 217   // Arrays of lists of oops, one per thread (pointers into master array above)
 218   DiscoveredList* _discoveredSoftRefs;
 219   DiscoveredList* _discoveredWeakRefs;
 220   DiscoveredList* _discoveredFinalRefs;
 221   DiscoveredList* _discoveredPhantomRefs;
 222 
 223  public:
 224   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 225 
 226   uint num_q()                             { return _num_q; }
 227   uint max_num_q()                         { return _max_num_q; }
 228   void set_active_mt_degree(uint v);
 229 
 230   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 231 
 232   ReferencePolicy* setup_policy(bool always_clear) {
 233     _current_soft_ref_policy = always_clear ?
 234       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 235     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 236     return _current_soft_ref_policy;
 237   }
 238 
 239   // Process references with a certain reachability level.
 240   void process_discovered_reflist(DiscoveredList               refs_lists[],
 241                                   ReferencePolicy*             policy,
 242                                   bool                         clear_referent,
 243                                   BoolObjectClosure*           is_alive,
 244                                   OopClosure*                  keep_alive,
 245                                   VoidClosure*                 complete_gc,
 246                                   AbstractRefProcTaskExecutor* task_executor);
 247 
 248   void process_phaseJNI(BoolObjectClosure* is_alive,
 249                         OopClosure*        keep_alive,
 250                         VoidClosure*       complete_gc);
 251 
 252   size_t process_phaseHeapSampling(BoolObjectClosure* is_alive,
 253                                    OopClosure*        keep_alive,
 254                                    VoidClosure*       complete_gc,
 255                                    AbstractRefProcTaskExecutor* task_executor);
 256 
 257   // Work methods used by the method process_discovered_reflist
 258   // Phase1: keep alive all those referents that are otherwise
 259   // dead but which must be kept alive by policy (and their closure).
 260   void process_phase1(DiscoveredList&     refs_list,
 261                       ReferencePolicy*    policy,
 262                       BoolObjectClosure*  is_alive,
 263                       OopClosure*         keep_alive,
 264                       VoidClosure*        complete_gc);
 265   // Phase2: remove all those references whose referents are
 266   // reachable.
 267   inline void process_phase2(DiscoveredList&    refs_list,
 268                              BoolObjectClosure* is_alive,
 269                              OopClosure*        keep_alive,
 270                              VoidClosure*       complete_gc) {
 271     if (discovery_is_atomic()) {
 272       // complete_gc is ignored in this case for this phase
 273       pp2_work(refs_list, is_alive, keep_alive);
 274     } else {
 275       assert(complete_gc != NULL, "Error");
 276       pp2_work_concurrent_discovery(refs_list, is_alive,
 277                                     keep_alive, complete_gc);
 278     }
 279   }
 280   // Work methods in support of process_phase2
 281   void pp2_work(DiscoveredList&    refs_list,
 282                 BoolObjectClosure* is_alive,
 283                 OopClosure*        keep_alive);
 284   void pp2_work_concurrent_discovery(
 285                 DiscoveredList&    refs_list,
 286                 BoolObjectClosure* is_alive,
 287                 OopClosure*        keep_alive,
 288                 VoidClosure*       complete_gc);
 289   // Phase3: process the referents by either clearing them
 290   // or keeping them alive (and their closure)
 291   void process_phase3(DiscoveredList&    refs_list,
 292                       bool               clear_referent,
 293                       BoolObjectClosure* is_alive,
 294                       OopClosure*        keep_alive,
 295                       VoidClosure*       complete_gc);
 296 
 297   // Enqueue references with a certain reachability level
 298   void enqueue_discovered_reflist(DiscoveredList& refs_list);
 299 
 300   // "Preclean" all the discovered reference lists
 301   // by removing references with strongly reachable referents.
 302   // The first argument is a predicate on an oop that indicates
 303   // its (strong) reachability and the second is a closure that
 304   // may be used to incrementalize or abort the precleaning process.
 305   // The caller is responsible for taking care of potential
 306   // interference with concurrent operations on these lists
 307   // (or predicates involved) by other threads. Currently
 308   // only used by the CMS collector.
 309   void preclean_discovered_references(BoolObjectClosure* is_alive,
 310                                       OopClosure*        keep_alive,
 311                                       VoidClosure*       complete_gc,
 312                                       YieldClosure*      yield,
 313                                       GCTimer*           gc_timer);
 314 
 315   // Returns the name of the discovered reference list
 316   // occupying the i / _num_q slot.
 317   const char* list_name(uint i);
 318 
 319   void enqueue_discovered_reflists(AbstractRefProcTaskExecutor* task_executor);
 320 
 321  protected:
 322   // "Preclean" the given discovered reference list
 323   // by removing references with strongly reachable referents.
 324   // Currently used in support of CMS only.
 325   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 326                                    BoolObjectClosure* is_alive,
 327                                    OopClosure*        keep_alive,
 328                                    VoidClosure*       complete_gc,
 329                                    YieldClosure*      yield);
 330 
 331   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 332   uint next_id() {
 333     uint id = _next_id;
 334     assert(!_discovery_is_mt, "Round robin should only be used in serial discovery");
 335     if (++_next_id == _num_q) {
 336       _next_id = 0;
 337     }
 338     assert(_next_id < _num_q, "_next_id %u _num_q %u _max_num_q %u", _next_id, _num_q, _max_num_q);
 339     return id;
 340   }
 341   DiscoveredList* get_discovered_list(ReferenceType rt);
 342   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 343                                         HeapWord* discovered_addr);
 344 
 345   void clear_discovered_references(DiscoveredList& refs_list);
 346 
 347   // Calculate the number of jni handles.
 348   size_t count_jni_refs();
 349 
 350   void log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_count) PRODUCT_RETURN;
 351 
 352   // Balances reference queues.
 353   void balance_queues(DiscoveredList ref_lists[]);
 354 
 355   // Update (advance) the soft ref master clock field.
 356   void update_soft_ref_master_clock();
 357 
 358  public:
 359   // Default parameters give you a vanilla reference processor.
 360   ReferenceProcessor(MemRegion span,
 361                      bool mt_processing = false, uint mt_processing_degree = 1,
 362                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 363                      bool atomic_discovery = true,
 364                      BoolObjectClosure* is_alive_non_header = NULL);
 365 
 366   // RefDiscoveryPolicy values
 367   enum DiscoveryPolicy {
 368     ReferenceBasedDiscovery = 0,
 369     ReferentBasedDiscovery  = 1,
 370     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 371     DiscoveryPolicyMax      = ReferentBasedDiscovery
 372   };
 373 
 374   static void init_statics();
 375 
 376  public:
 377   // get and set "is_alive_non_header" field
 378   BoolObjectClosure* is_alive_non_header() {
 379     return _is_alive_non_header;
 380   }
 381   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 382     _is_alive_non_header = is_alive_non_header;
 383   }
 384 
 385   // get and set span
 386   MemRegion span()                   { return _span; }
 387   void      set_span(MemRegion span) { _span = span; }
 388 
 389   // start and stop weak ref discovery
 390   void enable_discovery(bool check_no_refs = true);
 391   void disable_discovery()  { _discovering_refs = false; }
 392   bool discovery_enabled()  { return _discovering_refs;  }
 393 
 394   // whether discovery is atomic wrt other collectors
 395   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 396   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 397 
 398   // whether discovery is done by multiple threads same-old-timeously
 399   bool discovery_is_mt() const { return _discovery_is_mt; }
 400   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 401 
 402   // Whether we are in a phase when _processing_ is MT.
 403   bool processing_is_mt() const { return _processing_is_mt; }
 404   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 405 
 406   // whether all enqueueing of weak references is complete
 407   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 408   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 409 
 410   // iterate over oops
 411   void weak_oops_do(OopClosure* f);       // weak roots
 412 
 413   // Balance each of the discovered lists.
 414   void balance_all_queues();
 415   void verify_list(DiscoveredList& ref_list);
 416 
 417   // Discover a Reference object, using appropriate discovery criteria
 418   bool discover_reference(oop obj, ReferenceType rt);
 419 
 420   // Has discovered references that need handling
 421   bool has_discovered_references();
 422 
 423   // Process references found during GC (called by the garbage collector)
 424   ReferenceProcessorStats
 425   process_discovered_references(BoolObjectClosure*           is_alive,
 426                                 OopClosure*                  keep_alive,
 427                                 VoidClosure*                 complete_gc,
 428                                 AbstractRefProcTaskExecutor* task_executor,
 429                                 GCTimer *gc_timer);
 430 
 431   // Enqueue references at end of GC (called by the garbage collector)
 432   void enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 433 
 434   // If a discovery is in process that is being superceded, abandon it: all
 435   // the discovered lists will be empty, and all the objects on them will
 436   // have NULL discovered fields.  Must be called only at a safepoint.
 437   void abandon_partial_discovery();
 438 
 439   // debugging
 440   void verify_no_references_recorded() PRODUCT_RETURN;
 441   void verify_referent(oop obj)        PRODUCT_RETURN;
 442 };
 443 
 444 // A utility class to disable reference discovery in
 445 // the scope which contains it, for given ReferenceProcessor.
 446 class NoRefDiscovery: StackObj {
 447  private:
 448   ReferenceProcessor* _rp;
 449   bool _was_discovering_refs;
 450  public:
 451   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 452     _was_discovering_refs = _rp->discovery_enabled();
 453     if (_was_discovering_refs) {
 454       _rp->disable_discovery();
 455     }
 456   }
 457 
 458   ~NoRefDiscovery() {
 459     if (_was_discovering_refs) {
 460       _rp->enable_discovery(false /*check_no_refs*/);
 461     }
 462   }
 463 };
 464 
 465 
 466 // A utility class to temporarily mutate the span of the
 467 // given ReferenceProcessor in the scope that contains it.
 468 class ReferenceProcessorSpanMutator: StackObj {
 469  private:
 470   ReferenceProcessor* _rp;
 471   MemRegion           _saved_span;
 472 
 473  public:
 474   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 475                                 MemRegion span):
 476     _rp(rp) {
 477     _saved_span = _rp->span();
 478     _rp->set_span(span);
 479   }
 480 
 481   ~ReferenceProcessorSpanMutator() {
 482     _rp->set_span(_saved_span);
 483   }
 484 };
 485 
 486 // A utility class to temporarily change the MT'ness of
 487 // reference discovery for the given ReferenceProcessor
 488 // in the scope that contains it.
 489 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 490  private:
 491   ReferenceProcessor* _rp;
 492   bool                _saved_mt;
 493 
 494  public:
 495   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 496                                        bool mt):
 497     _rp(rp) {
 498     _saved_mt = _rp->discovery_is_mt();
 499     _rp->set_mt_discovery(mt);
 500   }
 501 
 502   ~ReferenceProcessorMTDiscoveryMutator() {
 503     _rp->set_mt_discovery(_saved_mt);
 504   }
 505 };
 506 
 507 
 508 // A utility class to temporarily change the disposition
 509 // of the "is_alive_non_header" closure field of the
 510 // given ReferenceProcessor in the scope that contains it.
 511 class ReferenceProcessorIsAliveMutator: StackObj {
 512  private:
 513   ReferenceProcessor* _rp;
 514   BoolObjectClosure*  _saved_cl;
 515 
 516  public:
 517   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 518                                    BoolObjectClosure*  cl):
 519     _rp(rp) {
 520     _saved_cl = _rp->is_alive_non_header();
 521     _rp->set_is_alive_non_header(cl);
 522   }
 523 
 524   ~ReferenceProcessorIsAliveMutator() {
 525     _rp->set_is_alive_non_header(_saved_cl);
 526   }
 527 };
 528 
 529 // A utility class to temporarily change the disposition
 530 // of the "discovery_is_atomic" field of the
 531 // given ReferenceProcessor in the scope that contains it.
 532 class ReferenceProcessorAtomicMutator: StackObj {
 533  private:
 534   ReferenceProcessor* _rp;
 535   bool                _saved_atomic_discovery;
 536 
 537  public:
 538   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 539                                   bool atomic):
 540     _rp(rp) {
 541     _saved_atomic_discovery = _rp->discovery_is_atomic();
 542     _rp->set_atomic_discovery(atomic);
 543   }
 544 
 545   ~ReferenceProcessorAtomicMutator() {
 546     _rp->set_atomic_discovery(_saved_atomic_discovery);
 547   }
 548 };
 549 
 550 
 551 // A utility class to temporarily change the MT processing
 552 // disposition of the given ReferenceProcessor instance
 553 // in the scope that contains it.
 554 class ReferenceProcessorMTProcMutator: StackObj {
 555  private:
 556   ReferenceProcessor* _rp;
 557   bool  _saved_mt;
 558 
 559  public:
 560   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 561                                   bool mt):
 562     _rp(rp) {
 563     _saved_mt = _rp->processing_is_mt();
 564     _rp->set_mt_processing(mt);
 565   }
 566 
 567   ~ReferenceProcessorMTProcMutator() {
 568     _rp->set_mt_processing(_saved_mt);
 569   }
 570 };
 571 
 572 
 573 // This class is an interface used to implement task execution for the
 574 // reference processing.
 575 class AbstractRefProcTaskExecutor {
 576 public:
 577 
 578   // Abstract tasks to execute.
 579   class ProcessTask;
 580   class EnqueueTask;
 581 
 582   // Executes a task using worker threads.
 583   virtual void execute(ProcessTask& task) = 0;
 584   virtual void execute(EnqueueTask& task) = 0;
 585 
 586   // Switch to single threaded mode.
 587   virtual void set_single_threaded_mode() { };
 588 };
 589 
 590 // Abstract reference processing task to execute.
 591 class AbstractRefProcTaskExecutor::ProcessTask {
 592 protected:
 593   ProcessTask(ReferenceProcessor& ref_processor,
 594               DiscoveredList      refs_lists[],
 595               bool                marks_oops_alive)
 596     : _ref_processor(ref_processor),
 597       _refs_lists(refs_lists),
 598       _marks_oops_alive(marks_oops_alive)
 599   { }
 600 
 601 public:
 602   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 603                     OopClosure& keep_alive,
 604                     VoidClosure& complete_gc) = 0;
 605 
 606   // Returns true if a task marks some oops as alive.
 607   bool marks_oops_alive() const
 608   { return _marks_oops_alive; }
 609 
 610 protected:
 611   ReferenceProcessor& _ref_processor;
 612   DiscoveredList*     _refs_lists;
 613   const bool          _marks_oops_alive;
 614 };
 615 
 616 // Abstract reference processing task to execute.
 617 class AbstractRefProcTaskExecutor::EnqueueTask {
 618 protected:
 619   EnqueueTask(ReferenceProcessor& ref_processor,
 620               DiscoveredList      refs_lists[],
 621               int                 n_queues)
 622     : _ref_processor(ref_processor),
 623       _refs_lists(refs_lists),
 624       _n_queues(n_queues)
 625   { }
 626 
 627 public:
 628   virtual void work(unsigned int work_id) = 0;
 629 
 630 protected:
 631   ReferenceProcessor& _ref_processor;
 632   DiscoveredList*     _refs_lists;
 633   int                 _n_queues;
 634 };
 635 
 636 #endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP