1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1AllocationContext.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1HeapTransition.hpp"
  38 #include "gc/g1/g1HeapVerifier.hpp"
  39 #include "gc/g1/g1HRPrinter.hpp"
  40 #include "gc/g1/g1InCSetState.hpp"
  41 #include "gc/g1/g1MonitoringSupport.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/hSpaceCounters.hpp"
  46 #include "gc/g1/heapRegionManager.hpp"
  47 #include "gc/g1/heapRegionSet.hpp"
  48 #include "gc/shared/barrierSet.hpp"
  49 #include "gc/shared/collectedHeap.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "memory/memRegion.hpp"
  53 #include "utilities/stack.hpp"
  54 
  55 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  56 // It uses the "Garbage First" heap organization and algorithm, which
  57 // may combine concurrent marking with parallel, incremental compaction of
  58 // heap subsets that will yield large amounts of garbage.
  59 
  60 // Forward declarations
  61 class HeapRegion;
  62 class HRRSCleanupTask;
  63 class GenerationSpec;
  64 class G1ParScanThreadState;
  65 class G1ParScanThreadStateSet;
  66 class G1KlassScanClosure;
  67 class G1ParScanThreadState;
  68 class ObjectClosure;
  69 class SpaceClosure;
  70 class CompactibleSpaceClosure;
  71 class Space;
  72 class G1CollectionSet;
  73 class G1CollectorPolicy;
  74 class G1Policy;
  75 class G1HotCardCache;
  76 class G1RemSet;
  77 class HeapRegionRemSetIterator;
  78 class G1ConcurrentMark;
  79 class ConcurrentMarkThread;
  80 class ConcurrentG1Refine;
  81 class GenerationCounters;
  82 class STWGCTimer;
  83 class G1NewTracer;
  84 class EvacuationFailedInfo;
  85 class nmethod;
  86 class Ticks;
  87 class WorkGang;
  88 class G1Allocator;
  89 class G1ArchiveAllocator;
  90 class G1FullGCScope;
  91 class G1HeapVerifier;
  92 class G1HeapSizingPolicy;
  93 class G1HeapSummary;
  94 class G1EvacSummary;
  95 
  96 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  97 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  98 
  99 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 100 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 101 
 102 // The G1 STW is alive closure.
 103 // An instance is embedded into the G1CH and used as the
 104 // (optional) _is_alive_non_header closure in the STW
 105 // reference processor. It is also extensively used during
 106 // reference processing during STW evacuation pauses.
 107 class G1STWIsAliveClosure: public BoolObjectClosure {
 108   G1CollectedHeap* _g1;
 109 public:
 110   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 111   bool do_object_b(oop p);
 112 };
 113 
 114 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 115  private:
 116   void reset_from_card_cache(uint start_idx, size_t num_regions);
 117  public:
 118   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 119 };
 120 
 121 class G1CollectedHeap : public CollectedHeap {
 122   friend class G1FreeCollectionSetTask;
 123   friend class VM_CollectForMetadataAllocation;
 124   friend class VM_G1CollectForAllocation;
 125   friend class VM_G1CollectFull;
 126   friend class VM_G1IncCollectionPause;
 127   friend class VMStructs;
 128   friend class MutatorAllocRegion;
 129   friend class G1GCAllocRegion;
 130   friend class G1HeapVerifier;
 131 
 132   // Closures used in implementation.
 133   friend class G1ParScanThreadState;
 134   friend class G1ParScanThreadStateSet;
 135   friend class G1ParTask;
 136   friend class G1PLABAllocator;
 137   friend class G1PrepareCompactClosure;
 138 
 139   // Other related classes.
 140   friend class HeapRegionClaimer;
 141 
 142   // Testing classes.
 143   friend class G1CheckCSetFastTableClosure;
 144 
 145 private:
 146   WorkGang* _workers;
 147   G1CollectorPolicy* _collector_policy;
 148 
 149   static size_t _humongous_object_threshold_in_words;
 150 
 151   // The secondary free list which contains regions that have been
 152   // freed up during the cleanup process. This will be appended to
 153   // the master free list when appropriate.
 154   FreeRegionList _secondary_free_list;
 155 
 156   // It keeps track of the old regions.
 157   HeapRegionSet _old_set;
 158 
 159   // It keeps track of the humongous regions.
 160   HeapRegionSet _humongous_set;
 161 
 162   void eagerly_reclaim_humongous_regions();
 163   // Start a new incremental collection set for the next pause.
 164   void start_new_collection_set();
 165 
 166   // The number of regions we could create by expansion.
 167   uint _expansion_regions;
 168 
 169   // The block offset table for the G1 heap.
 170   G1BlockOffsetTable* _bot;
 171 
 172   // Tears down the region sets / lists so that they are empty and the
 173   // regions on the heap do not belong to a region set / list. The
 174   // only exception is the humongous set which we leave unaltered. If
 175   // free_list_only is true, it will only tear down the master free
 176   // list. It is called before a Full GC (free_list_only == false) or
 177   // before heap shrinking (free_list_only == true).
 178   void tear_down_region_sets(bool free_list_only);
 179 
 180   // Rebuilds the region sets / lists so that they are repopulated to
 181   // reflect the contents of the heap. The only exception is the
 182   // humongous set which was not torn down in the first place. If
 183   // free_list_only is true, it will only rebuild the master free
 184   // list. It is called after a Full GC (free_list_only == false) or
 185   // after heap shrinking (free_list_only == true).
 186   void rebuild_region_sets(bool free_list_only);
 187 
 188   // Callback for region mapping changed events.
 189   G1RegionMappingChangedListener _listener;
 190 
 191   // The sequence of all heap regions in the heap.
 192   HeapRegionManager _hrm;
 193 
 194   // Manages all allocations with regions except humongous object allocations.
 195   G1Allocator* _allocator;
 196 
 197   // Manages all heap verification.
 198   G1HeapVerifier* _verifier;
 199 
 200   // Outside of GC pauses, the number of bytes used in all regions other
 201   // than the current allocation region(s).
 202   size_t _summary_bytes_used;
 203 
 204   void increase_used(size_t bytes);
 205   void decrease_used(size_t bytes);
 206 
 207   void set_used(size_t bytes);
 208 
 209   // Class that handles archive allocation ranges.
 210   G1ArchiveAllocator* _archive_allocator;
 211 
 212   // Statistics for each allocation context
 213   AllocationContextStats _allocation_context_stats;
 214 
 215   // GC allocation statistics policy for survivors.
 216   G1EvacStats _survivor_evac_stats;
 217 
 218   // GC allocation statistics policy for tenured objects.
 219   G1EvacStats _old_evac_stats;
 220 
 221   // It specifies whether we should attempt to expand the heap after a
 222   // region allocation failure. If heap expansion fails we set this to
 223   // false so that we don't re-attempt the heap expansion (it's likely
 224   // that subsequent expansion attempts will also fail if one fails).
 225   // Currently, it is only consulted during GC and it's reset at the
 226   // start of each GC.
 227   bool _expand_heap_after_alloc_failure;
 228 
 229   // Helper for monitoring and management support.
 230   G1MonitoringSupport* _g1mm;
 231 
 232   // Records whether the region at the given index is (still) a
 233   // candidate for eager reclaim.  Only valid for humongous start
 234   // regions; other regions have unspecified values.  Humongous start
 235   // regions are initialized at start of collection pause, with
 236   // candidates removed from the set as they are found reachable from
 237   // roots or the young generation.
 238   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 239    protected:
 240     bool default_value() const { return false; }
 241    public:
 242     void clear() { G1BiasedMappedArray<bool>::clear(); }
 243     void set_candidate(uint region, bool value) {
 244       set_by_index(region, value);
 245     }
 246     bool is_candidate(uint region) {
 247       return get_by_index(region);
 248     }
 249   };
 250 
 251   HumongousReclaimCandidates _humongous_reclaim_candidates;
 252   // Stores whether during humongous object registration we found candidate regions.
 253   // If not, we can skip a few steps.
 254   bool _has_humongous_reclaim_candidates;
 255 
 256   volatile uint _gc_time_stamp;
 257 
 258   G1HRPrinter _hr_printer;
 259 
 260   // It decides whether an explicit GC should start a concurrent cycle
 261   // instead of doing a STW GC. Currently, a concurrent cycle is
 262   // explicitly started if:
 263   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 264   // (b) cause == _g1_humongous_allocation
 265   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 266   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 267   // (e) cause == _update_allocation_context_stats_inc
 268   // (f) cause == _wb_conc_mark
 269   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 270 
 271   // indicates whether we are in young or mixed GC mode
 272   G1CollectorState _collector_state;
 273 
 274   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 275   // concurrent cycles) we have started.
 276   volatile uint _old_marking_cycles_started;
 277 
 278   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 279   // concurrent cycles) we have completed.
 280   volatile uint _old_marking_cycles_completed;
 281 
 282   // This is a non-product method that is helpful for testing. It is
 283   // called at the end of a GC and artificially expands the heap by
 284   // allocating a number of dead regions. This way we can induce very
 285   // frequent marking cycles and stress the cleanup / concurrent
 286   // cleanup code more (as all the regions that will be allocated by
 287   // this method will be found dead by the marking cycle).
 288   void allocate_dummy_regions() PRODUCT_RETURN;
 289 
 290   // Clear RSets after a compaction. It also resets the GC time stamps.
 291   void clear_rsets_post_compaction();
 292 
 293   // If the HR printer is active, dump the state of the regions in the
 294   // heap after a compaction.
 295   void print_hrm_post_compaction();
 296 
 297   // Create a memory mapper for auxiliary data structures of the given size and
 298   // translation factor.
 299   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 300                                                          size_t size,
 301                                                          size_t translation_factor);
 302 
 303   static G1Policy* create_g1_policy(STWGCTimer* gc_timer);
 304 
 305   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 306 
 307   void process_heap_monitoring();
 308   void process_weak_jni_handles();
 309 
 310   // These are macros so that, if the assert fires, we get the correct
 311   // line number, file, etc.
 312 
 313 #define heap_locking_asserts_params(_extra_message_)                          \
 314   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 315   (_extra_message_),                                                          \
 316   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 317   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 318   BOOL_TO_STR(Thread::current()->is_VM_thread())
 319 
 320 #define assert_heap_locked()                                                  \
 321   do {                                                                        \
 322     assert(Heap_lock->owned_by_self(),                                        \
 323            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 324   } while (0)
 325 
 326 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 327   do {                                                                        \
 328     assert(Heap_lock->owned_by_self() ||                                      \
 329            (SafepointSynchronize::is_at_safepoint() &&                        \
 330              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 331            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 332                                         "should be at a safepoint"));         \
 333   } while (0)
 334 
 335 #define assert_heap_locked_and_not_at_safepoint()                             \
 336   do {                                                                        \
 337     assert(Heap_lock->owned_by_self() &&                                      \
 338                                     !SafepointSynchronize::is_at_safepoint(), \
 339           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 340                                        "should not be at a safepoint"));      \
 341   } while (0)
 342 
 343 #define assert_heap_not_locked()                                              \
 344   do {                                                                        \
 345     assert(!Heap_lock->owned_by_self(),                                       \
 346         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 347   } while (0)
 348 
 349 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 350   do {                                                                        \
 351     assert(!Heap_lock->owned_by_self() &&                                     \
 352                                     !SafepointSynchronize::is_at_safepoint(), \
 353       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 354                                    "should not be at a safepoint"));          \
 355   } while (0)
 356 
 357 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 358   do {                                                                        \
 359     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 360               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 361            heap_locking_asserts_params("should be at a safepoint"));          \
 362   } while (0)
 363 
 364 #define assert_not_at_safepoint()                                             \
 365   do {                                                                        \
 366     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 367            heap_locking_asserts_params("should not be at a safepoint"));      \
 368   } while (0)
 369 
 370 protected:
 371 
 372   // The young region list.
 373   G1EdenRegions _eden;
 374   G1SurvivorRegions _survivor;
 375 
 376   STWGCTimer* _gc_timer_stw;
 377 
 378   G1NewTracer* _gc_tracer_stw;
 379 
 380   // The current policy object for the collector.
 381   G1Policy* _g1_policy;
 382   G1HeapSizingPolicy* _heap_sizing_policy;
 383 
 384   G1CollectionSet _collection_set;
 385 
 386   // This is the second level of trying to allocate a new region. If
 387   // new_region() didn't find a region on the free_list, this call will
 388   // check whether there's anything available on the
 389   // secondary_free_list and/or wait for more regions to appear on
 390   // that list, if _free_regions_coming is set.
 391   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 392 
 393   // Try to allocate a single non-humongous HeapRegion sufficient for
 394   // an allocation of the given word_size. If do_expand is true,
 395   // attempt to expand the heap if necessary to satisfy the allocation
 396   // request. If the region is to be used as an old region or for a
 397   // humongous object, set is_old to true. If not, to false.
 398   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 399 
 400   // Initialize a contiguous set of free regions of length num_regions
 401   // and starting at index first so that they appear as a single
 402   // humongous region.
 403   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 404                                                       uint num_regions,
 405                                                       size_t word_size,
 406                                                       AllocationContext_t context);
 407 
 408   // Attempt to allocate a humongous object of the given size. Return
 409   // NULL if unsuccessful.
 410   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 411 
 412   // The following two methods, allocate_new_tlab() and
 413   // mem_allocate(), are the two main entry points from the runtime
 414   // into the G1's allocation routines. They have the following
 415   // assumptions:
 416   //
 417   // * They should both be called outside safepoints.
 418   //
 419   // * They should both be called without holding the Heap_lock.
 420   //
 421   // * All allocation requests for new TLABs should go to
 422   //   allocate_new_tlab().
 423   //
 424   // * All non-TLAB allocation requests should go to mem_allocate().
 425   //
 426   // * If either call cannot satisfy the allocation request using the
 427   //   current allocating region, they will try to get a new one. If
 428   //   this fails, they will attempt to do an evacuation pause and
 429   //   retry the allocation.
 430   //
 431   // * If all allocation attempts fail, even after trying to schedule
 432   //   an evacuation pause, allocate_new_tlab() will return NULL,
 433   //   whereas mem_allocate() will attempt a heap expansion and/or
 434   //   schedule a Full GC.
 435   //
 436   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 437   //   should never be called with word_size being humongous. All
 438   //   humongous allocation requests should go to mem_allocate() which
 439   //   will satisfy them with a special path.
 440 
 441   virtual HeapWord* allocate_new_tlab(size_t word_size);
 442 
 443   virtual HeapWord* mem_allocate(size_t word_size,
 444                                  bool*  gc_overhead_limit_was_exceeded);
 445 
 446   // The following three methods take a gc_count_before_ret
 447   // parameter which is used to return the GC count if the method
 448   // returns NULL. Given that we are required to read the GC count
 449   // while holding the Heap_lock, and these paths will take the
 450   // Heap_lock at some point, it's easier to get them to read the GC
 451   // count while holding the Heap_lock before they return NULL instead
 452   // of the caller (namely: mem_allocate()) having to also take the
 453   // Heap_lock just to read the GC count.
 454 
 455   // First-level mutator allocation attempt: try to allocate out of
 456   // the mutator alloc region without taking the Heap_lock. This
 457   // should only be used for non-humongous allocations.
 458   inline HeapWord* attempt_allocation(size_t word_size,
 459                                       uint* gc_count_before_ret,
 460                                       uint* gclocker_retry_count_ret);
 461 
 462   // Second-level mutator allocation attempt: take the Heap_lock and
 463   // retry the allocation attempt, potentially scheduling a GC
 464   // pause. This should only be used for non-humongous allocations.
 465   HeapWord* attempt_allocation_slow(size_t word_size,
 466                                     AllocationContext_t context,
 467                                     uint* gc_count_before_ret,
 468                                     uint* gclocker_retry_count_ret);
 469 
 470   // Takes the Heap_lock and attempts a humongous allocation. It can
 471   // potentially schedule a GC pause.
 472   HeapWord* attempt_allocation_humongous(size_t word_size,
 473                                          uint* gc_count_before_ret,
 474                                          uint* gclocker_retry_count_ret);
 475 
 476   // Allocation attempt that should be called during safepoints (e.g.,
 477   // at the end of a successful GC). expect_null_mutator_alloc_region
 478   // specifies whether the mutator alloc region is expected to be NULL
 479   // or not.
 480   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 481                                             AllocationContext_t context,
 482                                             bool expect_null_mutator_alloc_region);
 483 
 484   // These methods are the "callbacks" from the G1AllocRegion class.
 485 
 486   // For mutator alloc regions.
 487   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 488   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 489                                    size_t allocated_bytes);
 490 
 491   // For GC alloc regions.
 492   bool has_more_regions(InCSetState dest);
 493   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 494   void retire_gc_alloc_region(HeapRegion* alloc_region,
 495                               size_t allocated_bytes, InCSetState dest);
 496 
 497   // - if explicit_gc is true, the GC is for a System.gc() etc,
 498   //   otherwise it's for a failed allocation.
 499   // - if clear_all_soft_refs is true, all soft references should be
 500   //   cleared during the GC.
 501   // - it returns false if it is unable to do the collection due to the
 502   //   GC locker being active, true otherwise.
 503   bool do_full_collection(bool explicit_gc,
 504                           bool clear_all_soft_refs);
 505 
 506   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 507   virtual void do_full_collection(bool clear_all_soft_refs);
 508 
 509   // Resize the heap if necessary after a full collection.
 510   void resize_if_necessary_after_full_collection();
 511 
 512   // Callback from VM_G1CollectForAllocation operation.
 513   // This function does everything necessary/possible to satisfy a
 514   // failed allocation request (including collection, expansion, etc.)
 515   HeapWord* satisfy_failed_allocation(size_t word_size,
 516                                       AllocationContext_t context,
 517                                       bool* succeeded);
 518 private:
 519   // Internal helpers used during full GC to split it up to
 520   // increase readability.
 521   void do_full_collection_inner(G1FullGCScope* scope);
 522   void abort_concurrent_cycle();
 523   void verify_before_full_collection(bool explicit_gc);
 524   void prepare_heap_for_full_collection();
 525   void prepare_heap_for_mutators();
 526   void abort_refinement();
 527   void verify_after_full_collection();
 528   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 529 
 530   // Helper method for satisfy_failed_allocation()
 531   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 532                                              AllocationContext_t context,
 533                                              bool do_gc,
 534                                              bool clear_all_soft_refs,
 535                                              bool expect_null_mutator_alloc_region,
 536                                              bool* gc_succeeded);
 537 
 538 protected:
 539   // Attempting to expand the heap sufficiently
 540   // to support an allocation of the given "word_size".  If
 541   // successful, perform the allocation and return the address of the
 542   // allocated block, or else "NULL".
 543   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 544 
 545   // Preserve any referents discovered by concurrent marking that have not yet been
 546   // copied by the STW pause.
 547   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 548   // Process any reference objects discovered during
 549   // an incremental evacuation pause.
 550   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 551 
 552   // Enqueue any remaining discovered references
 553   // after processing.
 554   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 555 
 556   // Merges the information gathered on a per-thread basis for all worker threads
 557   // during GC into global variables.
 558   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 559 public:
 560   WorkGang* workers() const { return _workers; }
 561 
 562   G1Allocator* allocator() {
 563     return _allocator;
 564   }
 565 
 566   G1HeapVerifier* verifier() {
 567     return _verifier;
 568   }
 569 
 570   G1MonitoringSupport* g1mm() {
 571     assert(_g1mm != NULL, "should have been initialized");
 572     return _g1mm;
 573   }
 574 
 575   // Expand the garbage-first heap by at least the given size (in bytes!).
 576   // Returns true if the heap was expanded by the requested amount;
 577   // false otherwise.
 578   // (Rounds up to a HeapRegion boundary.)
 579   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 580 
 581   // Returns the PLAB statistics for a given destination.
 582   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 583 
 584   // Determines PLAB size for a given destination.
 585   inline size_t desired_plab_sz(InCSetState dest);
 586 
 587   inline AllocationContextStats& allocation_context_stats();
 588 
 589   // Do anything common to GC's.
 590   void gc_prologue(bool full);
 591   void gc_epilogue(bool full);
 592 
 593   // Modify the reclaim candidate set and test for presence.
 594   // These are only valid for starts_humongous regions.
 595   inline void set_humongous_reclaim_candidate(uint region, bool value);
 596   inline bool is_humongous_reclaim_candidate(uint region);
 597 
 598   // Remove from the reclaim candidate set.  Also remove from the
 599   // collection set so that later encounters avoid the slow path.
 600   inline void set_humongous_is_live(oop obj);
 601 
 602   // Register the given region to be part of the collection set.
 603   inline void register_humongous_region_with_cset(uint index);
 604   // Register regions with humongous objects (actually on the start region) in
 605   // the in_cset_fast_test table.
 606   void register_humongous_regions_with_cset();
 607   // We register a region with the fast "in collection set" test. We
 608   // simply set to true the array slot corresponding to this region.
 609   void register_young_region_with_cset(HeapRegion* r) {
 610     _in_cset_fast_test.set_in_young(r->hrm_index());
 611   }
 612   void register_old_region_with_cset(HeapRegion* r) {
 613     _in_cset_fast_test.set_in_old(r->hrm_index());
 614   }
 615   inline void register_ext_region_with_cset(HeapRegion* r) {
 616     _in_cset_fast_test.set_ext(r->hrm_index());
 617   }
 618   void clear_in_cset(const HeapRegion* hr) {
 619     _in_cset_fast_test.clear(hr);
 620   }
 621 
 622   void clear_cset_fast_test() {
 623     _in_cset_fast_test.clear();
 624   }
 625 
 626   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 627 
 628   // This is called at the start of either a concurrent cycle or a Full
 629   // GC to update the number of old marking cycles started.
 630   void increment_old_marking_cycles_started();
 631 
 632   // This is called at the end of either a concurrent cycle or a Full
 633   // GC to update the number of old marking cycles completed. Those two
 634   // can happen in a nested fashion, i.e., we start a concurrent
 635   // cycle, a Full GC happens half-way through it which ends first,
 636   // and then the cycle notices that a Full GC happened and ends
 637   // too. The concurrent parameter is a boolean to help us do a bit
 638   // tighter consistency checking in the method. If concurrent is
 639   // false, the caller is the inner caller in the nesting (i.e., the
 640   // Full GC). If concurrent is true, the caller is the outer caller
 641   // in this nesting (i.e., the concurrent cycle). Further nesting is
 642   // not currently supported. The end of this call also notifies
 643   // the FullGCCount_lock in case a Java thread is waiting for a full
 644   // GC to happen (e.g., it called System.gc() with
 645   // +ExplicitGCInvokesConcurrent).
 646   void increment_old_marking_cycles_completed(bool concurrent);
 647 
 648   uint old_marking_cycles_completed() {
 649     return _old_marking_cycles_completed;
 650   }
 651 
 652   G1HRPrinter* hr_printer() { return &_hr_printer; }
 653 
 654   // Allocates a new heap region instance.
 655   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 656 
 657   // Allocate the highest free region in the reserved heap. This will commit
 658   // regions as necessary.
 659   HeapRegion* alloc_highest_free_region();
 660 
 661   // Frees a non-humongous region by initializing its contents and
 662   // adding it to the free list that's passed as a parameter (this is
 663   // usually a local list which will be appended to the master free
 664   // list later). The used bytes of freed regions are accumulated in
 665   // pre_used. If skip_remset is true, the region's RSet will not be freed
 666   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 667   // be freed up. The assumption is that this will be done later.
 668   // The locked parameter indicates if the caller has already taken
 669   // care of proper synchronization. This may allow some optimizations.
 670   void free_region(HeapRegion* hr,
 671                    FreeRegionList* free_list,
 672                    bool skip_remset,
 673                    bool skip_hot_card_cache = false,
 674                    bool locked = false);
 675 
 676   // It dirties the cards that cover the block so that the post
 677   // write barrier never queues anything when updating objects on this
 678   // block. It is assumed (and in fact we assert) that the block
 679   // belongs to a young region.
 680   inline void dirty_young_block(HeapWord* start, size_t word_size);
 681 
 682   // Frees a humongous region by collapsing it into individual regions
 683   // and calling free_region() for each of them. The freed regions
 684   // will be added to the free list that's passed as a parameter (this
 685   // is usually a local list which will be appended to the master free
 686   // list later). The used bytes of freed regions are accumulated in
 687   // pre_used. If skip_remset is true, the region's RSet will not be freed
 688   // up. The assumption is that this will be done later.
 689   void free_humongous_region(HeapRegion* hr,
 690                              FreeRegionList* free_list,
 691                              bool skip_remset);
 692 
 693   // Facility for allocating in 'archive' regions in high heap memory and
 694   // recording the allocated ranges. These should all be called from the
 695   // VM thread at safepoints, without the heap lock held. They can be used
 696   // to create and archive a set of heap regions which can be mapped at the
 697   // same fixed addresses in a subsequent JVM invocation.
 698   void begin_archive_alloc_range(bool open = false);
 699 
 700   // Check if the requested size would be too large for an archive allocation.
 701   bool is_archive_alloc_too_large(size_t word_size);
 702 
 703   // Allocate memory of the requested size from the archive region. This will
 704   // return NULL if the size is too large or if no memory is available. It
 705   // does not trigger a garbage collection.
 706   HeapWord* archive_mem_allocate(size_t word_size);
 707 
 708   // Optionally aligns the end address and returns the allocated ranges in
 709   // an array of MemRegions in order of ascending addresses.
 710   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 711                                size_t end_alignment_in_bytes = 0);
 712 
 713   // Facility for allocating a fixed range within the heap and marking
 714   // the containing regions as 'archive'. For use at JVM init time, when the
 715   // caller may mmap archived heap data at the specified range(s).
 716   // Verify that the MemRegions specified in the argument array are within the
 717   // reserved heap.
 718   bool check_archive_addresses(MemRegion* range, size_t count);
 719 
 720   // Commit the appropriate G1 regions containing the specified MemRegions
 721   // and mark them as 'archive' regions. The regions in the array must be
 722   // non-overlapping and in order of ascending address.
 723   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 724 
 725   // Insert any required filler objects in the G1 regions around the specified
 726   // ranges to make the regions parseable. This must be called after
 727   // alloc_archive_regions, and after class loading has occurred.
 728   void fill_archive_regions(MemRegion* range, size_t count);
 729 
 730   // For each of the specified MemRegions, uncommit the containing G1 regions
 731   // which had been allocated by alloc_archive_regions. This should be called
 732   // rather than fill_archive_regions at JVM init time if the archive file
 733   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 734   void dealloc_archive_regions(MemRegion* range, size_t count);
 735 
 736 protected:
 737 
 738   // Shrink the garbage-first heap by at most the given size (in bytes!).
 739   // (Rounds down to a HeapRegion boundary.)
 740   virtual void shrink(size_t expand_bytes);
 741   void shrink_helper(size_t expand_bytes);
 742 
 743   #if TASKQUEUE_STATS
 744   static void print_taskqueue_stats_hdr(outputStream* const st);
 745   void print_taskqueue_stats() const;
 746   void reset_taskqueue_stats();
 747   #endif // TASKQUEUE_STATS
 748 
 749   // Schedule the VM operation that will do an evacuation pause to
 750   // satisfy an allocation request of word_size. *succeeded will
 751   // return whether the VM operation was successful (it did do an
 752   // evacuation pause) or not (another thread beat us to it or the GC
 753   // locker was active). Given that we should not be holding the
 754   // Heap_lock when we enter this method, we will pass the
 755   // gc_count_before (i.e., total_collections()) as a parameter since
 756   // it has to be read while holding the Heap_lock. Currently, both
 757   // methods that call do_collection_pause() release the Heap_lock
 758   // before the call, so it's easy to read gc_count_before just before.
 759   HeapWord* do_collection_pause(size_t         word_size,
 760                                 uint           gc_count_before,
 761                                 bool*          succeeded,
 762                                 GCCause::Cause gc_cause);
 763 
 764   void wait_for_root_region_scanning();
 765 
 766   // The guts of the incremental collection pause, executed by the vm
 767   // thread. It returns false if it is unable to do the collection due
 768   // to the GC locker being active, true otherwise
 769   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 770 
 771   // Actually do the work of evacuating the collection set.
 772   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 773 
 774   void pre_evacuate_collection_set();
 775   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 776 
 777   // Print the header for the per-thread termination statistics.
 778   static void print_termination_stats_hdr();
 779   // Print actual per-thread termination statistics.
 780   void print_termination_stats(uint worker_id,
 781                                double elapsed_ms,
 782                                double strong_roots_ms,
 783                                double term_ms,
 784                                size_t term_attempts,
 785                                size_t alloc_buffer_waste,
 786                                size_t undo_waste) const;
 787   // Update object copying statistics.
 788   void record_obj_copy_mem_stats();
 789 
 790   // The hot card cache for remembered set insertion optimization.
 791   G1HotCardCache* _hot_card_cache;
 792 
 793   // The g1 remembered set of the heap.
 794   G1RemSet* _g1_rem_set;
 795 
 796   // A set of cards that cover the objects for which the Rsets should be updated
 797   // concurrently after the collection.
 798   DirtyCardQueueSet _dirty_card_queue_set;
 799 
 800   // After a collection pause, convert the regions in the collection set into free
 801   // regions.
 802   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 803 
 804   // Abandon the current collection set without recording policy
 805   // statistics or updating free lists.
 806   void abandon_collection_set(G1CollectionSet* collection_set);
 807 
 808   // The concurrent marker (and the thread it runs in.)
 809   G1ConcurrentMark* _cm;
 810   ConcurrentMarkThread* _cmThread;
 811 
 812   // The concurrent refiner.
 813   ConcurrentG1Refine* _cg1r;
 814 
 815   // The parallel task queues
 816   RefToScanQueueSet *_task_queues;
 817 
 818   // True iff a evacuation has failed in the current collection.
 819   bool _evacuation_failed;
 820 
 821   EvacuationFailedInfo* _evacuation_failed_info_array;
 822 
 823   // Failed evacuations cause some logical from-space objects to have
 824   // forwarding pointers to themselves.  Reset them.
 825   void remove_self_forwarding_pointers();
 826 
 827   // Restore the objects in the regions in the collection set after an
 828   // evacuation failure.
 829   void restore_after_evac_failure();
 830 
 831   PreservedMarksSet _preserved_marks_set;
 832 
 833   // Preserve the mark of "obj", if necessary, in preparation for its mark
 834   // word being overwritten with a self-forwarding-pointer.
 835   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 836 
 837 #ifndef PRODUCT
 838   // Support for forcing evacuation failures. Analogous to
 839   // PromotionFailureALot for the other collectors.
 840 
 841   // Records whether G1EvacuationFailureALot should be in effect
 842   // for the current GC
 843   bool _evacuation_failure_alot_for_current_gc;
 844 
 845   // Used to record the GC number for interval checking when
 846   // determining whether G1EvaucationFailureALot is in effect
 847   // for the current GC.
 848   size_t _evacuation_failure_alot_gc_number;
 849 
 850   // Count of the number of evacuations between failures.
 851   volatile size_t _evacuation_failure_alot_count;
 852 
 853   // Set whether G1EvacuationFailureALot should be in effect
 854   // for the current GC (based upon the type of GC and which
 855   // command line flags are set);
 856   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 857                                                   bool during_initial_mark,
 858                                                   bool during_marking);
 859 
 860   inline void set_evacuation_failure_alot_for_current_gc();
 861 
 862   // Return true if it's time to cause an evacuation failure.
 863   inline bool evacuation_should_fail();
 864 
 865   // Reset the G1EvacuationFailureALot counters.  Should be called at
 866   // the end of an evacuation pause in which an evacuation failure occurred.
 867   inline void reset_evacuation_should_fail();
 868 #endif // !PRODUCT
 869 
 870   // ("Weak") Reference processing support.
 871   //
 872   // G1 has 2 instances of the reference processor class. One
 873   // (_ref_processor_cm) handles reference object discovery
 874   // and subsequent processing during concurrent marking cycles.
 875   //
 876   // The other (_ref_processor_stw) handles reference object
 877   // discovery and processing during full GCs and incremental
 878   // evacuation pauses.
 879   //
 880   // During an incremental pause, reference discovery will be
 881   // temporarily disabled for _ref_processor_cm and will be
 882   // enabled for _ref_processor_stw. At the end of the evacuation
 883   // pause references discovered by _ref_processor_stw will be
 884   // processed and discovery will be disabled. The previous
 885   // setting for reference object discovery for _ref_processor_cm
 886   // will be re-instated.
 887   //
 888   // At the start of marking:
 889   //  * Discovery by the CM ref processor is verified to be inactive
 890   //    and it's discovered lists are empty.
 891   //  * Discovery by the CM ref processor is then enabled.
 892   //
 893   // At the end of marking:
 894   //  * Any references on the CM ref processor's discovered
 895   //    lists are processed (possibly MT).
 896   //
 897   // At the start of full GC we:
 898   //  * Disable discovery by the CM ref processor and
 899   //    empty CM ref processor's discovered lists
 900   //    (without processing any entries).
 901   //  * Verify that the STW ref processor is inactive and it's
 902   //    discovered lists are empty.
 903   //  * Temporarily set STW ref processor discovery as single threaded.
 904   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 905   //    field.
 906   //  * Finally enable discovery by the STW ref processor.
 907   //
 908   // The STW ref processor is used to record any discovered
 909   // references during the full GC.
 910   //
 911   // At the end of a full GC we:
 912   //  * Enqueue any reference objects discovered by the STW ref processor
 913   //    that have non-live referents. This has the side-effect of
 914   //    making the STW ref processor inactive by disabling discovery.
 915   //  * Verify that the CM ref processor is still inactive
 916   //    and no references have been placed on it's discovered
 917   //    lists (also checked as a precondition during initial marking).
 918 
 919   // The (stw) reference processor...
 920   ReferenceProcessor* _ref_processor_stw;
 921 
 922   // During reference object discovery, the _is_alive_non_header
 923   // closure (if non-null) is applied to the referent object to
 924   // determine whether the referent is live. If so then the
 925   // reference object does not need to be 'discovered' and can
 926   // be treated as a regular oop. This has the benefit of reducing
 927   // the number of 'discovered' reference objects that need to
 928   // be processed.
 929   //
 930   // Instance of the is_alive closure for embedding into the
 931   // STW reference processor as the _is_alive_non_header field.
 932   // Supplying a value for the _is_alive_non_header field is
 933   // optional but doing so prevents unnecessary additions to
 934   // the discovered lists during reference discovery.
 935   G1STWIsAliveClosure _is_alive_closure_stw;
 936 
 937   // The (concurrent marking) reference processor...
 938   ReferenceProcessor* _ref_processor_cm;
 939 
 940   // Instance of the concurrent mark is_alive closure for embedding
 941   // into the Concurrent Marking reference processor as the
 942   // _is_alive_non_header field. Supplying a value for the
 943   // _is_alive_non_header field is optional but doing so prevents
 944   // unnecessary additions to the discovered lists during reference
 945   // discovery.
 946   G1CMIsAliveClosure _is_alive_closure_cm;
 947 
 948   volatile bool _free_regions_coming;
 949 
 950 public:
 951 
 952   RefToScanQueue *task_queue(uint i) const;
 953 
 954   uint num_task_queues() const;
 955 
 956   // A set of cards where updates happened during the GC
 957   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 958 
 959   // Create a G1CollectedHeap with the specified policy.
 960   // Must call the initialize method afterwards.
 961   // May not return if something goes wrong.
 962   G1CollectedHeap(G1CollectorPolicy* policy);
 963 
 964 private:
 965   jint initialize_concurrent_refinement();
 966 public:
 967   // Initialize the G1CollectedHeap to have the initial and
 968   // maximum sizes and remembered and barrier sets
 969   // specified by the policy object.
 970   jint initialize();
 971 
 972   virtual void stop();
 973 
 974   // Return the (conservative) maximum heap alignment for any G1 heap
 975   static size_t conservative_max_heap_alignment();
 976 
 977   // Does operations required after initialization has been done.
 978   void post_initialize();
 979 
 980   // Initialize weak reference processing.
 981   void ref_processing_init();
 982 
 983   virtual Name kind() const {
 984     return CollectedHeap::G1CollectedHeap;
 985   }
 986 
 987   virtual const char* name() const {
 988     return "G1";
 989   }
 990 
 991   const G1CollectorState* collector_state() const { return &_collector_state; }
 992   G1CollectorState* collector_state() { return &_collector_state; }
 993 
 994   // The current policy object for the collector.
 995   G1Policy* g1_policy() const { return _g1_policy; }
 996 
 997   const G1CollectionSet* collection_set() const { return &_collection_set; }
 998   G1CollectionSet* collection_set() { return &_collection_set; }
 999 
1000   virtual CollectorPolicy* collector_policy() const;
1001 
1002   // Adaptive size policy.  No such thing for g1.
1003   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1004 
1005   // The rem set and barrier set.
1006   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1007 
1008   // Try to minimize the remembered set.
1009   void scrub_rem_set();
1010 
1011   uint get_gc_time_stamp() {
1012     return _gc_time_stamp;
1013   }
1014 
1015   inline void reset_gc_time_stamp();
1016 
1017   void check_gc_time_stamps() PRODUCT_RETURN;
1018 
1019   inline void increment_gc_time_stamp();
1020 
1021   // Reset the given region's GC timestamp. If it's starts humongous,
1022   // also reset the GC timestamp of its corresponding
1023   // continues humongous regions too.
1024   void reset_gc_time_stamps(HeapRegion* hr);
1025 
1026   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1027   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1028 
1029   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1030   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1031 
1032   // The shared block offset table array.
1033   G1BlockOffsetTable* bot() const { return _bot; }
1034 
1035   // Reference Processing accessors
1036 
1037   // The STW reference processor....
1038   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1039 
1040   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1041 
1042   // The Concurrent Marking reference processor...
1043   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1044 
1045   virtual size_t capacity() const;
1046   virtual size_t used() const;
1047   // This should be called when we're not holding the heap lock. The
1048   // result might be a bit inaccurate.
1049   size_t used_unlocked() const;
1050   size_t recalculate_used() const;
1051 
1052   // These virtual functions do the actual allocation.
1053   // Some heaps may offer a contiguous region for shared non-blocking
1054   // allocation, via inlined code (by exporting the address of the top and
1055   // end fields defining the extent of the contiguous allocation region.)
1056   // But G1CollectedHeap doesn't yet support this.
1057 
1058   virtual bool is_maximal_no_gc() const {
1059     return _hrm.available() == 0;
1060   }
1061 
1062   // The current number of regions in the heap.
1063   uint num_regions() const { return _hrm.length(); }
1064 
1065   // The max number of regions in the heap.
1066   uint max_regions() const { return _hrm.max_length(); }
1067 
1068   // The number of regions that are completely free.
1069   uint num_free_regions() const { return _hrm.num_free_regions(); }
1070 
1071   MemoryUsage get_auxiliary_data_memory_usage() const {
1072     return _hrm.get_auxiliary_data_memory_usage();
1073   }
1074 
1075   // The number of regions that are not completely free.
1076   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1077 
1078 #ifdef ASSERT
1079   bool is_on_master_free_list(HeapRegion* hr) {
1080     return _hrm.is_free(hr);
1081   }
1082 #endif // ASSERT
1083 
1084   // Wrapper for the region list operations that can be called from
1085   // methods outside this class.
1086 
1087   void secondary_free_list_add(FreeRegionList* list) {
1088     _secondary_free_list.add_ordered(list);
1089   }
1090 
1091   void append_secondary_free_list() {
1092     _hrm.insert_list_into_free_list(&_secondary_free_list);
1093   }
1094 
1095   void append_secondary_free_list_if_not_empty_with_lock() {
1096     // If the secondary free list looks empty there's no reason to
1097     // take the lock and then try to append it.
1098     if (!_secondary_free_list.is_empty()) {
1099       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1100       append_secondary_free_list();
1101     }
1102   }
1103 
1104   inline void old_set_add(HeapRegion* hr);
1105   inline void old_set_remove(HeapRegion* hr);
1106 
1107   size_t non_young_capacity_bytes() {
1108     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1109   }
1110 
1111   void set_free_regions_coming();
1112   void reset_free_regions_coming();
1113   bool free_regions_coming() { return _free_regions_coming; }
1114   void wait_while_free_regions_coming();
1115 
1116   // Determine whether the given region is one that we are using as an
1117   // old GC alloc region.
1118   bool is_old_gc_alloc_region(HeapRegion* hr);
1119 
1120   // Perform a collection of the heap; intended for use in implementing
1121   // "System.gc".  This probably implies as full a collection as the
1122   // "CollectedHeap" supports.
1123   virtual void collect(GCCause::Cause cause);
1124 
1125   virtual bool copy_allocation_context_stats(const jint* contexts,
1126                                              jlong* totals,
1127                                              jbyte* accuracy,
1128                                              jint len);
1129 
1130   // True iff an evacuation has failed in the most-recent collection.
1131   bool evacuation_failed() { return _evacuation_failed; }
1132 
1133   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1134   void prepend_to_freelist(FreeRegionList* list);
1135   void decrement_summary_bytes(size_t bytes);
1136 
1137   virtual bool is_in(const void* p) const;
1138 #ifdef ASSERT
1139   // Returns whether p is in one of the available areas of the heap. Slow but
1140   // extensive version.
1141   bool is_in_exact(const void* p) const;
1142 #endif
1143 
1144   // Return "TRUE" iff the given object address is within the collection
1145   // set. Assumes that the reference points into the heap.
1146   inline bool is_in_cset(const HeapRegion *hr);
1147   inline bool is_in_cset(oop obj);
1148   inline bool is_in_cset(HeapWord* addr);
1149 
1150   inline bool is_in_cset_or_humongous(const oop obj);
1151 
1152  private:
1153   // This array is used for a quick test on whether a reference points into
1154   // the collection set or not. Each of the array's elements denotes whether the
1155   // corresponding region is in the collection set or not.
1156   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1157 
1158  public:
1159 
1160   inline InCSetState in_cset_state(const oop obj);
1161 
1162   // Return "TRUE" iff the given object address is in the reserved
1163   // region of g1.
1164   bool is_in_g1_reserved(const void* p) const {
1165     return _hrm.reserved().contains(p);
1166   }
1167 
1168   // Returns a MemRegion that corresponds to the space that has been
1169   // reserved for the heap
1170   MemRegion g1_reserved() const {
1171     return _hrm.reserved();
1172   }
1173 
1174   virtual bool is_in_closed_subset(const void* p) const;
1175 
1176   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1177     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1178   }
1179 
1180   // Iteration functions.
1181 
1182   // Iterate over all objects, calling "cl.do_object" on each.
1183   virtual void object_iterate(ObjectClosure* cl);
1184 
1185   virtual void safe_object_iterate(ObjectClosure* cl) {
1186     object_iterate(cl);
1187   }
1188 
1189   // Iterate over heap regions, in address order, terminating the
1190   // iteration early if the "doHeapRegion" method returns "true".
1191   void heap_region_iterate(HeapRegionClosure* blk) const;
1192 
1193   // Return the region with the given index. It assumes the index is valid.
1194   inline HeapRegion* region_at(uint index) const;
1195 
1196   // Return the next region (by index) that is part of the same
1197   // humongous object that hr is part of.
1198   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1199 
1200   // Calculate the region index of the given address. Given address must be
1201   // within the heap.
1202   inline uint addr_to_region(HeapWord* addr) const;
1203 
1204   inline HeapWord* bottom_addr_for_region(uint index) const;
1205 
1206   // Iterate over the heap regions in parallel. Assumes that this will be called
1207   // in parallel by a number of worker threads with distinct worker ids
1208   // in the range passed to the HeapRegionClaimer. Applies "blk->doHeapRegion"
1209   // to each of the regions, by attempting to claim the region using the
1210   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1211   // region.
1212   void heap_region_par_iterate(HeapRegionClosure* cl,
1213                                uint worker_id,
1214                                HeapRegionClaimer* hrclaimer) const;
1215 
1216   // Iterate over the regions (if any) in the current collection set.
1217   void collection_set_iterate(HeapRegionClosure* blk);
1218 
1219   // Iterate over the regions (if any) in the current collection set. Starts the
1220   // iteration over the entire collection set so that the start regions of a given
1221   // worker id over the set active_workers are evenly spread across the set of
1222   // collection set regions.
1223   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1224 
1225   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1226 
1227   // Returns the HeapRegion that contains addr. addr must not be NULL.
1228   template <class T>
1229   inline HeapRegion* heap_region_containing(const T addr) const;
1230 
1231   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1232   // each address in the (reserved) heap is a member of exactly
1233   // one block.  The defining characteristic of a block is that it is
1234   // possible to find its size, and thus to progress forward to the next
1235   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1236   // represent Java objects, or they might be free blocks in a
1237   // free-list-based heap (or subheap), as long as the two kinds are
1238   // distinguishable and the size of each is determinable.
1239 
1240   // Returns the address of the start of the "block" that contains the
1241   // address "addr".  We say "blocks" instead of "object" since some heaps
1242   // may not pack objects densely; a chunk may either be an object or a
1243   // non-object.
1244   virtual HeapWord* block_start(const void* addr) const;
1245 
1246   // Requires "addr" to be the start of a chunk, and returns its size.
1247   // "addr + size" is required to be the start of a new chunk, or the end
1248   // of the active area of the heap.
1249   virtual size_t block_size(const HeapWord* addr) const;
1250 
1251   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1252   // the block is an object.
1253   virtual bool block_is_obj(const HeapWord* addr) const;
1254 
1255   // Section on thread-local allocation buffers (TLABs)
1256   // See CollectedHeap for semantics.
1257 
1258   bool supports_tlab_allocation() const;
1259   size_t tlab_capacity(Thread* ignored) const;
1260   size_t tlab_used(Thread* ignored) const;
1261   size_t max_tlab_size() const;
1262   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1263 
1264   // Can a compiler initialize a new object without store barriers?
1265   // This permission only extends from the creation of a new object
1266   // via a TLAB up to the first subsequent safepoint. If such permission
1267   // is granted for this heap type, the compiler promises to call
1268   // defer_store_barrier() below on any slow path allocation of
1269   // a new object for which such initializing store barriers will
1270   // have been elided. G1, like CMS, allows this, but should be
1271   // ready to provide a compensating write barrier as necessary
1272   // if that storage came out of a non-young region. The efficiency
1273   // of this implementation depends crucially on being able to
1274   // answer very efficiently in constant time whether a piece of
1275   // storage in the heap comes from a young region or not.
1276   // See ReduceInitialCardMarks.
1277   virtual bool can_elide_tlab_store_barriers() const {
1278     return true;
1279   }
1280 
1281   virtual bool card_mark_must_follow_store() const {
1282     return true;
1283   }
1284 
1285   inline bool is_in_young(const oop obj);
1286 
1287   virtual bool is_scavengable(const void* addr);
1288 
1289   // We don't need barriers for initializing stores to objects
1290   // in the young gen: for the SATB pre-barrier, there is no
1291   // pre-value that needs to be remembered; for the remembered-set
1292   // update logging post-barrier, we don't maintain remembered set
1293   // information for young gen objects.
1294   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1295 
1296   // Returns "true" iff the given word_size is "very large".
1297   static bool is_humongous(size_t word_size) {
1298     // Note this has to be strictly greater-than as the TLABs
1299     // are capped at the humongous threshold and we want to
1300     // ensure that we don't try to allocate a TLAB as
1301     // humongous and that we don't allocate a humongous
1302     // object in a TLAB.
1303     return word_size > _humongous_object_threshold_in_words;
1304   }
1305 
1306   // Returns the humongous threshold for a specific region size
1307   static size_t humongous_threshold_for(size_t region_size) {
1308     return (region_size / 2);
1309   }
1310 
1311   // Returns the number of regions the humongous object of the given word size
1312   // requires.
1313   static size_t humongous_obj_size_in_regions(size_t word_size);
1314 
1315   // Print the maximum heap capacity.
1316   virtual size_t max_capacity() const;
1317 
1318   virtual jlong millis_since_last_gc();
1319 
1320 
1321   // Convenience function to be used in situations where the heap type can be
1322   // asserted to be this type.
1323   static G1CollectedHeap* heap();
1324 
1325   void set_region_short_lived_locked(HeapRegion* hr);
1326   // add appropriate methods for any other surv rate groups
1327 
1328   const G1SurvivorRegions* survivor() const { return &_survivor; }
1329 
1330   uint survivor_regions_count() const {
1331     return _survivor.length();
1332   }
1333 
1334   uint eden_regions_count() const {
1335     return _eden.length();
1336   }
1337 
1338   uint young_regions_count() const {
1339     return _eden.length() + _survivor.length();
1340   }
1341 
1342   uint old_regions_count() const { return _old_set.length(); }
1343 
1344   uint humongous_regions_count() const { return _humongous_set.length(); }
1345 
1346 #ifdef ASSERT
1347   bool check_young_list_empty();
1348 #endif
1349 
1350   // *** Stuff related to concurrent marking.  It's not clear to me that so
1351   // many of these need to be public.
1352 
1353   // The functions below are helper functions that a subclass of
1354   // "CollectedHeap" can use in the implementation of its virtual
1355   // functions.
1356   // This performs a concurrent marking of the live objects in a
1357   // bitmap off to the side.
1358   void doConcurrentMark();
1359 
1360   bool isMarkedNext(oop obj) const;
1361 
1362   // Determine if an object is dead, given the object and also
1363   // the region to which the object belongs. An object is dead
1364   // iff a) it was not allocated since the last mark, b) it
1365   // is not marked, and c) it is not in an archive region.
1366   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1367     return
1368       hr->is_obj_dead(obj, _cm->prevMarkBitMap()) &&
1369       !hr->is_archive();
1370   }
1371 
1372   // This function returns true when an object has been
1373   // around since the previous marking and hasn't yet
1374   // been marked during this marking, and is not in an archive region.
1375   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1376     return
1377       !hr->obj_allocated_since_next_marking(obj) &&
1378       !isMarkedNext(obj) &&
1379       !hr->is_archive();
1380   }
1381 
1382   // Determine if an object is dead, given only the object itself.
1383   // This will find the region to which the object belongs and
1384   // then call the region version of the same function.
1385 
1386   // Added if it is NULL it isn't dead.
1387 
1388   inline bool is_obj_dead(const oop obj) const;
1389 
1390   inline bool is_obj_ill(const oop obj) const;
1391 
1392   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1393 
1394   // Refinement
1395 
1396   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1397 
1398   // Optimized nmethod scanning support routines
1399 
1400   // Register the given nmethod with the G1 heap.
1401   virtual void register_nmethod(nmethod* nm);
1402 
1403   // Unregister the given nmethod from the G1 heap.
1404   virtual void unregister_nmethod(nmethod* nm);
1405 
1406   // Free up superfluous code root memory.
1407   void purge_code_root_memory();
1408 
1409   // Rebuild the strong code root lists for each region
1410   // after a full GC.
1411   void rebuild_strong_code_roots();
1412 
1413   // Partial cleaning used when class unloading is disabled.
1414   // Let the caller choose what structures to clean out:
1415   // - StringTable
1416   // - SymbolTable
1417   // - StringDeduplication structures
1418   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1419 
1420   // Complete cleaning used when class unloading is enabled.
1421   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1422   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1423 
1424   // Redirty logged cards in the refinement queue.
1425   void redirty_logged_cards();
1426   // Verification
1427 
1428   // Perform any cleanup actions necessary before allowing a verification.
1429   virtual void prepare_for_verify();
1430 
1431   // Perform verification.
1432 
1433   // vo == UsePrevMarking  -> use "prev" marking information,
1434   // vo == UseNextMarking -> use "next" marking information
1435   // vo == UseMarkWord    -> use the mark word in the object header
1436   //
1437   // NOTE: Only the "prev" marking information is guaranteed to be
1438   // consistent most of the time, so most calls to this should use
1439   // vo == UsePrevMarking.
1440   // Currently, there is only one case where this is called with
1441   // vo == UseNextMarking, which is to verify the "next" marking
1442   // information at the end of remark.
1443   // Currently there is only one place where this is called with
1444   // vo == UseMarkWord, which is to verify the marking during a
1445   // full GC.
1446   void verify(VerifyOption vo);
1447 
1448   // WhiteBox testing support.
1449   virtual bool supports_concurrent_phase_control() const;
1450   virtual const char* const* concurrent_phases() const;
1451   virtual bool request_concurrent_phase(const char* phase);
1452 
1453   // The methods below are here for convenience and dispatch the
1454   // appropriate method depending on value of the given VerifyOption
1455   // parameter. The values for that parameter, and their meanings,
1456   // are the same as those above.
1457 
1458   bool is_obj_dead_cond(const oop obj,
1459                         const HeapRegion* hr,
1460                         const VerifyOption vo) const;
1461 
1462   bool is_obj_dead_cond(const oop obj,
1463                         const VerifyOption vo) const;
1464 
1465   G1HeapSummary create_g1_heap_summary();
1466   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1467 
1468   // Printing
1469 private:
1470   void print_heap_regions() const;
1471   void print_regions_on(outputStream* st) const;
1472 
1473 public:
1474   virtual void print_on(outputStream* st) const;
1475   virtual void print_extended_on(outputStream* st) const;
1476   virtual void print_on_error(outputStream* st) const;
1477 
1478   virtual void print_gc_threads_on(outputStream* st) const;
1479   virtual void gc_threads_do(ThreadClosure* tc) const;
1480 
1481   // Override
1482   void print_tracing_info() const;
1483 
1484   // The following two methods are helpful for debugging RSet issues.
1485   void print_cset_rsets() PRODUCT_RETURN;
1486   void print_all_rsets() PRODUCT_RETURN;
1487 
1488 public:
1489   size_t pending_card_num();
1490 
1491 protected:
1492   size_t _max_heap_capacity;
1493 };
1494 
1495 class G1ParEvacuateFollowersClosure : public VoidClosure {
1496 private:
1497   double _start_term;
1498   double _term_time;
1499   size_t _term_attempts;
1500 
1501   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1502   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1503 protected:
1504   G1CollectedHeap*              _g1h;
1505   G1ParScanThreadState*         _par_scan_state;
1506   RefToScanQueueSet*            _queues;
1507   ParallelTaskTerminator*       _terminator;
1508 
1509   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1510   RefToScanQueueSet*      queues()         { return _queues; }
1511   ParallelTaskTerminator* terminator()     { return _terminator; }
1512 
1513 public:
1514   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1515                                 G1ParScanThreadState* par_scan_state,
1516                                 RefToScanQueueSet* queues,
1517                                 ParallelTaskTerminator* terminator)
1518     : _g1h(g1h), _par_scan_state(par_scan_state),
1519       _queues(queues), _terminator(terminator),
1520       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1521 
1522   void do_void();
1523 
1524   double term_time() const { return _term_time; }
1525   size_t term_attempts() const { return _term_attempts; }
1526 
1527 private:
1528   inline bool offer_termination();
1529 };
1530 
1531 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP