1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 
  38 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  39 // is an abstract class: there may be many different kinds of heaps.  This
  40 // class defines the functions that a heap must implement, and contains
  41 // infrastructure common to all heaps.
  42 
  43 class AdaptiveSizePolicy;
  44 class BarrierSet;
  45 class CollectorPolicy;
  46 class GCHeapSummary;
  47 class GCTimer;
  48 class GCTracer;
  49 class MetaspaceSummary;
  50 class Thread;
  51 class ThreadClosure;
  52 class VirtualSpaceSummary;
  53 class WorkGang;
  54 class nmethod;
  55 
  56 class GCMessage : public FormatBuffer<1024> {
  57  public:
  58   bool is_before;
  59 
  60  public:
  61   GCMessage() {}
  62 };
  63 
  64 class CollectedHeap;
  65 
  66 class GCHeapLog : public EventLogBase<GCMessage> {
  67  private:
  68   void log_heap(CollectedHeap* heap, bool before);
  69 
  70  public:
  71   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  72 
  73   void log_heap_before(CollectedHeap* heap) {
  74     log_heap(heap, true);
  75   }
  76   void log_heap_after(CollectedHeap* heap) {
  77     log_heap(heap, false);
  78   }
  79 };
  80 
  81 //
  82 // CollectedHeap
  83 //   GenCollectedHeap
  84 //   G1CollectedHeap
  85 //   ParallelScavengeHeap
  86 //
  87 class CollectedHeap : public CHeapObj<mtInternal> {
  88   friend class VMStructs;
  89   friend class JVMCIVMStructs;
  90   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  91 
  92  private:
  93 #ifdef ASSERT
  94   static int       _fire_out_of_memory_count;
  95 #endif
  96 
  97   GCHeapLog* _gc_heap_log;
  98 
  99   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
 100   // or INCLUDE_JVMCI is being used
 101   bool _defer_initial_card_mark;
 102 
 103   MemRegion _reserved;
 104 
 105  protected:
 106   BarrierSet* _barrier_set;
 107   bool _is_gc_active;
 108 
 109   // Used for filler objects (static, but initialized in ctor).
 110   static size_t _filler_array_max_size;
 111 
 112   unsigned int _total_collections;          // ... started
 113   unsigned int _total_full_collections;     // ... started
 114   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 116 
 117   // Reason for current garbage collection.  Should be set to
 118   // a value reflecting no collection between collections.
 119   GCCause::Cause _gc_cause;
 120   GCCause::Cause _gc_lastcause;
 121   PerfStringVariable* _perf_gc_cause;
 122   PerfStringVariable* _perf_gc_lastcause;
 123 
 124   // Constructor
 125   CollectedHeap();
 126 
 127   // Do common initializations that must follow instance construction,
 128   // for example, those needing virtual calls.
 129   // This code could perhaps be moved into initialize() but would
 130   // be slightly more awkward because we want the latter to be a
 131   // pure virtual.
 132   void pre_initialize();
 133 
 134   // Create a new tlab. All TLAB allocations must go through this.
 135   virtual HeapWord* allocate_new_tlab(size_t size);
 136 
 137   // Accumulate statistics on all tlabs.
 138   virtual void accumulate_statistics_all_tlabs();
 139 
 140   // Reinitialize tlabs before resuming mutators.
 141   virtual void resize_all_tlabs();
 142 
 143   // Allocate from the current thread's TLAB, with broken-out slow path.
 144   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 145   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 146 
 147   // Handle if needed heap sampling.
 148   static HeapWord* handle_heap_sampling(Thread* thread, HeapWord* obj, size_t size);
 149 
 150   // Allocate an uninitialized block of the given size, or returns NULL if
 151   // this is impossible.
 152   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 153 
 154   // Like allocate_init, but the block returned by a successful allocation
 155   // is guaranteed initialized to zeros.
 156   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 157 
 158   // Helper functions for (VM) allocation.
 159   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 160   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 161                                                             HeapWord* objPtr);
 162 
 163   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 164 
 165   inline static void post_allocation_setup_array(Klass* klass,
 166                                                  HeapWord* obj, int length);
 167 
 168   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 169 
 170   // Clears an allocated object.
 171   inline static void init_obj(HeapWord* obj, size_t size);
 172 
 173   // Filler object utilities.
 174   static inline size_t filler_array_hdr_size();
 175   static inline size_t filler_array_min_size();
 176 
 177   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 178   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 179 
 180   // Fill with a single array; caller must ensure filler_array_min_size() <=
 181   // words <= filler_array_max_size().
 182   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 183 
 184   // Fill with a single object (either an int array or a java.lang.Object).
 185   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 186 
 187   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 188 
 189   // Verification functions
 190   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 191     PRODUCT_RETURN;
 192   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 193     PRODUCT_RETURN;
 194   debug_only(static void check_for_valid_allocation_state();)
 195 
 196  public:
 197   enum Name {
 198     GenCollectedHeap,
 199     ParallelScavengeHeap,
 200     G1CollectedHeap
 201   };
 202 
 203   static inline size_t filler_array_max_size() {
 204     return _filler_array_max_size;
 205   }
 206 
 207   virtual Name kind() const = 0;
 208 
 209   virtual const char* name() const = 0;
 210 
 211   /**
 212    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 213    * and JNI_OK on success.
 214    */
 215   virtual jint initialize() = 0;
 216 
 217   // In many heaps, there will be a need to perform some initialization activities
 218   // after the Universe is fully formed, but before general heap allocation is allowed.
 219   // This is the correct place to place such initialization methods.
 220   virtual void post_initialize() = 0;
 221 
 222   // Stop any onging concurrent work and prepare for exit.
 223   virtual void stop() {}
 224 
 225   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 226   MemRegion reserved_region() const { return _reserved; }
 227   address base() const { return (address)reserved_region().start(); }
 228 
 229   virtual size_t capacity() const = 0;
 230   virtual size_t used() const = 0;
 231 
 232   // Return "true" if the part of the heap that allocates Java
 233   // objects has reached the maximal committed limit that it can
 234   // reach, without a garbage collection.
 235   virtual bool is_maximal_no_gc() const = 0;
 236 
 237   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 238   // memory that the vm could make available for storing 'normal' java objects.
 239   // This is based on the reserved address space, but should not include space
 240   // that the vm uses internally for bookkeeping or temporary storage
 241   // (e.g., in the case of the young gen, one of the survivor
 242   // spaces).
 243   virtual size_t max_capacity() const = 0;
 244 
 245   // Returns "TRUE" if "p" points into the reserved area of the heap.
 246   bool is_in_reserved(const void* p) const {
 247     return _reserved.contains(p);
 248   }
 249 
 250   bool is_in_reserved_or_null(const void* p) const {
 251     return p == NULL || is_in_reserved(p);
 252   }
 253 
 254   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 255   // This method can be expensive so avoid using it in performance critical
 256   // code.
 257   virtual bool is_in(const void* p) const = 0;
 258 
 259   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 260 
 261   // Let's define some terms: a "closed" subset of a heap is one that
 262   //
 263   // 1) contains all currently-allocated objects, and
 264   //
 265   // 2) is closed under reference: no object in the closed subset
 266   //    references one outside the closed subset.
 267   //
 268   // Membership in a heap's closed subset is useful for assertions.
 269   // Clearly, the entire heap is a closed subset, so the default
 270   // implementation is to use "is_in_reserved".  But this may not be too
 271   // liberal to perform useful checking.  Also, the "is_in" predicate
 272   // defines a closed subset, but may be too expensive, since "is_in"
 273   // verifies that its argument points to an object head.  The
 274   // "closed_subset" method allows a heap to define an intermediate
 275   // predicate, allowing more precise checking than "is_in_reserved" at
 276   // lower cost than "is_in."
 277 
 278   // One important case is a heap composed of disjoint contiguous spaces,
 279   // such as the Garbage-First collector.  Such heaps have a convenient
 280   // closed subset consisting of the allocated portions of those
 281   // contiguous spaces.
 282 
 283   // Return "TRUE" iff the given pointer points into the heap's defined
 284   // closed subset (which defaults to the entire heap).
 285   virtual bool is_in_closed_subset(const void* p) const {
 286     return is_in_reserved(p);
 287   }
 288 
 289   bool is_in_closed_subset_or_null(const void* p) const {
 290     return p == NULL || is_in_closed_subset(p);
 291   }
 292 
 293   // An object is scavengable if its location may move during a scavenge.
 294   // (A scavenge is a GC which is not a full GC.)
 295   virtual bool is_scavengable(const void *p) = 0;
 296 
 297   void set_gc_cause(GCCause::Cause v) {
 298      if (UsePerfData) {
 299        _gc_lastcause = _gc_cause;
 300        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 301        _perf_gc_cause->set_value(GCCause::to_string(v));
 302      }
 303     _gc_cause = v;
 304   }
 305   GCCause::Cause gc_cause() { return _gc_cause; }
 306 
 307   // General obj/array allocation facilities.
 308   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 309   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 310   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 311   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 312 
 313   // Raw memory allocation facilities
 314   // The obj and array allocate methods are covers for these methods.
 315   // mem_allocate() should never be
 316   // called to allocate TLABs, only individual objects.
 317   virtual HeapWord* mem_allocate(size_t size,
 318                                  bool* gc_overhead_limit_was_exceeded) = 0;
 319 
 320   // Utilities for turning raw memory into filler objects.
 321   //
 322   // min_fill_size() is the smallest region that can be filled.
 323   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 324   // multiple objects.  fill_with_object() is for regions known to be smaller
 325   // than the largest array of integers; it uses a single object to fill the
 326   // region and has slightly less overhead.
 327   static size_t min_fill_size() {
 328     return size_t(align_object_size(oopDesc::header_size()));
 329   }
 330 
 331   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 332 
 333   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 334   static void fill_with_object(MemRegion region, bool zap = true) {
 335     fill_with_object(region.start(), region.word_size(), zap);
 336   }
 337   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 338     fill_with_object(start, pointer_delta(end, start), zap);
 339   }
 340 
 341   // Return the address "addr" aligned by "alignment_in_bytes" if such
 342   // an address is below "end".  Return NULL otherwise.
 343   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 344                                                    HeapWord* end,
 345                                                    unsigned short alignment_in_bytes);
 346 
 347   // Some heaps may offer a contiguous region for shared non-blocking
 348   // allocation, via inlined code (by exporting the address of the top and
 349   // end fields defining the extent of the contiguous allocation region.)
 350 
 351   // This function returns "true" iff the heap supports this kind of
 352   // allocation.  (Default is "no".)
 353   virtual bool supports_inline_contig_alloc() const {
 354     return false;
 355   }
 356   // These functions return the addresses of the fields that define the
 357   // boundaries of the contiguous allocation area.  (These fields should be
 358   // physically near to one another.)
 359   virtual HeapWord* volatile* top_addr() const {
 360     guarantee(false, "inline contiguous allocation not supported");
 361     return NULL;
 362   }
 363   virtual HeapWord** end_addr() const {
 364     guarantee(false, "inline contiguous allocation not supported");
 365     return NULL;
 366   }
 367 
 368   // Some heaps may be in an unparseable state at certain times between
 369   // collections. This may be necessary for efficient implementation of
 370   // certain allocation-related activities. Calling this function before
 371   // attempting to parse a heap ensures that the heap is in a parsable
 372   // state (provided other concurrent activity does not introduce
 373   // unparsability). It is normally expected, therefore, that this
 374   // method is invoked with the world stopped.
 375   // NOTE: if you override this method, make sure you call
 376   // super::ensure_parsability so that the non-generational
 377   // part of the work gets done. See implementation of
 378   // CollectedHeap::ensure_parsability and, for instance,
 379   // that of GenCollectedHeap::ensure_parsability().
 380   // The argument "retire_tlabs" controls whether existing TLABs
 381   // are merely filled or also retired, thus preventing further
 382   // allocation from them and necessitating allocation of new TLABs.
 383   virtual void ensure_parsability(bool retire_tlabs);
 384 
 385   // Section on thread-local allocation buffers (TLABs)
 386   // If the heap supports thread-local allocation buffers, it should override
 387   // the following methods:
 388   // Returns "true" iff the heap supports thread-local allocation buffers.
 389   // The default is "no".
 390   virtual bool supports_tlab_allocation() const = 0;
 391 
 392   // The amount of space available for thread-local allocation buffers.
 393   virtual size_t tlab_capacity(Thread *thr) const = 0;
 394 
 395   // The amount of used space for thread-local allocation buffers for the given thread.
 396   virtual size_t tlab_used(Thread *thr) const = 0;
 397 
 398   virtual size_t max_tlab_size() const;
 399 
 400   // An estimate of the maximum allocation that could be performed
 401   // for thread-local allocation buffers without triggering any
 402   // collection or expansion activity.
 403   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 404     guarantee(false, "thread-local allocation buffers not supported");
 405     return 0;
 406   }
 407 
 408   // Can a compiler initialize a new object without store barriers?
 409   // This permission only extends from the creation of a new object
 410   // via a TLAB up to the first subsequent safepoint. If such permission
 411   // is granted for this heap type, the compiler promises to call
 412   // defer_store_barrier() below on any slow path allocation of
 413   // a new object for which such initializing store barriers will
 414   // have been elided.
 415   virtual bool can_elide_tlab_store_barriers() const = 0;
 416 
 417   // If a compiler is eliding store barriers for TLAB-allocated objects,
 418   // there is probably a corresponding slow path which can produce
 419   // an object allocated anywhere.  The compiler's runtime support
 420   // promises to call this function on such a slow-path-allocated
 421   // object before performing initializations that have elided
 422   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 423   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 424 
 425   // Answers whether an initializing store to a new object currently
 426   // allocated at the given address doesn't need a store
 427   // barrier. Returns "true" if it doesn't need an initializing
 428   // store barrier; answers "false" if it does.
 429   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 430 
 431   // If a compiler is eliding store barriers for TLAB-allocated objects,
 432   // we will be informed of a slow-path allocation by a call
 433   // to new_store_pre_barrier() above. Such a call precedes the
 434   // initialization of the object itself, and no post-store-barriers will
 435   // be issued. Some heap types require that the barrier strictly follows
 436   // the initializing stores. (This is currently implemented by deferring the
 437   // barrier until the next slow-path allocation or gc-related safepoint.)
 438   // This interface answers whether a particular heap type needs the card
 439   // mark to be thus strictly sequenced after the stores.
 440   virtual bool card_mark_must_follow_store() const = 0;
 441 
 442   // If the CollectedHeap was asked to defer a store barrier above,
 443   // this informs it to flush such a deferred store barrier to the
 444   // remembered set.
 445   virtual void flush_deferred_store_barrier(JavaThread* thread);
 446 
 447   // Perform a collection of the heap; intended for use in implementing
 448   // "System.gc".  This probably implies as full a collection as the
 449   // "CollectedHeap" supports.
 450   virtual void collect(GCCause::Cause cause) = 0;
 451 
 452   // Perform a full collection
 453   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 454 
 455   // This interface assumes that it's being called by the
 456   // vm thread. It collects the heap assuming that the
 457   // heap lock is already held and that we are executing in
 458   // the context of the vm thread.
 459   virtual void collect_as_vm_thread(GCCause::Cause cause);
 460 
 461   // Returns the barrier set for this heap
 462   BarrierSet* barrier_set() { return _barrier_set; }
 463   void set_barrier_set(BarrierSet* barrier_set);
 464 
 465   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 466   // that it should answer "false" for the concurrent part of a concurrent
 467   // collector -- dld).
 468   bool is_gc_active() const { return _is_gc_active; }
 469 
 470   // Total number of GC collections (started)
 471   unsigned int total_collections() const { return _total_collections; }
 472   unsigned int total_full_collections() const { return _total_full_collections;}
 473 
 474   // Increment total number of GC collections (started)
 475   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 476   void increment_total_collections(bool full = false) {
 477     _total_collections++;
 478     if (full) {
 479       increment_total_full_collections();
 480     }
 481   }
 482 
 483   void increment_total_full_collections() { _total_full_collections++; }
 484 
 485   // Return the CollectorPolicy for the heap
 486   virtual CollectorPolicy* collector_policy() const = 0;
 487 
 488   // Iterate over all objects, calling "cl.do_object" on each.
 489   virtual void object_iterate(ObjectClosure* cl) = 0;
 490 
 491   // Similar to object_iterate() except iterates only
 492   // over live objects.
 493   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 494 
 495   // NOTE! There is no requirement that a collector implement these
 496   // functions.
 497   //
 498   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 499   // each address in the (reserved) heap is a member of exactly
 500   // one block.  The defining characteristic of a block is that it is
 501   // possible to find its size, and thus to progress forward to the next
 502   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 503   // represent Java objects, or they might be free blocks in a
 504   // free-list-based heap (or subheap), as long as the two kinds are
 505   // distinguishable and the size of each is determinable.
 506 
 507   // Returns the address of the start of the "block" that contains the
 508   // address "addr".  We say "blocks" instead of "object" since some heaps
 509   // may not pack objects densely; a chunk may either be an object or a
 510   // non-object.
 511   virtual HeapWord* block_start(const void* addr) const = 0;
 512 
 513   // Requires "addr" to be the start of a chunk, and returns its size.
 514   // "addr + size" is required to be the start of a new chunk, or the end
 515   // of the active area of the heap.
 516   virtual size_t block_size(const HeapWord* addr) const = 0;
 517 
 518   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 519   // the block is an object.
 520   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 521 
 522   // Returns the longest time (in ms) that has elapsed since the last
 523   // time that any part of the heap was examined by a garbage collection.
 524   virtual jlong millis_since_last_gc() = 0;
 525 
 526   // Perform any cleanup actions necessary before allowing a verification.
 527   virtual void prepare_for_verify() = 0;
 528 
 529   // Generate any dumps preceding or following a full gc
 530  private:
 531   void full_gc_dump(GCTimer* timer, bool before);
 532  public:
 533   void pre_full_gc_dump(GCTimer* timer);
 534   void post_full_gc_dump(GCTimer* timer);
 535 
 536   VirtualSpaceSummary create_heap_space_summary();
 537   GCHeapSummary create_heap_summary();
 538 
 539   MetaspaceSummary create_metaspace_summary();
 540 
 541   // Print heap information on the given outputStream.
 542   virtual void print_on(outputStream* st) const = 0;
 543   // The default behavior is to call print_on() on tty.
 544   virtual void print() const {
 545     print_on(tty);
 546   }
 547   // Print more detailed heap information on the given
 548   // outputStream. The default behavior is to call print_on(). It is
 549   // up to each subclass to override it and add any additional output
 550   // it needs.
 551   virtual void print_extended_on(outputStream* st) const {
 552     print_on(st);
 553   }
 554 
 555   virtual void print_on_error(outputStream* st) const;
 556 
 557   // Print all GC threads (other than the VM thread)
 558   // used by this heap.
 559   virtual void print_gc_threads_on(outputStream* st) const = 0;
 560   // The default behavior is to call print_gc_threads_on() on tty.
 561   void print_gc_threads() {
 562     print_gc_threads_on(tty);
 563   }
 564   // Iterator for all GC threads (other than VM thread)
 565   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 566 
 567   // Print any relevant tracing info that flags imply.
 568   // Default implementation does nothing.
 569   virtual void print_tracing_info() const = 0;
 570 
 571   void print_heap_before_gc();
 572   void print_heap_after_gc();
 573 
 574   // Registering and unregistering an nmethod (compiled code) with the heap.
 575   // Override with specific mechanism for each specialized heap type.
 576   virtual void register_nmethod(nmethod* nm);
 577   virtual void unregister_nmethod(nmethod* nm);
 578 
 579   void trace_heap_before_gc(const GCTracer* gc_tracer);
 580   void trace_heap_after_gc(const GCTracer* gc_tracer);
 581 
 582   // Heap verification
 583   virtual void verify(VerifyOption option) = 0;
 584 
 585   // Return true if concurrent phase control (via
 586   // request_concurrent_phase_control) is supported by this collector.
 587   // The default implementation returns false.
 588   virtual bool supports_concurrent_phase_control() const;
 589 
 590   // Return a NULL terminated array of concurrent phase names provided
 591   // by this collector.  Supports Whitebox testing.  These are the
 592   // names recognized by request_concurrent_phase(). The default
 593   // implementation returns an array of one NULL element.
 594   virtual const char* const* concurrent_phases() const;
 595 
 596   // Request the collector enter the indicated concurrent phase, and
 597   // wait until it does so.  Supports WhiteBox testing.  Only one
 598   // request may be active at a time.  Phases are designated by name;
 599   // the set of names and their meaning is GC-specific.  Once the
 600   // requested phase has been reached, the collector will attempt to
 601   // avoid transitioning to a new phase until a new request is made.
 602   // [Note: A collector might not be able to remain in a given phase.
 603   // For example, a full collection might cancel an in-progress
 604   // concurrent collection.]
 605   //
 606   // Returns true when the phase is reached.  Returns false for an
 607   // unknown phase.  The default implementation returns false.
 608   virtual bool request_concurrent_phase(const char* phase);
 609 
 610   // Provides a thread pool to SafepointSynchronize to use
 611   // for parallel safepoint cleanup.
 612   // GCs that use a GC worker thread pool may want to share
 613   // it for use during safepoint cleanup. This is only possible
 614   // if the GC can pause and resume concurrent work (e.g. G1
 615   // concurrent marking) for an intermittent non-GC safepoint.
 616   // If this method returns NULL, SafepointSynchronize will
 617   // perform cleanup tasks serially in the VMThread.
 618   virtual WorkGang* get_safepoint_workers() { return NULL; }
 619 
 620   // Non product verification and debugging.
 621 #ifndef PRODUCT
 622   // Support for PromotionFailureALot.  Return true if it's time to cause a
 623   // promotion failure.  The no-argument version uses
 624   // this->_promotion_failure_alot_count as the counter.
 625   inline bool promotion_should_fail(volatile size_t* count);
 626   inline bool promotion_should_fail();
 627 
 628   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 629   // GC in which promotion failure occurred.
 630   inline void reset_promotion_should_fail(volatile size_t* count);
 631   inline void reset_promotion_should_fail();
 632 #endif  // #ifndef PRODUCT
 633 
 634 #ifdef ASSERT
 635   static int fired_fake_oom() {
 636     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 637   }
 638 #endif
 639 
 640  public:
 641   // Copy the current allocation context statistics for the specified contexts.
 642   // For each context in contexts, set the corresponding entries in the totals
 643   // and accuracy arrays to the current values held by the statistics.  Each
 644   // array should be of length len.
 645   // Returns true if there are more stats available.
 646   virtual bool copy_allocation_context_stats(const jint* contexts,
 647                                              jlong* totals,
 648                                              jbyte* accuracy,
 649                                              jint len) {
 650     return false;
 651   }
 652 
 653 };
 654 
 655 // Class to set and reset the GC cause for a CollectedHeap.
 656 
 657 class GCCauseSetter : StackObj {
 658   CollectedHeap* _heap;
 659   GCCause::Cause _previous_cause;
 660  public:
 661   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 662     assert(SafepointSynchronize::is_at_safepoint(),
 663            "This method manipulates heap state without locking");
 664     _heap = heap;
 665     _previous_cause = _heap->gc_cause();
 666     _heap->set_gc_cause(cause);
 667   }
 668 
 669   ~GCCauseSetter() {
 670     assert(SafepointSynchronize::is_at_safepoint(),
 671           "This method manipulates heap state without locking");
 672     _heap->set_gc_cause(_previous_cause);
 673   }
 674 };
 675 
 676 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP