1 /*
   2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # define __STDC_FORMAT_MACROS
  26 
  27 // do not include  precompiled  header file
  28 # include "incls/_os_linux.cpp.incl"
  29 
  30 // put OS-includes here
  31 # include <sys/types.h>
  32 # include <sys/mman.h>
  33 # include <sys/stat.h>
  34 # include <sys/select.h>
  35 # include <pthread.h>
  36 # include <signal.h>
  37 # include <errno.h>
  38 # include <dlfcn.h>
  39 # include <stdio.h>
  40 # include <unistd.h>
  41 # include <sys/resource.h>
  42 # include <pthread.h>
  43 # include <sys/stat.h>
  44 # include <sys/time.h>
  45 # include <sys/times.h>
  46 # include <sys/utsname.h>
  47 # include <sys/socket.h>
  48 # include <sys/wait.h>
  49 # include <pwd.h>
  50 # include <poll.h>
  51 # include <semaphore.h>
  52 # include <fcntl.h>
  53 # include <string.h>
  54 # include <syscall.h>
  55 # include <sys/sysinfo.h>
  56 # include <gnu/libc-version.h>
  57 # include <sys/ipc.h>
  58 # include <sys/shm.h>
  59 # include <link.h>
  60 # include <stdint.h>
  61 # include <inttypes.h>
  62 
  63 #define MAX_PATH    (2 * K)
  64 
  65 // for timer info max values which include all bits
  66 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  67 #define SEC_IN_NANOSECS  1000000000LL
  68 
  69 ////////////////////////////////////////////////////////////////////////////////
  70 // global variables
  71 julong os::Linux::_physical_memory = 0;
  72 
  73 address   os::Linux::_initial_thread_stack_bottom = NULL;
  74 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
  75 
  76 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
  77 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
  78 Mutex* os::Linux::_createThread_lock = NULL;
  79 pthread_t os::Linux::_main_thread;
  80 int os::Linux::_page_size = -1;
  81 bool os::Linux::_is_floating_stack = false;
  82 bool os::Linux::_is_NPTL = false;
  83 bool os::Linux::_supports_fast_thread_cpu_time = false;
  84 const char * os::Linux::_glibc_version = NULL;
  85 const char * os::Linux::_libpthread_version = NULL;
  86 
  87 static jlong initial_time_count=0;
  88 
  89 static int clock_tics_per_sec = 100;
  90 
  91 // For diagnostics to print a message once. see run_periodic_checks
  92 static sigset_t check_signal_done;
  93 static bool check_signals = true;;
  94 
  95 static pid_t _initial_pid = 0;
  96 
  97 /* Signal number used to suspend/resume a thread */
  98 
  99 /* do not use any signal number less than SIGSEGV, see 4355769 */
 100 static int SR_signum = SIGUSR2;
 101 sigset_t SR_sigset;
 102 
 103 /* Used to protect dlsym() calls */
 104 static pthread_mutex_t dl_mutex;
 105 
 106 ////////////////////////////////////////////////////////////////////////////////
 107 // utility functions
 108 
 109 static int SR_initialize();
 110 static int SR_finalize();
 111 
 112 julong os::available_memory() {
 113   return Linux::available_memory();
 114 }
 115 
 116 julong os::Linux::available_memory() {
 117   // values in struct sysinfo are "unsigned long"
 118   struct sysinfo si;
 119   sysinfo(&si);
 120 
 121   return (julong)si.freeram * si.mem_unit;
 122 }
 123 
 124 julong os::physical_memory() {
 125   return Linux::physical_memory();
 126 }
 127 
 128 julong os::allocatable_physical_memory(julong size) {
 129 #ifdef _LP64
 130   return size;
 131 #else
 132   julong result = MIN2(size, (julong)3800*M);
 133    if (!is_allocatable(result)) {
 134      // See comments under solaris for alignment considerations
 135      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 136      result =  MIN2(size, reasonable_size);
 137    }
 138    return result;
 139 #endif // _LP64
 140 }
 141 
 142 ////////////////////////////////////////////////////////////////////////////////
 143 // environment support
 144 
 145 bool os::getenv(const char* name, char* buf, int len) {
 146   const char* val = ::getenv(name);
 147   if (val != NULL && strlen(val) < (size_t)len) {
 148     strcpy(buf, val);
 149     return true;
 150   }
 151   if (len > 0) buf[0] = 0;  // return a null string
 152   return false;
 153 }
 154 
 155 
 156 // Return true if user is running as root.
 157 
 158 bool os::have_special_privileges() {
 159   static bool init = false;
 160   static bool privileges = false;
 161   if (!init) {
 162     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 163     init = true;
 164   }
 165   return privileges;
 166 }
 167 
 168 
 169 #ifndef SYS_gettid
 170 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 171 #ifdef __ia64__
 172 #define SYS_gettid 1105
 173 #elif __i386__
 174 #define SYS_gettid 224
 175 #elif __amd64__
 176 #define SYS_gettid 186
 177 #elif __sparc__
 178 #define SYS_gettid 143
 179 #else
 180 #error define gettid for the arch
 181 #endif
 182 #endif
 183 
 184 // Cpu architecture string
 185 #if   defined(ZERO)
 186 static char cpu_arch[] = ZERO_LIBARCH;
 187 #elif defined(IA64)
 188 static char cpu_arch[] = "ia64";
 189 #elif defined(IA32)
 190 static char cpu_arch[] = "i386";
 191 #elif defined(AMD64)
 192 static char cpu_arch[] = "amd64";
 193 #elif defined(ARM)
 194 static char cpu_arch[] = "arm";
 195 #elif defined(PPC)
 196 static char cpu_arch[] = "ppc";
 197 #elif defined(SPARC)
 198 #  ifdef _LP64
 199 static char cpu_arch[] = "sparcv9";
 200 #  else
 201 static char cpu_arch[] = "sparc";
 202 #  endif
 203 #else
 204 #error Add appropriate cpu_arch setting
 205 #endif
 206 
 207 
 208 // pid_t gettid()
 209 //
 210 // Returns the kernel thread id of the currently running thread. Kernel
 211 // thread id is used to access /proc.
 212 //
 213 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 214 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 215 //
 216 pid_t os::Linux::gettid() {
 217   int rslt = syscall(SYS_gettid);
 218   if (rslt == -1) {
 219      // old kernel, no NPTL support
 220      return getpid();
 221   } else {
 222      return (pid_t)rslt;
 223   }
 224 }
 225 
 226 // Most versions of linux have a bug where the number of processors are
 227 // determined by looking at the /proc file system.  In a chroot environment,
 228 // the system call returns 1.  This causes the VM to act as if it is
 229 // a single processor and elide locking (see is_MP() call).
 230 static bool unsafe_chroot_detected = false;
 231 static const char *unstable_chroot_error = "/proc file system not found.\n"
 232                      "Java may be unstable running multithreaded in a chroot "
 233                      "environment on Linux when /proc filesystem is not mounted.";
 234 
 235 void os::Linux::initialize_system_info() {
 236   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 237   if (processor_count() == 1) {
 238     pid_t pid = os::Linux::gettid();
 239     char fname[32];
 240     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 241     FILE *fp = fopen(fname, "r");
 242     if (fp == NULL) {
 243       unsafe_chroot_detected = true;
 244     } else {
 245       fclose(fp);
 246     }
 247   }
 248   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 249   assert(processor_count() > 0, "linux error");
 250 }
 251 
 252 void os::init_system_properties_values() {
 253 //  char arch[12];
 254 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 255 
 256   // The next steps are taken in the product version:
 257   //
 258   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 259   // This library should be located at:
 260   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 261   //
 262   // If "/jre/lib/" appears at the right place in the path, then we
 263   // assume libjvm[_g].so is installed in a JDK and we use this path.
 264   //
 265   // Otherwise exit with message: "Could not create the Java virtual machine."
 266   //
 267   // The following extra steps are taken in the debugging version:
 268   //
 269   // If "/jre/lib/" does NOT appear at the right place in the path
 270   // instead of exit check for $JAVA_HOME environment variable.
 271   //
 272   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 273   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 274   // it looks like libjvm[_g].so is installed there
 275   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 276   //
 277   // Otherwise exit.
 278   //
 279   // Important note: if the location of libjvm.so changes this
 280   // code needs to be changed accordingly.
 281 
 282   // The next few definitions allow the code to be verbatim:
 283 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 284 #define getenv(n) ::getenv(n)
 285 
 286 /*
 287  * See ld(1):
 288  *      The linker uses the following search paths to locate required
 289  *      shared libraries:
 290  *        1: ...
 291  *        ...
 292  *        7: The default directories, normally /lib and /usr/lib.
 293  */
 294 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 295 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 296 #else
 297 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 298 #endif
 299 
 300 #define EXTENSIONS_DIR  "/lib/ext"
 301 #define ENDORSED_DIR    "/lib/endorsed"
 302 #define REG_DIR         "/usr/java/packages"
 303 
 304   {
 305     /* sysclasspath, java_home, dll_dir */
 306     {
 307         char *home_path;
 308         char *dll_path;
 309         char *pslash;
 310         char buf[MAXPATHLEN];
 311         os::jvm_path(buf, sizeof(buf));
 312 
 313         // Found the full path to libjvm.so.
 314         // Now cut the path to <java_home>/jre if we can.
 315         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 316         pslash = strrchr(buf, '/');
 317         if (pslash != NULL)
 318             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 319         dll_path = malloc(strlen(buf) + 1);
 320         if (dll_path == NULL)
 321             return;
 322         strcpy(dll_path, buf);
 323         Arguments::set_dll_dir(dll_path);
 324 
 325         if (pslash != NULL) {
 326             pslash = strrchr(buf, '/');
 327             if (pslash != NULL) {
 328                 *pslash = '\0';       /* get rid of /<arch> */
 329                 pslash = strrchr(buf, '/');
 330                 if (pslash != NULL)
 331                     *pslash = '\0';   /* get rid of /lib */
 332             }
 333         }
 334 
 335         home_path = malloc(strlen(buf) + 1);
 336         if (home_path == NULL)
 337             return;
 338         strcpy(home_path, buf);
 339         Arguments::set_java_home(home_path);
 340 
 341         if (!set_boot_path('/', ':'))
 342             return;
 343     }
 344 
 345     /*
 346      * Where to look for native libraries
 347      *
 348      * Note: Due to a legacy implementation, most of the library path
 349      * is set in the launcher.  This was to accomodate linking restrictions
 350      * on legacy Linux implementations (which are no longer supported).
 351      * Eventually, all the library path setting will be done here.
 352      *
 353      * However, to prevent the proliferation of improperly built native
 354      * libraries, the new path component /usr/java/packages is added here.
 355      * Eventually, all the library path setting will be done here.
 356      */
 357     {
 358         char *ld_library_path;
 359 
 360         /*
 361          * Construct the invariant part of ld_library_path. Note that the
 362          * space for the colon and the trailing null are provided by the
 363          * nulls included by the sizeof operator (so actually we allocate
 364          * a byte more than necessary).
 365          */
 366         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 367             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 368         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 369 
 370         /*
 371          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 372          * should always exist (until the legacy problem cited above is
 373          * addressed).
 374          */
 375         char *v = getenv("LD_LIBRARY_PATH");
 376         if (v != NULL) {
 377             char *t = ld_library_path;
 378             /* That's +1 for the colon and +1 for the trailing '\0' */
 379             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 380             sprintf(ld_library_path, "%s:%s", v, t);
 381         }
 382         Arguments::set_library_path(ld_library_path);
 383     }
 384 
 385     /*
 386      * Extensions directories.
 387      *
 388      * Note that the space for the colon and the trailing null are provided
 389      * by the nulls included by the sizeof operator (so actually one byte more
 390      * than necessary is allocated).
 391      */
 392     {
 393         char *buf = malloc(strlen(Arguments::get_java_home()) +
 394             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 395         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 396             Arguments::get_java_home());
 397         Arguments::set_ext_dirs(buf);
 398     }
 399 
 400     /* Endorsed standards default directory. */
 401     {
 402         char * buf;
 403         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 404         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 405         Arguments::set_endorsed_dirs(buf);
 406     }
 407   }
 408 
 409 #undef malloc
 410 #undef getenv
 411 #undef EXTENSIONS_DIR
 412 #undef ENDORSED_DIR
 413 
 414   // Done
 415   return;
 416 }
 417 
 418 ////////////////////////////////////////////////////////////////////////////////
 419 // breakpoint support
 420 
 421 void os::breakpoint() {
 422   BREAKPOINT;
 423 }
 424 
 425 extern "C" void breakpoint() {
 426   // use debugger to set breakpoint here
 427 }
 428 
 429 ////////////////////////////////////////////////////////////////////////////////
 430 // signal support
 431 
 432 debug_only(static bool signal_sets_initialized = false);
 433 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 434 
 435 bool os::Linux::is_sig_ignored(int sig) {
 436       struct sigaction oact;
 437       sigaction(sig, (struct sigaction*)NULL, &oact);
 438       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 439                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 440       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 441            return true;
 442       else
 443            return false;
 444 }
 445 
 446 void os::Linux::signal_sets_init() {
 447   // Should also have an assertion stating we are still single-threaded.
 448   assert(!signal_sets_initialized, "Already initialized");
 449   // Fill in signals that are necessarily unblocked for all threads in
 450   // the VM. Currently, we unblock the following signals:
 451   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 452   //                         by -Xrs (=ReduceSignalUsage));
 453   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 454   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 455   // the dispositions or masks wrt these signals.
 456   // Programs embedding the VM that want to use the above signals for their
 457   // own purposes must, at this time, use the "-Xrs" option to prevent
 458   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 459   // (See bug 4345157, and other related bugs).
 460   // In reality, though, unblocking these signals is really a nop, since
 461   // these signals are not blocked by default.
 462   sigemptyset(&unblocked_sigs);
 463   sigemptyset(&allowdebug_blocked_sigs);
 464   sigaddset(&unblocked_sigs, SIGILL);
 465   sigaddset(&unblocked_sigs, SIGSEGV);
 466   sigaddset(&unblocked_sigs, SIGBUS);
 467   sigaddset(&unblocked_sigs, SIGFPE);
 468   sigaddset(&unblocked_sigs, SR_signum);
 469 
 470   if (!ReduceSignalUsage) {
 471    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 472       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 473       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 474    }
 475    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 476       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 477       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 478    }
 479    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 480       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 481       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 482    }
 483   }
 484   // Fill in signals that are blocked by all but the VM thread.
 485   sigemptyset(&vm_sigs);
 486   if (!ReduceSignalUsage)
 487     sigaddset(&vm_sigs, BREAK_SIGNAL);
 488   debug_only(signal_sets_initialized = true);
 489 
 490 }
 491 
 492 // These are signals that are unblocked while a thread is running Java.
 493 // (For some reason, they get blocked by default.)
 494 sigset_t* os::Linux::unblocked_signals() {
 495   assert(signal_sets_initialized, "Not initialized");
 496   return &unblocked_sigs;
 497 }
 498 
 499 // These are the signals that are blocked while a (non-VM) thread is
 500 // running Java. Only the VM thread handles these signals.
 501 sigset_t* os::Linux::vm_signals() {
 502   assert(signal_sets_initialized, "Not initialized");
 503   return &vm_sigs;
 504 }
 505 
 506 // These are signals that are blocked during cond_wait to allow debugger in
 507 sigset_t* os::Linux::allowdebug_blocked_signals() {
 508   assert(signal_sets_initialized, "Not initialized");
 509   return &allowdebug_blocked_sigs;
 510 }
 511 
 512 void os::Linux::hotspot_sigmask(Thread* thread) {
 513 
 514   //Save caller's signal mask before setting VM signal mask
 515   sigset_t caller_sigmask;
 516   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 517 
 518   OSThread* osthread = thread->osthread();
 519   osthread->set_caller_sigmask(caller_sigmask);
 520 
 521   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 522 
 523   if (!ReduceSignalUsage) {
 524     if (thread->is_VM_thread()) {
 525       // Only the VM thread handles BREAK_SIGNAL ...
 526       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 527     } else {
 528       // ... all other threads block BREAK_SIGNAL
 529       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 530     }
 531   }
 532 }
 533 
 534 //////////////////////////////////////////////////////////////////////////////
 535 // detecting pthread library
 536 
 537 void os::Linux::libpthread_init() {
 538   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 539   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 540   // generic name for earlier versions.
 541   // Define macros here so we can build HotSpot on old systems.
 542 # ifndef _CS_GNU_LIBC_VERSION
 543 # define _CS_GNU_LIBC_VERSION 2
 544 # endif
 545 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 546 # define _CS_GNU_LIBPTHREAD_VERSION 3
 547 # endif
 548 
 549   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 550   if (n > 0) {
 551      char *str = (char *)malloc(n);
 552      confstr(_CS_GNU_LIBC_VERSION, str, n);
 553      os::Linux::set_glibc_version(str);
 554   } else {
 555      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 556      static char _gnu_libc_version[32];
 557      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 558               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 559      os::Linux::set_glibc_version(_gnu_libc_version);
 560   }
 561 
 562   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 563   if (n > 0) {
 564      char *str = (char *)malloc(n);
 565      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 566      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 567      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 568      // is the case. LinuxThreads has a hard limit on max number of threads.
 569      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 570      // On the other hand, NPTL does not have such a limit, sysconf()
 571      // will return -1 and errno is not changed. Check if it is really NPTL.
 572      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 573          strstr(str, "NPTL") &&
 574          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 575        free(str);
 576        os::Linux::set_libpthread_version("linuxthreads");
 577      } else {
 578        os::Linux::set_libpthread_version(str);
 579      }
 580   } else {
 581     // glibc before 2.3.2 only has LinuxThreads.
 582     os::Linux::set_libpthread_version("linuxthreads");
 583   }
 584 
 585   if (strstr(libpthread_version(), "NPTL")) {
 586      os::Linux::set_is_NPTL();
 587   } else {
 588      os::Linux::set_is_LinuxThreads();
 589   }
 590 
 591   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 592   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 593   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 594      os::Linux::set_is_floating_stack();
 595   }
 596 }
 597 
 598 /////////////////////////////////////////////////////////////////////////////
 599 // thread stack
 600 
 601 // Force Linux kernel to expand current thread stack. If "bottom" is close
 602 // to the stack guard, caller should block all signals.
 603 //
 604 // MAP_GROWSDOWN:
 605 //   A special mmap() flag that is used to implement thread stacks. It tells
 606 //   kernel that the memory region should extend downwards when needed. This
 607 //   allows early versions of LinuxThreads to only mmap the first few pages
 608 //   when creating a new thread. Linux kernel will automatically expand thread
 609 //   stack as needed (on page faults).
 610 //
 611 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 612 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 613 //   region, it's hard to tell if the fault is due to a legitimate stack
 614 //   access or because of reading/writing non-exist memory (e.g. buffer
 615 //   overrun). As a rule, if the fault happens below current stack pointer,
 616 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 617 //   application (see Linux kernel fault.c).
 618 //
 619 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 620 //   stack overflow detection.
 621 //
 622 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 623 //   not use this flag. However, the stack of initial thread is not created
 624 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 625 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 626 //   and then attach the thread to JVM.
 627 //
 628 // To get around the problem and allow stack banging on Linux, we need to
 629 // manually expand thread stack after receiving the SIGSEGV.
 630 //
 631 // There are two ways to expand thread stack to address "bottom", we used
 632 // both of them in JVM before 1.5:
 633 //   1. adjust stack pointer first so that it is below "bottom", and then
 634 //      touch "bottom"
 635 //   2. mmap() the page in question
 636 //
 637 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 638 // if current sp is already near the lower end of page 101, and we need to
 639 // call mmap() to map page 100, it is possible that part of the mmap() frame
 640 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 641 // That will destroy the mmap() frame and cause VM to crash.
 642 //
 643 // The following code works by adjusting sp first, then accessing the "bottom"
 644 // page to force a page fault. Linux kernel will then automatically expand the
 645 // stack mapping.
 646 //
 647 // _expand_stack_to() assumes its frame size is less than page size, which
 648 // should always be true if the function is not inlined.
 649 
 650 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 651 #define NOINLINE
 652 #else
 653 #define NOINLINE __attribute__ ((noinline))
 654 #endif
 655 
 656 static void _expand_stack_to(address bottom) NOINLINE;
 657 
 658 static void _expand_stack_to(address bottom) {
 659   address sp;
 660   size_t size;
 661   volatile char *p;
 662 
 663   // Adjust bottom to point to the largest address within the same page, it
 664   // gives us a one-page buffer if alloca() allocates slightly more memory.
 665   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 666   bottom += os::Linux::page_size() - 1;
 667 
 668   // sp might be slightly above current stack pointer; if that's the case, we
 669   // will alloca() a little more space than necessary, which is OK. Don't use
 670   // os::current_stack_pointer(), as its result can be slightly below current
 671   // stack pointer, causing us to not alloca enough to reach "bottom".
 672   sp = (address)&sp;
 673 
 674   if (sp > bottom) {
 675     size = sp - bottom;
 676     p = (volatile char *)alloca(size);
 677     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 678     p[0] = '\0';
 679   }
 680 }
 681 
 682 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 683   assert(t!=NULL, "just checking");
 684   assert(t->osthread()->expanding_stack(), "expand should be set");
 685   assert(t->stack_base() != NULL, "stack_base was not initialized");
 686 
 687   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 688     sigset_t mask_all, old_sigset;
 689     sigfillset(&mask_all);
 690     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 691     _expand_stack_to(addr);
 692     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 693     return true;
 694   }
 695   return false;
 696 }
 697 
 698 //////////////////////////////////////////////////////////////////////////////
 699 // create new thread
 700 
 701 static address highest_vm_reserved_address();
 702 
 703 // check if it's safe to start a new thread
 704 static bool _thread_safety_check(Thread* thread) {
 705   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 706     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 707     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 708     //   allocated (MAP_FIXED) from high address space. Every thread stack
 709     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 710     //   it to other values if they rebuild LinuxThreads).
 711     //
 712     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 713     // the memory region has already been mmap'ed. That means if we have too
 714     // many threads and/or very large heap, eventually thread stack will
 715     // collide with heap.
 716     //
 717     // Here we try to prevent heap/stack collision by comparing current
 718     // stack bottom with the highest address that has been mmap'ed by JVM
 719     // plus a safety margin for memory maps created by native code.
 720     //
 721     // This feature can be disabled by setting ThreadSafetyMargin to 0
 722     //
 723     if (ThreadSafetyMargin > 0) {
 724       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 725 
 726       // not safe if our stack extends below the safety margin
 727       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 728     } else {
 729       return true;
 730     }
 731   } else {
 732     // Floating stack LinuxThreads or NPTL:
 733     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 734     //   there's not enough space left, pthread_create() will fail. If we come
 735     //   here, that means enough space has been reserved for stack.
 736     return true;
 737   }
 738 }
 739 
 740 // Thread start routine for all newly created threads
 741 static void *java_start(Thread *thread) {
 742   // Try to randomize the cache line index of hot stack frames.
 743   // This helps when threads of the same stack traces evict each other's
 744   // cache lines. The threads can be either from the same JVM instance, or
 745   // from different JVM instances. The benefit is especially true for
 746   // processors with hyperthreading technology.
 747   static int counter = 0;
 748   int pid = os::current_process_id();
 749   alloca(((pid ^ counter++) & 7) * 128);
 750 
 751   ThreadLocalStorage::set_thread(thread);
 752 
 753   OSThread* osthread = thread->osthread();
 754   Monitor* sync = osthread->startThread_lock();
 755 
 756   // non floating stack LinuxThreads needs extra check, see above
 757   if (!_thread_safety_check(thread)) {
 758     // notify parent thread
 759     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 760     osthread->set_state(ZOMBIE);
 761     sync->notify_all();
 762     return NULL;
 763   }
 764 
 765   // thread_id is kernel thread id (similar to Solaris LWP id)
 766   osthread->set_thread_id(os::Linux::gettid());
 767 
 768   if (UseNUMA) {
 769     int lgrp_id = os::numa_get_group_id();
 770     if (lgrp_id != -1) {
 771       thread->set_lgrp_id(lgrp_id);
 772     }
 773   }
 774   // initialize signal mask for this thread
 775   os::Linux::hotspot_sigmask(thread);
 776 
 777   // initialize floating point control register
 778   os::Linux::init_thread_fpu_state();
 779 
 780   // handshaking with parent thread
 781   {
 782     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 783 
 784     // notify parent thread
 785     osthread->set_state(INITIALIZED);
 786     sync->notify_all();
 787 
 788     // wait until os::start_thread()
 789     while (osthread->get_state() == INITIALIZED) {
 790       sync->wait(Mutex::_no_safepoint_check_flag);
 791     }
 792   }
 793 
 794   // call one more level start routine
 795   thread->run();
 796 
 797   return 0;
 798 }
 799 
 800 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 801   assert(thread->osthread() == NULL, "caller responsible");
 802 
 803   // Allocate the OSThread object
 804   OSThread* osthread = new OSThread(NULL, NULL);
 805   if (osthread == NULL) {
 806     return false;
 807   }
 808 
 809   // set the correct thread state
 810   osthread->set_thread_type(thr_type);
 811 
 812   // Initial state is ALLOCATED but not INITIALIZED
 813   osthread->set_state(ALLOCATED);
 814 
 815   thread->set_osthread(osthread);
 816 
 817   // init thread attributes
 818   pthread_attr_t attr;
 819   pthread_attr_init(&attr);
 820   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 821 
 822   // stack size
 823   if (os::Linux::supports_variable_stack_size()) {
 824     // calculate stack size if it's not specified by caller
 825     if (stack_size == 0) {
 826       stack_size = os::Linux::default_stack_size(thr_type);
 827 
 828       switch (thr_type) {
 829       case os::java_thread:
 830         // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 831         if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 832         break;
 833       case os::compiler_thread:
 834         if (CompilerThreadStackSize > 0) {
 835           stack_size = (size_t)(CompilerThreadStackSize * K);
 836           break;
 837         } // else fall through:
 838           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 839       case os::vm_thread:
 840       case os::pgc_thread:
 841       case os::cgc_thread:
 842       case os::watcher_thread:
 843         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 844         break;
 845       }
 846     }
 847 
 848     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 849     pthread_attr_setstacksize(&attr, stack_size);
 850   } else {
 851     // let pthread_create() pick the default value.
 852   }
 853 
 854   // glibc guard page
 855   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 856 
 857   ThreadState state;
 858 
 859   {
 860     // Serialize thread creation if we are running with fixed stack LinuxThreads
 861     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 862     if (lock) {
 863       os::Linux::createThread_lock()->lock_without_safepoint_check();
 864     }
 865 
 866     pthread_t tid;
 867     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 868 
 869     pthread_attr_destroy(&attr);
 870 
 871     if (ret != 0) {
 872       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 873         perror("pthread_create()");
 874       }
 875       // Need to clean up stuff we've allocated so far
 876       thread->set_osthread(NULL);
 877       delete osthread;
 878       if (lock) os::Linux::createThread_lock()->unlock();
 879       return false;
 880     }
 881 
 882     // Store pthread info into the OSThread
 883     osthread->set_pthread_id(tid);
 884 
 885     // Wait until child thread is either initialized or aborted
 886     {
 887       Monitor* sync_with_child = osthread->startThread_lock();
 888       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 889       while ((state = osthread->get_state()) == ALLOCATED) {
 890         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 891       }
 892     }
 893 
 894     if (lock) {
 895       os::Linux::createThread_lock()->unlock();
 896     }
 897   }
 898 
 899   // Aborted due to thread limit being reached
 900   if (state == ZOMBIE) {
 901       thread->set_osthread(NULL);
 902       delete osthread;
 903       return false;
 904   }
 905 
 906   // The thread is returned suspended (in state INITIALIZED),
 907   // and is started higher up in the call chain
 908   assert(state == INITIALIZED, "race condition");
 909   return true;
 910 }
 911 
 912 /////////////////////////////////////////////////////////////////////////////
 913 // attach existing thread
 914 
 915 // bootstrap the main thread
 916 bool os::create_main_thread(JavaThread* thread) {
 917   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 918   return create_attached_thread(thread);
 919 }
 920 
 921 bool os::create_attached_thread(JavaThread* thread) {
 922 #ifdef ASSERT
 923     thread->verify_not_published();
 924 #endif
 925 
 926   // Allocate the OSThread object
 927   OSThread* osthread = new OSThread(NULL, NULL);
 928 
 929   if (osthread == NULL) {
 930     return false;
 931   }
 932 
 933   // Store pthread info into the OSThread
 934   osthread->set_thread_id(os::Linux::gettid());
 935   osthread->set_pthread_id(::pthread_self());
 936 
 937   // initialize floating point control register
 938   os::Linux::init_thread_fpu_state();
 939 
 940   // Initial thread state is RUNNABLE
 941   osthread->set_state(RUNNABLE);
 942 
 943   thread->set_osthread(osthread);
 944 
 945   if (UseNUMA) {
 946     int lgrp_id = os::numa_get_group_id();
 947     if (lgrp_id != -1) {
 948       thread->set_lgrp_id(lgrp_id);
 949     }
 950   }
 951 
 952   if (os::Linux::is_initial_thread()) {
 953     // If current thread is initial thread, its stack is mapped on demand,
 954     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 955     // the entire stack region to avoid SEGV in stack banging.
 956     // It is also useful to get around the heap-stack-gap problem on SuSE
 957     // kernel (see 4821821 for details). We first expand stack to the top
 958     // of yellow zone, then enable stack yellow zone (order is significant,
 959     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 960     // is no gap between the last two virtual memory regions.
 961 
 962     JavaThread *jt = (JavaThread *)thread;
 963     address addr = jt->stack_yellow_zone_base();
 964     assert(addr != NULL, "initialization problem?");
 965     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 966 
 967     osthread->set_expanding_stack();
 968     os::Linux::manually_expand_stack(jt, addr);
 969     osthread->clear_expanding_stack();
 970   }
 971 
 972   // initialize signal mask for this thread
 973   // and save the caller's signal mask
 974   os::Linux::hotspot_sigmask(thread);
 975 
 976   return true;
 977 }
 978 
 979 void os::pd_start_thread(Thread* thread) {
 980   OSThread * osthread = thread->osthread();
 981   assert(osthread->get_state() != INITIALIZED, "just checking");
 982   Monitor* sync_with_child = osthread->startThread_lock();
 983   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 984   sync_with_child->notify();
 985 }
 986 
 987 // Free Linux resources related to the OSThread
 988 void os::free_thread(OSThread* osthread) {
 989   assert(osthread != NULL, "osthread not set");
 990 
 991   if (Thread::current()->osthread() == osthread) {
 992     // Restore caller's signal mask
 993     sigset_t sigmask = osthread->caller_sigmask();
 994     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 995    }
 996 
 997   delete osthread;
 998 }
 999 
1000 //////////////////////////////////////////////////////////////////////////////
1001 // thread local storage
1002 
1003 int os::allocate_thread_local_storage() {
1004   pthread_key_t key;
1005   int rslt = pthread_key_create(&key, NULL);
1006   assert(rslt == 0, "cannot allocate thread local storage");
1007   return (int)key;
1008 }
1009 
1010 // Note: This is currently not used by VM, as we don't destroy TLS key
1011 // on VM exit.
1012 void os::free_thread_local_storage(int index) {
1013   int rslt = pthread_key_delete((pthread_key_t)index);
1014   assert(rslt == 0, "invalid index");
1015 }
1016 
1017 void os::thread_local_storage_at_put(int index, void* value) {
1018   int rslt = pthread_setspecific((pthread_key_t)index, value);
1019   assert(rslt == 0, "pthread_setspecific failed");
1020 }
1021 
1022 extern "C" Thread* get_thread() {
1023   return ThreadLocalStorage::thread();
1024 }
1025 
1026 //////////////////////////////////////////////////////////////////////////////
1027 // initial thread
1028 
1029 // Check if current thread is the initial thread, similar to Solaris thr_main.
1030 bool os::Linux::is_initial_thread(void) {
1031   char dummy;
1032   // If called before init complete, thread stack bottom will be null.
1033   // Can be called if fatal error occurs before initialization.
1034   if (initial_thread_stack_bottom() == NULL) return false;
1035   assert(initial_thread_stack_bottom() != NULL &&
1036          initial_thread_stack_size()   != 0,
1037          "os::init did not locate initial thread's stack region");
1038   if ((address)&dummy >= initial_thread_stack_bottom() &&
1039       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1040        return true;
1041   else return false;
1042 }
1043 
1044 // Find the virtual memory area that contains addr
1045 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1046   FILE *fp = fopen("/proc/self/maps", "r");
1047   if (fp) {
1048     address low, high;
1049     while (!feof(fp)) {
1050       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1051         if (low <= addr && addr < high) {
1052            if (vma_low)  *vma_low  = low;
1053            if (vma_high) *vma_high = high;
1054            fclose (fp);
1055            return true;
1056         }
1057       }
1058       for (;;) {
1059         int ch = fgetc(fp);
1060         if (ch == EOF || ch == (int)'\n') break;
1061       }
1062     }
1063     fclose(fp);
1064   }
1065   return false;
1066 }
1067 
1068 // Locate initial thread stack. This special handling of initial thread stack
1069 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1070 // bogus value for initial thread.
1071 void os::Linux::capture_initial_stack(size_t max_size) {
1072   // stack size is the easy part, get it from RLIMIT_STACK
1073   size_t stack_size;
1074   struct rlimit rlim;
1075   getrlimit(RLIMIT_STACK, &rlim);
1076   stack_size = rlim.rlim_cur;
1077 
1078   // 6308388: a bug in ld.so will relocate its own .data section to the
1079   //   lower end of primordial stack; reduce ulimit -s value a little bit
1080   //   so we won't install guard page on ld.so's data section.
1081   stack_size -= 2 * page_size();
1082 
1083   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1084   //   7.1, in both cases we will get 2G in return value.
1085   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1086   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1087   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1088   //   in case other parts in glibc still assumes 2M max stack size.
1089   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1090 #ifndef IA64
1091   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1092 #else
1093   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1094   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1095 #endif
1096 
1097   // Try to figure out where the stack base (top) is. This is harder.
1098   //
1099   // When an application is started, glibc saves the initial stack pointer in
1100   // a global variable "__libc_stack_end", which is then used by system
1101   // libraries. __libc_stack_end should be pretty close to stack top. The
1102   // variable is available since the very early days. However, because it is
1103   // a private interface, it could disappear in the future.
1104   //
1105   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1106   // to __libc_stack_end, it is very close to stack top, but isn't the real
1107   // stack top. Note that /proc may not exist if VM is running as a chroot
1108   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1109   // /proc/<pid>/stat could change in the future (though unlikely).
1110   //
1111   // We try __libc_stack_end first. If that doesn't work, look for
1112   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1113   // as a hint, which should work well in most cases.
1114 
1115   uintptr_t stack_start;
1116 
1117   // try __libc_stack_end first
1118   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1119   if (p && *p) {
1120     stack_start = *p;
1121   } else {
1122     // see if we can get the start_stack field from /proc/self/stat
1123     FILE *fp;
1124     int pid;
1125     char state;
1126     int ppid;
1127     int pgrp;
1128     int session;
1129     int nr;
1130     int tpgrp;
1131     unsigned long flags;
1132     unsigned long minflt;
1133     unsigned long cminflt;
1134     unsigned long majflt;
1135     unsigned long cmajflt;
1136     unsigned long utime;
1137     unsigned long stime;
1138     long cutime;
1139     long cstime;
1140     long prio;
1141     long nice;
1142     long junk;
1143     long it_real;
1144     uintptr_t start;
1145     uintptr_t vsize;
1146     intptr_t rss;
1147     uintptr_t rsslim;
1148     uintptr_t scodes;
1149     uintptr_t ecode;
1150     int i;
1151 
1152     // Figure what the primordial thread stack base is. Code is inspired
1153     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1154     // followed by command name surrounded by parentheses, state, etc.
1155     char stat[2048];
1156     int statlen;
1157 
1158     fp = fopen("/proc/self/stat", "r");
1159     if (fp) {
1160       statlen = fread(stat, 1, 2047, fp);
1161       stat[statlen] = '\0';
1162       fclose(fp);
1163 
1164       // Skip pid and the command string. Note that we could be dealing with
1165       // weird command names, e.g. user could decide to rename java launcher
1166       // to "java 1.4.2 :)", then the stat file would look like
1167       //                1234 (java 1.4.2 :)) R ... ...
1168       // We don't really need to know the command string, just find the last
1169       // occurrence of ")" and then start parsing from there. See bug 4726580.
1170       char * s = strrchr(stat, ')');
1171 
1172       i = 0;
1173       if (s) {
1174         // Skip blank chars
1175         do s++; while (isspace(*s));
1176 
1177 #define _UFM UINTX_FORMAT
1178 #define _DFM INTX_FORMAT
1179 
1180         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1181         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1182         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1183              &state,          /* 3  %c  */
1184              &ppid,           /* 4  %d  */
1185              &pgrp,           /* 5  %d  */
1186              &session,        /* 6  %d  */
1187              &nr,             /* 7  %d  */
1188              &tpgrp,          /* 8  %d  */
1189              &flags,          /* 9  %lu  */
1190              &minflt,         /* 10 %lu  */
1191              &cminflt,        /* 11 %lu  */
1192              &majflt,         /* 12 %lu  */
1193              &cmajflt,        /* 13 %lu  */
1194              &utime,          /* 14 %lu  */
1195              &stime,          /* 15 %lu  */
1196              &cutime,         /* 16 %ld  */
1197              &cstime,         /* 17 %ld  */
1198              &prio,           /* 18 %ld  */
1199              &nice,           /* 19 %ld  */
1200              &junk,           /* 20 %ld  */
1201              &it_real,        /* 21 %ld  */
1202              &start,          /* 22 UINTX_FORMAT */
1203              &vsize,          /* 23 UINTX_FORMAT */
1204              &rss,            /* 24 INTX_FORMAT  */
1205              &rsslim,         /* 25 UINTX_FORMAT */
1206              &scodes,         /* 26 UINTX_FORMAT */
1207              &ecode,          /* 27 UINTX_FORMAT */
1208              &stack_start);   /* 28 UINTX_FORMAT */
1209       }
1210 
1211 #undef _UFM
1212 #undef _DFM
1213 
1214       if (i != 28 - 2) {
1215          assert(false, "Bad conversion from /proc/self/stat");
1216          // product mode - assume we are the initial thread, good luck in the
1217          // embedded case.
1218          warning("Can't detect initial thread stack location - bad conversion");
1219          stack_start = (uintptr_t) &rlim;
1220       }
1221     } else {
1222       // For some reason we can't open /proc/self/stat (for example, running on
1223       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1224       // most cases, so don't abort:
1225       warning("Can't detect initial thread stack location - no /proc/self/stat");
1226       stack_start = (uintptr_t) &rlim;
1227     }
1228   }
1229 
1230   // Now we have a pointer (stack_start) very close to the stack top, the
1231   // next thing to do is to figure out the exact location of stack top. We
1232   // can find out the virtual memory area that contains stack_start by
1233   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1234   // and its upper limit is the real stack top. (again, this would fail if
1235   // running inside chroot, because /proc may not exist.)
1236 
1237   uintptr_t stack_top;
1238   address low, high;
1239   if (find_vma((address)stack_start, &low, &high)) {
1240     // success, "high" is the true stack top. (ignore "low", because initial
1241     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1242     stack_top = (uintptr_t)high;
1243   } else {
1244     // failed, likely because /proc/self/maps does not exist
1245     warning("Can't detect initial thread stack location - find_vma failed");
1246     // best effort: stack_start is normally within a few pages below the real
1247     // stack top, use it as stack top, and reduce stack size so we won't put
1248     // guard page outside stack.
1249     stack_top = stack_start;
1250     stack_size -= 16 * page_size();
1251   }
1252 
1253   // stack_top could be partially down the page so align it
1254   stack_top = align_size_up(stack_top, page_size());
1255 
1256   if (max_size && stack_size > max_size) {
1257      _initial_thread_stack_size = max_size;
1258   } else {
1259      _initial_thread_stack_size = stack_size;
1260   }
1261 
1262   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1263   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1264 }
1265 
1266 ////////////////////////////////////////////////////////////////////////////////
1267 // time support
1268 
1269 // Time since start-up in seconds to a fine granularity.
1270 // Used by VMSelfDestructTimer and the MemProfiler.
1271 double os::elapsedTime() {
1272 
1273   return (double)(os::elapsed_counter()) * 0.000001;
1274 }
1275 
1276 jlong os::elapsed_counter() {
1277   timeval time;
1278   int status = gettimeofday(&time, NULL);
1279   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1280 }
1281 
1282 jlong os::elapsed_frequency() {
1283   return (1000 * 1000);
1284 }
1285 
1286 // For now, we say that linux does not support vtime.  I have no idea
1287 // whether it can actually be made to (DLD, 9/13/05).
1288 
1289 bool os::supports_vtime() { return false; }
1290 bool os::enable_vtime()   { return false; }
1291 bool os::vtime_enabled()  { return false; }
1292 double os::elapsedVTime() {
1293   // better than nothing, but not much
1294   return elapsedTime();
1295 }
1296 
1297 jlong os::javaTimeMillis() {
1298   timeval time;
1299   int status = gettimeofday(&time, NULL);
1300   assert(status != -1, "linux error");
1301   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1302 }
1303 
1304 #ifndef CLOCK_MONOTONIC
1305 #define CLOCK_MONOTONIC (1)
1306 #endif
1307 
1308 void os::Linux::clock_init() {
1309   // we do dlopen's in this particular order due to bug in linux
1310   // dynamical loader (see 6348968) leading to crash on exit
1311   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1312   if (handle == NULL) {
1313     handle = dlopen("librt.so", RTLD_LAZY);
1314   }
1315 
1316   if (handle) {
1317     int (*clock_getres_func)(clockid_t, struct timespec*) =
1318            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1319     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1320            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1321     if (clock_getres_func && clock_gettime_func) {
1322       // See if monotonic clock is supported by the kernel. Note that some
1323       // early implementations simply return kernel jiffies (updated every
1324       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1325       // for nano time (though the monotonic property is still nice to have).
1326       // It's fixed in newer kernels, however clock_getres() still returns
1327       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1328       // resolution for now. Hopefully as people move to new kernels, this
1329       // won't be a problem.
1330       struct timespec res;
1331       struct timespec tp;
1332       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1333           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1334         // yes, monotonic clock is supported
1335         _clock_gettime = clock_gettime_func;
1336       } else {
1337         // close librt if there is no monotonic clock
1338         dlclose(handle);
1339       }
1340     }
1341   }
1342 }
1343 
1344 #ifndef SYS_clock_getres
1345 
1346 #if defined(IA32) || defined(AMD64)
1347 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1348 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1349 #else
1350 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1351 #define sys_clock_getres(x,y)  -1
1352 #endif
1353 
1354 #else
1355 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1356 #endif
1357 
1358 void os::Linux::fast_thread_clock_init() {
1359   if (!UseLinuxPosixThreadCPUClocks) {
1360     return;
1361   }
1362   clockid_t clockid;
1363   struct timespec tp;
1364   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1365       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1366 
1367   // Switch to using fast clocks for thread cpu time if
1368   // the sys_clock_getres() returns 0 error code.
1369   // Note, that some kernels may support the current thread
1370   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1371   // returned by the pthread_getcpuclockid().
1372   // If the fast Posix clocks are supported then the sys_clock_getres()
1373   // must return at least tp.tv_sec == 0 which means a resolution
1374   // better than 1 sec. This is extra check for reliability.
1375 
1376   if(pthread_getcpuclockid_func &&
1377      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1378      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1379 
1380     _supports_fast_thread_cpu_time = true;
1381     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1382   }
1383 }
1384 
1385 jlong os::javaTimeNanos() {
1386   if (Linux::supports_monotonic_clock()) {
1387     struct timespec tp;
1388     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1389     assert(status == 0, "gettime error");
1390     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1391     return result;
1392   } else {
1393     timeval time;
1394     int status = gettimeofday(&time, NULL);
1395     assert(status != -1, "linux error");
1396     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1397     return 1000 * usecs;
1398   }
1399 }
1400 
1401 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1402   if (Linux::supports_monotonic_clock()) {
1403     info_ptr->max_value = ALL_64_BITS;
1404 
1405     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1406     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1407     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1408   } else {
1409     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1410     info_ptr->max_value = ALL_64_BITS;
1411 
1412     // gettimeofday is a real time clock so it skips
1413     info_ptr->may_skip_backward = true;
1414     info_ptr->may_skip_forward = true;
1415   }
1416 
1417   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1418 }
1419 
1420 // Return the real, user, and system times in seconds from an
1421 // arbitrary fixed point in the past.
1422 bool os::getTimesSecs(double* process_real_time,
1423                       double* process_user_time,
1424                       double* process_system_time) {
1425   struct tms ticks;
1426   clock_t real_ticks = times(&ticks);
1427 
1428   if (real_ticks == (clock_t) (-1)) {
1429     return false;
1430   } else {
1431     double ticks_per_second = (double) clock_tics_per_sec;
1432     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1433     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1434     *process_real_time = ((double) real_ticks) / ticks_per_second;
1435 
1436     return true;
1437   }
1438 }
1439 
1440 
1441 char * os::local_time_string(char *buf, size_t buflen) {
1442   struct tm t;
1443   time_t long_time;
1444   time(&long_time);
1445   localtime_r(&long_time, &t);
1446   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1447                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1448                t.tm_hour, t.tm_min, t.tm_sec);
1449   return buf;
1450 }
1451 
1452 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1453   return localtime_r(clock, res);
1454 }
1455 
1456 ////////////////////////////////////////////////////////////////////////////////
1457 // runtime exit support
1458 
1459 // Note: os::shutdown() might be called very early during initialization, or
1460 // called from signal handler. Before adding something to os::shutdown(), make
1461 // sure it is async-safe and can handle partially initialized VM.
1462 void os::shutdown() {
1463 
1464   // allow PerfMemory to attempt cleanup of any persistent resources
1465   perfMemory_exit();
1466 
1467   // needs to remove object in file system
1468   AttachListener::abort();
1469 
1470   // Check for abort hook
1471   abort_hook_t abort_hook = Arguments::abort_hook();
1472   if (abort_hook != NULL) {
1473     abort_hook();
1474   }
1475 
1476 }
1477 
1478 // Note: os::abort() might be called very early during initialization, or
1479 // called from signal handler. Before adding something to os::abort(), make
1480 // sure it is async-safe and can handle partially initialized VM.
1481 void os::abort(bool dump_core) {
1482   os::shutdown();
1483   if (dump_core) {
1484 #ifndef PRODUCT
1485     fdStream out(defaultStream::output_fd());
1486     out.print_raw("Current thread is ");
1487     char buf[16];
1488     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1489     out.print_raw_cr(buf);
1490     out.print_raw_cr("Dumping core ...");
1491 #endif
1492     ::abort(); // dump core
1493   }
1494 
1495   ::exit(1);
1496 }
1497 
1498 // Die immediately, no exit hook, no abort hook, no cleanup.
1499 void os::die() {
1500   // _exit() on LinuxThreads only kills current thread
1501   ::abort();
1502 }
1503 
1504 // unused on linux for now.
1505 void os::set_error_file(const char *logfile) {}
1506 
1507 intx os::current_thread_id() { return (intx)pthread_self(); }
1508 int os::current_process_id() {
1509 
1510   // Under the old linux thread library, linux gives each thread
1511   // its own process id. Because of this each thread will return
1512   // a different pid if this method were to return the result
1513   // of getpid(2). Linux provides no api that returns the pid
1514   // of the launcher thread for the vm. This implementation
1515   // returns a unique pid, the pid of the launcher thread
1516   // that starts the vm 'process'.
1517 
1518   // Under the NPTL, getpid() returns the same pid as the
1519   // launcher thread rather than a unique pid per thread.
1520   // Use gettid() if you want the old pre NPTL behaviour.
1521 
1522   // if you are looking for the result of a call to getpid() that
1523   // returns a unique pid for the calling thread, then look at the
1524   // OSThread::thread_id() method in osThread_linux.hpp file
1525 
1526   return (int)(_initial_pid ? _initial_pid : getpid());
1527 }
1528 
1529 // DLL functions
1530 
1531 const char* os::dll_file_extension() { return ".so"; }
1532 
1533 const char* os::get_temp_directory() {
1534   const char *prop = Arguments::get_property("java.io.tmpdir");
1535   return prop == NULL ? "/tmp" : prop;
1536 }
1537 
1538 static bool file_exists(const char* filename) {
1539   struct stat statbuf;
1540   if (filename == NULL || strlen(filename) == 0) {
1541     return false;
1542   }
1543   return os::stat(filename, &statbuf) == 0;
1544 }
1545 
1546 void os::dll_build_name(char* buffer, size_t buflen,
1547                         const char* pname, const char* fname) {
1548   // Copied from libhpi
1549   const size_t pnamelen = pname ? strlen(pname) : 0;
1550 
1551   // Quietly truncate on buffer overflow.  Should be an error.
1552   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1553       *buffer = '\0';
1554       return;
1555   }
1556 
1557   if (pnamelen == 0) {
1558     snprintf(buffer, buflen, "lib%s.so", fname);
1559   } else if (strchr(pname, *os::path_separator()) != NULL) {
1560     int n;
1561     char** pelements = split_path(pname, &n);
1562     for (int i = 0 ; i < n ; i++) {
1563       // Really shouldn't be NULL, but check can't hurt
1564       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1565         continue; // skip the empty path values
1566       }
1567       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1568       if (file_exists(buffer)) {
1569         break;
1570       }
1571     }
1572     // release the storage
1573     for (int i = 0 ; i < n ; i++) {
1574       if (pelements[i] != NULL) {
1575         FREE_C_HEAP_ARRAY(char, pelements[i]);
1576       }
1577     }
1578     if (pelements != NULL) {
1579       FREE_C_HEAP_ARRAY(char*, pelements);
1580     }
1581   } else {
1582     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1583   }
1584 }
1585 
1586 const char* os::get_current_directory(char *buf, int buflen) {
1587   return getcwd(buf, buflen);
1588 }
1589 
1590 // check if addr is inside libjvm[_g].so
1591 bool os::address_is_in_vm(address addr) {
1592   static address libjvm_base_addr;
1593   Dl_info dlinfo;
1594 
1595   if (libjvm_base_addr == NULL) {
1596     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1597     libjvm_base_addr = (address)dlinfo.dli_fbase;
1598     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1599   }
1600 
1601   if (dladdr((void *)addr, &dlinfo)) {
1602     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1603   }
1604 
1605   return false;
1606 }
1607 
1608 bool os::dll_address_to_function_name(address addr, char *buf,
1609                                       int buflen, int *offset) {
1610   Dl_info dlinfo;
1611 
1612   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1613     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1614     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1615     return true;
1616   } else {
1617     if (buf) buf[0] = '\0';
1618     if (offset) *offset = -1;
1619     return false;
1620   }
1621 }
1622 
1623 struct _address_to_library_name {
1624   address addr;          // input : memory address
1625   size_t  buflen;        //         size of fname
1626   char*   fname;         // output: library name
1627   address base;          //         library base addr
1628 };
1629 
1630 static int address_to_library_name_callback(struct dl_phdr_info *info,
1631                                             size_t size, void *data) {
1632   int i;
1633   bool found = false;
1634   address libbase = NULL;
1635   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1636 
1637   // iterate through all loadable segments
1638   for (i = 0; i < info->dlpi_phnum; i++) {
1639     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1640     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1641       // base address of a library is the lowest address of its loaded
1642       // segments.
1643       if (libbase == NULL || libbase > segbase) {
1644         libbase = segbase;
1645       }
1646       // see if 'addr' is within current segment
1647       if (segbase <= d->addr &&
1648           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1649         found = true;
1650       }
1651     }
1652   }
1653 
1654   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1655   // so dll_address_to_library_name() can fall through to use dladdr() which
1656   // can figure out executable name from argv[0].
1657   if (found && info->dlpi_name && info->dlpi_name[0]) {
1658     d->base = libbase;
1659     if (d->fname) {
1660       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1661     }
1662     return 1;
1663   }
1664   return 0;
1665 }
1666 
1667 bool os::dll_address_to_library_name(address addr, char* buf,
1668                                      int buflen, int* offset) {
1669   Dl_info dlinfo;
1670   struct _address_to_library_name data;
1671 
1672   // There is a bug in old glibc dladdr() implementation that it could resolve
1673   // to wrong library name if the .so file has a base address != NULL. Here
1674   // we iterate through the program headers of all loaded libraries to find
1675   // out which library 'addr' really belongs to. This workaround can be
1676   // removed once the minimum requirement for glibc is moved to 2.3.x.
1677   data.addr = addr;
1678   data.fname = buf;
1679   data.buflen = buflen;
1680   data.base = NULL;
1681   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1682 
1683   if (rslt) {
1684      // buf already contains library name
1685      if (offset) *offset = addr - data.base;
1686      return true;
1687   } else if (dladdr((void*)addr, &dlinfo)){
1688      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1689      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1690      return true;
1691   } else {
1692      if (buf) buf[0] = '\0';
1693      if (offset) *offset = -1;
1694      return false;
1695   }
1696 }
1697 
1698   // Loads .dll/.so and
1699   // in case of error it checks if .dll/.so was built for the
1700   // same architecture as Hotspot is running on
1701 
1702 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1703 {
1704   void * result= ::dlopen(filename, RTLD_LAZY);
1705   if (result != NULL) {
1706     // Successful loading
1707     return result;
1708   }
1709 
1710   Elf32_Ehdr elf_head;
1711 
1712   // Read system error message into ebuf
1713   // It may or may not be overwritten below
1714   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1715   ebuf[ebuflen-1]='\0';
1716   int diag_msg_max_length=ebuflen-strlen(ebuf);
1717   char* diag_msg_buf=ebuf+strlen(ebuf);
1718 
1719   if (diag_msg_max_length==0) {
1720     // No more space in ebuf for additional diagnostics message
1721     return NULL;
1722   }
1723 
1724 
1725   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1726 
1727   if (file_descriptor < 0) {
1728     // Can't open library, report dlerror() message
1729     return NULL;
1730   }
1731 
1732   bool failed_to_read_elf_head=
1733     (sizeof(elf_head)!=
1734         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1735 
1736   ::close(file_descriptor);
1737   if (failed_to_read_elf_head) {
1738     // file i/o error - report dlerror() msg
1739     return NULL;
1740   }
1741 
1742   typedef struct {
1743     Elf32_Half  code;         // Actual value as defined in elf.h
1744     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1745     char        elf_class;    // 32 or 64 bit
1746     char        endianess;    // MSB or LSB
1747     char*       name;         // String representation
1748   } arch_t;
1749 
1750   #ifndef EM_486
1751   #define EM_486          6               /* Intel 80486 */
1752   #endif
1753 
1754   static const arch_t arch_array[]={
1755     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1756     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1757     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1758     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1759     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1760     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1761     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1762     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1763     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1764     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1765     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1766     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1767     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1768     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1769     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1770     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1771   };
1772 
1773   #if  (defined IA32)
1774     static  Elf32_Half running_arch_code=EM_386;
1775   #elif   (defined AMD64)
1776     static  Elf32_Half running_arch_code=EM_X86_64;
1777   #elif  (defined IA64)
1778     static  Elf32_Half running_arch_code=EM_IA_64;
1779   #elif  (defined __sparc) && (defined _LP64)
1780     static  Elf32_Half running_arch_code=EM_SPARCV9;
1781   #elif  (defined __sparc) && (!defined _LP64)
1782     static  Elf32_Half running_arch_code=EM_SPARC;
1783   #elif  (defined __powerpc64__)
1784     static  Elf32_Half running_arch_code=EM_PPC64;
1785   #elif  (defined __powerpc__)
1786     static  Elf32_Half running_arch_code=EM_PPC;
1787   #elif  (defined ARM)
1788     static  Elf32_Half running_arch_code=EM_ARM;
1789   #elif  (defined S390)
1790     static  Elf32_Half running_arch_code=EM_S390;
1791   #elif  (defined ALPHA)
1792     static  Elf32_Half running_arch_code=EM_ALPHA;
1793   #elif  (defined MIPSEL)
1794     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1795   #elif  (defined PARISC)
1796     static  Elf32_Half running_arch_code=EM_PARISC;
1797   #elif  (defined MIPS)
1798     static  Elf32_Half running_arch_code=EM_MIPS;
1799   #elif  (defined M68K)
1800     static  Elf32_Half running_arch_code=EM_68K;
1801   #else
1802     #error Method os::dll_load requires that one of following is defined:\
1803          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1804   #endif
1805 
1806   // Identify compatability class for VM's architecture and library's architecture
1807   // Obtain string descriptions for architectures
1808 
1809   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1810   int running_arch_index=-1;
1811 
1812   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1813     if (running_arch_code == arch_array[i].code) {
1814       running_arch_index    = i;
1815     }
1816     if (lib_arch.code == arch_array[i].code) {
1817       lib_arch.compat_class = arch_array[i].compat_class;
1818       lib_arch.name         = arch_array[i].name;
1819     }
1820   }
1821 
1822   assert(running_arch_index != -1,
1823     "Didn't find running architecture code (running_arch_code) in arch_array");
1824   if (running_arch_index == -1) {
1825     // Even though running architecture detection failed
1826     // we may still continue with reporting dlerror() message
1827     return NULL;
1828   }
1829 
1830   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1831     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1832     return NULL;
1833   }
1834 
1835 #ifndef S390
1836   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1837     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1838     return NULL;
1839   }
1840 #endif // !S390
1841 
1842   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1843     if ( lib_arch.name!=NULL ) {
1844       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1845         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1846         lib_arch.name, arch_array[running_arch_index].name);
1847     } else {
1848       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1849       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1850         lib_arch.code,
1851         arch_array[running_arch_index].name);
1852     }
1853   }
1854 
1855   return NULL;
1856 }
1857 
1858 /*
1859  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1860  * chances are you might want to run the generated bits against glibc-2.0
1861  * libdl.so, so always use locking for any version of glibc.
1862  */
1863 void* os::dll_lookup(void* handle, const char* name) {
1864   pthread_mutex_lock(&dl_mutex);
1865   void* res = dlsym(handle, name);
1866   pthread_mutex_unlock(&dl_mutex);
1867   return res;
1868 }
1869 
1870 
1871 bool _print_ascii_file(const char* filename, outputStream* st) {
1872   int fd = open(filename, O_RDONLY);
1873   if (fd == -1) {
1874      return false;
1875   }
1876 
1877   char buf[32];
1878   int bytes;
1879   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1880     st->print_raw(buf, bytes);
1881   }
1882 
1883   close(fd);
1884 
1885   return true;
1886 }
1887 
1888 void os::print_dll_info(outputStream *st) {
1889    st->print_cr("Dynamic libraries:");
1890 
1891    char fname[32];
1892    pid_t pid = os::Linux::gettid();
1893 
1894    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1895 
1896    if (!_print_ascii_file(fname, st)) {
1897      st->print("Can not get library information for pid = %d\n", pid);
1898    }
1899 }
1900 
1901 
1902 void os::print_os_info(outputStream* st) {
1903   st->print("OS:");
1904 
1905   // Try to identify popular distros.
1906   // Most Linux distributions have /etc/XXX-release file, which contains
1907   // the OS version string. Some have more than one /etc/XXX-release file
1908   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1909   // so the order is important.
1910   if (!_print_ascii_file("/etc/mandrake-release", st) &&
1911       !_print_ascii_file("/etc/sun-release", st) &&
1912       !_print_ascii_file("/etc/redhat-release", st) &&
1913       !_print_ascii_file("/etc/SuSE-release", st) &&
1914       !_print_ascii_file("/etc/turbolinux-release", st) &&
1915       !_print_ascii_file("/etc/gentoo-release", st) &&
1916       !_print_ascii_file("/etc/debian_version", st) &&
1917       !_print_ascii_file("/etc/ltib-release", st) &&
1918       !_print_ascii_file("/etc/angstrom-version", st)) {
1919       st->print("Linux");
1920   }
1921   st->cr();
1922 
1923   // kernel
1924   st->print("uname:");
1925   struct utsname name;
1926   uname(&name);
1927   st->print(name.sysname); st->print(" ");
1928   st->print(name.release); st->print(" ");
1929   st->print(name.version); st->print(" ");
1930   st->print(name.machine);
1931   st->cr();
1932 
1933   // Print warning if unsafe chroot environment detected
1934   if (unsafe_chroot_detected) {
1935     st->print("WARNING!! ");
1936     st->print_cr(unstable_chroot_error);
1937   }
1938 
1939   // libc, pthread
1940   st->print("libc:");
1941   st->print(os::Linux::glibc_version()); st->print(" ");
1942   st->print(os::Linux::libpthread_version()); st->print(" ");
1943   if (os::Linux::is_LinuxThreads()) {
1944      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1945   }
1946   st->cr();
1947 
1948   // rlimit
1949   st->print("rlimit:");
1950   struct rlimit rlim;
1951 
1952   st->print(" STACK ");
1953   getrlimit(RLIMIT_STACK, &rlim);
1954   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1955   else st->print("%uk", rlim.rlim_cur >> 10);
1956 
1957   st->print(", CORE ");
1958   getrlimit(RLIMIT_CORE, &rlim);
1959   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1960   else st->print("%uk", rlim.rlim_cur >> 10);
1961 
1962   st->print(", NPROC ");
1963   getrlimit(RLIMIT_NPROC, &rlim);
1964   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1965   else st->print("%d", rlim.rlim_cur);
1966 
1967   st->print(", NOFILE ");
1968   getrlimit(RLIMIT_NOFILE, &rlim);
1969   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1970   else st->print("%d", rlim.rlim_cur);
1971 
1972   st->print(", AS ");
1973   getrlimit(RLIMIT_AS, &rlim);
1974   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1975   else st->print("%uk", rlim.rlim_cur >> 10);
1976   st->cr();
1977 
1978   // load average
1979   st->print("load average:");
1980   double loadavg[3];
1981   os::loadavg(loadavg, 3);
1982   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1983   st->cr();
1984 
1985   // meminfo
1986   st->print("\n/proc/meminfo:\n");
1987   _print_ascii_file("/proc/meminfo", st);
1988   st->cr();
1989 }
1990 
1991 void os::print_memory_info(outputStream* st) {
1992 
1993   st->print("Memory:");
1994   st->print(" %dk page", os::vm_page_size()>>10);
1995 
1996   // values in struct sysinfo are "unsigned long"
1997   struct sysinfo si;
1998   sysinfo(&si);
1999 
2000   st->print(", physical " UINT64_FORMAT "k",
2001             os::physical_memory() >> 10);
2002   st->print("(" UINT64_FORMAT "k free)",
2003             os::available_memory() >> 10);
2004   st->print(", swap " UINT64_FORMAT "k",
2005             ((jlong)si.totalswap * si.mem_unit) >> 10);
2006   st->print("(" UINT64_FORMAT "k free)",
2007             ((jlong)si.freeswap * si.mem_unit) >> 10);
2008   st->cr();
2009 }
2010 
2011 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2012 // but they're the same for all the linux arch that we support
2013 // and they're the same for solaris but there's no common place to put this.
2014 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2015                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2016                           "ILL_COPROC", "ILL_BADSTK" };
2017 
2018 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2019                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2020                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2021 
2022 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2023 
2024 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2025 
2026 void os::print_siginfo(outputStream* st, void* siginfo) {
2027   st->print("siginfo:");
2028 
2029   const int buflen = 100;
2030   char buf[buflen];
2031   siginfo_t *si = (siginfo_t*)siginfo;
2032   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2033   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2034     st->print("si_errno=%s", buf);
2035   } else {
2036     st->print("si_errno=%d", si->si_errno);
2037   }
2038   const int c = si->si_code;
2039   assert(c > 0, "unexpected si_code");
2040   switch (si->si_signo) {
2041   case SIGILL:
2042     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2043     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2044     break;
2045   case SIGFPE:
2046     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2047     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2048     break;
2049   case SIGSEGV:
2050     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2051     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2052     break;
2053   case SIGBUS:
2054     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2055     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2056     break;
2057   default:
2058     st->print(", si_code=%d", si->si_code);
2059     // no si_addr
2060   }
2061 
2062   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2063       UseSharedSpaces) {
2064     FileMapInfo* mapinfo = FileMapInfo::current_info();
2065     if (mapinfo->is_in_shared_space(si->si_addr)) {
2066       st->print("\n\nError accessing class data sharing archive."   \
2067                 " Mapped file inaccessible during execution, "      \
2068                 " possible disk/network problem.");
2069     }
2070   }
2071   st->cr();
2072 }
2073 
2074 
2075 static void print_signal_handler(outputStream* st, int sig,
2076                                  char* buf, size_t buflen);
2077 
2078 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2079   st->print_cr("Signal Handlers:");
2080   print_signal_handler(st, SIGSEGV, buf, buflen);
2081   print_signal_handler(st, SIGBUS , buf, buflen);
2082   print_signal_handler(st, SIGFPE , buf, buflen);
2083   print_signal_handler(st, SIGPIPE, buf, buflen);
2084   print_signal_handler(st, SIGXFSZ, buf, buflen);
2085   print_signal_handler(st, SIGILL , buf, buflen);
2086   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2087   print_signal_handler(st, SR_signum, buf, buflen);
2088   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2089   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2090   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2091   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2092 }
2093 
2094 static char saved_jvm_path[MAXPATHLEN] = {0};
2095 
2096 // Find the full path to the current module, libjvm.so or libjvm_g.so
2097 void os::jvm_path(char *buf, jint buflen) {
2098   // Error checking.
2099   if (buflen < MAXPATHLEN) {
2100     assert(false, "must use a large-enough buffer");
2101     buf[0] = '\0';
2102     return;
2103   }
2104   // Lazy resolve the path to current module.
2105   if (saved_jvm_path[0] != 0) {
2106     strcpy(buf, saved_jvm_path);
2107     return;
2108   }
2109 
2110   char dli_fname[MAXPATHLEN];
2111   bool ret = dll_address_to_library_name(
2112                 CAST_FROM_FN_PTR(address, os::jvm_path),
2113                 dli_fname, sizeof(dli_fname), NULL);
2114   assert(ret != 0, "cannot locate libjvm");
2115   char *rp = realpath(dli_fname, buf);
2116   if (rp == NULL)
2117     return;
2118 
2119   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2120     // Support for the gamma launcher.  Typical value for buf is
2121     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2122     // the right place in the string, then assume we are installed in a JDK and
2123     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2124     // up the path so it looks like libjvm.so is installed there (append a
2125     // fake suffix hotspot/libjvm.so).
2126     const char *p = buf + strlen(buf) - 1;
2127     for (int count = 0; p > buf && count < 5; ++count) {
2128       for (--p; p > buf && *p != '/'; --p)
2129         /* empty */ ;
2130     }
2131 
2132     if (strncmp(p, "/jre/lib/", 9) != 0) {
2133       // Look for JAVA_HOME in the environment.
2134       char* java_home_var = ::getenv("JAVA_HOME");
2135       if (java_home_var != NULL && java_home_var[0] != 0) {
2136         char* jrelib_p;
2137         int len;
2138 
2139         // Check the current module name "libjvm.so" or "libjvm_g.so".
2140         p = strrchr(buf, '/');
2141         assert(strstr(p, "/libjvm") == p, "invalid library name");
2142         p = strstr(p, "_g") ? "_g" : "";
2143 
2144         rp = realpath(java_home_var, buf);
2145         if (rp == NULL)
2146           return;
2147 
2148         // determine if this is a legacy image or modules image
2149         // modules image doesn't have "jre" subdirectory
2150         len = strlen(buf);
2151         jrelib_p = buf + len;
2152         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2153         if (0 != access(buf, F_OK)) {
2154           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2155         }
2156 
2157         if (0 == access(buf, F_OK)) {
2158           // Use current module name "libjvm[_g].so" instead of
2159           // "libjvm"debug_only("_g")".so" since for fastdebug version
2160           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2161           // It is used when we are choosing the HPI library's name
2162           // "libhpi[_g].so" in hpi::initialize_get_interface().
2163           len = strlen(buf);
2164           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2165         } else {
2166           // Go back to path of .so
2167           rp = realpath(dli_fname, buf);
2168           if (rp == NULL)
2169             return;
2170         }
2171       }
2172     }
2173   }
2174 
2175   strcpy(saved_jvm_path, buf);
2176 }
2177 
2178 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2179   // no prefix required, not even "_"
2180 }
2181 
2182 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2183   // no suffix required
2184 }
2185 
2186 ////////////////////////////////////////////////////////////////////////////////
2187 // sun.misc.Signal support
2188 
2189 static volatile jint sigint_count = 0;
2190 
2191 static void
2192 UserHandler(int sig, void *siginfo, void *context) {
2193   // 4511530 - sem_post is serialized and handled by the manager thread. When
2194   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2195   // don't want to flood the manager thread with sem_post requests.
2196   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2197       return;
2198 
2199   // Ctrl-C is pressed during error reporting, likely because the error
2200   // handler fails to abort. Let VM die immediately.
2201   if (sig == SIGINT && is_error_reported()) {
2202      os::die();
2203   }
2204 
2205   os::signal_notify(sig);
2206 }
2207 
2208 void* os::user_handler() {
2209   return CAST_FROM_FN_PTR(void*, UserHandler);
2210 }
2211 
2212 extern "C" {
2213   typedef void (*sa_handler_t)(int);
2214   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2215 }
2216 
2217 void* os::signal(int signal_number, void* handler) {
2218   struct sigaction sigAct, oldSigAct;
2219 
2220   sigfillset(&(sigAct.sa_mask));
2221   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2222   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2223 
2224   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2225     // -1 means registration failed
2226     return (void *)-1;
2227   }
2228 
2229   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2230 }
2231 
2232 void os::signal_raise(int signal_number) {
2233   ::raise(signal_number);
2234 }
2235 
2236 /*
2237  * The following code is moved from os.cpp for making this
2238  * code platform specific, which it is by its very nature.
2239  */
2240 
2241 // Will be modified when max signal is changed to be dynamic
2242 int os::sigexitnum_pd() {
2243   return NSIG;
2244 }
2245 
2246 // a counter for each possible signal value
2247 static volatile jint pending_signals[NSIG+1] = { 0 };
2248 
2249 // Linux(POSIX) specific hand shaking semaphore.
2250 static sem_t sig_sem;
2251 
2252 void os::signal_init_pd() {
2253   // Initialize signal structures
2254   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2255 
2256   // Initialize signal semaphore
2257   ::sem_init(&sig_sem, 0, 0);
2258 }
2259 
2260 void os::signal_notify(int sig) {
2261   Atomic::inc(&pending_signals[sig]);
2262   ::sem_post(&sig_sem);
2263 }
2264 
2265 static int check_pending_signals(bool wait) {
2266   Atomic::store(0, &sigint_count);
2267   for (;;) {
2268     for (int i = 0; i < NSIG + 1; i++) {
2269       jint n = pending_signals[i];
2270       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2271         return i;
2272       }
2273     }
2274     if (!wait) {
2275       return -1;
2276     }
2277     JavaThread *thread = JavaThread::current();
2278     ThreadBlockInVM tbivm(thread);
2279 
2280     bool threadIsSuspended;
2281     do {
2282       thread->set_suspend_equivalent();
2283       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2284       ::sem_wait(&sig_sem);
2285 
2286       // were we externally suspended while we were waiting?
2287       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2288       if (threadIsSuspended) {
2289         //
2290         // The semaphore has been incremented, but while we were waiting
2291         // another thread suspended us. We don't want to continue running
2292         // while suspended because that would surprise the thread that
2293         // suspended us.
2294         //
2295         ::sem_post(&sig_sem);
2296 
2297         thread->java_suspend_self();
2298       }
2299     } while (threadIsSuspended);
2300   }
2301 }
2302 
2303 int os::signal_lookup() {
2304   return check_pending_signals(false);
2305 }
2306 
2307 int os::signal_wait() {
2308   return check_pending_signals(true);
2309 }
2310 
2311 ////////////////////////////////////////////////////////////////////////////////
2312 // Virtual Memory
2313 
2314 int os::vm_page_size() {
2315   // Seems redundant as all get out
2316   assert(os::Linux::page_size() != -1, "must call os::init");
2317   return os::Linux::page_size();
2318 }
2319 
2320 // Solaris allocates memory by pages.
2321 int os::vm_allocation_granularity() {
2322   assert(os::Linux::page_size() != -1, "must call os::init");
2323   return os::Linux::page_size();
2324 }
2325 
2326 // Rationale behind this function:
2327 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2328 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2329 //  samples for JITted code. Here we create private executable mapping over the code cache
2330 //  and then we can use standard (well, almost, as mapping can change) way to provide
2331 //  info for the reporting script by storing timestamp and location of symbol
2332 void linux_wrap_code(char* base, size_t size) {
2333   static volatile jint cnt = 0;
2334 
2335   if (!UseOprofile) {
2336     return;
2337   }
2338 
2339   char buf[PATH_MAX+1];
2340   int num = Atomic::add(1, &cnt);
2341 
2342   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2343            os::get_temp_directory(), os::current_process_id(), num);
2344   unlink(buf);
2345 
2346   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2347 
2348   if (fd != -1) {
2349     off_t rv = lseek(fd, size-2, SEEK_SET);
2350     if (rv != (off_t)-1) {
2351       if (write(fd, "", 1) == 1) {
2352         mmap(base, size,
2353              PROT_READ|PROT_WRITE|PROT_EXEC,
2354              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2355       }
2356     }
2357     close(fd);
2358     unlink(buf);
2359   }
2360 }
2361 
2362 // NOTE: Linux kernel does not really reserve the pages for us.
2363 //       All it does is to check if there are enough free pages
2364 //       left at the time of mmap(). This could be a potential
2365 //       problem.
2366 bool os::commit_memory(char* addr, size_t size, bool exec) {
2367   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2368   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2369                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2370   return res != (uintptr_t) MAP_FAILED;
2371 }
2372 
2373 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2374                        bool exec) {
2375   return commit_memory(addr, size, exec);
2376 }
2377 
2378 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2379 
2380 void os::free_memory(char *addr, size_t bytes) {
2381   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
2382          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2383 }
2384 
2385 void os::numa_make_global(char *addr, size_t bytes) {
2386   Linux::numa_interleave_memory(addr, bytes);
2387 }
2388 
2389 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2390   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2391 }
2392 
2393 bool os::numa_topology_changed()   { return false; }
2394 
2395 size_t os::numa_get_groups_num() {
2396   int max_node = Linux::numa_max_node();
2397   return max_node > 0 ? max_node + 1 : 1;
2398 }
2399 
2400 int os::numa_get_group_id() {
2401   int cpu_id = Linux::sched_getcpu();
2402   if (cpu_id != -1) {
2403     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2404     if (lgrp_id != -1) {
2405       return lgrp_id;
2406     }
2407   }
2408   return 0;
2409 }
2410 
2411 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2412   for (size_t i = 0; i < size; i++) {
2413     ids[i] = i;
2414   }
2415   return size;
2416 }
2417 
2418 bool os::get_page_info(char *start, page_info* info) {
2419   return false;
2420 }
2421 
2422 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2423   return end;
2424 }
2425 
2426 extern "C" void numa_warn(int number, char *where, ...) { }
2427 extern "C" void numa_error(char *where) { }
2428 
2429 
2430 // If we are running with libnuma version > 2, then we should
2431 // be trying to use symbols with versions 1.1
2432 // If we are running with earlier version, which did not have symbol versions,
2433 // we should use the base version.
2434 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2435   void *f = dlvsym(handle, name, "libnuma_1.1");
2436   if (f == NULL) {
2437     f = dlsym(handle, name);
2438   }
2439   return f;
2440 }
2441 
2442 bool os::Linux::libnuma_init() {
2443   // sched_getcpu() should be in libc.
2444   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2445                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2446 
2447   if (sched_getcpu() != -1) { // Does it work?
2448     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2449     if (handle != NULL) {
2450       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2451                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2452       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2453                                        libnuma_dlsym(handle, "numa_max_node")));
2454       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2455                                         libnuma_dlsym(handle, "numa_available")));
2456       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2457                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2458       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2459                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2460 
2461 
2462       if (numa_available() != -1) {
2463         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2464         // Create a cpu -> node mapping
2465         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2466         rebuild_cpu_to_node_map();
2467         return true;
2468       }
2469     }
2470   }
2471   return false;
2472 }
2473 
2474 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2475 // The table is later used in get_node_by_cpu().
2476 void os::Linux::rebuild_cpu_to_node_map() {
2477   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2478                               // in libnuma (possible values are starting from 16,
2479                               // and continuing up with every other power of 2, but less
2480                               // than the maximum number of CPUs supported by kernel), and
2481                               // is a subject to change (in libnuma version 2 the requirements
2482                               // are more reasonable) we'll just hardcode the number they use
2483                               // in the library.
2484   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2485 
2486   size_t cpu_num = os::active_processor_count();
2487   size_t cpu_map_size = NCPUS / BitsPerCLong;
2488   size_t cpu_map_valid_size =
2489     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2490 
2491   cpu_to_node()->clear();
2492   cpu_to_node()->at_grow(cpu_num - 1);
2493   size_t node_num = numa_get_groups_num();
2494 
2495   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2496   for (size_t i = 0; i < node_num; i++) {
2497     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2498       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2499         if (cpu_map[j] != 0) {
2500           for (size_t k = 0; k < BitsPerCLong; k++) {
2501             if (cpu_map[j] & (1UL << k)) {
2502               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2503             }
2504           }
2505         }
2506       }
2507     }
2508   }
2509   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2510 }
2511 
2512 int os::Linux::get_node_by_cpu(int cpu_id) {
2513   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2514     return cpu_to_node()->at(cpu_id);
2515   }
2516   return -1;
2517 }
2518 
2519 GrowableArray<int>* os::Linux::_cpu_to_node;
2520 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2521 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2522 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2523 os::Linux::numa_available_func_t os::Linux::_numa_available;
2524 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2525 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2526 unsigned long* os::Linux::_numa_all_nodes;
2527 
2528 bool os::uncommit_memory(char* addr, size_t size) {
2529   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2530                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2531   return res  != (uintptr_t) MAP_FAILED;
2532 }
2533 
2534 // Linux uses a growable mapping for the stack, and if the mapping for
2535 // the stack guard pages is not removed when we detach a thread the
2536 // stack cannot grow beyond the pages where the stack guard was
2537 // mapped.  If at some point later in the process the stack expands to
2538 // that point, the Linux kernel cannot expand the stack any further
2539 // because the guard pages are in the way, and a segfault occurs.
2540 //
2541 // However, it's essential not to split the stack region by unmapping
2542 // a region (leaving a hole) that's already part of the stack mapping,
2543 // so if the stack mapping has already grown beyond the guard pages at
2544 // the time we create them, we have to truncate the stack mapping.
2545 // So, we need to know the extent of the stack mapping when
2546 // create_stack_guard_pages() is called.
2547 
2548 // Find the bounds of the stack mapping.  Return true for success.
2549 //
2550 // We only need this for stacks that are growable: at the time of
2551 // writing thread stacks don't use growable mappings (i.e. those
2552 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2553 // only applies to the main thread.
2554 static bool
2555 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
2556 {
2557   FILE *f = fopen("/proc/self/maps", "r");
2558   if (f == NULL)
2559     return false;
2560 
2561   while (!feof(f)) {
2562     size_t dummy;
2563     char *str = NULL;
2564     ssize_t len = getline(&str, &dummy, f);
2565     if (len == -1) {
2566       fclose(f);
2567       return false;
2568     }
2569 
2570     if (len > 0 && str[len-1] == '\n') {
2571       str[len-1] = 0;
2572       len--;
2573     }
2574 
2575     static const char *stack_str = "[stack]";
2576     if (len > (ssize_t)strlen(stack_str)
2577        && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
2578       if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2579         uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
2580         if (sp >= *bottom && sp <= *top) {
2581           free(str);
2582           fclose(f);
2583           return true;
2584         }
2585       }
2586     }
2587     free(str);
2588   }
2589   fclose(f);
2590   return false;
2591 }
2592 
2593 // If the (growable) stack mapping already extends beyond the point
2594 // where we're going to put our guard pages, truncate the mapping at
2595 // that point by munmap()ping it.  This ensures that when we later
2596 // munmap() the guard pages we don't leave a hole in the stack
2597 // mapping. This only affects the main/initial thread, but guard
2598 // against future OS changes
2599 bool os::create_stack_guard_pages(char* addr, size_t size) {
2600   uintptr_t stack_extent, stack_base;
2601   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2602   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2603       assert(os::Linux::is_initial_thread(),
2604            "growable stack in non-initial thread");
2605     if (stack_extent < (uintptr_t)addr)
2606       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2607   }
2608 
2609   return os::commit_memory(addr, size);
2610 }
2611 
2612 // If this is a growable mapping, remove the guard pages entirely by
2613 // munmap()ping them.  If not, just call uncommit_memory(). This only
2614 // affects the main/initial thread, but guard against future OS changes
2615 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2616   uintptr_t stack_extent, stack_base;
2617   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2618   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2619       assert(os::Linux::is_initial_thread(),
2620            "growable stack in non-initial thread");
2621 
2622     return ::munmap(addr, size) == 0;
2623   }
2624 
2625   return os::uncommit_memory(addr, size);
2626 }
2627 
2628 static address _highest_vm_reserved_address = NULL;
2629 
2630 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2631 // at 'requested_addr'. If there are existing memory mappings at the same
2632 // location, however, they will be overwritten. If 'fixed' is false,
2633 // 'requested_addr' is only treated as a hint, the return value may or
2634 // may not start from the requested address. Unlike Linux mmap(), this
2635 // function returns NULL to indicate failure.
2636 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2637   char * addr;
2638   int flags;
2639 
2640   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2641   if (fixed) {
2642     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2643     flags |= MAP_FIXED;
2644   }
2645 
2646   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2647   // to PROT_EXEC if executable when we commit the page.
2648   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2649                        flags, -1, 0);
2650 
2651   if (addr != MAP_FAILED) {
2652     // anon_mmap() should only get called during VM initialization,
2653     // don't need lock (actually we can skip locking even it can be called
2654     // from multiple threads, because _highest_vm_reserved_address is just a
2655     // hint about the upper limit of non-stack memory regions.)
2656     if ((address)addr + bytes > _highest_vm_reserved_address) {
2657       _highest_vm_reserved_address = (address)addr + bytes;
2658     }
2659   }
2660 
2661   return addr == MAP_FAILED ? NULL : addr;
2662 }
2663 
2664 // Don't update _highest_vm_reserved_address, because there might be memory
2665 // regions above addr + size. If so, releasing a memory region only creates
2666 // a hole in the address space, it doesn't help prevent heap-stack collision.
2667 //
2668 static int anon_munmap(char * addr, size_t size) {
2669   return ::munmap(addr, size) == 0;
2670 }
2671 
2672 char* os::reserve_memory(size_t bytes, char* requested_addr,
2673                          size_t alignment_hint) {
2674   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2675 }
2676 
2677 bool os::release_memory(char* addr, size_t size) {
2678   return anon_munmap(addr, size);
2679 }
2680 
2681 static address highest_vm_reserved_address() {
2682   return _highest_vm_reserved_address;
2683 }
2684 
2685 static bool linux_mprotect(char* addr, size_t size, int prot) {
2686   // Linux wants the mprotect address argument to be page aligned.
2687   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2688 
2689   // According to SUSv3, mprotect() should only be used with mappings
2690   // established by mmap(), and mmap() always maps whole pages. Unaligned
2691   // 'addr' likely indicates problem in the VM (e.g. trying to change
2692   // protection of malloc'ed or statically allocated memory). Check the
2693   // caller if you hit this assert.
2694   assert(addr == bottom, "sanity check");
2695 
2696   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2697   return ::mprotect(bottom, size, prot) == 0;
2698 }
2699 
2700 // Set protections specified
2701 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2702                         bool is_committed) {
2703   unsigned int p = 0;
2704   switch (prot) {
2705   case MEM_PROT_NONE: p = PROT_NONE; break;
2706   case MEM_PROT_READ: p = PROT_READ; break;
2707   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2708   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2709   default:
2710     ShouldNotReachHere();
2711   }
2712   // is_committed is unused.
2713   return linux_mprotect(addr, bytes, p);
2714 }
2715 
2716 bool os::guard_memory(char* addr, size_t size) {
2717   return linux_mprotect(addr, size, PROT_NONE);
2718 }
2719 
2720 bool os::unguard_memory(char* addr, size_t size) {
2721   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2722 }
2723 
2724 // Large page support
2725 
2726 static size_t _large_page_size = 0;
2727 
2728 bool os::large_page_init() {
2729   if (!UseLargePages) return false;
2730 
2731   if (LargePageSizeInBytes) {
2732     _large_page_size = LargePageSizeInBytes;
2733   } else {
2734     // large_page_size on Linux is used to round up heap size. x86 uses either
2735     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2736     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2737     // page as large as 256M.
2738     //
2739     // Here we try to figure out page size by parsing /proc/meminfo and looking
2740     // for a line with the following format:
2741     //    Hugepagesize:     2048 kB
2742     //
2743     // If we can't determine the value (e.g. /proc is not mounted, or the text
2744     // format has been changed), we'll use the largest page size supported by
2745     // the processor.
2746 
2747 #ifndef ZERO
2748     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
2749                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
2750 #endif // ZERO
2751 
2752     FILE *fp = fopen("/proc/meminfo", "r");
2753     if (fp) {
2754       while (!feof(fp)) {
2755         int x = 0;
2756         char buf[16];
2757         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2758           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2759             _large_page_size = x * K;
2760             break;
2761           }
2762         } else {
2763           // skip to next line
2764           for (;;) {
2765             int ch = fgetc(fp);
2766             if (ch == EOF || ch == (int)'\n') break;
2767           }
2768         }
2769       }
2770       fclose(fp);
2771     }
2772   }
2773 
2774   const size_t default_page_size = (size_t)Linux::page_size();
2775   if (_large_page_size > default_page_size) {
2776     _page_sizes[0] = _large_page_size;
2777     _page_sizes[1] = default_page_size;
2778     _page_sizes[2] = 0;
2779   }
2780 
2781   // Large page support is available on 2.6 or newer kernel, some vendors
2782   // (e.g. Redhat) have backported it to their 2.4 based distributions.
2783   // We optimistically assume the support is available. If later it turns out
2784   // not true, VM will automatically switch to use regular page size.
2785   return true;
2786 }
2787 
2788 #ifndef SHM_HUGETLB
2789 #define SHM_HUGETLB 04000
2790 #endif
2791 
2792 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2793   // "exec" is passed in but not used.  Creating the shared image for
2794   // the code cache doesn't have an SHM_X executable permission to check.
2795   assert(UseLargePages, "only for large pages");
2796 
2797   key_t key = IPC_PRIVATE;
2798   char *addr;
2799 
2800   bool warn_on_failure = UseLargePages &&
2801                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2802                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2803                         );
2804   char msg[128];
2805 
2806   // Create a large shared memory region to attach to based on size.
2807   // Currently, size is the total size of the heap
2808   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2809   if (shmid == -1) {
2810      // Possible reasons for shmget failure:
2811      // 1. shmmax is too small for Java heap.
2812      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2813      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2814      // 2. not enough large page memory.
2815      //    > check available large pages: cat /proc/meminfo
2816      //    > increase amount of large pages:
2817      //          echo new_value > /proc/sys/vm/nr_hugepages
2818      //      Note 1: different Linux may use different name for this property,
2819      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2820      //      Note 2: it's possible there's enough physical memory available but
2821      //            they are so fragmented after a long run that they can't
2822      //            coalesce into large pages. Try to reserve large pages when
2823      //            the system is still "fresh".
2824      if (warn_on_failure) {
2825        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2826        warning(msg);
2827      }
2828      return NULL;
2829   }
2830 
2831   // attach to the region
2832   addr = (char*)shmat(shmid, req_addr, 0);
2833   int err = errno;
2834 
2835   // Remove shmid. If shmat() is successful, the actual shared memory segment
2836   // will be deleted when it's detached by shmdt() or when the process
2837   // terminates. If shmat() is not successful this will remove the shared
2838   // segment immediately.
2839   shmctl(shmid, IPC_RMID, NULL);
2840 
2841   if ((intptr_t)addr == -1) {
2842      if (warn_on_failure) {
2843        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2844        warning(msg);
2845      }
2846      return NULL;
2847   }
2848 
2849   return addr;
2850 }
2851 
2852 bool os::release_memory_special(char* base, size_t bytes) {
2853   // detaching the SHM segment will also delete it, see reserve_memory_special()
2854   int rslt = shmdt(base);
2855   return rslt == 0;
2856 }
2857 
2858 size_t os::large_page_size() {
2859   return _large_page_size;
2860 }
2861 
2862 // Linux does not support anonymous mmap with large page memory. The only way
2863 // to reserve large page memory without file backing is through SysV shared
2864 // memory API. The entire memory region is committed and pinned upfront.
2865 // Hopefully this will change in the future...
2866 bool os::can_commit_large_page_memory() {
2867   return false;
2868 }
2869 
2870 bool os::can_execute_large_page_memory() {
2871   return false;
2872 }
2873 
2874 // Reserve memory at an arbitrary address, only if that area is
2875 // available (and not reserved for something else).
2876 
2877 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2878   const int max_tries = 10;
2879   char* base[max_tries];
2880   size_t size[max_tries];
2881   const size_t gap = 0x000000;
2882 
2883   // Assert only that the size is a multiple of the page size, since
2884   // that's all that mmap requires, and since that's all we really know
2885   // about at this low abstraction level.  If we need higher alignment,
2886   // we can either pass an alignment to this method or verify alignment
2887   // in one of the methods further up the call chain.  See bug 5044738.
2888   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2889 
2890   // Repeatedly allocate blocks until the block is allocated at the
2891   // right spot. Give up after max_tries. Note that reserve_memory() will
2892   // automatically update _highest_vm_reserved_address if the call is
2893   // successful. The variable tracks the highest memory address every reserved
2894   // by JVM. It is used to detect heap-stack collision if running with
2895   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2896   // space than needed, it could confuse the collision detecting code. To
2897   // solve the problem, save current _highest_vm_reserved_address and
2898   // calculate the correct value before return.
2899   address old_highest = _highest_vm_reserved_address;
2900 
2901   // Linux mmap allows caller to pass an address as hint; give it a try first,
2902   // if kernel honors the hint then we can return immediately.
2903   char * addr = anon_mmap(requested_addr, bytes, false);
2904   if (addr == requested_addr) {
2905      return requested_addr;
2906   }
2907 
2908   if (addr != NULL) {
2909      // mmap() is successful but it fails to reserve at the requested address
2910      anon_munmap(addr, bytes);
2911   }
2912 
2913   int i;
2914   for (i = 0; i < max_tries; ++i) {
2915     base[i] = reserve_memory(bytes);
2916 
2917     if (base[i] != NULL) {
2918       // Is this the block we wanted?
2919       if (base[i] == requested_addr) {
2920         size[i] = bytes;
2921         break;
2922       }
2923 
2924       // Does this overlap the block we wanted? Give back the overlapped
2925       // parts and try again.
2926 
2927       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2928       if (top_overlap >= 0 && top_overlap < bytes) {
2929         unmap_memory(base[i], top_overlap);
2930         base[i] += top_overlap;
2931         size[i] = bytes - top_overlap;
2932       } else {
2933         size_t bottom_overlap = base[i] + bytes - requested_addr;
2934         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2935           unmap_memory(requested_addr, bottom_overlap);
2936           size[i] = bytes - bottom_overlap;
2937         } else {
2938           size[i] = bytes;
2939         }
2940       }
2941     }
2942   }
2943 
2944   // Give back the unused reserved pieces.
2945 
2946   for (int j = 0; j < i; ++j) {
2947     if (base[j] != NULL) {
2948       unmap_memory(base[j], size[j]);
2949     }
2950   }
2951 
2952   if (i < max_tries) {
2953     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2954     return requested_addr;
2955   } else {
2956     _highest_vm_reserved_address = old_highest;
2957     return NULL;
2958   }
2959 }
2960 
2961 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2962   return ::read(fd, buf, nBytes);
2963 }
2964 
2965 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2966 // Solaris uses poll(), linux uses park().
2967 // Poll() is likely a better choice, assuming that Thread.interrupt()
2968 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2969 // SIGSEGV, see 4355769.
2970 
2971 const int NANOSECS_PER_MILLISECS = 1000000;
2972 
2973 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2974   assert(thread == Thread::current(),  "thread consistency check");
2975 
2976   ParkEvent * const slp = thread->_SleepEvent ;
2977   slp->reset() ;
2978   OrderAccess::fence() ;
2979 
2980   if (interruptible) {
2981     jlong prevtime = javaTimeNanos();
2982 
2983     for (;;) {
2984       if (os::is_interrupted(thread, true)) {
2985         return OS_INTRPT;
2986       }
2987 
2988       jlong newtime = javaTimeNanos();
2989 
2990       if (newtime - prevtime < 0) {
2991         // time moving backwards, should only happen if no monotonic clock
2992         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2993         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2994       } else {
2995         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2996       }
2997 
2998       if(millis <= 0) {
2999         return OS_OK;
3000       }
3001 
3002       prevtime = newtime;
3003 
3004       {
3005         assert(thread->is_Java_thread(), "sanity check");
3006         JavaThread *jt = (JavaThread *) thread;
3007         ThreadBlockInVM tbivm(jt);
3008         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3009 
3010         jt->set_suspend_equivalent();
3011         // cleared by handle_special_suspend_equivalent_condition() or
3012         // java_suspend_self() via check_and_wait_while_suspended()
3013 
3014         slp->park(millis);
3015 
3016         // were we externally suspended while we were waiting?
3017         jt->check_and_wait_while_suspended();
3018       }
3019     }
3020   } else {
3021     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3022     jlong prevtime = javaTimeNanos();
3023 
3024     for (;;) {
3025       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3026       // the 1st iteration ...
3027       jlong newtime = javaTimeNanos();
3028 
3029       if (newtime - prevtime < 0) {
3030         // time moving backwards, should only happen if no monotonic clock
3031         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3032         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3033       } else {
3034         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3035       }
3036 
3037       if(millis <= 0) break ;
3038 
3039       prevtime = newtime;
3040       slp->park(millis);
3041     }
3042     return OS_OK ;
3043   }
3044 }
3045 
3046 int os::naked_sleep() {
3047   // %% make the sleep time an integer flag. for now use 1 millisec.
3048   return os::sleep(Thread::current(), 1, false);
3049 }
3050 
3051 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3052 void os::infinite_sleep() {
3053   while (true) {    // sleep forever ...
3054     ::sleep(100);   // ... 100 seconds at a time
3055   }
3056 }
3057 
3058 // Used to convert frequent JVM_Yield() to nops
3059 bool os::dont_yield() {
3060   return DontYieldALot;
3061 }
3062 
3063 void os::yield() {
3064   sched_yield();
3065 }
3066 
3067 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3068 
3069 void os::yield_all(int attempts) {
3070   // Yields to all threads, including threads with lower priorities
3071   // Threads on Linux are all with same priority. The Solaris style
3072   // os::yield_all() with nanosleep(1ms) is not necessary.
3073   sched_yield();
3074 }
3075 
3076 // Called from the tight loops to possibly influence time-sharing heuristics
3077 void os::loop_breaker(int attempts) {
3078   os::yield_all(attempts);
3079 }
3080 
3081 ////////////////////////////////////////////////////////////////////////////////
3082 // thread priority support
3083 
3084 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3085 // only supports dynamic priority, static priority must be zero. For real-time
3086 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3087 // However, for large multi-threaded applications, SCHED_RR is not only slower
3088 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3089 // of 5 runs - Sep 2005).
3090 //
3091 // The following code actually changes the niceness of kernel-thread/LWP. It
3092 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3093 // not the entire user process, and user level threads are 1:1 mapped to kernel
3094 // threads. It has always been the case, but could change in the future. For
3095 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3096 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3097 
3098 int os::java_to_os_priority[MaxPriority + 1] = {
3099   19,              // 0 Entry should never be used
3100 
3101    4,              // 1 MinPriority
3102    3,              // 2
3103    2,              // 3
3104 
3105    1,              // 4
3106    0,              // 5 NormPriority
3107   -1,              // 6
3108 
3109   -2,              // 7
3110   -3,              // 8
3111   -4,              // 9 NearMaxPriority
3112 
3113   -5               // 10 MaxPriority
3114 };
3115 
3116 static int prio_init() {
3117   if (ThreadPriorityPolicy == 1) {
3118     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3119     // if effective uid is not root. Perhaps, a more elegant way of doing
3120     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3121     if (geteuid() != 0) {
3122       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3123         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3124       }
3125       ThreadPriorityPolicy = 0;
3126     }
3127   }
3128   return 0;
3129 }
3130 
3131 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3132   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3133 
3134   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3135   return (ret == 0) ? OS_OK : OS_ERR;
3136 }
3137 
3138 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3139   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3140     *priority_ptr = java_to_os_priority[NormPriority];
3141     return OS_OK;
3142   }
3143 
3144   errno = 0;
3145   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3146   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3147 }
3148 
3149 // Hint to the underlying OS that a task switch would not be good.
3150 // Void return because it's a hint and can fail.
3151 void os::hint_no_preempt() {}
3152 
3153 ////////////////////////////////////////////////////////////////////////////////
3154 // suspend/resume support
3155 
3156 //  the low-level signal-based suspend/resume support is a remnant from the
3157 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3158 //  within hotspot. Now there is a single use-case for this:
3159 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3160 //      that runs in the watcher thread.
3161 //  The remaining code is greatly simplified from the more general suspension
3162 //  code that used to be used.
3163 //
3164 //  The protocol is quite simple:
3165 //  - suspend:
3166 //      - sends a signal to the target thread
3167 //      - polls the suspend state of the osthread using a yield loop
3168 //      - target thread signal handler (SR_handler) sets suspend state
3169 //        and blocks in sigsuspend until continued
3170 //  - resume:
3171 //      - sets target osthread state to continue
3172 //      - sends signal to end the sigsuspend loop in the SR_handler
3173 //
3174 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3175 //
3176 
3177 static void resume_clear_context(OSThread *osthread) {
3178   osthread->set_ucontext(NULL);
3179   osthread->set_siginfo(NULL);
3180 
3181   // notify the suspend action is completed, we have now resumed
3182   osthread->sr.clear_suspended();
3183 }
3184 
3185 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3186   osthread->set_ucontext(context);
3187   osthread->set_siginfo(siginfo);
3188 }
3189 
3190 //
3191 // Handler function invoked when a thread's execution is suspended or
3192 // resumed. We have to be careful that only async-safe functions are
3193 // called here (Note: most pthread functions are not async safe and
3194 // should be avoided.)
3195 //
3196 // Note: sigwait() is a more natural fit than sigsuspend() from an
3197 // interface point of view, but sigwait() prevents the signal hander
3198 // from being run. libpthread would get very confused by not having
3199 // its signal handlers run and prevents sigwait()'s use with the
3200 // mutex granting granting signal.
3201 //
3202 // Currently only ever called on the VMThread
3203 //
3204 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3205   // Save and restore errno to avoid confusing native code with EINTR
3206   // after sigsuspend.
3207   int old_errno = errno;
3208 
3209   Thread* thread = Thread::current();
3210   OSThread* osthread = thread->osthread();
3211   assert(thread->is_VM_thread(), "Must be VMThread");
3212   // read current suspend action
3213   int action = osthread->sr.suspend_action();
3214   if (action == SR_SUSPEND) {
3215     suspend_save_context(osthread, siginfo, context);
3216 
3217     // Notify the suspend action is about to be completed. do_suspend()
3218     // waits until SR_SUSPENDED is set and then returns. We will wait
3219     // here for a resume signal and that completes the suspend-other
3220     // action. do_suspend/do_resume is always called as a pair from
3221     // the same thread - so there are no races
3222 
3223     // notify the caller
3224     osthread->sr.set_suspended();
3225 
3226     sigset_t suspend_set;  // signals for sigsuspend()
3227 
3228     // get current set of blocked signals and unblock resume signal
3229     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3230     sigdelset(&suspend_set, SR_signum);
3231 
3232     // wait here until we are resumed
3233     do {
3234       sigsuspend(&suspend_set);
3235       // ignore all returns until we get a resume signal
3236     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3237 
3238     resume_clear_context(osthread);
3239 
3240   } else {
3241     assert(action == SR_CONTINUE, "unexpected sr action");
3242     // nothing special to do - just leave the handler
3243   }
3244 
3245   errno = old_errno;
3246 }
3247 
3248 
3249 static int SR_initialize() {
3250   struct sigaction act;
3251   char *s;
3252   /* Get signal number to use for suspend/resume */
3253   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3254     int sig = ::strtol(s, 0, 10);
3255     if (sig > 0 || sig < _NSIG) {
3256         SR_signum = sig;
3257     }
3258   }
3259 
3260   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3261         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3262 
3263   sigemptyset(&SR_sigset);
3264   sigaddset(&SR_sigset, SR_signum);
3265 
3266   /* Set up signal handler for suspend/resume */
3267   act.sa_flags = SA_RESTART|SA_SIGINFO;
3268   act.sa_handler = (void (*)(int)) SR_handler;
3269 
3270   // SR_signum is blocked by default.
3271   // 4528190 - We also need to block pthread restart signal (32 on all
3272   // supported Linux platforms). Note that LinuxThreads need to block
3273   // this signal for all threads to work properly. So we don't have
3274   // to use hard-coded signal number when setting up the mask.
3275   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3276 
3277   if (sigaction(SR_signum, &act, 0) == -1) {
3278     return -1;
3279   }
3280 
3281   // Save signal flag
3282   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3283   return 0;
3284 }
3285 
3286 static int SR_finalize() {
3287   return 0;
3288 }
3289 
3290 
3291 // returns true on success and false on error - really an error is fatal
3292 // but this seems the normal response to library errors
3293 static bool do_suspend(OSThread* osthread) {
3294   // mark as suspended and send signal
3295   osthread->sr.set_suspend_action(SR_SUSPEND);
3296   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3297   assert_status(status == 0, status, "pthread_kill");
3298 
3299   // check status and wait until notified of suspension
3300   if (status == 0) {
3301     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3302       os::yield_all(i);
3303     }
3304     osthread->sr.set_suspend_action(SR_NONE);
3305     return true;
3306   }
3307   else {
3308     osthread->sr.set_suspend_action(SR_NONE);
3309     return false;
3310   }
3311 }
3312 
3313 static void do_resume(OSThread* osthread) {
3314   assert(osthread->sr.is_suspended(), "thread should be suspended");
3315   osthread->sr.set_suspend_action(SR_CONTINUE);
3316 
3317   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3318   assert_status(status == 0, status, "pthread_kill");
3319   // check status and wait unit notified of resumption
3320   if (status == 0) {
3321     for (int i = 0; osthread->sr.is_suspended(); i++) {
3322       os::yield_all(i);
3323     }
3324   }
3325   osthread->sr.set_suspend_action(SR_NONE);
3326 }
3327 
3328 ////////////////////////////////////////////////////////////////////////////////
3329 // interrupt support
3330 
3331 void os::interrupt(Thread* thread) {
3332   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3333     "possibility of dangling Thread pointer");
3334 
3335   OSThread* osthread = thread->osthread();
3336 
3337   if (!osthread->interrupted()) {
3338     osthread->set_interrupted(true);
3339     // More than one thread can get here with the same value of osthread,
3340     // resulting in multiple notifications.  We do, however, want the store
3341     // to interrupted() to be visible to other threads before we execute unpark().
3342     OrderAccess::fence();
3343     ParkEvent * const slp = thread->_SleepEvent ;
3344     if (slp != NULL) slp->unpark() ;
3345   }
3346 
3347   // For JSR166. Unpark even if interrupt status already was set
3348   if (thread->is_Java_thread())
3349     ((JavaThread*)thread)->parker()->unpark();
3350 
3351   ParkEvent * ev = thread->_ParkEvent ;
3352   if (ev != NULL) ev->unpark() ;
3353 
3354 }
3355 
3356 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3357   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3358     "possibility of dangling Thread pointer");
3359 
3360   OSThread* osthread = thread->osthread();
3361 
3362   bool interrupted = osthread->interrupted();
3363 
3364   if (interrupted && clear_interrupted) {
3365     osthread->set_interrupted(false);
3366     // consider thread->_SleepEvent->reset() ... optional optimization
3367   }
3368 
3369   return interrupted;
3370 }
3371 
3372 ///////////////////////////////////////////////////////////////////////////////////
3373 // signal handling (except suspend/resume)
3374 
3375 // This routine may be used by user applications as a "hook" to catch signals.
3376 // The user-defined signal handler must pass unrecognized signals to this
3377 // routine, and if it returns true (non-zero), then the signal handler must
3378 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3379 // routine will never retun false (zero), but instead will execute a VM panic
3380 // routine kill the process.
3381 //
3382 // If this routine returns false, it is OK to call it again.  This allows
3383 // the user-defined signal handler to perform checks either before or after
3384 // the VM performs its own checks.  Naturally, the user code would be making
3385 // a serious error if it tried to handle an exception (such as a null check
3386 // or breakpoint) that the VM was generating for its own correct operation.
3387 //
3388 // This routine may recognize any of the following kinds of signals:
3389 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3390 // It should be consulted by handlers for any of those signals.
3391 //
3392 // The caller of this routine must pass in the three arguments supplied
3393 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3394 // field of the structure passed to sigaction().  This routine assumes that
3395 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3396 //
3397 // Note that the VM will print warnings if it detects conflicting signal
3398 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3399 //
3400 extern "C" int
3401 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3402                         void* ucontext, int abort_if_unrecognized);
3403 
3404 void signalHandler(int sig, siginfo_t* info, void* uc) {
3405   assert(info != NULL && uc != NULL, "it must be old kernel");
3406   JVM_handle_linux_signal(sig, info, uc, true);
3407 }
3408 
3409 
3410 // This boolean allows users to forward their own non-matching signals
3411 // to JVM_handle_linux_signal, harmlessly.
3412 bool os::Linux::signal_handlers_are_installed = false;
3413 
3414 // For signal-chaining
3415 struct sigaction os::Linux::sigact[MAXSIGNUM];
3416 unsigned int os::Linux::sigs = 0;
3417 bool os::Linux::libjsig_is_loaded = false;
3418 typedef struct sigaction *(*get_signal_t)(int);
3419 get_signal_t os::Linux::get_signal_action = NULL;
3420 
3421 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3422   struct sigaction *actp = NULL;
3423 
3424   if (libjsig_is_loaded) {
3425     // Retrieve the old signal handler from libjsig
3426     actp = (*get_signal_action)(sig);
3427   }
3428   if (actp == NULL) {
3429     // Retrieve the preinstalled signal handler from jvm
3430     actp = get_preinstalled_handler(sig);
3431   }
3432 
3433   return actp;
3434 }
3435 
3436 static bool call_chained_handler(struct sigaction *actp, int sig,
3437                                  siginfo_t *siginfo, void *context) {
3438   // Call the old signal handler
3439   if (actp->sa_handler == SIG_DFL) {
3440     // It's more reasonable to let jvm treat it as an unexpected exception
3441     // instead of taking the default action.
3442     return false;
3443   } else if (actp->sa_handler != SIG_IGN) {
3444     if ((actp->sa_flags & SA_NODEFER) == 0) {
3445       // automaticlly block the signal
3446       sigaddset(&(actp->sa_mask), sig);
3447     }
3448 
3449     sa_handler_t hand;
3450     sa_sigaction_t sa;
3451     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3452     // retrieve the chained handler
3453     if (siginfo_flag_set) {
3454       sa = actp->sa_sigaction;
3455     } else {
3456       hand = actp->sa_handler;
3457     }
3458 
3459     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3460       actp->sa_handler = SIG_DFL;
3461     }
3462 
3463     // try to honor the signal mask
3464     sigset_t oset;
3465     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3466 
3467     // call into the chained handler
3468     if (siginfo_flag_set) {
3469       (*sa)(sig, siginfo, context);
3470     } else {
3471       (*hand)(sig);
3472     }
3473 
3474     // restore the signal mask
3475     pthread_sigmask(SIG_SETMASK, &oset, 0);
3476   }
3477   // Tell jvm's signal handler the signal is taken care of.
3478   return true;
3479 }
3480 
3481 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3482   bool chained = false;
3483   // signal-chaining
3484   if (UseSignalChaining) {
3485     struct sigaction *actp = get_chained_signal_action(sig);
3486     if (actp != NULL) {
3487       chained = call_chained_handler(actp, sig, siginfo, context);
3488     }
3489   }
3490   return chained;
3491 }
3492 
3493 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3494   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3495     return &sigact[sig];
3496   }
3497   return NULL;
3498 }
3499 
3500 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3501   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3502   sigact[sig] = oldAct;
3503   sigs |= (unsigned int)1 << sig;
3504 }
3505 
3506 // for diagnostic
3507 int os::Linux::sigflags[MAXSIGNUM];
3508 
3509 int os::Linux::get_our_sigflags(int sig) {
3510   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3511   return sigflags[sig];
3512 }
3513 
3514 void os::Linux::set_our_sigflags(int sig, int flags) {
3515   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3516   sigflags[sig] = flags;
3517 }
3518 
3519 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3520   // Check for overwrite.
3521   struct sigaction oldAct;
3522   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3523 
3524   void* oldhand = oldAct.sa_sigaction
3525                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3526                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3527   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3528       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3529       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3530     if (AllowUserSignalHandlers || !set_installed) {
3531       // Do not overwrite; user takes responsibility to forward to us.
3532       return;
3533     } else if (UseSignalChaining) {
3534       // save the old handler in jvm
3535       save_preinstalled_handler(sig, oldAct);
3536       // libjsig also interposes the sigaction() call below and saves the
3537       // old sigaction on it own.
3538     } else {
3539       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3540                     "%#lx for signal %d.", (long)oldhand, sig));
3541     }
3542   }
3543 
3544   struct sigaction sigAct;
3545   sigfillset(&(sigAct.sa_mask));
3546   sigAct.sa_handler = SIG_DFL;
3547   if (!set_installed) {
3548     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3549   } else {
3550     sigAct.sa_sigaction = signalHandler;
3551     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3552   }
3553   // Save flags, which are set by ours
3554   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3555   sigflags[sig] = sigAct.sa_flags;
3556 
3557   int ret = sigaction(sig, &sigAct, &oldAct);
3558   assert(ret == 0, "check");
3559 
3560   void* oldhand2  = oldAct.sa_sigaction
3561                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3562                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3563   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3564 }
3565 
3566 // install signal handlers for signals that HotSpot needs to
3567 // handle in order to support Java-level exception handling.
3568 
3569 void os::Linux::install_signal_handlers() {
3570   if (!signal_handlers_are_installed) {
3571     signal_handlers_are_installed = true;
3572 
3573     // signal-chaining
3574     typedef void (*signal_setting_t)();
3575     signal_setting_t begin_signal_setting = NULL;
3576     signal_setting_t end_signal_setting = NULL;
3577     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3578                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3579     if (begin_signal_setting != NULL) {
3580       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3581                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3582       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3583                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3584       libjsig_is_loaded = true;
3585       assert(UseSignalChaining, "should enable signal-chaining");
3586     }
3587     if (libjsig_is_loaded) {
3588       // Tell libjsig jvm is setting signal handlers
3589       (*begin_signal_setting)();
3590     }
3591 
3592     set_signal_handler(SIGSEGV, true);
3593     set_signal_handler(SIGPIPE, true);
3594     set_signal_handler(SIGBUS, true);
3595     set_signal_handler(SIGILL, true);
3596     set_signal_handler(SIGFPE, true);
3597     set_signal_handler(SIGXFSZ, true);
3598 
3599     if (libjsig_is_loaded) {
3600       // Tell libjsig jvm finishes setting signal handlers
3601       (*end_signal_setting)();
3602     }
3603 
3604     // We don't activate signal checker if libjsig is in place, we trust ourselves
3605     // and if UserSignalHandler is installed all bets are off
3606     if (CheckJNICalls) {
3607       if (libjsig_is_loaded) {
3608         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3609         check_signals = false;
3610       }
3611       if (AllowUserSignalHandlers) {
3612         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3613         check_signals = false;
3614       }
3615     }
3616   }
3617 }
3618 
3619 // This is the fastest way to get thread cpu time on Linux.
3620 // Returns cpu time (user+sys) for any thread, not only for current.
3621 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3622 // It might work on 2.6.10+ with a special kernel/glibc patch.
3623 // For reference, please, see IEEE Std 1003.1-2004:
3624 //   http://www.unix.org/single_unix_specification
3625 
3626 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3627   struct timespec tp;
3628   int rc = os::Linux::clock_gettime(clockid, &tp);
3629   assert(rc == 0, "clock_gettime is expected to return 0 code");
3630 
3631   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3632 }
3633 
3634 /////
3635 // glibc on Linux platform uses non-documented flag
3636 // to indicate, that some special sort of signal
3637 // trampoline is used.
3638 // We will never set this flag, and we should
3639 // ignore this flag in our diagnostic
3640 #ifdef SIGNIFICANT_SIGNAL_MASK
3641 #undef SIGNIFICANT_SIGNAL_MASK
3642 #endif
3643 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3644 
3645 static const char* get_signal_handler_name(address handler,
3646                                            char* buf, int buflen) {
3647   int offset;
3648   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3649   if (found) {
3650     // skip directory names
3651     const char *p1, *p2;
3652     p1 = buf;
3653     size_t len = strlen(os::file_separator());
3654     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3655     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3656   } else {
3657     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3658   }
3659   return buf;
3660 }
3661 
3662 static void print_signal_handler(outputStream* st, int sig,
3663                                  char* buf, size_t buflen) {
3664   struct sigaction sa;
3665 
3666   sigaction(sig, NULL, &sa);
3667 
3668   // See comment for SIGNIFICANT_SIGNAL_MASK define
3669   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3670 
3671   st->print("%s: ", os::exception_name(sig, buf, buflen));
3672 
3673   address handler = (sa.sa_flags & SA_SIGINFO)
3674     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3675     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3676 
3677   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3678     st->print("SIG_DFL");
3679   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3680     st->print("SIG_IGN");
3681   } else {
3682     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3683   }
3684 
3685   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3686 
3687   address rh = VMError::get_resetted_sighandler(sig);
3688   // May be, handler was resetted by VMError?
3689   if(rh != NULL) {
3690     handler = rh;
3691     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3692   }
3693 
3694   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3695 
3696   // Check: is it our handler?
3697   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3698      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3699     // It is our signal handler
3700     // check for flags, reset system-used one!
3701     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3702       st->print(
3703                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3704                 os::Linux::get_our_sigflags(sig));
3705     }
3706   }
3707   st->cr();
3708 }
3709 
3710 
3711 #define DO_SIGNAL_CHECK(sig) \
3712   if (!sigismember(&check_signal_done, sig)) \
3713     os::Linux::check_signal_handler(sig)
3714 
3715 // This method is a periodic task to check for misbehaving JNI applications
3716 // under CheckJNI, we can add any periodic checks here
3717 
3718 void os::run_periodic_checks() {
3719 
3720   if (check_signals == false) return;
3721 
3722   // SEGV and BUS if overridden could potentially prevent
3723   // generation of hs*.log in the event of a crash, debugging
3724   // such a case can be very challenging, so we absolutely
3725   // check the following for a good measure:
3726   DO_SIGNAL_CHECK(SIGSEGV);
3727   DO_SIGNAL_CHECK(SIGILL);
3728   DO_SIGNAL_CHECK(SIGFPE);
3729   DO_SIGNAL_CHECK(SIGBUS);
3730   DO_SIGNAL_CHECK(SIGPIPE);
3731   DO_SIGNAL_CHECK(SIGXFSZ);
3732 
3733 
3734   // ReduceSignalUsage allows the user to override these handlers
3735   // see comments at the very top and jvm_solaris.h
3736   if (!ReduceSignalUsage) {
3737     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3738     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3739     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3740     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3741   }
3742 
3743   DO_SIGNAL_CHECK(SR_signum);
3744   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3745 }
3746 
3747 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3748 
3749 static os_sigaction_t os_sigaction = NULL;
3750 
3751 void os::Linux::check_signal_handler(int sig) {
3752   char buf[O_BUFLEN];
3753   address jvmHandler = NULL;
3754 
3755 
3756   struct sigaction act;
3757   if (os_sigaction == NULL) {
3758     // only trust the default sigaction, in case it has been interposed
3759     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3760     if (os_sigaction == NULL) return;
3761   }
3762 
3763   os_sigaction(sig, (struct sigaction*)NULL, &act);
3764 
3765 
3766   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3767 
3768   address thisHandler = (act.sa_flags & SA_SIGINFO)
3769     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3770     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3771 
3772 
3773   switch(sig) {
3774   case SIGSEGV:
3775   case SIGBUS:
3776   case SIGFPE:
3777   case SIGPIPE:
3778   case SIGILL:
3779   case SIGXFSZ:
3780     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3781     break;
3782 
3783   case SHUTDOWN1_SIGNAL:
3784   case SHUTDOWN2_SIGNAL:
3785   case SHUTDOWN3_SIGNAL:
3786   case BREAK_SIGNAL:
3787     jvmHandler = (address)user_handler();
3788     break;
3789 
3790   case INTERRUPT_SIGNAL:
3791     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3792     break;
3793 
3794   default:
3795     if (sig == SR_signum) {
3796       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3797     } else {
3798       return;
3799     }
3800     break;
3801   }
3802 
3803   if (thisHandler != jvmHandler) {
3804     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3805     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3806     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3807     // No need to check this sig any longer
3808     sigaddset(&check_signal_done, sig);
3809   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3810     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3811     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3812     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3813     // No need to check this sig any longer
3814     sigaddset(&check_signal_done, sig);
3815   }
3816 
3817   // Dump all the signal
3818   if (sigismember(&check_signal_done, sig)) {
3819     print_signal_handlers(tty, buf, O_BUFLEN);
3820   }
3821 }
3822 
3823 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3824 
3825 extern bool signal_name(int signo, char* buf, size_t len);
3826 
3827 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3828   if (0 < exception_code && exception_code <= SIGRTMAX) {
3829     // signal
3830     if (!signal_name(exception_code, buf, size)) {
3831       jio_snprintf(buf, size, "SIG%d", exception_code);
3832     }
3833     return buf;
3834   } else {
3835     return NULL;
3836   }
3837 }
3838 
3839 // this is called _before_ the most of global arguments have been parsed
3840 void os::init(void) {
3841   char dummy;   /* used to get a guess on initial stack address */
3842 //  first_hrtime = gethrtime();
3843 
3844   // With LinuxThreads the JavaMain thread pid (primordial thread)
3845   // is different than the pid of the java launcher thread.
3846   // So, on Linux, the launcher thread pid is passed to the VM
3847   // via the sun.java.launcher.pid property.
3848   // Use this property instead of getpid() if it was correctly passed.
3849   // See bug 6351349.
3850   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3851 
3852   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3853 
3854   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3855 
3856   init_random(1234567);
3857 
3858   ThreadCritical::initialize();
3859 
3860   Linux::set_page_size(sysconf(_SC_PAGESIZE));
3861   if (Linux::page_size() == -1) {
3862     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
3863                   strerror(errno)));
3864   }
3865   init_page_sizes((size_t) Linux::page_size());
3866 
3867   Linux::initialize_system_info();
3868 
3869   // main_thread points to the aboriginal thread
3870   Linux::_main_thread = pthread_self();
3871 
3872   Linux::clock_init();
3873   initial_time_count = os::elapsed_counter();
3874   pthread_mutex_init(&dl_mutex, NULL);
3875 }
3876 
3877 // To install functions for atexit system call
3878 extern "C" {
3879   static void perfMemory_exit_helper() {
3880     perfMemory_exit();
3881   }
3882 }
3883 
3884 // this is called _after_ the global arguments have been parsed
3885 jint os::init_2(void)
3886 {
3887   Linux::fast_thread_clock_init();
3888 
3889   // Allocate a single page and mark it as readable for safepoint polling
3890   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3891   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3892 
3893   os::set_polling_page( polling_page );
3894 
3895 #ifndef PRODUCT
3896   if(Verbose && PrintMiscellaneous)
3897     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3898 #endif
3899 
3900   if (!UseMembar) {
3901     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3902     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3903     os::set_memory_serialize_page( mem_serialize_page );
3904 
3905 #ifndef PRODUCT
3906     if(Verbose && PrintMiscellaneous)
3907       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3908 #endif
3909   }
3910 
3911   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3912 
3913   // initialize suspend/resume support - must do this before signal_sets_init()
3914   if (SR_initialize() != 0) {
3915     perror("SR_initialize failed");
3916     return JNI_ERR;
3917   }
3918 
3919   Linux::signal_sets_init();
3920   Linux::install_signal_handlers();
3921 
3922   size_t threadStackSizeInBytes = ThreadStackSize * K;
3923   if (threadStackSizeInBytes != 0 &&
3924       threadStackSizeInBytes < Linux::min_stack_allowed) {
3925         tty->print_cr("\nThe stack size specified is too small, "
3926                       "Specify at least %dk",
3927                       Linux::min_stack_allowed / K);
3928         return JNI_ERR;
3929   }
3930 
3931   // Make the stack size a multiple of the page size so that
3932   // the yellow/red zones can be guarded.
3933   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3934         vm_page_size()));
3935 
3936   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3937 
3938   Linux::libpthread_init();
3939   if (PrintMiscellaneous && (Verbose || WizardMode)) {
3940      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
3941           Linux::glibc_version(), Linux::libpthread_version(),
3942           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3943   }
3944 
3945   if (UseNUMA) {
3946     if (!Linux::libnuma_init()) {
3947       UseNUMA = false;
3948     } else {
3949       if ((Linux::numa_max_node() < 1)) {
3950         // There's only one node(they start from 0), disable NUMA.
3951         UseNUMA = false;
3952       }
3953     }
3954     if (!UseNUMA && ForceNUMA) {
3955       UseNUMA = true;
3956     }
3957   }
3958 
3959   if (MaxFDLimit) {
3960     // set the number of file descriptors to max. print out error
3961     // if getrlimit/setrlimit fails but continue regardless.
3962     struct rlimit nbr_files;
3963     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3964     if (status != 0) {
3965       if (PrintMiscellaneous && (Verbose || WizardMode))
3966         perror("os::init_2 getrlimit failed");
3967     } else {
3968       nbr_files.rlim_cur = nbr_files.rlim_max;
3969       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3970       if (status != 0) {
3971         if (PrintMiscellaneous && (Verbose || WizardMode))
3972           perror("os::init_2 setrlimit failed");
3973       }
3974     }
3975   }
3976 
3977   // Initialize lock used to serialize thread creation (see os::create_thread)
3978   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3979 
3980   // Initialize HPI.
3981   jint hpi_result = hpi::initialize();
3982   if (hpi_result != JNI_OK) {
3983     tty->print_cr("There was an error trying to initialize the HPI library.");
3984     return hpi_result;
3985   }
3986 
3987   // at-exit methods are called in the reverse order of their registration.
3988   // atexit functions are called on return from main or as a result of a
3989   // call to exit(3C). There can be only 32 of these functions registered
3990   // and atexit() does not set errno.
3991 
3992   if (PerfAllowAtExitRegistration) {
3993     // only register atexit functions if PerfAllowAtExitRegistration is set.
3994     // atexit functions can be delayed until process exit time, which
3995     // can be problematic for embedded VM situations. Embedded VMs should
3996     // call DestroyJavaVM() to assure that VM resources are released.
3997 
3998     // note: perfMemory_exit_helper atexit function may be removed in
3999     // the future if the appropriate cleanup code can be added to the
4000     // VM_Exit VMOperation's doit method.
4001     if (atexit(perfMemory_exit_helper) != 0) {
4002       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4003     }
4004   }
4005 
4006   // initialize thread priority policy
4007   prio_init();
4008 
4009   return JNI_OK;
4010 }
4011 
4012 // this is called at the end of vm_initialization
4013 void os::init_3(void) { }
4014 
4015 // Mark the polling page as unreadable
4016 void os::make_polling_page_unreadable(void) {
4017   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4018     fatal("Could not disable polling page");
4019 };
4020 
4021 // Mark the polling page as readable
4022 void os::make_polling_page_readable(void) {
4023   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4024     fatal("Could not enable polling page");
4025   }
4026 };
4027 
4028 int os::active_processor_count() {
4029   // Linux doesn't yet have a (official) notion of processor sets,
4030   // so just return the number of online processors.
4031   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4032   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4033   return online_cpus;
4034 }
4035 
4036 bool os::distribute_processes(uint length, uint* distribution) {
4037   // Not yet implemented.
4038   return false;
4039 }
4040 
4041 bool os::bind_to_processor(uint processor_id) {
4042   // Not yet implemented.
4043   return false;
4044 }
4045 
4046 ///
4047 
4048 // Suspends the target using the signal mechanism and then grabs the PC before
4049 // resuming the target. Used by the flat-profiler only
4050 ExtendedPC os::get_thread_pc(Thread* thread) {
4051   // Make sure that it is called by the watcher for the VMThread
4052   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4053   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4054 
4055   ExtendedPC epc;
4056 
4057   OSThread* osthread = thread->osthread();
4058   if (do_suspend(osthread)) {
4059     if (osthread->ucontext() != NULL) {
4060       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4061     } else {
4062       // NULL context is unexpected, double-check this is the VMThread
4063       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4064     }
4065     do_resume(osthread);
4066   }
4067   // failure means pthread_kill failed for some reason - arguably this is
4068   // a fatal problem, but such problems are ignored elsewhere
4069 
4070   return epc;
4071 }
4072 
4073 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4074 {
4075    if (is_NPTL()) {
4076       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4077    } else {
4078 #ifndef IA64
4079       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4080       // word back to default 64bit precision if condvar is signaled. Java
4081       // wants 53bit precision.  Save and restore current value.
4082       int fpu = get_fpu_control_word();
4083 #endif // IA64
4084       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4085 #ifndef IA64
4086       set_fpu_control_word(fpu);
4087 #endif // IA64
4088       return status;
4089    }
4090 }
4091 
4092 ////////////////////////////////////////////////////////////////////////////////
4093 // debug support
4094 
4095 static address same_page(address x, address y) {
4096   int page_bits = -os::vm_page_size();
4097   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4098     return x;
4099   else if (x > y)
4100     return (address)(intptr_t(y) | ~page_bits) + 1;
4101   else
4102     return (address)(intptr_t(y) & page_bits);
4103 }
4104 
4105 bool os::find(address addr, outputStream* st) {
4106   Dl_info dlinfo;
4107   memset(&dlinfo, 0, sizeof(dlinfo));
4108   if (dladdr(addr, &dlinfo)) {
4109     st->print(PTR_FORMAT ": ", addr);
4110     if (dlinfo.dli_sname != NULL) {
4111       st->print("%s+%#x", dlinfo.dli_sname,
4112                  addr - (intptr_t)dlinfo.dli_saddr);
4113     } else if (dlinfo.dli_fname) {
4114       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4115     } else {
4116       st->print("<absolute address>");
4117     }
4118     if (dlinfo.dli_fname) {
4119       st->print(" in %s", dlinfo.dli_fname);
4120     }
4121     if (dlinfo.dli_fbase) {
4122       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4123     }
4124     st->cr();
4125 
4126     if (Verbose) {
4127       // decode some bytes around the PC
4128       address begin = same_page(addr-40, addr);
4129       address end   = same_page(addr+40, addr);
4130       address       lowest = (address) dlinfo.dli_sname;
4131       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4132       if (begin < lowest)  begin = lowest;
4133       Dl_info dlinfo2;
4134       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4135           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4136         end = (address) dlinfo2.dli_saddr;
4137       Disassembler::decode(begin, end, st);
4138     }
4139     return true;
4140   }
4141   return false;
4142 }
4143 
4144 ////////////////////////////////////////////////////////////////////////////////
4145 // misc
4146 
4147 // This does not do anything on Linux. This is basically a hook for being
4148 // able to use structured exception handling (thread-local exception filters)
4149 // on, e.g., Win32.
4150 void
4151 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4152                          JavaCallArguments* args, Thread* thread) {
4153   f(value, method, args, thread);
4154 }
4155 
4156 void os::print_statistics() {
4157 }
4158 
4159 int os::message_box(const char* title, const char* message) {
4160   int i;
4161   fdStream err(defaultStream::error_fd());
4162   for (i = 0; i < 78; i++) err.print_raw("=");
4163   err.cr();
4164   err.print_raw_cr(title);
4165   for (i = 0; i < 78; i++) err.print_raw("-");
4166   err.cr();
4167   err.print_raw_cr(message);
4168   for (i = 0; i < 78; i++) err.print_raw("=");
4169   err.cr();
4170 
4171   char buf[16];
4172   // Prevent process from exiting upon "read error" without consuming all CPU
4173   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4174 
4175   return buf[0] == 'y' || buf[0] == 'Y';
4176 }
4177 
4178 int os::stat(const char *path, struct stat *sbuf) {
4179   char pathbuf[MAX_PATH];
4180   if (strlen(path) > MAX_PATH - 1) {
4181     errno = ENAMETOOLONG;
4182     return -1;
4183   }
4184   hpi::native_path(strcpy(pathbuf, path));
4185   return ::stat(pathbuf, sbuf);
4186 }
4187 
4188 bool os::check_heap(bool force) {
4189   return true;
4190 }
4191 
4192 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4193   return ::vsnprintf(buf, count, format, args);
4194 }
4195 
4196 // Is a (classpath) directory empty?
4197 bool os::dir_is_empty(const char* path) {
4198   DIR *dir = NULL;
4199   struct dirent *ptr;
4200 
4201   dir = opendir(path);
4202   if (dir == NULL) return true;
4203 
4204   /* Scan the directory */
4205   bool result = true;
4206   char buf[sizeof(struct dirent) + MAX_PATH];
4207   while (result && (ptr = ::readdir(dir)) != NULL) {
4208     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4209       result = false;
4210     }
4211   }
4212   closedir(dir);
4213   return result;
4214 }
4215 
4216 // create binary file, rewriting existing file if required
4217 int os::create_binary_file(const char* path, bool rewrite_existing) {
4218   int oflags = O_WRONLY | O_CREAT;
4219   if (!rewrite_existing) {
4220     oflags |= O_EXCL;
4221   }
4222   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4223 }
4224 
4225 // return current position of file pointer
4226 jlong os::current_file_offset(int fd) {
4227   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4228 }
4229 
4230 // move file pointer to the specified offset
4231 jlong os::seek_to_file_offset(int fd, jlong offset) {
4232   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4233 }
4234 
4235 // Map a block of memory.
4236 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4237                      char *addr, size_t bytes, bool read_only,
4238                      bool allow_exec) {
4239   int prot;
4240   int flags;
4241 
4242   if (read_only) {
4243     prot = PROT_READ;
4244     flags = MAP_SHARED;
4245   } else {
4246     prot = PROT_READ | PROT_WRITE;
4247     flags = MAP_PRIVATE;
4248   }
4249 
4250   if (allow_exec) {
4251     prot |= PROT_EXEC;
4252   }
4253 
4254   if (addr != NULL) {
4255     flags |= MAP_FIXED;
4256   }
4257 
4258   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4259                                      fd, file_offset);
4260   if (mapped_address == MAP_FAILED) {
4261     return NULL;
4262   }
4263   return mapped_address;
4264 }
4265 
4266 
4267 // Remap a block of memory.
4268 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4269                        char *addr, size_t bytes, bool read_only,
4270                        bool allow_exec) {
4271   // same as map_memory() on this OS
4272   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4273                         allow_exec);
4274 }
4275 
4276 
4277 // Unmap a block of memory.
4278 bool os::unmap_memory(char* addr, size_t bytes) {
4279   return munmap(addr, bytes) == 0;
4280 }
4281 
4282 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4283 
4284 static clockid_t thread_cpu_clockid(Thread* thread) {
4285   pthread_t tid = thread->osthread()->pthread_id();
4286   clockid_t clockid;
4287 
4288   // Get thread clockid
4289   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4290   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4291   return clockid;
4292 }
4293 
4294 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4295 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4296 // of a thread.
4297 //
4298 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4299 // the fast estimate available on the platform.
4300 
4301 jlong os::current_thread_cpu_time() {
4302   if (os::Linux::supports_fast_thread_cpu_time()) {
4303     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4304   } else {
4305     // return user + sys since the cost is the same
4306     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4307   }
4308 }
4309 
4310 jlong os::thread_cpu_time(Thread* thread) {
4311   // consistent with what current_thread_cpu_time() returns
4312   if (os::Linux::supports_fast_thread_cpu_time()) {
4313     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4314   } else {
4315     return slow_thread_cpu_time(thread, true /* user + sys */);
4316   }
4317 }
4318 
4319 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4320   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4321     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4322   } else {
4323     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4324   }
4325 }
4326 
4327 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4328   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4329     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4330   } else {
4331     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4332   }
4333 }
4334 
4335 //
4336 //  -1 on error.
4337 //
4338 
4339 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4340   static bool proc_pid_cpu_avail = true;
4341   static bool proc_task_unchecked = true;
4342   static const char *proc_stat_path = "/proc/%d/stat";
4343   pid_t  tid = thread->osthread()->thread_id();
4344   int i;
4345   char *s;
4346   char stat[2048];
4347   int statlen;
4348   char proc_name[64];
4349   int count;
4350   long sys_time, user_time;
4351   char string[64];
4352   char cdummy;
4353   int idummy;
4354   long ldummy;
4355   FILE *fp;
4356 
4357   // We first try accessing /proc/<pid>/cpu since this is faster to
4358   // process.  If this file is not present (linux kernels 2.5 and above)
4359   // then we open /proc/<pid>/stat.
4360   if ( proc_pid_cpu_avail ) {
4361     sprintf(proc_name, "/proc/%d/cpu", tid);
4362     fp =  fopen(proc_name, "r");
4363     if ( fp != NULL ) {
4364       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4365       fclose(fp);
4366       if ( count != 3 ) return -1;
4367 
4368       if (user_sys_cpu_time) {
4369         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4370       } else {
4371         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4372       }
4373     }
4374     else proc_pid_cpu_avail = false;
4375   }
4376 
4377   // The /proc/<tid>/stat aggregates per-process usage on
4378   // new Linux kernels 2.6+ where NPTL is supported.
4379   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4380   // See bug 6328462.
4381   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4382   // and possibly in some other cases, so we check its availability.
4383   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4384     // This is executed only once
4385     proc_task_unchecked = false;
4386     fp = fopen("/proc/self/task", "r");
4387     if (fp != NULL) {
4388       proc_stat_path = "/proc/self/task/%d/stat";
4389       fclose(fp);
4390     }
4391   }
4392 
4393   sprintf(proc_name, proc_stat_path, tid);
4394   fp = fopen(proc_name, "r");
4395   if ( fp == NULL ) return -1;
4396   statlen = fread(stat, 1, 2047, fp);
4397   stat[statlen] = '\0';
4398   fclose(fp);
4399 
4400   // Skip pid and the command string. Note that we could be dealing with
4401   // weird command names, e.g. user could decide to rename java launcher
4402   // to "java 1.4.2 :)", then the stat file would look like
4403   //                1234 (java 1.4.2 :)) R ... ...
4404   // We don't really need to know the command string, just find the last
4405   // occurrence of ")" and then start parsing from there. See bug 4726580.
4406   s = strrchr(stat, ')');
4407   i = 0;
4408   if (s == NULL ) return -1;
4409 
4410   // Skip blank chars
4411   do s++; while (isspace(*s));
4412 
4413   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4414                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4415                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4416                  &user_time, &sys_time);
4417   if ( count != 13 ) return -1;
4418   if (user_sys_cpu_time) {
4419     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4420   } else {
4421     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4422   }
4423 }
4424 
4425 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4426   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4427   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4428   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4429   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4430 }
4431 
4432 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4433   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4434   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4435   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4436   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4437 }
4438 
4439 bool os::is_thread_cpu_time_supported() {
4440   return true;
4441 }
4442 
4443 // System loadavg support.  Returns -1 if load average cannot be obtained.
4444 // Linux doesn't yet have a (official) notion of processor sets,
4445 // so just return the system wide load average.
4446 int os::loadavg(double loadavg[], int nelem) {
4447   return ::getloadavg(loadavg, nelem);
4448 }
4449 
4450 void os::pause() {
4451   char filename[MAX_PATH];
4452   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4453     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4454   } else {
4455     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4456   }
4457 
4458   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4459   if (fd != -1) {
4460     struct stat buf;
4461     close(fd);
4462     while (::stat(filename, &buf) == 0) {
4463       (void)::poll(NULL, 0, 100);
4464     }
4465   } else {
4466     jio_fprintf(stderr,
4467       "Could not open pause file '%s', continuing immediately.\n", filename);
4468   }
4469 }
4470 
4471 extern "C" {
4472 
4473 /**
4474  * NOTE: the following code is to keep the green threads code
4475  * in the libjava.so happy. Once the green threads is removed,
4476  * these code will no longer be needed.
4477  */
4478 int
4479 jdk_waitpid(pid_t pid, int* status, int options) {
4480     return waitpid(pid, status, options);
4481 }
4482 
4483 int
4484 fork1() {
4485     return fork();
4486 }
4487 
4488 int
4489 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4490     return sem_init(sem, pshared, value);
4491 }
4492 
4493 int
4494 jdk_sem_post(sem_t *sem) {
4495     return sem_post(sem);
4496 }
4497 
4498 int
4499 jdk_sem_wait(sem_t *sem) {
4500     return sem_wait(sem);
4501 }
4502 
4503 int
4504 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4505     return pthread_sigmask(how , newmask, oldmask);
4506 }
4507 
4508 }
4509 
4510 // Refer to the comments in os_solaris.cpp park-unpark.
4511 //
4512 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4513 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4514 // For specifics regarding the bug see GLIBC BUGID 261237 :
4515 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4516 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4517 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4518 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4519 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4520 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4521 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4522 // of libpthread avoids the problem, but isn't practical.
4523 //
4524 // Possible remedies:
4525 //
4526 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4527 //      This is palliative and probabilistic, however.  If the thread is preempted
4528 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4529 //      than the minimum period may have passed, and the abstime may be stale (in the
4530 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4531 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4532 //
4533 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4534 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4535 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4536 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4537 //      thread.
4538 //
4539 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4540 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4541 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4542 //      This also works well.  In fact it avoids kernel-level scalability impediments
4543 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4544 //      timers in a graceful fashion.
4545 //
4546 // 4.   When the abstime value is in the past it appears that control returns
4547 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4548 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4549 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4550 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4551 //      It may be possible to avoid reinitialization by checking the return
4552 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4553 //      condvar we must establish the invariant that cond_signal() is only called
4554 //      within critical sections protected by the adjunct mutex.  This prevents
4555 //      cond_signal() from "seeing" a condvar that's in the midst of being
4556 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4557 //      desirable signal-after-unlock optimization that avoids futile context switching.
4558 //
4559 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4560 //      structure when a condvar is used or initialized.  cond_destroy()  would
4561 //      release the helper structure.  Our reinitialize-after-timedwait fix
4562 //      put excessive stress on malloc/free and locks protecting the c-heap.
4563 //
4564 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4565 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4566 // and only enabling the work-around for vulnerable environments.
4567 
4568 // utility to compute the abstime argument to timedwait:
4569 // millis is the relative timeout time
4570 // abstime will be the absolute timeout time
4571 // TODO: replace compute_abstime() with unpackTime()
4572 
4573 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4574   if (millis < 0)  millis = 0;
4575   struct timeval now;
4576   int status = gettimeofday(&now, NULL);
4577   assert(status == 0, "gettimeofday");
4578   jlong seconds = millis / 1000;
4579   millis %= 1000;
4580   if (seconds > 50000000) { // see man cond_timedwait(3T)
4581     seconds = 50000000;
4582   }
4583   abstime->tv_sec = now.tv_sec  + seconds;
4584   long       usec = now.tv_usec + millis * 1000;
4585   if (usec >= 1000000) {
4586     abstime->tv_sec += 1;
4587     usec -= 1000000;
4588   }
4589   abstime->tv_nsec = usec * 1000;
4590   return abstime;
4591 }
4592 
4593 
4594 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4595 // Conceptually TryPark() should be equivalent to park(0).
4596 
4597 int os::PlatformEvent::TryPark() {
4598   for (;;) {
4599     const int v = _Event ;
4600     guarantee ((v == 0) || (v == 1), "invariant") ;
4601     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4602   }
4603 }
4604 
4605 void os::PlatformEvent::park() {       // AKA "down()"
4606   // Invariant: Only the thread associated with the Event/PlatformEvent
4607   // may call park().
4608   // TODO: assert that _Assoc != NULL or _Assoc == Self
4609   int v ;
4610   for (;;) {
4611       v = _Event ;
4612       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4613   }
4614   guarantee (v >= 0, "invariant") ;
4615   if (v == 0) {
4616      // Do this the hard way by blocking ...
4617      int status = pthread_mutex_lock(_mutex);
4618      assert_status(status == 0, status, "mutex_lock");
4619      guarantee (_nParked == 0, "invariant") ;
4620      ++ _nParked ;
4621      while (_Event < 0) {
4622         status = pthread_cond_wait(_cond, _mutex);
4623         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4624         // Treat this the same as if the wait was interrupted
4625         if (status == ETIME) { status = EINTR; }
4626         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4627      }
4628      -- _nParked ;
4629 
4630     // In theory we could move the ST of 0 into _Event past the unlock(),
4631     // but then we'd need a MEMBAR after the ST.
4632     _Event = 0 ;
4633      status = pthread_mutex_unlock(_mutex);
4634      assert_status(status == 0, status, "mutex_unlock");
4635   }
4636   guarantee (_Event >= 0, "invariant") ;
4637 }
4638 
4639 int os::PlatformEvent::park(jlong millis) {
4640   guarantee (_nParked == 0, "invariant") ;
4641 
4642   int v ;
4643   for (;;) {
4644       v = _Event ;
4645       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4646   }
4647   guarantee (v >= 0, "invariant") ;
4648   if (v != 0) return OS_OK ;
4649 
4650   // We do this the hard way, by blocking the thread.
4651   // Consider enforcing a minimum timeout value.
4652   struct timespec abst;
4653   compute_abstime(&abst, millis);
4654 
4655   int ret = OS_TIMEOUT;
4656   int status = pthread_mutex_lock(_mutex);
4657   assert_status(status == 0, status, "mutex_lock");
4658   guarantee (_nParked == 0, "invariant") ;
4659   ++_nParked ;
4660 
4661   // Object.wait(timo) will return because of
4662   // (a) notification
4663   // (b) timeout
4664   // (c) thread.interrupt
4665   //
4666   // Thread.interrupt and object.notify{All} both call Event::set.
4667   // That is, we treat thread.interrupt as a special case of notification.
4668   // The underlying Solaris implementation, cond_timedwait, admits
4669   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4670   // JVM from making those visible to Java code.  As such, we must
4671   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4672   //
4673   // TODO: properly differentiate simultaneous notify+interrupt.
4674   // In that case, we should propagate the notify to another waiter.
4675 
4676   while (_Event < 0) {
4677     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4678     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4679       pthread_cond_destroy (_cond);
4680       pthread_cond_init (_cond, NULL) ;
4681     }
4682     assert_status(status == 0 || status == EINTR ||
4683                   status == ETIME || status == ETIMEDOUT,
4684                   status, "cond_timedwait");
4685     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4686     if (status == ETIME || status == ETIMEDOUT) break ;
4687     // We consume and ignore EINTR and spurious wakeups.
4688   }
4689   --_nParked ;
4690   if (_Event >= 0) {
4691      ret = OS_OK;
4692   }
4693   _Event = 0 ;
4694   status = pthread_mutex_unlock(_mutex);
4695   assert_status(status == 0, status, "mutex_unlock");
4696   assert (_nParked == 0, "invariant") ;
4697   return ret;
4698 }
4699 
4700 void os::PlatformEvent::unpark() {
4701   int v, AnyWaiters ;
4702   for (;;) {
4703       v = _Event ;
4704       if (v > 0) {
4705          // The LD of _Event could have reordered or be satisfied
4706          // by a read-aside from this processor's write buffer.
4707          // To avoid problems execute a barrier and then
4708          // ratify the value.
4709          OrderAccess::fence() ;
4710          if (_Event == v) return ;
4711          continue ;
4712       }
4713       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4714   }
4715   if (v < 0) {
4716      // Wait for the thread associated with the event to vacate
4717      int status = pthread_mutex_lock(_mutex);
4718      assert_status(status == 0, status, "mutex_lock");
4719      AnyWaiters = _nParked ;
4720      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4721      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4722         AnyWaiters = 0 ;
4723         pthread_cond_signal (_cond);
4724      }
4725      status = pthread_mutex_unlock(_mutex);
4726      assert_status(status == 0, status, "mutex_unlock");
4727      if (AnyWaiters != 0) {
4728         status = pthread_cond_signal(_cond);
4729         assert_status(status == 0, status, "cond_signal");
4730      }
4731   }
4732 
4733   // Note that we signal() _after dropping the lock for "immortal" Events.
4734   // This is safe and avoids a common class of  futile wakeups.  In rare
4735   // circumstances this can cause a thread to return prematurely from
4736   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4737   // simply re-test the condition and re-park itself.
4738 }
4739 
4740 
4741 // JSR166
4742 // -------------------------------------------------------
4743 
4744 /*
4745  * The solaris and linux implementations of park/unpark are fairly
4746  * conservative for now, but can be improved. They currently use a
4747  * mutex/condvar pair, plus a a count.
4748  * Park decrements count if > 0, else does a condvar wait.  Unpark
4749  * sets count to 1 and signals condvar.  Only one thread ever waits
4750  * on the condvar. Contention seen when trying to park implies that someone
4751  * is unparking you, so don't wait. And spurious returns are fine, so there
4752  * is no need to track notifications.
4753  */
4754 
4755 
4756 #define NANOSECS_PER_SEC 1000000000
4757 #define NANOSECS_PER_MILLISEC 1000000
4758 #define MAX_SECS 100000000
4759 /*
4760  * This code is common to linux and solaris and will be moved to a
4761  * common place in dolphin.
4762  *
4763  * The passed in time value is either a relative time in nanoseconds
4764  * or an absolute time in milliseconds. Either way it has to be unpacked
4765  * into suitable seconds and nanoseconds components and stored in the
4766  * given timespec structure.
4767  * Given time is a 64-bit value and the time_t used in the timespec is only
4768  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4769  * overflow if times way in the future are given. Further on Solaris versions
4770  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4771  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4772  * As it will be 28 years before "now + 100000000" will overflow we can
4773  * ignore overflow and just impose a hard-limit on seconds using the value
4774  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4775  * years from "now".
4776  */
4777 
4778 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4779   assert (time > 0, "convertTime");
4780 
4781   struct timeval now;
4782   int status = gettimeofday(&now, NULL);
4783   assert(status == 0, "gettimeofday");
4784 
4785   time_t max_secs = now.tv_sec + MAX_SECS;
4786 
4787   if (isAbsolute) {
4788     jlong secs = time / 1000;
4789     if (secs > max_secs) {
4790       absTime->tv_sec = max_secs;
4791     }
4792     else {
4793       absTime->tv_sec = secs;
4794     }
4795     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4796   }
4797   else {
4798     jlong secs = time / NANOSECS_PER_SEC;
4799     if (secs >= MAX_SECS) {
4800       absTime->tv_sec = max_secs;
4801       absTime->tv_nsec = 0;
4802     }
4803     else {
4804       absTime->tv_sec = now.tv_sec + secs;
4805       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4806       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4807         absTime->tv_nsec -= NANOSECS_PER_SEC;
4808         ++absTime->tv_sec; // note: this must be <= max_secs
4809       }
4810     }
4811   }
4812   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4813   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4814   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4815   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4816 }
4817 
4818 void Parker::park(bool isAbsolute, jlong time) {
4819   // Optional fast-path check:
4820   // Return immediately if a permit is available.
4821   if (_counter > 0) {
4822       _counter = 0 ;
4823       OrderAccess::fence();
4824       return ;
4825   }
4826 
4827   Thread* thread = Thread::current();
4828   assert(thread->is_Java_thread(), "Must be JavaThread");
4829   JavaThread *jt = (JavaThread *)thread;
4830 
4831   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4832   // Check interrupt before trying to wait
4833   if (Thread::is_interrupted(thread, false)) {
4834     return;
4835   }
4836 
4837   // Next, demultiplex/decode time arguments
4838   timespec absTime;
4839   if (time < 0) { // don't wait at all
4840     return;
4841   }
4842   if (time > 0) {
4843     unpackTime(&absTime, isAbsolute, time);
4844   }
4845 
4846 
4847   // Enter safepoint region
4848   // Beware of deadlocks such as 6317397.
4849   // The per-thread Parker:: mutex is a classic leaf-lock.
4850   // In particular a thread must never block on the Threads_lock while
4851   // holding the Parker:: mutex.  If safepoints are pending both the
4852   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4853   ThreadBlockInVM tbivm(jt);
4854 
4855   // Don't wait if cannot get lock since interference arises from
4856   // unblocking.  Also. check interrupt before trying wait
4857   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4858     return;
4859   }
4860 
4861   int status ;
4862   if (_counter > 0)  { // no wait needed
4863     _counter = 0;
4864     status = pthread_mutex_unlock(_mutex);
4865     assert (status == 0, "invariant") ;
4866     OrderAccess::fence();
4867     return;
4868   }
4869 
4870 #ifdef ASSERT
4871   // Don't catch signals while blocked; let the running threads have the signals.
4872   // (This allows a debugger to break into the running thread.)
4873   sigset_t oldsigs;
4874   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4875   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4876 #endif
4877 
4878   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4879   jt->set_suspend_equivalent();
4880   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4881 
4882   if (time == 0) {
4883     status = pthread_cond_wait (_cond, _mutex) ;
4884   } else {
4885     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4886     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4887       pthread_cond_destroy (_cond) ;
4888       pthread_cond_init    (_cond, NULL);
4889     }
4890   }
4891   assert_status(status == 0 || status == EINTR ||
4892                 status == ETIME || status == ETIMEDOUT,
4893                 status, "cond_timedwait");
4894 
4895 #ifdef ASSERT
4896   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4897 #endif
4898 
4899   _counter = 0 ;
4900   status = pthread_mutex_unlock(_mutex) ;
4901   assert_status(status == 0, status, "invariant") ;
4902   // If externally suspended while waiting, re-suspend
4903   if (jt->handle_special_suspend_equivalent_condition()) {
4904     jt->java_suspend_self();
4905   }
4906 
4907   OrderAccess::fence();
4908 }
4909 
4910 void Parker::unpark() {
4911   int s, status ;
4912   status = pthread_mutex_lock(_mutex);
4913   assert (status == 0, "invariant") ;
4914   s = _counter;
4915   _counter = 1;
4916   if (s < 1) {
4917      if (WorkAroundNPTLTimedWaitHang) {
4918         status = pthread_cond_signal (_cond) ;
4919         assert (status == 0, "invariant") ;
4920         status = pthread_mutex_unlock(_mutex);
4921         assert (status == 0, "invariant") ;
4922      } else {
4923         status = pthread_mutex_unlock(_mutex);
4924         assert (status == 0, "invariant") ;
4925         status = pthread_cond_signal (_cond) ;
4926         assert (status == 0, "invariant") ;
4927      }
4928   } else {
4929     pthread_mutex_unlock(_mutex);
4930     assert (status == 0, "invariant") ;
4931   }
4932 }
4933 
4934 
4935 extern char** environ;
4936 
4937 #ifndef __NR_fork
4938 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4939 #endif
4940 
4941 #ifndef __NR_execve
4942 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4943 #endif
4944 
4945 // Run the specified command in a separate process. Return its exit value,
4946 // or -1 on failure (e.g. can't fork a new process).
4947 // Unlike system(), this function can be called from signal handler. It
4948 // doesn't block SIGINT et al.
4949 int os::fork_and_exec(char* cmd) {
4950   const char * argv[4] = {"sh", "-c", cmd, NULL};
4951 
4952   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4953   // pthread_atfork handlers and reset pthread library. All we need is a
4954   // separate process to execve. Make a direct syscall to fork process.
4955   // On IA64 there's no fork syscall, we have to use fork() and hope for
4956   // the best...
4957   pid_t pid = NOT_IA64(syscall(__NR_fork);)
4958               IA64_ONLY(fork();)
4959 
4960   if (pid < 0) {
4961     // fork failed
4962     return -1;
4963 
4964   } else if (pid == 0) {
4965     // child process
4966 
4967     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
4968     // first to kill every thread on the thread list. Because this list is
4969     // not reset by fork() (see notes above), execve() will instead kill
4970     // every thread in the parent process. We know this is the only thread
4971     // in the new process, so make a system call directly.
4972     // IA64 should use normal execve() from glibc to match the glibc fork()
4973     // above.
4974     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4975     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4976 
4977     // execve failed
4978     _exit(-1);
4979 
4980   } else  {
4981     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4982     // care about the actual exit code, for now.
4983 
4984     int status;
4985 
4986     // Wait for the child process to exit.  This returns immediately if
4987     // the child has already exited. */
4988     while (waitpid(pid, &status, 0) < 0) {
4989         switch (errno) {
4990         case ECHILD: return 0;
4991         case EINTR: break;
4992         default: return -1;
4993         }
4994     }
4995 
4996     if (WIFEXITED(status)) {
4997        // The child exited normally; get its exit code.
4998        return WEXITSTATUS(status);
4999     } else if (WIFSIGNALED(status)) {
5000        // The child exited because of a signal
5001        // The best value to return is 0x80 + signal number,
5002        // because that is what all Unix shells do, and because
5003        // it allows callers to distinguish between process exit and
5004        // process death by signal.
5005        return 0x80 + WTERMSIG(status);
5006     } else {
5007        // Unknown exit code; pass it through
5008        return status;
5009     }
5010   }
5011 }
5012 
5013 // is_headless_jre()
5014 //
5015 // Test for the existence of libmawt in motif21 or xawt directories
5016 // in order to report if we are running in a headless jre
5017 //
5018 bool os::is_headless_jre() {
5019     struct stat statbuf;
5020     char buf[MAXPATHLEN];
5021     char libmawtpath[MAXPATHLEN];
5022     const char *xawtstr  = "/xawt/libmawt.so";
5023     const char *motifstr = "/motif21/libmawt.so";
5024     char *p;
5025 
5026     // Get path to libjvm.so
5027     os::jvm_path(buf, sizeof(buf));
5028 
5029     // Get rid of libjvm.so
5030     p = strrchr(buf, '/');
5031     if (p == NULL) return false;
5032     else *p = '\0';
5033 
5034     // Get rid of client or server
5035     p = strrchr(buf, '/');
5036     if (p == NULL) return false;
5037     else *p = '\0';
5038 
5039     // check xawt/libmawt.so
5040     strcpy(libmawtpath, buf);
5041     strcat(libmawtpath, xawtstr);
5042     if (::stat(libmawtpath, &statbuf) == 0) return false;
5043 
5044     // check motif21/libmawt.so
5045     strcpy(libmawtpath, buf);
5046     strcat(libmawtpath, motifstr);
5047     if (::stat(libmawtpath, &statbuf) == 0) return false;
5048 
5049     return true;
5050 }
5051