1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifdef _WIN64
  26 // Must be at least Windows 2000 or XP to use VectoredExceptions
  27 #define _WIN32_WINNT 0x500
  28 #endif
  29 
  30 // do not include precompiled header file
  31 # include "incls/_os_windows.cpp.incl"
  32 
  33 #ifdef _DEBUG
  34 #include <crtdbg.h>
  35 #endif
  36 
  37 
  38 #include <windows.h>
  39 #include <sys/types.h>
  40 #include <sys/stat.h>
  41 #include <sys/timeb.h>
  42 #include <objidl.h>
  43 #include <shlobj.h>
  44 
  45 #include <malloc.h>
  46 #include <signal.h>
  47 #include <direct.h>
  48 #include <errno.h>
  49 #include <fcntl.h>
  50 #include <io.h>
  51 #include <process.h>              // For _beginthreadex(), _endthreadex()
  52 #include <imagehlp.h>             // For os::dll_address_to_function_name
  53 
  54 /* for enumerating dll libraries */
  55 #include <tlhelp32.h>
  56 #include <vdmdbg.h>
  57 
  58 // for timer info max values which include all bits
  59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  60 
  61 // For DLL loading/load error detection
  62 // Values of PE COFF
  63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
  64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
  65 
  66 static HANDLE main_process;
  67 static HANDLE main_thread;
  68 static int    main_thread_id;
  69 
  70 static FILETIME process_creation_time;
  71 static FILETIME process_exit_time;
  72 static FILETIME process_user_time;
  73 static FILETIME process_kernel_time;
  74 
  75 #ifdef _WIN64
  76 PVOID  topLevelVectoredExceptionHandler = NULL;
  77 #endif
  78 
  79 #ifdef _M_IA64
  80 #define __CPU__ ia64
  81 #elif _M_AMD64
  82 #define __CPU__ amd64
  83 #else
  84 #define __CPU__ i486
  85 #endif
  86 
  87 // save DLL module handle, used by GetModuleFileName
  88 
  89 HINSTANCE vm_lib_handle;
  90 static int getLastErrorString(char *buf, size_t len);
  91 
  92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
  93   switch (reason) {
  94     case DLL_PROCESS_ATTACH:
  95       vm_lib_handle = hinst;
  96       if(ForceTimeHighResolution)
  97         timeBeginPeriod(1L);
  98       break;
  99     case DLL_PROCESS_DETACH:
 100       if(ForceTimeHighResolution)
 101         timeEndPeriod(1L);
 102 #ifdef _WIN64
 103       if (topLevelVectoredExceptionHandler != NULL) {
 104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 105         topLevelVectoredExceptionHandler = NULL;
 106       }
 107 #endif
 108       break;
 109     default:
 110       break;
 111   }
 112   return true;
 113 }
 114 
 115 static inline double fileTimeAsDouble(FILETIME* time) {
 116   const double high  = (double) ((unsigned int) ~0);
 117   const double split = 10000000.0;
 118   double result = (time->dwLowDateTime / split) +
 119                    time->dwHighDateTime * (high/split);
 120   return result;
 121 }
 122 
 123 // Implementation of os
 124 
 125 bool os::getenv(const char* name, char* buffer, int len) {
 126  int result = GetEnvironmentVariable(name, buffer, len);
 127  return result > 0 && result < len;
 128 }
 129 
 130 
 131 // No setuid programs under Windows.
 132 bool os::have_special_privileges() {
 133   return false;
 134 }
 135 
 136 
 137 // This method is  a periodic task to check for misbehaving JNI applications
 138 // under CheckJNI, we can add any periodic checks here.
 139 // For Windows at the moment does nothing
 140 void os::run_periodic_checks() {
 141   return;
 142 }
 143 
 144 #ifndef _WIN64
 145 // previous UnhandledExceptionFilter, if there is one
 146 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 147 
 148 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 149 #endif
 150 void os::init_system_properties_values() {
 151   /* sysclasspath, java_home, dll_dir */
 152   {
 153       char *home_path;
 154       char *dll_path;
 155       char *pslash;
 156       char *bin = "\\bin";
 157       char home_dir[MAX_PATH];
 158 
 159       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 160           os::jvm_path(home_dir, sizeof(home_dir));
 161           // Found the full path to jvm[_g].dll.
 162           // Now cut the path to <java_home>/jre if we can.
 163           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 164           pslash = strrchr(home_dir, '\\');
 165           if (pslash != NULL) {
 166               *pslash = '\0';                 /* get rid of \{client|server} */
 167               pslash = strrchr(home_dir, '\\');
 168               if (pslash != NULL)
 169                   *pslash = '\0';             /* get rid of \bin */
 170           }
 171       }
 172 
 173       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
 174       if (home_path == NULL)
 175           return;
 176       strcpy(home_path, home_dir);
 177       Arguments::set_java_home(home_path);
 178 
 179       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
 180       if (dll_path == NULL)
 181           return;
 182       strcpy(dll_path, home_dir);
 183       strcat(dll_path, bin);
 184       Arguments::set_dll_dir(dll_path);
 185 
 186       if (!set_boot_path('\\', ';'))
 187           return;
 188   }
 189 
 190   /* library_path */
 191   #define EXT_DIR "\\lib\\ext"
 192   #define BIN_DIR "\\bin"
 193   #define PACKAGE_DIR "\\Sun\\Java"
 194   {
 195     /* Win32 library search order (See the documentation for LoadLibrary):
 196      *
 197      * 1. The directory from which application is loaded.
 198      * 2. The current directory
 199      * 3. The system wide Java Extensions directory (Java only)
 200      * 4. System directory (GetSystemDirectory)
 201      * 5. Windows directory (GetWindowsDirectory)
 202      * 6. The PATH environment variable
 203      */
 204 
 205     char *library_path;
 206     char tmp[MAX_PATH];
 207     char *path_str = ::getenv("PATH");
 208 
 209     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 210         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
 211 
 212     library_path[0] = '\0';
 213 
 214     GetModuleFileName(NULL, tmp, sizeof(tmp));
 215     *(strrchr(tmp, '\\')) = '\0';
 216     strcat(library_path, tmp);
 217 
 218     strcat(library_path, ";.");
 219 
 220     GetWindowsDirectory(tmp, sizeof(tmp));
 221     strcat(library_path, ";");
 222     strcat(library_path, tmp);
 223     strcat(library_path, PACKAGE_DIR BIN_DIR);
 224 
 225     GetSystemDirectory(tmp, sizeof(tmp));
 226     strcat(library_path, ";");
 227     strcat(library_path, tmp);
 228 
 229     GetWindowsDirectory(tmp, sizeof(tmp));
 230     strcat(library_path, ";");
 231     strcat(library_path, tmp);
 232 
 233     if (path_str) {
 234         strcat(library_path, ";");
 235         strcat(library_path, path_str);
 236     }
 237 
 238     Arguments::set_library_path(library_path);
 239     FREE_C_HEAP_ARRAY(char, library_path);
 240   }
 241 
 242   /* Default extensions directory */
 243   {
 244     char path[MAX_PATH];
 245     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 246     GetWindowsDirectory(path, MAX_PATH);
 247     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 248         path, PACKAGE_DIR, EXT_DIR);
 249     Arguments::set_ext_dirs(buf);
 250   }
 251   #undef EXT_DIR
 252   #undef BIN_DIR
 253   #undef PACKAGE_DIR
 254 
 255   /* Default endorsed standards directory. */
 256   {
 257     #define ENDORSED_DIR "\\lib\\endorsed"
 258     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 259     char * buf = NEW_C_HEAP_ARRAY(char, len);
 260     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 261     Arguments::set_endorsed_dirs(buf);
 262     #undef ENDORSED_DIR
 263   }
 264 
 265 #ifndef _WIN64
 266   // set our UnhandledExceptionFilter and save any previous one
 267   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 268 #endif
 269 
 270   // Done
 271   return;
 272 }
 273 
 274 void os::breakpoint() {
 275   DebugBreak();
 276 }
 277 
 278 // Invoked from the BREAKPOINT Macro
 279 extern "C" void breakpoint() {
 280   os::breakpoint();
 281 }
 282 
 283 // Returns an estimate of the current stack pointer. Result must be guaranteed
 284 // to point into the calling threads stack, and be no lower than the current
 285 // stack pointer.
 286 
 287 address os::current_stack_pointer() {
 288   int dummy;
 289   address sp = (address)&dummy;
 290   return sp;
 291 }
 292 
 293 // os::current_stack_base()
 294 //
 295 //   Returns the base of the stack, which is the stack's
 296 //   starting address.  This function must be called
 297 //   while running on the stack of the thread being queried.
 298 
 299 address os::current_stack_base() {
 300   MEMORY_BASIC_INFORMATION minfo;
 301   address stack_bottom;
 302   size_t stack_size;
 303 
 304   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 305   stack_bottom =  (address)minfo.AllocationBase;
 306   stack_size = minfo.RegionSize;
 307 
 308   // Add up the sizes of all the regions with the same
 309   // AllocationBase.
 310   while( 1 )
 311   {
 312     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 313     if ( stack_bottom == (address)minfo.AllocationBase )
 314       stack_size += minfo.RegionSize;
 315     else
 316       break;
 317   }
 318 
 319 #ifdef _M_IA64
 320   // IA64 has memory and register stacks
 321   stack_size = stack_size / 2;
 322 #endif
 323   return stack_bottom + stack_size;
 324 }
 325 
 326 size_t os::current_stack_size() {
 327   size_t sz;
 328   MEMORY_BASIC_INFORMATION minfo;
 329   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 330   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 331   return sz;
 332 }
 333 
 334 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 335   const struct tm* time_struct_ptr = localtime(clock);
 336   if (time_struct_ptr != NULL) {
 337     *res = *time_struct_ptr;
 338     return res;
 339   }
 340   return NULL;
 341 }
 342 
 343 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 344 
 345 // Thread start routine for all new Java threads
 346 static unsigned __stdcall java_start(Thread* thread) {
 347   // Try to randomize the cache line index of hot stack frames.
 348   // This helps when threads of the same stack traces evict each other's
 349   // cache lines. The threads can be either from the same JVM instance, or
 350   // from different JVM instances. The benefit is especially true for
 351   // processors with hyperthreading technology.
 352   static int counter = 0;
 353   int pid = os::current_process_id();
 354   _alloca(((pid ^ counter++) & 7) * 128);
 355 
 356   OSThread* osthr = thread->osthread();
 357   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 358 
 359   if (UseNUMA) {
 360     int lgrp_id = os::numa_get_group_id();
 361     if (lgrp_id != -1) {
 362       thread->set_lgrp_id(lgrp_id);
 363     }
 364   }
 365 
 366 
 367   if (UseVectoredExceptions) {
 368     // If we are using vectored exception we don't need to set a SEH
 369     thread->run();
 370   }
 371   else {
 372     // Install a win32 structured exception handler around every thread created
 373     // by VM, so VM can genrate error dump when an exception occurred in non-
 374     // Java thread (e.g. VM thread).
 375     __try {
 376        thread->run();
 377     } __except(topLevelExceptionFilter(
 378                (_EXCEPTION_POINTERS*)_exception_info())) {
 379         // Nothing to do.
 380     }
 381   }
 382 
 383   // One less thread is executing
 384   // When the VMThread gets here, the main thread may have already exited
 385   // which frees the CodeHeap containing the Atomic::add code
 386   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 387     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 388   }
 389 
 390   return 0;
 391 }
 392 
 393 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 394   // Allocate the OSThread object
 395   OSThread* osthread = new OSThread(NULL, NULL);
 396   if (osthread == NULL) return NULL;
 397 
 398   // Initialize support for Java interrupts
 399   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 400   if (interrupt_event == NULL) {
 401     delete osthread;
 402     return NULL;
 403   }
 404   osthread->set_interrupt_event(interrupt_event);
 405 
 406   // Store info on the Win32 thread into the OSThread
 407   osthread->set_thread_handle(thread_handle);
 408   osthread->set_thread_id(thread_id);
 409 
 410   if (UseNUMA) {
 411     int lgrp_id = os::numa_get_group_id();
 412     if (lgrp_id != -1) {
 413       thread->set_lgrp_id(lgrp_id);
 414     }
 415   }
 416 
 417   // Initial thread state is INITIALIZED, not SUSPENDED
 418   osthread->set_state(INITIALIZED);
 419 
 420   return osthread;
 421 }
 422 
 423 
 424 bool os::create_attached_thread(JavaThread* thread) {
 425 #ifdef ASSERT
 426   thread->verify_not_published();
 427 #endif
 428   HANDLE thread_h;
 429   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 430                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 431     fatal("DuplicateHandle failed\n");
 432   }
 433   OSThread* osthread = create_os_thread(thread, thread_h,
 434                                         (int)current_thread_id());
 435   if (osthread == NULL) {
 436      return false;
 437   }
 438 
 439   // Initial thread state is RUNNABLE
 440   osthread->set_state(RUNNABLE);
 441 
 442   thread->set_osthread(osthread);
 443   return true;
 444 }
 445 
 446 bool os::create_main_thread(JavaThread* thread) {
 447 #ifdef ASSERT
 448   thread->verify_not_published();
 449 #endif
 450   if (_starting_thread == NULL) {
 451     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 452      if (_starting_thread == NULL) {
 453         return false;
 454      }
 455   }
 456 
 457   // The primordial thread is runnable from the start)
 458   _starting_thread->set_state(RUNNABLE);
 459 
 460   thread->set_osthread(_starting_thread);
 461   return true;
 462 }
 463 
 464 // Allocate and initialize a new OSThread
 465 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 466   unsigned thread_id;
 467 
 468   // Allocate the OSThread object
 469   OSThread* osthread = new OSThread(NULL, NULL);
 470   if (osthread == NULL) {
 471     return false;
 472   }
 473 
 474   // Initialize support for Java interrupts
 475   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 476   if (interrupt_event == NULL) {
 477     delete osthread;
 478     return NULL;
 479   }
 480   osthread->set_interrupt_event(interrupt_event);
 481   osthread->set_interrupted(false);
 482 
 483   thread->set_osthread(osthread);
 484 
 485   if (stack_size == 0) {
 486     switch (thr_type) {
 487     case os::java_thread:
 488       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 489       if (JavaThread::stack_size_at_create() > 0)
 490         stack_size = JavaThread::stack_size_at_create();
 491       break;
 492     case os::compiler_thread:
 493       if (CompilerThreadStackSize > 0) {
 494         stack_size = (size_t)(CompilerThreadStackSize * K);
 495         break;
 496       } // else fall through:
 497         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 498     case os::vm_thread:
 499     case os::pgc_thread:
 500     case os::cgc_thread:
 501     case os::watcher_thread:
 502       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 503       break;
 504     }
 505   }
 506 
 507   // Create the Win32 thread
 508   //
 509   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 510   // does not specify stack size. Instead, it specifies the size of
 511   // initially committed space. The stack size is determined by
 512   // PE header in the executable. If the committed "stack_size" is larger
 513   // than default value in the PE header, the stack is rounded up to the
 514   // nearest multiple of 1MB. For example if the launcher has default
 515   // stack size of 320k, specifying any size less than 320k does not
 516   // affect the actual stack size at all, it only affects the initial
 517   // commitment. On the other hand, specifying 'stack_size' larger than
 518   // default value may cause significant increase in memory usage, because
 519   // not only the stack space will be rounded up to MB, but also the
 520   // entire space is committed upfront.
 521   //
 522   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 523   // for CreateThread() that can treat 'stack_size' as stack size. However we
 524   // are not supposed to call CreateThread() directly according to MSDN
 525   // document because JVM uses C runtime library. The good news is that the
 526   // flag appears to work with _beginthredex() as well.
 527 
 528 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 529 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 530 #endif
 531 
 532   HANDLE thread_handle =
 533     (HANDLE)_beginthreadex(NULL,
 534                            (unsigned)stack_size,
 535                            (unsigned (__stdcall *)(void*)) java_start,
 536                            thread,
 537                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 538                            &thread_id);
 539   if (thread_handle == NULL) {
 540     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 541     // without the flag.
 542     thread_handle =
 543     (HANDLE)_beginthreadex(NULL,
 544                            (unsigned)stack_size,
 545                            (unsigned (__stdcall *)(void*)) java_start,
 546                            thread,
 547                            CREATE_SUSPENDED,
 548                            &thread_id);
 549   }
 550   if (thread_handle == NULL) {
 551     // Need to clean up stuff we've allocated so far
 552     CloseHandle(osthread->interrupt_event());
 553     thread->set_osthread(NULL);
 554     delete osthread;
 555     return NULL;
 556   }
 557 
 558   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 559 
 560   // Store info on the Win32 thread into the OSThread
 561   osthread->set_thread_handle(thread_handle);
 562   osthread->set_thread_id(thread_id);
 563 
 564   // Initial thread state is INITIALIZED, not SUSPENDED
 565   osthread->set_state(INITIALIZED);
 566 
 567   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 568   return true;
 569 }
 570 
 571 
 572 // Free Win32 resources related to the OSThread
 573 void os::free_thread(OSThread* osthread) {
 574   assert(osthread != NULL, "osthread not set");
 575   CloseHandle(osthread->thread_handle());
 576   CloseHandle(osthread->interrupt_event());
 577   delete osthread;
 578 }
 579 
 580 
 581 static int    has_performance_count = 0;
 582 static jlong first_filetime;
 583 static jlong initial_performance_count;
 584 static jlong performance_frequency;
 585 
 586 
 587 jlong as_long(LARGE_INTEGER x) {
 588   jlong result = 0; // initialization to avoid warning
 589   set_high(&result, x.HighPart);
 590   set_low(&result,  x.LowPart);
 591   return result;
 592 }
 593 
 594 
 595 jlong os::elapsed_counter() {
 596   LARGE_INTEGER count;
 597   if (has_performance_count) {
 598     QueryPerformanceCounter(&count);
 599     return as_long(count) - initial_performance_count;
 600   } else {
 601     FILETIME wt;
 602     GetSystemTimeAsFileTime(&wt);
 603     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 604   }
 605 }
 606 
 607 
 608 jlong os::elapsed_frequency() {
 609   if (has_performance_count) {
 610     return performance_frequency;
 611   } else {
 612    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 613    return 10000000;
 614   }
 615 }
 616 
 617 
 618 julong os::available_memory() {
 619   return win32::available_memory();
 620 }
 621 
 622 julong os::win32::available_memory() {
 623   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 624   // value if total memory is larger than 4GB
 625   MEMORYSTATUSEX ms;
 626   ms.dwLength = sizeof(ms);
 627   GlobalMemoryStatusEx(&ms);
 628 
 629   return (julong)ms.ullAvailPhys;
 630 }
 631 
 632 julong os::physical_memory() {
 633   return win32::physical_memory();
 634 }
 635 
 636 julong os::allocatable_physical_memory(julong size) {
 637 #ifdef _LP64
 638   return size;
 639 #else
 640   // Limit to 1400m because of the 2gb address space wall
 641   return MIN2(size, (julong)1400*M);
 642 #endif
 643 }
 644 
 645 // VC6 lacks DWORD_PTR
 646 #if _MSC_VER < 1300
 647 typedef UINT_PTR DWORD_PTR;
 648 #endif
 649 
 650 int os::active_processor_count() {
 651   DWORD_PTR lpProcessAffinityMask = 0;
 652   DWORD_PTR lpSystemAffinityMask = 0;
 653   int proc_count = processor_count();
 654   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 655       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 656     // Nof active processors is number of bits in process affinity mask
 657     int bitcount = 0;
 658     while (lpProcessAffinityMask != 0) {
 659       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 660       bitcount++;
 661     }
 662     return bitcount;
 663   } else {
 664     return proc_count;
 665   }
 666 }
 667 
 668 bool os::distribute_processes(uint length, uint* distribution) {
 669   // Not yet implemented.
 670   return false;
 671 }
 672 
 673 bool os::bind_to_processor(uint processor_id) {
 674   // Not yet implemented.
 675   return false;
 676 }
 677 
 678 static void initialize_performance_counter() {
 679   LARGE_INTEGER count;
 680   if (QueryPerformanceFrequency(&count)) {
 681     has_performance_count = 1;
 682     performance_frequency = as_long(count);
 683     QueryPerformanceCounter(&count);
 684     initial_performance_count = as_long(count);
 685   } else {
 686     has_performance_count = 0;
 687     FILETIME wt;
 688     GetSystemTimeAsFileTime(&wt);
 689     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 690   }
 691 }
 692 
 693 
 694 double os::elapsedTime() {
 695   return (double) elapsed_counter() / (double) elapsed_frequency();
 696 }
 697 
 698 
 699 // Windows format:
 700 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 701 // Java format:
 702 //   Java standards require the number of milliseconds since 1/1/1970
 703 
 704 // Constant offset - calculated using offset()
 705 static jlong  _offset   = 116444736000000000;
 706 // Fake time counter for reproducible results when debugging
 707 static jlong  fake_time = 0;
 708 
 709 #ifdef ASSERT
 710 // Just to be safe, recalculate the offset in debug mode
 711 static jlong _calculated_offset = 0;
 712 static int   _has_calculated_offset = 0;
 713 
 714 jlong offset() {
 715   if (_has_calculated_offset) return _calculated_offset;
 716   SYSTEMTIME java_origin;
 717   java_origin.wYear          = 1970;
 718   java_origin.wMonth         = 1;
 719   java_origin.wDayOfWeek     = 0; // ignored
 720   java_origin.wDay           = 1;
 721   java_origin.wHour          = 0;
 722   java_origin.wMinute        = 0;
 723   java_origin.wSecond        = 0;
 724   java_origin.wMilliseconds  = 0;
 725   FILETIME jot;
 726   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 727     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 728   }
 729   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 730   _has_calculated_offset = 1;
 731   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 732   return _calculated_offset;
 733 }
 734 #else
 735 jlong offset() {
 736   return _offset;
 737 }
 738 #endif
 739 
 740 jlong windows_to_java_time(FILETIME wt) {
 741   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 742   return (a - offset()) / 10000;
 743 }
 744 
 745 FILETIME java_to_windows_time(jlong l) {
 746   jlong a = (l * 10000) + offset();
 747   FILETIME result;
 748   result.dwHighDateTime = high(a);
 749   result.dwLowDateTime  = low(a);
 750   return result;
 751 }
 752 
 753 // For now, we say that Windows does not support vtime.  I have no idea
 754 // whether it can actually be made to (DLD, 9/13/05).
 755 
 756 bool os::supports_vtime() { return false; }
 757 bool os::enable_vtime() { return false; }
 758 bool os::vtime_enabled() { return false; }
 759 double os::elapsedVTime() {
 760   // better than nothing, but not much
 761   return elapsedTime();
 762 }
 763 
 764 jlong os::javaTimeMillis() {
 765   if (UseFakeTimers) {
 766     return fake_time++;
 767   } else {
 768     FILETIME wt;
 769     GetSystemTimeAsFileTime(&wt);
 770     return windows_to_java_time(wt);
 771   }
 772 }
 773 
 774 #define NANOS_PER_SEC         CONST64(1000000000)
 775 #define NANOS_PER_MILLISEC    1000000
 776 jlong os::javaTimeNanos() {
 777   if (!has_performance_count) {
 778     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
 779   } else {
 780     LARGE_INTEGER current_count;
 781     QueryPerformanceCounter(&current_count);
 782     double current = as_long(current_count);
 783     double freq = performance_frequency;
 784     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
 785     return time;
 786   }
 787 }
 788 
 789 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 790   if (!has_performance_count) {
 791     // javaTimeMillis() doesn't have much percision,
 792     // but it is not going to wrap -- so all 64 bits
 793     info_ptr->max_value = ALL_64_BITS;
 794 
 795     // this is a wall clock timer, so may skip
 796     info_ptr->may_skip_backward = true;
 797     info_ptr->may_skip_forward = true;
 798   } else {
 799     jlong freq = performance_frequency;
 800     if (freq < NANOS_PER_SEC) {
 801       // the performance counter is 64 bits and we will
 802       // be multiplying it -- so no wrap in 64 bits
 803       info_ptr->max_value = ALL_64_BITS;
 804     } else if (freq > NANOS_PER_SEC) {
 805       // use the max value the counter can reach to
 806       // determine the max value which could be returned
 807       julong max_counter = (julong)ALL_64_BITS;
 808       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
 809     } else {
 810       // the performance counter is 64 bits and we will
 811       // be using it directly -- so no wrap in 64 bits
 812       info_ptr->max_value = ALL_64_BITS;
 813     }
 814 
 815     // using a counter, so no skipping
 816     info_ptr->may_skip_backward = false;
 817     info_ptr->may_skip_forward = false;
 818   }
 819   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 820 }
 821 
 822 char* os::local_time_string(char *buf, size_t buflen) {
 823   SYSTEMTIME st;
 824   GetLocalTime(&st);
 825   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 826                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 827   return buf;
 828 }
 829 
 830 bool os::getTimesSecs(double* process_real_time,
 831                      double* process_user_time,
 832                      double* process_system_time) {
 833   HANDLE h_process = GetCurrentProcess();
 834   FILETIME create_time, exit_time, kernel_time, user_time;
 835   BOOL result = GetProcessTimes(h_process,
 836                                &create_time,
 837                                &exit_time,
 838                                &kernel_time,
 839                                &user_time);
 840   if (result != 0) {
 841     FILETIME wt;
 842     GetSystemTimeAsFileTime(&wt);
 843     jlong rtc_millis = windows_to_java_time(wt);
 844     jlong user_millis = windows_to_java_time(user_time);
 845     jlong system_millis = windows_to_java_time(kernel_time);
 846     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 847     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 848     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 849     return true;
 850   } else {
 851     return false;
 852   }
 853 }
 854 
 855 void os::shutdown() {
 856 
 857   // allow PerfMemory to attempt cleanup of any persistent resources
 858   perfMemory_exit();
 859 
 860   // Check for abort hook
 861   abort_hook_t abort_hook = Arguments::abort_hook();
 862   if (abort_hook != NULL) {
 863     abort_hook();
 864   }
 865 }
 866 
 867 void os::abort(bool dump_core)
 868 {
 869   os::shutdown();
 870   // no core dump on Windows
 871   ::exit(1);
 872 }
 873 
 874 // Die immediately, no exit hook, no abort hook, no cleanup.
 875 void os::die() {
 876   _exit(-1);
 877 }
 878 
 879 // Directory routines copied from src/win32/native/java/io/dirent_md.c
 880 //  * dirent_md.c       1.15 00/02/02
 881 //
 882 // The declarations for DIR and struct dirent are in jvm_win32.h.
 883 
 884 /* Caller must have already run dirname through JVM_NativePath, which removes
 885    duplicate slashes and converts all instances of '/' into '\\'. */
 886 
 887 DIR *
 888 os::opendir(const char *dirname)
 889 {
 890     assert(dirname != NULL, "just checking");   // hotspot change
 891     DIR *dirp = (DIR *)malloc(sizeof(DIR));
 892     DWORD fattr;                                // hotspot change
 893     char alt_dirname[4] = { 0, 0, 0, 0 };
 894 
 895     if (dirp == 0) {
 896         errno = ENOMEM;
 897         return 0;
 898     }
 899 
 900     /*
 901      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
 902      * as a directory in FindFirstFile().  We detect this case here and
 903      * prepend the current drive name.
 904      */
 905     if (dirname[1] == '\0' && dirname[0] == '\\') {
 906         alt_dirname[0] = _getdrive() + 'A' - 1;
 907         alt_dirname[1] = ':';
 908         alt_dirname[2] = '\\';
 909         alt_dirname[3] = '\0';
 910         dirname = alt_dirname;
 911     }
 912 
 913     dirp->path = (char *)malloc(strlen(dirname) + 5);
 914     if (dirp->path == 0) {
 915         free(dirp);
 916         errno = ENOMEM;
 917         return 0;
 918     }
 919     strcpy(dirp->path, dirname);
 920 
 921     fattr = GetFileAttributes(dirp->path);
 922     if (fattr == 0xffffffff) {
 923         free(dirp->path);
 924         free(dirp);
 925         errno = ENOENT;
 926         return 0;
 927     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
 928         free(dirp->path);
 929         free(dirp);
 930         errno = ENOTDIR;
 931         return 0;
 932     }
 933 
 934     /* Append "*.*", or possibly "\\*.*", to path */
 935     if (dirp->path[1] == ':'
 936         && (dirp->path[2] == '\0'
 937             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
 938         /* No '\\' needed for cases like "Z:" or "Z:\" */
 939         strcat(dirp->path, "*.*");
 940     } else {
 941         strcat(dirp->path, "\\*.*");
 942     }
 943 
 944     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
 945     if (dirp->handle == INVALID_HANDLE_VALUE) {
 946         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
 947             free(dirp->path);
 948             free(dirp);
 949             errno = EACCES;
 950             return 0;
 951         }
 952     }
 953     return dirp;
 954 }
 955 
 956 /* parameter dbuf unused on Windows */
 957 
 958 struct dirent *
 959 os::readdir(DIR *dirp, dirent *dbuf)
 960 {
 961     assert(dirp != NULL, "just checking");      // hotspot change
 962     if (dirp->handle == INVALID_HANDLE_VALUE) {
 963         return 0;
 964     }
 965 
 966     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
 967 
 968     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
 969         if (GetLastError() == ERROR_INVALID_HANDLE) {
 970             errno = EBADF;
 971             return 0;
 972         }
 973         FindClose(dirp->handle);
 974         dirp->handle = INVALID_HANDLE_VALUE;
 975     }
 976 
 977     return &dirp->dirent;
 978 }
 979 
 980 int
 981 os::closedir(DIR *dirp)
 982 {
 983     assert(dirp != NULL, "just checking");      // hotspot change
 984     if (dirp->handle != INVALID_HANDLE_VALUE) {
 985         if (!FindClose(dirp->handle)) {
 986             errno = EBADF;
 987             return -1;
 988         }
 989         dirp->handle = INVALID_HANDLE_VALUE;
 990     }
 991     free(dirp->path);
 992     free(dirp);
 993     return 0;
 994 }
 995 
 996 const char* os::dll_file_extension() { return ".dll"; }
 997 
 998 const char* os::get_temp_directory() {
 999   const char *prop = Arguments::get_property("java.io.tmpdir");
1000   if (prop != 0) return prop;
1001   static char path_buf[MAX_PATH];
1002   if (GetTempPath(MAX_PATH, path_buf)>0)
1003     return path_buf;
1004   else{
1005     path_buf[0]='\0';
1006     return path_buf;
1007   }
1008 }
1009 
1010 static bool file_exists(const char* filename) {
1011   if (filename == NULL || strlen(filename) == 0) {
1012     return false;
1013   }
1014   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1015 }
1016 
1017 void os::dll_build_name(char *buffer, size_t buflen,
1018                         const char* pname, const char* fname) {
1019   // Copied from libhpi
1020   const size_t pnamelen = pname ? strlen(pname) : 0;
1021   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1022 
1023   // Quietly truncates on buffer overflow. Should be an error.
1024   if (pnamelen + strlen(fname) + 10 > buflen) {
1025     *buffer = '\0';
1026     return;
1027   }
1028 
1029   if (pnamelen == 0) {
1030     jio_snprintf(buffer, buflen, "%s.dll", fname);
1031   } else if (c == ':' || c == '\\') {
1032     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1033   } else if (strchr(pname, *os::path_separator()) != NULL) {
1034     int n;
1035     char** pelements = split_path(pname, &n);
1036     for (int i = 0 ; i < n ; i++) {
1037       char* path = pelements[i];
1038       // Really shouldn't be NULL, but check can't hurt
1039       size_t plen = (path == NULL) ? 0 : strlen(path);
1040       if (plen == 0) {
1041         continue; // skip the empty path values
1042       }
1043       const char lastchar = path[plen - 1];
1044       if (lastchar == ':' || lastchar == '\\') {
1045         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1046       } else {
1047         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1048       }
1049       if (file_exists(buffer)) {
1050         break;
1051       }
1052     }
1053     // release the storage
1054     for (int i = 0 ; i < n ; i++) {
1055       if (pelements[i] != NULL) {
1056         FREE_C_HEAP_ARRAY(char, pelements[i]);
1057       }
1058     }
1059     if (pelements != NULL) {
1060       FREE_C_HEAP_ARRAY(char*, pelements);
1061     }
1062   } else {
1063     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1064   }
1065 }
1066 
1067 // Needs to be in os specific directory because windows requires another
1068 // header file <direct.h>
1069 const char* os::get_current_directory(char *buf, int buflen) {
1070   return _getcwd(buf, buflen);
1071 }
1072 
1073 //-----------------------------------------------------------
1074 // Helper functions for fatal error handler
1075 
1076 // The following library functions are resolved dynamically at runtime:
1077 
1078 // PSAPI functions, for Windows NT, 2000, XP
1079 
1080 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1081 // SDK from Microsoft.  Here are the definitions copied from psapi.h
1082 typedef struct _MODULEINFO {
1083     LPVOID lpBaseOfDll;
1084     DWORD SizeOfImage;
1085     LPVOID EntryPoint;
1086 } MODULEINFO, *LPMODULEINFO;
1087 
1088 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1089 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1090 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1091 
1092 // ToolHelp Functions, for Windows 95, 98 and ME
1093 
1094 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1095 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1096 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1097 
1098 bool _has_psapi;
1099 bool _psapi_init = false;
1100 bool _has_toolhelp;
1101 
1102 static bool _init_psapi() {
1103   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1104   if( psapi == NULL ) return false ;
1105 
1106   _EnumProcessModules = CAST_TO_FN_PTR(
1107       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1108       GetProcAddress(psapi, "EnumProcessModules")) ;
1109   _GetModuleFileNameEx = CAST_TO_FN_PTR(
1110       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1111       GetProcAddress(psapi, "GetModuleFileNameExA"));
1112   _GetModuleInformation = CAST_TO_FN_PTR(
1113       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1114       GetProcAddress(psapi, "GetModuleInformation"));
1115 
1116   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1117   _psapi_init = true;
1118   return _has_psapi;
1119 }
1120 
1121 static bool _init_toolhelp() {
1122   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1123   if (kernel32 == NULL) return false ;
1124 
1125   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1126       HANDLE(WINAPI *)(DWORD,DWORD),
1127       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1128   _Module32First = CAST_TO_FN_PTR(
1129       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1130       GetProcAddress(kernel32, "Module32First" ));
1131   _Module32Next = CAST_TO_FN_PTR(
1132       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1133       GetProcAddress(kernel32, "Module32Next" ));
1134 
1135   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1136   return _has_toolhelp;
1137 }
1138 
1139 #ifdef _WIN64
1140 // Helper routine which returns true if address in
1141 // within the NTDLL address space.
1142 //
1143 static bool _addr_in_ntdll( address addr )
1144 {
1145   HMODULE hmod;
1146   MODULEINFO minfo;
1147 
1148   hmod = GetModuleHandle("NTDLL.DLL");
1149   if ( hmod == NULL ) return false;
1150   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1151                                &minfo, sizeof(MODULEINFO)) )
1152     return false;
1153 
1154   if ( (addr >= minfo.lpBaseOfDll) &&
1155        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1156     return true;
1157   else
1158     return false;
1159 }
1160 #endif
1161 
1162 
1163 // Enumerate all modules for a given process ID
1164 //
1165 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1166 // different API for doing this. We use PSAPI.DLL on NT based
1167 // Windows and ToolHelp on 95/98/Me.
1168 
1169 // Callback function that is called by enumerate_modules() on
1170 // every DLL module.
1171 // Input parameters:
1172 //    int       pid,
1173 //    char*     module_file_name,
1174 //    address   module_base_addr,
1175 //    unsigned  module_size,
1176 //    void*     param
1177 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1178 
1179 // enumerate_modules for Windows NT, using PSAPI
1180 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1181 {
1182   HANDLE   hProcess ;
1183 
1184 # define MAX_NUM_MODULES 128
1185   HMODULE     modules[MAX_NUM_MODULES];
1186   static char filename[ MAX_PATH ];
1187   int         result = 0;
1188 
1189   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1190 
1191   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1192                          FALSE, pid ) ;
1193   if (hProcess == NULL) return 0;
1194 
1195   DWORD size_needed;
1196   if (!_EnumProcessModules(hProcess, modules,
1197                            sizeof(modules), &size_needed)) {
1198       CloseHandle( hProcess );
1199       return 0;
1200   }
1201 
1202   // number of modules that are currently loaded
1203   int num_modules = size_needed / sizeof(HMODULE);
1204 
1205   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1206     // Get Full pathname:
1207     if(!_GetModuleFileNameEx(hProcess, modules[i],
1208                              filename, sizeof(filename))) {
1209         filename[0] = '\0';
1210     }
1211 
1212     MODULEINFO modinfo;
1213     if (!_GetModuleInformation(hProcess, modules[i],
1214                                &modinfo, sizeof(modinfo))) {
1215         modinfo.lpBaseOfDll = NULL;
1216         modinfo.SizeOfImage = 0;
1217     }
1218 
1219     // Invoke callback function
1220     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1221                   modinfo.SizeOfImage, param);
1222     if (result) break;
1223   }
1224 
1225   CloseHandle( hProcess ) ;
1226   return result;
1227 }
1228 
1229 
1230 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1231 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1232 {
1233   HANDLE                hSnapShot ;
1234   static MODULEENTRY32  modentry ;
1235   int                   result = 0;
1236 
1237   if (!_has_toolhelp) return 0;
1238 
1239   // Get a handle to a Toolhelp snapshot of the system
1240   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1241   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1242       return FALSE ;
1243   }
1244 
1245   // iterate through all modules
1246   modentry.dwSize = sizeof(MODULEENTRY32) ;
1247   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1248 
1249   while( not_done ) {
1250     // invoke the callback
1251     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1252                 modentry.modBaseSize, param);
1253     if (result) break;
1254 
1255     modentry.dwSize = sizeof(MODULEENTRY32) ;
1256     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1257   }
1258 
1259   CloseHandle(hSnapShot);
1260   return result;
1261 }
1262 
1263 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1264 {
1265   // Get current process ID if caller doesn't provide it.
1266   if (!pid) pid = os::current_process_id();
1267 
1268   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1269   else                    return _enumerate_modules_windows(pid, func, param);
1270 }
1271 
1272 struct _modinfo {
1273    address addr;
1274    char*   full_path;   // point to a char buffer
1275    int     buflen;      // size of the buffer
1276    address base_addr;
1277 };
1278 
1279 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1280                                   unsigned size, void * param) {
1281    struct _modinfo *pmod = (struct _modinfo *)param;
1282    if (!pmod) return -1;
1283 
1284    if (base_addr     <= pmod->addr &&
1285        base_addr+size > pmod->addr) {
1286      // if a buffer is provided, copy path name to the buffer
1287      if (pmod->full_path) {
1288        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1289      }
1290      pmod->base_addr = base_addr;
1291      return 1;
1292    }
1293    return 0;
1294 }
1295 
1296 bool os::dll_address_to_library_name(address addr, char* buf,
1297                                      int buflen, int* offset) {
1298 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1299 //       return the full path to the DLL file, sometimes it returns path
1300 //       to the corresponding PDB file (debug info); sometimes it only
1301 //       returns partial path, which makes life painful.
1302 
1303    struct _modinfo mi;
1304    mi.addr      = addr;
1305    mi.full_path = buf;
1306    mi.buflen    = buflen;
1307    int pid = os::current_process_id();
1308    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1309       // buf already contains path name
1310       if (offset) *offset = addr - mi.base_addr;
1311       return true;
1312    } else {
1313       if (buf) buf[0] = '\0';
1314       if (offset) *offset = -1;
1315       return false;
1316    }
1317 }
1318 
1319 bool os::dll_address_to_function_name(address addr, char *buf,
1320                                       int buflen, int *offset) {
1321   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1322   // we need to initialize imagehlp/dbghelp, then load symbol table
1323   // for every module. That's too much work to do after a fatal error.
1324   // For an example on how to implement this function, see 1.4.2.
1325   if (offset)  *offset  = -1;
1326   if (buf) buf[0] = '\0';
1327   return false;
1328 }
1329 
1330 void* os::dll_lookup(void* handle, const char* name) {
1331   return GetProcAddress((HMODULE)handle, name);
1332 }
1333 
1334 // save the start and end address of jvm.dll into param[0] and param[1]
1335 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1336                     unsigned size, void * param) {
1337    if (!param) return -1;
1338 
1339    if (base_addr     <= (address)_locate_jvm_dll &&
1340        base_addr+size > (address)_locate_jvm_dll) {
1341          ((address*)param)[0] = base_addr;
1342          ((address*)param)[1] = base_addr + size;
1343          return 1;
1344    }
1345    return 0;
1346 }
1347 
1348 address vm_lib_location[2];    // start and end address of jvm.dll
1349 
1350 // check if addr is inside jvm.dll
1351 bool os::address_is_in_vm(address addr) {
1352   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1353     int pid = os::current_process_id();
1354     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1355       assert(false, "Can't find jvm module.");
1356       return false;
1357     }
1358   }
1359 
1360   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1361 }
1362 
1363 // print module info; param is outputStream*
1364 static int _print_module(int pid, char* fname, address base,
1365                          unsigned size, void* param) {
1366    if (!param) return -1;
1367 
1368    outputStream* st = (outputStream*)param;
1369 
1370    address end_addr = base + size;
1371    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1372    return 0;
1373 }
1374 
1375 // Loads .dll/.so and
1376 // in case of error it checks if .dll/.so was built for the
1377 // same architecture as Hotspot is running on
1378 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1379 {
1380   void * result = LoadLibrary(name);
1381   if (result != NULL)
1382   {
1383     return result;
1384   }
1385 
1386   long errcode = GetLastError();
1387   if (errcode == ERROR_MOD_NOT_FOUND) {
1388     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1389     ebuf[ebuflen-1]='\0';
1390     return NULL;
1391   }
1392 
1393   // Parsing dll below
1394   // If we can read dll-info and find that dll was built
1395   // for an architecture other than Hotspot is running in
1396   // - then print to buffer "DLL was built for a different architecture"
1397   // else call getLastErrorString to obtain system error message
1398 
1399   // Read system error message into ebuf
1400   // It may or may not be overwritten below (in the for loop and just above)
1401   getLastErrorString(ebuf, (size_t) ebuflen);
1402   ebuf[ebuflen-1]='\0';
1403   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1404   if (file_descriptor<0)
1405   {
1406     return NULL;
1407   }
1408 
1409   uint32_t signature_offset;
1410   uint16_t lib_arch=0;
1411   bool failed_to_get_lib_arch=
1412   (
1413     //Go to position 3c in the dll
1414     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1415     ||
1416     // Read loacation of signature
1417     (sizeof(signature_offset)!=
1418       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1419     ||
1420     //Go to COFF File Header in dll
1421     //that is located after"signature" (4 bytes long)
1422     (os::seek_to_file_offset(file_descriptor,
1423       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1424     ||
1425     //Read field that contains code of architecture
1426     // that dll was build for
1427     (sizeof(lib_arch)!=
1428       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1429   );
1430 
1431   ::close(file_descriptor);
1432   if (failed_to_get_lib_arch)
1433   {
1434     // file i/o error - report getLastErrorString(...) msg
1435     return NULL;
1436   }
1437 
1438   typedef struct
1439   {
1440     uint16_t arch_code;
1441     char* arch_name;
1442   } arch_t;
1443 
1444   static const arch_t arch_array[]={
1445     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1446     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1447     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1448   };
1449   #if   (defined _M_IA64)
1450     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1451   #elif (defined _M_AMD64)
1452     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1453   #elif (defined _M_IX86)
1454     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1455   #else
1456     #error Method os::dll_load requires that one of following \
1457            is defined :_M_IA64,_M_AMD64 or _M_IX86
1458   #endif
1459 
1460 
1461   // Obtain a string for printf operation
1462   // lib_arch_str shall contain string what platform this .dll was built for
1463   // running_arch_str shall string contain what platform Hotspot was built for
1464   char *running_arch_str=NULL,*lib_arch_str=NULL;
1465   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1466   {
1467     if (lib_arch==arch_array[i].arch_code)
1468       lib_arch_str=arch_array[i].arch_name;
1469     if (running_arch==arch_array[i].arch_code)
1470       running_arch_str=arch_array[i].arch_name;
1471   }
1472 
1473   assert(running_arch_str,
1474     "Didn't find runing architecture code in arch_array");
1475 
1476   // If the architure is right
1477   // but some other error took place - report getLastErrorString(...) msg
1478   if (lib_arch == running_arch)
1479   {
1480     return NULL;
1481   }
1482 
1483   if (lib_arch_str!=NULL)
1484   {
1485     ::_snprintf(ebuf, ebuflen-1,
1486       "Can't load %s-bit .dll on a %s-bit platform",
1487       lib_arch_str,running_arch_str);
1488   }
1489   else
1490   {
1491     // don't know what architecture this dll was build for
1492     ::_snprintf(ebuf, ebuflen-1,
1493       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1494       lib_arch,running_arch_str);
1495   }
1496 
1497   return NULL;
1498 }
1499 
1500 
1501 void os::print_dll_info(outputStream *st) {
1502    int pid = os::current_process_id();
1503    st->print_cr("Dynamic libraries:");
1504    enumerate_modules(pid, _print_module, (void *)st);
1505 }
1506 
1507 // function pointer to Windows API "GetNativeSystemInfo".
1508 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1509 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1510 
1511 void os::print_os_info(outputStream* st) {
1512   st->print("OS:");
1513 
1514   OSVERSIONINFOEX osvi;
1515   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1516   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1517 
1518   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1519     st->print_cr("N/A");
1520     return;
1521   }
1522 
1523   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1524   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1525     switch (os_vers) {
1526     case 3051: st->print(" Windows NT 3.51"); break;
1527     case 4000: st->print(" Windows NT 4.0"); break;
1528     case 5000: st->print(" Windows 2000"); break;
1529     case 5001: st->print(" Windows XP"); break;
1530     case 5002:
1531     case 6000:
1532     case 6001: {
1533       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1534       // find out whether we are running on 64 bit processor or not.
1535       SYSTEM_INFO si;
1536       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1537       // Check to see if _GetNativeSystemInfo has been initialized.
1538       if (_GetNativeSystemInfo == NULL) {
1539         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1540         _GetNativeSystemInfo =
1541             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1542                            GetProcAddress(hKernel32,
1543                                           "GetNativeSystemInfo"));
1544         if (_GetNativeSystemInfo == NULL)
1545           GetSystemInfo(&si);
1546       } else {
1547         _GetNativeSystemInfo(&si);
1548       }
1549       if (os_vers == 5002) {
1550         if (osvi.wProductType == VER_NT_WORKSTATION &&
1551             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1552           st->print(" Windows XP x64 Edition");
1553         else
1554             st->print(" Windows Server 2003 family");
1555       } else if (os_vers == 6000) {
1556         if (osvi.wProductType == VER_NT_WORKSTATION)
1557             st->print(" Windows Vista");
1558         else
1559             st->print(" Windows Server 2008");
1560         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1561             st->print(" , 64 bit");
1562       } else if (os_vers == 6001) {
1563         if (osvi.wProductType == VER_NT_WORKSTATION) {
1564             st->print(" Windows 7");
1565         } else {
1566             // Unrecognized windows, print out its major and minor versions
1567             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1568         }
1569         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1570             st->print(" , 64 bit");
1571       } else { // future os
1572         // Unrecognized windows, print out its major and minor versions
1573         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1574         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1575             st->print(" , 64 bit");
1576       }
1577       break;
1578     }
1579     default: // future windows, print out its major and minor versions
1580       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1581     }
1582   } else {
1583     switch (os_vers) {
1584     case 4000: st->print(" Windows 95"); break;
1585     case 4010: st->print(" Windows 98"); break;
1586     case 4090: st->print(" Windows Me"); break;
1587     default: // future windows, print out its major and minor versions
1588       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1589     }
1590   }
1591   st->print(" Build %d", osvi.dwBuildNumber);
1592   st->print(" %s", osvi.szCSDVersion);           // service pack
1593   st->cr();
1594 }
1595 
1596 void os::print_memory_info(outputStream* st) {
1597   st->print("Memory:");
1598   st->print(" %dk page", os::vm_page_size()>>10);
1599 
1600   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1601   // value if total memory is larger than 4GB
1602   MEMORYSTATUSEX ms;
1603   ms.dwLength = sizeof(ms);
1604   GlobalMemoryStatusEx(&ms);
1605 
1606   st->print(", physical %uk", os::physical_memory() >> 10);
1607   st->print("(%uk free)", os::available_memory() >> 10);
1608 
1609   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1610   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1611   st->cr();
1612 }
1613 
1614 void os::print_siginfo(outputStream *st, void *siginfo) {
1615   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1616   st->print("siginfo:");
1617   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1618 
1619   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1620       er->NumberParameters >= 2) {
1621       switch (er->ExceptionInformation[0]) {
1622       case 0: st->print(", reading address"); break;
1623       case 1: st->print(", writing address"); break;
1624       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1625                             er->ExceptionInformation[0]);
1626       }
1627       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1628   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1629              er->NumberParameters >= 2 && UseSharedSpaces) {
1630     FileMapInfo* mapinfo = FileMapInfo::current_info();
1631     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1632       st->print("\n\nError accessing class data sharing archive."       \
1633                 " Mapped file inaccessible during execution, "          \
1634                 " possible disk/network problem.");
1635     }
1636   } else {
1637     int num = er->NumberParameters;
1638     if (num > 0) {
1639       st->print(", ExceptionInformation=");
1640       for (int i = 0; i < num; i++) {
1641         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1642       }
1643     }
1644   }
1645   st->cr();
1646 }
1647 
1648 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1649   // do nothing
1650 }
1651 
1652 static char saved_jvm_path[MAX_PATH] = {0};
1653 
1654 // Find the full path to the current module, jvm.dll or jvm_g.dll
1655 void os::jvm_path(char *buf, jint buflen) {
1656   // Error checking.
1657   if (buflen < MAX_PATH) {
1658     assert(false, "must use a large-enough buffer");
1659     buf[0] = '\0';
1660     return;
1661   }
1662   // Lazy resolve the path to current module.
1663   if (saved_jvm_path[0] != 0) {
1664     strcpy(buf, saved_jvm_path);
1665     return;
1666   }
1667 
1668   GetModuleFileName(vm_lib_handle, buf, buflen);
1669   strcpy(saved_jvm_path, buf);
1670 }
1671 
1672 
1673 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1674 #ifndef _WIN64
1675   st->print("_");
1676 #endif
1677 }
1678 
1679 
1680 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1681 #ifndef _WIN64
1682   st->print("@%d", args_size  * sizeof(int));
1683 #endif
1684 }
1685 
1686 // sun.misc.Signal
1687 // NOTE that this is a workaround for an apparent kernel bug where if
1688 // a signal handler for SIGBREAK is installed then that signal handler
1689 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1690 // See bug 4416763.
1691 static void (*sigbreakHandler)(int) = NULL;
1692 
1693 static void UserHandler(int sig, void *siginfo, void *context) {
1694   os::signal_notify(sig);
1695   // We need to reinstate the signal handler each time...
1696   os::signal(sig, (void*)UserHandler);
1697 }
1698 
1699 void* os::user_handler() {
1700   return (void*) UserHandler;
1701 }
1702 
1703 void* os::signal(int signal_number, void* handler) {
1704   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1705     void (*oldHandler)(int) = sigbreakHandler;
1706     sigbreakHandler = (void (*)(int)) handler;
1707     return (void*) oldHandler;
1708   } else {
1709     return (void*)::signal(signal_number, (void (*)(int))handler);
1710   }
1711 }
1712 
1713 void os::signal_raise(int signal_number) {
1714   raise(signal_number);
1715 }
1716 
1717 // The Win32 C runtime library maps all console control events other than ^C
1718 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1719 // logoff, and shutdown events.  We therefore install our own console handler
1720 // that raises SIGTERM for the latter cases.
1721 //
1722 static BOOL WINAPI consoleHandler(DWORD event) {
1723   switch(event) {
1724     case CTRL_C_EVENT:
1725       if (is_error_reported()) {
1726         // Ctrl-C is pressed during error reporting, likely because the error
1727         // handler fails to abort. Let VM die immediately.
1728         os::die();
1729       }
1730 
1731       os::signal_raise(SIGINT);
1732       return TRUE;
1733       break;
1734     case CTRL_BREAK_EVENT:
1735       if (sigbreakHandler != NULL) {
1736         (*sigbreakHandler)(SIGBREAK);
1737       }
1738       return TRUE;
1739       break;
1740     case CTRL_CLOSE_EVENT:
1741     case CTRL_LOGOFF_EVENT:
1742     case CTRL_SHUTDOWN_EVENT:
1743       os::signal_raise(SIGTERM);
1744       return TRUE;
1745       break;
1746     default:
1747       break;
1748   }
1749   return FALSE;
1750 }
1751 
1752 /*
1753  * The following code is moved from os.cpp for making this
1754  * code platform specific, which it is by its very nature.
1755  */
1756 
1757 // Return maximum OS signal used + 1 for internal use only
1758 // Used as exit signal for signal_thread
1759 int os::sigexitnum_pd(){
1760   return NSIG;
1761 }
1762 
1763 // a counter for each possible signal value, including signal_thread exit signal
1764 static volatile jint pending_signals[NSIG+1] = { 0 };
1765 static HANDLE sig_sem;
1766 
1767 void os::signal_init_pd() {
1768   // Initialize signal structures
1769   memset((void*)pending_signals, 0, sizeof(pending_signals));
1770 
1771   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1772 
1773   // Programs embedding the VM do not want it to attempt to receive
1774   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1775   // shutdown hooks mechanism introduced in 1.3.  For example, when
1776   // the VM is run as part of a Windows NT service (i.e., a servlet
1777   // engine in a web server), the correct behavior is for any console
1778   // control handler to return FALSE, not TRUE, because the OS's
1779   // "final" handler for such events allows the process to continue if
1780   // it is a service (while terminating it if it is not a service).
1781   // To make this behavior uniform and the mechanism simpler, we
1782   // completely disable the VM's usage of these console events if -Xrs
1783   // (=ReduceSignalUsage) is specified.  This means, for example, that
1784   // the CTRL-BREAK thread dump mechanism is also disabled in this
1785   // case.  See bugs 4323062, 4345157, and related bugs.
1786 
1787   if (!ReduceSignalUsage) {
1788     // Add a CTRL-C handler
1789     SetConsoleCtrlHandler(consoleHandler, TRUE);
1790   }
1791 }
1792 
1793 void os::signal_notify(int signal_number) {
1794   BOOL ret;
1795 
1796   Atomic::inc(&pending_signals[signal_number]);
1797   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1798   assert(ret != 0, "ReleaseSemaphore() failed");
1799 }
1800 
1801 static int check_pending_signals(bool wait_for_signal) {
1802   DWORD ret;
1803   while (true) {
1804     for (int i = 0; i < NSIG + 1; i++) {
1805       jint n = pending_signals[i];
1806       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1807         return i;
1808       }
1809     }
1810     if (!wait_for_signal) {
1811       return -1;
1812     }
1813 
1814     JavaThread *thread = JavaThread::current();
1815 
1816     ThreadBlockInVM tbivm(thread);
1817 
1818     bool threadIsSuspended;
1819     do {
1820       thread->set_suspend_equivalent();
1821       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1822       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1823       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1824 
1825       // were we externally suspended while we were waiting?
1826       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1827       if (threadIsSuspended) {
1828         //
1829         // The semaphore has been incremented, but while we were waiting
1830         // another thread suspended us. We don't want to continue running
1831         // while suspended because that would surprise the thread that
1832         // suspended us.
1833         //
1834         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1835         assert(ret != 0, "ReleaseSemaphore() failed");
1836 
1837         thread->java_suspend_self();
1838       }
1839     } while (threadIsSuspended);
1840   }
1841 }
1842 
1843 int os::signal_lookup() {
1844   return check_pending_signals(false);
1845 }
1846 
1847 int os::signal_wait() {
1848   return check_pending_signals(true);
1849 }
1850 
1851 // Implicit OS exception handling
1852 
1853 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1854   JavaThread* thread = JavaThread::current();
1855   // Save pc in thread
1856 #ifdef _M_IA64
1857   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1858   // Set pc to handler
1859   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1860 #elif _M_AMD64
1861   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1862   // Set pc to handler
1863   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1864 #else
1865   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1866   // Set pc to handler
1867   exceptionInfo->ContextRecord->Eip = (LONG)handler;
1868 #endif
1869 
1870   // Continue the execution
1871   return EXCEPTION_CONTINUE_EXECUTION;
1872 }
1873 
1874 
1875 // Used for PostMortemDump
1876 extern "C" void safepoints();
1877 extern "C" void find(int x);
1878 extern "C" void events();
1879 
1880 // According to Windows API documentation, an illegal instruction sequence should generate
1881 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
1882 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
1883 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1884 
1885 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1886 
1887 // From "Execution Protection in the Windows Operating System" draft 0.35
1888 // Once a system header becomes available, the "real" define should be
1889 // included or copied here.
1890 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1891 
1892 #define def_excpt(val) #val, val
1893 
1894 struct siglabel {
1895   char *name;
1896   int   number;
1897 };
1898 
1899 struct siglabel exceptlabels[] = {
1900     def_excpt(EXCEPTION_ACCESS_VIOLATION),
1901     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1902     def_excpt(EXCEPTION_BREAKPOINT),
1903     def_excpt(EXCEPTION_SINGLE_STEP),
1904     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1905     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1906     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1907     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1908     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1909     def_excpt(EXCEPTION_FLT_OVERFLOW),
1910     def_excpt(EXCEPTION_FLT_STACK_CHECK),
1911     def_excpt(EXCEPTION_FLT_UNDERFLOW),
1912     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1913     def_excpt(EXCEPTION_INT_OVERFLOW),
1914     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1915     def_excpt(EXCEPTION_IN_PAGE_ERROR),
1916     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1917     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1918     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1919     def_excpt(EXCEPTION_STACK_OVERFLOW),
1920     def_excpt(EXCEPTION_INVALID_DISPOSITION),
1921     def_excpt(EXCEPTION_GUARD_PAGE),
1922     def_excpt(EXCEPTION_INVALID_HANDLE),
1923     NULL, 0
1924 };
1925 
1926 const char* os::exception_name(int exception_code, char *buf, size_t size) {
1927   for (int i = 0; exceptlabels[i].name != NULL; i++) {
1928     if (exceptlabels[i].number == exception_code) {
1929        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1930        return buf;
1931     }
1932   }
1933 
1934   return NULL;
1935 }
1936 
1937 //-----------------------------------------------------------------------------
1938 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1939   // handle exception caused by idiv; should only happen for -MinInt/-1
1940   // (division by zero is handled explicitly)
1941 #ifdef _M_IA64
1942   assert(0, "Fix Handle_IDiv_Exception");
1943 #elif _M_AMD64
1944   PCONTEXT ctx = exceptionInfo->ContextRecord;
1945   address pc = (address)ctx->Rip;
1946   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1947   assert(pc[0] == 0xF7, "not an idiv opcode");
1948   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1949   assert(ctx->Rax == min_jint, "unexpected idiv exception");
1950   // set correct result values and continue after idiv instruction
1951   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1952   ctx->Rax = (DWORD)min_jint;      // result
1953   ctx->Rdx = (DWORD)0;             // remainder
1954   // Continue the execution
1955 #else
1956   PCONTEXT ctx = exceptionInfo->ContextRecord;
1957   address pc = (address)ctx->Eip;
1958   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1959   assert(pc[0] == 0xF7, "not an idiv opcode");
1960   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1961   assert(ctx->Eax == min_jint, "unexpected idiv exception");
1962   // set correct result values and continue after idiv instruction
1963   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1964   ctx->Eax = (DWORD)min_jint;      // result
1965   ctx->Edx = (DWORD)0;             // remainder
1966   // Continue the execution
1967 #endif
1968   return EXCEPTION_CONTINUE_EXECUTION;
1969 }
1970 
1971 #ifndef  _WIN64
1972 //-----------------------------------------------------------------------------
1973 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1974   // handle exception caused by native method modifying control word
1975   PCONTEXT ctx = exceptionInfo->ContextRecord;
1976   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1977 
1978   switch (exception_code) {
1979     case EXCEPTION_FLT_DENORMAL_OPERAND:
1980     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1981     case EXCEPTION_FLT_INEXACT_RESULT:
1982     case EXCEPTION_FLT_INVALID_OPERATION:
1983     case EXCEPTION_FLT_OVERFLOW:
1984     case EXCEPTION_FLT_STACK_CHECK:
1985     case EXCEPTION_FLT_UNDERFLOW:
1986       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
1987       if (fp_control_word != ctx->FloatSave.ControlWord) {
1988         // Restore FPCW and mask out FLT exceptions
1989         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
1990         // Mask out pending FLT exceptions
1991         ctx->FloatSave.StatusWord &=  0xffffff00;
1992         return EXCEPTION_CONTINUE_EXECUTION;
1993       }
1994   }
1995 
1996   if (prev_uef_handler != NULL) {
1997     // We didn't handle this exception so pass it to the previous
1998     // UnhandledExceptionFilter.
1999     return (prev_uef_handler)(exceptionInfo);
2000   }
2001 
2002   return EXCEPTION_CONTINUE_SEARCH;
2003 }
2004 #else //_WIN64
2005 /*
2006   On Windows, the mxcsr control bits are non-volatile across calls
2007   See also CR 6192333
2008   If EXCEPTION_FLT_* happened after some native method modified
2009   mxcsr - it is not a jvm fault.
2010   However should we decide to restore of mxcsr after a faulty
2011   native method we can uncomment following code
2012       jint MxCsr = INITIAL_MXCSR;
2013         // we can't use StubRoutines::addr_mxcsr_std()
2014         // because in Win64 mxcsr is not saved there
2015       if (MxCsr != ctx->MxCsr) {
2016         ctx->MxCsr = MxCsr;
2017         return EXCEPTION_CONTINUE_EXECUTION;
2018       }
2019 
2020 */
2021 #endif //_WIN64
2022 
2023 
2024 // Fatal error reporting is single threaded so we can make this a
2025 // static and preallocated.  If it's more than MAX_PATH silently ignore
2026 // it.
2027 static char saved_error_file[MAX_PATH] = {0};
2028 
2029 void os::set_error_file(const char *logfile) {
2030   if (strlen(logfile) <= MAX_PATH) {
2031     strncpy(saved_error_file, logfile, MAX_PATH);
2032   }
2033 }
2034 
2035 static inline void report_error(Thread* t, DWORD exception_code,
2036                                 address addr, void* siginfo, void* context) {
2037   VMError err(t, exception_code, addr, siginfo, context);
2038   err.report_and_die();
2039 
2040   // If UseOsErrorReporting, this will return here and save the error file
2041   // somewhere where we can find it in the minidump.
2042 }
2043 
2044 //-----------------------------------------------------------------------------
2045 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2046   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2047   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2048 #ifdef _M_IA64
2049   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2050 #elif _M_AMD64
2051   address pc = (address) exceptionInfo->ContextRecord->Rip;
2052 #else
2053   address pc = (address) exceptionInfo->ContextRecord->Eip;
2054 #endif
2055   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2056 
2057 #ifndef _WIN64
2058   // Execution protection violation - win32 running on AMD64 only
2059   // Handled first to avoid misdiagnosis as a "normal" access violation;
2060   // This is safe to do because we have a new/unique ExceptionInformation
2061   // code for this condition.
2062   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2063     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2064     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2065     address addr = (address) exceptionRecord->ExceptionInformation[1];
2066 
2067     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2068       int page_size = os::vm_page_size();
2069 
2070       // Make sure the pc and the faulting address are sane.
2071       //
2072       // If an instruction spans a page boundary, and the page containing
2073       // the beginning of the instruction is executable but the following
2074       // page is not, the pc and the faulting address might be slightly
2075       // different - we still want to unguard the 2nd page in this case.
2076       //
2077       // 15 bytes seems to be a (very) safe value for max instruction size.
2078       bool pc_is_near_addr =
2079         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2080       bool instr_spans_page_boundary =
2081         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2082                          (intptr_t) page_size) > 0);
2083 
2084       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2085         static volatile address last_addr =
2086           (address) os::non_memory_address_word();
2087 
2088         // In conservative mode, don't unguard unless the address is in the VM
2089         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2090             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2091 
2092           // Set memory to RWX and retry
2093           address page_start =
2094             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2095           bool res = os::protect_memory((char*) page_start, page_size,
2096                                         os::MEM_PROT_RWX);
2097 
2098           if (PrintMiscellaneous && Verbose) {
2099             char buf[256];
2100             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2101                          "at " INTPTR_FORMAT
2102                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2103                          page_start, (res ? "success" : strerror(errno)));
2104             tty->print_raw_cr(buf);
2105           }
2106 
2107           // Set last_addr so if we fault again at the same address, we don't
2108           // end up in an endless loop.
2109           //
2110           // There are two potential complications here.  Two threads trapping
2111           // at the same address at the same time could cause one of the
2112           // threads to think it already unguarded, and abort the VM.  Likely
2113           // very rare.
2114           //
2115           // The other race involves two threads alternately trapping at
2116           // different addresses and failing to unguard the page, resulting in
2117           // an endless loop.  This condition is probably even more unlikely
2118           // than the first.
2119           //
2120           // Although both cases could be avoided by using locks or thread
2121           // local last_addr, these solutions are unnecessary complication:
2122           // this handler is a best-effort safety net, not a complete solution.
2123           // It is disabled by default and should only be used as a workaround
2124           // in case we missed any no-execute-unsafe VM code.
2125 
2126           last_addr = addr;
2127 
2128           return EXCEPTION_CONTINUE_EXECUTION;
2129         }
2130       }
2131 
2132       // Last unguard failed or not unguarding
2133       tty->print_raw_cr("Execution protection violation");
2134       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2135                    exceptionInfo->ContextRecord);
2136       return EXCEPTION_CONTINUE_SEARCH;
2137     }
2138   }
2139 #endif // _WIN64
2140 
2141   // Check to see if we caught the safepoint code in the
2142   // process of write protecting the memory serialization page.
2143   // It write enables the page immediately after protecting it
2144   // so just return.
2145   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2146     JavaThread* thread = (JavaThread*) t;
2147     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2148     address addr = (address) exceptionRecord->ExceptionInformation[1];
2149     if ( os::is_memory_serialize_page(thread, addr) ) {
2150       // Block current thread until the memory serialize page permission restored.
2151       os::block_on_serialize_page_trap();
2152       return EXCEPTION_CONTINUE_EXECUTION;
2153     }
2154   }
2155 
2156 
2157   if (t != NULL && t->is_Java_thread()) {
2158     JavaThread* thread = (JavaThread*) t;
2159     bool in_java = thread->thread_state() == _thread_in_Java;
2160 
2161     // Handle potential stack overflows up front.
2162     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2163       if (os::uses_stack_guard_pages()) {
2164 #ifdef _M_IA64
2165         //
2166         // If it's a legal stack address continue, Windows will map it in.
2167         //
2168         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2169         address addr = (address) exceptionRecord->ExceptionInformation[1];
2170         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2171           return EXCEPTION_CONTINUE_EXECUTION;
2172 
2173         // The register save area is the same size as the memory stack
2174         // and starts at the page just above the start of the memory stack.
2175         // If we get a fault in this area, we've run out of register
2176         // stack.  If we are in java, try throwing a stack overflow exception.
2177         if (addr > thread->stack_base() &&
2178                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2179           char buf[256];
2180           jio_snprintf(buf, sizeof(buf),
2181                        "Register stack overflow, addr:%p, stack_base:%p\n",
2182                        addr, thread->stack_base() );
2183           tty->print_raw_cr(buf);
2184           // If not in java code, return and hope for the best.
2185           return in_java ? Handle_Exception(exceptionInfo,
2186             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2187             :  EXCEPTION_CONTINUE_EXECUTION;
2188         }
2189 #endif
2190         if (thread->stack_yellow_zone_enabled()) {
2191           // Yellow zone violation.  The o/s has unprotected the first yellow
2192           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2193           // update the enabled status, even if the zone contains only one page.
2194           thread->disable_stack_yellow_zone();
2195           // If not in java code, return and hope for the best.
2196           return in_java ? Handle_Exception(exceptionInfo,
2197             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2198             :  EXCEPTION_CONTINUE_EXECUTION;
2199         } else {
2200           // Fatal red zone violation.
2201           thread->disable_stack_red_zone();
2202           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2203           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2204                        exceptionInfo->ContextRecord);
2205           return EXCEPTION_CONTINUE_SEARCH;
2206         }
2207       } else if (in_java) {
2208         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2209         // a one-time-only guard page, which it has released to us.  The next
2210         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2211         return Handle_Exception(exceptionInfo,
2212           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2213       } else {
2214         // Can only return and hope for the best.  Further stack growth will
2215         // result in an ACCESS_VIOLATION.
2216         return EXCEPTION_CONTINUE_EXECUTION;
2217       }
2218     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2219       // Either stack overflow or null pointer exception.
2220       if (in_java) {
2221         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2222         address addr = (address) exceptionRecord->ExceptionInformation[1];
2223         address stack_end = thread->stack_base() - thread->stack_size();
2224         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2225           // Stack overflow.
2226           assert(!os::uses_stack_guard_pages(),
2227             "should be caught by red zone code above.");
2228           return Handle_Exception(exceptionInfo,
2229             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2230         }
2231         //
2232         // Check for safepoint polling and implicit null
2233         // We only expect null pointers in the stubs (vtable)
2234         // the rest are checked explicitly now.
2235         //
2236         CodeBlob* cb = CodeCache::find_blob(pc);
2237         if (cb != NULL) {
2238           if (os::is_poll_address(addr)) {
2239             address stub = SharedRuntime::get_poll_stub(pc);
2240             return Handle_Exception(exceptionInfo, stub);
2241           }
2242         }
2243         {
2244 #ifdef _WIN64
2245           //
2246           // If it's a legal stack address map the entire region in
2247           //
2248           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2249           address addr = (address) exceptionRecord->ExceptionInformation[1];
2250           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2251                   addr = (address)((uintptr_t)addr &
2252                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2253                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2254                                     false );
2255                   return EXCEPTION_CONTINUE_EXECUTION;
2256           }
2257           else
2258 #endif
2259           {
2260             // Null pointer exception.
2261 #ifdef _M_IA64
2262             // We catch register stack overflows in compiled code by doing
2263             // an explicit compare and executing a st8(G0, G0) if the
2264             // BSP enters into our guard area.  We test for the overflow
2265             // condition and fall into the normal null pointer exception
2266             // code if BSP hasn't overflowed.
2267             if ( in_java ) {
2268               if(thread->register_stack_overflow()) {
2269                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2270                                 thread->register_stack_limit(),
2271                                "GR7 doesn't contain register_stack_limit");
2272                 // Disable the yellow zone which sets the state that
2273                 // we've got a stack overflow problem.
2274                 if (thread->stack_yellow_zone_enabled()) {
2275                   thread->disable_stack_yellow_zone();
2276                 }
2277                 // Give us some room to process the exception
2278                 thread->disable_register_stack_guard();
2279                 // Update GR7 with the new limit so we can continue running
2280                 // compiled code.
2281                 exceptionInfo->ContextRecord->IntS3 =
2282                                (ULONGLONG)thread->register_stack_limit();
2283                 return Handle_Exception(exceptionInfo,
2284                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2285               } else {
2286                 //
2287                 // Check for implicit null
2288                 // We only expect null pointers in the stubs (vtable)
2289                 // the rest are checked explicitly now.
2290                 //
2291                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2292                   // an access to the first page of VM--assume it is a null pointer
2293                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2294                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2295                 }
2296               }
2297             } // in_java
2298 
2299             // IA64 doesn't use implicit null checking yet. So we shouldn't
2300             // get here.
2301             tty->print_raw_cr("Access violation, possible null pointer exception");
2302             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2303                          exceptionInfo->ContextRecord);
2304             return EXCEPTION_CONTINUE_SEARCH;
2305 #else /* !IA64 */
2306 
2307             // Windows 98 reports faulting addresses incorrectly
2308             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2309                 !os::win32::is_nt()) {
2310               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2311               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2312             }
2313             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2314                          exceptionInfo->ContextRecord);
2315             return EXCEPTION_CONTINUE_SEARCH;
2316 #endif
2317           }
2318         }
2319       }
2320 
2321 #ifdef _WIN64
2322       // Special care for fast JNI field accessors.
2323       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2324       // in and the heap gets shrunk before the field access.
2325       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2326         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2327         if (addr != (address)-1) {
2328           return Handle_Exception(exceptionInfo, addr);
2329         }
2330       }
2331 #endif
2332 
2333 #ifdef _WIN64
2334       // Windows will sometimes generate an access violation
2335       // when we call malloc.  Since we use VectoredExceptions
2336       // on 64 bit platforms, we see this exception.  We must
2337       // pass this exception on so Windows can recover.
2338       // We check to see if the pc of the fault is in NTDLL.DLL
2339       // if so, we pass control on to Windows for handling.
2340       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2341 #endif
2342 
2343       // Stack overflow or null pointer exception in native code.
2344       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2345                    exceptionInfo->ContextRecord);
2346       return EXCEPTION_CONTINUE_SEARCH;
2347     }
2348 
2349     if (in_java) {
2350       switch (exception_code) {
2351       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2352         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2353 
2354       case EXCEPTION_INT_OVERFLOW:
2355         return Handle_IDiv_Exception(exceptionInfo);
2356 
2357       } // switch
2358     }
2359 #ifndef _WIN64
2360     if ((thread->thread_state() == _thread_in_Java) ||
2361         (thread->thread_state() == _thread_in_native) )
2362     {
2363       LONG result=Handle_FLT_Exception(exceptionInfo);
2364       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2365     }
2366 #endif //_WIN64
2367   }
2368 
2369   if (exception_code != EXCEPTION_BREAKPOINT) {
2370 #ifndef _WIN64
2371     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2372                  exceptionInfo->ContextRecord);
2373 #else
2374     // Itanium Windows uses a VectoredExceptionHandler
2375     // Which means that C++ programatic exception handlers (try/except)
2376     // will get here.  Continue the search for the right except block if
2377     // the exception code is not a fatal code.
2378     switch ( exception_code ) {
2379       case EXCEPTION_ACCESS_VIOLATION:
2380       case EXCEPTION_STACK_OVERFLOW:
2381       case EXCEPTION_ILLEGAL_INSTRUCTION:
2382       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2383       case EXCEPTION_INT_OVERFLOW:
2384       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2385       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2386                        exceptionInfo->ContextRecord);
2387       }
2388         break;
2389       default:
2390         break;
2391     }
2392 #endif
2393   }
2394   return EXCEPTION_CONTINUE_SEARCH;
2395 }
2396 
2397 #ifndef _WIN64
2398 // Special care for fast JNI accessors.
2399 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2400 // the heap gets shrunk before the field access.
2401 // Need to install our own structured exception handler since native code may
2402 // install its own.
2403 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2404   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2405   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2406     address pc = (address) exceptionInfo->ContextRecord->Eip;
2407     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2408     if (addr != (address)-1) {
2409       return Handle_Exception(exceptionInfo, addr);
2410     }
2411   }
2412   return EXCEPTION_CONTINUE_SEARCH;
2413 }
2414 
2415 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2416 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2417   __try { \
2418     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2419   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2420   } \
2421   return 0; \
2422 }
2423 
2424 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2425 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2426 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2427 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2428 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2429 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2430 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2431 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2432 
2433 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2434   switch (type) {
2435     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2436     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2437     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2438     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2439     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2440     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2441     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2442     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2443     default:        ShouldNotReachHere();
2444   }
2445   return (address)-1;
2446 }
2447 #endif
2448 
2449 // Virtual Memory
2450 
2451 int os::vm_page_size() { return os::win32::vm_page_size(); }
2452 int os::vm_allocation_granularity() {
2453   return os::win32::vm_allocation_granularity();
2454 }
2455 
2456 // Windows large page support is available on Windows 2003. In order to use
2457 // large page memory, the administrator must first assign additional privilege
2458 // to the user:
2459 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2460 //   + select Local Policies -> User Rights Assignment
2461 //   + double click "Lock pages in memory", add users and/or groups
2462 //   + reboot
2463 // Note the above steps are needed for administrator as well, as administrators
2464 // by default do not have the privilege to lock pages in memory.
2465 //
2466 // Note about Windows 2003: although the API supports committing large page
2467 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2468 // scenario, I found through experiment it only uses large page if the entire
2469 // memory region is reserved and committed in a single VirtualAlloc() call.
2470 // This makes Windows large page support more or less like Solaris ISM, in
2471 // that the entire heap must be committed upfront. This probably will change
2472 // in the future, if so the code below needs to be revisited.
2473 
2474 #ifndef MEM_LARGE_PAGES
2475 #define MEM_LARGE_PAGES 0x20000000
2476 #endif
2477 
2478 // GetLargePageMinimum is only available on Windows 2003. The other functions
2479 // are available on NT but not on Windows 98/Me. We have to resolve them at
2480 // runtime.
2481 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2482 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2483              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2484 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2485 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2486 
2487 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2488 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2489 static OpenProcessToken_func_type      _OpenProcessToken;
2490 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2491 
2492 static HINSTANCE _kernel32;
2493 static HINSTANCE _advapi32;
2494 static HANDLE    _hProcess;
2495 static HANDLE    _hToken;
2496 
2497 static size_t _large_page_size = 0;
2498 
2499 static bool resolve_functions_for_large_page_init() {
2500   _kernel32 = LoadLibrary("kernel32.dll");
2501   if (_kernel32 == NULL) return false;
2502 
2503   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2504                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
2505   if (_GetLargePageMinimum == NULL) return false;
2506 
2507   _advapi32 = LoadLibrary("advapi32.dll");
2508   if (_advapi32 == NULL) return false;
2509 
2510   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2511                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2512   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2513                             GetProcAddress(_advapi32, "OpenProcessToken"));
2514   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2515                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2516   return _AdjustTokenPrivileges != NULL &&
2517          _OpenProcessToken      != NULL &&
2518          _LookupPrivilegeValue  != NULL;
2519 }
2520 
2521 static bool request_lock_memory_privilege() {
2522   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2523                                 os::current_process_id());
2524 
2525   LUID luid;
2526   if (_hProcess != NULL &&
2527       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2528       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2529 
2530     TOKEN_PRIVILEGES tp;
2531     tp.PrivilegeCount = 1;
2532     tp.Privileges[0].Luid = luid;
2533     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2534 
2535     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2536     // privilege. Check GetLastError() too. See MSDN document.
2537     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2538         (GetLastError() == ERROR_SUCCESS)) {
2539       return true;
2540     }
2541   }
2542 
2543   return false;
2544 }
2545 
2546 static void cleanup_after_large_page_init() {
2547   _GetLargePageMinimum = NULL;
2548   _AdjustTokenPrivileges = NULL;
2549   _OpenProcessToken = NULL;
2550   _LookupPrivilegeValue = NULL;
2551   if (_kernel32) FreeLibrary(_kernel32);
2552   _kernel32 = NULL;
2553   if (_advapi32) FreeLibrary(_advapi32);
2554   _advapi32 = NULL;
2555   if (_hProcess) CloseHandle(_hProcess);
2556   _hProcess = NULL;
2557   if (_hToken) CloseHandle(_hToken);
2558   _hToken = NULL;
2559 }
2560 
2561 bool os::large_page_init() {
2562   if (!UseLargePages) return false;
2563 
2564   // print a warning if any large page related flag is specified on command line
2565   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2566                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2567   bool success = false;
2568 
2569 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2570   if (resolve_functions_for_large_page_init()) {
2571     if (request_lock_memory_privilege()) {
2572       size_t s = _GetLargePageMinimum();
2573       if (s) {
2574 #if defined(IA32) || defined(AMD64)
2575         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2576           WARN("JVM cannot use large pages bigger than 4mb.");
2577         } else {
2578 #endif
2579           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2580             _large_page_size = LargePageSizeInBytes;
2581           } else {
2582             _large_page_size = s;
2583           }
2584           success = true;
2585 #if defined(IA32) || defined(AMD64)
2586         }
2587 #endif
2588       } else {
2589         WARN("Large page is not supported by the processor.");
2590       }
2591     } else {
2592       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2593     }
2594   } else {
2595     WARN("Large page is not supported by the operating system.");
2596   }
2597 #undef WARN
2598 
2599   const size_t default_page_size = (size_t) vm_page_size();
2600   if (success && _large_page_size > default_page_size) {
2601     _page_sizes[0] = _large_page_size;
2602     _page_sizes[1] = default_page_size;
2603     _page_sizes[2] = 0;
2604   }
2605 
2606   cleanup_after_large_page_init();
2607   return success;
2608 }
2609 
2610 // On win32, one cannot release just a part of reserved memory, it's an
2611 // all or nothing deal.  When we split a reservation, we must break the
2612 // reservation into two reservations.
2613 void os::split_reserved_memory(char *base, size_t size, size_t split,
2614                               bool realloc) {
2615   if (size > 0) {
2616     release_memory(base, size);
2617     if (realloc) {
2618       reserve_memory(split, base);
2619     }
2620     if (size != split) {
2621       reserve_memory(size - split, base + split);
2622     }
2623   }
2624 }
2625 
2626 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2627   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2628          "reserve alignment");
2629   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2630   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2631   assert(res == NULL || addr == NULL || addr == res,
2632          "Unexpected address from reserve.");
2633   return res;
2634 }
2635 
2636 // Reserve memory at an arbitrary address, only if that area is
2637 // available (and not reserved for something else).
2638 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2639   // Windows os::reserve_memory() fails of the requested address range is
2640   // not avilable.
2641   return reserve_memory(bytes, requested_addr);
2642 }
2643 
2644 size_t os::large_page_size() {
2645   return _large_page_size;
2646 }
2647 
2648 bool os::can_commit_large_page_memory() {
2649   // Windows only uses large page memory when the entire region is reserved
2650   // and committed in a single VirtualAlloc() call. This may change in the
2651   // future, but with Windows 2003 it's not possible to commit on demand.
2652   return false;
2653 }
2654 
2655 bool os::can_execute_large_page_memory() {
2656   return true;
2657 }
2658 
2659 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2660 
2661   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2662 
2663   if (UseLargePagesIndividualAllocation) {
2664     if (TracePageSizes && Verbose) {
2665        tty->print_cr("Reserving large pages individually.");
2666     }
2667     char * p_buf;
2668     // first reserve enough address space in advance since we want to be
2669     // able to break a single contiguous virtual address range into multiple
2670     // large page commits but WS2003 does not allow reserving large page space
2671     // so we just use 4K pages for reserve, this gives us a legal contiguous
2672     // address space. then we will deallocate that reservation, and re alloc
2673     // using large pages
2674     const size_t size_of_reserve = bytes + _large_page_size;
2675     if (bytes > size_of_reserve) {
2676       // Overflowed.
2677       warning("Individually allocated large pages failed, "
2678         "use -XX:-UseLargePagesIndividualAllocation to turn off");
2679       return NULL;
2680     }
2681     p_buf = (char *) VirtualAlloc(addr,
2682                                  size_of_reserve,  // size of Reserve
2683                                  MEM_RESERVE,
2684                                  PAGE_READWRITE);
2685     // If reservation failed, return NULL
2686     if (p_buf == NULL) return NULL;
2687 
2688     release_memory(p_buf, bytes + _large_page_size);
2689     // round up to page boundary.  If the size_of_reserve did not
2690     // overflow and the reservation did not fail, this align up
2691     // should not overflow.
2692     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2693 
2694     // now go through and allocate one page at a time until all bytes are
2695     // allocated
2696     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2697     // An overflow of align_size_up() would have been caught above
2698     // in the calculation of size_of_reserve.
2699     char * next_alloc_addr = p_buf;
2700 
2701 #ifdef ASSERT
2702     // Variable for the failure injection
2703     long ran_num = os::random();
2704     size_t fail_after = ran_num % bytes;
2705 #endif
2706 
2707     while (bytes_remaining) {
2708       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2709       // Note allocate and commit
2710       char * p_new;
2711 
2712 #ifdef ASSERT
2713       bool inject_error = LargePagesIndividualAllocationInjectError &&
2714           (bytes_remaining <= fail_after);
2715 #else
2716       const bool inject_error = false;
2717 #endif
2718 
2719       if (inject_error) {
2720         p_new = NULL;
2721       } else {
2722         p_new = (char *) VirtualAlloc(next_alloc_addr,
2723                                     bytes_to_rq,
2724                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2725                                     prot);
2726       }
2727 
2728       if (p_new == NULL) {
2729         // Free any allocated pages
2730         if (next_alloc_addr > p_buf) {
2731           // Some memory was committed so release it.
2732           size_t bytes_to_release = bytes - bytes_remaining;
2733           release_memory(p_buf, bytes_to_release);
2734         }
2735 #ifdef ASSERT
2736         if (UseLargePagesIndividualAllocation &&
2737             LargePagesIndividualAllocationInjectError) {
2738           if (TracePageSizes && Verbose) {
2739              tty->print_cr("Reserving large pages individually failed.");
2740           }
2741         }
2742 #endif
2743         return NULL;
2744       }
2745       bytes_remaining -= bytes_to_rq;
2746       next_alloc_addr += bytes_to_rq;
2747     }
2748 
2749     return p_buf;
2750 
2751   } else {
2752     // normal policy just allocate it all at once
2753     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2754     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2755     return res;
2756   }
2757 }
2758 
2759 bool os::release_memory_special(char* base, size_t bytes) {
2760   return release_memory(base, bytes);
2761 }
2762 
2763 void os::print_statistics() {
2764 }
2765 
2766 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
2767   if (bytes == 0) {
2768     // Don't bother the OS with noops.
2769     return true;
2770   }
2771   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2772   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2773   // Don't attempt to print anything if the OS call fails. We're
2774   // probably low on resources, so the print itself may cause crashes.
2775   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
2776   if (result != NULL && exec) {
2777     DWORD oldprot;
2778     // Windows doc says to use VirtualProtect to get execute permissions
2779     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
2780   } else {
2781     return result;
2782   }
2783 }
2784 
2785 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2786                        bool exec) {
2787   return commit_memory(addr, size, exec);
2788 }
2789 
2790 bool os::uncommit_memory(char* addr, size_t bytes) {
2791   if (bytes == 0) {
2792     // Don't bother the OS with noops.
2793     return true;
2794   }
2795   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2796   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2797   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2798 }
2799 
2800 bool os::release_memory(char* addr, size_t bytes) {
2801   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2802 }
2803 
2804 bool os::create_stack_guard_pages(char* addr, size_t size) {
2805   return os::commit_memory(addr, size);
2806 }
2807 
2808 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2809   return os::uncommit_memory(addr, size);
2810 }
2811 
2812 // Set protections specified
2813 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2814                         bool is_committed) {
2815   unsigned int p = 0;
2816   switch (prot) {
2817   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2818   case MEM_PROT_READ: p = PAGE_READONLY; break;
2819   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2820   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2821   default:
2822     ShouldNotReachHere();
2823   }
2824 
2825   DWORD old_status;
2826 
2827   // Strange enough, but on Win32 one can change protection only for committed
2828   // memory, not a big deal anyway, as bytes less or equal than 64K
2829   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
2830     fatal("cannot commit protection page");
2831   }
2832   // One cannot use os::guard_memory() here, as on Win32 guard page
2833   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2834   //
2835   // Pages in the region become guard pages. Any attempt to access a guard page
2836   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2837   // the guard page status. Guard pages thus act as a one-time access alarm.
2838   return VirtualProtect(addr, bytes, p, &old_status) != 0;
2839 }
2840 
2841 bool os::guard_memory(char* addr, size_t bytes) {
2842   DWORD old_status;
2843   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2844 }
2845 
2846 bool os::unguard_memory(char* addr, size_t bytes) {
2847   DWORD old_status;
2848   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2849 }
2850 
2851 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2852 void os::free_memory(char *addr, size_t bytes)         { }
2853 void os::numa_make_global(char *addr, size_t bytes)    { }
2854 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2855 bool os::numa_topology_changed()                       { return false; }
2856 size_t os::numa_get_groups_num()                       { return 1; }
2857 int os::numa_get_group_id()                            { return 0; }
2858 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2859   if (size > 0) {
2860     ids[0] = 0;
2861     return 1;
2862   }
2863   return 0;
2864 }
2865 
2866 bool os::get_page_info(char *start, page_info* info) {
2867   return false;
2868 }
2869 
2870 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2871   return end;
2872 }
2873 
2874 char* os::non_memory_address_word() {
2875   // Must never look like an address returned by reserve_memory,
2876   // even in its subfields (as defined by the CPU immediate fields,
2877   // if the CPU splits constants across multiple instructions).
2878   return (char*)-1;
2879 }
2880 
2881 #define MAX_ERROR_COUNT 100
2882 #define SYS_THREAD_ERROR 0xffffffffUL
2883 
2884 void os::pd_start_thread(Thread* thread) {
2885   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2886   // Returns previous suspend state:
2887   // 0:  Thread was not suspended
2888   // 1:  Thread is running now
2889   // >1: Thread is still suspended.
2890   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2891 }
2892 
2893 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2894   return ::read(fd, buf, nBytes);
2895 }
2896 
2897 class HighResolutionInterval {
2898   // The default timer resolution seems to be 10 milliseconds.
2899   // (Where is this written down?)
2900   // If someone wants to sleep for only a fraction of the default,
2901   // then we set the timer resolution down to 1 millisecond for
2902   // the duration of their interval.
2903   // We carefully set the resolution back, since otherwise we
2904   // seem to incur an overhead (3%?) that we don't need.
2905   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2906   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2907   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2908   // timeBeginPeriod() if the relative error exceeded some threshold.
2909   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2910   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2911   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2912   // resolution timers running.
2913 private:
2914     jlong resolution;
2915 public:
2916   HighResolutionInterval(jlong ms) {
2917     resolution = ms % 10L;
2918     if (resolution != 0) {
2919       MMRESULT result = timeBeginPeriod(1L);
2920     }
2921   }
2922   ~HighResolutionInterval() {
2923     if (resolution != 0) {
2924       MMRESULT result = timeEndPeriod(1L);
2925     }
2926     resolution = 0L;
2927   }
2928 };
2929 
2930 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2931   jlong limit = (jlong) MAXDWORD;
2932 
2933   while(ms > limit) {
2934     int res;
2935     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2936       return res;
2937     ms -= limit;
2938   }
2939 
2940   assert(thread == Thread::current(),  "thread consistency check");
2941   OSThread* osthread = thread->osthread();
2942   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2943   int result;
2944   if (interruptable) {
2945     assert(thread->is_Java_thread(), "must be java thread");
2946     JavaThread *jt = (JavaThread *) thread;
2947     ThreadBlockInVM tbivm(jt);
2948 
2949     jt->set_suspend_equivalent();
2950     // cleared by handle_special_suspend_equivalent_condition() or
2951     // java_suspend_self() via check_and_wait_while_suspended()
2952 
2953     HANDLE events[1];
2954     events[0] = osthread->interrupt_event();
2955     HighResolutionInterval *phri=NULL;
2956     if(!ForceTimeHighResolution)
2957       phri = new HighResolutionInterval( ms );
2958     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
2959       result = OS_TIMEOUT;
2960     } else {
2961       ResetEvent(osthread->interrupt_event());
2962       osthread->set_interrupted(false);
2963       result = OS_INTRPT;
2964     }
2965     delete phri; //if it is NULL, harmless
2966 
2967     // were we externally suspended while we were waiting?
2968     jt->check_and_wait_while_suspended();
2969   } else {
2970     assert(!thread->is_Java_thread(), "must not be java thread");
2971     Sleep((long) ms);
2972     result = OS_TIMEOUT;
2973   }
2974   return result;
2975 }
2976 
2977 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2978 void os::infinite_sleep() {
2979   while (true) {    // sleep forever ...
2980     Sleep(100000);  // ... 100 seconds at a time
2981   }
2982 }
2983 
2984 typedef BOOL (WINAPI * STTSignature)(void) ;
2985 
2986 os::YieldResult os::NakedYield() {
2987   // Use either SwitchToThread() or Sleep(0)
2988   // Consider passing back the return value from SwitchToThread().
2989   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
2990   // In that case we revert to Sleep(0).
2991   static volatile STTSignature stt = (STTSignature) 1 ;
2992 
2993   if (stt == ((STTSignature) 1)) {
2994     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
2995     // It's OK if threads race during initialization as the operation above is idempotent.
2996   }
2997   if (stt != NULL) {
2998     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
2999   } else {
3000     Sleep (0) ;
3001   }
3002   return os::YIELD_UNKNOWN ;
3003 }
3004 
3005 void os::yield() {  os::NakedYield(); }
3006 
3007 void os::yield_all(int attempts) {
3008   // Yields to all threads, including threads with lower priorities
3009   Sleep(1);
3010 }
3011 
3012 // Win32 only gives you access to seven real priorities at a time,
3013 // so we compress Java's ten down to seven.  It would be better
3014 // if we dynamically adjusted relative priorities.
3015 
3016 int os::java_to_os_priority[MaxPriority + 1] = {
3017   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3018   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3019   THREAD_PRIORITY_LOWEST,                       // 2
3020   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3021   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3022   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3023   THREAD_PRIORITY_NORMAL,                       // 6
3024   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3025   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3026   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3027   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3028 };
3029 
3030 int prio_policy1[MaxPriority + 1] = {
3031   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3032   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3033   THREAD_PRIORITY_LOWEST,                       // 2
3034   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3035   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3036   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3037   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3038   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3039   THREAD_PRIORITY_HIGHEST,                      // 8
3040   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3041   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3042 };
3043 
3044 static int prio_init() {
3045   // If ThreadPriorityPolicy is 1, switch tables
3046   if (ThreadPriorityPolicy == 1) {
3047     int i;
3048     for (i = 0; i < MaxPriority + 1; i++) {
3049       os::java_to_os_priority[i] = prio_policy1[i];
3050     }
3051   }
3052   return 0;
3053 }
3054 
3055 OSReturn os::set_native_priority(Thread* thread, int priority) {
3056   if (!UseThreadPriorities) return OS_OK;
3057   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3058   return ret ? OS_OK : OS_ERR;
3059 }
3060 
3061 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3062   if ( !UseThreadPriorities ) {
3063     *priority_ptr = java_to_os_priority[NormPriority];
3064     return OS_OK;
3065   }
3066   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3067   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3068     assert(false, "GetThreadPriority failed");
3069     return OS_ERR;
3070   }
3071   *priority_ptr = os_prio;
3072   return OS_OK;
3073 }
3074 
3075 
3076 // Hint to the underlying OS that a task switch would not be good.
3077 // Void return because it's a hint and can fail.
3078 void os::hint_no_preempt() {}
3079 
3080 void os::interrupt(Thread* thread) {
3081   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3082          "possibility of dangling Thread pointer");
3083 
3084   OSThread* osthread = thread->osthread();
3085   osthread->set_interrupted(true);
3086   // More than one thread can get here with the same value of osthread,
3087   // resulting in multiple notifications.  We do, however, want the store
3088   // to interrupted() to be visible to other threads before we post
3089   // the interrupt event.
3090   OrderAccess::release();
3091   SetEvent(osthread->interrupt_event());
3092   // For JSR166:  unpark after setting status
3093   if (thread->is_Java_thread())
3094     ((JavaThread*)thread)->parker()->unpark();
3095 
3096   ParkEvent * ev = thread->_ParkEvent ;
3097   if (ev != NULL) ev->unpark() ;
3098 
3099 }
3100 
3101 
3102 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3103   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3104          "possibility of dangling Thread pointer");
3105 
3106   OSThread* osthread = thread->osthread();
3107   bool interrupted;
3108   interrupted = osthread->interrupted();
3109   if (clear_interrupted == true) {
3110     osthread->set_interrupted(false);
3111     ResetEvent(osthread->interrupt_event());
3112   } // Otherwise leave the interrupted state alone
3113 
3114   return interrupted;
3115 }
3116 
3117 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3118 ExtendedPC os::get_thread_pc(Thread* thread) {
3119   CONTEXT context;
3120   context.ContextFlags = CONTEXT_CONTROL;
3121   HANDLE handle = thread->osthread()->thread_handle();
3122 #ifdef _M_IA64
3123   assert(0, "Fix get_thread_pc");
3124   return ExtendedPC(NULL);
3125 #else
3126   if (GetThreadContext(handle, &context)) {
3127 #ifdef _M_AMD64
3128     return ExtendedPC((address) context.Rip);
3129 #else
3130     return ExtendedPC((address) context.Eip);
3131 #endif
3132   } else {
3133     return ExtendedPC(NULL);
3134   }
3135 #endif
3136 }
3137 
3138 // GetCurrentThreadId() returns DWORD
3139 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3140 
3141 static int _initial_pid = 0;
3142 
3143 int os::current_process_id()
3144 {
3145   return (_initial_pid ? _initial_pid : _getpid());
3146 }
3147 
3148 int    os::win32::_vm_page_size       = 0;
3149 int    os::win32::_vm_allocation_granularity = 0;
3150 int    os::win32::_processor_type     = 0;
3151 // Processor level is not available on non-NT systems, use vm_version instead
3152 int    os::win32::_processor_level    = 0;
3153 julong os::win32::_physical_memory    = 0;
3154 size_t os::win32::_default_stack_size = 0;
3155 
3156          intx os::win32::_os_thread_limit    = 0;
3157 volatile intx os::win32::_os_thread_count    = 0;
3158 
3159 bool   os::win32::_is_nt              = false;
3160 bool   os::win32::_is_windows_2003    = false;
3161 
3162 
3163 void os::win32::initialize_system_info() {
3164   SYSTEM_INFO si;
3165   GetSystemInfo(&si);
3166   _vm_page_size    = si.dwPageSize;
3167   _vm_allocation_granularity = si.dwAllocationGranularity;
3168   _processor_type  = si.dwProcessorType;
3169   _processor_level = si.wProcessorLevel;
3170   set_processor_count(si.dwNumberOfProcessors);
3171 
3172   MEMORYSTATUSEX ms;
3173   ms.dwLength = sizeof(ms);
3174 
3175   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3176   // dwMemoryLoad (% of memory in use)
3177   GlobalMemoryStatusEx(&ms);
3178   _physical_memory = ms.ullTotalPhys;
3179 
3180   OSVERSIONINFO oi;
3181   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3182   GetVersionEx(&oi);
3183   switch(oi.dwPlatformId) {
3184     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3185     case VER_PLATFORM_WIN32_NT:
3186       _is_nt = true;
3187       {
3188         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3189         if (os_vers == 5002) {
3190           _is_windows_2003 = true;
3191         }
3192       }
3193       break;
3194     default: fatal("Unknown platform");
3195   }
3196 
3197   _default_stack_size = os::current_stack_size();
3198   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3199   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3200     "stack size not a multiple of page size");
3201 
3202   initialize_performance_counter();
3203 
3204   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3205   // known to deadlock the system, if the VM issues to thread operations with
3206   // a too high frequency, e.g., such as changing the priorities.
3207   // The 6000 seems to work well - no deadlocks has been notices on the test
3208   // programs that we have seen experience this problem.
3209   if (!os::win32::is_nt()) {
3210     StarvationMonitorInterval = 6000;
3211   }
3212 }
3213 
3214 
3215 void os::win32::setmode_streams() {
3216   _setmode(_fileno(stdin), _O_BINARY);
3217   _setmode(_fileno(stdout), _O_BINARY);
3218   _setmode(_fileno(stderr), _O_BINARY);
3219 }
3220 
3221 
3222 int os::message_box(const char* title, const char* message) {
3223   int result = MessageBox(NULL, message, title,
3224                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3225   return result == IDYES;
3226 }
3227 
3228 int os::allocate_thread_local_storage() {
3229   return TlsAlloc();
3230 }
3231 
3232 
3233 void os::free_thread_local_storage(int index) {
3234   TlsFree(index);
3235 }
3236 
3237 
3238 void os::thread_local_storage_at_put(int index, void* value) {
3239   TlsSetValue(index, value);
3240   assert(thread_local_storage_at(index) == value, "Just checking");
3241 }
3242 
3243 
3244 void* os::thread_local_storage_at(int index) {
3245   return TlsGetValue(index);
3246 }
3247 
3248 
3249 #ifndef PRODUCT
3250 #ifndef _WIN64
3251 // Helpers to check whether NX protection is enabled
3252 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3253   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3254       pex->ExceptionRecord->NumberParameters > 0 &&
3255       pex->ExceptionRecord->ExceptionInformation[0] ==
3256       EXCEPTION_INFO_EXEC_VIOLATION) {
3257     return EXCEPTION_EXECUTE_HANDLER;
3258   }
3259   return EXCEPTION_CONTINUE_SEARCH;
3260 }
3261 
3262 void nx_check_protection() {
3263   // If NX is enabled we'll get an exception calling into code on the stack
3264   char code[] = { (char)0xC3 }; // ret
3265   void *code_ptr = (void *)code;
3266   __try {
3267     __asm call code_ptr
3268   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3269     tty->print_raw_cr("NX protection detected.");
3270   }
3271 }
3272 #endif // _WIN64
3273 #endif // PRODUCT
3274 
3275 // this is called _before_ the global arguments have been parsed
3276 void os::init(void) {
3277   _initial_pid = _getpid();
3278 
3279   init_random(1234567);
3280 
3281   win32::initialize_system_info();
3282   win32::setmode_streams();
3283   init_page_sizes((size_t) win32::vm_page_size());
3284 
3285   // For better scalability on MP systems (must be called after initialize_system_info)
3286 #ifndef PRODUCT
3287   if (is_MP()) {
3288     NoYieldsInMicrolock = true;
3289   }
3290 #endif
3291   // This may be overridden later when argument processing is done.
3292   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3293     os::win32::is_windows_2003());
3294 
3295   // Initialize main_process and main_thread
3296   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3297  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3298                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3299     fatal("DuplicateHandle failed\n");
3300   }
3301   main_thread_id = (int) GetCurrentThreadId();
3302 }
3303 
3304 // To install functions for atexit processing
3305 extern "C" {
3306   static void perfMemory_exit_helper() {
3307     perfMemory_exit();
3308   }
3309 }
3310 
3311 
3312 // this is called _after_ the global arguments have been parsed
3313 jint os::init_2(void) {
3314   // Allocate a single page and mark it as readable for safepoint polling
3315   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3316   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3317 
3318   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3319   guarantee( return_page != NULL, "Commit Failed for polling page");
3320 
3321   os::set_polling_page( polling_page );
3322 
3323 #ifndef PRODUCT
3324   if( Verbose && PrintMiscellaneous )
3325     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3326 #endif
3327 
3328   if (!UseMembar) {
3329     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3330     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3331 
3332     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3333     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3334 
3335     os::set_memory_serialize_page( mem_serialize_page );
3336 
3337 #ifndef PRODUCT
3338     if(Verbose && PrintMiscellaneous)
3339       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3340 #endif
3341 }
3342 
3343   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3344 
3345   // Setup Windows Exceptions
3346 
3347   // On Itanium systems, Structured Exception Handling does not
3348   // work since stack frames must be walkable by the OS.  Since
3349   // much of our code is dynamically generated, and we do not have
3350   // proper unwind .xdata sections, the system simply exits
3351   // rather than delivering the exception.  To work around
3352   // this we use VectorExceptions instead.
3353 #ifdef _WIN64
3354   if (UseVectoredExceptions) {
3355     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3356   }
3357 #endif
3358 
3359   // for debugging float code generation bugs
3360   if (ForceFloatExceptions) {
3361 #ifndef  _WIN64
3362     static long fp_control_word = 0;
3363     __asm { fstcw fp_control_word }
3364     // see Intel PPro Manual, Vol. 2, p 7-16
3365     const long precision = 0x20;
3366     const long underflow = 0x10;
3367     const long overflow  = 0x08;
3368     const long zero_div  = 0x04;
3369     const long denorm    = 0x02;
3370     const long invalid   = 0x01;
3371     fp_control_word |= invalid;
3372     __asm { fldcw fp_control_word }
3373 #endif
3374   }
3375 
3376   // Initialize HPI.
3377   jint hpi_result = hpi::initialize();
3378   if (hpi_result != JNI_OK) { return hpi_result; }
3379 
3380   // If stack_commit_size is 0, windows will reserve the default size,
3381   // but only commit a small portion of it.
3382   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3383   size_t default_reserve_size = os::win32::default_stack_size();
3384   size_t actual_reserve_size = stack_commit_size;
3385   if (stack_commit_size < default_reserve_size) {
3386     // If stack_commit_size == 0, we want this too
3387     actual_reserve_size = default_reserve_size;
3388   }
3389 
3390   JavaThread::set_stack_size_at_create(stack_commit_size);
3391 
3392   // Calculate theoretical max. size of Threads to guard gainst artifical
3393   // out-of-memory situations, where all available address-space has been
3394   // reserved by thread stacks.
3395   assert(actual_reserve_size != 0, "Must have a stack");
3396 
3397   // Calculate the thread limit when we should start doing Virtual Memory
3398   // banging. Currently when the threads will have used all but 200Mb of space.
3399   //
3400   // TODO: consider performing a similar calculation for commit size instead
3401   // as reserve size, since on a 64-bit platform we'll run into that more
3402   // often than running out of virtual memory space.  We can use the
3403   // lower value of the two calculations as the os_thread_limit.
3404   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3405   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3406 
3407   // at exit methods are called in the reverse order of their registration.
3408   // there is no limit to the number of functions registered. atexit does
3409   // not set errno.
3410 
3411   if (PerfAllowAtExitRegistration) {
3412     // only register atexit functions if PerfAllowAtExitRegistration is set.
3413     // atexit functions can be delayed until process exit time, which
3414     // can be problematic for embedded VM situations. Embedded VMs should
3415     // call DestroyJavaVM() to assure that VM resources are released.
3416 
3417     // note: perfMemory_exit_helper atexit function may be removed in
3418     // the future if the appropriate cleanup code can be added to the
3419     // VM_Exit VMOperation's doit method.
3420     if (atexit(perfMemory_exit_helper) != 0) {
3421       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3422     }
3423   }
3424 
3425   // initialize PSAPI or ToolHelp for fatal error handler
3426   if (win32::is_nt()) _init_psapi();
3427   else _init_toolhelp();
3428 
3429 #ifndef _WIN64
3430   // Print something if NX is enabled (win32 on AMD64)
3431   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3432 #endif
3433 
3434   // initialize thread priority policy
3435   prio_init();
3436 
3437   if (UseNUMA && !ForceNUMA) {
3438     UseNUMA = false; // Currently unsupported.
3439   }
3440 
3441   return JNI_OK;
3442 }
3443 
3444 void os::init_3(void) {
3445   return;
3446 }
3447 
3448 // Mark the polling page as unreadable
3449 void os::make_polling_page_unreadable(void) {
3450   DWORD old_status;
3451   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3452     fatal("Could not disable polling page");
3453 };
3454 
3455 // Mark the polling page as readable
3456 void os::make_polling_page_readable(void) {
3457   DWORD old_status;
3458   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3459     fatal("Could not enable polling page");
3460 };
3461 
3462 
3463 int os::stat(const char *path, struct stat *sbuf) {
3464   char pathbuf[MAX_PATH];
3465   if (strlen(path) > MAX_PATH - 1) {
3466     errno = ENAMETOOLONG;
3467     return -1;
3468   }
3469   hpi::native_path(strcpy(pathbuf, path));
3470   int ret = ::stat(pathbuf, sbuf);
3471   if (sbuf != NULL && UseUTCFileTimestamp) {
3472     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3473     // the system timezone and so can return different values for the
3474     // same file if/when daylight savings time changes.  This adjustment
3475     // makes sure the same timestamp is returned regardless of the TZ.
3476     //
3477     // See:
3478     // http://msdn.microsoft.com/library/
3479     //   default.asp?url=/library/en-us/sysinfo/base/
3480     //   time_zone_information_str.asp
3481     // and
3482     // http://msdn.microsoft.com/library/default.asp?url=
3483     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3484     //
3485     // NOTE: there is a insidious bug here:  If the timezone is changed
3486     // after the call to stat() but before 'GetTimeZoneInformation()', then
3487     // the adjustment we do here will be wrong and we'll return the wrong
3488     // value (which will likely end up creating an invalid class data
3489     // archive).  Absent a better API for this, or some time zone locking
3490     // mechanism, we'll have to live with this risk.
3491     TIME_ZONE_INFORMATION tz;
3492     DWORD tzid = GetTimeZoneInformation(&tz);
3493     int daylightBias =
3494       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3495     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3496   }
3497   return ret;
3498 }
3499 
3500 
3501 #define FT2INT64(ft) \
3502   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3503 
3504 
3505 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3506 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3507 // of a thread.
3508 //
3509 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3510 // the fast estimate available on the platform.
3511 
3512 // current_thread_cpu_time() is not optimized for Windows yet
3513 jlong os::current_thread_cpu_time() {
3514   // return user + sys since the cost is the same
3515   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3516 }
3517 
3518 jlong os::thread_cpu_time(Thread* thread) {
3519   // consistent with what current_thread_cpu_time() returns.
3520   return os::thread_cpu_time(thread, true /* user+sys */);
3521 }
3522 
3523 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3524   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3525 }
3526 
3527 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3528   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3529   // If this function changes, os::is_thread_cpu_time_supported() should too
3530   if (os::win32::is_nt()) {
3531     FILETIME CreationTime;
3532     FILETIME ExitTime;
3533     FILETIME KernelTime;
3534     FILETIME UserTime;
3535 
3536     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3537                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3538       return -1;
3539     else
3540       if (user_sys_cpu_time) {
3541         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3542       } else {
3543         return FT2INT64(UserTime) * 100;
3544       }
3545   } else {
3546     return (jlong) timeGetTime() * 1000000;
3547   }
3548 }
3549 
3550 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3551   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3552   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3553   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3554   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3555 }
3556 
3557 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3558   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3559   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3560   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3561   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3562 }
3563 
3564 bool os::is_thread_cpu_time_supported() {
3565   // see os::thread_cpu_time
3566   if (os::win32::is_nt()) {
3567     FILETIME CreationTime;
3568     FILETIME ExitTime;
3569     FILETIME KernelTime;
3570     FILETIME UserTime;
3571 
3572     if ( GetThreadTimes(GetCurrentThread(),
3573                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3574       return false;
3575     else
3576       return true;
3577   } else {
3578     return false;
3579   }
3580 }
3581 
3582 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3583 // It does have primitives (PDH API) to get CPU usage and run queue length.
3584 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3585 // If we wanted to implement loadavg on Windows, we have a few options:
3586 //
3587 // a) Query CPU usage and run queue length and "fake" an answer by
3588 //    returning the CPU usage if it's under 100%, and the run queue
3589 //    length otherwise.  It turns out that querying is pretty slow
3590 //    on Windows, on the order of 200 microseconds on a fast machine.
3591 //    Note that on the Windows the CPU usage value is the % usage
3592 //    since the last time the API was called (and the first call
3593 //    returns 100%), so we'd have to deal with that as well.
3594 //
3595 // b) Sample the "fake" answer using a sampling thread and store
3596 //    the answer in a global variable.  The call to loadavg would
3597 //    just return the value of the global, avoiding the slow query.
3598 //
3599 // c) Sample a better answer using exponential decay to smooth the
3600 //    value.  This is basically the algorithm used by UNIX kernels.
3601 //
3602 // Note that sampling thread starvation could affect both (b) and (c).
3603 int os::loadavg(double loadavg[], int nelem) {
3604   return -1;
3605 }
3606 
3607 
3608 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3609 bool os::dont_yield() {
3610   return DontYieldALot;
3611 }
3612 
3613 // Is a (classpath) directory empty?
3614 bool os::dir_is_empty(const char* path) {
3615   WIN32_FIND_DATA fd;
3616   HANDLE f = FindFirstFile(path, &fd);
3617   if (f == INVALID_HANDLE_VALUE) {
3618     return true;
3619   }
3620   FindClose(f);
3621   return false;
3622 }
3623 
3624 // create binary file, rewriting existing file if required
3625 int os::create_binary_file(const char* path, bool rewrite_existing) {
3626   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3627   if (!rewrite_existing) {
3628     oflags |= _O_EXCL;
3629   }
3630   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3631 }
3632 
3633 // return current position of file pointer
3634 jlong os::current_file_offset(int fd) {
3635   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3636 }
3637 
3638 // move file pointer to the specified offset
3639 jlong os::seek_to_file_offset(int fd, jlong offset) {
3640   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3641 }
3642 
3643 
3644 // Map a block of memory.
3645 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3646                      char *addr, size_t bytes, bool read_only,
3647                      bool allow_exec) {
3648   HANDLE hFile;
3649   char* base;
3650 
3651   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3652                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3653   if (hFile == NULL) {
3654     if (PrintMiscellaneous && Verbose) {
3655       DWORD err = GetLastError();
3656       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3657     }
3658     return NULL;
3659   }
3660 
3661   if (allow_exec) {
3662     // CreateFileMapping/MapViewOfFileEx can't map executable memory
3663     // unless it comes from a PE image (which the shared archive is not.)
3664     // Even VirtualProtect refuses to give execute access to mapped memory
3665     // that was not previously executable.
3666     //
3667     // Instead, stick the executable region in anonymous memory.  Yuck.
3668     // Penalty is that ~4 pages will not be shareable - in the future
3669     // we might consider DLLizing the shared archive with a proper PE
3670     // header so that mapping executable + sharing is possible.
3671 
3672     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3673                                 PAGE_READWRITE);
3674     if (base == NULL) {
3675       if (PrintMiscellaneous && Verbose) {
3676         DWORD err = GetLastError();
3677         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3678       }
3679       CloseHandle(hFile);
3680       return NULL;
3681     }
3682 
3683     DWORD bytes_read;
3684     OVERLAPPED overlapped;
3685     overlapped.Offset = (DWORD)file_offset;
3686     overlapped.OffsetHigh = 0;
3687     overlapped.hEvent = NULL;
3688     // ReadFile guarantees that if the return value is true, the requested
3689     // number of bytes were read before returning.
3690     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3691     if (!res) {
3692       if (PrintMiscellaneous && Verbose) {
3693         DWORD err = GetLastError();
3694         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3695       }
3696       release_memory(base, bytes);
3697       CloseHandle(hFile);
3698       return NULL;
3699     }
3700   } else {
3701     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3702                                     NULL /*file_name*/);
3703     if (hMap == NULL) {
3704       if (PrintMiscellaneous && Verbose) {
3705         DWORD err = GetLastError();
3706         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3707       }
3708       CloseHandle(hFile);
3709       return NULL;
3710     }
3711 
3712     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3713     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3714                                   (DWORD)bytes, addr);
3715     if (base == NULL) {
3716       if (PrintMiscellaneous && Verbose) {
3717         DWORD err = GetLastError();
3718         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3719       }
3720       CloseHandle(hMap);
3721       CloseHandle(hFile);
3722       return NULL;
3723     }
3724 
3725     if (CloseHandle(hMap) == 0) {
3726       if (PrintMiscellaneous && Verbose) {
3727         DWORD err = GetLastError();
3728         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3729       }
3730       CloseHandle(hFile);
3731       return base;
3732     }
3733   }
3734 
3735   if (allow_exec) {
3736     DWORD old_protect;
3737     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3738     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3739 
3740     if (!res) {
3741       if (PrintMiscellaneous && Verbose) {
3742         DWORD err = GetLastError();
3743         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3744       }
3745       // Don't consider this a hard error, on IA32 even if the
3746       // VirtualProtect fails, we should still be able to execute
3747       CloseHandle(hFile);
3748       return base;
3749     }
3750   }
3751 
3752   if (CloseHandle(hFile) == 0) {
3753     if (PrintMiscellaneous && Verbose) {
3754       DWORD err = GetLastError();
3755       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3756     }
3757     return base;
3758   }
3759 
3760   return base;
3761 }
3762 
3763 
3764 // Remap a block of memory.
3765 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3766                        char *addr, size_t bytes, bool read_only,
3767                        bool allow_exec) {
3768   // This OS does not allow existing memory maps to be remapped so we
3769   // have to unmap the memory before we remap it.
3770   if (!os::unmap_memory(addr, bytes)) {
3771     return NULL;
3772   }
3773 
3774   // There is a very small theoretical window between the unmap_memory()
3775   // call above and the map_memory() call below where a thread in native
3776   // code may be able to access an address that is no longer mapped.
3777 
3778   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3779                         allow_exec);
3780 }
3781 
3782 
3783 // Unmap a block of memory.
3784 // Returns true=success, otherwise false.
3785 
3786 bool os::unmap_memory(char* addr, size_t bytes) {
3787   BOOL result = UnmapViewOfFile(addr);
3788   if (result == 0) {
3789     if (PrintMiscellaneous && Verbose) {
3790       DWORD err = GetLastError();
3791       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3792     }
3793     return false;
3794   }
3795   return true;
3796 }
3797 
3798 void os::pause() {
3799   char filename[MAX_PATH];
3800   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3801     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3802   } else {
3803     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3804   }
3805 
3806   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3807   if (fd != -1) {
3808     struct stat buf;
3809     close(fd);
3810     while (::stat(filename, &buf) == 0) {
3811       Sleep(100);
3812     }
3813   } else {
3814     jio_fprintf(stderr,
3815       "Could not open pause file '%s', continuing immediately.\n", filename);
3816   }
3817 }
3818 
3819 // An Event wraps a win32 "CreateEvent" kernel handle.
3820 //
3821 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
3822 //
3823 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3824 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3825 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3826 //     In addition, an unpark() operation might fetch the handle field, but the
3827 //     event could recycle between the fetch and the SetEvent() operation.
3828 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3829 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3830 //     on an stale but recycled handle would be harmless, but in practice this might
3831 //     confuse other non-Sun code, so it's not a viable approach.
3832 //
3833 // 2:  Once a win32 event handle is associated with an Event, it remains associated
3834 //     with the Event.  The event handle is never closed.  This could be construed
3835 //     as handle leakage, but only up to the maximum # of threads that have been extant
3836 //     at any one time.  This shouldn't be an issue, as windows platforms typically
3837 //     permit a process to have hundreds of thousands of open handles.
3838 //
3839 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3840 //     and release unused handles.
3841 //
3842 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3843 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
3844 //
3845 // 5.  Use an RCU-like mechanism (Read-Copy Update).
3846 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
3847 //
3848 // We use (2).
3849 //
3850 // TODO-FIXME:
3851 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3852 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3853 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
3854 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3855 //     into a single win32 CreateEvent() handle.
3856 //
3857 // _Event transitions in park()
3858 //   -1 => -1 : illegal
3859 //    1 =>  0 : pass - return immediately
3860 //    0 => -1 : block
3861 //
3862 // _Event serves as a restricted-range semaphore :
3863 //    -1 : thread is blocked
3864 //     0 : neutral  - thread is running or ready
3865 //     1 : signaled - thread is running or ready
3866 //
3867 // Another possible encoding of _Event would be
3868 // with explicit "PARKED" and "SIGNALED" bits.
3869 
3870 int os::PlatformEvent::park (jlong Millis) {
3871     guarantee (_ParkHandle != NULL , "Invariant") ;
3872     guarantee (Millis > 0          , "Invariant") ;
3873     int v ;
3874 
3875     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3876     // the initial park() operation.
3877 
3878     for (;;) {
3879         v = _Event ;
3880         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3881     }
3882     guarantee ((v == 0) || (v == 1), "invariant") ;
3883     if (v != 0) return OS_OK ;
3884 
3885     // Do this the hard way by blocking ...
3886     // TODO: consider a brief spin here, gated on the success of recent
3887     // spin attempts by this thread.
3888     //
3889     // We decompose long timeouts into series of shorter timed waits.
3890     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3891     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3892     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3893     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3894     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3895     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3896     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3897     // for the already waited time.  This policy does not admit any new outcomes.
3898     // In the future, however, we might want to track the accumulated wait time and
3899     // adjust Millis accordingly if we encounter a spurious wakeup.
3900 
3901     const int MAXTIMEOUT = 0x10000000 ;
3902     DWORD rv = WAIT_TIMEOUT ;
3903     while (_Event < 0 && Millis > 0) {
3904        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3905        if (Millis > MAXTIMEOUT) {
3906           prd = MAXTIMEOUT ;
3907        }
3908        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3909        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3910        if (rv == WAIT_TIMEOUT) {
3911            Millis -= prd ;
3912        }
3913     }
3914     v = _Event ;
3915     _Event = 0 ;
3916     OrderAccess::fence() ;
3917     // If we encounter a nearly simultanous timeout expiry and unpark()
3918     // we return OS_OK indicating we awoke via unpark().
3919     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3920     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3921 }
3922 
3923 void os::PlatformEvent::park () {
3924     guarantee (_ParkHandle != NULL, "Invariant") ;
3925     // Invariant: Only the thread associated with the Event/PlatformEvent
3926     // may call park().
3927     int v ;
3928     for (;;) {
3929         v = _Event ;
3930         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3931     }
3932     guarantee ((v == 0) || (v == 1), "invariant") ;
3933     if (v != 0) return ;
3934 
3935     // Do this the hard way by blocking ...
3936     // TODO: consider a brief spin here, gated on the success of recent
3937     // spin attempts by this thread.
3938     while (_Event < 0) {
3939        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
3940        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
3941     }
3942 
3943     // Usually we'll find _Event == 0 at this point, but as
3944     // an optional optimization we clear it, just in case can
3945     // multiple unpark() operations drove _Event up to 1.
3946     _Event = 0 ;
3947     OrderAccess::fence() ;
3948     guarantee (_Event >= 0, "invariant") ;
3949 }
3950 
3951 void os::PlatformEvent::unpark() {
3952   guarantee (_ParkHandle != NULL, "Invariant") ;
3953   int v ;
3954   for (;;) {
3955       v = _Event ;      // Increment _Event if it's < 1.
3956       if (v > 0) {
3957          // If it's already signaled just return.
3958          // The LD of _Event could have reordered or be satisfied
3959          // by a read-aside from this processor's write buffer.
3960          // To avoid problems execute a barrier and then
3961          // ratify the value.  A degenerate CAS() would also work.
3962          // Viz., CAS (v+0, &_Event, v) == v).
3963          OrderAccess::fence() ;
3964          if (_Event == v) return ;
3965          continue ;
3966       }
3967       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
3968   }
3969   if (v < 0) {
3970      ::SetEvent (_ParkHandle) ;
3971   }
3972 }
3973 
3974 
3975 // JSR166
3976 // -------------------------------------------------------
3977 
3978 /*
3979  * The Windows implementation of Park is very straightforward: Basic
3980  * operations on Win32 Events turn out to have the right semantics to
3981  * use them directly. We opportunistically resuse the event inherited
3982  * from Monitor.
3983  */
3984 
3985 
3986 void Parker::park(bool isAbsolute, jlong time) {
3987   guarantee (_ParkEvent != NULL, "invariant") ;
3988   // First, demultiplex/decode time arguments
3989   if (time < 0) { // don't wait
3990     return;
3991   }
3992   else if (time == 0) {
3993     time = INFINITE;
3994   }
3995   else if  (isAbsolute) {
3996     time -= os::javaTimeMillis(); // convert to relative time
3997     if (time <= 0) // already elapsed
3998       return;
3999   }
4000   else { // relative
4001     time /= 1000000; // Must coarsen from nanos to millis
4002     if (time == 0)   // Wait for the minimal time unit if zero
4003       time = 1;
4004   }
4005 
4006   JavaThread* thread = (JavaThread*)(Thread::current());
4007   assert(thread->is_Java_thread(), "Must be JavaThread");
4008   JavaThread *jt = (JavaThread *)thread;
4009 
4010   // Don't wait if interrupted or already triggered
4011   if (Thread::is_interrupted(thread, false) ||
4012     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4013     ResetEvent(_ParkEvent);
4014     return;
4015   }
4016   else {
4017     ThreadBlockInVM tbivm(jt);
4018     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4019     jt->set_suspend_equivalent();
4020 
4021     WaitForSingleObject(_ParkEvent,  time);
4022     ResetEvent(_ParkEvent);
4023 
4024     // If externally suspended while waiting, re-suspend
4025     if (jt->handle_special_suspend_equivalent_condition()) {
4026       jt->java_suspend_self();
4027     }
4028   }
4029 }
4030 
4031 void Parker::unpark() {
4032   guarantee (_ParkEvent != NULL, "invariant") ;
4033   SetEvent(_ParkEvent);
4034 }
4035 
4036 // Run the specified command in a separate process. Return its exit value,
4037 // or -1 on failure (e.g. can't create a new process).
4038 int os::fork_and_exec(char* cmd) {
4039   STARTUPINFO si;
4040   PROCESS_INFORMATION pi;
4041 
4042   memset(&si, 0, sizeof(si));
4043   si.cb = sizeof(si);
4044   memset(&pi, 0, sizeof(pi));
4045   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4046                             cmd,    // command line
4047                             NULL,   // process security attribute
4048                             NULL,   // thread security attribute
4049                             TRUE,   // inherits system handles
4050                             0,      // no creation flags
4051                             NULL,   // use parent's environment block
4052                             NULL,   // use parent's starting directory
4053                             &si,    // (in) startup information
4054                             &pi);   // (out) process information
4055 
4056   if (rslt) {
4057     // Wait until child process exits.
4058     WaitForSingleObject(pi.hProcess, INFINITE);
4059 
4060     DWORD exit_code;
4061     GetExitCodeProcess(pi.hProcess, &exit_code);
4062 
4063     // Close process and thread handles.
4064     CloseHandle(pi.hProcess);
4065     CloseHandle(pi.hThread);
4066 
4067     return (int)exit_code;
4068   } else {
4069     return -1;
4070   }
4071 }
4072 
4073 //--------------------------------------------------------------------------------------------------
4074 // Non-product code
4075 
4076 static int mallocDebugIntervalCounter = 0;
4077 static int mallocDebugCounter = 0;
4078 bool os::check_heap(bool force) {
4079   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4080   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4081     // Note: HeapValidate executes two hardware breakpoints when it finds something
4082     // wrong; at these points, eax contains the address of the offending block (I think).
4083     // To get to the exlicit error message(s) below, just continue twice.
4084     HANDLE heap = GetProcessHeap();
4085     { HeapLock(heap);
4086       PROCESS_HEAP_ENTRY phe;
4087       phe.lpData = NULL;
4088       while (HeapWalk(heap, &phe) != 0) {
4089         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4090             !HeapValidate(heap, 0, phe.lpData)) {
4091           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4092           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4093           fatal("corrupted C heap");
4094         }
4095       }
4096       int err = GetLastError();
4097       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4098         fatal(err_msg("heap walk aborted with error %d", err));
4099       }
4100       HeapUnlock(heap);
4101     }
4102     mallocDebugIntervalCounter = 0;
4103   }
4104   return true;
4105 }
4106 
4107 
4108 bool os::find(address addr, outputStream* st) {
4109   // Nothing yet
4110   return false;
4111 }
4112 
4113 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4114   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4115 
4116   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4117     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4118     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4119     address addr = (address) exceptionRecord->ExceptionInformation[1];
4120 
4121     if (os::is_memory_serialize_page(thread, addr))
4122       return EXCEPTION_CONTINUE_EXECUTION;
4123   }
4124 
4125   return EXCEPTION_CONTINUE_SEARCH;
4126 }
4127 
4128 static int getLastErrorString(char *buf, size_t len)
4129 {
4130     long errval;
4131 
4132     if ((errval = GetLastError()) != 0)
4133     {
4134       /* DOS error */
4135       size_t n = (size_t)FormatMessage(
4136             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4137             NULL,
4138             errval,
4139             0,
4140             buf,
4141             (DWORD)len,
4142             NULL);
4143       if (n > 3) {
4144         /* Drop final '.', CR, LF */
4145         if (buf[n - 1] == '\n') n--;
4146         if (buf[n - 1] == '\r') n--;
4147         if (buf[n - 1] == '.') n--;
4148         buf[n] = '\0';
4149       }
4150       return (int)n;
4151     }
4152 
4153     if (errno != 0)
4154     {
4155       /* C runtime error that has no corresponding DOS error code */
4156       const char *s = strerror(errno);
4157       size_t n = strlen(s);
4158       if (n >= len) n = len - 1;
4159       strncpy(buf, s, n);
4160       buf[n] = '\0';
4161       return (int)n;
4162     }
4163     return 0;
4164 }
4165 
4166 
4167 // We don't build a headless jre for Windows
4168 bool os::is_headless_jre() { return false; }
4169