1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/parallel/gcTaskManager.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  33 #include "gc/parallel/parMarkBitMap.inline.hpp"
  34 #include "gc/parallel/pcTasks.hpp"
  35 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  36 #include "gc/parallel/psCompactionManager.inline.hpp"
  37 #include "gc/parallel/psMarkSweep.hpp"
  38 #include "gc/parallel/psMarkSweepDecorator.hpp"
  39 #include "gc/parallel/psOldGen.hpp"
  40 #include "gc/parallel/psParallelCompact.inline.hpp"
  41 #include "gc/parallel/psPromotionManager.inline.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.inline.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/referencePolicy.hpp"
  53 #include "gc/shared/referenceProcessor.hpp"
  54 #include "gc/shared/spaceDecorator.hpp"
  55 #include "logging/log.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/instanceKlass.inline.hpp"
  58 #include "oops/instanceMirrorKlass.inline.hpp"
  59 #include "oops/methodData.hpp"
  60 #include "oops/objArrayKlass.inline.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/vmThread.hpp"
  65 #include "services/management.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/memoryService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/debug.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/formatBuffer.hpp"
  72 #include "utilities/stack.inline.hpp"
  73 
  74 #include <math.h>
  75 
  76 // All sizes are in HeapWords.
  77 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  78 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  79 const size_t ParallelCompactData::RegionSizeBytes =
  80   RegionSize << LogHeapWordSize;
  81 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  82 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  83 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  84 
  85 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  86 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  87 const size_t ParallelCompactData::BlockSizeBytes  =
  88   BlockSize << LogHeapWordSize;
  89 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  90 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  91 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  92 
  93 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  94 const size_t ParallelCompactData::Log2BlocksPerRegion =
  95   Log2RegionSize - Log2BlockSize;
  96 
  97 const ParallelCompactData::RegionData::region_sz_t
  98 ParallelCompactData::RegionData::dc_shift = 27;
  99 
 100 const ParallelCompactData::RegionData::region_sz_t
 101 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 102 
 103 const ParallelCompactData::RegionData::region_sz_t
 104 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 105 
 106 const ParallelCompactData::RegionData::region_sz_t
 107 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 108 
 109 const ParallelCompactData::RegionData::region_sz_t
 110 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 111 
 112 const ParallelCompactData::RegionData::region_sz_t
 113 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 114 
 115 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 116 
 117 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 118 
 119 double PSParallelCompact::_dwl_mean;
 120 double PSParallelCompact::_dwl_std_dev;
 121 double PSParallelCompact::_dwl_first_term;
 122 double PSParallelCompact::_dwl_adjustment;
 123 #ifdef  ASSERT
 124 bool   PSParallelCompact::_dwl_initialized = false;
 125 #endif  // #ifdef ASSERT
 126 
 127 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 128                        HeapWord* destination)
 129 {
 130   assert(src_region_idx != 0, "invalid src_region_idx");
 131   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 132   assert(destination != NULL, "invalid destination argument");
 133 
 134   _src_region_idx = src_region_idx;
 135   _partial_obj_size = partial_obj_size;
 136   _destination = destination;
 137 
 138   // These fields may not be updated below, so make sure they're clear.
 139   assert(_dest_region_addr == NULL, "should have been cleared");
 140   assert(_first_src_addr == NULL, "should have been cleared");
 141 
 142   // Determine the number of destination regions for the partial object.
 143   HeapWord* const last_word = destination + partial_obj_size - 1;
 144   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 145   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 146   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 147 
 148   if (beg_region_addr == end_region_addr) {
 149     // One destination region.
 150     _destination_count = 1;
 151     if (end_region_addr == destination) {
 152       // The destination falls on a region boundary, thus the first word of the
 153       // partial object will be the first word copied to the destination region.
 154       _dest_region_addr = end_region_addr;
 155       _first_src_addr = sd.region_to_addr(src_region_idx);
 156     }
 157   } else {
 158     // Two destination regions.  When copied, the partial object will cross a
 159     // destination region boundary, so a word somewhere within the partial
 160     // object will be the first word copied to the second destination region.
 161     _destination_count = 2;
 162     _dest_region_addr = end_region_addr;
 163     const size_t ofs = pointer_delta(end_region_addr, destination);
 164     assert(ofs < _partial_obj_size, "sanity");
 165     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 166   }
 167 }
 168 
 169 void SplitInfo::clear()
 170 {
 171   _src_region_idx = 0;
 172   _partial_obj_size = 0;
 173   _destination = NULL;
 174   _destination_count = 0;
 175   _dest_region_addr = NULL;
 176   _first_src_addr = NULL;
 177   assert(!is_valid(), "sanity");
 178 }
 179 
 180 #ifdef  ASSERT
 181 void SplitInfo::verify_clear()
 182 {
 183   assert(_src_region_idx == 0, "not clear");
 184   assert(_partial_obj_size == 0, "not clear");
 185   assert(_destination == NULL, "not clear");
 186   assert(_destination_count == 0, "not clear");
 187   assert(_dest_region_addr == NULL, "not clear");
 188   assert(_first_src_addr == NULL, "not clear");
 189 }
 190 #endif  // #ifdef ASSERT
 191 
 192 
 193 void PSParallelCompact::print_on_error(outputStream* st) {
 194   _mark_bitmap.print_on_error(st);
 195 }
 196 
 197 #ifndef PRODUCT
 198 const char* PSParallelCompact::space_names[] = {
 199   "old ", "eden", "from", "to  "
 200 };
 201 
 202 void PSParallelCompact::print_region_ranges() {
 203   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 204     return;
 205   }
 206   Log(gc, compaction) log;
 207   ResourceMark rm;
 208   LogStream ls(log.trace());
 209   Universe::print_on(&ls);
 210   log.trace("space  bottom     top        end        new_top");
 211   log.trace("------ ---------- ---------- ---------- ----------");
 212 
 213   for (unsigned int id = 0; id < last_space_id; ++id) {
 214     const MutableSpace* space = _space_info[id].space();
 215     log.trace("%u %s "
 216               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 217               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 218               id, space_names[id],
 219               summary_data().addr_to_region_idx(space->bottom()),
 220               summary_data().addr_to_region_idx(space->top()),
 221               summary_data().addr_to_region_idx(space->end()),
 222               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 223   }
 224 }
 225 
 226 void
 227 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 228 {
 229 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 230 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 231 
 232   ParallelCompactData& sd = PSParallelCompact::summary_data();
 233   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 234   log_develop_trace(gc, compaction)(
 235       REGION_IDX_FORMAT " " PTR_FORMAT " "
 236       REGION_IDX_FORMAT " " PTR_FORMAT " "
 237       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 238       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 239       i, p2i(c->data_location()), dci, p2i(c->destination()),
 240       c->partial_obj_size(), c->live_obj_size(),
 241       c->data_size(), c->source_region(), c->destination_count());
 242 
 243 #undef  REGION_IDX_FORMAT
 244 #undef  REGION_DATA_FORMAT
 245 }
 246 
 247 void
 248 print_generic_summary_data(ParallelCompactData& summary_data,
 249                            HeapWord* const beg_addr,
 250                            HeapWord* const end_addr)
 251 {
 252   size_t total_words = 0;
 253   size_t i = summary_data.addr_to_region_idx(beg_addr);
 254   const size_t last = summary_data.addr_to_region_idx(end_addr);
 255   HeapWord* pdest = 0;
 256 
 257   while (i < last) {
 258     ParallelCompactData::RegionData* c = summary_data.region(i);
 259     if (c->data_size() != 0 || c->destination() != pdest) {
 260       print_generic_summary_region(i, c);
 261       total_words += c->data_size();
 262       pdest = c->destination();
 263     }
 264     ++i;
 265   }
 266 
 267   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 268 }
 269 
 270 void
 271 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 272                                               HeapWord* const beg_addr,
 273                                               HeapWord* const end_addr) {
 274   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 275 }
 276 
 277 void
 278 print_generic_summary_data(ParallelCompactData& summary_data,
 279                            SpaceInfo* space_info)
 280 {
 281   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 282     return;
 283   }
 284 
 285   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 286     const MutableSpace* space = space_info[id].space();
 287     print_generic_summary_data(summary_data, space->bottom(),
 288                                MAX2(space->top(), space_info[id].new_top()));
 289   }
 290 }
 291 
 292 void
 293 print_initial_summary_data(ParallelCompactData& summary_data,
 294                            const MutableSpace* space) {
 295   if (space->top() == space->bottom()) {
 296     return;
 297   }
 298 
 299   const size_t region_size = ParallelCompactData::RegionSize;
 300   typedef ParallelCompactData::RegionData RegionData;
 301   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 302   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 303   const RegionData* c = summary_data.region(end_region - 1);
 304   HeapWord* end_addr = c->destination() + c->data_size();
 305   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 306 
 307   // Print (and count) the full regions at the beginning of the space.
 308   size_t full_region_count = 0;
 309   size_t i = summary_data.addr_to_region_idx(space->bottom());
 310   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 311     ParallelCompactData::RegionData* c = summary_data.region(i);
 312     log_develop_trace(gc, compaction)(
 313         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 314         i, p2i(c->destination()),
 315         c->partial_obj_size(), c->live_obj_size(),
 316         c->data_size(), c->source_region(), c->destination_count());
 317     ++full_region_count;
 318     ++i;
 319   }
 320 
 321   size_t live_to_right = live_in_space - full_region_count * region_size;
 322 
 323   double max_reclaimed_ratio = 0.0;
 324   size_t max_reclaimed_ratio_region = 0;
 325   size_t max_dead_to_right = 0;
 326   size_t max_live_to_right = 0;
 327 
 328   // Print the 'reclaimed ratio' for regions while there is something live in
 329   // the region or to the right of it.  The remaining regions are empty (and
 330   // uninteresting), and computing the ratio will result in division by 0.
 331   while (i < end_region && live_to_right > 0) {
 332     c = summary_data.region(i);
 333     HeapWord* const region_addr = summary_data.region_to_addr(i);
 334     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 335     const size_t dead_to_right = used_to_right - live_to_right;
 336     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 337 
 338     if (reclaimed_ratio > max_reclaimed_ratio) {
 339             max_reclaimed_ratio = reclaimed_ratio;
 340             max_reclaimed_ratio_region = i;
 341             max_dead_to_right = dead_to_right;
 342             max_live_to_right = live_to_right;
 343     }
 344 
 345     ParallelCompactData::RegionData* c = summary_data.region(i);
 346     log_develop_trace(gc, compaction)(
 347         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 348         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 349         i, p2i(c->destination()),
 350         c->partial_obj_size(), c->live_obj_size(),
 351         c->data_size(), c->source_region(), c->destination_count(),
 352         reclaimed_ratio, dead_to_right, live_to_right);
 353 
 354 
 355     live_to_right -= c->data_size();
 356     ++i;
 357   }
 358 
 359   // Any remaining regions are empty.  Print one more if there is one.
 360   if (i < end_region) {
 361     ParallelCompactData::RegionData* c = summary_data.region(i);
 362     log_develop_trace(gc, compaction)(
 363         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 364          i, p2i(c->destination()),
 365          c->partial_obj_size(), c->live_obj_size(),
 366          c->data_size(), c->source_region(), c->destination_count());
 367   }
 368 
 369   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 370                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 371 }
 372 
 373 void
 374 print_initial_summary_data(ParallelCompactData& summary_data,
 375                            SpaceInfo* space_info) {
 376   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 377     return;
 378   }
 379 
 380   unsigned int id = PSParallelCompact::old_space_id;
 381   const MutableSpace* space;
 382   do {
 383     space = space_info[id].space();
 384     print_initial_summary_data(summary_data, space);
 385   } while (++id < PSParallelCompact::eden_space_id);
 386 
 387   do {
 388     space = space_info[id].space();
 389     print_generic_summary_data(summary_data, space->bottom(), space->top());
 390   } while (++id < PSParallelCompact::last_space_id);
 391 }
 392 #endif  // #ifndef PRODUCT
 393 
 394 #ifdef  ASSERT
 395 size_t add_obj_count;
 396 size_t add_obj_size;
 397 size_t mark_bitmap_count;
 398 size_t mark_bitmap_size;
 399 #endif  // #ifdef ASSERT
 400 
 401 ParallelCompactData::ParallelCompactData()
 402 {
 403   _region_start = 0;
 404 
 405   _region_vspace = 0;
 406   _reserved_byte_size = 0;
 407   _region_data = 0;
 408   _region_count = 0;
 409 
 410   _block_vspace = 0;
 411   _block_data = 0;
 412   _block_count = 0;
 413 }
 414 
 415 bool ParallelCompactData::initialize(MemRegion covered_region)
 416 {
 417   _region_start = covered_region.start();
 418   const size_t region_size = covered_region.word_size();
 419   DEBUG_ONLY(_region_end = _region_start + region_size;)
 420 
 421   assert(region_align_down(_region_start) == _region_start,
 422          "region start not aligned");
 423   assert((region_size & RegionSizeOffsetMask) == 0,
 424          "region size not a multiple of RegionSize");
 425 
 426   bool result = initialize_region_data(region_size) && initialize_block_data();
 427   return result;
 428 }
 429 
 430 PSVirtualSpace*
 431 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 432 {
 433   const size_t raw_bytes = count * element_size;
 434   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 435   const size_t granularity = os::vm_allocation_granularity();
 436   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 437 
 438   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 439     MAX2(page_sz, granularity);
 440   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 441   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 442                        rs.size());
 443 
 444   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 445 
 446   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 447   if (vspace != 0) {
 448     if (vspace->expand_by(_reserved_byte_size)) {
 449       return vspace;
 450     }
 451     delete vspace;
 452     // Release memory reserved in the space.
 453     rs.release();
 454   }
 455 
 456   return 0;
 457 }
 458 
 459 bool ParallelCompactData::initialize_region_data(size_t region_size)
 460 {
 461   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 462   _region_vspace = create_vspace(count, sizeof(RegionData));
 463   if (_region_vspace != 0) {
 464     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 465     _region_count = count;
 466     return true;
 467   }
 468   return false;
 469 }
 470 
 471 bool ParallelCompactData::initialize_block_data()
 472 {
 473   assert(_region_count != 0, "region data must be initialized first");
 474   const size_t count = _region_count << Log2BlocksPerRegion;
 475   _block_vspace = create_vspace(count, sizeof(BlockData));
 476   if (_block_vspace != 0) {
 477     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 478     _block_count = count;
 479     return true;
 480   }
 481   return false;
 482 }
 483 
 484 void ParallelCompactData::clear()
 485 {
 486   memset(_region_data, 0, _region_vspace->committed_size());
 487   memset(_block_data, 0, _block_vspace->committed_size());
 488 }
 489 
 490 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 491   assert(beg_region <= _region_count, "beg_region out of range");
 492   assert(end_region <= _region_count, "end_region out of range");
 493   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 494 
 495   const size_t region_cnt = end_region - beg_region;
 496   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 497 
 498   const size_t beg_block = beg_region * BlocksPerRegion;
 499   const size_t block_cnt = region_cnt * BlocksPerRegion;
 500   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 501 }
 502 
 503 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 504 {
 505   const RegionData* cur_cp = region(region_idx);
 506   const RegionData* const end_cp = region(region_count() - 1);
 507 
 508   HeapWord* result = region_to_addr(region_idx);
 509   if (cur_cp < end_cp) {
 510     do {
 511       result += cur_cp->partial_obj_size();
 512     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 513   }
 514   return result;
 515 }
 516 
 517 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 518 {
 519   const size_t obj_ofs = pointer_delta(addr, _region_start);
 520   const size_t beg_region = obj_ofs >> Log2RegionSize;
 521   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 522 
 523   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 524   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 525 
 526   if (beg_region == end_region) {
 527     // All in one region.
 528     _region_data[beg_region].add_live_obj(len);
 529     return;
 530   }
 531 
 532   // First region.
 533   const size_t beg_ofs = region_offset(addr);
 534   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 535 
 536   Klass* klass = ((oop)addr)->klass();
 537   // Middle regions--completely spanned by this object.
 538   for (size_t region = beg_region + 1; region < end_region; ++region) {
 539     _region_data[region].set_partial_obj_size(RegionSize);
 540     _region_data[region].set_partial_obj_addr(addr);
 541   }
 542 
 543   // Last region.
 544   const size_t end_ofs = region_offset(addr + len - 1);
 545   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 546   _region_data[end_region].set_partial_obj_addr(addr);
 547 }
 548 
 549 void
 550 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 551 {
 552   assert(region_offset(beg) == 0, "not RegionSize aligned");
 553   assert(region_offset(end) == 0, "not RegionSize aligned");
 554 
 555   size_t cur_region = addr_to_region_idx(beg);
 556   const size_t end_region = addr_to_region_idx(end);
 557   HeapWord* addr = beg;
 558   while (cur_region < end_region) {
 559     _region_data[cur_region].set_destination(addr);
 560     _region_data[cur_region].set_destination_count(0);
 561     _region_data[cur_region].set_source_region(cur_region);
 562     _region_data[cur_region].set_data_location(addr);
 563 
 564     // Update live_obj_size so the region appears completely full.
 565     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 566     _region_data[cur_region].set_live_obj_size(live_size);
 567 
 568     ++cur_region;
 569     addr += RegionSize;
 570   }
 571 }
 572 
 573 // Find the point at which a space can be split and, if necessary, record the
 574 // split point.
 575 //
 576 // If the current src region (which overflowed the destination space) doesn't
 577 // have a partial object, the split point is at the beginning of the current src
 578 // region (an "easy" split, no extra bookkeeping required).
 579 //
 580 // If the current src region has a partial object, the split point is in the
 581 // region where that partial object starts (call it the split_region).  If
 582 // split_region has a partial object, then the split point is just after that
 583 // partial object (a "hard" split where we have to record the split data and
 584 // zero the partial_obj_size field).  With a "hard" split, we know that the
 585 // partial_obj ends within split_region because the partial object that caused
 586 // the overflow starts in split_region.  If split_region doesn't have a partial
 587 // obj, then the split is at the beginning of split_region (another "easy"
 588 // split).
 589 HeapWord*
 590 ParallelCompactData::summarize_split_space(size_t src_region,
 591                                            SplitInfo& split_info,
 592                                            HeapWord* destination,
 593                                            HeapWord* target_end,
 594                                            HeapWord** target_next)
 595 {
 596   assert(destination <= target_end, "sanity");
 597   assert(destination + _region_data[src_region].data_size() > target_end,
 598     "region should not fit into target space");
 599   assert(is_region_aligned(target_end), "sanity");
 600 
 601   size_t split_region = src_region;
 602   HeapWord* split_destination = destination;
 603   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 604 
 605   if (destination + partial_obj_size > target_end) {
 606     // The split point is just after the partial object (if any) in the
 607     // src_region that contains the start of the object that overflowed the
 608     // destination space.
 609     //
 610     // Find the start of the "overflow" object and set split_region to the
 611     // region containing it.
 612     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 613     split_region = addr_to_region_idx(overflow_obj);
 614 
 615     // Clear the source_region field of all destination regions whose first word
 616     // came from data after the split point (a non-null source_region field
 617     // implies a region must be filled).
 618     //
 619     // An alternative to the simple loop below:  clear during post_compact(),
 620     // which uses memcpy instead of individual stores, and is easy to
 621     // parallelize.  (The downside is that it clears the entire RegionData
 622     // object as opposed to just one field.)
 623     //
 624     // post_compact() would have to clear the summary data up to the highest
 625     // address that was written during the summary phase, which would be
 626     //
 627     //         max(top, max(new_top, clear_top))
 628     //
 629     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 630     // to target_end.
 631     const RegionData* const sr = region(split_region);
 632     const size_t beg_idx =
 633       addr_to_region_idx(region_align_up(sr->destination() +
 634                                          sr->partial_obj_size()));
 635     const size_t end_idx = addr_to_region_idx(target_end);
 636 
 637     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 638     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 639       _region_data[idx].set_source_region(0);
 640     }
 641 
 642     // Set split_destination and partial_obj_size to reflect the split region.
 643     split_destination = sr->destination();
 644     partial_obj_size = sr->partial_obj_size();
 645   }
 646 
 647   // The split is recorded only if a partial object extends onto the region.
 648   if (partial_obj_size != 0) {
 649     _region_data[split_region].set_partial_obj_size(0);
 650     split_info.record(split_region, partial_obj_size, split_destination);
 651   }
 652 
 653   // Setup the continuation addresses.
 654   *target_next = split_destination + partial_obj_size;
 655   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 656 
 657   if (log_develop_is_enabled(Trace, gc, compaction)) {
 658     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 659     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 660                                       split_type, p2i(source_next), split_region, partial_obj_size);
 661     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 662                                       split_type, p2i(split_destination),
 663                                       addr_to_region_idx(split_destination),
 664                                       p2i(*target_next));
 665 
 666     if (partial_obj_size != 0) {
 667       HeapWord* const po_beg = split_info.destination();
 668       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 669       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 670                                         split_type,
 671                                         p2i(po_beg), addr_to_region_idx(po_beg),
 672                                         p2i(po_end), addr_to_region_idx(po_end));
 673     }
 674   }
 675 
 676   return source_next;
 677 }
 678 
 679 bool ParallelCompactData::summarize(SplitInfo& split_info,
 680                                     HeapWord* source_beg, HeapWord* source_end,
 681                                     HeapWord** source_next,
 682                                     HeapWord* target_beg, HeapWord* target_end,
 683                                     HeapWord** target_next)
 684 {
 685   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 686   log_develop_trace(gc, compaction)(
 687       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 688       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 689       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 690       p2i(target_beg), p2i(target_end), p2i(*target_next));
 691 
 692   size_t cur_region = addr_to_region_idx(source_beg);
 693   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 694 
 695   HeapWord *dest_addr = target_beg;
 696   while (cur_region < end_region) {
 697     // The destination must be set even if the region has no data.
 698     _region_data[cur_region].set_destination(dest_addr);
 699 
 700     size_t words = _region_data[cur_region].data_size();
 701     if (words > 0) {
 702       // If cur_region does not fit entirely into the target space, find a point
 703       // at which the source space can be 'split' so that part is copied to the
 704       // target space and the rest is copied elsewhere.
 705       if (dest_addr + words > target_end) {
 706         assert(source_next != NULL, "source_next is NULL when splitting");
 707         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 708                                              target_end, target_next);
 709         return false;
 710       }
 711 
 712       // Compute the destination_count for cur_region, and if necessary, update
 713       // source_region for a destination region.  The source_region field is
 714       // updated if cur_region is the first (left-most) region to be copied to a
 715       // destination region.
 716       //
 717       // The destination_count calculation is a bit subtle.  A region that has
 718       // data that compacts into itself does not count itself as a destination.
 719       // This maintains the invariant that a zero count means the region is
 720       // available and can be claimed and then filled.
 721       uint destination_count = 0;
 722       if (split_info.is_split(cur_region)) {
 723         // The current region has been split:  the partial object will be copied
 724         // to one destination space and the remaining data will be copied to
 725         // another destination space.  Adjust the initial destination_count and,
 726         // if necessary, set the source_region field if the partial object will
 727         // cross a destination region boundary.
 728         destination_count = split_info.destination_count();
 729         if (destination_count == 2) {
 730           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 731           _region_data[dest_idx].set_source_region(cur_region);
 732         }
 733       }
 734 
 735       HeapWord* const last_addr = dest_addr + words - 1;
 736       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 737       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 738 
 739       // Initially assume that the destination regions will be the same and
 740       // adjust the value below if necessary.  Under this assumption, if
 741       // cur_region == dest_region_2, then cur_region will be compacted
 742       // completely into itself.
 743       destination_count += cur_region == dest_region_2 ? 0 : 1;
 744       if (dest_region_1 != dest_region_2) {
 745         // Destination regions differ; adjust destination_count.
 746         destination_count += 1;
 747         // Data from cur_region will be copied to the start of dest_region_2.
 748         _region_data[dest_region_2].set_source_region(cur_region);
 749       } else if (region_offset(dest_addr) == 0) {
 750         // Data from cur_region will be copied to the start of the destination
 751         // region.
 752         _region_data[dest_region_1].set_source_region(cur_region);
 753       }
 754 
 755       _region_data[cur_region].set_destination_count(destination_count);
 756       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 757       dest_addr += words;
 758     }
 759 
 760     ++cur_region;
 761   }
 762 
 763   *target_next = dest_addr;
 764   return true;
 765 }
 766 
 767 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 768   assert(addr != NULL, "Should detect NULL oop earlier");
 769   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 770   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 771 
 772   // Region covering the object.
 773   RegionData* const region_ptr = addr_to_region_ptr(addr);
 774   HeapWord* result = region_ptr->destination();
 775 
 776   // If the entire Region is live, the new location is region->destination + the
 777   // offset of the object within in the Region.
 778 
 779   // Run some performance tests to determine if this special case pays off.  It
 780   // is worth it for pointers into the dense prefix.  If the optimization to
 781   // avoid pointer updates in regions that only point to the dense prefix is
 782   // ever implemented, this should be revisited.
 783   if (region_ptr->data_size() == RegionSize) {
 784     result += region_offset(addr);
 785     return result;
 786   }
 787 
 788   // Otherwise, the new location is region->destination + block offset + the
 789   // number of live words in the Block that are (a) to the left of addr and (b)
 790   // due to objects that start in the Block.
 791 
 792   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 793   // threads may fill the block table for a region (harmless, since it is
 794   // idempotent).
 795   if (!region_ptr->blocks_filled()) {
 796     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 797     region_ptr->set_blocks_filled();
 798   }
 799 
 800   HeapWord* const search_start = block_align_down(addr);
 801   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 802 
 803   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 804   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 805   result += block_offset + live;
 806   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 807   return result;
 808 }
 809 
 810 #ifdef ASSERT
 811 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 812 {
 813   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 814   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 815   for (const size_t* p = beg; p < end; ++p) {
 816     assert(*p == 0, "not zero");
 817   }
 818 }
 819 
 820 void ParallelCompactData::verify_clear()
 821 {
 822   verify_clear(_region_vspace);
 823   verify_clear(_block_vspace);
 824 }
 825 #endif  // #ifdef ASSERT
 826 
 827 STWGCTimer          PSParallelCompact::_gc_timer;
 828 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 829 elapsedTimer        PSParallelCompact::_accumulated_time;
 830 unsigned int        PSParallelCompact::_total_invocations = 0;
 831 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 832 jlong               PSParallelCompact::_time_of_last_gc = 0;
 833 CollectorCounters*  PSParallelCompact::_counters = NULL;
 834 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 835 ParallelCompactData PSParallelCompact::_summary_data;
 836 
 837 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 838 
 839 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 840 
 841 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 842   PSParallelCompact::AdjustPointerClosure closure(_cm);
 843   klass->oops_do(&closure);
 844 }
 845 
 846 void PSParallelCompact::post_initialize() {
 847   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 848   MemRegion mr = heap->reserved_region();
 849   _ref_processor =
 850     new ReferenceProcessor(mr,            // span
 851                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 852                            ParallelGCThreads, // mt processing degree
 853                            true,              // mt discovery
 854                            ParallelGCThreads, // mt discovery degree
 855                            true,              // atomic_discovery
 856                            &_is_alive_closure); // non-header is alive closure
 857   _counters = new CollectorCounters("PSParallelCompact", 1);
 858 
 859   // Initialize static fields in ParCompactionManager.
 860   ParCompactionManager::initialize(mark_bitmap());
 861 }
 862 
 863 bool PSParallelCompact::initialize() {
 864   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 865   MemRegion mr = heap->reserved_region();
 866 
 867   // Was the old gen get allocated successfully?
 868   if (!heap->old_gen()->is_allocated()) {
 869     return false;
 870   }
 871 
 872   initialize_space_info();
 873   initialize_dead_wood_limiter();
 874 
 875   if (!_mark_bitmap.initialize(mr)) {
 876     vm_shutdown_during_initialization(
 877       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 878       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 879       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 880     return false;
 881   }
 882 
 883   if (!_summary_data.initialize(mr)) {
 884     vm_shutdown_during_initialization(
 885       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 886       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 887       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 888     return false;
 889   }
 890 
 891   return true;
 892 }
 893 
 894 void PSParallelCompact::initialize_space_info()
 895 {
 896   memset(&_space_info, 0, sizeof(_space_info));
 897 
 898   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 899   PSYoungGen* young_gen = heap->young_gen();
 900 
 901   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 902   _space_info[eden_space_id].set_space(young_gen->eden_space());
 903   _space_info[from_space_id].set_space(young_gen->from_space());
 904   _space_info[to_space_id].set_space(young_gen->to_space());
 905 
 906   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 907 }
 908 
 909 void PSParallelCompact::initialize_dead_wood_limiter()
 910 {
 911   const size_t max = 100;
 912   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 913   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 914   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 915   DEBUG_ONLY(_dwl_initialized = true;)
 916   _dwl_adjustment = normal_distribution(1.0);
 917 }
 918 
 919 void
 920 PSParallelCompact::clear_data_covering_space(SpaceId id)
 921 {
 922   // At this point, top is the value before GC, new_top() is the value that will
 923   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 924   // should be marked above top.  The summary data is cleared to the larger of
 925   // top & new_top.
 926   MutableSpace* const space = _space_info[id].space();
 927   HeapWord* const bot = space->bottom();
 928   HeapWord* const top = space->top();
 929   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 930 
 931   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 932   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 933   _mark_bitmap.clear_range(beg_bit, end_bit);
 934 
 935   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 936   const size_t end_region =
 937     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 938   _summary_data.clear_range(beg_region, end_region);
 939 
 940   // Clear the data used to 'split' regions.
 941   SplitInfo& split_info = _space_info[id].split_info();
 942   if (split_info.is_valid()) {
 943     split_info.clear();
 944   }
 945   DEBUG_ONLY(split_info.verify_clear();)
 946 }
 947 
 948 void PSParallelCompact::pre_compact()
 949 {
 950   // Update the from & to space pointers in space_info, since they are swapped
 951   // at each young gen gc.  Do the update unconditionally (even though a
 952   // promotion failure does not swap spaces) because an unknown number of young
 953   // collections will have swapped the spaces an unknown number of times.
 954   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 955   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 956   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 957   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 958 
 959   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 960   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 961 
 962   // Increment the invocation count
 963   heap->increment_total_collections(true);
 964 
 965   // We need to track unique mark sweep invocations as well.
 966   _total_invocations++;
 967 
 968   heap->print_heap_before_gc();
 969   heap->trace_heap_before_gc(&_gc_tracer);
 970 
 971   // Fill in TLABs
 972   heap->accumulate_statistics_all_tlabs();
 973   heap->ensure_parsability(true);  // retire TLABs
 974 
 975   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 976     HandleMark hm;  // Discard invalid handles created during verification
 977     Universe::verify("Before GC");
 978   }
 979 
 980   // Verify object start arrays
 981   if (VerifyObjectStartArray &&
 982       VerifyBeforeGC) {
 983     heap->old_gen()->verify_object_start_array();
 984   }
 985 
 986   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 987   DEBUG_ONLY(summary_data().verify_clear();)
 988 
 989   // Have worker threads release resources the next time they run a task.
 990   gc_task_manager()->release_all_resources();
 991 
 992   ParCompactionManager::reset_all_bitmap_query_caches();
 993 }
 994 
 995 void PSParallelCompact::post_compact()
 996 {
 997   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
 998 
 999   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1000     // Clear the marking bitmap, summary data and split info.
1001     clear_data_covering_space(SpaceId(id));
1002     // Update top().  Must be done after clearing the bitmap and summary data.
1003     _space_info[id].publish_new_top();
1004   }
1005 
1006   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1007   MutableSpace* const from_space = _space_info[from_space_id].space();
1008   MutableSpace* const to_space   = _space_info[to_space_id].space();
1009 
1010   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1011   bool eden_empty = eden_space->is_empty();
1012   if (!eden_empty) {
1013     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1014                                             heap->young_gen(), heap->old_gen());
1015   }
1016 
1017   // Update heap occupancy information which is used as input to the soft ref
1018   // clearing policy at the next gc.
1019   Universe::update_heap_info_at_gc();
1020 
1021   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1022     to_space->is_empty();
1023 
1024   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1025   MemRegion old_mr = heap->old_gen()->reserved();
1026   if (young_gen_empty) {
1027     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1028   } else {
1029     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1030   }
1031 
1032   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1033   ClassLoaderDataGraph::purge();
1034   MetaspaceAux::verify_metrics();
1035 
1036   CodeCache::gc_epilogue();
1037   JvmtiExport::gc_epilogue();
1038 
1039 #if defined(COMPILER2) || INCLUDE_JVMCI
1040   DerivedPointerTable::update_pointers();
1041 #endif
1042 
1043   ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->num_q());
1044 
1045   ref_processor()->enqueue_discovered_references(NULL, &pt);
1046 
1047   pt.print_enqueue_phase();
1048 
1049   if (ZapUnusedHeapArea) {
1050     heap->gen_mangle_unused_area();
1051   }
1052 
1053   // Update time of last GC
1054   reset_millis_since_last_gc();
1055 }
1056 
1057 HeapWord*
1058 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1059                                                     bool maximum_compaction)
1060 {
1061   const size_t region_size = ParallelCompactData::RegionSize;
1062   const ParallelCompactData& sd = summary_data();
1063 
1064   const MutableSpace* const space = _space_info[id].space();
1065   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1066   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1067   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1068 
1069   // Skip full regions at the beginning of the space--they are necessarily part
1070   // of the dense prefix.
1071   size_t full_count = 0;
1072   const RegionData* cp;
1073   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1074     ++full_count;
1075   }
1076 
1077   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1078   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1079   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1080   if (maximum_compaction || cp == end_cp || interval_ended) {
1081     _maximum_compaction_gc_num = total_invocations();
1082     return sd.region_to_addr(cp);
1083   }
1084 
1085   HeapWord* const new_top = _space_info[id].new_top();
1086   const size_t space_live = pointer_delta(new_top, space->bottom());
1087   const size_t space_used = space->used_in_words();
1088   const size_t space_capacity = space->capacity_in_words();
1089 
1090   const double cur_density = double(space_live) / space_capacity;
1091   const double deadwood_density =
1092     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1093   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1094 
1095   if (TraceParallelOldGCDensePrefix) {
1096     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1097                   cur_density, deadwood_density, deadwood_goal);
1098     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1099                   "space_cap=" SIZE_FORMAT,
1100                   space_live, space_used,
1101                   space_capacity);
1102   }
1103 
1104   // XXX - Use binary search?
1105   HeapWord* dense_prefix = sd.region_to_addr(cp);
1106   const RegionData* full_cp = cp;
1107   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1108   while (cp < end_cp) {
1109     HeapWord* region_destination = cp->destination();
1110     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1111     if (TraceParallelOldGCDensePrefix && Verbose) {
1112       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1113                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1114                     sd.region(cp), p2i(region_destination),
1115                     p2i(dense_prefix), cur_deadwood);
1116     }
1117 
1118     if (cur_deadwood >= deadwood_goal) {
1119       // Found the region that has the correct amount of deadwood to the left.
1120       // This typically occurs after crossing a fairly sparse set of regions, so
1121       // iterate backwards over those sparse regions, looking for the region
1122       // that has the lowest density of live objects 'to the right.'
1123       size_t space_to_left = sd.region(cp) * region_size;
1124       size_t live_to_left = space_to_left - cur_deadwood;
1125       size_t space_to_right = space_capacity - space_to_left;
1126       size_t live_to_right = space_live - live_to_left;
1127       double density_to_right = double(live_to_right) / space_to_right;
1128       while (cp > full_cp) {
1129         --cp;
1130         const size_t prev_region_live_to_right = live_to_right -
1131           cp->data_size();
1132         const size_t prev_region_space_to_right = space_to_right + region_size;
1133         double prev_region_density_to_right =
1134           double(prev_region_live_to_right) / prev_region_space_to_right;
1135         if (density_to_right <= prev_region_density_to_right) {
1136           return dense_prefix;
1137         }
1138         if (TraceParallelOldGCDensePrefix && Verbose) {
1139           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1140                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1141                         prev_region_density_to_right);
1142         }
1143         dense_prefix -= region_size;
1144         live_to_right = prev_region_live_to_right;
1145         space_to_right = prev_region_space_to_right;
1146         density_to_right = prev_region_density_to_right;
1147       }
1148       return dense_prefix;
1149     }
1150 
1151     dense_prefix += region_size;
1152     ++cp;
1153   }
1154 
1155   return dense_prefix;
1156 }
1157 
1158 #ifndef PRODUCT
1159 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1160                                                  const SpaceId id,
1161                                                  const bool maximum_compaction,
1162                                                  HeapWord* const addr)
1163 {
1164   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1165   RegionData* const cp = summary_data().region(region_idx);
1166   const MutableSpace* const space = _space_info[id].space();
1167   HeapWord* const new_top = _space_info[id].new_top();
1168 
1169   const size_t space_live = pointer_delta(new_top, space->bottom());
1170   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1171   const size_t space_cap = space->capacity_in_words();
1172   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1173   const size_t live_to_right = new_top - cp->destination();
1174   const size_t dead_to_right = space->top() - addr - live_to_right;
1175 
1176   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1177                 "spl=" SIZE_FORMAT " "
1178                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1179                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1180                 " ratio=%10.8f",
1181                 algorithm, p2i(addr), region_idx,
1182                 space_live,
1183                 dead_to_left, dead_to_left_pct,
1184                 dead_to_right, live_to_right,
1185                 double(dead_to_right) / live_to_right);
1186 }
1187 #endif  // #ifndef PRODUCT
1188 
1189 // Return a fraction indicating how much of the generation can be treated as
1190 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1191 // based on the density of live objects in the generation to determine a limit,
1192 // which is then adjusted so the return value is min_percent when the density is
1193 // 1.
1194 //
1195 // The following table shows some return values for a different values of the
1196 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1197 // min_percent is 1.
1198 //
1199 //                          fraction allowed as dead wood
1200 //         -----------------------------------------------------------------
1201 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1202 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1203 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1204 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1205 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1206 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1207 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1208 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1209 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1210 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1211 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1212 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1213 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1214 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1215 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1216 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1217 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1218 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1219 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1220 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1221 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1222 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1223 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1224 
1225 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1226 {
1227   assert(_dwl_initialized, "uninitialized");
1228 
1229   // The raw limit is the value of the normal distribution at x = density.
1230   const double raw_limit = normal_distribution(density);
1231 
1232   // Adjust the raw limit so it becomes the minimum when the density is 1.
1233   //
1234   // First subtract the adjustment value (which is simply the precomputed value
1235   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1236   // Then add the minimum value, so the minimum is returned when the density is
1237   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1238   const double min = double(min_percent) / 100.0;
1239   const double limit = raw_limit - _dwl_adjustment + min;
1240   return MAX2(limit, 0.0);
1241 }
1242 
1243 ParallelCompactData::RegionData*
1244 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1245                                            const RegionData* end)
1246 {
1247   const size_t region_size = ParallelCompactData::RegionSize;
1248   ParallelCompactData& sd = summary_data();
1249   size_t left = sd.region(beg);
1250   size_t right = end > beg ? sd.region(end) - 1 : left;
1251 
1252   // Binary search.
1253   while (left < right) {
1254     // Equivalent to (left + right) / 2, but does not overflow.
1255     const size_t middle = left + (right - left) / 2;
1256     RegionData* const middle_ptr = sd.region(middle);
1257     HeapWord* const dest = middle_ptr->destination();
1258     HeapWord* const addr = sd.region_to_addr(middle);
1259     assert(dest != NULL, "sanity");
1260     assert(dest <= addr, "must move left");
1261 
1262     if (middle > left && dest < addr) {
1263       right = middle - 1;
1264     } else if (middle < right && middle_ptr->data_size() == region_size) {
1265       left = middle + 1;
1266     } else {
1267       return middle_ptr;
1268     }
1269   }
1270   return sd.region(left);
1271 }
1272 
1273 ParallelCompactData::RegionData*
1274 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1275                                           const RegionData* end,
1276                                           size_t dead_words)
1277 {
1278   ParallelCompactData& sd = summary_data();
1279   size_t left = sd.region(beg);
1280   size_t right = end > beg ? sd.region(end) - 1 : left;
1281 
1282   // Binary search.
1283   while (left < right) {
1284     // Equivalent to (left + right) / 2, but does not overflow.
1285     const size_t middle = left + (right - left) / 2;
1286     RegionData* const middle_ptr = sd.region(middle);
1287     HeapWord* const dest = middle_ptr->destination();
1288     HeapWord* const addr = sd.region_to_addr(middle);
1289     assert(dest != NULL, "sanity");
1290     assert(dest <= addr, "must move left");
1291 
1292     const size_t dead_to_left = pointer_delta(addr, dest);
1293     if (middle > left && dead_to_left > dead_words) {
1294       right = middle - 1;
1295     } else if (middle < right && dead_to_left < dead_words) {
1296       left = middle + 1;
1297     } else {
1298       return middle_ptr;
1299     }
1300   }
1301   return sd.region(left);
1302 }
1303 
1304 // The result is valid during the summary phase, after the initial summarization
1305 // of each space into itself, and before final summarization.
1306 inline double
1307 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1308                                    HeapWord* const bottom,
1309                                    HeapWord* const top,
1310                                    HeapWord* const new_top)
1311 {
1312   ParallelCompactData& sd = summary_data();
1313 
1314   assert(cp != NULL, "sanity");
1315   assert(bottom != NULL, "sanity");
1316   assert(top != NULL, "sanity");
1317   assert(new_top != NULL, "sanity");
1318   assert(top >= new_top, "summary data problem?");
1319   assert(new_top > bottom, "space is empty; should not be here");
1320   assert(new_top >= cp->destination(), "sanity");
1321   assert(top >= sd.region_to_addr(cp), "sanity");
1322 
1323   HeapWord* const destination = cp->destination();
1324   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1325   const size_t compacted_region_live = pointer_delta(new_top, destination);
1326   const size_t compacted_region_used = pointer_delta(top,
1327                                                      sd.region_to_addr(cp));
1328   const size_t reclaimable = compacted_region_used - compacted_region_live;
1329 
1330   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1331   return double(reclaimable) / divisor;
1332 }
1333 
1334 // Return the address of the end of the dense prefix, a.k.a. the start of the
1335 // compacted region.  The address is always on a region boundary.
1336 //
1337 // Completely full regions at the left are skipped, since no compaction can
1338 // occur in those regions.  Then the maximum amount of dead wood to allow is
1339 // computed, based on the density (amount live / capacity) of the generation;
1340 // the region with approximately that amount of dead space to the left is
1341 // identified as the limit region.  Regions between the last completely full
1342 // region and the limit region are scanned and the one that has the best
1343 // (maximum) reclaimed_ratio() is selected.
1344 HeapWord*
1345 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1346                                         bool maximum_compaction)
1347 {
1348   const size_t region_size = ParallelCompactData::RegionSize;
1349   const ParallelCompactData& sd = summary_data();
1350 
1351   const MutableSpace* const space = _space_info[id].space();
1352   HeapWord* const top = space->top();
1353   HeapWord* const top_aligned_up = sd.region_align_up(top);
1354   HeapWord* const new_top = _space_info[id].new_top();
1355   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1356   HeapWord* const bottom = space->bottom();
1357   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1358   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1359   const RegionData* const new_top_cp =
1360     sd.addr_to_region_ptr(new_top_aligned_up);
1361 
1362   // Skip full regions at the beginning of the space--they are necessarily part
1363   // of the dense prefix.
1364   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1365   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1366          space->is_empty(), "no dead space allowed to the left");
1367   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1368          "region must have dead space");
1369 
1370   // The gc number is saved whenever a maximum compaction is done, and used to
1371   // determine when the maximum compaction interval has expired.  This avoids
1372   // successive max compactions for different reasons.
1373   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1374   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1375   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1376     total_invocations() == HeapFirstMaximumCompactionCount;
1377   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1378     _maximum_compaction_gc_num = total_invocations();
1379     return sd.region_to_addr(full_cp);
1380   }
1381 
1382   const size_t space_live = pointer_delta(new_top, bottom);
1383   const size_t space_used = space->used_in_words();
1384   const size_t space_capacity = space->capacity_in_words();
1385 
1386   const double density = double(space_live) / double(space_capacity);
1387   const size_t min_percent_free = MarkSweepDeadRatio;
1388   const double limiter = dead_wood_limiter(density, min_percent_free);
1389   const size_t dead_wood_max = space_used - space_live;
1390   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1391                                       dead_wood_max);
1392 
1393   if (TraceParallelOldGCDensePrefix) {
1394     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1395                   "space_cap=" SIZE_FORMAT,
1396                   space_live, space_used,
1397                   space_capacity);
1398     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1399                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1400                   density, min_percent_free, limiter,
1401                   dead_wood_max, dead_wood_limit);
1402   }
1403 
1404   // Locate the region with the desired amount of dead space to the left.
1405   const RegionData* const limit_cp =
1406     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1407 
1408   // Scan from the first region with dead space to the limit region and find the
1409   // one with the best (largest) reclaimed ratio.
1410   double best_ratio = 0.0;
1411   const RegionData* best_cp = full_cp;
1412   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1413     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1414     if (tmp_ratio > best_ratio) {
1415       best_cp = cp;
1416       best_ratio = tmp_ratio;
1417     }
1418   }
1419 
1420   return sd.region_to_addr(best_cp);
1421 }
1422 
1423 void PSParallelCompact::summarize_spaces_quick()
1424 {
1425   for (unsigned int i = 0; i < last_space_id; ++i) {
1426     const MutableSpace* space = _space_info[i].space();
1427     HeapWord** nta = _space_info[i].new_top_addr();
1428     bool result = _summary_data.summarize(_space_info[i].split_info(),
1429                                           space->bottom(), space->top(), NULL,
1430                                           space->bottom(), space->end(), nta);
1431     assert(result, "space must fit into itself");
1432     _space_info[i].set_dense_prefix(space->bottom());
1433   }
1434 }
1435 
1436 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1437 {
1438   HeapWord* const dense_prefix_end = dense_prefix(id);
1439   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1440   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1441   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1442     // Only enough dead space is filled so that any remaining dead space to the
1443     // left is larger than the minimum filler object.  (The remainder is filled
1444     // during the copy/update phase.)
1445     //
1446     // The size of the dead space to the right of the boundary is not a
1447     // concern, since compaction will be able to use whatever space is
1448     // available.
1449     //
1450     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1451     // surrounds the space to be filled with an object.
1452     //
1453     // In the 32-bit VM, each bit represents two 32-bit words:
1454     //                              +---+
1455     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1456     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1457     //                              +---+
1458     //
1459     // In the 64-bit VM, each bit represents one 64-bit word:
1460     //                              +------------+
1461     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1462     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1463     //                              +------------+
1464     //                          +-------+
1465     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1466     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1467     //                          +-------+
1468     //                      +-----------+
1469     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1470     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1471     //                      +-----------+
1472     //                          +-------+
1473     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1474     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1475     //                          +-------+
1476 
1477     // Initially assume case a, c or e will apply.
1478     size_t obj_len = CollectedHeap::min_fill_size();
1479     HeapWord* obj_beg = dense_prefix_end - obj_len;
1480 
1481 #ifdef  _LP64
1482     if (MinObjAlignment > 1) { // object alignment > heap word size
1483       // Cases a, c or e.
1484     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1485       // Case b above.
1486       obj_beg = dense_prefix_end - 1;
1487     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1488                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1489       // Case d above.
1490       obj_beg = dense_prefix_end - 3;
1491       obj_len = 3;
1492     }
1493 #endif  // #ifdef _LP64
1494 
1495     CollectedHeap::fill_with_object(obj_beg, obj_len);
1496     _mark_bitmap.mark_obj(obj_beg, obj_len);
1497     _summary_data.add_obj(obj_beg, obj_len);
1498     assert(start_array(id) != NULL, "sanity");
1499     start_array(id)->allocate_block(obj_beg);
1500   }
1501 }
1502 
1503 void
1504 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1505 {
1506   assert(id < last_space_id, "id out of range");
1507   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1508          "should have been reset in summarize_spaces_quick()");
1509 
1510   const MutableSpace* space = _space_info[id].space();
1511   if (_space_info[id].new_top() != space->bottom()) {
1512     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1513     _space_info[id].set_dense_prefix(dense_prefix_end);
1514 
1515 #ifndef PRODUCT
1516     if (TraceParallelOldGCDensePrefix) {
1517       print_dense_prefix_stats("ratio", id, maximum_compaction,
1518                                dense_prefix_end);
1519       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1520       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1521     }
1522 #endif  // #ifndef PRODUCT
1523 
1524     // Recompute the summary data, taking into account the dense prefix.  If
1525     // every last byte will be reclaimed, then the existing summary data which
1526     // compacts everything can be left in place.
1527     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1528       // If dead space crosses the dense prefix boundary, it is (at least
1529       // partially) filled with a dummy object, marked live and added to the
1530       // summary data.  This simplifies the copy/update phase and must be done
1531       // before the final locations of objects are determined, to prevent
1532       // leaving a fragment of dead space that is too small to fill.
1533       fill_dense_prefix_end(id);
1534 
1535       // Compute the destination of each Region, and thus each object.
1536       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1537       _summary_data.summarize(_space_info[id].split_info(),
1538                               dense_prefix_end, space->top(), NULL,
1539                               dense_prefix_end, space->end(),
1540                               _space_info[id].new_top_addr());
1541     }
1542   }
1543 
1544   if (log_develop_is_enabled(Trace, gc, compaction)) {
1545     const size_t region_size = ParallelCompactData::RegionSize;
1546     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1547     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1548     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1549     HeapWord* const new_top = _space_info[id].new_top();
1550     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1551     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1552     log_develop_trace(gc, compaction)(
1553         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1554         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1555         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1556         id, space->capacity_in_words(), p2i(dense_prefix_end),
1557         dp_region, dp_words / region_size,
1558         cr_words / region_size, p2i(new_top));
1559   }
1560 }
1561 
1562 #ifndef PRODUCT
1563 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1564                                           HeapWord* dst_beg, HeapWord* dst_end,
1565                                           SpaceId src_space_id,
1566                                           HeapWord* src_beg, HeapWord* src_end)
1567 {
1568   log_develop_trace(gc, compaction)(
1569       "Summarizing %d [%s] into %d [%s]:  "
1570       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1571       SIZE_FORMAT "-" SIZE_FORMAT " "
1572       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1573       SIZE_FORMAT "-" SIZE_FORMAT,
1574       src_space_id, space_names[src_space_id],
1575       dst_space_id, space_names[dst_space_id],
1576       p2i(src_beg), p2i(src_end),
1577       _summary_data.addr_to_region_idx(src_beg),
1578       _summary_data.addr_to_region_idx(src_end),
1579       p2i(dst_beg), p2i(dst_end),
1580       _summary_data.addr_to_region_idx(dst_beg),
1581       _summary_data.addr_to_region_idx(dst_end));
1582 }
1583 #endif  // #ifndef PRODUCT
1584 
1585 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1586                                       bool maximum_compaction)
1587 {
1588   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1589 
1590 #ifdef  ASSERT
1591   if (TraceParallelOldGCMarkingPhase) {
1592     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1593                   "add_obj_bytes=" SIZE_FORMAT,
1594                   add_obj_count, add_obj_size * HeapWordSize);
1595     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1596                   "mark_bitmap_bytes=" SIZE_FORMAT,
1597                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1598   }
1599 #endif  // #ifdef ASSERT
1600 
1601   // Quick summarization of each space into itself, to see how much is live.
1602   summarize_spaces_quick();
1603 
1604   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1605   NOT_PRODUCT(print_region_ranges());
1606   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1607 
1608   // The amount of live data that will end up in old space (assuming it fits).
1609   size_t old_space_total_live = 0;
1610   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1611     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1612                                           _space_info[id].space()->bottom());
1613   }
1614 
1615   MutableSpace* const old_space = _space_info[old_space_id].space();
1616   const size_t old_capacity = old_space->capacity_in_words();
1617   if (old_space_total_live > old_capacity) {
1618     // XXX - should also try to expand
1619     maximum_compaction = true;
1620   }
1621 
1622   // Old generations.
1623   summarize_space(old_space_id, maximum_compaction);
1624 
1625   // Summarize the remaining spaces in the young gen.  The initial target space
1626   // is the old gen.  If a space does not fit entirely into the target, then the
1627   // remainder is compacted into the space itself and that space becomes the new
1628   // target.
1629   SpaceId dst_space_id = old_space_id;
1630   HeapWord* dst_space_end = old_space->end();
1631   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1632   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1633     const MutableSpace* space = _space_info[id].space();
1634     const size_t live = pointer_delta(_space_info[id].new_top(),
1635                                       space->bottom());
1636     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1637 
1638     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1639                                   SpaceId(id), space->bottom(), space->top());)
1640     if (live > 0 && live <= available) {
1641       // All the live data will fit.
1642       bool done = _summary_data.summarize(_space_info[id].split_info(),
1643                                           space->bottom(), space->top(),
1644                                           NULL,
1645                                           *new_top_addr, dst_space_end,
1646                                           new_top_addr);
1647       assert(done, "space must fit into old gen");
1648 
1649       // Reset the new_top value for the space.
1650       _space_info[id].set_new_top(space->bottom());
1651     } else if (live > 0) {
1652       // Attempt to fit part of the source space into the target space.
1653       HeapWord* next_src_addr = NULL;
1654       bool done = _summary_data.summarize(_space_info[id].split_info(),
1655                                           space->bottom(), space->top(),
1656                                           &next_src_addr,
1657                                           *new_top_addr, dst_space_end,
1658                                           new_top_addr);
1659       assert(!done, "space should not fit into old gen");
1660       assert(next_src_addr != NULL, "sanity");
1661 
1662       // The source space becomes the new target, so the remainder is compacted
1663       // within the space itself.
1664       dst_space_id = SpaceId(id);
1665       dst_space_end = space->end();
1666       new_top_addr = _space_info[id].new_top_addr();
1667       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1668                                     space->bottom(), dst_space_end,
1669                                     SpaceId(id), next_src_addr, space->top());)
1670       done = _summary_data.summarize(_space_info[id].split_info(),
1671                                      next_src_addr, space->top(),
1672                                      NULL,
1673                                      space->bottom(), dst_space_end,
1674                                      new_top_addr);
1675       assert(done, "space must fit when compacted into itself");
1676       assert(*new_top_addr <= space->top(), "usage should not grow");
1677     }
1678   }
1679 
1680   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1681   NOT_PRODUCT(print_region_ranges());
1682   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1683 }
1684 
1685 // This method should contain all heap-specific policy for invoking a full
1686 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1687 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1688 // before full gc, or any other specialized behavior, it needs to be added here.
1689 //
1690 // Note that this method should only be called from the vm_thread while at a
1691 // safepoint.
1692 //
1693 // Note that the all_soft_refs_clear flag in the collector policy
1694 // may be true because this method can be called without intervening
1695 // activity.  For example when the heap space is tight and full measure
1696 // are being taken to free space.
1697 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1698   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1699   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1700          "should be in vm thread");
1701 
1702   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1703   GCCause::Cause gc_cause = heap->gc_cause();
1704   assert(!heap->is_gc_active(), "not reentrant");
1705 
1706   PSAdaptiveSizePolicy* policy = heap->size_policy();
1707   IsGCActiveMark mark;
1708 
1709   if (ScavengeBeforeFullGC) {
1710     PSScavenge::invoke_no_policy();
1711   }
1712 
1713   const bool clear_all_soft_refs =
1714     heap->collector_policy()->should_clear_all_soft_refs();
1715 
1716   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1717                                       maximum_heap_compaction);
1718 }
1719 
1720 // This method contains no policy. You should probably
1721 // be calling invoke() instead.
1722 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1723   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1724   assert(ref_processor() != NULL, "Sanity");
1725 
1726   if (GCLocker::check_active_before_gc()) {
1727     return false;
1728   }
1729 
1730   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1731 
1732   GCIdMark gc_id_mark;
1733   _gc_timer.register_gc_start();
1734   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1735 
1736   TimeStamp marking_start;
1737   TimeStamp compaction_start;
1738   TimeStamp collection_exit;
1739 
1740   GCCause::Cause gc_cause = heap->gc_cause();
1741   PSYoungGen* young_gen = heap->young_gen();
1742   PSOldGen* old_gen = heap->old_gen();
1743   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1744 
1745   // The scope of casr should end after code that can change
1746   // CollectorPolicy::_should_clear_all_soft_refs.
1747   ClearedAllSoftRefs casr(maximum_heap_compaction,
1748                           heap->collector_policy());
1749 
1750   if (ZapUnusedHeapArea) {
1751     // Save information needed to minimize mangling
1752     heap->record_gen_tops_before_GC();
1753   }
1754 
1755   // Make sure data structures are sane, make the heap parsable, and do other
1756   // miscellaneous bookkeeping.
1757   pre_compact();
1758 
1759   PreGCValues pre_gc_values(heap);
1760 
1761   // Get the compaction manager reserved for the VM thread.
1762   ParCompactionManager* const vmthread_cm =
1763     ParCompactionManager::manager_array(gc_task_manager()->workers());
1764 
1765   {
1766     ResourceMark rm;
1767     HandleMark hm;
1768 
1769     // Set the number of GC threads to be used in this collection
1770     gc_task_manager()->set_active_gang();
1771     gc_task_manager()->task_idle_workers();
1772 
1773     GCTraceCPUTime tcpu;
1774     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1775 
1776     heap->pre_full_gc_dump(&_gc_timer);
1777 
1778     TraceCollectorStats tcs(counters());
1779     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1780 
1781     if (TraceOldGenTime) accumulated_time()->start();
1782 
1783     // Let the size policy know we're starting
1784     size_policy->major_collection_begin();
1785 
1786     CodeCache::gc_prologue();
1787 
1788 #if defined(COMPILER2) || INCLUDE_JVMCI
1789     DerivedPointerTable::clear();
1790 #endif
1791 
1792     ref_processor()->enable_discovery();
1793     ref_processor()->setup_policy(maximum_heap_compaction);
1794 
1795     bool marked_for_unloading = false;
1796 
1797     marking_start.update();
1798     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1799 
1800     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1801       && GCCause::is_user_requested_gc(gc_cause);
1802     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1803 
1804 #if defined(COMPILER2) || INCLUDE_JVMCI
1805     assert(DerivedPointerTable::is_active(), "Sanity");
1806     DerivedPointerTable::set_active(false);
1807 #endif
1808 
1809     // adjust_roots() updates Universe::_intArrayKlassObj which is
1810     // needed by the compaction for filling holes in the dense prefix.
1811     adjust_roots(vmthread_cm);
1812 
1813     compaction_start.update();
1814     compact();
1815 
1816     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1817     // done before resizing.
1818     post_compact();
1819 
1820     // Let the size policy know we're done
1821     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1822 
1823     if (UseAdaptiveSizePolicy) {
1824       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1825       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1826                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1827 
1828       // Don't check if the size_policy is ready here.  Let
1829       // the size_policy check that internally.
1830       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1831           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1832         // Swap the survivor spaces if from_space is empty. The
1833         // resize_young_gen() called below is normally used after
1834         // a successful young GC and swapping of survivor spaces;
1835         // otherwise, it will fail to resize the young gen with
1836         // the current implementation.
1837         if (young_gen->from_space()->is_empty()) {
1838           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1839           young_gen->swap_spaces();
1840         }
1841 
1842         // Calculate optimal free space amounts
1843         assert(young_gen->max_size() >
1844           young_gen->from_space()->capacity_in_bytes() +
1845           young_gen->to_space()->capacity_in_bytes(),
1846           "Sizes of space in young gen are out-of-bounds");
1847 
1848         size_t young_live = young_gen->used_in_bytes();
1849         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1850         size_t old_live = old_gen->used_in_bytes();
1851         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1852         size_t max_old_gen_size = old_gen->max_gen_size();
1853         size_t max_eden_size = young_gen->max_size() -
1854           young_gen->from_space()->capacity_in_bytes() -
1855           young_gen->to_space()->capacity_in_bytes();
1856 
1857         // Used for diagnostics
1858         size_policy->clear_generation_free_space_flags();
1859 
1860         size_policy->compute_generations_free_space(young_live,
1861                                                     eden_live,
1862                                                     old_live,
1863                                                     cur_eden,
1864                                                     max_old_gen_size,
1865                                                     max_eden_size,
1866                                                     true /* full gc*/);
1867 
1868         size_policy->check_gc_overhead_limit(young_live,
1869                                              eden_live,
1870                                              max_old_gen_size,
1871                                              max_eden_size,
1872                                              true /* full gc*/,
1873                                              gc_cause,
1874                                              heap->collector_policy());
1875 
1876         size_policy->decay_supplemental_growth(true /* full gc*/);
1877 
1878         heap->resize_old_gen(
1879           size_policy->calculated_old_free_size_in_bytes());
1880 
1881         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1882                                size_policy->calculated_survivor_size_in_bytes());
1883       }
1884 
1885       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1886     }
1887 
1888     if (UsePerfData) {
1889       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1890       counters->update_counters();
1891       counters->update_old_capacity(old_gen->capacity_in_bytes());
1892       counters->update_young_capacity(young_gen->capacity_in_bytes());
1893     }
1894 
1895     heap->resize_all_tlabs();
1896 
1897     // Resize the metaspace capacity after a collection
1898     MetaspaceGC::compute_new_size();
1899 
1900     if (TraceOldGenTime) {
1901       accumulated_time()->stop();
1902     }
1903 
1904     young_gen->print_used_change(pre_gc_values.young_gen_used());
1905     old_gen->print_used_change(pre_gc_values.old_gen_used());
1906     MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1907 
1908     // Track memory usage and detect low memory
1909     MemoryService::track_memory_usage();
1910     heap->update_counters();
1911     gc_task_manager()->release_idle_workers();
1912 
1913     heap->post_full_gc_dump(&_gc_timer);
1914   }
1915 
1916 #ifdef ASSERT
1917   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1918     ParCompactionManager* const cm =
1919       ParCompactionManager::manager_array(int(i));
1920     assert(cm->marking_stack()->is_empty(),       "should be empty");
1921     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1922   }
1923 #endif // ASSERT
1924 
1925   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1926     HandleMark hm;  // Discard invalid handles created during verification
1927     Universe::verify("After GC");
1928   }
1929 
1930   // Re-verify object start arrays
1931   if (VerifyObjectStartArray &&
1932       VerifyAfterGC) {
1933     old_gen->verify_object_start_array();
1934   }
1935 
1936   if (ZapUnusedHeapArea) {
1937     old_gen->object_space()->check_mangled_unused_area_complete();
1938   }
1939 
1940   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1941 
1942   collection_exit.update();
1943 
1944   heap->print_heap_after_gc();
1945   heap->trace_heap_after_gc(&_gc_tracer);
1946 
1947   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1948                          marking_start.ticks(), compaction_start.ticks(),
1949                          collection_exit.ticks());
1950   gc_task_manager()->print_task_time_stamps();
1951 
1952 #ifdef TRACESPINNING
1953   ParallelTaskTerminator::print_termination_counts();
1954 #endif
1955 
1956   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1957 
1958   _gc_timer.register_gc_end();
1959 
1960   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1961   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1962 
1963   return true;
1964 }
1965 
1966 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1967                                              PSYoungGen* young_gen,
1968                                              PSOldGen* old_gen) {
1969   MutableSpace* const eden_space = young_gen->eden_space();
1970   assert(!eden_space->is_empty(), "eden must be non-empty");
1971   assert(young_gen->virtual_space()->alignment() ==
1972          old_gen->virtual_space()->alignment(), "alignments do not match");
1973 
1974   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
1975     return false;
1976   }
1977 
1978   // Both generations must be completely committed.
1979   if (young_gen->virtual_space()->uncommitted_size() != 0) {
1980     return false;
1981   }
1982   if (old_gen->virtual_space()->uncommitted_size() != 0) {
1983     return false;
1984   }
1985 
1986   // Figure out how much to take from eden.  Include the average amount promoted
1987   // in the total; otherwise the next young gen GC will simply bail out to a
1988   // full GC.
1989   const size_t alignment = old_gen->virtual_space()->alignment();
1990   const size_t eden_used = eden_space->used_in_bytes();
1991   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
1992   const size_t absorb_size = align_up(eden_used + promoted, alignment);
1993   const size_t eden_capacity = eden_space->capacity_in_bytes();
1994 
1995   if (absorb_size >= eden_capacity) {
1996     return false; // Must leave some space in eden.
1997   }
1998 
1999   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2000   if (new_young_size < young_gen->min_gen_size()) {
2001     return false; // Respect young gen minimum size.
2002   }
2003 
2004   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
2005                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2006                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2007                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2008                         absorb_size / K,
2009                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2010                         young_gen->from_space()->used_in_bytes() / K,
2011                         young_gen->to_space()->used_in_bytes() / K,
2012                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2013 
2014   // Fill the unused part of the old gen.
2015   MutableSpace* const old_space = old_gen->object_space();
2016   HeapWord* const unused_start = old_space->top();
2017   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2018 
2019   if (unused_words > 0) {
2020     if (unused_words < CollectedHeap::min_fill_size()) {
2021       return false;  // If the old gen cannot be filled, must give up.
2022     }
2023     CollectedHeap::fill_with_objects(unused_start, unused_words);
2024   }
2025 
2026   // Take the live data from eden and set both top and end in the old gen to
2027   // eden top.  (Need to set end because reset_after_change() mangles the region
2028   // from end to virtual_space->high() in debug builds).
2029   HeapWord* const new_top = eden_space->top();
2030   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2031                                         absorb_size);
2032   young_gen->reset_after_change();
2033   old_space->set_top(new_top);
2034   old_space->set_end(new_top);
2035   old_gen->reset_after_change();
2036 
2037   // Update the object start array for the filler object and the data from eden.
2038   ObjectStartArray* const start_array = old_gen->start_array();
2039   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2040     start_array->allocate_block(p);
2041   }
2042 
2043   // Could update the promoted average here, but it is not typically updated at
2044   // full GCs and the value to use is unclear.  Something like
2045   //
2046   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2047 
2048   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2049   return true;
2050 }
2051 
2052 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2053   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2054     "shouldn't return NULL");
2055   return ParallelScavengeHeap::gc_task_manager();
2056 }
2057 
2058 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2059                                       bool maximum_heap_compaction,
2060                                       ParallelOldTracer *gc_tracer) {
2061   // Recursively traverse all live objects and mark them
2062   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2063 
2064   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2065   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2066   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2067   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2068   ParallelTaskTerminator terminator(active_gc_threads, qset);
2069 
2070   ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2071   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2072 
2073   // Need new claim bits before marking starts.
2074   ClassLoaderDataGraph::clear_claimed_marks();
2075 
2076   {
2077     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2078 
2079     ParallelScavengeHeap::ParStrongRootsScope psrs;
2080 
2081     GCTaskQueue* q = GCTaskQueue::create();
2082 
2083     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2084     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2085     // We scan the thread roots in parallel
2086     Threads::create_thread_roots_marking_tasks(q);
2087     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2088     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2089     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2090     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2091     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2092     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2093 
2094     if (active_gc_threads > 1) {
2095       for (uint j = 0; j < active_gc_threads; j++) {
2096         q->enqueue(new StealMarkingTask(&terminator));
2097       }
2098     }
2099 
2100     gc_task_manager()->execute_and_wait(q);
2101   }
2102 
2103   // Process reference objects found during marking
2104   {
2105     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2106 
2107     ReferenceProcessorStats stats;
2108     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->num_q());
2109     if (ref_processor()->processing_is_mt()) {
2110       RefProcTaskExecutor task_executor;
2111       stats = ref_processor()->process_discovered_references(
2112         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2113         &task_executor, &pt);
2114     } else {
2115       stats = ref_processor()->process_discovered_references(
2116         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2117         &pt);
2118     }
2119 
2120     gc_tracer->report_gc_reference_stats(stats);
2121     pt.print_all_references();
2122   }
2123 
2124   // This is the point where the entire marking should have completed.
2125   assert(cm->marking_stacks_empty(), "Marking should have completed");
2126 
2127   {
2128     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2129 
2130     // Follow system dictionary roots and unload classes.
2131     bool purged_class = SystemDictionary::do_unloading(is_alive_closure(), &_gc_timer);
2132 
2133     // Unload nmethods.
2134     CodeCache::do_unloading(is_alive_closure(), purged_class);
2135 
2136     // Prune dead klasses from subklass/sibling/implementor lists.
2137     Klass::clean_weak_klass_links(is_alive_closure());
2138   }
2139 
2140   {
2141     GCTraceTime(Debug, gc, phases) t("Scrub String Table", &_gc_timer);
2142     // Delete entries for dead interned strings.
2143     StringTable::unlink(is_alive_closure());
2144   }
2145 
2146   {
2147     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", &_gc_timer);
2148     // Clean up unreferenced symbols in symbol table.
2149     SymbolTable::unlink();
2150   }
2151 
2152   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2153 }
2154 
2155 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2156   // Adjust the pointers to reflect the new locations
2157   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2158 
2159   // Need new claim bits when tracing through and adjusting pointers.
2160   ClassLoaderDataGraph::clear_claimed_marks();
2161 
2162   PSParallelCompact::AdjustPointerClosure oop_closure(cm);
2163   PSParallelCompact::AdjustKlassClosure klass_closure(cm);
2164 
2165   // General strong roots.
2166   Universe::oops_do(&oop_closure);
2167   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2168   Threads::oops_do(&oop_closure, NULL);
2169   ObjectSynchronizer::oops_do(&oop_closure);
2170   Management::oops_do(&oop_closure);
2171   JvmtiExport::oops_do(&oop_closure);
2172   SystemDictionary::oops_do(&oop_closure);
2173   ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true);
2174 
2175   // Now adjust pointers in remaining weak roots.  (All of which should
2176   // have been cleared if they pointed to non-surviving objects.)
2177   // Global (weak) JNI handles
2178   JNIHandles::weak_oops_do(&oop_closure);
2179 
2180   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2181   CodeCache::blobs_do(&adjust_from_blobs);
2182   AOTLoader::oops_do(&oop_closure);
2183   StringTable::oops_do(&oop_closure);
2184   ref_processor()->weak_oops_do(&oop_closure);
2185   // Roots were visited so references into the young gen in roots
2186   // may have been scanned.  Process them also.
2187   // Should the reference processor have a span that excludes
2188   // young gen objects?
2189   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2190 }
2191 
2192 // Helper class to print 8 region numbers per line and then print the total at the end.
2193 class FillableRegionLogger : public StackObj {
2194 private:
2195   Log(gc, compaction) log;
2196   static const int LineLength = 8;
2197   size_t _regions[LineLength];
2198   int _next_index;
2199   bool _enabled;
2200   size_t _total_regions;
2201 public:
2202   FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { }
2203   ~FillableRegionLogger() {
2204     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2205   }
2206 
2207   void print_line() {
2208     if (!_enabled || _next_index == 0) {
2209       return;
2210     }
2211     FormatBuffer<> line("Fillable: ");
2212     for (int i = 0; i < _next_index; i++) {
2213       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2214     }
2215     log.trace("%s", line.buffer());
2216     _next_index = 0;
2217   }
2218 
2219   void handle(size_t region) {
2220     if (!_enabled) {
2221       return;
2222     }
2223     _regions[_next_index++] = region;
2224     if (_next_index == LineLength) {
2225       print_line();
2226     }
2227     _total_regions++;
2228   }
2229 };
2230 
2231 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2232                                                       uint parallel_gc_threads)
2233 {
2234   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2235 
2236   // Find the threads that are active
2237   unsigned int which = 0;
2238 
2239   // Find all regions that are available (can be filled immediately) and
2240   // distribute them to the thread stacks.  The iteration is done in reverse
2241   // order (high to low) so the regions will be removed in ascending order.
2242 
2243   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2244 
2245   which = 0;
2246   // id + 1 is used to test termination so unsigned  can
2247   // be used with an old_space_id == 0.
2248   FillableRegionLogger region_logger;
2249   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2250     SpaceInfo* const space_info = _space_info + id;
2251     MutableSpace* const space = space_info->space();
2252     HeapWord* const new_top = space_info->new_top();
2253 
2254     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2255     const size_t end_region =
2256       sd.addr_to_region_idx(sd.region_align_up(new_top));
2257 
2258     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2259       if (sd.region(cur)->claim_unsafe()) {
2260         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2261         cm->region_stack()->push(cur);
2262         region_logger.handle(cur);
2263         // Assign regions to tasks in round-robin fashion.
2264         if (++which == parallel_gc_threads) {
2265           which = 0;
2266         }
2267       }
2268     }
2269     region_logger.print_line();
2270   }
2271 }
2272 
2273 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2274 
2275 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2276                                                     uint parallel_gc_threads) {
2277   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2278 
2279   ParallelCompactData& sd = PSParallelCompact::summary_data();
2280 
2281   // Iterate over all the spaces adding tasks for updating
2282   // regions in the dense prefix.  Assume that 1 gc thread
2283   // will work on opening the gaps and the remaining gc threads
2284   // will work on the dense prefix.
2285   unsigned int space_id;
2286   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2287     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2288     const MutableSpace* const space = _space_info[space_id].space();
2289 
2290     if (dense_prefix_end == space->bottom()) {
2291       // There is no dense prefix for this space.
2292       continue;
2293     }
2294 
2295     // The dense prefix is before this region.
2296     size_t region_index_end_dense_prefix =
2297         sd.addr_to_region_idx(dense_prefix_end);
2298     RegionData* const dense_prefix_cp =
2299       sd.region(region_index_end_dense_prefix);
2300     assert(dense_prefix_end == space->end() ||
2301            dense_prefix_cp->available() ||
2302            dense_prefix_cp->claimed(),
2303            "The region after the dense prefix should always be ready to fill");
2304 
2305     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2306 
2307     // Is there dense prefix work?
2308     size_t total_dense_prefix_regions =
2309       region_index_end_dense_prefix - region_index_start;
2310     // How many regions of the dense prefix should be given to
2311     // each thread?
2312     if (total_dense_prefix_regions > 0) {
2313       uint tasks_for_dense_prefix = 1;
2314       if (total_dense_prefix_regions <=
2315           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2316         // Don't over partition.  This assumes that
2317         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2318         // so there are not many regions to process.
2319         tasks_for_dense_prefix = parallel_gc_threads;
2320       } else {
2321         // Over partition
2322         tasks_for_dense_prefix = parallel_gc_threads *
2323           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2324       }
2325       size_t regions_per_thread = total_dense_prefix_regions /
2326         tasks_for_dense_prefix;
2327       // Give each thread at least 1 region.
2328       if (regions_per_thread == 0) {
2329         regions_per_thread = 1;
2330       }
2331 
2332       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2333         if (region_index_start >= region_index_end_dense_prefix) {
2334           break;
2335         }
2336         // region_index_end is not processed
2337         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2338                                        region_index_end_dense_prefix);
2339         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2340                                              region_index_start,
2341                                              region_index_end));
2342         region_index_start = region_index_end;
2343       }
2344     }
2345     // This gets any part of the dense prefix that did not
2346     // fit evenly.
2347     if (region_index_start < region_index_end_dense_prefix) {
2348       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2349                                            region_index_start,
2350                                            region_index_end_dense_prefix));
2351     }
2352   }
2353 }
2354 
2355 void PSParallelCompact::enqueue_region_stealing_tasks(
2356                                      GCTaskQueue* q,
2357                                      ParallelTaskTerminator* terminator_ptr,
2358                                      uint parallel_gc_threads) {
2359   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2360 
2361   // Once a thread has drained it's stack, it should try to steal regions from
2362   // other threads.
2363   for (uint j = 0; j < parallel_gc_threads; j++) {
2364     q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2365   }
2366 }
2367 
2368 #ifdef ASSERT
2369 // Write a histogram of the number of times the block table was filled for a
2370 // region.
2371 void PSParallelCompact::write_block_fill_histogram()
2372 {
2373   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2374     return;
2375   }
2376 
2377   Log(gc, compaction) log;
2378   ResourceMark rm;
2379   LogStream ls(log.trace());
2380   outputStream* out = &ls;
2381 
2382   typedef ParallelCompactData::RegionData rd_t;
2383   ParallelCompactData& sd = summary_data();
2384 
2385   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2386     MutableSpace* const spc = _space_info[id].space();
2387     if (spc->bottom() != spc->top()) {
2388       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2389       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2390       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2391 
2392       size_t histo[5] = { 0, 0, 0, 0, 0 };
2393       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2394       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2395 
2396       for (const rd_t* cur = beg; cur < end; ++cur) {
2397         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2398       }
2399       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2400       for (size_t i = 0; i < histo_len; ++i) {
2401         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2402                    histo[i], 100.0 * histo[i] / region_cnt);
2403       }
2404       out->cr();
2405     }
2406   }
2407 }
2408 #endif // #ifdef ASSERT
2409 
2410 void PSParallelCompact::compact() {
2411   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2412 
2413   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2414   PSOldGen* old_gen = heap->old_gen();
2415   old_gen->start_array()->reset();
2416   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2417   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2418   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2419   ParallelTaskTerminator terminator(active_gc_threads, qset);
2420 
2421   GCTaskQueue* q = GCTaskQueue::create();
2422   prepare_region_draining_tasks(q, active_gc_threads);
2423   enqueue_dense_prefix_tasks(q, active_gc_threads);
2424   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2425 
2426   {
2427     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2428 
2429     gc_task_manager()->execute_and_wait(q);
2430 
2431 #ifdef  ASSERT
2432     // Verify that all regions have been processed before the deferred updates.
2433     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2434       verify_complete(SpaceId(id));
2435     }
2436 #endif
2437   }
2438 
2439   {
2440     // Update the deferred objects, if any.  Any compaction manager can be used.
2441     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2442     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2443     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2444       update_deferred_objects(cm, SpaceId(id));
2445     }
2446   }
2447 
2448   DEBUG_ONLY(write_block_fill_histogram());
2449 }
2450 
2451 #ifdef  ASSERT
2452 void PSParallelCompact::verify_complete(SpaceId space_id) {
2453   // All Regions between space bottom() to new_top() should be marked as filled
2454   // and all Regions between new_top() and top() should be available (i.e.,
2455   // should have been emptied).
2456   ParallelCompactData& sd = summary_data();
2457   SpaceInfo si = _space_info[space_id];
2458   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2459   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2460   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2461   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2462   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2463 
2464   bool issued_a_warning = false;
2465 
2466   size_t cur_region;
2467   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2468     const RegionData* const c = sd.region(cur_region);
2469     if (!c->completed()) {
2470       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2471                       cur_region, c->destination_count());
2472       issued_a_warning = true;
2473     }
2474   }
2475 
2476   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2477     const RegionData* const c = sd.region(cur_region);
2478     if (!c->available()) {
2479       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2480                       cur_region, c->destination_count());
2481       issued_a_warning = true;
2482     }
2483   }
2484 
2485   if (issued_a_warning) {
2486     print_region_ranges();
2487   }
2488 }
2489 #endif  // #ifdef ASSERT
2490 
2491 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2492   _start_array->allocate_block(addr);
2493   compaction_manager()->update_contents(oop(addr));
2494 }
2495 
2496 // Update interior oops in the ranges of regions [beg_region, end_region).
2497 void
2498 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2499                                                        SpaceId space_id,
2500                                                        size_t beg_region,
2501                                                        size_t end_region) {
2502   ParallelCompactData& sd = summary_data();
2503   ParMarkBitMap* const mbm = mark_bitmap();
2504 
2505   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2506   HeapWord* const end_addr = sd.region_to_addr(end_region);
2507   assert(beg_region <= end_region, "bad region range");
2508   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2509 
2510 #ifdef  ASSERT
2511   // Claim the regions to avoid triggering an assert when they are marked as
2512   // filled.
2513   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2514     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2515   }
2516 #endif  // #ifdef ASSERT
2517 
2518   if (beg_addr != space(space_id)->bottom()) {
2519     // Find the first live object or block of dead space that *starts* in this
2520     // range of regions.  If a partial object crosses onto the region, skip it;
2521     // it will be marked for 'deferred update' when the object head is
2522     // processed.  If dead space crosses onto the region, it is also skipped; it
2523     // will be filled when the prior region is processed.  If neither of those
2524     // apply, the first word in the region is the start of a live object or dead
2525     // space.
2526     assert(beg_addr > space(space_id)->bottom(), "sanity");
2527     const RegionData* const cp = sd.region(beg_region);
2528     if (cp->partial_obj_size() != 0) {
2529       beg_addr = sd.partial_obj_end(beg_region);
2530     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2531       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2532     }
2533   }
2534 
2535   if (beg_addr < end_addr) {
2536     // A live object or block of dead space starts in this range of Regions.
2537      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2538 
2539     // Create closures and iterate.
2540     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2541     FillClosure fill_closure(cm, space_id);
2542     ParMarkBitMap::IterationStatus status;
2543     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2544                           dense_prefix_end);
2545     if (status == ParMarkBitMap::incomplete) {
2546       update_closure.do_addr(update_closure.source());
2547     }
2548   }
2549 
2550   // Mark the regions as filled.
2551   RegionData* const beg_cp = sd.region(beg_region);
2552   RegionData* const end_cp = sd.region(end_region);
2553   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2554     cp->set_completed();
2555   }
2556 }
2557 
2558 // Return the SpaceId for the space containing addr.  If addr is not in the
2559 // heap, last_space_id is returned.  In debug mode it expects the address to be
2560 // in the heap and asserts such.
2561 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2562   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2563 
2564   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2565     if (_space_info[id].space()->contains(addr)) {
2566       return SpaceId(id);
2567     }
2568   }
2569 
2570   assert(false, "no space contains the addr");
2571   return last_space_id;
2572 }
2573 
2574 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2575                                                 SpaceId id) {
2576   assert(id < last_space_id, "bad space id");
2577 
2578   ParallelCompactData& sd = summary_data();
2579   const SpaceInfo* const space_info = _space_info + id;
2580   ObjectStartArray* const start_array = space_info->start_array();
2581 
2582   const MutableSpace* const space = space_info->space();
2583   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2584   HeapWord* const beg_addr = space_info->dense_prefix();
2585   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2586 
2587   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2588   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2589   const RegionData* cur_region;
2590   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2591     HeapWord* const addr = cur_region->deferred_obj_addr();
2592     if (addr != NULL) {
2593       if (start_array != NULL) {
2594         start_array->allocate_block(addr);
2595       }
2596       cm->update_contents(oop(addr));
2597       assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2598     }
2599   }
2600 }
2601 
2602 // Skip over count live words starting from beg, and return the address of the
2603 // next live word.  Unless marked, the word corresponding to beg is assumed to
2604 // be dead.  Callers must either ensure beg does not correspond to the middle of
2605 // an object, or account for those live words in some other way.  Callers must
2606 // also ensure that there are enough live words in the range [beg, end) to skip.
2607 HeapWord*
2608 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2609 {
2610   assert(count > 0, "sanity");
2611 
2612   ParMarkBitMap* m = mark_bitmap();
2613   idx_t bits_to_skip = m->words_to_bits(count);
2614   idx_t cur_beg = m->addr_to_bit(beg);
2615   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2616 
2617   do {
2618     cur_beg = m->find_obj_beg(cur_beg, search_end);
2619     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2620     const size_t obj_bits = cur_end - cur_beg + 1;
2621     if (obj_bits > bits_to_skip) {
2622       return m->bit_to_addr(cur_beg + bits_to_skip);
2623     }
2624     bits_to_skip -= obj_bits;
2625     cur_beg = cur_end + 1;
2626   } while (bits_to_skip > 0);
2627 
2628   // Skipping the desired number of words landed just past the end of an object.
2629   // Find the start of the next object.
2630   cur_beg = m->find_obj_beg(cur_beg, search_end);
2631   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2632   return m->bit_to_addr(cur_beg);
2633 }
2634 
2635 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2636                                             SpaceId src_space_id,
2637                                             size_t src_region_idx)
2638 {
2639   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2640 
2641   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2642   if (split_info.dest_region_addr() == dest_addr) {
2643     // The partial object ending at the split point contains the first word to
2644     // be copied to dest_addr.
2645     return split_info.first_src_addr();
2646   }
2647 
2648   const ParallelCompactData& sd = summary_data();
2649   ParMarkBitMap* const bitmap = mark_bitmap();
2650   const size_t RegionSize = ParallelCompactData::RegionSize;
2651 
2652   assert(sd.is_region_aligned(dest_addr), "not aligned");
2653   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2654   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2655   HeapWord* const src_region_destination = src_region_ptr->destination();
2656 
2657   assert(dest_addr >= src_region_destination, "wrong src region");
2658   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2659 
2660   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2661   HeapWord* const src_region_end = src_region_beg + RegionSize;
2662 
2663   HeapWord* addr = src_region_beg;
2664   if (dest_addr == src_region_destination) {
2665     // Return the first live word in the source region.
2666     if (partial_obj_size == 0) {
2667       addr = bitmap->find_obj_beg(addr, src_region_end);
2668       assert(addr < src_region_end, "no objects start in src region");
2669     }
2670     return addr;
2671   }
2672 
2673   // Must skip some live data.
2674   size_t words_to_skip = dest_addr - src_region_destination;
2675   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2676 
2677   if (partial_obj_size >= words_to_skip) {
2678     // All the live words to skip are part of the partial object.
2679     addr += words_to_skip;
2680     if (partial_obj_size == words_to_skip) {
2681       // Find the first live word past the partial object.
2682       addr = bitmap->find_obj_beg(addr, src_region_end);
2683       assert(addr < src_region_end, "wrong src region");
2684     }
2685     return addr;
2686   }
2687 
2688   // Skip over the partial object (if any).
2689   if (partial_obj_size != 0) {
2690     words_to_skip -= partial_obj_size;
2691     addr += partial_obj_size;
2692   }
2693 
2694   // Skip over live words due to objects that start in the region.
2695   addr = skip_live_words(addr, src_region_end, words_to_skip);
2696   assert(addr < src_region_end, "wrong src region");
2697   return addr;
2698 }
2699 
2700 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2701                                                      SpaceId src_space_id,
2702                                                      size_t beg_region,
2703                                                      HeapWord* end_addr)
2704 {
2705   ParallelCompactData& sd = summary_data();
2706 
2707 #ifdef ASSERT
2708   MutableSpace* const src_space = _space_info[src_space_id].space();
2709   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2710   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2711          "src_space_id does not match beg_addr");
2712   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2713          "src_space_id does not match end_addr");
2714 #endif // #ifdef ASSERT
2715 
2716   RegionData* const beg = sd.region(beg_region);
2717   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2718 
2719   // Regions up to new_top() are enqueued if they become available.
2720   HeapWord* const new_top = _space_info[src_space_id].new_top();
2721   RegionData* const enqueue_end =
2722     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2723 
2724   for (RegionData* cur = beg; cur < end; ++cur) {
2725     assert(cur->data_size() > 0, "region must have live data");
2726     cur->decrement_destination_count();
2727     if (cur < enqueue_end && cur->available() && cur->claim()) {
2728       cm->push_region(sd.region(cur));
2729     }
2730   }
2731 }
2732 
2733 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2734                                           SpaceId& src_space_id,
2735                                           HeapWord*& src_space_top,
2736                                           HeapWord* end_addr)
2737 {
2738   typedef ParallelCompactData::RegionData RegionData;
2739 
2740   ParallelCompactData& sd = PSParallelCompact::summary_data();
2741   const size_t region_size = ParallelCompactData::RegionSize;
2742 
2743   size_t src_region_idx = 0;
2744 
2745   // Skip empty regions (if any) up to the top of the space.
2746   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2747   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2748   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2749   const RegionData* const top_region_ptr =
2750     sd.addr_to_region_ptr(top_aligned_up);
2751   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2752     ++src_region_ptr;
2753   }
2754 
2755   if (src_region_ptr < top_region_ptr) {
2756     // The next source region is in the current space.  Update src_region_idx
2757     // and the source address to match src_region_ptr.
2758     src_region_idx = sd.region(src_region_ptr);
2759     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2760     if (src_region_addr > closure.source()) {
2761       closure.set_source(src_region_addr);
2762     }
2763     return src_region_idx;
2764   }
2765 
2766   // Switch to a new source space and find the first non-empty region.
2767   unsigned int space_id = src_space_id + 1;
2768   assert(space_id < last_space_id, "not enough spaces");
2769 
2770   HeapWord* const destination = closure.destination();
2771 
2772   do {
2773     MutableSpace* space = _space_info[space_id].space();
2774     HeapWord* const bottom = space->bottom();
2775     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2776 
2777     // Iterate over the spaces that do not compact into themselves.
2778     if (bottom_cp->destination() != bottom) {
2779       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2780       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2781 
2782       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2783         if (src_cp->live_obj_size() > 0) {
2784           // Found it.
2785           assert(src_cp->destination() == destination,
2786                  "first live obj in the space must match the destination");
2787           assert(src_cp->partial_obj_size() == 0,
2788                  "a space cannot begin with a partial obj");
2789 
2790           src_space_id = SpaceId(space_id);
2791           src_space_top = space->top();
2792           const size_t src_region_idx = sd.region(src_cp);
2793           closure.set_source(sd.region_to_addr(src_region_idx));
2794           return src_region_idx;
2795         } else {
2796           assert(src_cp->data_size() == 0, "sanity");
2797         }
2798       }
2799     }
2800   } while (++space_id < last_space_id);
2801 
2802   assert(false, "no source region was found");
2803   return 0;
2804 }
2805 
2806 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2807 {
2808   typedef ParMarkBitMap::IterationStatus IterationStatus;
2809   const size_t RegionSize = ParallelCompactData::RegionSize;
2810   ParMarkBitMap* const bitmap = mark_bitmap();
2811   ParallelCompactData& sd = summary_data();
2812   RegionData* const region_ptr = sd.region(region_idx);
2813 
2814   // Get the items needed to construct the closure.
2815   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2816   SpaceId dest_space_id = space_id(dest_addr);
2817   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2818   HeapWord* new_top = _space_info[dest_space_id].new_top();
2819   assert(dest_addr < new_top, "sanity");
2820   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2821 
2822   // Get the source region and related info.
2823   size_t src_region_idx = region_ptr->source_region();
2824   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2825   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2826 
2827   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2828   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2829 
2830   // Adjust src_region_idx to prepare for decrementing destination counts (the
2831   // destination count is not decremented when a region is copied to itself).
2832   if (src_region_idx == region_idx) {
2833     src_region_idx += 1;
2834   }
2835 
2836   if (bitmap->is_unmarked(closure.source())) {
2837     // The first source word is in the middle of an object; copy the remainder
2838     // of the object or as much as will fit.  The fact that pointer updates were
2839     // deferred will be noted when the object header is processed.
2840     HeapWord* const old_src_addr = closure.source();
2841     closure.copy_partial_obj();
2842     if (closure.is_full()) {
2843       decrement_destination_counts(cm, src_space_id, src_region_idx,
2844                                    closure.source());
2845       region_ptr->set_deferred_obj_addr(NULL);
2846       region_ptr->set_completed();
2847       return;
2848     }
2849 
2850     HeapWord* const end_addr = sd.region_align_down(closure.source());
2851     if (sd.region_align_down(old_src_addr) != end_addr) {
2852       // The partial object was copied from more than one source region.
2853       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2854 
2855       // Move to the next source region, possibly switching spaces as well.  All
2856       // args except end_addr may be modified.
2857       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2858                                        end_addr);
2859     }
2860   }
2861 
2862   do {
2863     HeapWord* const cur_addr = closure.source();
2864     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2865                                     src_space_top);
2866     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2867 
2868     if (status == ParMarkBitMap::incomplete) {
2869       // The last obj that starts in the source region does not end in the
2870       // region.
2871       assert(closure.source() < end_addr, "sanity");
2872       HeapWord* const obj_beg = closure.source();
2873       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2874                                        src_space_top);
2875       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2876       if (obj_end < range_end) {
2877         // The end was found; the entire object will fit.
2878         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2879         assert(status != ParMarkBitMap::would_overflow, "sanity");
2880       } else {
2881         // The end was not found; the object will not fit.
2882         assert(range_end < src_space_top, "obj cannot cross space boundary");
2883         status = ParMarkBitMap::would_overflow;
2884       }
2885     }
2886 
2887     if (status == ParMarkBitMap::would_overflow) {
2888       // The last object did not fit.  Note that interior oop updates were
2889       // deferred, then copy enough of the object to fill the region.
2890       region_ptr->set_deferred_obj_addr(closure.destination());
2891       status = closure.copy_until_full(); // copies from closure.source()
2892 
2893       decrement_destination_counts(cm, src_space_id, src_region_idx,
2894                                    closure.source());
2895       region_ptr->set_completed();
2896       return;
2897     }
2898 
2899     if (status == ParMarkBitMap::full) {
2900       decrement_destination_counts(cm, src_space_id, src_region_idx,
2901                                    closure.source());
2902       region_ptr->set_deferred_obj_addr(NULL);
2903       region_ptr->set_completed();
2904       return;
2905     }
2906 
2907     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2908 
2909     // Move to the next source region, possibly switching spaces as well.  All
2910     // args except end_addr may be modified.
2911     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2912                                      end_addr);
2913   } while (true);
2914 }
2915 
2916 void PSParallelCompact::fill_blocks(size_t region_idx)
2917 {
2918   // Fill in the block table elements for the specified region.  Each block
2919   // table element holds the number of live words in the region that are to the
2920   // left of the first object that starts in the block.  Thus only blocks in
2921   // which an object starts need to be filled.
2922   //
2923   // The algorithm scans the section of the bitmap that corresponds to the
2924   // region, keeping a running total of the live words.  When an object start is
2925   // found, if it's the first to start in the block that contains it, the
2926   // current total is written to the block table element.
2927   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2928   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2929   const size_t RegionSize = ParallelCompactData::RegionSize;
2930 
2931   ParallelCompactData& sd = summary_data();
2932   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2933   if (partial_obj_size >= RegionSize) {
2934     return; // No objects start in this region.
2935   }
2936 
2937   // Ensure the first loop iteration decides that the block has changed.
2938   size_t cur_block = sd.block_count();
2939 
2940   const ParMarkBitMap* const bitmap = mark_bitmap();
2941 
2942   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2943   assert((size_t)1 << Log2BitsPerBlock ==
2944          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2945 
2946   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2947   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2948   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2949   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2950   while (beg_bit < range_end) {
2951     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2952     if (new_block != cur_block) {
2953       cur_block = new_block;
2954       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2955     }
2956 
2957     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2958     if (end_bit < range_end - 1) {
2959       live_bits += end_bit - beg_bit + 1;
2960       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2961     } else {
2962       return;
2963     }
2964   }
2965 }
2966 
2967 void
2968 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2969   const MutableSpace* sp = space(space_id);
2970   if (sp->is_empty()) {
2971     return;
2972   }
2973 
2974   ParallelCompactData& sd = PSParallelCompact::summary_data();
2975   ParMarkBitMap* const bitmap = mark_bitmap();
2976   HeapWord* const dp_addr = dense_prefix(space_id);
2977   HeapWord* beg_addr = sp->bottom();
2978   HeapWord* end_addr = sp->top();
2979 
2980   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
2981 
2982   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
2983   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
2984   if (beg_region < dp_region) {
2985     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
2986   }
2987 
2988   // The destination of the first live object that starts in the region is one
2989   // past the end of the partial object entering the region (if any).
2990   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
2991   HeapWord* const new_top = _space_info[space_id].new_top();
2992   assert(new_top >= dest_addr, "bad new_top value");
2993   const size_t words = pointer_delta(new_top, dest_addr);
2994 
2995   if (words > 0) {
2996     ObjectStartArray* start_array = _space_info[space_id].start_array();
2997     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2998 
2999     ParMarkBitMap::IterationStatus status;
3000     status = bitmap->iterate(&closure, dest_addr, end_addr);
3001     assert(status == ParMarkBitMap::full, "iteration not complete");
3002     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3003            "live objects skipped because closure is full");
3004   }
3005 }
3006 
3007 jlong PSParallelCompact::millis_since_last_gc() {
3008   // We need a monotonically non-decreasing time in ms but
3009   // os::javaTimeMillis() does not guarantee monotonicity.
3010   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3011   jlong ret_val = now - _time_of_last_gc;
3012   // XXX See note in genCollectedHeap::millis_since_last_gc().
3013   if (ret_val < 0) {
3014     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3015     return 0;
3016   }
3017   return ret_val;
3018 }
3019 
3020 void PSParallelCompact::reset_millis_since_last_gc() {
3021   // We need a monotonically non-decreasing time in ms but
3022   // os::javaTimeMillis() does not guarantee monotonicity.
3023   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3024 }
3025 
3026 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3027 {
3028   if (source() != destination()) {
3029     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3030     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3031   }
3032   update_state(words_remaining());
3033   assert(is_full(), "sanity");
3034   return ParMarkBitMap::full;
3035 }
3036 
3037 void MoveAndUpdateClosure::copy_partial_obj()
3038 {
3039   size_t words = words_remaining();
3040 
3041   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3042   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3043   if (end_addr < range_end) {
3044     words = bitmap()->obj_size(source(), end_addr);
3045   }
3046 
3047   // This test is necessary; if omitted, the pointer updates to a partial object
3048   // that crosses the dense prefix boundary could be overwritten.
3049   if (source() != destination()) {
3050     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3051     Copy::aligned_conjoint_words(source(), destination(), words);
3052   }
3053   update_state(words);
3054 }
3055 
3056 void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3057   PSParallelCompact::AdjustPointerClosure closure(cm);
3058   oop_oop_iterate_oop_maps<true>(obj, &closure);
3059 }
3060 
3061 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3062   InstanceKlass::oop_pc_update_pointers(obj, cm);
3063 
3064   PSParallelCompact::AdjustPointerClosure closure(cm);
3065   oop_oop_iterate_statics<true>(obj, &closure);
3066 }
3067 
3068 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3069   InstanceKlass::oop_pc_update_pointers(obj, cm);
3070 }
3071 
3072 #ifdef ASSERT
3073 template <class T> static void trace_reference_gc(const char *s, oop obj,
3074                                                   T* referent_addr,
3075                                                   T* next_addr,
3076                                                   T* discovered_addr) {
3077   log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj));
3078   log_develop_trace(gc, ref)("     referent_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3079                              p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3080   log_develop_trace(gc, ref)("     next_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3081                              p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3082   log_develop_trace(gc, ref)("     discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3083                              p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3084 }
3085 #endif
3086 
3087 template <class T>
3088 static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) {
3089   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3090   PSParallelCompact::adjust_pointer(referent_addr, cm);
3091   T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3092   PSParallelCompact::adjust_pointer(next_addr, cm);
3093   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3094   PSParallelCompact::adjust_pointer(discovered_addr, cm);
3095   debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3096                                 referent_addr, next_addr, discovered_addr);)
3097 }
3098 
3099 void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3100   InstanceKlass::oop_pc_update_pointers(obj, cm);
3101 
3102   if (UseCompressedOops) {
3103     oop_pc_update_pointers_specialized<narrowOop>(obj, cm);
3104   } else {
3105     oop_pc_update_pointers_specialized<oop>(obj, cm);
3106   }
3107 }
3108 
3109 void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3110   assert(obj->is_objArray(), "obj must be obj array");
3111   PSParallelCompact::AdjustPointerClosure closure(cm);
3112   oop_oop_iterate_elements<true>(objArrayOop(obj), &closure);
3113 }
3114 
3115 void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3116   assert(obj->is_typeArray(),"must be a type array");
3117 }
3118 
3119 ParMarkBitMapClosure::IterationStatus
3120 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3121   assert(destination() != NULL, "sanity");
3122   assert(bitmap()->obj_size(addr) == words, "bad size");
3123 
3124   _source = addr;
3125   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3126          destination(), "wrong destination");
3127 
3128   if (words > words_remaining()) {
3129     return ParMarkBitMap::would_overflow;
3130   }
3131 
3132   // The start_array must be updated even if the object is not moving.
3133   if (_start_array != NULL) {
3134     _start_array->allocate_block(destination());
3135   }
3136 
3137   if (destination() != source()) {
3138     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3139     Copy::aligned_conjoint_words(source(), destination(), words);
3140   }
3141 
3142   oop moved_oop = (oop) destination();
3143   compaction_manager()->update_contents(moved_oop);
3144   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3145 
3146   update_state(words);
3147   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3148   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3149 }
3150 
3151 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3152                                      ParCompactionManager* cm,
3153                                      PSParallelCompact::SpaceId space_id) :
3154   ParMarkBitMapClosure(mbm, cm),
3155   _space_id(space_id),
3156   _start_array(PSParallelCompact::start_array(space_id))
3157 {
3158 }
3159 
3160 // Updates the references in the object to their new values.
3161 ParMarkBitMapClosure::IterationStatus
3162 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3163   do_addr(addr);
3164   return ParMarkBitMap::incomplete;
3165 }
3166 
3167 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3168   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3169   _start_array(PSParallelCompact::start_array(space_id))
3170 {
3171   assert(space_id == PSParallelCompact::old_space_id,
3172          "cannot use FillClosure in the young gen");
3173 }
3174 
3175 ParMarkBitMapClosure::IterationStatus
3176 FillClosure::do_addr(HeapWord* addr, size_t size) {
3177   CollectedHeap::fill_with_objects(addr, size);
3178   HeapWord* const end = addr + size;
3179   do {
3180     _start_array->allocate_block(addr);
3181     addr += oop(addr)->size();
3182   } while (addr < end);
3183   return ParMarkBitMap::incomplete;
3184 }