1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1AllocationContext.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1HeapTransition.hpp"
  38 #include "gc/g1/g1HeapVerifier.hpp"
  39 #include "gc/g1/g1HRPrinter.hpp"
  40 #include "gc/g1/g1InCSetState.hpp"
  41 #include "gc/g1/g1MonitoringSupport.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/hSpaceCounters.hpp"
  46 #include "gc/g1/heapRegionManager.hpp"
  47 #include "gc/g1/heapRegionSet.hpp"
  48 #include "gc/shared/barrierSet.hpp"
  49 #include "gc/shared/collectedHeap.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "memory/memRegion.hpp"
  53 #include "utilities/stack.hpp"
  54 
  55 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  56 // It uses the "Garbage First" heap organization and algorithm, which
  57 // may combine concurrent marking with parallel, incremental compaction of
  58 // heap subsets that will yield large amounts of garbage.
  59 
  60 // Forward declarations
  61 class HeapRegion;
  62 class HRRSCleanupTask;
  63 class GenerationSpec;
  64 class G1ParScanThreadState;
  65 class G1ParScanThreadStateSet;
  66 class G1KlassScanClosure;
  67 class G1ParScanThreadState;
  68 class ObjectClosure;
  69 class SpaceClosure;
  70 class CompactibleSpaceClosure;
  71 class Space;
  72 class G1CollectionSet;
  73 class G1CollectorPolicy;
  74 class G1Policy;
  75 class G1HotCardCache;
  76 class G1RemSet;
  77 class HeapRegionRemSetIterator;
  78 class G1ConcurrentMark;
  79 class ConcurrentMarkThread;
  80 class ConcurrentG1Refine;
  81 class GenerationCounters;
  82 class STWGCTimer;
  83 class G1NewTracer;
  84 class EvacuationFailedInfo;
  85 class nmethod;
  86 class Ticks;
  87 class WorkGang;
  88 class G1Allocator;
  89 class G1ArchiveAllocator;
  90 class G1FullGCScope;
  91 class G1HeapVerifier;
  92 class G1HeapSizingPolicy;
  93 class G1HeapSummary;
  94 class G1EvacSummary;
  95 
  96 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  97 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  98 
  99 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 100 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 101 
 102 // The G1 STW is alive closure.
 103 // An instance is embedded into the G1CH and used as the
 104 // (optional) _is_alive_non_header closure in the STW
 105 // reference processor. It is also extensively used during
 106 // reference processing during STW evacuation pauses.
 107 class G1STWIsAliveClosure: public BoolObjectClosure {
 108   G1CollectedHeap* _g1;
 109 public:
 110   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 111   bool do_object_b(oop p);
 112 };
 113 
 114 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 115  private:
 116   void reset_from_card_cache(uint start_idx, size_t num_regions);
 117  public:
 118   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 119 };
 120 
 121 class G1CollectedHeap : public CollectedHeap {
 122   friend class G1FreeCollectionSetTask;
 123   friend class VM_CollectForMetadataAllocation;
 124   friend class VM_G1CollectForAllocation;
 125   friend class VM_G1CollectFull;
 126   friend class VM_G1IncCollectionPause;
 127   friend class VMStructs;
 128   friend class MutatorAllocRegion;
 129   friend class G1GCAllocRegion;
 130   friend class G1HeapVerifier;
 131 
 132   // Closures used in implementation.
 133   friend class G1ParScanThreadState;
 134   friend class G1ParScanThreadStateSet;
 135   friend class G1ParTask;
 136   friend class G1PLABAllocator;
 137   friend class G1PrepareCompactClosure;
 138 
 139   // Other related classes.
 140   friend class HeapRegionClaimer;
 141 
 142   // Testing classes.
 143   friend class G1CheckCSetFastTableClosure;
 144 
 145 private:
 146   WorkGang* _workers;
 147   G1CollectorPolicy* _collector_policy;
 148 
 149   static size_t _humongous_object_threshold_in_words;
 150 
 151   // The secondary free list which contains regions that have been
 152   // freed up during the cleanup process. This will be appended to
 153   // the master free list when appropriate.
 154   FreeRegionList _secondary_free_list;
 155 
 156   // It keeps track of the old regions.
 157   HeapRegionSet _old_set;
 158 
 159   // It keeps track of the humongous regions.
 160   HeapRegionSet _humongous_set;
 161 
 162   void eagerly_reclaim_humongous_regions();
 163   // Start a new incremental collection set for the next pause.
 164   void start_new_collection_set();
 165 
 166   // The number of regions we could create by expansion.
 167   uint _expansion_regions;
 168 
 169   // The block offset table for the G1 heap.
 170   G1BlockOffsetTable* _bot;
 171 
 172   // Tears down the region sets / lists so that they are empty and the
 173   // regions on the heap do not belong to a region set / list. The
 174   // only exception is the humongous set which we leave unaltered. If
 175   // free_list_only is true, it will only tear down the master free
 176   // list. It is called before a Full GC (free_list_only == false) or
 177   // before heap shrinking (free_list_only == true).
 178   void tear_down_region_sets(bool free_list_only);
 179 
 180   // Rebuilds the region sets / lists so that they are repopulated to
 181   // reflect the contents of the heap. The only exception is the
 182   // humongous set which was not torn down in the first place. If
 183   // free_list_only is true, it will only rebuild the master free
 184   // list. It is called after a Full GC (free_list_only == false) or
 185   // after heap shrinking (free_list_only == true).
 186   void rebuild_region_sets(bool free_list_only);
 187 
 188   // Callback for region mapping changed events.
 189   G1RegionMappingChangedListener _listener;
 190 
 191   // The sequence of all heap regions in the heap.
 192   HeapRegionManager _hrm;
 193 
 194   // Manages all allocations with regions except humongous object allocations.
 195   G1Allocator* _allocator;
 196 
 197   // Manages all heap verification.
 198   G1HeapVerifier* _verifier;
 199 
 200   // Outside of GC pauses, the number of bytes used in all regions other
 201   // than the current allocation region(s).
 202   size_t _summary_bytes_used;
 203 
 204   void increase_used(size_t bytes);
 205   void decrease_used(size_t bytes);
 206 
 207   void set_used(size_t bytes);
 208 
 209   // Class that handles archive allocation ranges.
 210   G1ArchiveAllocator* _archive_allocator;
 211 
 212   // Statistics for each allocation context
 213   AllocationContextStats _allocation_context_stats;
 214 
 215   // GC allocation statistics policy for survivors.
 216   G1EvacStats _survivor_evac_stats;
 217 
 218   // GC allocation statistics policy for tenured objects.
 219   G1EvacStats _old_evac_stats;
 220 
 221   // It specifies whether we should attempt to expand the heap after a
 222   // region allocation failure. If heap expansion fails we set this to
 223   // false so that we don't re-attempt the heap expansion (it's likely
 224   // that subsequent expansion attempts will also fail if one fails).
 225   // Currently, it is only consulted during GC and it's reset at the
 226   // start of each GC.
 227   bool _expand_heap_after_alloc_failure;
 228 
 229   // Helper for monitoring and management support.
 230   G1MonitoringSupport* _g1mm;
 231 
 232   // Records whether the region at the given index is (still) a
 233   // candidate for eager reclaim.  Only valid for humongous start
 234   // regions; other regions have unspecified values.  Humongous start
 235   // regions are initialized at start of collection pause, with
 236   // candidates removed from the set as they are found reachable from
 237   // roots or the young generation.
 238   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 239    protected:
 240     bool default_value() const { return false; }
 241    public:
 242     void clear() { G1BiasedMappedArray<bool>::clear(); }
 243     void set_candidate(uint region, bool value) {
 244       set_by_index(region, value);
 245     }
 246     bool is_candidate(uint region) {
 247       return get_by_index(region);
 248     }
 249   };
 250 
 251   HumongousReclaimCandidates _humongous_reclaim_candidates;
 252   // Stores whether during humongous object registration we found candidate regions.
 253   // If not, we can skip a few steps.
 254   bool _has_humongous_reclaim_candidates;
 255 
 256   volatile uint _gc_time_stamp;
 257 
 258   G1HRPrinter _hr_printer;
 259 
 260   // It decides whether an explicit GC should start a concurrent cycle
 261   // instead of doing a STW GC. Currently, a concurrent cycle is
 262   // explicitly started if:
 263   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 264   // (b) cause == _g1_humongous_allocation
 265   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 266   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 267   // (e) cause == _update_allocation_context_stats_inc
 268   // (f) cause == _wb_conc_mark
 269   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 270 
 271   // indicates whether we are in young or mixed GC mode
 272   G1CollectorState _collector_state;
 273 
 274   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 275   // concurrent cycles) we have started.
 276   volatile uint _old_marking_cycles_started;
 277 
 278   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 279   // concurrent cycles) we have completed.
 280   volatile uint _old_marking_cycles_completed;
 281 
 282   // This is a non-product method that is helpful for testing. It is
 283   // called at the end of a GC and artificially expands the heap by
 284   // allocating a number of dead regions. This way we can induce very
 285   // frequent marking cycles and stress the cleanup / concurrent
 286   // cleanup code more (as all the regions that will be allocated by
 287   // this method will be found dead by the marking cycle).
 288   void allocate_dummy_regions() PRODUCT_RETURN;
 289 
 290   // Clear RSets after a compaction. It also resets the GC time stamps.
 291   void clear_rsets_post_compaction();
 292 
 293   // If the HR printer is active, dump the state of the regions in the
 294   // heap after a compaction.
 295   void print_hrm_post_compaction();
 296 
 297   // Create a memory mapper for auxiliary data structures of the given size and
 298   // translation factor.
 299   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 300                                                          size_t size,
 301                                                          size_t translation_factor);
 302 
 303   static G1Policy* create_g1_policy(STWGCTimer* gc_timer);
 304 
 305   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 306 
 307   void process_weak_jni_handles();
 308 
 309   // These are macros so that, if the assert fires, we get the correct
 310   // line number, file, etc.
 311 
 312 #define heap_locking_asserts_params(_extra_message_)                          \
 313   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 314   (_extra_message_),                                                          \
 315   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 316   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 317   BOOL_TO_STR(Thread::current()->is_VM_thread())
 318 
 319 #define assert_heap_locked()                                                  \
 320   do {                                                                        \
 321     assert(Heap_lock->owned_by_self(),                                        \
 322            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 323   } while (0)
 324 
 325 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 326   do {                                                                        \
 327     assert(Heap_lock->owned_by_self() ||                                      \
 328            (SafepointSynchronize::is_at_safepoint() &&                        \
 329              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 330            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 331                                         "should be at a safepoint"));         \
 332   } while (0)
 333 
 334 #define assert_heap_locked_and_not_at_safepoint()                             \
 335   do {                                                                        \
 336     assert(Heap_lock->owned_by_self() &&                                      \
 337                                     !SafepointSynchronize::is_at_safepoint(), \
 338           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 339                                        "should not be at a safepoint"));      \
 340   } while (0)
 341 
 342 #define assert_heap_not_locked()                                              \
 343   do {                                                                        \
 344     assert(!Heap_lock->owned_by_self(),                                       \
 345         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 346   } while (0)
 347 
 348 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 349   do {                                                                        \
 350     assert(!Heap_lock->owned_by_self() &&                                     \
 351                                     !SafepointSynchronize::is_at_safepoint(), \
 352       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 353                                    "should not be at a safepoint"));          \
 354   } while (0)
 355 
 356 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 357   do {                                                                        \
 358     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 359               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 360            heap_locking_asserts_params("should be at a safepoint"));          \
 361   } while (0)
 362 
 363 #define assert_not_at_safepoint()                                             \
 364   do {                                                                        \
 365     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 366            heap_locking_asserts_params("should not be at a safepoint"));      \
 367   } while (0)
 368 
 369 protected:
 370 
 371   // The young region list.
 372   G1EdenRegions _eden;
 373   G1SurvivorRegions _survivor;
 374 
 375   STWGCTimer* _gc_timer_stw;
 376 
 377   G1NewTracer* _gc_tracer_stw;
 378 
 379   // The current policy object for the collector.
 380   G1Policy* _g1_policy;
 381   G1HeapSizingPolicy* _heap_sizing_policy;
 382 
 383   G1CollectionSet _collection_set;
 384 
 385   // This is the second level of trying to allocate a new region. If
 386   // new_region() didn't find a region on the free_list, this call will
 387   // check whether there's anything available on the
 388   // secondary_free_list and/or wait for more regions to appear on
 389   // that list, if _free_regions_coming is set.
 390   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 391 
 392   // Try to allocate a single non-humongous HeapRegion sufficient for
 393   // an allocation of the given word_size. If do_expand is true,
 394   // attempt to expand the heap if necessary to satisfy the allocation
 395   // request. If the region is to be used as an old region or for a
 396   // humongous object, set is_old to true. If not, to false.
 397   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 398 
 399   // Initialize a contiguous set of free regions of length num_regions
 400   // and starting at index first so that they appear as a single
 401   // humongous region.
 402   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 403                                                       uint num_regions,
 404                                                       size_t word_size,
 405                                                       AllocationContext_t context);
 406 
 407   // Attempt to allocate a humongous object of the given size. Return
 408   // NULL if unsuccessful.
 409   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 410 
 411   // The following two methods, allocate_new_tlab() and
 412   // mem_allocate(), are the two main entry points from the runtime
 413   // into the G1's allocation routines. They have the following
 414   // assumptions:
 415   //
 416   // * They should both be called outside safepoints.
 417   //
 418   // * They should both be called without holding the Heap_lock.
 419   //
 420   // * All allocation requests for new TLABs should go to
 421   //   allocate_new_tlab().
 422   //
 423   // * All non-TLAB allocation requests should go to mem_allocate().
 424   //
 425   // * If either call cannot satisfy the allocation request using the
 426   //   current allocating region, they will try to get a new one. If
 427   //   this fails, they will attempt to do an evacuation pause and
 428   //   retry the allocation.
 429   //
 430   // * If all allocation attempts fail, even after trying to schedule
 431   //   an evacuation pause, allocate_new_tlab() will return NULL,
 432   //   whereas mem_allocate() will attempt a heap expansion and/or
 433   //   schedule a Full GC.
 434   //
 435   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 436   //   should never be called with word_size being humongous. All
 437   //   humongous allocation requests should go to mem_allocate() which
 438   //   will satisfy them with a special path.
 439 
 440   virtual HeapWord* allocate_new_tlab(size_t word_size);
 441 
 442   virtual HeapWord* mem_allocate(size_t word_size,
 443                                  bool*  gc_overhead_limit_was_exceeded);
 444 
 445   // The following three methods take a gc_count_before_ret
 446   // parameter which is used to return the GC count if the method
 447   // returns NULL. Given that we are required to read the GC count
 448   // while holding the Heap_lock, and these paths will take the
 449   // Heap_lock at some point, it's easier to get them to read the GC
 450   // count while holding the Heap_lock before they return NULL instead
 451   // of the caller (namely: mem_allocate()) having to also take the
 452   // Heap_lock just to read the GC count.
 453 
 454   // First-level mutator allocation attempt: try to allocate out of
 455   // the mutator alloc region without taking the Heap_lock. This
 456   // should only be used for non-humongous allocations.
 457   inline HeapWord* attempt_allocation(size_t word_size,
 458                                       uint* gc_count_before_ret,
 459                                       uint* gclocker_retry_count_ret);
 460 
 461   // Second-level mutator allocation attempt: take the Heap_lock and
 462   // retry the allocation attempt, potentially scheduling a GC
 463   // pause. This should only be used for non-humongous allocations.
 464   HeapWord* attempt_allocation_slow(size_t word_size,
 465                                     AllocationContext_t context,
 466                                     uint* gc_count_before_ret,
 467                                     uint* gclocker_retry_count_ret);
 468 
 469   // Takes the Heap_lock and attempts a humongous allocation. It can
 470   // potentially schedule a GC pause.
 471   HeapWord* attempt_allocation_humongous(size_t word_size,
 472                                          uint* gc_count_before_ret,
 473                                          uint* gclocker_retry_count_ret);
 474 
 475   // Allocation attempt that should be called during safepoints (e.g.,
 476   // at the end of a successful GC). expect_null_mutator_alloc_region
 477   // specifies whether the mutator alloc region is expected to be NULL
 478   // or not.
 479   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 480                                             AllocationContext_t context,
 481                                             bool expect_null_mutator_alloc_region);
 482 
 483   // These methods are the "callbacks" from the G1AllocRegion class.
 484 
 485   // For mutator alloc regions.
 486   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 487   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 488                                    size_t allocated_bytes);
 489 
 490   // For GC alloc regions.
 491   bool has_more_regions(InCSetState dest);
 492   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 493   void retire_gc_alloc_region(HeapRegion* alloc_region,
 494                               size_t allocated_bytes, InCSetState dest);
 495 
 496   // - if explicit_gc is true, the GC is for a System.gc() etc,
 497   //   otherwise it's for a failed allocation.
 498   // - if clear_all_soft_refs is true, all soft references should be
 499   //   cleared during the GC.
 500   // - it returns false if it is unable to do the collection due to the
 501   //   GC locker being active, true otherwise.
 502   bool do_full_collection(bool explicit_gc,
 503                           bool clear_all_soft_refs);
 504 
 505   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 506   virtual void do_full_collection(bool clear_all_soft_refs);
 507 
 508   // Resize the heap if necessary after a full collection.
 509   void resize_if_necessary_after_full_collection();
 510 
 511   // Callback from VM_G1CollectForAllocation operation.
 512   // This function does everything necessary/possible to satisfy a
 513   // failed allocation request (including collection, expansion, etc.)
 514   HeapWord* satisfy_failed_allocation(size_t word_size,
 515                                       AllocationContext_t context,
 516                                       bool* succeeded);
 517 private:
 518   // Internal helpers used during full GC to split it up to
 519   // increase readability.
 520   void do_full_collection_inner(G1FullGCScope* scope);
 521   void abort_concurrent_cycle();
 522   void verify_before_full_collection(bool explicit_gc);
 523   void prepare_heap_for_full_collection();
 524   void prepare_heap_for_mutators();
 525   void abort_refinement();
 526   void verify_after_full_collection();
 527   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 528 
 529   // Helper method for satisfy_failed_allocation()
 530   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 531                                              AllocationContext_t context,
 532                                              bool do_gc,
 533                                              bool clear_all_soft_refs,
 534                                              bool expect_null_mutator_alloc_region,
 535                                              bool* gc_succeeded);
 536 
 537 protected:
 538   // Attempting to expand the heap sufficiently
 539   // to support an allocation of the given "word_size".  If
 540   // successful, perform the allocation and return the address of the
 541   // allocated block, or else "NULL".
 542   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 543 
 544   // Preserve any referents discovered by concurrent marking that have not yet been
 545   // copied by the STW pause.
 546   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 547   // Process any reference objects discovered during
 548   // an incremental evacuation pause.
 549   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 550 
 551   // Enqueue any remaining discovered references
 552   // after processing.
 553   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 554 
 555   // Merges the information gathered on a per-thread basis for all worker threads
 556   // during GC into global variables.
 557   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 558 public:
 559   WorkGang* workers() const { return _workers; }
 560 
 561   G1Allocator* allocator() {
 562     return _allocator;
 563   }
 564 
 565   G1HeapVerifier* verifier() {
 566     return _verifier;
 567   }
 568 
 569   G1MonitoringSupport* g1mm() {
 570     assert(_g1mm != NULL, "should have been initialized");
 571     return _g1mm;
 572   }
 573 
 574   // Expand the garbage-first heap by at least the given size (in bytes!).
 575   // Returns true if the heap was expanded by the requested amount;
 576   // false otherwise.
 577   // (Rounds up to a HeapRegion boundary.)
 578   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 579 
 580   // Returns the PLAB statistics for a given destination.
 581   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 582 
 583   // Determines PLAB size for a given destination.
 584   inline size_t desired_plab_sz(InCSetState dest);
 585 
 586   inline AllocationContextStats& allocation_context_stats();
 587 
 588   // Do anything common to GC's.
 589   void gc_prologue(bool full);
 590   void gc_epilogue(bool full);
 591 
 592   // Modify the reclaim candidate set and test for presence.
 593   // These are only valid for starts_humongous regions.
 594   inline void set_humongous_reclaim_candidate(uint region, bool value);
 595   inline bool is_humongous_reclaim_candidate(uint region);
 596 
 597   // Remove from the reclaim candidate set.  Also remove from the
 598   // collection set so that later encounters avoid the slow path.
 599   inline void set_humongous_is_live(oop obj);
 600 
 601   // Register the given region to be part of the collection set.
 602   inline void register_humongous_region_with_cset(uint index);
 603   // Register regions with humongous objects (actually on the start region) in
 604   // the in_cset_fast_test table.
 605   void register_humongous_regions_with_cset();
 606   // We register a region with the fast "in collection set" test. We
 607   // simply set to true the array slot corresponding to this region.
 608   void register_young_region_with_cset(HeapRegion* r) {
 609     _in_cset_fast_test.set_in_young(r->hrm_index());
 610   }
 611   void register_old_region_with_cset(HeapRegion* r) {
 612     _in_cset_fast_test.set_in_old(r->hrm_index());
 613   }
 614   inline void register_ext_region_with_cset(HeapRegion* r) {
 615     _in_cset_fast_test.set_ext(r->hrm_index());
 616   }
 617   void clear_in_cset(const HeapRegion* hr) {
 618     _in_cset_fast_test.clear(hr);
 619   }
 620 
 621   void clear_cset_fast_test() {
 622     _in_cset_fast_test.clear();
 623   }
 624 
 625   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 626 
 627   // This is called at the start of either a concurrent cycle or a Full
 628   // GC to update the number of old marking cycles started.
 629   void increment_old_marking_cycles_started();
 630 
 631   // This is called at the end of either a concurrent cycle or a Full
 632   // GC to update the number of old marking cycles completed. Those two
 633   // can happen in a nested fashion, i.e., we start a concurrent
 634   // cycle, a Full GC happens half-way through it which ends first,
 635   // and then the cycle notices that a Full GC happened and ends
 636   // too. The concurrent parameter is a boolean to help us do a bit
 637   // tighter consistency checking in the method. If concurrent is
 638   // false, the caller is the inner caller in the nesting (i.e., the
 639   // Full GC). If concurrent is true, the caller is the outer caller
 640   // in this nesting (i.e., the concurrent cycle). Further nesting is
 641   // not currently supported. The end of this call also notifies
 642   // the FullGCCount_lock in case a Java thread is waiting for a full
 643   // GC to happen (e.g., it called System.gc() with
 644   // +ExplicitGCInvokesConcurrent).
 645   void increment_old_marking_cycles_completed(bool concurrent);
 646 
 647   uint old_marking_cycles_completed() {
 648     return _old_marking_cycles_completed;
 649   }
 650 
 651   G1HRPrinter* hr_printer() { return &_hr_printer; }
 652 
 653   // Allocates a new heap region instance.
 654   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 655 
 656   // Allocate the highest free region in the reserved heap. This will commit
 657   // regions as necessary.
 658   HeapRegion* alloc_highest_free_region();
 659 
 660   // Frees a non-humongous region by initializing its contents and
 661   // adding it to the free list that's passed as a parameter (this is
 662   // usually a local list which will be appended to the master free
 663   // list later). The used bytes of freed regions are accumulated in
 664   // pre_used. If skip_remset is true, the region's RSet will not be freed
 665   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 666   // be freed up. The assumption is that this will be done later.
 667   // The locked parameter indicates if the caller has already taken
 668   // care of proper synchronization. This may allow some optimizations.
 669   void free_region(HeapRegion* hr,
 670                    FreeRegionList* free_list,
 671                    bool skip_remset,
 672                    bool skip_hot_card_cache = false,
 673                    bool locked = false);
 674 
 675   // It dirties the cards that cover the block so that the post
 676   // write barrier never queues anything when updating objects on this
 677   // block. It is assumed (and in fact we assert) that the block
 678   // belongs to a young region.
 679   inline void dirty_young_block(HeapWord* start, size_t word_size);
 680 
 681   // Frees a humongous region by collapsing it into individual regions
 682   // and calling free_region() for each of them. The freed regions
 683   // will be added to the free list that's passed as a parameter (this
 684   // is usually a local list which will be appended to the master free
 685   // list later). The used bytes of freed regions are accumulated in
 686   // pre_used. If skip_remset is true, the region's RSet will not be freed
 687   // up. The assumption is that this will be done later.
 688   void free_humongous_region(HeapRegion* hr,
 689                              FreeRegionList* free_list,
 690                              bool skip_remset);
 691 
 692   // Facility for allocating in 'archive' regions in high heap memory and
 693   // recording the allocated ranges. These should all be called from the
 694   // VM thread at safepoints, without the heap lock held. They can be used
 695   // to create and archive a set of heap regions which can be mapped at the
 696   // same fixed addresses in a subsequent JVM invocation.
 697   void begin_archive_alloc_range(bool open = false);
 698 
 699   // Check if the requested size would be too large for an archive allocation.
 700   bool is_archive_alloc_too_large(size_t word_size);
 701 
 702   // Allocate memory of the requested size from the archive region. This will
 703   // return NULL if the size is too large or if no memory is available. It
 704   // does not trigger a garbage collection.
 705   HeapWord* archive_mem_allocate(size_t word_size);
 706 
 707   // Optionally aligns the end address and returns the allocated ranges in
 708   // an array of MemRegions in order of ascending addresses.
 709   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 710                                size_t end_alignment_in_bytes = 0);
 711 
 712   // Facility for allocating a fixed range within the heap and marking
 713   // the containing regions as 'archive'. For use at JVM init time, when the
 714   // caller may mmap archived heap data at the specified range(s).
 715   // Verify that the MemRegions specified in the argument array are within the
 716   // reserved heap.
 717   bool check_archive_addresses(MemRegion* range, size_t count);
 718 
 719   // Commit the appropriate G1 regions containing the specified MemRegions
 720   // and mark them as 'archive' regions. The regions in the array must be
 721   // non-overlapping and in order of ascending address.
 722   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 723 
 724   // Insert any required filler objects in the G1 regions around the specified
 725   // ranges to make the regions parseable. This must be called after
 726   // alloc_archive_regions, and after class loading has occurred.
 727   void fill_archive_regions(MemRegion* range, size_t count);
 728 
 729   // For each of the specified MemRegions, uncommit the containing G1 regions
 730   // which had been allocated by alloc_archive_regions. This should be called
 731   // rather than fill_archive_regions at JVM init time if the archive file
 732   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 733   void dealloc_archive_regions(MemRegion* range, size_t count);
 734 
 735 protected:
 736 
 737   // Shrink the garbage-first heap by at most the given size (in bytes!).
 738   // (Rounds down to a HeapRegion boundary.)
 739   virtual void shrink(size_t expand_bytes);
 740   void shrink_helper(size_t expand_bytes);
 741 
 742   #if TASKQUEUE_STATS
 743   static void print_taskqueue_stats_hdr(outputStream* const st);
 744   void print_taskqueue_stats() const;
 745   void reset_taskqueue_stats();
 746   #endif // TASKQUEUE_STATS
 747 
 748   // Schedule the VM operation that will do an evacuation pause to
 749   // satisfy an allocation request of word_size. *succeeded will
 750   // return whether the VM operation was successful (it did do an
 751   // evacuation pause) or not (another thread beat us to it or the GC
 752   // locker was active). Given that we should not be holding the
 753   // Heap_lock when we enter this method, we will pass the
 754   // gc_count_before (i.e., total_collections()) as a parameter since
 755   // it has to be read while holding the Heap_lock. Currently, both
 756   // methods that call do_collection_pause() release the Heap_lock
 757   // before the call, so it's easy to read gc_count_before just before.
 758   HeapWord* do_collection_pause(size_t         word_size,
 759                                 uint           gc_count_before,
 760                                 bool*          succeeded,
 761                                 GCCause::Cause gc_cause);
 762 
 763   void wait_for_root_region_scanning();
 764 
 765   // The guts of the incremental collection pause, executed by the vm
 766   // thread. It returns false if it is unable to do the collection due
 767   // to the GC locker being active, true otherwise
 768   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 769 
 770   // Actually do the work of evacuating the collection set.
 771   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 772 
 773   void pre_evacuate_collection_set();
 774   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 775 
 776   // Print the header for the per-thread termination statistics.
 777   static void print_termination_stats_hdr();
 778   // Print actual per-thread termination statistics.
 779   void print_termination_stats(uint worker_id,
 780                                double elapsed_ms,
 781                                double strong_roots_ms,
 782                                double term_ms,
 783                                size_t term_attempts,
 784                                size_t alloc_buffer_waste,
 785                                size_t undo_waste) const;
 786   // Update object copying statistics.
 787   void record_obj_copy_mem_stats();
 788 
 789   // The hot card cache for remembered set insertion optimization.
 790   G1HotCardCache* _hot_card_cache;
 791 
 792   // The g1 remembered set of the heap.
 793   G1RemSet* _g1_rem_set;
 794 
 795   // A set of cards that cover the objects for which the Rsets should be updated
 796   // concurrently after the collection.
 797   DirtyCardQueueSet _dirty_card_queue_set;
 798 
 799   // After a collection pause, convert the regions in the collection set into free
 800   // regions.
 801   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 802 
 803   // Abandon the current collection set without recording policy
 804   // statistics or updating free lists.
 805   void abandon_collection_set(G1CollectionSet* collection_set);
 806 
 807   // The concurrent marker (and the thread it runs in.)
 808   G1ConcurrentMark* _cm;
 809   ConcurrentMarkThread* _cmThread;
 810 
 811   // The concurrent refiner.
 812   ConcurrentG1Refine* _cg1r;
 813 
 814   // The parallel task queues
 815   RefToScanQueueSet *_task_queues;
 816 
 817   // True iff a evacuation has failed in the current collection.
 818   bool _evacuation_failed;
 819 
 820   EvacuationFailedInfo* _evacuation_failed_info_array;
 821 
 822   // Failed evacuations cause some logical from-space objects to have
 823   // forwarding pointers to themselves.  Reset them.
 824   void remove_self_forwarding_pointers();
 825 
 826   // Restore the objects in the regions in the collection set after an
 827   // evacuation failure.
 828   void restore_after_evac_failure();
 829 
 830   PreservedMarksSet _preserved_marks_set;
 831 
 832   // Preserve the mark of "obj", if necessary, in preparation for its mark
 833   // word being overwritten with a self-forwarding-pointer.
 834   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 835 
 836 #ifndef PRODUCT
 837   // Support for forcing evacuation failures. Analogous to
 838   // PromotionFailureALot for the other collectors.
 839 
 840   // Records whether G1EvacuationFailureALot should be in effect
 841   // for the current GC
 842   bool _evacuation_failure_alot_for_current_gc;
 843 
 844   // Used to record the GC number for interval checking when
 845   // determining whether G1EvaucationFailureALot is in effect
 846   // for the current GC.
 847   size_t _evacuation_failure_alot_gc_number;
 848 
 849   // Count of the number of evacuations between failures.
 850   volatile size_t _evacuation_failure_alot_count;
 851 
 852   // Set whether G1EvacuationFailureALot should be in effect
 853   // for the current GC (based upon the type of GC and which
 854   // command line flags are set);
 855   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 856                                                   bool during_initial_mark,
 857                                                   bool during_marking);
 858 
 859   inline void set_evacuation_failure_alot_for_current_gc();
 860 
 861   // Return true if it's time to cause an evacuation failure.
 862   inline bool evacuation_should_fail();
 863 
 864   // Reset the G1EvacuationFailureALot counters.  Should be called at
 865   // the end of an evacuation pause in which an evacuation failure occurred.
 866   inline void reset_evacuation_should_fail();
 867 #endif // !PRODUCT
 868 
 869   // ("Weak") Reference processing support.
 870   //
 871   // G1 has 2 instances of the reference processor class. One
 872   // (_ref_processor_cm) handles reference object discovery
 873   // and subsequent processing during concurrent marking cycles.
 874   //
 875   // The other (_ref_processor_stw) handles reference object
 876   // discovery and processing during full GCs and incremental
 877   // evacuation pauses.
 878   //
 879   // During an incremental pause, reference discovery will be
 880   // temporarily disabled for _ref_processor_cm and will be
 881   // enabled for _ref_processor_stw. At the end of the evacuation
 882   // pause references discovered by _ref_processor_stw will be
 883   // processed and discovery will be disabled. The previous
 884   // setting for reference object discovery for _ref_processor_cm
 885   // will be re-instated.
 886   //
 887   // At the start of marking:
 888   //  * Discovery by the CM ref processor is verified to be inactive
 889   //    and it's discovered lists are empty.
 890   //  * Discovery by the CM ref processor is then enabled.
 891   //
 892   // At the end of marking:
 893   //  * Any references on the CM ref processor's discovered
 894   //    lists are processed (possibly MT).
 895   //
 896   // At the start of full GC we:
 897   //  * Disable discovery by the CM ref processor and
 898   //    empty CM ref processor's discovered lists
 899   //    (without processing any entries).
 900   //  * Verify that the STW ref processor is inactive and it's
 901   //    discovered lists are empty.
 902   //  * Temporarily set STW ref processor discovery as single threaded.
 903   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 904   //    field.
 905   //  * Finally enable discovery by the STW ref processor.
 906   //
 907   // The STW ref processor is used to record any discovered
 908   // references during the full GC.
 909   //
 910   // At the end of a full GC we:
 911   //  * Enqueue any reference objects discovered by the STW ref processor
 912   //    that have non-live referents. This has the side-effect of
 913   //    making the STW ref processor inactive by disabling discovery.
 914   //  * Verify that the CM ref processor is still inactive
 915   //    and no references have been placed on it's discovered
 916   //    lists (also checked as a precondition during initial marking).
 917 
 918   // The (stw) reference processor...
 919   ReferenceProcessor* _ref_processor_stw;
 920 
 921   // During reference object discovery, the _is_alive_non_header
 922   // closure (if non-null) is applied to the referent object to
 923   // determine whether the referent is live. If so then the
 924   // reference object does not need to be 'discovered' and can
 925   // be treated as a regular oop. This has the benefit of reducing
 926   // the number of 'discovered' reference objects that need to
 927   // be processed.
 928   //
 929   // Instance of the is_alive closure for embedding into the
 930   // STW reference processor as the _is_alive_non_header field.
 931   // Supplying a value for the _is_alive_non_header field is
 932   // optional but doing so prevents unnecessary additions to
 933   // the discovered lists during reference discovery.
 934   G1STWIsAliveClosure _is_alive_closure_stw;
 935 
 936   // The (concurrent marking) reference processor...
 937   ReferenceProcessor* _ref_processor_cm;
 938 
 939   // Instance of the concurrent mark is_alive closure for embedding
 940   // into the Concurrent Marking reference processor as the
 941   // _is_alive_non_header field. Supplying a value for the
 942   // _is_alive_non_header field is optional but doing so prevents
 943   // unnecessary additions to the discovered lists during reference
 944   // discovery.
 945   G1CMIsAliveClosure _is_alive_closure_cm;
 946 
 947   volatile bool _free_regions_coming;
 948 
 949 public:
 950 
 951   RefToScanQueue *task_queue(uint i) const;
 952 
 953   uint num_task_queues() const;
 954 
 955   // A set of cards where updates happened during the GC
 956   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 957 
 958   // Create a G1CollectedHeap with the specified policy.
 959   // Must call the initialize method afterwards.
 960   // May not return if something goes wrong.
 961   G1CollectedHeap(G1CollectorPolicy* policy);
 962 
 963 private:
 964   jint initialize_concurrent_refinement();
 965 public:
 966   // Initialize the G1CollectedHeap to have the initial and
 967   // maximum sizes and remembered and barrier sets
 968   // specified by the policy object.
 969   jint initialize();
 970 
 971   virtual void stop();
 972 
 973   // Return the (conservative) maximum heap alignment for any G1 heap
 974   static size_t conservative_max_heap_alignment();
 975 
 976   // Does operations required after initialization has been done.
 977   void post_initialize();
 978 
 979   // Initialize weak reference processing.
 980   void ref_processing_init();
 981 
 982   virtual Name kind() const {
 983     return CollectedHeap::G1CollectedHeap;
 984   }
 985 
 986   virtual const char* name() const {
 987     return "G1";
 988   }
 989 
 990   const G1CollectorState* collector_state() const { return &_collector_state; }
 991   G1CollectorState* collector_state() { return &_collector_state; }
 992 
 993   // The current policy object for the collector.
 994   G1Policy* g1_policy() const { return _g1_policy; }
 995 
 996   const G1CollectionSet* collection_set() const { return &_collection_set; }
 997   G1CollectionSet* collection_set() { return &_collection_set; }
 998 
 999   virtual CollectorPolicy* collector_policy() const;
1000 
1001   // Adaptive size policy.  No such thing for g1.
1002   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1003 
1004   // The rem set and barrier set.
1005   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1006 
1007   // Try to minimize the remembered set.
1008   void scrub_rem_set();
1009 
1010   uint get_gc_time_stamp() {
1011     return _gc_time_stamp;
1012   }
1013 
1014   inline void reset_gc_time_stamp();
1015 
1016   void check_gc_time_stamps() PRODUCT_RETURN;
1017 
1018   inline void increment_gc_time_stamp();
1019 
1020   // Reset the given region's GC timestamp. If it's starts humongous,
1021   // also reset the GC timestamp of its corresponding
1022   // continues humongous regions too.
1023   void reset_gc_time_stamps(HeapRegion* hr);
1024 
1025   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1026   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1027 
1028   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1029   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1030 
1031   // The shared block offset table array.
1032   G1BlockOffsetTable* bot() const { return _bot; }
1033 
1034   // Reference Processing accessors
1035 
1036   // The STW reference processor....
1037   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1038 
1039   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1040 
1041   // The Concurrent Marking reference processor...
1042   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1043 
1044   virtual size_t capacity() const;
1045   virtual size_t used() const;
1046   // This should be called when we're not holding the heap lock. The
1047   // result might be a bit inaccurate.
1048   size_t used_unlocked() const;
1049   size_t recalculate_used() const;
1050 
1051   // These virtual functions do the actual allocation.
1052   // Some heaps may offer a contiguous region for shared non-blocking
1053   // allocation, via inlined code (by exporting the address of the top and
1054   // end fields defining the extent of the contiguous allocation region.)
1055   // But G1CollectedHeap doesn't yet support this.
1056 
1057   virtual bool is_maximal_no_gc() const {
1058     return _hrm.available() == 0;
1059   }
1060 
1061   // The current number of regions in the heap.
1062   uint num_regions() const { return _hrm.length(); }
1063 
1064   // The max number of regions in the heap.
1065   uint max_regions() const { return _hrm.max_length(); }
1066 
1067   // The number of regions that are completely free.
1068   uint num_free_regions() const { return _hrm.num_free_regions(); }
1069 
1070   MemoryUsage get_auxiliary_data_memory_usage() const {
1071     return _hrm.get_auxiliary_data_memory_usage();
1072   }
1073 
1074   // The number of regions that are not completely free.
1075   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1076 
1077 #ifdef ASSERT
1078   bool is_on_master_free_list(HeapRegion* hr) {
1079     return _hrm.is_free(hr);
1080   }
1081 #endif // ASSERT
1082 
1083   // Wrapper for the region list operations that can be called from
1084   // methods outside this class.
1085 
1086   void secondary_free_list_add(FreeRegionList* list) {
1087     _secondary_free_list.add_ordered(list);
1088   }
1089 
1090   void append_secondary_free_list() {
1091     _hrm.insert_list_into_free_list(&_secondary_free_list);
1092   }
1093 
1094   void append_secondary_free_list_if_not_empty_with_lock() {
1095     // If the secondary free list looks empty there's no reason to
1096     // take the lock and then try to append it.
1097     if (!_secondary_free_list.is_empty()) {
1098       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1099       append_secondary_free_list();
1100     }
1101   }
1102 
1103   inline void old_set_add(HeapRegion* hr);
1104   inline void old_set_remove(HeapRegion* hr);
1105 
1106   size_t non_young_capacity_bytes() {
1107     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1108   }
1109 
1110   void set_free_regions_coming();
1111   void reset_free_regions_coming();
1112   bool free_regions_coming() { return _free_regions_coming; }
1113   void wait_while_free_regions_coming();
1114 
1115   // Determine whether the given region is one that we are using as an
1116   // old GC alloc region.
1117   bool is_old_gc_alloc_region(HeapRegion* hr);
1118 
1119   // Perform a collection of the heap; intended for use in implementing
1120   // "System.gc".  This probably implies as full a collection as the
1121   // "CollectedHeap" supports.
1122   virtual void collect(GCCause::Cause cause);
1123 
1124   virtual bool copy_allocation_context_stats(const jint* contexts,
1125                                              jlong* totals,
1126                                              jbyte* accuracy,
1127                                              jint len);
1128 
1129   // True iff an evacuation has failed in the most-recent collection.
1130   bool evacuation_failed() { return _evacuation_failed; }
1131 
1132   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1133   void prepend_to_freelist(FreeRegionList* list);
1134   void decrement_summary_bytes(size_t bytes);
1135 
1136   virtual bool is_in(const void* p) const;
1137 #ifdef ASSERT
1138   // Returns whether p is in one of the available areas of the heap. Slow but
1139   // extensive version.
1140   bool is_in_exact(const void* p) const;
1141 #endif
1142 
1143   // Return "TRUE" iff the given object address is within the collection
1144   // set. Assumes that the reference points into the heap.
1145   inline bool is_in_cset(const HeapRegion *hr);
1146   inline bool is_in_cset(oop obj);
1147   inline bool is_in_cset(HeapWord* addr);
1148 
1149   inline bool is_in_cset_or_humongous(const oop obj);
1150 
1151  private:
1152   // This array is used for a quick test on whether a reference points into
1153   // the collection set or not. Each of the array's elements denotes whether the
1154   // corresponding region is in the collection set or not.
1155   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1156 
1157  public:
1158 
1159   inline InCSetState in_cset_state(const oop obj);
1160 
1161   // Return "TRUE" iff the given object address is in the reserved
1162   // region of g1.
1163   bool is_in_g1_reserved(const void* p) const {
1164     return _hrm.reserved().contains(p);
1165   }
1166 
1167   // Returns a MemRegion that corresponds to the space that has been
1168   // reserved for the heap
1169   MemRegion g1_reserved() const {
1170     return _hrm.reserved();
1171   }
1172 
1173   virtual bool is_in_closed_subset(const void* p) const;
1174 
1175   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1176     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1177   }
1178 
1179   // Iteration functions.
1180 
1181   // Iterate over all objects, calling "cl.do_object" on each.
1182   virtual void object_iterate(ObjectClosure* cl);
1183 
1184   virtual void safe_object_iterate(ObjectClosure* cl) {
1185     object_iterate(cl);
1186   }
1187 
1188   // Iterate over heap regions, in address order, terminating the
1189   // iteration early if the "doHeapRegion" method returns "true".
1190   void heap_region_iterate(HeapRegionClosure* blk) const;
1191 
1192   // Return the region with the given index. It assumes the index is valid.
1193   inline HeapRegion* region_at(uint index) const;
1194 
1195   // Return the next region (by index) that is part of the same
1196   // humongous object that hr is part of.
1197   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1198 
1199   // Calculate the region index of the given address. Given address must be
1200   // within the heap.
1201   inline uint addr_to_region(HeapWord* addr) const;
1202 
1203   inline HeapWord* bottom_addr_for_region(uint index) const;
1204 
1205   // Iterate over the heap regions in parallel. Assumes that this will be called
1206   // in parallel by a number of worker threads with distinct worker ids
1207   // in the range passed to the HeapRegionClaimer. Applies "blk->doHeapRegion"
1208   // to each of the regions, by attempting to claim the region using the
1209   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1210   // region.
1211   void heap_region_par_iterate(HeapRegionClosure* cl,
1212                                uint worker_id,
1213                                HeapRegionClaimer* hrclaimer) const;
1214 
1215   // Iterate over the regions (if any) in the current collection set.
1216   void collection_set_iterate(HeapRegionClosure* blk);
1217 
1218   // Iterate over the regions (if any) in the current collection set. Starts the
1219   // iteration over the entire collection set so that the start regions of a given
1220   // worker id over the set active_workers are evenly spread across the set of
1221   // collection set regions.
1222   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1223 
1224   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1225 
1226   // Returns the HeapRegion that contains addr. addr must not be NULL.
1227   template <class T>
1228   inline HeapRegion* heap_region_containing(const T addr) const;
1229 
1230   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1231   // each address in the (reserved) heap is a member of exactly
1232   // one block.  The defining characteristic of a block is that it is
1233   // possible to find its size, and thus to progress forward to the next
1234   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1235   // represent Java objects, or they might be free blocks in a
1236   // free-list-based heap (or subheap), as long as the two kinds are
1237   // distinguishable and the size of each is determinable.
1238 
1239   // Returns the address of the start of the "block" that contains the
1240   // address "addr".  We say "blocks" instead of "object" since some heaps
1241   // may not pack objects densely; a chunk may either be an object or a
1242   // non-object.
1243   virtual HeapWord* block_start(const void* addr) const;
1244 
1245   // Requires "addr" to be the start of a chunk, and returns its size.
1246   // "addr + size" is required to be the start of a new chunk, or the end
1247   // of the active area of the heap.
1248   virtual size_t block_size(const HeapWord* addr) const;
1249 
1250   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1251   // the block is an object.
1252   virtual bool block_is_obj(const HeapWord* addr) const;
1253 
1254   // Section on thread-local allocation buffers (TLABs)
1255   // See CollectedHeap for semantics.
1256 
1257   bool supports_tlab_allocation() const;
1258   size_t tlab_capacity(Thread* ignored) const;
1259   size_t tlab_used(Thread* ignored) const;
1260   size_t max_tlab_size() const;
1261   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1262 
1263   // Can a compiler initialize a new object without store barriers?
1264   // This permission only extends from the creation of a new object
1265   // via a TLAB up to the first subsequent safepoint. If such permission
1266   // is granted for this heap type, the compiler promises to call
1267   // defer_store_barrier() below on any slow path allocation of
1268   // a new object for which such initializing store barriers will
1269   // have been elided. G1, like CMS, allows this, but should be
1270   // ready to provide a compensating write barrier as necessary
1271   // if that storage came out of a non-young region. The efficiency
1272   // of this implementation depends crucially on being able to
1273   // answer very efficiently in constant time whether a piece of
1274   // storage in the heap comes from a young region or not.
1275   // See ReduceInitialCardMarks.
1276   virtual bool can_elide_tlab_store_barriers() const {
1277     return true;
1278   }
1279 
1280   virtual bool card_mark_must_follow_store() const {
1281     return true;
1282   }
1283 
1284   inline bool is_in_young(const oop obj);
1285 
1286   virtual bool is_scavengable(const void* addr);
1287 
1288   // We don't need barriers for initializing stores to objects
1289   // in the young gen: for the SATB pre-barrier, there is no
1290   // pre-value that needs to be remembered; for the remembered-set
1291   // update logging post-barrier, we don't maintain remembered set
1292   // information for young gen objects.
1293   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1294 
1295   // Returns "true" iff the given word_size is "very large".
1296   static bool is_humongous(size_t word_size) {
1297     // Note this has to be strictly greater-than as the TLABs
1298     // are capped at the humongous threshold and we want to
1299     // ensure that we don't try to allocate a TLAB as
1300     // humongous and that we don't allocate a humongous
1301     // object in a TLAB.
1302     return word_size > _humongous_object_threshold_in_words;
1303   }
1304 
1305   // Returns the humongous threshold for a specific region size
1306   static size_t humongous_threshold_for(size_t region_size) {
1307     return (region_size / 2);
1308   }
1309 
1310   // Returns the number of regions the humongous object of the given word size
1311   // requires.
1312   static size_t humongous_obj_size_in_regions(size_t word_size);
1313 
1314   // Print the maximum heap capacity.
1315   virtual size_t max_capacity() const;
1316 
1317   virtual jlong millis_since_last_gc();
1318 
1319 
1320   // Convenience function to be used in situations where the heap type can be
1321   // asserted to be this type.
1322   static G1CollectedHeap* heap();
1323 
1324   void set_region_short_lived_locked(HeapRegion* hr);
1325   // add appropriate methods for any other surv rate groups
1326 
1327   const G1SurvivorRegions* survivor() const { return &_survivor; }
1328 
1329   uint survivor_regions_count() const {
1330     return _survivor.length();
1331   }
1332 
1333   uint eden_regions_count() const {
1334     return _eden.length();
1335   }
1336 
1337   uint young_regions_count() const {
1338     return _eden.length() + _survivor.length();
1339   }
1340 
1341   uint old_regions_count() const { return _old_set.length(); }
1342 
1343   uint humongous_regions_count() const { return _humongous_set.length(); }
1344 
1345 #ifdef ASSERT
1346   bool check_young_list_empty();
1347 #endif
1348 
1349   // *** Stuff related to concurrent marking.  It's not clear to me that so
1350   // many of these need to be public.
1351 
1352   // The functions below are helper functions that a subclass of
1353   // "CollectedHeap" can use in the implementation of its virtual
1354   // functions.
1355   // This performs a concurrent marking of the live objects in a
1356   // bitmap off to the side.
1357   void doConcurrentMark();
1358 
1359   bool isMarkedNext(oop obj) const;
1360 
1361   // Determine if an object is dead, given the object and also
1362   // the region to which the object belongs. An object is dead
1363   // iff a) it was not allocated since the last mark, b) it
1364   // is not marked, and c) it is not in an archive region.
1365   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1366     return
1367       hr->is_obj_dead(obj, _cm->prevMarkBitMap()) &&
1368       !hr->is_archive();
1369   }
1370 
1371   // This function returns true when an object has been
1372   // around since the previous marking and hasn't yet
1373   // been marked during this marking, and is not in an archive region.
1374   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1375     return
1376       !hr->obj_allocated_since_next_marking(obj) &&
1377       !isMarkedNext(obj) &&
1378       !hr->is_archive();
1379   }
1380 
1381   // Determine if an object is dead, given only the object itself.
1382   // This will find the region to which the object belongs and
1383   // then call the region version of the same function.
1384 
1385   // Added if it is NULL it isn't dead.
1386 
1387   inline bool is_obj_dead(const oop obj) const;
1388 
1389   inline bool is_obj_ill(const oop obj) const;
1390 
1391   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1392 
1393   // Refinement
1394 
1395   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1396 
1397   // Optimized nmethod scanning support routines
1398 
1399   // Register the given nmethod with the G1 heap.
1400   virtual void register_nmethod(nmethod* nm);
1401 
1402   // Unregister the given nmethod from the G1 heap.
1403   virtual void unregister_nmethod(nmethod* nm);
1404 
1405   // Free up superfluous code root memory.
1406   void purge_code_root_memory();
1407 
1408   // Rebuild the strong code root lists for each region
1409   // after a full GC.
1410   void rebuild_strong_code_roots();
1411 
1412   // Partial cleaning used when class unloading is disabled.
1413   // Let the caller choose what structures to clean out:
1414   // - StringTable
1415   // - SymbolTable
1416   // - StringDeduplication structures
1417   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1418 
1419   // Complete cleaning used when class unloading is enabled.
1420   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1421   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1422 
1423   // Redirty logged cards in the refinement queue.
1424   void redirty_logged_cards();
1425   // Verification
1426 
1427   // Perform any cleanup actions necessary before allowing a verification.
1428   virtual void prepare_for_verify();
1429 
1430   // Perform verification.
1431 
1432   // vo == UsePrevMarking  -> use "prev" marking information,
1433   // vo == UseNextMarking -> use "next" marking information
1434   // vo == UseMarkWord    -> use the mark word in the object header
1435   //
1436   // NOTE: Only the "prev" marking information is guaranteed to be
1437   // consistent most of the time, so most calls to this should use
1438   // vo == UsePrevMarking.
1439   // Currently, there is only one case where this is called with
1440   // vo == UseNextMarking, which is to verify the "next" marking
1441   // information at the end of remark.
1442   // Currently there is only one place where this is called with
1443   // vo == UseMarkWord, which is to verify the marking during a
1444   // full GC.
1445   void verify(VerifyOption vo);
1446 
1447   // WhiteBox testing support.
1448   virtual bool supports_concurrent_phase_control() const;
1449   virtual const char* const* concurrent_phases() const;
1450   virtual bool request_concurrent_phase(const char* phase);
1451 
1452   // The methods below are here for convenience and dispatch the
1453   // appropriate method depending on value of the given VerifyOption
1454   // parameter. The values for that parameter, and their meanings,
1455   // are the same as those above.
1456 
1457   bool is_obj_dead_cond(const oop obj,
1458                         const HeapRegion* hr,
1459                         const VerifyOption vo) const;
1460 
1461   bool is_obj_dead_cond(const oop obj,
1462                         const VerifyOption vo) const;
1463 
1464   G1HeapSummary create_g1_heap_summary();
1465   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1466 
1467   // Printing
1468 private:
1469   void print_heap_regions() const;
1470   void print_regions_on(outputStream* st) const;
1471 
1472 public:
1473   virtual void print_on(outputStream* st) const;
1474   virtual void print_extended_on(outputStream* st) const;
1475   virtual void print_on_error(outputStream* st) const;
1476 
1477   virtual void print_gc_threads_on(outputStream* st) const;
1478   virtual void gc_threads_do(ThreadClosure* tc) const;
1479 
1480   // Override
1481   void print_tracing_info() const;
1482 
1483   // The following two methods are helpful for debugging RSet issues.
1484   void print_cset_rsets() PRODUCT_RETURN;
1485   void print_all_rsets() PRODUCT_RETURN;
1486 
1487 public:
1488   size_t pending_card_num();
1489 
1490 protected:
1491   size_t _max_heap_capacity;
1492 };
1493 
1494 class G1ParEvacuateFollowersClosure : public VoidClosure {
1495 private:
1496   double _start_term;
1497   double _term_time;
1498   size_t _term_attempts;
1499 
1500   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1501   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1502 protected:
1503   G1CollectedHeap*              _g1h;
1504   G1ParScanThreadState*         _par_scan_state;
1505   RefToScanQueueSet*            _queues;
1506   ParallelTaskTerminator*       _terminator;
1507 
1508   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1509   RefToScanQueueSet*      queues()         { return _queues; }
1510   ParallelTaskTerminator* terminator()     { return _terminator; }
1511 
1512 public:
1513   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1514                                 G1ParScanThreadState* par_scan_state,
1515                                 RefToScanQueueSet* queues,
1516                                 ParallelTaskTerminator* terminator)
1517     : _g1h(g1h), _par_scan_state(par_scan_state),
1518       _queues(queues), _terminator(terminator),
1519       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1520 
1521   void do_void();
1522 
1523   double term_time() const { return _term_time; }
1524   size_t term_attempts() const { return _term_attempts; }
1525 
1526 private:
1527   inline bool offer_termination();
1528 };
1529 
1530 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP