1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # define __STDC_FORMAT_MACROS
  26 
  27 // do not include  precompiled  header file
  28 # include "incls/_os_linux.cpp.incl"
  29 
  30 // put OS-includes here
  31 # include <sys/types.h>
  32 # include <sys/mman.h>
  33 # include <sys/stat.h>
  34 # include <sys/select.h>
  35 # include <pthread.h>
  36 # include <signal.h>
  37 # include <errno.h>
  38 # include <dlfcn.h>
  39 # include <stdio.h>
  40 # include <unistd.h>
  41 # include <sys/resource.h>
  42 # include <pthread.h>
  43 # include <sys/stat.h>
  44 # include <sys/time.h>
  45 # include <sys/times.h>
  46 # include <sys/utsname.h>
  47 # include <sys/socket.h>
  48 # include <sys/wait.h>
  49 # include <pwd.h>
  50 # include <poll.h>
  51 # include <semaphore.h>
  52 # include <fcntl.h>
  53 # include <string.h>
  54 # include <syscall.h>
  55 # include <sys/sysinfo.h>
  56 # include <gnu/libc-version.h>
  57 # include <sys/ipc.h>
  58 # include <sys/shm.h>
  59 # include <link.h>
  60 # include <stdint.h>
  61 # include <inttypes.h>
  62 
  63 #define MAX_PATH    (2 * K)
  64 
  65 // for timer info max values which include all bits
  66 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  67 #define SEC_IN_NANOSECS  1000000000LL
  68 
  69 ////////////////////////////////////////////////////////////////////////////////
  70 // global variables
  71 julong os::Linux::_physical_memory = 0;
  72 
  73 address   os::Linux::_initial_thread_stack_bottom = NULL;
  74 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
  75 
  76 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
  77 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
  78 Mutex* os::Linux::_createThread_lock = NULL;
  79 pthread_t os::Linux::_main_thread;
  80 int os::Linux::_page_size = -1;
  81 bool os::Linux::_is_floating_stack = false;
  82 bool os::Linux::_is_NPTL = false;
  83 bool os::Linux::_supports_fast_thread_cpu_time = false;
  84 const char * os::Linux::_glibc_version = NULL;
  85 const char * os::Linux::_libpthread_version = NULL;
  86 
  87 static jlong initial_time_count=0;
  88 
  89 static int clock_tics_per_sec = 100;
  90 
  91 // For diagnostics to print a message once. see run_periodic_checks
  92 static sigset_t check_signal_done;
  93 static bool check_signals = true;;
  94 
  95 static pid_t _initial_pid = 0;
  96 
  97 /* Signal number used to suspend/resume a thread */
  98 
  99 /* do not use any signal number less than SIGSEGV, see 4355769 */
 100 static int SR_signum = SIGUSR2;
 101 sigset_t SR_sigset;
 102 
 103 /* Used to protect dlsym() calls */
 104 static pthread_mutex_t dl_mutex;
 105 
 106 ////////////////////////////////////////////////////////////////////////////////
 107 // utility functions
 108 
 109 static int SR_initialize();
 110 static int SR_finalize();
 111 
 112 julong os::available_memory() {
 113   return Linux::available_memory();
 114 }
 115 
 116 julong os::Linux::available_memory() {
 117   // values in struct sysinfo are "unsigned long"
 118   struct sysinfo si;
 119   sysinfo(&si);
 120 
 121   return (julong)si.freeram * si.mem_unit;
 122 }
 123 
 124 julong os::physical_memory() {
 125   return Linux::physical_memory();
 126 }
 127 
 128 julong os::allocatable_physical_memory(julong size) {
 129 #ifdef _LP64
 130   return size;
 131 #else
 132   julong result = MIN2(size, (julong)3800*M);
 133    if (!is_allocatable(result)) {
 134      // See comments under solaris for alignment considerations
 135      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 136      result =  MIN2(size, reasonable_size);
 137    }
 138    return result;
 139 #endif // _LP64
 140 }
 141 
 142 ////////////////////////////////////////////////////////////////////////////////
 143 // environment support
 144 
 145 bool os::getenv(const char* name, char* buf, int len) {
 146   const char* val = ::getenv(name);
 147   if (val != NULL && strlen(val) < (size_t)len) {
 148     strcpy(buf, val);
 149     return true;
 150   }
 151   if (len > 0) buf[0] = 0;  // return a null string
 152   return false;
 153 }
 154 
 155 
 156 // Return true if user is running as root.
 157 
 158 bool os::have_special_privileges() {
 159   static bool init = false;
 160   static bool privileges = false;
 161   if (!init) {
 162     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 163     init = true;
 164   }
 165   return privileges;
 166 }
 167 
 168 
 169 #ifndef SYS_gettid
 170 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 171 #ifdef __ia64__
 172 #define SYS_gettid 1105
 173 #elif __i386__
 174 #define SYS_gettid 224
 175 #elif __amd64__
 176 #define SYS_gettid 186
 177 #elif __sparc__
 178 #define SYS_gettid 143
 179 #else
 180 #error define gettid for the arch
 181 #endif
 182 #endif
 183 
 184 // Cpu architecture string
 185 #if   defined(ZERO)
 186 static char cpu_arch[] = ZERO_LIBARCH;
 187 #elif defined(IA64)
 188 static char cpu_arch[] = "ia64";
 189 #elif defined(IA32)
 190 static char cpu_arch[] = "i386";
 191 #elif defined(AMD64)
 192 static char cpu_arch[] = "amd64";
 193 #elif defined(ARM)
 194 static char cpu_arch[] = "arm";
 195 #elif defined(PPC)
 196 static char cpu_arch[] = "ppc";
 197 #elif defined(SPARC)
 198 #  ifdef _LP64
 199 static char cpu_arch[] = "sparcv9";
 200 #  else
 201 static char cpu_arch[] = "sparc";
 202 #  endif
 203 #else
 204 #error Add appropriate cpu_arch setting
 205 #endif
 206 
 207 
 208 // pid_t gettid()
 209 //
 210 // Returns the kernel thread id of the currently running thread. Kernel
 211 // thread id is used to access /proc.
 212 //
 213 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 214 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 215 //
 216 pid_t os::Linux::gettid() {
 217   int rslt = syscall(SYS_gettid);
 218   if (rslt == -1) {
 219      // old kernel, no NPTL support
 220      return getpid();
 221   } else {
 222      return (pid_t)rslt;
 223   }
 224 }
 225 
 226 // Most versions of linux have a bug where the number of processors are
 227 // determined by looking at the /proc file system.  In a chroot environment,
 228 // the system call returns 1.  This causes the VM to act as if it is
 229 // a single processor and elide locking (see is_MP() call).
 230 static bool unsafe_chroot_detected = false;
 231 static const char *unstable_chroot_error = "/proc file system not found.\n"
 232                      "Java may be unstable running multithreaded in a chroot "
 233                      "environment on Linux when /proc filesystem is not mounted.";
 234 
 235 void os::Linux::initialize_system_info() {
 236   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 237   if (processor_count() == 1) {
 238     pid_t pid = os::Linux::gettid();
 239     char fname[32];
 240     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 241     FILE *fp = fopen(fname, "r");
 242     if (fp == NULL) {
 243       unsafe_chroot_detected = true;
 244     } else {
 245       fclose(fp);
 246     }
 247   }
 248   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 249   assert(processor_count() > 0, "linux error");
 250 }
 251 
 252 void os::init_system_properties_values() {
 253 //  char arch[12];
 254 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 255 
 256   // The next steps are taken in the product version:
 257   //
 258   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 259   // This library should be located at:
 260   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 261   //
 262   // If "/jre/lib/" appears at the right place in the path, then we
 263   // assume libjvm[_g].so is installed in a JDK and we use this path.
 264   //
 265   // Otherwise exit with message: "Could not create the Java virtual machine."
 266   //
 267   // The following extra steps are taken in the debugging version:
 268   //
 269   // If "/jre/lib/" does NOT appear at the right place in the path
 270   // instead of exit check for $JAVA_HOME environment variable.
 271   //
 272   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 273   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 274   // it looks like libjvm[_g].so is installed there
 275   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 276   //
 277   // Otherwise exit.
 278   //
 279   // Important note: if the location of libjvm.so changes this
 280   // code needs to be changed accordingly.
 281 
 282   // The next few definitions allow the code to be verbatim:
 283 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 284 #define getenv(n) ::getenv(n)
 285 
 286 /*
 287  * See ld(1):
 288  *      The linker uses the following search paths to locate required
 289  *      shared libraries:
 290  *        1: ...
 291  *        ...
 292  *        7: The default directories, normally /lib and /usr/lib.
 293  */
 294 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 295 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 296 #else
 297 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 298 #endif
 299 
 300 #define EXTENSIONS_DIR  "/lib/ext"
 301 #define ENDORSED_DIR    "/lib/endorsed"
 302 #define REG_DIR         "/usr/java/packages"
 303 
 304   {
 305     /* sysclasspath, java_home, dll_dir */
 306     {
 307         char *home_path;
 308         char *dll_path;
 309         char *pslash;
 310         char buf[MAXPATHLEN];
 311         os::jvm_path(buf, sizeof(buf));
 312 
 313         // Found the full path to libjvm.so.
 314         // Now cut the path to <java_home>/jre if we can.
 315         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 316         pslash = strrchr(buf, '/');
 317         if (pslash != NULL)
 318             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 319         dll_path = malloc(strlen(buf) + 1);
 320         if (dll_path == NULL)
 321             return;
 322         strcpy(dll_path, buf);
 323         Arguments::set_dll_dir(dll_path);
 324 
 325         if (pslash != NULL) {
 326             pslash = strrchr(buf, '/');
 327             if (pslash != NULL) {
 328                 *pslash = '\0';       /* get rid of /<arch> */
 329                 pslash = strrchr(buf, '/');
 330                 if (pslash != NULL)
 331                     *pslash = '\0';   /* get rid of /lib */
 332             }
 333         }
 334 
 335         home_path = malloc(strlen(buf) + 1);
 336         if (home_path == NULL)
 337             return;
 338         strcpy(home_path, buf);
 339         Arguments::set_java_home(home_path);
 340 
 341         if (!set_boot_path('/', ':'))
 342             return;
 343     }
 344 
 345     /*
 346      * Where to look for native libraries
 347      *
 348      * Note: Due to a legacy implementation, most of the library path
 349      * is set in the launcher.  This was to accomodate linking restrictions
 350      * on legacy Linux implementations (which are no longer supported).
 351      * Eventually, all the library path setting will be done here.
 352      *
 353      * However, to prevent the proliferation of improperly built native
 354      * libraries, the new path component /usr/java/packages is added here.
 355      * Eventually, all the library path setting will be done here.
 356      */
 357     {
 358         char *ld_library_path;
 359 
 360         /*
 361          * Construct the invariant part of ld_library_path. Note that the
 362          * space for the colon and the trailing null are provided by the
 363          * nulls included by the sizeof operator (so actually we allocate
 364          * a byte more than necessary).
 365          */
 366         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 367             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 368         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 369 
 370         /*
 371          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 372          * should always exist (until the legacy problem cited above is
 373          * addressed).
 374          */
 375         char *v = getenv("LD_LIBRARY_PATH");
 376         if (v != NULL) {
 377             char *t = ld_library_path;
 378             /* That's +1 for the colon and +1 for the trailing '\0' */
 379             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 380             sprintf(ld_library_path, "%s:%s", v, t);
 381         }
 382         Arguments::set_library_path(ld_library_path);
 383     }
 384 
 385     /*
 386      * Extensions directories.
 387      *
 388      * Note that the space for the colon and the trailing null are provided
 389      * by the nulls included by the sizeof operator (so actually one byte more
 390      * than necessary is allocated).
 391      */
 392     {
 393         char *buf = malloc(strlen(Arguments::get_java_home()) +
 394             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 395         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 396             Arguments::get_java_home());
 397         Arguments::set_ext_dirs(buf);
 398     }
 399 
 400     /* Endorsed standards default directory. */
 401     {
 402         char * buf;
 403         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 404         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 405         Arguments::set_endorsed_dirs(buf);
 406     }
 407   }
 408 
 409 #undef malloc
 410 #undef getenv
 411 #undef EXTENSIONS_DIR
 412 #undef ENDORSED_DIR
 413 
 414   // Done
 415   return;
 416 }
 417 
 418 ////////////////////////////////////////////////////////////////////////////////
 419 // breakpoint support
 420 
 421 void os::breakpoint() {
 422   BREAKPOINT;
 423 }
 424 
 425 extern "C" void breakpoint() {
 426   // use debugger to set breakpoint here
 427 }
 428 
 429 ////////////////////////////////////////////////////////////////////////////////
 430 // signal support
 431 
 432 debug_only(static bool signal_sets_initialized = false);
 433 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 434 
 435 bool os::Linux::is_sig_ignored(int sig) {
 436       struct sigaction oact;
 437       sigaction(sig, (struct sigaction*)NULL, &oact);
 438       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 439                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 440       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 441            return true;
 442       else
 443            return false;
 444 }
 445 
 446 void os::Linux::signal_sets_init() {
 447   // Should also have an assertion stating we are still single-threaded.
 448   assert(!signal_sets_initialized, "Already initialized");
 449   // Fill in signals that are necessarily unblocked for all threads in
 450   // the VM. Currently, we unblock the following signals:
 451   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 452   //                         by -Xrs (=ReduceSignalUsage));
 453   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 454   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 455   // the dispositions or masks wrt these signals.
 456   // Programs embedding the VM that want to use the above signals for their
 457   // own purposes must, at this time, use the "-Xrs" option to prevent
 458   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 459   // (See bug 4345157, and other related bugs).
 460   // In reality, though, unblocking these signals is really a nop, since
 461   // these signals are not blocked by default.
 462   sigemptyset(&unblocked_sigs);
 463   sigemptyset(&allowdebug_blocked_sigs);
 464   sigaddset(&unblocked_sigs, SIGILL);
 465   sigaddset(&unblocked_sigs, SIGSEGV);
 466   sigaddset(&unblocked_sigs, SIGBUS);
 467   sigaddset(&unblocked_sigs, SIGFPE);
 468   sigaddset(&unblocked_sigs, SR_signum);
 469 
 470   if (!ReduceSignalUsage) {
 471    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 472       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 473       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 474    }
 475    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 476       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 477       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 478    }
 479    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 480       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 481       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 482    }
 483   }
 484   // Fill in signals that are blocked by all but the VM thread.
 485   sigemptyset(&vm_sigs);
 486   if (!ReduceSignalUsage)
 487     sigaddset(&vm_sigs, BREAK_SIGNAL);
 488   debug_only(signal_sets_initialized = true);
 489 
 490 }
 491 
 492 // These are signals that are unblocked while a thread is running Java.
 493 // (For some reason, they get blocked by default.)
 494 sigset_t* os::Linux::unblocked_signals() {
 495   assert(signal_sets_initialized, "Not initialized");
 496   return &unblocked_sigs;
 497 }
 498 
 499 // These are the signals that are blocked while a (non-VM) thread is
 500 // running Java. Only the VM thread handles these signals.
 501 sigset_t* os::Linux::vm_signals() {
 502   assert(signal_sets_initialized, "Not initialized");
 503   return &vm_sigs;
 504 }
 505 
 506 // These are signals that are blocked during cond_wait to allow debugger in
 507 sigset_t* os::Linux::allowdebug_blocked_signals() {
 508   assert(signal_sets_initialized, "Not initialized");
 509   return &allowdebug_blocked_sigs;
 510 }
 511 
 512 void os::Linux::hotspot_sigmask(Thread* thread) {
 513 
 514   //Save caller's signal mask before setting VM signal mask
 515   sigset_t caller_sigmask;
 516   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 517 
 518   OSThread* osthread = thread->osthread();
 519   osthread->set_caller_sigmask(caller_sigmask);
 520 
 521   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 522 
 523   if (!ReduceSignalUsage) {
 524     if (thread->is_VM_thread()) {
 525       // Only the VM thread handles BREAK_SIGNAL ...
 526       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 527     } else {
 528       // ... all other threads block BREAK_SIGNAL
 529       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 530     }
 531   }
 532 }
 533 
 534 //////////////////////////////////////////////////////////////////////////////
 535 // detecting pthread library
 536 
 537 void os::Linux::libpthread_init() {
 538   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 539   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 540   // generic name for earlier versions.
 541   // Define macros here so we can build HotSpot on old systems.
 542 # ifndef _CS_GNU_LIBC_VERSION
 543 # define _CS_GNU_LIBC_VERSION 2
 544 # endif
 545 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 546 # define _CS_GNU_LIBPTHREAD_VERSION 3
 547 # endif
 548 
 549   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 550   if (n > 0) {
 551      char *str = (char *)malloc(n);
 552      confstr(_CS_GNU_LIBC_VERSION, str, n);
 553      os::Linux::set_glibc_version(str);
 554   } else {
 555      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 556      static char _gnu_libc_version[32];
 557      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 558               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 559      os::Linux::set_glibc_version(_gnu_libc_version);
 560   }
 561 
 562   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 563   if (n > 0) {
 564      char *str = (char *)malloc(n);
 565      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 566      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 567      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 568      // is the case. LinuxThreads has a hard limit on max number of threads.
 569      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 570      // On the other hand, NPTL does not have such a limit, sysconf()
 571      // will return -1 and errno is not changed. Check if it is really NPTL.
 572      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 573          strstr(str, "NPTL") &&
 574          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 575        free(str);
 576        os::Linux::set_libpthread_version("linuxthreads");
 577      } else {
 578        os::Linux::set_libpthread_version(str);
 579      }
 580   } else {
 581     // glibc before 2.3.2 only has LinuxThreads.
 582     os::Linux::set_libpthread_version("linuxthreads");
 583   }
 584 
 585   if (strstr(libpthread_version(), "NPTL")) {
 586      os::Linux::set_is_NPTL();
 587   } else {
 588      os::Linux::set_is_LinuxThreads();
 589   }
 590 
 591   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 592   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 593   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 594      os::Linux::set_is_floating_stack();
 595   }
 596 }
 597 
 598 /////////////////////////////////////////////////////////////////////////////
 599 // thread stack
 600 
 601 // Force Linux kernel to expand current thread stack. If "bottom" is close
 602 // to the stack guard, caller should block all signals.
 603 //
 604 // MAP_GROWSDOWN:
 605 //   A special mmap() flag that is used to implement thread stacks. It tells
 606 //   kernel that the memory region should extend downwards when needed. This
 607 //   allows early versions of LinuxThreads to only mmap the first few pages
 608 //   when creating a new thread. Linux kernel will automatically expand thread
 609 //   stack as needed (on page faults).
 610 //
 611 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 612 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 613 //   region, it's hard to tell if the fault is due to a legitimate stack
 614 //   access or because of reading/writing non-exist memory (e.g. buffer
 615 //   overrun). As a rule, if the fault happens below current stack pointer,
 616 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 617 //   application (see Linux kernel fault.c).
 618 //
 619 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 620 //   stack overflow detection.
 621 //
 622 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 623 //   not use this flag. However, the stack of initial thread is not created
 624 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 625 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 626 //   and then attach the thread to JVM.
 627 //
 628 // To get around the problem and allow stack banging on Linux, we need to
 629 // manually expand thread stack after receiving the SIGSEGV.
 630 //
 631 // There are two ways to expand thread stack to address "bottom", we used
 632 // both of them in JVM before 1.5:
 633 //   1. adjust stack pointer first so that it is below "bottom", and then
 634 //      touch "bottom"
 635 //   2. mmap() the page in question
 636 //
 637 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 638 // if current sp is already near the lower end of page 101, and we need to
 639 // call mmap() to map page 100, it is possible that part of the mmap() frame
 640 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 641 // That will destroy the mmap() frame and cause VM to crash.
 642 //
 643 // The following code works by adjusting sp first, then accessing the "bottom"
 644 // page to force a page fault. Linux kernel will then automatically expand the
 645 // stack mapping.
 646 //
 647 // _expand_stack_to() assumes its frame size is less than page size, which
 648 // should always be true if the function is not inlined.
 649 
 650 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 651 #define NOINLINE
 652 #else
 653 #define NOINLINE __attribute__ ((noinline))
 654 #endif
 655 
 656 static void _expand_stack_to(address bottom) NOINLINE;
 657 
 658 static void _expand_stack_to(address bottom) {
 659   address sp;
 660   size_t size;
 661   volatile char *p;
 662 
 663   // Adjust bottom to point to the largest address within the same page, it
 664   // gives us a one-page buffer if alloca() allocates slightly more memory.
 665   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 666   bottom += os::Linux::page_size() - 1;
 667 
 668   // sp might be slightly above current stack pointer; if that's the case, we
 669   // will alloca() a little more space than necessary, which is OK. Don't use
 670   // os::current_stack_pointer(), as its result can be slightly below current
 671   // stack pointer, causing us to not alloca enough to reach "bottom".
 672   sp = (address)&sp;
 673 
 674   if (sp > bottom) {
 675     size = sp - bottom;
 676     p = (volatile char *)alloca(size);
 677     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 678     p[0] = '\0';
 679   }
 680 }
 681 
 682 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 683   assert(t!=NULL, "just checking");
 684   assert(t->osthread()->expanding_stack(), "expand should be set");
 685   assert(t->stack_base() != NULL, "stack_base was not initialized");
 686 
 687   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 688     sigset_t mask_all, old_sigset;
 689     sigfillset(&mask_all);
 690     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 691     _expand_stack_to(addr);
 692     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 693     return true;
 694   }
 695   return false;
 696 }
 697 
 698 //////////////////////////////////////////////////////////////////////////////
 699 // create new thread
 700 
 701 static address highest_vm_reserved_address();
 702 
 703 // check if it's safe to start a new thread
 704 static bool _thread_safety_check(Thread* thread) {
 705   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 706     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 707     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 708     //   allocated (MAP_FIXED) from high address space. Every thread stack
 709     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 710     //   it to other values if they rebuild LinuxThreads).
 711     //
 712     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 713     // the memory region has already been mmap'ed. That means if we have too
 714     // many threads and/or very large heap, eventually thread stack will
 715     // collide with heap.
 716     //
 717     // Here we try to prevent heap/stack collision by comparing current
 718     // stack bottom with the highest address that has been mmap'ed by JVM
 719     // plus a safety margin for memory maps created by native code.
 720     //
 721     // This feature can be disabled by setting ThreadSafetyMargin to 0
 722     //
 723     if (ThreadSafetyMargin > 0) {
 724       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 725 
 726       // not safe if our stack extends below the safety margin
 727       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 728     } else {
 729       return true;
 730     }
 731   } else {
 732     // Floating stack LinuxThreads or NPTL:
 733     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 734     //   there's not enough space left, pthread_create() will fail. If we come
 735     //   here, that means enough space has been reserved for stack.
 736     return true;
 737   }
 738 }
 739 
 740 // Thread start routine for all newly created threads
 741 static void *java_start(Thread *thread) {
 742   // Try to randomize the cache line index of hot stack frames.
 743   // This helps when threads of the same stack traces evict each other's
 744   // cache lines. The threads can be either from the same JVM instance, or
 745   // from different JVM instances. The benefit is especially true for
 746   // processors with hyperthreading technology.
 747   static int counter = 0;
 748   int pid = os::current_process_id();
 749   alloca(((pid ^ counter++) & 7) * 128);
 750 
 751   ThreadLocalStorage::set_thread(thread);
 752 
 753   OSThread* osthread = thread->osthread();
 754   Monitor* sync = osthread->startThread_lock();
 755 
 756   // non floating stack LinuxThreads needs extra check, see above
 757   if (!_thread_safety_check(thread)) {
 758     // notify parent thread
 759     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 760     osthread->set_state(ZOMBIE);
 761     sync->notify_all();
 762     return NULL;
 763   }
 764 
 765   // thread_id is kernel thread id (similar to Solaris LWP id)
 766   osthread->set_thread_id(os::Linux::gettid());
 767 
 768   if (UseNUMA) {
 769     int lgrp_id = os::numa_get_group_id();
 770     if (lgrp_id != -1) {
 771       thread->set_lgrp_id(lgrp_id);
 772     }
 773   }
 774   // initialize signal mask for this thread
 775   os::Linux::hotspot_sigmask(thread);
 776 
 777   // initialize floating point control register
 778   os::Linux::init_thread_fpu_state();
 779 
 780   // handshaking with parent thread
 781   {
 782     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 783 
 784     // notify parent thread
 785     osthread->set_state(INITIALIZED);
 786     sync->notify_all();
 787 
 788     // wait until os::start_thread()
 789     while (osthread->get_state() == INITIALIZED) {
 790       sync->wait(Mutex::_no_safepoint_check_flag);
 791     }
 792   }
 793 
 794   // call one more level start routine
 795   thread->run();
 796 
 797   return 0;
 798 }
 799 
 800 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 801   assert(thread->osthread() == NULL, "caller responsible");
 802 
 803   // Allocate the OSThread object
 804   OSThread* osthread = new OSThread(NULL, NULL);
 805   if (osthread == NULL) {
 806     return false;
 807   }
 808 
 809   // set the correct thread state
 810   osthread->set_thread_type(thr_type);
 811 
 812   // Initial state is ALLOCATED but not INITIALIZED
 813   osthread->set_state(ALLOCATED);
 814 
 815   thread->set_osthread(osthread);
 816 
 817   // init thread attributes
 818   pthread_attr_t attr;
 819   pthread_attr_init(&attr);
 820   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 821 
 822   // stack size
 823   if (os::Linux::supports_variable_stack_size()) {
 824     // calculate stack size if it's not specified by caller
 825     if (stack_size == 0) {
 826       stack_size = os::Linux::default_stack_size(thr_type);
 827 
 828       switch (thr_type) {
 829       case os::java_thread:
 830         // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 831         if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 832         break;
 833       case os::compiler_thread:
 834         if (CompilerThreadStackSize > 0) {
 835           stack_size = (size_t)(CompilerThreadStackSize * K);
 836           break;
 837         } // else fall through:
 838           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 839       case os::vm_thread:
 840       case os::pgc_thread:
 841       case os::cgc_thread:
 842       case os::watcher_thread:
 843         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 844         break;
 845       }
 846     }
 847 
 848     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 849     pthread_attr_setstacksize(&attr, stack_size);
 850   } else {
 851     // let pthread_create() pick the default value.
 852   }
 853 
 854   // glibc guard page
 855   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 856 
 857   ThreadState state;
 858 
 859   {
 860     // Serialize thread creation if we are running with fixed stack LinuxThreads
 861     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 862     if (lock) {
 863       os::Linux::createThread_lock()->lock_without_safepoint_check();
 864     }
 865 
 866     pthread_t tid;
 867     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 868 
 869     pthread_attr_destroy(&attr);
 870 
 871     if (ret != 0) {
 872       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 873         perror("pthread_create()");
 874       }
 875       // Need to clean up stuff we've allocated so far
 876       thread->set_osthread(NULL);
 877       delete osthread;
 878       if (lock) os::Linux::createThread_lock()->unlock();
 879       return false;
 880     }
 881 
 882     // Store pthread info into the OSThread
 883     osthread->set_pthread_id(tid);
 884 
 885     // Wait until child thread is either initialized or aborted
 886     {
 887       Monitor* sync_with_child = osthread->startThread_lock();
 888       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 889       while ((state = osthread->get_state()) == ALLOCATED) {
 890         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 891       }
 892     }
 893 
 894     if (lock) {
 895       os::Linux::createThread_lock()->unlock();
 896     }
 897   }
 898 
 899   // Aborted due to thread limit being reached
 900   if (state == ZOMBIE) {
 901       thread->set_osthread(NULL);
 902       delete osthread;
 903       return false;
 904   }
 905 
 906   // The thread is returned suspended (in state INITIALIZED),
 907   // and is started higher up in the call chain
 908   assert(state == INITIALIZED, "race condition");
 909   return true;
 910 }
 911 
 912 /////////////////////////////////////////////////////////////////////////////
 913 // attach existing thread
 914 
 915 // bootstrap the main thread
 916 bool os::create_main_thread(JavaThread* thread) {
 917   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 918   return create_attached_thread(thread);
 919 }
 920 
 921 bool os::create_attached_thread(JavaThread* thread) {
 922 #ifdef ASSERT
 923     thread->verify_not_published();
 924 #endif
 925 
 926   // Allocate the OSThread object
 927   OSThread* osthread = new OSThread(NULL, NULL);
 928 
 929   if (osthread == NULL) {
 930     return false;
 931   }
 932 
 933   // Store pthread info into the OSThread
 934   osthread->set_thread_id(os::Linux::gettid());
 935   osthread->set_pthread_id(::pthread_self());
 936 
 937   // initialize floating point control register
 938   os::Linux::init_thread_fpu_state();
 939 
 940   // Initial thread state is RUNNABLE
 941   osthread->set_state(RUNNABLE);
 942 
 943   thread->set_osthread(osthread);
 944 
 945   if (UseNUMA) {
 946     int lgrp_id = os::numa_get_group_id();
 947     if (lgrp_id != -1) {
 948       thread->set_lgrp_id(lgrp_id);
 949     }
 950   }
 951 
 952   if (os::Linux::is_initial_thread()) {
 953     // If current thread is initial thread, its stack is mapped on demand,
 954     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 955     // the entire stack region to avoid SEGV in stack banging.
 956     // It is also useful to get around the heap-stack-gap problem on SuSE
 957     // kernel (see 4821821 for details). We first expand stack to the top
 958     // of yellow zone, then enable stack yellow zone (order is significant,
 959     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 960     // is no gap between the last two virtual memory regions.
 961 
 962     JavaThread *jt = (JavaThread *)thread;
 963     address addr = jt->stack_yellow_zone_base();
 964     assert(addr != NULL, "initialization problem?");
 965     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 966 
 967     osthread->set_expanding_stack();
 968     os::Linux::manually_expand_stack(jt, addr);
 969     osthread->clear_expanding_stack();
 970   }
 971 
 972   // initialize signal mask for this thread
 973   // and save the caller's signal mask
 974   os::Linux::hotspot_sigmask(thread);
 975 
 976   return true;
 977 }
 978 
 979 void os::pd_start_thread(Thread* thread) {
 980   OSThread * osthread = thread->osthread();
 981   assert(osthread->get_state() != INITIALIZED, "just checking");
 982   Monitor* sync_with_child = osthread->startThread_lock();
 983   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 984   sync_with_child->notify();
 985 }
 986 
 987 // Free Linux resources related to the OSThread
 988 void os::free_thread(OSThread* osthread) {
 989   assert(osthread != NULL, "osthread not set");
 990 
 991   if (Thread::current()->osthread() == osthread) {
 992     // Restore caller's signal mask
 993     sigset_t sigmask = osthread->caller_sigmask();
 994     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 995    }
 996 
 997   delete osthread;
 998 }
 999 
1000 //////////////////////////////////////////////////////////////////////////////
1001 // thread local storage
1002 
1003 int os::allocate_thread_local_storage() {
1004   pthread_key_t key;
1005   int rslt = pthread_key_create(&key, NULL);
1006   assert(rslt == 0, "cannot allocate thread local storage");
1007   return (int)key;
1008 }
1009 
1010 // Note: This is currently not used by VM, as we don't destroy TLS key
1011 // on VM exit.
1012 void os::free_thread_local_storage(int index) {
1013   int rslt = pthread_key_delete((pthread_key_t)index);
1014   assert(rslt == 0, "invalid index");
1015 }
1016 
1017 void os::thread_local_storage_at_put(int index, void* value) {
1018   int rslt = pthread_setspecific((pthread_key_t)index, value);
1019   assert(rslt == 0, "pthread_setspecific failed");
1020 }
1021 
1022 extern "C" Thread* get_thread() {
1023   return ThreadLocalStorage::thread();
1024 }
1025 
1026 //////////////////////////////////////////////////////////////////////////////
1027 // initial thread
1028 
1029 // Check if current thread is the initial thread, similar to Solaris thr_main.
1030 bool os::Linux::is_initial_thread(void) {
1031   char dummy;
1032   // If called before init complete, thread stack bottom will be null.
1033   // Can be called if fatal error occurs before initialization.
1034   if (initial_thread_stack_bottom() == NULL) return false;
1035   assert(initial_thread_stack_bottom() != NULL &&
1036          initial_thread_stack_size()   != 0,
1037          "os::init did not locate initial thread's stack region");
1038   if ((address)&dummy >= initial_thread_stack_bottom() &&
1039       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1040        return true;
1041   else return false;
1042 }
1043 
1044 // Find the virtual memory area that contains addr
1045 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1046   FILE *fp = fopen("/proc/self/maps", "r");
1047   if (fp) {
1048     address low, high;
1049     while (!feof(fp)) {
1050       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1051         if (low <= addr && addr < high) {
1052            if (vma_low)  *vma_low  = low;
1053            if (vma_high) *vma_high = high;
1054            fclose (fp);
1055            return true;
1056         }
1057       }
1058       for (;;) {
1059         int ch = fgetc(fp);
1060         if (ch == EOF || ch == (int)'\n') break;
1061       }
1062     }
1063     fclose(fp);
1064   }
1065   return false;
1066 }
1067 
1068 // Locate initial thread stack. This special handling of initial thread stack
1069 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1070 // bogus value for initial thread.
1071 void os::Linux::capture_initial_stack(size_t max_size) {
1072   // stack size is the easy part, get it from RLIMIT_STACK
1073   size_t stack_size;
1074   struct rlimit rlim;
1075   getrlimit(RLIMIT_STACK, &rlim);
1076   stack_size = rlim.rlim_cur;
1077 
1078   // 6308388: a bug in ld.so will relocate its own .data section to the
1079   //   lower end of primordial stack; reduce ulimit -s value a little bit
1080   //   so we won't install guard page on ld.so's data section.
1081   stack_size -= 2 * page_size();
1082 
1083   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1084   //   7.1, in both cases we will get 2G in return value.
1085   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1086   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1087   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1088   //   in case other parts in glibc still assumes 2M max stack size.
1089   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1090 #ifndef IA64
1091   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1092 #else
1093   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1094   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1095 #endif
1096 
1097   // Try to figure out where the stack base (top) is. This is harder.
1098   //
1099   // When an application is started, glibc saves the initial stack pointer in
1100   // a global variable "__libc_stack_end", which is then used by system
1101   // libraries. __libc_stack_end should be pretty close to stack top. The
1102   // variable is available since the very early days. However, because it is
1103   // a private interface, it could disappear in the future.
1104   //
1105   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1106   // to __libc_stack_end, it is very close to stack top, but isn't the real
1107   // stack top. Note that /proc may not exist if VM is running as a chroot
1108   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1109   // /proc/<pid>/stat could change in the future (though unlikely).
1110   //
1111   // We try __libc_stack_end first. If that doesn't work, look for
1112   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1113   // as a hint, which should work well in most cases.
1114 
1115   uintptr_t stack_start;
1116 
1117   // try __libc_stack_end first
1118   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1119   if (p && *p) {
1120     stack_start = *p;
1121   } else {
1122     // see if we can get the start_stack field from /proc/self/stat
1123     FILE *fp;
1124     int pid;
1125     char state;
1126     int ppid;
1127     int pgrp;
1128     int session;
1129     int nr;
1130     int tpgrp;
1131     unsigned long flags;
1132     unsigned long minflt;
1133     unsigned long cminflt;
1134     unsigned long majflt;
1135     unsigned long cmajflt;
1136     unsigned long utime;
1137     unsigned long stime;
1138     long cutime;
1139     long cstime;
1140     long prio;
1141     long nice;
1142     long junk;
1143     long it_real;
1144     uintptr_t start;
1145     uintptr_t vsize;
1146     intptr_t rss;
1147     uintptr_t rsslim;
1148     uintptr_t scodes;
1149     uintptr_t ecode;
1150     int i;
1151 
1152     // Figure what the primordial thread stack base is. Code is inspired
1153     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1154     // followed by command name surrounded by parentheses, state, etc.
1155     char stat[2048];
1156     int statlen;
1157 
1158     fp = fopen("/proc/self/stat", "r");
1159     if (fp) {
1160       statlen = fread(stat, 1, 2047, fp);
1161       stat[statlen] = '\0';
1162       fclose(fp);
1163 
1164       // Skip pid and the command string. Note that we could be dealing with
1165       // weird command names, e.g. user could decide to rename java launcher
1166       // to "java 1.4.2 :)", then the stat file would look like
1167       //                1234 (java 1.4.2 :)) R ... ...
1168       // We don't really need to know the command string, just find the last
1169       // occurrence of ")" and then start parsing from there. See bug 4726580.
1170       char * s = strrchr(stat, ')');
1171 
1172       i = 0;
1173       if (s) {
1174         // Skip blank chars
1175         do s++; while (isspace(*s));
1176 
1177 #define _UFM UINTX_FORMAT
1178 #define _DFM INTX_FORMAT
1179 
1180         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1181         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1182         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1183              &state,          /* 3  %c  */
1184              &ppid,           /* 4  %d  */
1185              &pgrp,           /* 5  %d  */
1186              &session,        /* 6  %d  */
1187              &nr,             /* 7  %d  */
1188              &tpgrp,          /* 8  %d  */
1189              &flags,          /* 9  %lu  */
1190              &minflt,         /* 10 %lu  */
1191              &cminflt,        /* 11 %lu  */
1192              &majflt,         /* 12 %lu  */
1193              &cmajflt,        /* 13 %lu  */
1194              &utime,          /* 14 %lu  */
1195              &stime,          /* 15 %lu  */
1196              &cutime,         /* 16 %ld  */
1197              &cstime,         /* 17 %ld  */
1198              &prio,           /* 18 %ld  */
1199              &nice,           /* 19 %ld  */
1200              &junk,           /* 20 %ld  */
1201              &it_real,        /* 21 %ld  */
1202              &start,          /* 22 UINTX_FORMAT */
1203              &vsize,          /* 23 UINTX_FORMAT */
1204              &rss,            /* 24 INTX_FORMAT  */
1205              &rsslim,         /* 25 UINTX_FORMAT */
1206              &scodes,         /* 26 UINTX_FORMAT */
1207              &ecode,          /* 27 UINTX_FORMAT */
1208              &stack_start);   /* 28 UINTX_FORMAT */
1209       }
1210 
1211 #undef _UFM
1212 #undef _DFM
1213 
1214       if (i != 28 - 2) {
1215          assert(false, "Bad conversion from /proc/self/stat");
1216          // product mode - assume we are the initial thread, good luck in the
1217          // embedded case.
1218          warning("Can't detect initial thread stack location - bad conversion");
1219          stack_start = (uintptr_t) &rlim;
1220       }
1221     } else {
1222       // For some reason we can't open /proc/self/stat (for example, running on
1223       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1224       // most cases, so don't abort:
1225       warning("Can't detect initial thread stack location - no /proc/self/stat");
1226       stack_start = (uintptr_t) &rlim;
1227     }
1228   }
1229 
1230   // Now we have a pointer (stack_start) very close to the stack top, the
1231   // next thing to do is to figure out the exact location of stack top. We
1232   // can find out the virtual memory area that contains stack_start by
1233   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1234   // and its upper limit is the real stack top. (again, this would fail if
1235   // running inside chroot, because /proc may not exist.)
1236 
1237   uintptr_t stack_top;
1238   address low, high;
1239   if (find_vma((address)stack_start, &low, &high)) {
1240     // success, "high" is the true stack top. (ignore "low", because initial
1241     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1242     stack_top = (uintptr_t)high;
1243   } else {
1244     // failed, likely because /proc/self/maps does not exist
1245     warning("Can't detect initial thread stack location - find_vma failed");
1246     // best effort: stack_start is normally within a few pages below the real
1247     // stack top, use it as stack top, and reduce stack size so we won't put
1248     // guard page outside stack.
1249     stack_top = stack_start;
1250     stack_size -= 16 * page_size();
1251   }
1252 
1253   // stack_top could be partially down the page so align it
1254   stack_top = align_size_up(stack_top, page_size());
1255 
1256   if (max_size && stack_size > max_size) {
1257      _initial_thread_stack_size = max_size;
1258   } else {
1259      _initial_thread_stack_size = stack_size;
1260   }
1261 
1262   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1263   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1264 }
1265 
1266 ////////////////////////////////////////////////////////////////////////////////
1267 // time support
1268 
1269 // Time since start-up in seconds to a fine granularity.
1270 // Used by VMSelfDestructTimer and the MemProfiler.
1271 double os::elapsedTime() {
1272 
1273   return (double)(os::elapsed_counter()) * 0.000001;
1274 }
1275 
1276 jlong os::elapsed_counter() {
1277   timeval time;
1278   int status = gettimeofday(&time, NULL);
1279   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1280 }
1281 
1282 jlong os::elapsed_frequency() {
1283   return (1000 * 1000);
1284 }
1285 
1286 // For now, we say that linux does not support vtime.  I have no idea
1287 // whether it can actually be made to (DLD, 9/13/05).
1288 
1289 bool os::supports_vtime() { return false; }
1290 bool os::enable_vtime()   { return false; }
1291 bool os::vtime_enabled()  { return false; }
1292 double os::elapsedVTime() {
1293   // better than nothing, but not much
1294   return elapsedTime();
1295 }
1296 
1297 jlong os::javaTimeMillis() {
1298   timeval time;
1299   int status = gettimeofday(&time, NULL);
1300   assert(status != -1, "linux error");
1301   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1302 }
1303 
1304 #ifndef CLOCK_MONOTONIC
1305 #define CLOCK_MONOTONIC (1)
1306 #endif
1307 
1308 void os::Linux::clock_init() {
1309   // we do dlopen's in this particular order due to bug in linux
1310   // dynamical loader (see 6348968) leading to crash on exit
1311   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1312   if (handle == NULL) {
1313     handle = dlopen("librt.so", RTLD_LAZY);
1314   }
1315 
1316   if (handle) {
1317     int (*clock_getres_func)(clockid_t, struct timespec*) =
1318            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1319     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1320            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1321     if (clock_getres_func && clock_gettime_func) {
1322       // See if monotonic clock is supported by the kernel. Note that some
1323       // early implementations simply return kernel jiffies (updated every
1324       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1325       // for nano time (though the monotonic property is still nice to have).
1326       // It's fixed in newer kernels, however clock_getres() still returns
1327       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1328       // resolution for now. Hopefully as people move to new kernels, this
1329       // won't be a problem.
1330       struct timespec res;
1331       struct timespec tp;
1332       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1333           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1334         // yes, monotonic clock is supported
1335         _clock_gettime = clock_gettime_func;
1336       } else {
1337         // close librt if there is no monotonic clock
1338         dlclose(handle);
1339       }
1340     }
1341   }
1342 }
1343 
1344 #ifndef SYS_clock_getres
1345 
1346 #if defined(IA32) || defined(AMD64)
1347 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1348 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1349 #else
1350 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1351 #define sys_clock_getres(x,y)  -1
1352 #endif
1353 
1354 #else
1355 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1356 #endif
1357 
1358 void os::Linux::fast_thread_clock_init() {
1359   if (!UseLinuxPosixThreadCPUClocks) {
1360     return;
1361   }
1362   clockid_t clockid;
1363   struct timespec tp;
1364   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1365       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1366 
1367   // Switch to using fast clocks for thread cpu time if
1368   // the sys_clock_getres() returns 0 error code.
1369   // Note, that some kernels may support the current thread
1370   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1371   // returned by the pthread_getcpuclockid().
1372   // If the fast Posix clocks are supported then the sys_clock_getres()
1373   // must return at least tp.tv_sec == 0 which means a resolution
1374   // better than 1 sec. This is extra check for reliability.
1375 
1376   if(pthread_getcpuclockid_func &&
1377      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1378      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1379 
1380     _supports_fast_thread_cpu_time = true;
1381     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1382   }
1383 }
1384 
1385 jlong os::javaTimeNanos() {
1386   if (Linux::supports_monotonic_clock()) {
1387     struct timespec tp;
1388     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1389     assert(status == 0, "gettime error");
1390     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1391     return result;
1392   } else {
1393     timeval time;
1394     int status = gettimeofday(&time, NULL);
1395     assert(status != -1, "linux error");
1396     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1397     return 1000 * usecs;
1398   }
1399 }
1400 
1401 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1402   if (Linux::supports_monotonic_clock()) {
1403     info_ptr->max_value = ALL_64_BITS;
1404 
1405     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1406     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1407     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1408   } else {
1409     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1410     info_ptr->max_value = ALL_64_BITS;
1411 
1412     // gettimeofday is a real time clock so it skips
1413     info_ptr->may_skip_backward = true;
1414     info_ptr->may_skip_forward = true;
1415   }
1416 
1417   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1418 }
1419 
1420 // Return the real, user, and system times in seconds from an
1421 // arbitrary fixed point in the past.
1422 bool os::getTimesSecs(double* process_real_time,
1423                       double* process_user_time,
1424                       double* process_system_time) {
1425   struct tms ticks;
1426   clock_t real_ticks = times(&ticks);
1427 
1428   if (real_ticks == (clock_t) (-1)) {
1429     return false;
1430   } else {
1431     double ticks_per_second = (double) clock_tics_per_sec;
1432     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1433     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1434     *process_real_time = ((double) real_ticks) / ticks_per_second;
1435 
1436     return true;
1437   }
1438 }
1439 
1440 
1441 char * os::local_time_string(char *buf, size_t buflen) {
1442   struct tm t;
1443   time_t long_time;
1444   time(&long_time);
1445   localtime_r(&long_time, &t);
1446   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1447                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1448                t.tm_hour, t.tm_min, t.tm_sec);
1449   return buf;
1450 }
1451 
1452 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1453   return localtime_r(clock, res);
1454 }
1455 
1456 ////////////////////////////////////////////////////////////////////////////////
1457 // runtime exit support
1458 
1459 // Note: os::shutdown() might be called very early during initialization, or
1460 // called from signal handler. Before adding something to os::shutdown(), make
1461 // sure it is async-safe and can handle partially initialized VM.
1462 void os::shutdown() {
1463 
1464   // allow PerfMemory to attempt cleanup of any persistent resources
1465   perfMemory_exit();
1466 
1467   // needs to remove object in file system
1468   AttachListener::abort();
1469 
1470   // flush buffered output, finish log files
1471   ostream_abort();
1472 
1473   // Check for abort hook
1474   abort_hook_t abort_hook = Arguments::abort_hook();
1475   if (abort_hook != NULL) {
1476     abort_hook();
1477   }
1478 
1479 }
1480 
1481 // Note: os::abort() might be called very early during initialization, or
1482 // called from signal handler. Before adding something to os::abort(), make
1483 // sure it is async-safe and can handle partially initialized VM.
1484 void os::abort(bool dump_core) {
1485   os::shutdown();
1486   if (dump_core) {
1487 #ifndef PRODUCT
1488     fdStream out(defaultStream::output_fd());
1489     out.print_raw("Current thread is ");
1490     char buf[16];
1491     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1492     out.print_raw_cr(buf);
1493     out.print_raw_cr("Dumping core ...");
1494 #endif
1495     ::abort(); // dump core
1496   }
1497 
1498   ::exit(1);
1499 }
1500 
1501 // Die immediately, no exit hook, no abort hook, no cleanup.
1502 void os::die() {
1503   // _exit() on LinuxThreads only kills current thread
1504   ::abort();
1505 }
1506 
1507 // unused on linux for now.
1508 void os::set_error_file(const char *logfile) {}
1509 
1510 intx os::current_thread_id() { return (intx)pthread_self(); }
1511 int os::current_process_id() {
1512 
1513   // Under the old linux thread library, linux gives each thread
1514   // its own process id. Because of this each thread will return
1515   // a different pid if this method were to return the result
1516   // of getpid(2). Linux provides no api that returns the pid
1517   // of the launcher thread for the vm. This implementation
1518   // returns a unique pid, the pid of the launcher thread
1519   // that starts the vm 'process'.
1520 
1521   // Under the NPTL, getpid() returns the same pid as the
1522   // launcher thread rather than a unique pid per thread.
1523   // Use gettid() if you want the old pre NPTL behaviour.
1524 
1525   // if you are looking for the result of a call to getpid() that
1526   // returns a unique pid for the calling thread, then look at the
1527   // OSThread::thread_id() method in osThread_linux.hpp file
1528 
1529   return (int)(_initial_pid ? _initial_pid : getpid());
1530 }
1531 
1532 // DLL functions
1533 
1534 const char* os::dll_file_extension() { return ".so"; }
1535 
1536 const char* os::get_temp_directory() {
1537   const char *prop = Arguments::get_property("java.io.tmpdir");
1538   return prop == NULL ? "/tmp" : prop;
1539 }
1540 
1541 static bool file_exists(const char* filename) {
1542   struct stat statbuf;
1543   if (filename == NULL || strlen(filename) == 0) {
1544     return false;
1545   }
1546   return os::stat(filename, &statbuf) == 0;
1547 }
1548 
1549 void os::dll_build_name(char* buffer, size_t buflen,
1550                         const char* pname, const char* fname) {
1551   // Copied from libhpi
1552   const size_t pnamelen = pname ? strlen(pname) : 0;
1553 
1554   // Quietly truncate on buffer overflow.  Should be an error.
1555   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1556       *buffer = '\0';
1557       return;
1558   }
1559 
1560   if (pnamelen == 0) {
1561     snprintf(buffer, buflen, "lib%s.so", fname);
1562   } else if (strchr(pname, *os::path_separator()) != NULL) {
1563     int n;
1564     char** pelements = split_path(pname, &n);
1565     for (int i = 0 ; i < n ; i++) {
1566       // Really shouldn't be NULL, but check can't hurt
1567       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1568         continue; // skip the empty path values
1569       }
1570       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1571       if (file_exists(buffer)) {
1572         break;
1573       }
1574     }
1575     // release the storage
1576     for (int i = 0 ; i < n ; i++) {
1577       if (pelements[i] != NULL) {
1578         FREE_C_HEAP_ARRAY(char, pelements[i]);
1579       }
1580     }
1581     if (pelements != NULL) {
1582       FREE_C_HEAP_ARRAY(char*, pelements);
1583     }
1584   } else {
1585     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1586   }
1587 }
1588 
1589 const char* os::get_current_directory(char *buf, int buflen) {
1590   return getcwd(buf, buflen);
1591 }
1592 
1593 // check if addr is inside libjvm[_g].so
1594 bool os::address_is_in_vm(address addr) {
1595   static address libjvm_base_addr;
1596   Dl_info dlinfo;
1597 
1598   if (libjvm_base_addr == NULL) {
1599     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1600     libjvm_base_addr = (address)dlinfo.dli_fbase;
1601     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1602   }
1603 
1604   if (dladdr((void *)addr, &dlinfo)) {
1605     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1606   }
1607 
1608   return false;
1609 }
1610 
1611 bool os::dll_address_to_function_name(address addr, char *buf,
1612                                       int buflen, int *offset) {
1613   Dl_info dlinfo;
1614 
1615   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1616     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1617     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1618     return true;
1619   } else {
1620     if (buf) buf[0] = '\0';
1621     if (offset) *offset = -1;
1622     return false;
1623   }
1624 }
1625 
1626 struct _address_to_library_name {
1627   address addr;          // input : memory address
1628   size_t  buflen;        //         size of fname
1629   char*   fname;         // output: library name
1630   address base;          //         library base addr
1631 };
1632 
1633 static int address_to_library_name_callback(struct dl_phdr_info *info,
1634                                             size_t size, void *data) {
1635   int i;
1636   bool found = false;
1637   address libbase = NULL;
1638   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1639 
1640   // iterate through all loadable segments
1641   for (i = 0; i < info->dlpi_phnum; i++) {
1642     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1643     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1644       // base address of a library is the lowest address of its loaded
1645       // segments.
1646       if (libbase == NULL || libbase > segbase) {
1647         libbase = segbase;
1648       }
1649       // see if 'addr' is within current segment
1650       if (segbase <= d->addr &&
1651           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1652         found = true;
1653       }
1654     }
1655   }
1656 
1657   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1658   // so dll_address_to_library_name() can fall through to use dladdr() which
1659   // can figure out executable name from argv[0].
1660   if (found && info->dlpi_name && info->dlpi_name[0]) {
1661     d->base = libbase;
1662     if (d->fname) {
1663       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1664     }
1665     return 1;
1666   }
1667   return 0;
1668 }
1669 
1670 bool os::dll_address_to_library_name(address addr, char* buf,
1671                                      int buflen, int* offset) {
1672   Dl_info dlinfo;
1673   struct _address_to_library_name data;
1674 
1675   // There is a bug in old glibc dladdr() implementation that it could resolve
1676   // to wrong library name if the .so file has a base address != NULL. Here
1677   // we iterate through the program headers of all loaded libraries to find
1678   // out which library 'addr' really belongs to. This workaround can be
1679   // removed once the minimum requirement for glibc is moved to 2.3.x.
1680   data.addr = addr;
1681   data.fname = buf;
1682   data.buflen = buflen;
1683   data.base = NULL;
1684   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1685 
1686   if (rslt) {
1687      // buf already contains library name
1688      if (offset) *offset = addr - data.base;
1689      return true;
1690   } else if (dladdr((void*)addr, &dlinfo)){
1691      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1692      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1693      return true;
1694   } else {
1695      if (buf) buf[0] = '\0';
1696      if (offset) *offset = -1;
1697      return false;
1698   }
1699 }
1700 
1701   // Loads .dll/.so and
1702   // in case of error it checks if .dll/.so was built for the
1703   // same architecture as Hotspot is running on
1704 
1705 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1706 {
1707   void * result= ::dlopen(filename, RTLD_LAZY);
1708   if (result != NULL) {
1709     // Successful loading
1710     return result;
1711   }
1712 
1713   Elf32_Ehdr elf_head;
1714 
1715   // Read system error message into ebuf
1716   // It may or may not be overwritten below
1717   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1718   ebuf[ebuflen-1]='\0';
1719   int diag_msg_max_length=ebuflen-strlen(ebuf);
1720   char* diag_msg_buf=ebuf+strlen(ebuf);
1721 
1722   if (diag_msg_max_length==0) {
1723     // No more space in ebuf for additional diagnostics message
1724     return NULL;
1725   }
1726 
1727 
1728   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1729 
1730   if (file_descriptor < 0) {
1731     // Can't open library, report dlerror() message
1732     return NULL;
1733   }
1734 
1735   bool failed_to_read_elf_head=
1736     (sizeof(elf_head)!=
1737         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1738 
1739   ::close(file_descriptor);
1740   if (failed_to_read_elf_head) {
1741     // file i/o error - report dlerror() msg
1742     return NULL;
1743   }
1744 
1745   typedef struct {
1746     Elf32_Half  code;         // Actual value as defined in elf.h
1747     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1748     char        elf_class;    // 32 or 64 bit
1749     char        endianess;    // MSB or LSB
1750     char*       name;         // String representation
1751   } arch_t;
1752 
1753   #ifndef EM_486
1754   #define EM_486          6               /* Intel 80486 */
1755   #endif
1756 
1757   static const arch_t arch_array[]={
1758     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1759     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1760     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1761     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1762     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1763     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1764     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1765     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1766     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1767     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1768     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1769     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1770     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1771     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1772     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1773     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1774   };
1775 
1776   #if  (defined IA32)
1777     static  Elf32_Half running_arch_code=EM_386;
1778   #elif   (defined AMD64)
1779     static  Elf32_Half running_arch_code=EM_X86_64;
1780   #elif  (defined IA64)
1781     static  Elf32_Half running_arch_code=EM_IA_64;
1782   #elif  (defined __sparc) && (defined _LP64)
1783     static  Elf32_Half running_arch_code=EM_SPARCV9;
1784   #elif  (defined __sparc) && (!defined _LP64)
1785     static  Elf32_Half running_arch_code=EM_SPARC;
1786   #elif  (defined __powerpc64__)
1787     static  Elf32_Half running_arch_code=EM_PPC64;
1788   #elif  (defined __powerpc__)
1789     static  Elf32_Half running_arch_code=EM_PPC;
1790   #elif  (defined ARM)
1791     static  Elf32_Half running_arch_code=EM_ARM;
1792   #elif  (defined S390)
1793     static  Elf32_Half running_arch_code=EM_S390;
1794   #elif  (defined ALPHA)
1795     static  Elf32_Half running_arch_code=EM_ALPHA;
1796   #elif  (defined MIPSEL)
1797     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1798   #elif  (defined PARISC)
1799     static  Elf32_Half running_arch_code=EM_PARISC;
1800   #elif  (defined MIPS)
1801     static  Elf32_Half running_arch_code=EM_MIPS;
1802   #elif  (defined M68K)
1803     static  Elf32_Half running_arch_code=EM_68K;
1804   #else
1805     #error Method os::dll_load requires that one of following is defined:\
1806          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1807   #endif
1808 
1809   // Identify compatability class for VM's architecture and library's architecture
1810   // Obtain string descriptions for architectures
1811 
1812   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1813   int running_arch_index=-1;
1814 
1815   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1816     if (running_arch_code == arch_array[i].code) {
1817       running_arch_index    = i;
1818     }
1819     if (lib_arch.code == arch_array[i].code) {
1820       lib_arch.compat_class = arch_array[i].compat_class;
1821       lib_arch.name         = arch_array[i].name;
1822     }
1823   }
1824 
1825   assert(running_arch_index != -1,
1826     "Didn't find running architecture code (running_arch_code) in arch_array");
1827   if (running_arch_index == -1) {
1828     // Even though running architecture detection failed
1829     // we may still continue with reporting dlerror() message
1830     return NULL;
1831   }
1832 
1833   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1834     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1835     return NULL;
1836   }
1837 
1838 #ifndef S390
1839   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1840     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1841     return NULL;
1842   }
1843 #endif // !S390
1844 
1845   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1846     if ( lib_arch.name!=NULL ) {
1847       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1848         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1849         lib_arch.name, arch_array[running_arch_index].name);
1850     } else {
1851       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1852       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1853         lib_arch.code,
1854         arch_array[running_arch_index].name);
1855     }
1856   }
1857 
1858   return NULL;
1859 }
1860 
1861 /*
1862  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1863  * chances are you might want to run the generated bits against glibc-2.0
1864  * libdl.so, so always use locking for any version of glibc.
1865  */
1866 void* os::dll_lookup(void* handle, const char* name) {
1867   pthread_mutex_lock(&dl_mutex);
1868   void* res = dlsym(handle, name);
1869   pthread_mutex_unlock(&dl_mutex);
1870   return res;
1871 }
1872 
1873 
1874 bool _print_ascii_file(const char* filename, outputStream* st) {
1875   int fd = open(filename, O_RDONLY);
1876   if (fd == -1) {
1877      return false;
1878   }
1879 
1880   char buf[32];
1881   int bytes;
1882   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1883     st->print_raw(buf, bytes);
1884   }
1885 
1886   close(fd);
1887 
1888   return true;
1889 }
1890 
1891 void os::print_dll_info(outputStream *st) {
1892    st->print_cr("Dynamic libraries:");
1893 
1894    char fname[32];
1895    pid_t pid = os::Linux::gettid();
1896 
1897    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1898 
1899    if (!_print_ascii_file(fname, st)) {
1900      st->print("Can not get library information for pid = %d\n", pid);
1901    }
1902 }
1903 
1904 
1905 void os::print_os_info(outputStream* st) {
1906   st->print("OS:");
1907 
1908   // Try to identify popular distros.
1909   // Most Linux distributions have /etc/XXX-release file, which contains
1910   // the OS version string. Some have more than one /etc/XXX-release file
1911   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1912   // so the order is important.
1913   if (!_print_ascii_file("/etc/mandrake-release", st) &&
1914       !_print_ascii_file("/etc/sun-release", st) &&
1915       !_print_ascii_file("/etc/redhat-release", st) &&
1916       !_print_ascii_file("/etc/SuSE-release", st) &&
1917       !_print_ascii_file("/etc/turbolinux-release", st) &&
1918       !_print_ascii_file("/etc/gentoo-release", st) &&
1919       !_print_ascii_file("/etc/debian_version", st) &&
1920       !_print_ascii_file("/etc/ltib-release", st) &&
1921       !_print_ascii_file("/etc/angstrom-version", st)) {
1922       st->print("Linux");
1923   }
1924   st->cr();
1925 
1926   // kernel
1927   st->print("uname:");
1928   struct utsname name;
1929   uname(&name);
1930   st->print(name.sysname); st->print(" ");
1931   st->print(name.release); st->print(" ");
1932   st->print(name.version); st->print(" ");
1933   st->print(name.machine);
1934   st->cr();
1935 
1936   // Print warning if unsafe chroot environment detected
1937   if (unsafe_chroot_detected) {
1938     st->print("WARNING!! ");
1939     st->print_cr(unstable_chroot_error);
1940   }
1941 
1942   // libc, pthread
1943   st->print("libc:");
1944   st->print(os::Linux::glibc_version()); st->print(" ");
1945   st->print(os::Linux::libpthread_version()); st->print(" ");
1946   if (os::Linux::is_LinuxThreads()) {
1947      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1948   }
1949   st->cr();
1950 
1951   // rlimit
1952   st->print("rlimit:");
1953   struct rlimit rlim;
1954 
1955   st->print(" STACK ");
1956   getrlimit(RLIMIT_STACK, &rlim);
1957   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1958   else st->print("%uk", rlim.rlim_cur >> 10);
1959 
1960   st->print(", CORE ");
1961   getrlimit(RLIMIT_CORE, &rlim);
1962   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1963   else st->print("%uk", rlim.rlim_cur >> 10);
1964 
1965   st->print(", NPROC ");
1966   getrlimit(RLIMIT_NPROC, &rlim);
1967   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1968   else st->print("%d", rlim.rlim_cur);
1969 
1970   st->print(", NOFILE ");
1971   getrlimit(RLIMIT_NOFILE, &rlim);
1972   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1973   else st->print("%d", rlim.rlim_cur);
1974 
1975   st->print(", AS ");
1976   getrlimit(RLIMIT_AS, &rlim);
1977   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1978   else st->print("%uk", rlim.rlim_cur >> 10);
1979   st->cr();
1980 
1981   // load average
1982   st->print("load average:");
1983   double loadavg[3];
1984   os::loadavg(loadavg, 3);
1985   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1986   st->cr();
1987 
1988   // meminfo
1989   st->print("\n/proc/meminfo:\n");
1990   _print_ascii_file("/proc/meminfo", st);
1991   st->cr();
1992 }
1993 
1994 void os::print_memory_info(outputStream* st) {
1995 
1996   st->print("Memory:");
1997   st->print(" %dk page", os::vm_page_size()>>10);
1998 
1999   // values in struct sysinfo are "unsigned long"
2000   struct sysinfo si;
2001   sysinfo(&si);
2002 
2003   st->print(", physical " UINT64_FORMAT "k",
2004             os::physical_memory() >> 10);
2005   st->print("(" UINT64_FORMAT "k free)",
2006             os::available_memory() >> 10);
2007   st->print(", swap " UINT64_FORMAT "k",
2008             ((jlong)si.totalswap * si.mem_unit) >> 10);
2009   st->print("(" UINT64_FORMAT "k free)",
2010             ((jlong)si.freeswap * si.mem_unit) >> 10);
2011   st->cr();
2012 }
2013 
2014 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2015 // but they're the same for all the linux arch that we support
2016 // and they're the same for solaris but there's no common place to put this.
2017 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2018                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2019                           "ILL_COPROC", "ILL_BADSTK" };
2020 
2021 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2022                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2023                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2024 
2025 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2026 
2027 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2028 
2029 void os::print_siginfo(outputStream* st, void* siginfo) {
2030   st->print("siginfo:");
2031 
2032   const int buflen = 100;
2033   char buf[buflen];
2034   siginfo_t *si = (siginfo_t*)siginfo;
2035   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2036   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2037     st->print("si_errno=%s", buf);
2038   } else {
2039     st->print("si_errno=%d", si->si_errno);
2040   }
2041   const int c = si->si_code;
2042   assert(c > 0, "unexpected si_code");
2043   switch (si->si_signo) {
2044   case SIGILL:
2045     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2046     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2047     break;
2048   case SIGFPE:
2049     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2050     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2051     break;
2052   case SIGSEGV:
2053     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2054     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2055     break;
2056   case SIGBUS:
2057     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2058     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2059     break;
2060   default:
2061     st->print(", si_code=%d", si->si_code);
2062     // no si_addr
2063   }
2064 
2065   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2066       UseSharedSpaces) {
2067     FileMapInfo* mapinfo = FileMapInfo::current_info();
2068     if (mapinfo->is_in_shared_space(si->si_addr)) {
2069       st->print("\n\nError accessing class data sharing archive."   \
2070                 " Mapped file inaccessible during execution, "      \
2071                 " possible disk/network problem.");
2072     }
2073   }
2074   st->cr();
2075 }
2076 
2077 
2078 static void print_signal_handler(outputStream* st, int sig,
2079                                  char* buf, size_t buflen);
2080 
2081 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2082   st->print_cr("Signal Handlers:");
2083   print_signal_handler(st, SIGSEGV, buf, buflen);
2084   print_signal_handler(st, SIGBUS , buf, buflen);
2085   print_signal_handler(st, SIGFPE , buf, buflen);
2086   print_signal_handler(st, SIGPIPE, buf, buflen);
2087   print_signal_handler(st, SIGXFSZ, buf, buflen);
2088   print_signal_handler(st, SIGILL , buf, buflen);
2089   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2090   print_signal_handler(st, SR_signum, buf, buflen);
2091   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2092   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2093   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2094   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2095 }
2096 
2097 static char saved_jvm_path[MAXPATHLEN] = {0};
2098 
2099 // Find the full path to the current module, libjvm.so or libjvm_g.so
2100 void os::jvm_path(char *buf, jint buflen) {
2101   // Error checking.
2102   if (buflen < MAXPATHLEN) {
2103     assert(false, "must use a large-enough buffer");
2104     buf[0] = '\0';
2105     return;
2106   }
2107   // Lazy resolve the path to current module.
2108   if (saved_jvm_path[0] != 0) {
2109     strcpy(buf, saved_jvm_path);
2110     return;
2111   }
2112 
2113   char dli_fname[MAXPATHLEN];
2114   bool ret = dll_address_to_library_name(
2115                 CAST_FROM_FN_PTR(address, os::jvm_path),
2116                 dli_fname, sizeof(dli_fname), NULL);
2117   assert(ret != 0, "cannot locate libjvm");
2118   char *rp = realpath(dli_fname, buf);
2119   if (rp == NULL)
2120     return;
2121 
2122   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2123     // Support for the gamma launcher.  Typical value for buf is
2124     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2125     // the right place in the string, then assume we are installed in a JDK and
2126     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2127     // up the path so it looks like libjvm.so is installed there (append a
2128     // fake suffix hotspot/libjvm.so).
2129     const char *p = buf + strlen(buf) - 1;
2130     for (int count = 0; p > buf && count < 5; ++count) {
2131       for (--p; p > buf && *p != '/'; --p)
2132         /* empty */ ;
2133     }
2134 
2135     if (strncmp(p, "/jre/lib/", 9) != 0) {
2136       // Look for JAVA_HOME in the environment.
2137       char* java_home_var = ::getenv("JAVA_HOME");
2138       if (java_home_var != NULL && java_home_var[0] != 0) {
2139         char* jrelib_p;
2140         int len;
2141 
2142         // Check the current module name "libjvm.so" or "libjvm_g.so".
2143         p = strrchr(buf, '/');
2144         assert(strstr(p, "/libjvm") == p, "invalid library name");
2145         p = strstr(p, "_g") ? "_g" : "";
2146 
2147         rp = realpath(java_home_var, buf);
2148         if (rp == NULL)
2149           return;
2150 
2151         // determine if this is a legacy image or modules image
2152         // modules image doesn't have "jre" subdirectory
2153         len = strlen(buf);
2154         jrelib_p = buf + len;
2155         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2156         if (0 != access(buf, F_OK)) {
2157           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2158         }
2159 
2160         if (0 == access(buf, F_OK)) {
2161           // Use current module name "libjvm[_g].so" instead of
2162           // "libjvm"debug_only("_g")".so" since for fastdebug version
2163           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2164           // It is used when we are choosing the HPI library's name
2165           // "libhpi[_g].so" in hpi::initialize_get_interface().
2166           len = strlen(buf);
2167           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2168         } else {
2169           // Go back to path of .so
2170           rp = realpath(dli_fname, buf);
2171           if (rp == NULL)
2172             return;
2173         }
2174       }
2175     }
2176   }
2177 
2178   strcpy(saved_jvm_path, buf);
2179 }
2180 
2181 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2182   // no prefix required, not even "_"
2183 }
2184 
2185 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2186   // no suffix required
2187 }
2188 
2189 ////////////////////////////////////////////////////////////////////////////////
2190 // sun.misc.Signal support
2191 
2192 static volatile jint sigint_count = 0;
2193 
2194 static void
2195 UserHandler(int sig, void *siginfo, void *context) {
2196   // 4511530 - sem_post is serialized and handled by the manager thread. When
2197   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2198   // don't want to flood the manager thread with sem_post requests.
2199   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2200       return;
2201 
2202   // Ctrl-C is pressed during error reporting, likely because the error
2203   // handler fails to abort. Let VM die immediately.
2204   if (sig == SIGINT && is_error_reported()) {
2205      os::die();
2206   }
2207 
2208   os::signal_notify(sig);
2209 }
2210 
2211 void* os::user_handler() {
2212   return CAST_FROM_FN_PTR(void*, UserHandler);
2213 }
2214 
2215 extern "C" {
2216   typedef void (*sa_handler_t)(int);
2217   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2218 }
2219 
2220 void* os::signal(int signal_number, void* handler) {
2221   struct sigaction sigAct, oldSigAct;
2222 
2223   sigfillset(&(sigAct.sa_mask));
2224   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2225   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2226 
2227   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2228     // -1 means registration failed
2229     return (void *)-1;
2230   }
2231 
2232   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2233 }
2234 
2235 void os::signal_raise(int signal_number) {
2236   ::raise(signal_number);
2237 }
2238 
2239 /*
2240  * The following code is moved from os.cpp for making this
2241  * code platform specific, which it is by its very nature.
2242  */
2243 
2244 // Will be modified when max signal is changed to be dynamic
2245 int os::sigexitnum_pd() {
2246   return NSIG;
2247 }
2248 
2249 // a counter for each possible signal value
2250 static volatile jint pending_signals[NSIG+1] = { 0 };
2251 
2252 // Linux(POSIX) specific hand shaking semaphore.
2253 static sem_t sig_sem;
2254 
2255 void os::signal_init_pd() {
2256   // Initialize signal structures
2257   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2258 
2259   // Initialize signal semaphore
2260   ::sem_init(&sig_sem, 0, 0);
2261 }
2262 
2263 void os::signal_notify(int sig) {
2264   Atomic::inc(&pending_signals[sig]);
2265   ::sem_post(&sig_sem);
2266 }
2267 
2268 static int check_pending_signals(bool wait) {
2269   Atomic::store(0, &sigint_count);
2270   for (;;) {
2271     for (int i = 0; i < NSIG + 1; i++) {
2272       jint n = pending_signals[i];
2273       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2274         return i;
2275       }
2276     }
2277     if (!wait) {
2278       return -1;
2279     }
2280     JavaThread *thread = JavaThread::current();
2281     ThreadBlockInVM tbivm(thread);
2282 
2283     bool threadIsSuspended;
2284     do {
2285       thread->set_suspend_equivalent();
2286       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2287       ::sem_wait(&sig_sem);
2288 
2289       // were we externally suspended while we were waiting?
2290       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2291       if (threadIsSuspended) {
2292         //
2293         // The semaphore has been incremented, but while we were waiting
2294         // another thread suspended us. We don't want to continue running
2295         // while suspended because that would surprise the thread that
2296         // suspended us.
2297         //
2298         ::sem_post(&sig_sem);
2299 
2300         thread->java_suspend_self();
2301       }
2302     } while (threadIsSuspended);
2303   }
2304 }
2305 
2306 int os::signal_lookup() {
2307   return check_pending_signals(false);
2308 }
2309 
2310 int os::signal_wait() {
2311   return check_pending_signals(true);
2312 }
2313 
2314 ////////////////////////////////////////////////////////////////////////////////
2315 // Virtual Memory
2316 
2317 int os::vm_page_size() {
2318   // Seems redundant as all get out
2319   assert(os::Linux::page_size() != -1, "must call os::init");
2320   return os::Linux::page_size();
2321 }
2322 
2323 // Solaris allocates memory by pages.
2324 int os::vm_allocation_granularity() {
2325   assert(os::Linux::page_size() != -1, "must call os::init");
2326   return os::Linux::page_size();
2327 }
2328 
2329 // Rationale behind this function:
2330 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2331 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2332 //  samples for JITted code. Here we create private executable mapping over the code cache
2333 //  and then we can use standard (well, almost, as mapping can change) way to provide
2334 //  info for the reporting script by storing timestamp and location of symbol
2335 void linux_wrap_code(char* base, size_t size) {
2336   static volatile jint cnt = 0;
2337 
2338   if (!UseOprofile) {
2339     return;
2340   }
2341 
2342   char buf[PATH_MAX+1];
2343   int num = Atomic::add(1, &cnt);
2344 
2345   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2346            os::get_temp_directory(), os::current_process_id(), num);
2347   unlink(buf);
2348 
2349   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2350 
2351   if (fd != -1) {
2352     off_t rv = lseek(fd, size-2, SEEK_SET);
2353     if (rv != (off_t)-1) {
2354       if (write(fd, "", 1) == 1) {
2355         mmap(base, size,
2356              PROT_READ|PROT_WRITE|PROT_EXEC,
2357              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2358       }
2359     }
2360     close(fd);
2361     unlink(buf);
2362   }
2363 }
2364 
2365 // NOTE: Linux kernel does not really reserve the pages for us.
2366 //       All it does is to check if there are enough free pages
2367 //       left at the time of mmap(). This could be a potential
2368 //       problem.
2369 bool os::commit_memory(char* addr, size_t size, bool exec) {
2370   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2371   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2372                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2373   return res != (uintptr_t) MAP_FAILED;
2374 }
2375 
2376 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2377                        bool exec) {
2378   return commit_memory(addr, size, exec);
2379 }
2380 
2381 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2382 
2383 void os::free_memory(char *addr, size_t bytes) {
2384   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2385          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2386 }
2387 
2388 void os::numa_make_global(char *addr, size_t bytes) {
2389   Linux::numa_interleave_memory(addr, bytes);
2390 }
2391 
2392 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2393   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2394 }
2395 
2396 bool os::numa_topology_changed()   { return false; }
2397 
2398 size_t os::numa_get_groups_num() {
2399   int max_node = Linux::numa_max_node();
2400   return max_node > 0 ? max_node + 1 : 1;
2401 }
2402 
2403 int os::numa_get_group_id() {
2404   int cpu_id = Linux::sched_getcpu();
2405   if (cpu_id != -1) {
2406     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2407     if (lgrp_id != -1) {
2408       return lgrp_id;
2409     }
2410   }
2411   return 0;
2412 }
2413 
2414 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2415   for (size_t i = 0; i < size; i++) {
2416     ids[i] = i;
2417   }
2418   return size;
2419 }
2420 
2421 bool os::get_page_info(char *start, page_info* info) {
2422   return false;
2423 }
2424 
2425 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2426   return end;
2427 }
2428 
2429 extern "C" void numa_warn(int number, char *where, ...) { }
2430 extern "C" void numa_error(char *where) { }
2431 
2432 
2433 // If we are running with libnuma version > 2, then we should
2434 // be trying to use symbols with versions 1.1
2435 // If we are running with earlier version, which did not have symbol versions,
2436 // we should use the base version.
2437 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2438   void *f = dlvsym(handle, name, "libnuma_1.1");
2439   if (f == NULL) {
2440     f = dlsym(handle, name);
2441   }
2442   return f;
2443 }
2444 
2445 bool os::Linux::libnuma_init() {
2446   // sched_getcpu() should be in libc.
2447   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2448                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2449 
2450   if (sched_getcpu() != -1) { // Does it work?
2451     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2452     if (handle != NULL) {
2453       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2454                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2455       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2456                                        libnuma_dlsym(handle, "numa_max_node")));
2457       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2458                                         libnuma_dlsym(handle, "numa_available")));
2459       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2460                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2461       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2462                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2463 
2464 
2465       if (numa_available() != -1) {
2466         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2467         // Create a cpu -> node mapping
2468         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2469         rebuild_cpu_to_node_map();
2470         return true;
2471       }
2472     }
2473   }
2474   return false;
2475 }
2476 
2477 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2478 // The table is later used in get_node_by_cpu().
2479 void os::Linux::rebuild_cpu_to_node_map() {
2480   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2481                               // in libnuma (possible values are starting from 16,
2482                               // and continuing up with every other power of 2, but less
2483                               // than the maximum number of CPUs supported by kernel), and
2484                               // is a subject to change (in libnuma version 2 the requirements
2485                               // are more reasonable) we'll just hardcode the number they use
2486                               // in the library.
2487   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2488 
2489   size_t cpu_num = os::active_processor_count();
2490   size_t cpu_map_size = NCPUS / BitsPerCLong;
2491   size_t cpu_map_valid_size =
2492     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2493 
2494   cpu_to_node()->clear();
2495   cpu_to_node()->at_grow(cpu_num - 1);
2496   size_t node_num = numa_get_groups_num();
2497 
2498   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2499   for (size_t i = 0; i < node_num; i++) {
2500     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2501       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2502         if (cpu_map[j] != 0) {
2503           for (size_t k = 0; k < BitsPerCLong; k++) {
2504             if (cpu_map[j] & (1UL << k)) {
2505               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2506             }
2507           }
2508         }
2509       }
2510     }
2511   }
2512   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2513 }
2514 
2515 int os::Linux::get_node_by_cpu(int cpu_id) {
2516   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2517     return cpu_to_node()->at(cpu_id);
2518   }
2519   return -1;
2520 }
2521 
2522 GrowableArray<int>* os::Linux::_cpu_to_node;
2523 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2524 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2525 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2526 os::Linux::numa_available_func_t os::Linux::_numa_available;
2527 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2528 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2529 unsigned long* os::Linux::_numa_all_nodes;
2530 
2531 bool os::uncommit_memory(char* addr, size_t size) {
2532   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2533                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2534   return res  != (uintptr_t) MAP_FAILED;
2535 }
2536 
2537 // Linux uses a growable mapping for the stack, and if the mapping for
2538 // the stack guard pages is not removed when we detach a thread the
2539 // stack cannot grow beyond the pages where the stack guard was
2540 // mapped.  If at some point later in the process the stack expands to
2541 // that point, the Linux kernel cannot expand the stack any further
2542 // because the guard pages are in the way, and a segfault occurs.
2543 //
2544 // However, it's essential not to split the stack region by unmapping
2545 // a region (leaving a hole) that's already part of the stack mapping,
2546 // so if the stack mapping has already grown beyond the guard pages at
2547 // the time we create them, we have to truncate the stack mapping.
2548 // So, we need to know the extent of the stack mapping when
2549 // create_stack_guard_pages() is called.
2550 
2551 // Find the bounds of the stack mapping.  Return true for success.
2552 //
2553 // We only need this for stacks that are growable: at the time of
2554 // writing thread stacks don't use growable mappings (i.e. those
2555 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2556 // only applies to the main thread.
2557 static bool
2558 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2559 {
2560   FILE *f = fopen("/proc/self/maps", "r");
2561   if (f == NULL)
2562     return false;
2563 
2564   while (!feof(f)) {
2565     size_t dummy;
2566     char *str = NULL;
2567     ssize_t len = getline(&str, &dummy, f);
2568     if (len == -1) {
2569       fclose(f);
2570       return false;
2571     }
2572 
2573     if (len > 0 && str[len-1] == '\n') {
2574       str[len-1] = 0;
2575       len--;
2576     }
2577 
2578     static const char *stack_str = "[stack]";
2579     if (len > (ssize_t)strlen(stack_str)
2580        && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2581       if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2582         uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2583         if (sp >= *bottom && sp <= *top) {
2584           free(str);
2585           fclose(f);
2586           return true;
2587         }
2588       }
2589     }
2590     free(str);
2591   }
2592   fclose(f);
2593   return false;
2594 }
2595 
2596 // If the (growable) stack mapping already extends beyond the point
2597 // where we're going to put our guard pages, truncate the mapping at
2598 // that point by munmap()ping it.  This ensures that when we later
2599 // munmap() the guard pages we don't leave a hole in the stack
2600 // mapping. This only affects the main/initial thread, but guard
2601 // against future OS changes
2602 bool os::create_stack_guard_pages(char* addr, size_t size) {
2603   uintptr_t stack_extent, stack_base;
2604   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2605   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2606       assert(os::Linux::is_initial_thread(),
2607            "growable stack in non-initial thread");
2608     if (stack_extent < (uintptr_t)addr)
2609       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2610   }
2611 
2612   return os::commit_memory(addr, size);
2613 }
2614 
2615 // If this is a growable mapping, remove the guard pages entirely by
2616 // munmap()ping them.  If not, just call uncommit_memory(). This only
2617 // affects the main/initial thread, but guard against future OS changes
2618 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2619   uintptr_t stack_extent, stack_base;
2620   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2621   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2622       assert(os::Linux::is_initial_thread(),
2623            "growable stack in non-initial thread");
2624 
2625     return ::munmap(addr, size) == 0;
2626   }
2627 
2628   return os::uncommit_memory(addr, size);
2629 }
2630 
2631 static address _highest_vm_reserved_address = NULL;
2632 
2633 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2634 // at 'requested_addr'. If there are existing memory mappings at the same
2635 // location, however, they will be overwritten. If 'fixed' is false,
2636 // 'requested_addr' is only treated as a hint, the return value may or
2637 // may not start from the requested address. Unlike Linux mmap(), this
2638 // function returns NULL to indicate failure.
2639 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2640   char * addr;
2641   int flags;
2642 
2643   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2644   if (fixed) {
2645     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2646     flags |= MAP_FIXED;
2647   }
2648 
2649   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2650   // to PROT_EXEC if executable when we commit the page.
2651   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2652                        flags, -1, 0);
2653 
2654   if (addr != MAP_FAILED) {
2655     // anon_mmap() should only get called during VM initialization,
2656     // don't need lock (actually we can skip locking even it can be called
2657     // from multiple threads, because _highest_vm_reserved_address is just a
2658     // hint about the upper limit of non-stack memory regions.)
2659     if ((address)addr + bytes > _highest_vm_reserved_address) {
2660       _highest_vm_reserved_address = (address)addr + bytes;
2661     }
2662   }
2663 
2664   return addr == MAP_FAILED ? NULL : addr;
2665 }
2666 
2667 // Don't update _highest_vm_reserved_address, because there might be memory
2668 // regions above addr + size. If so, releasing a memory region only creates
2669 // a hole in the address space, it doesn't help prevent heap-stack collision.
2670 //
2671 static int anon_munmap(char * addr, size_t size) {
2672   return ::munmap(addr, size) == 0;
2673 }
2674 
2675 char* os::reserve_memory(size_t bytes, char* requested_addr,
2676                          size_t alignment_hint) {
2677   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2678 }
2679 
2680 bool os::release_memory(char* addr, size_t size) {
2681   return anon_munmap(addr, size);
2682 }
2683 
2684 static address highest_vm_reserved_address() {
2685   return _highest_vm_reserved_address;
2686 }
2687 
2688 static bool linux_mprotect(char* addr, size_t size, int prot) {
2689   // Linux wants the mprotect address argument to be page aligned.
2690   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2691 
2692   // According to SUSv3, mprotect() should only be used with mappings
2693   // established by mmap(), and mmap() always maps whole pages. Unaligned
2694   // 'addr' likely indicates problem in the VM (e.g. trying to change
2695   // protection of malloc'ed or statically allocated memory). Check the
2696   // caller if you hit this assert.
2697   assert(addr == bottom, "sanity check");
2698 
2699   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2700   return ::mprotect(bottom, size, prot) == 0;
2701 }
2702 
2703 // Set protections specified
2704 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2705                         bool is_committed) {
2706   unsigned int p = 0;
2707   switch (prot) {
2708   case MEM_PROT_NONE: p = PROT_NONE; break;
2709   case MEM_PROT_READ: p = PROT_READ; break;
2710   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2711   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2712   default:
2713     ShouldNotReachHere();
2714   }
2715   // is_committed is unused.
2716   return linux_mprotect(addr, bytes, p);
2717 }
2718 
2719 bool os::guard_memory(char* addr, size_t size) {
2720   return linux_mprotect(addr, size, PROT_NONE);
2721 }
2722 
2723 bool os::unguard_memory(char* addr, size_t size) {
2724   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2725 }
2726 
2727 // Large page support
2728 
2729 static size_t _large_page_size = 0;
2730 
2731 bool os::large_page_init() {
2732   if (!UseLargePages) return false;
2733 
2734   if (LargePageSizeInBytes) {
2735     _large_page_size = LargePageSizeInBytes;
2736   } else {
2737     // large_page_size on Linux is used to round up heap size. x86 uses either
2738     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2739     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2740     // page as large as 256M.
2741     //
2742     // Here we try to figure out page size by parsing /proc/meminfo and looking
2743     // for a line with the following format:
2744     //    Hugepagesize:     2048 kB
2745     //
2746     // If we can't determine the value (e.g. /proc is not mounted, or the text
2747     // format has been changed), we'll use the largest page size supported by
2748     // the processor.
2749 
2750 #ifndef ZERO
2751     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2752                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2753 #endif // ZERO
2754 
2755     FILE *fp = fopen("/proc/meminfo", "r");
2756     if (fp) {
2757       while (!feof(fp)) {
2758         int x = 0;
2759         char buf[16];
2760         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2761           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2762             _large_page_size = x * K;
2763             break;
2764           }
2765         } else {
2766           // skip to next line
2767           for (;;) {
2768             int ch = fgetc(fp);
2769             if (ch == EOF || ch == (int)'\n') break;
2770           }
2771         }
2772       }
2773       fclose(fp);
2774     }
2775   }
2776 
2777   const size_t default_page_size = (size_t)Linux::page_size();
2778   if (_large_page_size > default_page_size) {
2779     _page_sizes[0] = _large_page_size;
2780     _page_sizes[1] = default_page_size;
2781     _page_sizes[2] = 0;
2782   }
2783 
2784   // Large page support is available on 2.6 or newer kernel, some vendors
2785   // (e.g. Redhat) have backported it to their 2.4 based distributions.
2786   // We optimistically assume the support is available. If later it turns out
2787   // not true, VM will automatically switch to use regular page size.
2788   return true;
2789 }
2790 
2791 #ifndef SHM_HUGETLB
2792 #define SHM_HUGETLB 04000
2793 #endif
2794 
2795 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2796   // "exec" is passed in but not used.  Creating the shared image for
2797   // the code cache doesn't have an SHM_X executable permission to check.
2798   assert(UseLargePages, "only for large pages");
2799 
2800   key_t key = IPC_PRIVATE;
2801   char *addr;
2802 
2803   bool warn_on_failure = UseLargePages &&
2804                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2805                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2806                         );
2807   char msg[128];
2808 
2809   // Create a large shared memory region to attach to based on size.
2810   // Currently, size is the total size of the heap
2811   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2812   if (shmid == -1) {
2813      // Possible reasons for shmget failure:
2814      // 1. shmmax is too small for Java heap.
2815      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2816      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2817      // 2. not enough large page memory.
2818      //    > check available large pages: cat /proc/meminfo
2819      //    > increase amount of large pages:
2820      //          echo new_value > /proc/sys/vm/nr_hugepages
2821      //      Note 1: different Linux may use different name for this property,
2822      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2823      //      Note 2: it's possible there's enough physical memory available but
2824      //            they are so fragmented after a long run that they can't
2825      //            coalesce into large pages. Try to reserve large pages when
2826      //            the system is still "fresh".
2827      if (warn_on_failure) {
2828        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2829        warning(msg);
2830      }
2831      return NULL;
2832   }
2833 
2834   // attach to the region
2835   addr = (char*)shmat(shmid, req_addr, 0);
2836   int err = errno;
2837 
2838   // Remove shmid. If shmat() is successful, the actual shared memory segment
2839   // will be deleted when it's detached by shmdt() or when the process
2840   // terminates. If shmat() is not successful this will remove the shared
2841   // segment immediately.
2842   shmctl(shmid, IPC_RMID, NULL);
2843 
2844   if ((intptr_t)addr == -1) {
2845      if (warn_on_failure) {
2846        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2847        warning(msg);
2848      }
2849      return NULL;
2850   }
2851 
2852   return addr;
2853 }
2854 
2855 bool os::release_memory_special(char* base, size_t bytes) {
2856   // detaching the SHM segment will also delete it, see reserve_memory_special()
2857   int rslt = shmdt(base);
2858   return rslt == 0;
2859 }
2860 
2861 size_t os::large_page_size() {
2862   return _large_page_size;
2863 }
2864 
2865 // Linux does not support anonymous mmap with large page memory. The only way
2866 // to reserve large page memory without file backing is through SysV shared
2867 // memory API. The entire memory region is committed and pinned upfront.
2868 // Hopefully this will change in the future...
2869 bool os::can_commit_large_page_memory() {
2870   return false;
2871 }
2872 
2873 bool os::can_execute_large_page_memory() {
2874   return false;
2875 }
2876 
2877 // Reserve memory at an arbitrary address, only if that area is
2878 // available (and not reserved for something else).
2879 
2880 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2881   const int max_tries = 10;
2882   char* base[max_tries];
2883   size_t size[max_tries];
2884   const size_t gap = 0x000000;
2885 
2886   // Assert only that the size is a multiple of the page size, since
2887   // that's all that mmap requires, and since that's all we really know
2888   // about at this low abstraction level.  If we need higher alignment,
2889   // we can either pass an alignment to this method or verify alignment
2890   // in one of the methods further up the call chain.  See bug 5044738.
2891   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2892 
2893   // Repeatedly allocate blocks until the block is allocated at the
2894   // right spot. Give up after max_tries. Note that reserve_memory() will
2895   // automatically update _highest_vm_reserved_address if the call is
2896   // successful. The variable tracks the highest memory address every reserved
2897   // by JVM. It is used to detect heap-stack collision if running with
2898   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2899   // space than needed, it could confuse the collision detecting code. To
2900   // solve the problem, save current _highest_vm_reserved_address and
2901   // calculate the correct value before return.
2902   address old_highest = _highest_vm_reserved_address;
2903 
2904   // Linux mmap allows caller to pass an address as hint; give it a try first,
2905   // if kernel honors the hint then we can return immediately.
2906   char * addr = anon_mmap(requested_addr, bytes, false);
2907   if (addr == requested_addr) {
2908      return requested_addr;
2909   }
2910 
2911   if (addr != NULL) {
2912      // mmap() is successful but it fails to reserve at the requested address
2913      anon_munmap(addr, bytes);
2914   }
2915 
2916   int i;
2917   for (i = 0; i < max_tries; ++i) {
2918     base[i] = reserve_memory(bytes);
2919 
2920     if (base[i] != NULL) {
2921       // Is this the block we wanted?
2922       if (base[i] == requested_addr) {
2923         size[i] = bytes;
2924         break;
2925       }
2926 
2927       // Does this overlap the block we wanted? Give back the overlapped
2928       // parts and try again.
2929 
2930       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2931       if (top_overlap >= 0 && top_overlap < bytes) {
2932         unmap_memory(base[i], top_overlap);
2933         base[i] += top_overlap;
2934         size[i] = bytes - top_overlap;
2935       } else {
2936         size_t bottom_overlap = base[i] + bytes - requested_addr;
2937         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2938           unmap_memory(requested_addr, bottom_overlap);
2939           size[i] = bytes - bottom_overlap;
2940         } else {
2941           size[i] = bytes;
2942         }
2943       }
2944     }
2945   }
2946 
2947   // Give back the unused reserved pieces.
2948 
2949   for (int j = 0; j < i; ++j) {
2950     if (base[j] != NULL) {
2951       unmap_memory(base[j], size[j]);
2952     }
2953   }
2954 
2955   if (i < max_tries) {
2956     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2957     return requested_addr;
2958   } else {
2959     _highest_vm_reserved_address = old_highest;
2960     return NULL;
2961   }
2962 }
2963 
2964 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2965   return ::read(fd, buf, nBytes);
2966 }
2967 
2968 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2969 // Solaris uses poll(), linux uses park().
2970 // Poll() is likely a better choice, assuming that Thread.interrupt()
2971 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2972 // SIGSEGV, see 4355769.
2973 
2974 const int NANOSECS_PER_MILLISECS = 1000000;
2975 
2976 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2977   assert(thread == Thread::current(),  "thread consistency check");
2978 
2979   ParkEvent * const slp = thread->_SleepEvent ;
2980   slp->reset() ;
2981   OrderAccess::fence() ;
2982 
2983   if (interruptible) {
2984     jlong prevtime = javaTimeNanos();
2985 
2986     for (;;) {
2987       if (os::is_interrupted(thread, true)) {
2988         return OS_INTRPT;
2989       }
2990 
2991       jlong newtime = javaTimeNanos();
2992 
2993       if (newtime - prevtime < 0) {
2994         // time moving backwards, should only happen if no monotonic clock
2995         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2996         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2997       } else {
2998         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2999       }
3000 
3001       if(millis <= 0) {
3002         return OS_OK;
3003       }
3004 
3005       prevtime = newtime;
3006 
3007       {
3008         assert(thread->is_Java_thread(), "sanity check");
3009         JavaThread *jt = (JavaThread *) thread;
3010         ThreadBlockInVM tbivm(jt);
3011         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3012 
3013         jt->set_suspend_equivalent();
3014         // cleared by handle_special_suspend_equivalent_condition() or
3015         // java_suspend_self() via check_and_wait_while_suspended()
3016 
3017         slp->park(millis);
3018 
3019         // were we externally suspended while we were waiting?
3020         jt->check_and_wait_while_suspended();
3021       }
3022     }
3023   } else {
3024     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3025     jlong prevtime = javaTimeNanos();
3026 
3027     for (;;) {
3028       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3029       // the 1st iteration ...
3030       jlong newtime = javaTimeNanos();
3031 
3032       if (newtime - prevtime < 0) {
3033         // time moving backwards, should only happen if no monotonic clock
3034         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3035         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3036       } else {
3037         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3038       }
3039 
3040       if(millis <= 0) break ;
3041 
3042       prevtime = newtime;
3043       slp->park(millis);
3044     }
3045     return OS_OK ;
3046   }
3047 }
3048 
3049 int os::naked_sleep() {
3050   // %% make the sleep time an integer flag. for now use 1 millisec.
3051   return os::sleep(Thread::current(), 1, false);
3052 }
3053 
3054 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3055 void os::infinite_sleep() {
3056   while (true) {    // sleep forever ...
3057     ::sleep(100);   // ... 100 seconds at a time
3058   }
3059 }
3060 
3061 // Used to convert frequent JVM_Yield() to nops
3062 bool os::dont_yield() {
3063   return DontYieldALot;
3064 }
3065 
3066 void os::yield() {
3067   sched_yield();
3068 }
3069 
3070 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3071 
3072 void os::yield_all(int attempts) {
3073   // Yields to all threads, including threads with lower priorities
3074   // Threads on Linux are all with same priority. The Solaris style
3075   // os::yield_all() with nanosleep(1ms) is not necessary.
3076   sched_yield();
3077 }
3078 
3079 // Called from the tight loops to possibly influence time-sharing heuristics
3080 void os::loop_breaker(int attempts) {
3081   os::yield_all(attempts);
3082 }
3083 
3084 ////////////////////////////////////////////////////////////////////////////////
3085 // thread priority support
3086 
3087 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3088 // only supports dynamic priority, static priority must be zero. For real-time
3089 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3090 // However, for large multi-threaded applications, SCHED_RR is not only slower
3091 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3092 // of 5 runs - Sep 2005).
3093 //
3094 // The following code actually changes the niceness of kernel-thread/LWP. It
3095 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3096 // not the entire user process, and user level threads are 1:1 mapped to kernel
3097 // threads. It has always been the case, but could change in the future. For
3098 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3099 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3100 
3101 int os::java_to_os_priority[MaxPriority + 1] = {
3102   19,              // 0 Entry should never be used
3103 
3104    4,              // 1 MinPriority
3105    3,              // 2
3106    2,              // 3
3107 
3108    1,              // 4
3109    0,              // 5 NormPriority
3110   -1,              // 6
3111 
3112   -2,              // 7
3113   -3,              // 8
3114   -4,              // 9 NearMaxPriority
3115 
3116   -5               // 10 MaxPriority
3117 };
3118 
3119 static int prio_init() {
3120   if (ThreadPriorityPolicy == 1) {
3121     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3122     // if effective uid is not root. Perhaps, a more elegant way of doing
3123     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3124     if (geteuid() != 0) {
3125       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3126         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3127       }
3128       ThreadPriorityPolicy = 0;
3129     }
3130   }
3131   return 0;
3132 }
3133 
3134 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3135   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3136 
3137   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3138   return (ret == 0) ? OS_OK : OS_ERR;
3139 }
3140 
3141 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3142   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3143     *priority_ptr = java_to_os_priority[NormPriority];
3144     return OS_OK;
3145   }
3146 
3147   errno = 0;
3148   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3149   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3150 }
3151 
3152 // Hint to the underlying OS that a task switch would not be good.
3153 // Void return because it's a hint and can fail.
3154 void os::hint_no_preempt() {}
3155 
3156 ////////////////////////////////////////////////////////////////////////////////
3157 // suspend/resume support
3158 
3159 //  the low-level signal-based suspend/resume support is a remnant from the
3160 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3161 //  within hotspot. Now there is a single use-case for this:
3162 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3163 //      that runs in the watcher thread.
3164 //  The remaining code is greatly simplified from the more general suspension
3165 //  code that used to be used.
3166 //
3167 //  The protocol is quite simple:
3168 //  - suspend:
3169 //      - sends a signal to the target thread
3170 //      - polls the suspend state of the osthread using a yield loop
3171 //      - target thread signal handler (SR_handler) sets suspend state
3172 //        and blocks in sigsuspend until continued
3173 //  - resume:
3174 //      - sets target osthread state to continue
3175 //      - sends signal to end the sigsuspend loop in the SR_handler
3176 //
3177 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3178 //
3179 
3180 static void resume_clear_context(OSThread *osthread) {
3181   osthread->set_ucontext(NULL);
3182   osthread->set_siginfo(NULL);
3183 
3184   // notify the suspend action is completed, we have now resumed
3185   osthread->sr.clear_suspended();
3186 }
3187 
3188 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3189   osthread->set_ucontext(context);
3190   osthread->set_siginfo(siginfo);
3191 }
3192 
3193 //
3194 // Handler function invoked when a thread's execution is suspended or
3195 // resumed. We have to be careful that only async-safe functions are
3196 // called here (Note: most pthread functions are not async safe and
3197 // should be avoided.)
3198 //
3199 // Note: sigwait() is a more natural fit than sigsuspend() from an
3200 // interface point of view, but sigwait() prevents the signal hander
3201 // from being run. libpthread would get very confused by not having
3202 // its signal handlers run and prevents sigwait()'s use with the
3203 // mutex granting granting signal.
3204 //
3205 // Currently only ever called on the VMThread
3206 //
3207 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3208   // Save and restore errno to avoid confusing native code with EINTR
3209   // after sigsuspend.
3210   int old_errno = errno;
3211 
3212   Thread* thread = Thread::current();
3213   OSThread* osthread = thread->osthread();
3214   assert(thread->is_VM_thread(), "Must be VMThread");
3215   // read current suspend action
3216   int action = osthread->sr.suspend_action();
3217   if (action == SR_SUSPEND) {
3218     suspend_save_context(osthread, siginfo, context);
3219 
3220     // Notify the suspend action is about to be completed. do_suspend()
3221     // waits until SR_SUSPENDED is set and then returns. We will wait
3222     // here for a resume signal and that completes the suspend-other
3223     // action. do_suspend/do_resume is always called as a pair from
3224     // the same thread - so there are no races
3225 
3226     // notify the caller
3227     osthread->sr.set_suspended();
3228 
3229     sigset_t suspend_set;  // signals for sigsuspend()
3230 
3231     // get current set of blocked signals and unblock resume signal
3232     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3233     sigdelset(&suspend_set, SR_signum);
3234 
3235     // wait here until we are resumed
3236     do {
3237       sigsuspend(&suspend_set);
3238       // ignore all returns until we get a resume signal
3239     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3240 
3241     resume_clear_context(osthread);
3242 
3243   } else {
3244     assert(action == SR_CONTINUE, "unexpected sr action");
3245     // nothing special to do - just leave the handler
3246   }
3247 
3248   errno = old_errno;
3249 }
3250 
3251 
3252 static int SR_initialize() {
3253   struct sigaction act;
3254   char *s;
3255   /* Get signal number to use for suspend/resume */
3256   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3257     int sig = ::strtol(s, 0, 10);
3258     if (sig > 0 || sig < _NSIG) {
3259         SR_signum = sig;
3260     }
3261   }
3262 
3263   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3264         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3265 
3266   sigemptyset(&SR_sigset);
3267   sigaddset(&SR_sigset, SR_signum);
3268 
3269   /* Set up signal handler for suspend/resume */
3270   act.sa_flags = SA_RESTART|SA_SIGINFO;
3271   act.sa_handler = (void (*)(int)) SR_handler;
3272 
3273   // SR_signum is blocked by default.
3274   // 4528190 - We also need to block pthread restart signal (32 on all
3275   // supported Linux platforms). Note that LinuxThreads need to block
3276   // this signal for all threads to work properly. So we don't have
3277   // to use hard-coded signal number when setting up the mask.
3278   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3279 
3280   if (sigaction(SR_signum, &act, 0) == -1) {
3281     return -1;
3282   }
3283 
3284   // Save signal flag
3285   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3286   return 0;
3287 }
3288 
3289 static int SR_finalize() {
3290   return 0;
3291 }
3292 
3293 
3294 // returns true on success and false on error - really an error is fatal
3295 // but this seems the normal response to library errors
3296 static bool do_suspend(OSThread* osthread) {
3297   // mark as suspended and send signal
3298   osthread->sr.set_suspend_action(SR_SUSPEND);
3299   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3300   assert_status(status == 0, status, "pthread_kill");
3301 
3302   // check status and wait until notified of suspension
3303   if (status == 0) {
3304     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3305       os::yield_all(i);
3306     }
3307     osthread->sr.set_suspend_action(SR_NONE);
3308     return true;
3309   }
3310   else {
3311     osthread->sr.set_suspend_action(SR_NONE);
3312     return false;
3313   }
3314 }
3315 
3316 static void do_resume(OSThread* osthread) {
3317   assert(osthread->sr.is_suspended(), "thread should be suspended");
3318   osthread->sr.set_suspend_action(SR_CONTINUE);
3319 
3320   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3321   assert_status(status == 0, status, "pthread_kill");
3322   // check status and wait unit notified of resumption
3323   if (status == 0) {
3324     for (int i = 0; osthread->sr.is_suspended(); i++) {
3325       os::yield_all(i);
3326     }
3327   }
3328   osthread->sr.set_suspend_action(SR_NONE);
3329 }
3330 
3331 ////////////////////////////////////////////////////////////////////////////////
3332 // interrupt support
3333 
3334 void os::interrupt(Thread* thread) {
3335   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3336     "possibility of dangling Thread pointer");
3337 
3338   OSThread* osthread = thread->osthread();
3339 
3340   if (!osthread->interrupted()) {
3341     osthread->set_interrupted(true);
3342     // More than one thread can get here with the same value of osthread,
3343     // resulting in multiple notifications.  We do, however, want the store
3344     // to interrupted() to be visible to other threads before we execute unpark().
3345     OrderAccess::fence();
3346     ParkEvent * const slp = thread->_SleepEvent ;
3347     if (slp != NULL) slp->unpark() ;
3348   }
3349 
3350   // For JSR166. Unpark even if interrupt status already was set
3351   if (thread->is_Java_thread())
3352     ((JavaThread*)thread)->parker()->unpark();
3353 
3354   ParkEvent * ev = thread->_ParkEvent ;
3355   if (ev != NULL) ev->unpark() ;
3356 
3357 }
3358 
3359 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3360   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3361     "possibility of dangling Thread pointer");
3362 
3363   OSThread* osthread = thread->osthread();
3364 
3365   bool interrupted = osthread->interrupted();
3366 
3367   if (interrupted && clear_interrupted) {
3368     osthread->set_interrupted(false);
3369     // consider thread->_SleepEvent->reset() ... optional optimization
3370   }
3371 
3372   return interrupted;
3373 }
3374 
3375 ///////////////////////////////////////////////////////////////////////////////////
3376 // signal handling (except suspend/resume)
3377 
3378 // This routine may be used by user applications as a "hook" to catch signals.
3379 // The user-defined signal handler must pass unrecognized signals to this
3380 // routine, and if it returns true (non-zero), then the signal handler must
3381 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3382 // routine will never retun false (zero), but instead will execute a VM panic
3383 // routine kill the process.
3384 //
3385 // If this routine returns false, it is OK to call it again.  This allows
3386 // the user-defined signal handler to perform checks either before or after
3387 // the VM performs its own checks.  Naturally, the user code would be making
3388 // a serious error if it tried to handle an exception (such as a null check
3389 // or breakpoint) that the VM was generating for its own correct operation.
3390 //
3391 // This routine may recognize any of the following kinds of signals:
3392 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3393 // It should be consulted by handlers for any of those signals.
3394 //
3395 // The caller of this routine must pass in the three arguments supplied
3396 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3397 // field of the structure passed to sigaction().  This routine assumes that
3398 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3399 //
3400 // Note that the VM will print warnings if it detects conflicting signal
3401 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3402 //
3403 extern "C" int
3404 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3405                         void* ucontext, int abort_if_unrecognized);
3406 
3407 void signalHandler(int sig, siginfo_t* info, void* uc) {
3408   assert(info != NULL && uc != NULL, "it must be old kernel");
3409   JVM_handle_linux_signal(sig, info, uc, true);
3410 }
3411 
3412 
3413 // This boolean allows users to forward their own non-matching signals
3414 // to JVM_handle_linux_signal, harmlessly.
3415 bool os::Linux::signal_handlers_are_installed = false;
3416 
3417 // For signal-chaining
3418 struct sigaction os::Linux::sigact[MAXSIGNUM];
3419 unsigned int os::Linux::sigs = 0;
3420 bool os::Linux::libjsig_is_loaded = false;
3421 typedef struct sigaction *(*get_signal_t)(int);
3422 get_signal_t os::Linux::get_signal_action = NULL;
3423 
3424 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3425   struct sigaction *actp = NULL;
3426 
3427   if (libjsig_is_loaded) {
3428     // Retrieve the old signal handler from libjsig
3429     actp = (*get_signal_action)(sig);
3430   }
3431   if (actp == NULL) {
3432     // Retrieve the preinstalled signal handler from jvm
3433     actp = get_preinstalled_handler(sig);
3434   }
3435 
3436   return actp;
3437 }
3438 
3439 static bool call_chained_handler(struct sigaction *actp, int sig,
3440                                  siginfo_t *siginfo, void *context) {
3441   // Call the old signal handler
3442   if (actp->sa_handler == SIG_DFL) {
3443     // It's more reasonable to let jvm treat it as an unexpected exception
3444     // instead of taking the default action.
3445     return false;
3446   } else if (actp->sa_handler != SIG_IGN) {
3447     if ((actp->sa_flags & SA_NODEFER) == 0) {
3448       // automaticlly block the signal
3449       sigaddset(&(actp->sa_mask), sig);
3450     }
3451 
3452     sa_handler_t hand;
3453     sa_sigaction_t sa;
3454     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3455     // retrieve the chained handler
3456     if (siginfo_flag_set) {
3457       sa = actp->sa_sigaction;
3458     } else {
3459       hand = actp->sa_handler;
3460     }
3461 
3462     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3463       actp->sa_handler = SIG_DFL;
3464     }
3465 
3466     // try to honor the signal mask
3467     sigset_t oset;
3468     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3469 
3470     // call into the chained handler
3471     if (siginfo_flag_set) {
3472       (*sa)(sig, siginfo, context);
3473     } else {
3474       (*hand)(sig);
3475     }
3476 
3477     // restore the signal mask
3478     pthread_sigmask(SIG_SETMASK, &oset, 0);
3479   }
3480   // Tell jvm's signal handler the signal is taken care of.
3481   return true;
3482 }
3483 
3484 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3485   bool chained = false;
3486   // signal-chaining
3487   if (UseSignalChaining) {
3488     struct sigaction *actp = get_chained_signal_action(sig);
3489     if (actp != NULL) {
3490       chained = call_chained_handler(actp, sig, siginfo, context);
3491     }
3492   }
3493   return chained;
3494 }
3495 
3496 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3497   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3498     return &sigact[sig];
3499   }
3500   return NULL;
3501 }
3502 
3503 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3504   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3505   sigact[sig] = oldAct;
3506   sigs |= (unsigned int)1 << sig;
3507 }
3508 
3509 // for diagnostic
3510 int os::Linux::sigflags[MAXSIGNUM];
3511 
3512 int os::Linux::get_our_sigflags(int sig) {
3513   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3514   return sigflags[sig];
3515 }
3516 
3517 void os::Linux::set_our_sigflags(int sig, int flags) {
3518   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3519   sigflags[sig] = flags;
3520 }
3521 
3522 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3523   // Check for overwrite.
3524   struct sigaction oldAct;
3525   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3526 
3527   void* oldhand = oldAct.sa_sigaction
3528                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3529                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3530   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3531       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3532       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3533     if (AllowUserSignalHandlers || !set_installed) {
3534       // Do not overwrite; user takes responsibility to forward to us.
3535       return;
3536     } else if (UseSignalChaining) {
3537       // save the old handler in jvm
3538       save_preinstalled_handler(sig, oldAct);
3539       // libjsig also interposes the sigaction() call below and saves the
3540       // old sigaction on it own.
3541     } else {
3542       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3543                     "%#lx for signal %d.", (long)oldhand, sig));
3544     }
3545   }
3546 
3547   struct sigaction sigAct;
3548   sigfillset(&(sigAct.sa_mask));
3549   sigAct.sa_handler = SIG_DFL;
3550   if (!set_installed) {
3551     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3552   } else {
3553     sigAct.sa_sigaction = signalHandler;
3554     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3555   }
3556   // Save flags, which are set by ours
3557   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3558   sigflags[sig] = sigAct.sa_flags;
3559 
3560   int ret = sigaction(sig, &sigAct, &oldAct);
3561   assert(ret == 0, "check");
3562 
3563   void* oldhand2  = oldAct.sa_sigaction
3564                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3565                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3566   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3567 }
3568 
3569 // install signal handlers for signals that HotSpot needs to
3570 // handle in order to support Java-level exception handling.
3571 
3572 void os::Linux::install_signal_handlers() {
3573   if (!signal_handlers_are_installed) {
3574     signal_handlers_are_installed = true;
3575 
3576     // signal-chaining
3577     typedef void (*signal_setting_t)();
3578     signal_setting_t begin_signal_setting = NULL;
3579     signal_setting_t end_signal_setting = NULL;
3580     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3581                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3582     if (begin_signal_setting != NULL) {
3583       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3584                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3585       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3586                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3587       libjsig_is_loaded = true;
3588       assert(UseSignalChaining, "should enable signal-chaining");
3589     }
3590     if (libjsig_is_loaded) {
3591       // Tell libjsig jvm is setting signal handlers
3592       (*begin_signal_setting)();
3593     }
3594 
3595     set_signal_handler(SIGSEGV, true);
3596     set_signal_handler(SIGPIPE, true);
3597     set_signal_handler(SIGBUS, true);
3598     set_signal_handler(SIGILL, true);
3599     set_signal_handler(SIGFPE, true);
3600     set_signal_handler(SIGXFSZ, true);
3601 
3602     if (libjsig_is_loaded) {
3603       // Tell libjsig jvm finishes setting signal handlers
3604       (*end_signal_setting)();
3605     }
3606 
3607     // We don't activate signal checker if libjsig is in place, we trust ourselves
3608     // and if UserSignalHandler is installed all bets are off
3609     if (CheckJNICalls) {
3610       if (libjsig_is_loaded) {
3611         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3612         check_signals = false;
3613       }
3614       if (AllowUserSignalHandlers) {
3615         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3616         check_signals = false;
3617       }
3618     }
3619   }
3620 }
3621 
3622 // This is the fastest way to get thread cpu time on Linux.
3623 // Returns cpu time (user+sys) for any thread, not only for current.
3624 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3625 // It might work on 2.6.10+ with a special kernel/glibc patch.
3626 // For reference, please, see IEEE Std 1003.1-2004:
3627 //   http://www.unix.org/single_unix_specification
3628 
3629 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3630   struct timespec tp;
3631   int rc = os::Linux::clock_gettime(clockid, &tp);
3632   assert(rc == 0, "clock_gettime is expected to return 0 code");
3633 
3634   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3635 }
3636 
3637 /////
3638 // glibc on Linux platform uses non-documented flag
3639 // to indicate, that some special sort of signal
3640 // trampoline is used.
3641 // We will never set this flag, and we should
3642 // ignore this flag in our diagnostic
3643 #ifdef SIGNIFICANT_SIGNAL_MASK
3644 #undef SIGNIFICANT_SIGNAL_MASK
3645 #endif
3646 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3647 
3648 static const char* get_signal_handler_name(address handler,
3649                                            char* buf, int buflen) {
3650   int offset;
3651   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3652   if (found) {
3653     // skip directory names
3654     const char *p1, *p2;
3655     p1 = buf;
3656     size_t len = strlen(os::file_separator());
3657     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3658     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3659   } else {
3660     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3661   }
3662   return buf;
3663 }
3664 
3665 static void print_signal_handler(outputStream* st, int sig,
3666                                  char* buf, size_t buflen) {
3667   struct sigaction sa;
3668 
3669   sigaction(sig, NULL, &sa);
3670 
3671   // See comment for SIGNIFICANT_SIGNAL_MASK define
3672   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3673 
3674   st->print("%s: ", os::exception_name(sig, buf, buflen));
3675 
3676   address handler = (sa.sa_flags & SA_SIGINFO)
3677     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3678     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3679 
3680   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3681     st->print("SIG_DFL");
3682   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3683     st->print("SIG_IGN");
3684   } else {
3685     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3686   }
3687 
3688   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3689 
3690   address rh = VMError::get_resetted_sighandler(sig);
3691   // May be, handler was resetted by VMError?
3692   if(rh != NULL) {
3693     handler = rh;
3694     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3695   }
3696 
3697   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3698 
3699   // Check: is it our handler?
3700   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3701      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3702     // It is our signal handler
3703     // check for flags, reset system-used one!
3704     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3705       st->print(
3706                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3707                 os::Linux::get_our_sigflags(sig));
3708     }
3709   }
3710   st->cr();
3711 }
3712 
3713 
3714 #define DO_SIGNAL_CHECK(sig) \
3715   if (!sigismember(&check_signal_done, sig)) \
3716     os::Linux::check_signal_handler(sig)
3717 
3718 // This method is a periodic task to check for misbehaving JNI applications
3719 // under CheckJNI, we can add any periodic checks here
3720 
3721 void os::run_periodic_checks() {
3722 
3723   if (check_signals == false) return;
3724 
3725   // SEGV and BUS if overridden could potentially prevent
3726   // generation of hs*.log in the event of a crash, debugging
3727   // such a case can be very challenging, so we absolutely
3728   // check the following for a good measure:
3729   DO_SIGNAL_CHECK(SIGSEGV);
3730   DO_SIGNAL_CHECK(SIGILL);
3731   DO_SIGNAL_CHECK(SIGFPE);
3732   DO_SIGNAL_CHECK(SIGBUS);
3733   DO_SIGNAL_CHECK(SIGPIPE);
3734   DO_SIGNAL_CHECK(SIGXFSZ);
3735 
3736 
3737   // ReduceSignalUsage allows the user to override these handlers
3738   // see comments at the very top and jvm_solaris.h
3739   if (!ReduceSignalUsage) {
3740     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3741     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3742     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3743     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3744   }
3745 
3746   DO_SIGNAL_CHECK(SR_signum);
3747   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3748 }
3749 
3750 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3751 
3752 static os_sigaction_t os_sigaction = NULL;
3753 
3754 void os::Linux::check_signal_handler(int sig) {
3755   char buf[O_BUFLEN];
3756   address jvmHandler = NULL;
3757 
3758 
3759   struct sigaction act;
3760   if (os_sigaction == NULL) {
3761     // only trust the default sigaction, in case it has been interposed
3762     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3763     if (os_sigaction == NULL) return;
3764   }
3765 
3766   os_sigaction(sig, (struct sigaction*)NULL, &act);
3767 
3768 
3769   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3770 
3771   address thisHandler = (act.sa_flags & SA_SIGINFO)
3772     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3773     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3774 
3775 
3776   switch(sig) {
3777   case SIGSEGV:
3778   case SIGBUS:
3779   case SIGFPE:
3780   case SIGPIPE:
3781   case SIGILL:
3782   case SIGXFSZ:
3783     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3784     break;
3785 
3786   case SHUTDOWN1_SIGNAL:
3787   case SHUTDOWN2_SIGNAL:
3788   case SHUTDOWN3_SIGNAL:
3789   case BREAK_SIGNAL:
3790     jvmHandler = (address)user_handler();
3791     break;
3792 
3793   case INTERRUPT_SIGNAL:
3794     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3795     break;
3796 
3797   default:
3798     if (sig == SR_signum) {
3799       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3800     } else {
3801       return;
3802     }
3803     break;
3804   }
3805 
3806   if (thisHandler != jvmHandler) {
3807     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3808     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3809     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3810     // No need to check this sig any longer
3811     sigaddset(&check_signal_done, sig);
3812   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3813     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3814     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3815     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3816     // No need to check this sig any longer
3817     sigaddset(&check_signal_done, sig);
3818   }
3819 
3820   // Dump all the signal
3821   if (sigismember(&check_signal_done, sig)) {
3822     print_signal_handlers(tty, buf, O_BUFLEN);
3823   }
3824 }
3825 
3826 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3827 
3828 extern bool signal_name(int signo, char* buf, size_t len);
3829 
3830 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3831   if (0 < exception_code && exception_code <= SIGRTMAX) {
3832     // signal
3833     if (!signal_name(exception_code, buf, size)) {
3834       jio_snprintf(buf, size, "SIG%d", exception_code);
3835     }
3836     return buf;
3837   } else {
3838     return NULL;
3839   }
3840 }
3841 
3842 // this is called _before_ the most of global arguments have been parsed
3843 void os::init(void) {
3844   char dummy;   /* used to get a guess on initial stack address */
3845 //  first_hrtime = gethrtime();
3846 
3847   // With LinuxThreads the JavaMain thread pid (primordial thread)
3848   // is different than the pid of the java launcher thread.
3849   // So, on Linux, the launcher thread pid is passed to the VM
3850   // via the sun.java.launcher.pid property.
3851   // Use this property instead of getpid() if it was correctly passed.
3852   // See bug 6351349.
3853   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3854 
3855   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3856 
3857   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3858 
3859   init_random(1234567);
3860 
3861   ThreadCritical::initialize();
3862 
3863   Linux::set_page_size(sysconf(_SC_PAGESIZE));
3864   if (Linux::page_size() == -1) {
3865     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3866                   strerror(errno)));
3867   }
3868   init_page_sizes((size_t) Linux::page_size());
3869 
3870   Linux::initialize_system_info();
3871 
3872   // main_thread points to the aboriginal thread
3873   Linux::_main_thread = pthread_self();
3874 
3875   Linux::clock_init();
3876   initial_time_count = os::elapsed_counter();
3877   pthread_mutex_init(&dl_mutex, NULL);
3878 }
3879 
3880 // To install functions for atexit system call
3881 extern "C" {
3882   static void perfMemory_exit_helper() {
3883     perfMemory_exit();
3884   }
3885 }
3886 
3887 // this is called _after_ the global arguments have been parsed
3888 jint os::init_2(void)
3889 {
3890   Linux::fast_thread_clock_init();
3891 
3892   // Allocate a single page and mark it as readable for safepoint polling
3893   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3894   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3895 
3896   os::set_polling_page( polling_page );
3897 
3898 #ifndef PRODUCT
3899   if(Verbose && PrintMiscellaneous)
3900     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3901 #endif
3902 
3903   if (!UseMembar) {
3904     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3905     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3906     os::set_memory_serialize_page( mem_serialize_page );
3907 
3908 #ifndef PRODUCT
3909     if(Verbose && PrintMiscellaneous)
3910       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3911 #endif
3912   }
3913 
3914   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3915 
3916   // initialize suspend/resume support - must do this before signal_sets_init()
3917   if (SR_initialize() != 0) {
3918     perror("SR_initialize failed");
3919     return JNI_ERR;
3920   }
3921 
3922   Linux::signal_sets_init();
3923   Linux::install_signal_handlers();
3924 
3925   size_t threadStackSizeInBytes = ThreadStackSize * K;
3926   if (threadStackSizeInBytes != 0 &&
3927       threadStackSizeInBytes < Linux::min_stack_allowed) {
3928         tty->print_cr("\nThe stack size specified is too small, "
3929                       "Specify at least %dk",
3930                       Linux::min_stack_allowed / K);
3931         return JNI_ERR;
3932   }
3933 
3934   // Make the stack size a multiple of the page size so that
3935   // the yellow/red zones can be guarded.
3936   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3937         vm_page_size()));
3938 
3939   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3940 
3941   Linux::libpthread_init();
3942   if (PrintMiscellaneous && (Verbose || WizardMode)) {
3943      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3944           Linux::glibc_version(), Linux::libpthread_version(),
3945           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3946   }
3947 
3948   if (UseNUMA) {
3949     if (!Linux::libnuma_init()) {
3950       UseNUMA = false;
3951     } else {
3952       if ((Linux::numa_max_node() < 1)) {
3953         // There's only one node(they start from 0), disable NUMA.
3954         UseNUMA = false;
3955       }
3956     }
3957     if (!UseNUMA && ForceNUMA) {
3958       UseNUMA = true;
3959     }
3960   }
3961 
3962   if (MaxFDLimit) {
3963     // set the number of file descriptors to max. print out error
3964     // if getrlimit/setrlimit fails but continue regardless.
3965     struct rlimit nbr_files;
3966     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3967     if (status != 0) {
3968       if (PrintMiscellaneous && (Verbose || WizardMode))
3969         perror("os::init_2 getrlimit failed");
3970     } else {
3971       nbr_files.rlim_cur = nbr_files.rlim_max;
3972       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3973       if (status != 0) {
3974         if (PrintMiscellaneous && (Verbose || WizardMode))
3975           perror("os::init_2 setrlimit failed");
3976       }
3977     }
3978   }
3979 
3980   // Initialize lock used to serialize thread creation (see os::create_thread)
3981   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3982 
3983   // Initialize HPI.
3984   jint hpi_result = hpi::initialize();
3985   if (hpi_result != JNI_OK) {
3986     tty->print_cr("There was an error trying to initialize the HPI library.");
3987     return hpi_result;
3988   }
3989 
3990   // at-exit methods are called in the reverse order of their registration.
3991   // atexit functions are called on return from main or as a result of a
3992   // call to exit(3C). There can be only 32 of these functions registered
3993   // and atexit() does not set errno.
3994 
3995   if (PerfAllowAtExitRegistration) {
3996     // only register atexit functions if PerfAllowAtExitRegistration is set.
3997     // atexit functions can be delayed until process exit time, which
3998     // can be problematic for embedded VM situations. Embedded VMs should
3999     // call DestroyJavaVM() to assure that VM resources are released.
4000 
4001     // note: perfMemory_exit_helper atexit function may be removed in
4002     // the future if the appropriate cleanup code can be added to the
4003     // VM_Exit VMOperation's doit method.
4004     if (atexit(perfMemory_exit_helper) != 0) {
4005       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4006     }
4007   }
4008 
4009   // initialize thread priority policy
4010   prio_init();
4011 
4012   return JNI_OK;
4013 }
4014 
4015 // this is called at the end of vm_initialization
4016 void os::init_3(void) { }
4017 
4018 // Mark the polling page as unreadable
4019 void os::make_polling_page_unreadable(void) {
4020   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4021     fatal("Could not disable polling page");
4022 };
4023 
4024 // Mark the polling page as readable
4025 void os::make_polling_page_readable(void) {
4026   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4027     fatal("Could not enable polling page");
4028   }
4029 };
4030 
4031 int os::active_processor_count() {
4032   // Linux doesn't yet have a (official) notion of processor sets,
4033   // so just return the number of online processors.
4034   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4035   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4036   return online_cpus;
4037 }
4038 
4039 bool os::distribute_processes(uint length, uint* distribution) {
4040   // Not yet implemented.
4041   return false;
4042 }
4043 
4044 bool os::bind_to_processor(uint processor_id) {
4045   // Not yet implemented.
4046   return false;
4047 }
4048 
4049 ///
4050 
4051 // Suspends the target using the signal mechanism and then grabs the PC before
4052 // resuming the target. Used by the flat-profiler only
4053 ExtendedPC os::get_thread_pc(Thread* thread) {
4054   // Make sure that it is called by the watcher for the VMThread
4055   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4056   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4057 
4058   ExtendedPC epc;
4059 
4060   OSThread* osthread = thread->osthread();
4061   if (do_suspend(osthread)) {
4062     if (osthread->ucontext() != NULL) {
4063       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4064     } else {
4065       // NULL context is unexpected, double-check this is the VMThread
4066       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4067     }
4068     do_resume(osthread);
4069   }
4070   // failure means pthread_kill failed for some reason - arguably this is
4071   // a fatal problem, but such problems are ignored elsewhere
4072 
4073   return epc;
4074 }
4075 
4076 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4077 {
4078    if (is_NPTL()) {
4079       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4080    } else {
4081 #ifndef IA64
4082       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4083       // word back to default 64bit precision if condvar is signaled. Java
4084       // wants 53bit precision.  Save and restore current value.
4085       int fpu = get_fpu_control_word();
4086 #endif // IA64
4087       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4088 #ifndef IA64
4089       set_fpu_control_word(fpu);
4090 #endif // IA64
4091       return status;
4092    }
4093 }
4094 
4095 ////////////////////////////////////////////////////////////////////////////////
4096 // debug support
4097 
4098 static address same_page(address x, address y) {
4099   int page_bits = -os::vm_page_size();
4100   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4101     return x;
4102   else if (x > y)
4103     return (address)(intptr_t(y) | ~page_bits) + 1;
4104   else
4105     return (address)(intptr_t(y) & page_bits);
4106 }
4107 
4108 bool os::find(address addr, outputStream* st) {
4109   Dl_info dlinfo;
4110   memset(&dlinfo, 0, sizeof(dlinfo));
4111   if (dladdr(addr, &dlinfo)) {
4112     st->print(PTR_FORMAT ": ", addr);
4113     if (dlinfo.dli_sname != NULL) {
4114       st->print("%s+%#x", dlinfo.dli_sname,
4115                  addr - (intptr_t)dlinfo.dli_saddr);
4116     } else if (dlinfo.dli_fname) {
4117       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4118     } else {
4119       st->print("<absolute address>");
4120     }
4121     if (dlinfo.dli_fname) {
4122       st->print(" in %s", dlinfo.dli_fname);
4123     }
4124     if (dlinfo.dli_fbase) {
4125       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4126     }
4127     st->cr();
4128 
4129     if (Verbose) {
4130       // decode some bytes around the PC
4131       address begin = same_page(addr-40, addr);
4132       address end   = same_page(addr+40, addr);
4133       address       lowest = (address) dlinfo.dli_sname;
4134       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4135       if (begin < lowest)  begin = lowest;
4136       Dl_info dlinfo2;
4137       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4138           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4139         end = (address) dlinfo2.dli_saddr;
4140       Disassembler::decode(begin, end, st);
4141     }
4142     return true;
4143   }
4144   return false;
4145 }
4146 
4147 ////////////////////////////////////////////////////////////////////////////////
4148 // misc
4149 
4150 // This does not do anything on Linux. This is basically a hook for being
4151 // able to use structured exception handling (thread-local exception filters)
4152 // on, e.g., Win32.
4153 void
4154 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4155                          JavaCallArguments* args, Thread* thread) {
4156   f(value, method, args, thread);
4157 }
4158 
4159 void os::print_statistics() {
4160 }
4161 
4162 int os::message_box(const char* title, const char* message) {
4163   int i;
4164   fdStream err(defaultStream::error_fd());
4165   for (i = 0; i < 78; i++) err.print_raw("=");
4166   err.cr();
4167   err.print_raw_cr(title);
4168   for (i = 0; i < 78; i++) err.print_raw("-");
4169   err.cr();
4170   err.print_raw_cr(message);
4171   for (i = 0; i < 78; i++) err.print_raw("=");
4172   err.cr();
4173 
4174   char buf[16];
4175   // Prevent process from exiting upon "read error" without consuming all CPU
4176   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4177 
4178   return buf[0] == 'y' || buf[0] == 'Y';
4179 }
4180 
4181 int os::stat(const char *path, struct stat *sbuf) {
4182   char pathbuf[MAX_PATH];
4183   if (strlen(path) > MAX_PATH - 1) {
4184     errno = ENAMETOOLONG;
4185     return -1;
4186   }
4187   hpi::native_path(strcpy(pathbuf, path));
4188   return ::stat(pathbuf, sbuf);
4189 }
4190 
4191 bool os::check_heap(bool force) {
4192   return true;
4193 }
4194 
4195 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4196   return ::vsnprintf(buf, count, format, args);
4197 }
4198 
4199 // Is a (classpath) directory empty?
4200 bool os::dir_is_empty(const char* path) {
4201   DIR *dir = NULL;
4202   struct dirent *ptr;
4203 
4204   dir = opendir(path);
4205   if (dir == NULL) return true;
4206 
4207   /* Scan the directory */
4208   bool result = true;
4209   char buf[sizeof(struct dirent) + MAX_PATH];
4210   while (result && (ptr = ::readdir(dir)) != NULL) {
4211     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4212       result = false;
4213     }
4214   }
4215   closedir(dir);
4216   return result;
4217 }
4218 
4219 // create binary file, rewriting existing file if required
4220 int os::create_binary_file(const char* path, bool rewrite_existing) {
4221   int oflags = O_WRONLY | O_CREAT;
4222   if (!rewrite_existing) {
4223     oflags |= O_EXCL;
4224   }
4225   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4226 }
4227 
4228 // return current position of file pointer
4229 jlong os::current_file_offset(int fd) {
4230   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4231 }
4232 
4233 // move file pointer to the specified offset
4234 jlong os::seek_to_file_offset(int fd, jlong offset) {
4235   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4236 }
4237 
4238 // Map a block of memory.
4239 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4240                      char *addr, size_t bytes, bool read_only,
4241                      bool allow_exec) {
4242   int prot;
4243   int flags;
4244 
4245   if (read_only) {
4246     prot = PROT_READ;
4247     flags = MAP_SHARED;
4248   } else {
4249     prot = PROT_READ | PROT_WRITE;
4250     flags = MAP_PRIVATE;
4251   }
4252 
4253   if (allow_exec) {
4254     prot |= PROT_EXEC;
4255   }
4256 
4257   if (addr != NULL) {
4258     flags |= MAP_FIXED;
4259   }
4260 
4261   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4262                                      fd, file_offset);
4263   if (mapped_address == MAP_FAILED) {
4264     return NULL;
4265   }
4266   return mapped_address;
4267 }
4268 
4269 
4270 // Remap a block of memory.
4271 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4272                        char *addr, size_t bytes, bool read_only,
4273                        bool allow_exec) {
4274   // same as map_memory() on this OS
4275   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4276                         allow_exec);
4277 }
4278 
4279 
4280 // Unmap a block of memory.
4281 bool os::unmap_memory(char* addr, size_t bytes) {
4282   return munmap(addr, bytes) == 0;
4283 }
4284 
4285 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4286 
4287 static clockid_t thread_cpu_clockid(Thread* thread) {
4288   pthread_t tid = thread->osthread()->pthread_id();
4289   clockid_t clockid;
4290 
4291   // Get thread clockid
4292   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4293   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4294   return clockid;
4295 }
4296 
4297 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4298 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4299 // of a thread.
4300 //
4301 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4302 // the fast estimate available on the platform.
4303 
4304 jlong os::current_thread_cpu_time() {
4305   if (os::Linux::supports_fast_thread_cpu_time()) {
4306     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4307   } else {
4308     // return user + sys since the cost is the same
4309     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4310   }
4311 }
4312 
4313 jlong os::thread_cpu_time(Thread* thread) {
4314   // consistent with what current_thread_cpu_time() returns
4315   if (os::Linux::supports_fast_thread_cpu_time()) {
4316     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4317   } else {
4318     return slow_thread_cpu_time(thread, true /* user + sys */);
4319   }
4320 }
4321 
4322 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4323   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4324     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4325   } else {
4326     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4327   }
4328 }
4329 
4330 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4331   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4332     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4333   } else {
4334     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4335   }
4336 }
4337 
4338 //
4339 //  -1 on error.
4340 //
4341 
4342 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4343   static bool proc_pid_cpu_avail = true;
4344   static bool proc_task_unchecked = true;
4345   static const char *proc_stat_path = "/proc/%d/stat";
4346   pid_t  tid = thread->osthread()->thread_id();
4347   int i;
4348   char *s;
4349   char stat[2048];
4350   int statlen;
4351   char proc_name[64];
4352   int count;
4353   long sys_time, user_time;
4354   char string[64];
4355   char cdummy;
4356   int idummy;
4357   long ldummy;
4358   FILE *fp;
4359 
4360   // We first try accessing /proc/<pid>/cpu since this is faster to
4361   // process.  If this file is not present (linux kernels 2.5 and above)
4362   // then we open /proc/<pid>/stat.
4363   if ( proc_pid_cpu_avail ) {
4364     sprintf(proc_name, "/proc/%d/cpu", tid);
4365     fp =  fopen(proc_name, "r");
4366     if ( fp != NULL ) {
4367       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4368       fclose(fp);
4369       if ( count != 3 ) return -1;
4370 
4371       if (user_sys_cpu_time) {
4372         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4373       } else {
4374         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4375       }
4376     }
4377     else proc_pid_cpu_avail = false;
4378   }
4379 
4380   // The /proc/<tid>/stat aggregates per-process usage on
4381   // new Linux kernels 2.6+ where NPTL is supported.
4382   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4383   // See bug 6328462.
4384   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4385   // and possibly in some other cases, so we check its availability.
4386   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4387     // This is executed only once
4388     proc_task_unchecked = false;
4389     fp = fopen("/proc/self/task", "r");
4390     if (fp != NULL) {
4391       proc_stat_path = "/proc/self/task/%d/stat";
4392       fclose(fp);
4393     }
4394   }
4395 
4396   sprintf(proc_name, proc_stat_path, tid);
4397   fp = fopen(proc_name, "r");
4398   if ( fp == NULL ) return -1;
4399   statlen = fread(stat, 1, 2047, fp);
4400   stat[statlen] = '\0';
4401   fclose(fp);
4402 
4403   // Skip pid and the command string. Note that we could be dealing with
4404   // weird command names, e.g. user could decide to rename java launcher
4405   // to "java 1.4.2 :)", then the stat file would look like
4406   //                1234 (java 1.4.2 :)) R ... ...
4407   // We don't really need to know the command string, just find the last
4408   // occurrence of ")" and then start parsing from there. See bug 4726580.
4409   s = strrchr(stat, ')');
4410   i = 0;
4411   if (s == NULL ) return -1;
4412 
4413   // Skip blank chars
4414   do s++; while (isspace(*s));
4415 
4416   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4417                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4418                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4419                  &user_time, &sys_time);
4420   if ( count != 13 ) return -1;
4421   if (user_sys_cpu_time) {
4422     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4423   } else {
4424     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4425   }
4426 }
4427 
4428 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4429   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4430   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4431   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4432   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4433 }
4434 
4435 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4436   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4437   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4438   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4439   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4440 }
4441 
4442 bool os::is_thread_cpu_time_supported() {
4443   return true;
4444 }
4445 
4446 // System loadavg support.  Returns -1 if load average cannot be obtained.
4447 // Linux doesn't yet have a (official) notion of processor sets,
4448 // so just return the system wide load average.
4449 int os::loadavg(double loadavg[], int nelem) {
4450   return ::getloadavg(loadavg, nelem);
4451 }
4452 
4453 void os::pause() {
4454   char filename[MAX_PATH];
4455   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4456     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4457   } else {
4458     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4459   }
4460 
4461   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4462   if (fd != -1) {
4463     struct stat buf;
4464     close(fd);
4465     while (::stat(filename, &buf) == 0) {
4466       (void)::poll(NULL, 0, 100);
4467     }
4468   } else {
4469     jio_fprintf(stderr,
4470       "Could not open pause file '%s', continuing immediately.\n", filename);
4471   }
4472 }
4473 
4474 extern "C" {
4475 
4476 /**
4477  * NOTE: the following code is to keep the green threads code
4478  * in the libjava.so happy. Once the green threads is removed,
4479  * these code will no longer be needed.
4480  */
4481 int
4482 jdk_waitpid(pid_t pid, int* status, int options) {
4483     return waitpid(pid, status, options);
4484 }
4485 
4486 int
4487 fork1() {
4488     return fork();
4489 }
4490 
4491 int
4492 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4493     return sem_init(sem, pshared, value);
4494 }
4495 
4496 int
4497 jdk_sem_post(sem_t *sem) {
4498     return sem_post(sem);
4499 }
4500 
4501 int
4502 jdk_sem_wait(sem_t *sem) {
4503     return sem_wait(sem);
4504 }
4505 
4506 int
4507 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4508     return pthread_sigmask(how , newmask, oldmask);
4509 }
4510 
4511 }
4512 
4513 // Refer to the comments in os_solaris.cpp park-unpark.
4514 //
4515 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4516 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4517 // For specifics regarding the bug see GLIBC BUGID 261237 :
4518 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4519 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4520 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4521 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4522 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4523 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4524 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4525 // of libpthread avoids the problem, but isn't practical.
4526 //
4527 // Possible remedies:
4528 //
4529 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4530 //      This is palliative and probabilistic, however.  If the thread is preempted
4531 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4532 //      than the minimum period may have passed, and the abstime may be stale (in the
4533 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4534 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4535 //
4536 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4537 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4538 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4539 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4540 //      thread.
4541 //
4542 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4543 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4544 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4545 //      This also works well.  In fact it avoids kernel-level scalability impediments
4546 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4547 //      timers in a graceful fashion.
4548 //
4549 // 4.   When the abstime value is in the past it appears that control returns
4550 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4551 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4552 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4553 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4554 //      It may be possible to avoid reinitialization by checking the return
4555 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4556 //      condvar we must establish the invariant that cond_signal() is only called
4557 //      within critical sections protected by the adjunct mutex.  This prevents
4558 //      cond_signal() from "seeing" a condvar that's in the midst of being
4559 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4560 //      desirable signal-after-unlock optimization that avoids futile context switching.
4561 //
4562 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4563 //      structure when a condvar is used or initialized.  cond_destroy()  would
4564 //      release the helper structure.  Our reinitialize-after-timedwait fix
4565 //      put excessive stress on malloc/free and locks protecting the c-heap.
4566 //
4567 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4568 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4569 // and only enabling the work-around for vulnerable environments.
4570 
4571 // utility to compute the abstime argument to timedwait:
4572 // millis is the relative timeout time
4573 // abstime will be the absolute timeout time
4574 // TODO: replace compute_abstime() with unpackTime()
4575 
4576 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4577   if (millis < 0)  millis = 0;
4578   struct timeval now;
4579   int status = gettimeofday(&now, NULL);
4580   assert(status == 0, "gettimeofday");
4581   jlong seconds = millis / 1000;
4582   millis %= 1000;
4583   if (seconds > 50000000) { // see man cond_timedwait(3T)
4584     seconds = 50000000;
4585   }
4586   abstime->tv_sec = now.tv_sec  + seconds;
4587   long       usec = now.tv_usec + millis * 1000;
4588   if (usec >= 1000000) {
4589     abstime->tv_sec += 1;
4590     usec -= 1000000;
4591   }
4592   abstime->tv_nsec = usec * 1000;
4593   return abstime;
4594 }
4595 
4596 
4597 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4598 // Conceptually TryPark() should be equivalent to park(0).
4599 
4600 int os::PlatformEvent::TryPark() {
4601   for (;;) {
4602     const int v = _Event ;
4603     guarantee ((v == 0) || (v == 1), "invariant") ;
4604     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4605   }
4606 }
4607 
4608 void os::PlatformEvent::park() {       // AKA "down()"
4609   // Invariant: Only the thread associated with the Event/PlatformEvent
4610   // may call park().
4611   // TODO: assert that _Assoc != NULL or _Assoc == Self
4612   int v ;
4613   for (;;) {
4614       v = _Event ;
4615       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4616   }
4617   guarantee (v >= 0, "invariant") ;
4618   if (v == 0) {
4619      // Do this the hard way by blocking ...
4620      int status = pthread_mutex_lock(_mutex);
4621      assert_status(status == 0, status, "mutex_lock");
4622      guarantee (_nParked == 0, "invariant") ;
4623      ++ _nParked ;
4624      while (_Event < 0) {
4625         status = pthread_cond_wait(_cond, _mutex);
4626         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4627         // Treat this the same as if the wait was interrupted
4628         if (status == ETIME) { status = EINTR; }
4629         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4630      }
4631      -- _nParked ;
4632 
4633     // In theory we could move the ST of 0 into _Event past the unlock(),
4634     // but then we'd need a MEMBAR after the ST.
4635     _Event = 0 ;
4636      status = pthread_mutex_unlock(_mutex);
4637      assert_status(status == 0, status, "mutex_unlock");
4638   }
4639   guarantee (_Event >= 0, "invariant") ;
4640 }
4641 
4642 int os::PlatformEvent::park(jlong millis) {
4643   guarantee (_nParked == 0, "invariant") ;
4644 
4645   int v ;
4646   for (;;) {
4647       v = _Event ;
4648       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4649   }
4650   guarantee (v >= 0, "invariant") ;
4651   if (v != 0) return OS_OK ;
4652 
4653   // We do this the hard way, by blocking the thread.
4654   // Consider enforcing a minimum timeout value.
4655   struct timespec abst;
4656   compute_abstime(&abst, millis);
4657 
4658   int ret = OS_TIMEOUT;
4659   int status = pthread_mutex_lock(_mutex);
4660   assert_status(status == 0, status, "mutex_lock");
4661   guarantee (_nParked == 0, "invariant") ;
4662   ++_nParked ;
4663 
4664   // Object.wait(timo) will return because of
4665   // (a) notification
4666   // (b) timeout
4667   // (c) thread.interrupt
4668   //
4669   // Thread.interrupt and object.notify{All} both call Event::set.
4670   // That is, we treat thread.interrupt as a special case of notification.
4671   // The underlying Solaris implementation, cond_timedwait, admits
4672   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4673   // JVM from making those visible to Java code.  As such, we must
4674   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4675   //
4676   // TODO: properly differentiate simultaneous notify+interrupt.
4677   // In that case, we should propagate the notify to another waiter.
4678 
4679   while (_Event < 0) {
4680     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4681     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4682       pthread_cond_destroy (_cond);
4683       pthread_cond_init (_cond, NULL) ;
4684     }
4685     assert_status(status == 0 || status == EINTR ||
4686                   status == ETIME || status == ETIMEDOUT,
4687                   status, "cond_timedwait");
4688     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4689     if (status == ETIME || status == ETIMEDOUT) break ;
4690     // We consume and ignore EINTR and spurious wakeups.
4691   }
4692   --_nParked ;
4693   if (_Event >= 0) {
4694      ret = OS_OK;
4695   }
4696   _Event = 0 ;
4697   status = pthread_mutex_unlock(_mutex);
4698   assert_status(status == 0, status, "mutex_unlock");
4699   assert (_nParked == 0, "invariant") ;
4700   return ret;
4701 }
4702 
4703 void os::PlatformEvent::unpark() {
4704   int v, AnyWaiters ;
4705   for (;;) {
4706       v = _Event ;
4707       if (v > 0) {
4708          // The LD of _Event could have reordered or be satisfied
4709          // by a read-aside from this processor's write buffer.
4710          // To avoid problems execute a barrier and then
4711          // ratify the value.
4712          OrderAccess::fence() ;
4713          if (_Event == v) return ;
4714          continue ;
4715       }
4716       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4717   }
4718   if (v < 0) {
4719      // Wait for the thread associated with the event to vacate
4720      int status = pthread_mutex_lock(_mutex);
4721      assert_status(status == 0, status, "mutex_lock");
4722      AnyWaiters = _nParked ;
4723      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4724      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4725         AnyWaiters = 0 ;
4726         pthread_cond_signal (_cond);
4727      }
4728      status = pthread_mutex_unlock(_mutex);
4729      assert_status(status == 0, status, "mutex_unlock");
4730      if (AnyWaiters != 0) {
4731         status = pthread_cond_signal(_cond);
4732         assert_status(status == 0, status, "cond_signal");
4733      }
4734   }
4735 
4736   // Note that we signal() _after dropping the lock for "immortal" Events.
4737   // This is safe and avoids a common class of  futile wakeups.  In rare
4738   // circumstances this can cause a thread to return prematurely from
4739   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4740   // simply re-test the condition and re-park itself.
4741 }
4742 
4743 
4744 // JSR166
4745 // -------------------------------------------------------
4746 
4747 /*
4748  * The solaris and linux implementations of park/unpark are fairly
4749  * conservative for now, but can be improved. They currently use a
4750  * mutex/condvar pair, plus a a count.
4751  * Park decrements count if > 0, else does a condvar wait.  Unpark
4752  * sets count to 1 and signals condvar.  Only one thread ever waits
4753  * on the condvar. Contention seen when trying to park implies that someone
4754  * is unparking you, so don't wait. And spurious returns are fine, so there
4755  * is no need to track notifications.
4756  */
4757 
4758 
4759 #define NANOSECS_PER_SEC 1000000000
4760 #define NANOSECS_PER_MILLISEC 1000000
4761 #define MAX_SECS 100000000
4762 /*
4763  * This code is common to linux and solaris and will be moved to a
4764  * common place in dolphin.
4765  *
4766  * The passed in time value is either a relative time in nanoseconds
4767  * or an absolute time in milliseconds. Either way it has to be unpacked
4768  * into suitable seconds and nanoseconds components and stored in the
4769  * given timespec structure.
4770  * Given time is a 64-bit value and the time_t used in the timespec is only
4771  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4772  * overflow if times way in the future are given. Further on Solaris versions
4773  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4774  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4775  * As it will be 28 years before "now + 100000000" will overflow we can
4776  * ignore overflow and just impose a hard-limit on seconds using the value
4777  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4778  * years from "now".
4779  */
4780 
4781 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4782   assert (time > 0, "convertTime");
4783 
4784   struct timeval now;
4785   int status = gettimeofday(&now, NULL);
4786   assert(status == 0, "gettimeofday");
4787 
4788   time_t max_secs = now.tv_sec + MAX_SECS;
4789 
4790   if (isAbsolute) {
4791     jlong secs = time / 1000;
4792     if (secs > max_secs) {
4793       absTime->tv_sec = max_secs;
4794     }
4795     else {
4796       absTime->tv_sec = secs;
4797     }
4798     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4799   }
4800   else {
4801     jlong secs = time / NANOSECS_PER_SEC;
4802     if (secs >= MAX_SECS) {
4803       absTime->tv_sec = max_secs;
4804       absTime->tv_nsec = 0;
4805     }
4806     else {
4807       absTime->tv_sec = now.tv_sec + secs;
4808       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4809       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4810         absTime->tv_nsec -= NANOSECS_PER_SEC;
4811         ++absTime->tv_sec; // note: this must be <= max_secs
4812       }
4813     }
4814   }
4815   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4816   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4817   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4818   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4819 }
4820 
4821 void Parker::park(bool isAbsolute, jlong time) {
4822   // Optional fast-path check:
4823   // Return immediately if a permit is available.
4824   if (_counter > 0) {
4825       _counter = 0 ;
4826       OrderAccess::fence();
4827       return ;
4828   }
4829 
4830   Thread* thread = Thread::current();
4831   assert(thread->is_Java_thread(), "Must be JavaThread");
4832   JavaThread *jt = (JavaThread *)thread;
4833 
4834   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4835   // Check interrupt before trying to wait
4836   if (Thread::is_interrupted(thread, false)) {
4837     return;
4838   }
4839 
4840   // Next, demultiplex/decode time arguments
4841   timespec absTime;
4842   if (time < 0) { // don't wait at all
4843     return;
4844   }
4845   if (time > 0) {
4846     unpackTime(&absTime, isAbsolute, time);
4847   }
4848 
4849 
4850   // Enter safepoint region
4851   // Beware of deadlocks such as 6317397.
4852   // The per-thread Parker:: mutex is a classic leaf-lock.
4853   // In particular a thread must never block on the Threads_lock while
4854   // holding the Parker:: mutex.  If safepoints are pending both the
4855   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4856   ThreadBlockInVM tbivm(jt);
4857 
4858   // Don't wait if cannot get lock since interference arises from
4859   // unblocking.  Also. check interrupt before trying wait
4860   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4861     return;
4862   }
4863 
4864   int status ;
4865   if (_counter > 0)  { // no wait needed
4866     _counter = 0;
4867     status = pthread_mutex_unlock(_mutex);
4868     assert (status == 0, "invariant") ;
4869     OrderAccess::fence();
4870     return;
4871   }
4872 
4873 #ifdef ASSERT
4874   // Don't catch signals while blocked; let the running threads have the signals.
4875   // (This allows a debugger to break into the running thread.)
4876   sigset_t oldsigs;
4877   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4878   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4879 #endif
4880 
4881   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4882   jt->set_suspend_equivalent();
4883   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4884 
4885   if (time == 0) {
4886     status = pthread_cond_wait (_cond, _mutex) ;
4887   } else {
4888     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4889     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4890       pthread_cond_destroy (_cond) ;
4891       pthread_cond_init    (_cond, NULL);
4892     }
4893   }
4894   assert_status(status == 0 || status == EINTR ||
4895                 status == ETIME || status == ETIMEDOUT,
4896                 status, "cond_timedwait");
4897 
4898 #ifdef ASSERT
4899   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4900 #endif
4901 
4902   _counter = 0 ;
4903   status = pthread_mutex_unlock(_mutex) ;
4904   assert_status(status == 0, status, "invariant") ;
4905   // If externally suspended while waiting, re-suspend
4906   if (jt->handle_special_suspend_equivalent_condition()) {
4907     jt->java_suspend_self();
4908   }
4909 
4910   OrderAccess::fence();
4911 }
4912 
4913 void Parker::unpark() {
4914   int s, status ;
4915   status = pthread_mutex_lock(_mutex);
4916   assert (status == 0, "invariant") ;
4917   s = _counter;
4918   _counter = 1;
4919   if (s < 1) {
4920      if (WorkAroundNPTLTimedWaitHang) {
4921         status = pthread_cond_signal (_cond) ;
4922         assert (status == 0, "invariant") ;
4923         status = pthread_mutex_unlock(_mutex);
4924         assert (status == 0, "invariant") ;
4925      } else {
4926         status = pthread_mutex_unlock(_mutex);
4927         assert (status == 0, "invariant") ;
4928         status = pthread_cond_signal (_cond) ;
4929         assert (status == 0, "invariant") ;
4930      }
4931   } else {
4932     pthread_mutex_unlock(_mutex);
4933     assert (status == 0, "invariant") ;
4934   }
4935 }
4936 
4937 
4938 extern char** environ;
4939 
4940 #ifndef __NR_fork
4941 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4942 #endif
4943 
4944 #ifndef __NR_execve
4945 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4946 #endif
4947 
4948 // Run the specified command in a separate process. Return its exit value,
4949 // or -1 on failure (e.g. can't fork a new process).
4950 // Unlike system(), this function can be called from signal handler. It
4951 // doesn't block SIGINT et al.
4952 int os::fork_and_exec(char* cmd) {
4953   const char * argv[4] = {"sh", "-c", cmd, NULL};
4954 
4955   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4956   // pthread_atfork handlers and reset pthread library. All we need is a
4957   // separate process to execve. Make a direct syscall to fork process.
4958   // On IA64 there's no fork syscall, we have to use fork() and hope for
4959   // the best...
4960   pid_t pid = NOT_IA64(syscall(__NR_fork);)
4961               IA64_ONLY(fork();)
4962 
4963   if (pid < 0) {
4964     // fork failed
4965     return -1;
4966 
4967   } else if (pid == 0) {
4968     // child process
4969 
4970     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4971     // first to kill every thread on the thread list. Because this list is
4972     // not reset by fork() (see notes above), execve() will instead kill
4973     // every thread in the parent process. We know this is the only thread
4974     // in the new process, so make a system call directly.
4975     // IA64 should use normal execve() from glibc to match the glibc fork()
4976     // above.
4977     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4978     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4979 
4980     // execve failed
4981     _exit(-1);
4982 
4983   } else  {
4984     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4985     // care about the actual exit code, for now.
4986 
4987     int status;
4988 
4989     // Wait for the child process to exit.  This returns immediately if
4990     // the child has already exited. */
4991     while (waitpid(pid, &status, 0) < 0) {
4992         switch (errno) {
4993         case ECHILD: return 0;
4994         case EINTR: break;
4995         default: return -1;
4996         }
4997     }
4998 
4999     if (WIFEXITED(status)) {
5000        // The child exited normally; get its exit code.
5001        return WEXITSTATUS(status);
5002     } else if (WIFSIGNALED(status)) {
5003        // The child exited because of a signal
5004        // The best value to return is 0x80 + signal number,
5005        // because that is what all Unix shells do, and because
5006        // it allows callers to distinguish between process exit and
5007        // process death by signal.
5008        return 0x80 + WTERMSIG(status);
5009     } else {
5010        // Unknown exit code; pass it through
5011        return status;
5012     }
5013   }
5014 }
5015 
5016 // is_headless_jre()
5017 //
5018 // Test for the existence of libmawt in motif21 or xawt directories
5019 // in order to report if we are running in a headless jre
5020 //
5021 bool os::is_headless_jre() {
5022     struct stat statbuf;
5023     char buf[MAXPATHLEN];
5024     char libmawtpath[MAXPATHLEN];
5025     const char *xawtstr  = "/xawt/libmawt.so";
5026     const char *motifstr = "/motif21/libmawt.so";
5027     char *p;
5028 
5029     // Get path to libjvm.so
5030     os::jvm_path(buf, sizeof(buf));
5031 
5032     // Get rid of libjvm.so
5033     p = strrchr(buf, '/');
5034     if (p == NULL) return false;
5035     else *p = '\0';
5036 
5037     // Get rid of client or server
5038     p = strrchr(buf, '/');
5039     if (p == NULL) return false;
5040     else *p = '\0';
5041 
5042     // check xawt/libmawt.so
5043     strcpy(libmawtpath, buf);
5044     strcat(libmawtpath, xawtstr);
5045     if (::stat(libmawtpath, &statbuf) == 0) return false;
5046 
5047     // check motif21/libmawt.so
5048     strcpy(libmawtpath, buf);
5049     strcat(libmawtpath, motifstr);
5050     if (::stat(libmawtpath, &statbuf) == 0) return false;
5051 
5052     return true;
5053 }
5054