1 //
   2 // Copyright 1998-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // Block initializing store
 475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
 476 
 477 // tertiary op of a LoadP or StoreP encoding
 478 #define REGP_OP true
 479 
 480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 482 static Register reg_to_register_object(int register_encoding);
 483 
 484 // Used by the DFA in dfa_sparc.cpp.
 485 // Check for being able to use a V9 branch-on-register.  Requires a
 486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 487 // extended.  Doesn't work following an integer ADD, for example, because of
 488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 490 // replace them with zero, which could become sign-extension in a different OS
 491 // release.  There's no obvious reason why an interrupt will ever fill these
 492 // bits with non-zero junk (the registers are reloaded with standard LD
 493 // instructions which either zero-fill or sign-fill).
 494 bool can_branch_register( Node *bol, Node *cmp ) {
 495   if( !BranchOnRegister ) return false;
 496 #ifdef _LP64
 497   if( cmp->Opcode() == Op_CmpP )
 498     return true;  // No problems with pointer compares
 499 #endif
 500   if( cmp->Opcode() == Op_CmpL )
 501     return true;  // No problems with long compares
 502 
 503   if( !SparcV9RegsHiBitsZero ) return false;
 504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 505       bol->as_Bool()->_test._test != BoolTest::eq )
 506      return false;
 507 
 508   // Check for comparing against a 'safe' value.  Any operation which
 509   // clears out the high word is safe.  Thus, loads and certain shifts
 510   // are safe, as are non-negative constants.  Any operation which
 511   // preserves zero bits in the high word is safe as long as each of its
 512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 513   // inputs are safe.  At present, the only important case to recognize
 514   // seems to be loads.  Constants should fold away, and shifts &
 515   // logicals can use the 'cc' forms.
 516   Node *x = cmp->in(1);
 517   if( x->is_Load() ) return true;
 518   if( x->is_Phi() ) {
 519     for( uint i = 1; i < x->req(); i++ )
 520       if( !x->in(i)->is_Load() )
 521         return false;
 522     return true;
 523   }
 524   return false;
 525 }
 526 
 527 // ****************************************************************************
 528 
 529 // REQUIRED FUNCTIONALITY
 530 
 531 // !!!!! Special hack to get all type of calls to specify the byte offset
 532 //       from the start of the call to the point where the return address
 533 //       will point.
 534 //       The "return address" is the address of the call instruction, plus 8.
 535 
 536 int MachCallStaticJavaNode::ret_addr_offset() {
 537   return NativeCall::instruction_size;  // call; delay slot
 538 }
 539 
 540 int MachCallDynamicJavaNode::ret_addr_offset() {
 541   int vtable_index = this->_vtable_index;
 542   if (vtable_index < 0) {
 543     // must be invalid_vtable_index, not nonvirtual_vtable_index
 544     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 545     return (NativeMovConstReg::instruction_size +
 546            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 547   } else {
 548     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 549     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 550     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 551     int klass_load_size;
 552     if (UseCompressedOops) {
 553       assert(Universe::heap() != NULL, "java heap should be initialized");
 554       if (Universe::narrow_oop_base() == NULL)
 555         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 556       else
 557         klass_load_size = 3*BytesPerInstWord;
 558     } else {
 559       klass_load_size = 1*BytesPerInstWord;
 560     }
 561     if( Assembler::is_simm13(v_off) ) {
 562       return klass_load_size +
 563              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 564              NativeCall::instruction_size);  // call; delay slot
 565     } else {
 566       return klass_load_size +
 567              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 568              NativeCall::instruction_size);  // call; delay slot
 569     }
 570   }
 571 }
 572 
 573 int MachCallRuntimeNode::ret_addr_offset() {
 574 #ifdef _LP64
 575   return NativeFarCall::instruction_size;  // farcall; delay slot
 576 #else
 577   return NativeCall::instruction_size;  // call; delay slot
 578 #endif
 579 }
 580 
 581 // Indicate if the safepoint node needs the polling page as an input.
 582 // Since Sparc does not have absolute addressing, it does.
 583 bool SafePointNode::needs_polling_address_input() {
 584   return true;
 585 }
 586 
 587 // emit an interrupt that is caught by the debugger (for debugging compiler)
 588 void emit_break(CodeBuffer &cbuf) {
 589   MacroAssembler _masm(&cbuf);
 590   __ breakpoint_trap();
 591 }
 592 
 593 #ifndef PRODUCT
 594 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 595   st->print("TA");
 596 }
 597 #endif
 598 
 599 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 600   emit_break(cbuf);
 601 }
 602 
 603 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 604   return MachNode::size(ra_);
 605 }
 606 
 607 // Traceable jump
 608 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 609   MacroAssembler _masm(&cbuf);
 610   Register rdest = reg_to_register_object(jump_target);
 611   __ JMP(rdest, 0);
 612   __ delayed()->nop();
 613 }
 614 
 615 // Traceable jump and set exception pc
 616 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 617   MacroAssembler _masm(&cbuf);
 618   Register rdest = reg_to_register_object(jump_target);
 619   __ JMP(rdest, 0);
 620   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 621 }
 622 
 623 void emit_nop(CodeBuffer &cbuf) {
 624   MacroAssembler _masm(&cbuf);
 625   __ nop();
 626 }
 627 
 628 void emit_illtrap(CodeBuffer &cbuf) {
 629   MacroAssembler _masm(&cbuf);
 630   __ illtrap(0);
 631 }
 632 
 633 
 634 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 635   assert(n->rule() != loadUB_rule, "");
 636 
 637   intptr_t offset = 0;
 638   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 639   const Node* addr = n->get_base_and_disp(offset, adr_type);
 640   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 641   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 642   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 643   atype = atype->add_offset(offset);
 644   assert(disp32 == offset, "wrong disp32");
 645   return atype->_offset;
 646 }
 647 
 648 
 649 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 650   assert(n->rule() != loadUB_rule, "");
 651 
 652   intptr_t offset = 0;
 653   Node* addr = n->in(2);
 654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 655   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 656     Node* a = addr->in(2/*AddPNode::Address*/);
 657     Node* o = addr->in(3/*AddPNode::Offset*/);
 658     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 659     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 660     assert(atype->isa_oop_ptr(), "still an oop");
 661   }
 662   offset = atype->is_ptr()->_offset;
 663   if (offset != Type::OffsetBot)  offset += disp32;
 664   return offset;
 665 }
 666 
 667 // Standard Sparc opcode form2 field breakdown
 668 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 669   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 670   int op = (f30 << 30) |
 671            (f29 << 29) |
 672            (f25 << 25) |
 673            (f22 << 22) |
 674            (f20 << 20) |
 675            (f19 << 19) |
 676            (f0  <<  0);
 677   *((int*)(cbuf.code_end())) = op;
 678   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 679 }
 680 
 681 // Standard Sparc opcode form2 field breakdown
 682 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 683   f0 >>= 10;           // Drop 10 bits
 684   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 685   int op = (f30 << 30) |
 686            (f25 << 25) |
 687            (f22 << 22) |
 688            (f0  <<  0);
 689   *((int*)(cbuf.code_end())) = op;
 690   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 691 }
 692 
 693 // Standard Sparc opcode form3 field breakdown
 694 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 695   int op = (f30 << 30) |
 696            (f25 << 25) |
 697            (f19 << 19) |
 698            (f14 << 14) |
 699            (f5  <<  5) |
 700            (f0  <<  0);
 701   *((int*)(cbuf.code_end())) = op;
 702   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 703 }
 704 
 705 // Standard Sparc opcode form3 field breakdown
 706 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 707   simm13 &= (1<<13)-1; // Mask to 13 bits
 708   int op = (f30 << 30) |
 709            (f25 << 25) |
 710            (f19 << 19) |
 711            (f14 << 14) |
 712            (1   << 13) | // bit to indicate immediate-mode
 713            (simm13<<0);
 714   *((int*)(cbuf.code_end())) = op;
 715   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 716 }
 717 
 718 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 719   simm10 &= (1<<10)-1; // Mask to 10 bits
 720   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 721 }
 722 
 723 #ifdef ASSERT
 724 // Helper function for VerifyOops in emit_form3_mem_reg
 725 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 726   warning("VerifyOops encountered unexpected instruction:");
 727   n->dump(2);
 728   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 729 }
 730 #endif
 731 
 732 
 733 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 734                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 735 
 736 #ifdef ASSERT
 737   // The following code implements the +VerifyOops feature.
 738   // It verifies oop values which are loaded into or stored out of
 739   // the current method activation.  +VerifyOops complements techniques
 740   // like ScavengeALot, because it eagerly inspects oops in transit,
 741   // as they enter or leave the stack, as opposed to ScavengeALot,
 742   // which inspects oops "at rest", in the stack or heap, at safepoints.
 743   // For this reason, +VerifyOops can sometimes detect bugs very close
 744   // to their point of creation.  It can also serve as a cross-check
 745   // on the validity of oop maps, when used toegether with ScavengeALot.
 746 
 747   // It would be good to verify oops at other points, especially
 748   // when an oop is used as a base pointer for a load or store.
 749   // This is presently difficult, because it is hard to know when
 750   // a base address is biased or not.  (If we had such information,
 751   // it would be easy and useful to make a two-argument version of
 752   // verify_oop which unbiases the base, and performs verification.)
 753 
 754   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 755   bool is_verified_oop_base  = false;
 756   bool is_verified_oop_load  = false;
 757   bool is_verified_oop_store = false;
 758   int tmp_enc = -1;
 759   if (VerifyOops && src1_enc != R_SP_enc) {
 760     // classify the op, mainly for an assert check
 761     int st_op = 0, ld_op = 0;
 762     switch (primary) {
 763     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 764     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 765     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 766     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 767     case Assembler::std_op3:  st_op = Op_StoreL; break;
 768     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 769     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 770 
 771     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 772     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 773     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 774     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 775     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 776     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 777     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 778     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 779     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 780     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 781     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 782 
 783     default: ShouldNotReachHere();
 784     }
 785     if (tertiary == REGP_OP) {
 786       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 787       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 788       else                          ShouldNotReachHere();
 789       if (st_op) {
 790         // a store
 791         // inputs are (0:control, 1:memory, 2:address, 3:value)
 792         Node* n2 = n->in(3);
 793         if (n2 != NULL) {
 794           const Type* t = n2->bottom_type();
 795           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 796         }
 797       } else {
 798         // a load
 799         const Type* t = n->bottom_type();
 800         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 801       }
 802     }
 803 
 804     if (ld_op) {
 805       // a Load
 806       // inputs are (0:control, 1:memory, 2:address)
 807       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 808           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 809           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 810           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 811           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 813           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 814           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 815           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 816           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 817           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 818           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 819           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 820           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 821           !(n->rule() == loadUB_rule)) {
 822         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 823       }
 824     } else if (st_op) {
 825       // a Store
 826       // inputs are (0:control, 1:memory, 2:address, 3:value)
 827       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 828           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 829           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 830           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 831           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 832           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 833         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 834       }
 835     }
 836 
 837     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 838       Node* addr = n->in(2);
 839       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 840         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 841         if (atype != NULL) {
 842           intptr_t offset = get_offset_from_base(n, atype, disp32);
 843           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 844           if (offset != offset_2) {
 845             get_offset_from_base(n, atype, disp32);
 846             get_offset_from_base_2(n, atype, disp32);
 847           }
 848           assert(offset == offset_2, "different offsets");
 849           if (offset == disp32) {
 850             // we now know that src1 is a true oop pointer
 851             is_verified_oop_base = true;
 852             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 853               if( primary == Assembler::ldd_op3 ) {
 854                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 855               } else {
 856                 tmp_enc = dst_enc;
 857                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 858                 assert(src1_enc != dst_enc, "");
 859               }
 860             }
 861           }
 862           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 863                        || offset == oopDesc::mark_offset_in_bytes())) {
 864                       // loading the mark should not be allowed either, but
 865                       // we don't check this since it conflicts with InlineObjectHash
 866                       // usage of LoadINode to get the mark. We could keep the
 867                       // check if we create a new LoadMarkNode
 868             // but do not verify the object before its header is initialized
 869             ShouldNotReachHere();
 870           }
 871         }
 872       }
 873     }
 874   }
 875 #endif
 876 
 877   uint instr;
 878   instr = (Assembler::ldst_op << 30)
 879         | (dst_enc        << 25)
 880         | (primary        << 19)
 881         | (src1_enc       << 14);
 882 
 883   uint index = src2_enc;
 884   int disp = disp32;
 885 
 886   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 887     disp += STACK_BIAS;
 888 
 889   // We should have a compiler bailout here rather than a guarantee.
 890   // Better yet would be some mechanism to handle variable-size matches correctly.
 891   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 892 
 893   if( disp == 0 ) {
 894     // use reg-reg form
 895     // bit 13 is already zero
 896     instr |= index;
 897   } else {
 898     // use reg-imm form
 899     instr |= 0x00002000;          // set bit 13 to one
 900     instr |= disp & 0x1FFF;
 901   }
 902 
 903   uint *code = (uint*)cbuf.code_end();
 904   *code = instr;
 905   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 906 
 907 #ifdef ASSERT
 908   {
 909     MacroAssembler _masm(&cbuf);
 910     if (is_verified_oop_base) {
 911       __ verify_oop(reg_to_register_object(src1_enc));
 912     }
 913     if (is_verified_oop_store) {
 914       __ verify_oop(reg_to_register_object(dst_enc));
 915     }
 916     if (tmp_enc != -1) {
 917       __ mov(O7, reg_to_register_object(tmp_enc));
 918     }
 919     if (is_verified_oop_load) {
 920       __ verify_oop(reg_to_register_object(dst_enc));
 921     }
 922   }
 923 #endif
 924 }
 925 
 926 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 927                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
 928 
 929   uint instr;
 930   instr = (Assembler::ldst_op << 30)
 931         | (dst_enc        << 25)
 932         | (primary        << 19)
 933         | (src1_enc       << 14);
 934 
 935   int disp = disp32;
 936   int index    = src2_enc;
 937 
 938   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 939     disp += STACK_BIAS;
 940 
 941   // We should have a compiler bailout here rather than a guarantee.
 942   // Better yet would be some mechanism to handle variable-size matches correctly.
 943   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 944 
 945   if( disp != 0 ) {
 946     // use reg-reg form
 947     // set src2=R_O7 contains offset
 948     index = R_O7_enc;
 949     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
 950   }
 951   instr |= (asi << 5);
 952   instr |= index;
 953   uint *code = (uint*)cbuf.code_end();
 954   *code = instr;
 955   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 956 }
 957 
 958 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 959   // The method which records debug information at every safepoint
 960   // expects the call to be the first instruction in the snippet as
 961   // it creates a PcDesc structure which tracks the offset of a call
 962   // from the start of the codeBlob. This offset is computed as
 963   // code_end() - code_begin() of the code which has been emitted
 964   // so far.
 965   // In this particular case we have skirted around the problem by
 966   // putting the "mov" instruction in the delay slot but the problem
 967   // may bite us again at some other point and a cleaner/generic
 968   // solution using relocations would be needed.
 969   MacroAssembler _masm(&cbuf);
 970   __ set_inst_mark();
 971 
 972   // We flush the current window just so that there is a valid stack copy
 973   // the fact that the current window becomes active again instantly is
 974   // not a problem there is nothing live in it.
 975 
 976 #ifdef ASSERT
 977   int startpos = __ offset();
 978 #endif /* ASSERT */
 979 
 980 #ifdef _LP64
 981   // Calls to the runtime or native may not be reachable from compiled code,
 982   // so we generate the far call sequence on 64 bit sparc.
 983   // This code sequence is relocatable to any address, even on LP64.
 984   if ( force_far_call ) {
 985     __ relocate(rtype);
 986     AddressLiteral dest(entry_point);
 987     __ jumpl_to(dest, O7, O7);
 988   }
 989   else
 990 #endif
 991   {
 992      __ call((address)entry_point, rtype);
 993   }
 994 
 995   if (preserve_g2)   __ delayed()->mov(G2, L7);
 996   else __ delayed()->nop();
 997 
 998   if (preserve_g2)   __ mov(L7, G2);
 999 
1000 #ifdef ASSERT
1001   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1002 #ifdef _LP64
1003     // Trash argument dump slots.
1004     __ set(0xb0b8ac0db0b8ac0d, G1);
1005     __ mov(G1, G5);
1006     __ stx(G1, SP, STACK_BIAS + 0x80);
1007     __ stx(G1, SP, STACK_BIAS + 0x88);
1008     __ stx(G1, SP, STACK_BIAS + 0x90);
1009     __ stx(G1, SP, STACK_BIAS + 0x98);
1010     __ stx(G1, SP, STACK_BIAS + 0xA0);
1011     __ stx(G1, SP, STACK_BIAS + 0xA8);
1012 #else // _LP64
1013     // this is also a native call, so smash the first 7 stack locations,
1014     // and the various registers
1015 
1016     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1017     // while [SP+0x44..0x58] are the argument dump slots.
1018     __ set((intptr_t)0xbaadf00d, G1);
1019     __ mov(G1, G5);
1020     __ sllx(G1, 32, G1);
1021     __ or3(G1, G5, G1);
1022     __ mov(G1, G5);
1023     __ stx(G1, SP, 0x40);
1024     __ stx(G1, SP, 0x48);
1025     __ stx(G1, SP, 0x50);
1026     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1027 #endif // _LP64
1028   }
1029 #endif /*ASSERT*/
1030 }
1031 
1032 //=============================================================================
1033 // REQUIRED FUNCTIONALITY for encoding
1034 void emit_lo(CodeBuffer &cbuf, int val) {  }
1035 void emit_hi(CodeBuffer &cbuf, int val) {  }
1036 
1037 
1038 //=============================================================================
1039 
1040 #ifndef PRODUCT
1041 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1042   Compile* C = ra_->C;
1043 
1044   for (int i = 0; i < OptoPrologueNops; i++) {
1045     st->print_cr("NOP"); st->print("\t");
1046   }
1047 
1048   if( VerifyThread ) {
1049     st->print_cr("Verify_Thread"); st->print("\t");
1050   }
1051 
1052   size_t framesize = C->frame_slots() << LogBytesPerInt;
1053 
1054   // Calls to C2R adapters often do not accept exceptional returns.
1055   // We require that their callers must bang for them.  But be careful, because
1056   // some VM calls (such as call site linkage) can use several kilobytes of
1057   // stack.  But the stack safety zone should account for that.
1058   // See bugs 4446381, 4468289, 4497237.
1059   if (C->need_stack_bang(framesize)) {
1060     st->print_cr("! stack bang"); st->print("\t");
1061   }
1062 
1063   if (Assembler::is_simm13(-framesize)) {
1064     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1065   } else {
1066     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1067     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1068     st->print   ("SAVE   R_SP,R_G3,R_SP");
1069   }
1070 
1071 }
1072 #endif
1073 
1074 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1075   Compile* C = ra_->C;
1076   MacroAssembler _masm(&cbuf);
1077 
1078   for (int i = 0; i < OptoPrologueNops; i++) {
1079     __ nop();
1080   }
1081 
1082   __ verify_thread();
1083 
1084   size_t framesize = C->frame_slots() << LogBytesPerInt;
1085   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1086   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1087 
1088   // Calls to C2R adapters often do not accept exceptional returns.
1089   // We require that their callers must bang for them.  But be careful, because
1090   // some VM calls (such as call site linkage) can use several kilobytes of
1091   // stack.  But the stack safety zone should account for that.
1092   // See bugs 4446381, 4468289, 4497237.
1093   if (C->need_stack_bang(framesize)) {
1094     __ generate_stack_overflow_check(framesize);
1095   }
1096 
1097   if (Assembler::is_simm13(-framesize)) {
1098     __ save(SP, -framesize, SP);
1099   } else {
1100     __ sethi(-framesize & ~0x3ff, G3);
1101     __ add(G3, -framesize & 0x3ff, G3);
1102     __ save(SP, G3, SP);
1103   }
1104   C->set_frame_complete( __ offset() );
1105 }
1106 
1107 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1108   return MachNode::size(ra_);
1109 }
1110 
1111 int MachPrologNode::reloc() const {
1112   return 10; // a large enough number
1113 }
1114 
1115 //=============================================================================
1116 #ifndef PRODUCT
1117 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1118   Compile* C = ra_->C;
1119 
1120   if( do_polling() && ra_->C->is_method_compilation() ) {
1121     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1122 #ifdef _LP64
1123     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1124 #else
1125     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1126 #endif
1127   }
1128 
1129   if( do_polling() )
1130     st->print("RET\n\t");
1131 
1132   st->print("RESTORE");
1133 }
1134 #endif
1135 
1136 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1137   MacroAssembler _masm(&cbuf);
1138   Compile* C = ra_->C;
1139 
1140   __ verify_thread();
1141 
1142   // If this does safepoint polling, then do it here
1143   if( do_polling() && ra_->C->is_method_compilation() ) {
1144     AddressLiteral polling_page(os::get_polling_page());
1145     __ sethi(polling_page, L0);
1146     __ relocate(relocInfo::poll_return_type);
1147     __ ld_ptr( L0, 0, G0 );
1148   }
1149 
1150   // If this is a return, then stuff the restore in the delay slot
1151   if( do_polling() ) {
1152     __ ret();
1153     __ delayed()->restore();
1154   } else {
1155     __ restore();
1156   }
1157 }
1158 
1159 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1160   return MachNode::size(ra_);
1161 }
1162 
1163 int MachEpilogNode::reloc() const {
1164   return 16; // a large enough number
1165 }
1166 
1167 const Pipeline * MachEpilogNode::pipeline() const {
1168   return MachNode::pipeline_class();
1169 }
1170 
1171 int MachEpilogNode::safepoint_offset() const {
1172   assert( do_polling(), "no return for this epilog node");
1173   return MacroAssembler::size_of_sethi(os::get_polling_page());
1174 }
1175 
1176 //=============================================================================
1177 
1178 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1179 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1180 static enum RC rc_class( OptoReg::Name reg ) {
1181   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1182   if (OptoReg::is_stack(reg)) return rc_stack;
1183   VMReg r = OptoReg::as_VMReg(reg);
1184   if (r->is_Register()) return rc_int;
1185   assert(r->is_FloatRegister(), "must be");
1186   return rc_float;
1187 }
1188 
1189 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1190   if( cbuf ) {
1191     // Better yet would be some mechanism to handle variable-size matches correctly
1192     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1193       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1194     } else {
1195       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1196     }
1197   }
1198 #ifndef PRODUCT
1199   else if( !do_size ) {
1200     if( size != 0 ) st->print("\n\t");
1201     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1202     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1203   }
1204 #endif
1205   return size+4;
1206 }
1207 
1208 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1209   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1210 #ifndef PRODUCT
1211   else if( !do_size ) {
1212     if( size != 0 ) st->print("\n\t");
1213     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1214   }
1215 #endif
1216   return size+4;
1217 }
1218 
1219 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1220                                         PhaseRegAlloc *ra_,
1221                                         bool do_size,
1222                                         outputStream* st ) const {
1223   // Get registers to move
1224   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1225   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1226   OptoReg::Name dst_second = ra_->get_reg_second(this );
1227   OptoReg::Name dst_first = ra_->get_reg_first(this );
1228 
1229   enum RC src_second_rc = rc_class(src_second);
1230   enum RC src_first_rc = rc_class(src_first);
1231   enum RC dst_second_rc = rc_class(dst_second);
1232   enum RC dst_first_rc = rc_class(dst_first);
1233 
1234   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1235 
1236   // Generate spill code!
1237   int size = 0;
1238 
1239   if( src_first == dst_first && src_second == dst_second )
1240     return size;            // Self copy, no move
1241 
1242   // --------------------------------------
1243   // Check for mem-mem move.  Load into unused float registers and fall into
1244   // the float-store case.
1245   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1246     int offset = ra_->reg2offset(src_first);
1247     // Further check for aligned-adjacent pair, so we can use a double load
1248     if( (src_first&1)==0 && src_first+1 == src_second ) {
1249       src_second    = OptoReg::Name(R_F31_num);
1250       src_second_rc = rc_float;
1251       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1252     } else {
1253       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1254     }
1255     src_first    = OptoReg::Name(R_F30_num);
1256     src_first_rc = rc_float;
1257   }
1258 
1259   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1260     int offset = ra_->reg2offset(src_second);
1261     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1262     src_second    = OptoReg::Name(R_F31_num);
1263     src_second_rc = rc_float;
1264   }
1265 
1266   // --------------------------------------
1267   // Check for float->int copy; requires a trip through memory
1268   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1269     int offset = frame::register_save_words*wordSize;
1270     if( cbuf ) {
1271       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1272       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1273       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1274       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1275     }
1276 #ifndef PRODUCT
1277     else if( !do_size ) {
1278       if( size != 0 ) st->print("\n\t");
1279       st->print(  "SUB    R_SP,16,R_SP\n");
1280       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1281       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1282       st->print("\tADD    R_SP,16,R_SP\n");
1283     }
1284 #endif
1285     size += 16;
1286   }
1287 
1288   // --------------------------------------
1289   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1290   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1291   // hardware does the flop for me.  Doubles are always aligned, so no problem
1292   // there.  Misaligned sources only come from native-long-returns (handled
1293   // special below).
1294 #ifndef _LP64
1295   if( src_first_rc == rc_int &&     // source is already big-endian
1296       src_second_rc != rc_bad &&    // 64-bit move
1297       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1298     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1299     // Do the big-endian flop.
1300     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1301     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1302   }
1303 #endif
1304 
1305   // --------------------------------------
1306   // Check for integer reg-reg copy
1307   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1308 #ifndef _LP64
1309     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1310       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1311       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1312       //       operand contains the least significant word of the 64-bit value and vice versa.
1313       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1314       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1315       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1316       if( cbuf ) {
1317         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1318         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1319         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1320 #ifndef PRODUCT
1321       } else if( !do_size ) {
1322         if( size != 0 ) st->print("\n\t");
1323         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1324         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1325         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1326 #endif
1327       }
1328       return size+12;
1329     }
1330     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1331       // returning a long value in I0/I1
1332       // a SpillCopy must be able to target a return instruction's reg_class
1333       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1334       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1335       //       operand contains the least significant word of the 64-bit value and vice versa.
1336       OptoReg::Name tdest = dst_first;
1337 
1338       if (src_first == dst_first) {
1339         tdest = OptoReg::Name(R_O7_num);
1340         size += 4;
1341       }
1342 
1343       if( cbuf ) {
1344         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1345         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1346         // ShrL_reg_imm6
1347         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1348         // ShrR_reg_imm6  src, 0, dst
1349         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1350         if (tdest != dst_first) {
1351           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1352         }
1353       }
1354 #ifndef PRODUCT
1355       else if( !do_size ) {
1356         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1357         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1358         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1359         if (tdest != dst_first) {
1360           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1361         }
1362       }
1363 #endif // PRODUCT
1364       return size+8;
1365     }
1366 #endif // !_LP64
1367     // Else normal reg-reg copy
1368     assert( src_second != dst_first, "smashed second before evacuating it" );
1369     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1370     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1371     // This moves an aligned adjacent pair.
1372     // See if we are done.
1373     if( src_first+1 == src_second && dst_first+1 == dst_second )
1374       return size;
1375   }
1376 
1377   // Check for integer store
1378   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1379     int offset = ra_->reg2offset(dst_first);
1380     // Further check for aligned-adjacent pair, so we can use a double store
1381     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1382       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1383     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1384   }
1385 
1386   // Check for integer load
1387   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1388     int offset = ra_->reg2offset(src_first);
1389     // Further check for aligned-adjacent pair, so we can use a double load
1390     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1391       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1392     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1393   }
1394 
1395   // Check for float reg-reg copy
1396   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1397     // Further check for aligned-adjacent pair, so we can use a double move
1398     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1399       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1400     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1401   }
1402 
1403   // Check for float store
1404   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1405     int offset = ra_->reg2offset(dst_first);
1406     // Further check for aligned-adjacent pair, so we can use a double store
1407     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1408       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1409     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1410   }
1411 
1412   // Check for float load
1413   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1414     int offset = ra_->reg2offset(src_first);
1415     // Further check for aligned-adjacent pair, so we can use a double load
1416     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1417       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1418     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1419   }
1420 
1421   // --------------------------------------------------------------------
1422   // Check for hi bits still needing moving.  Only happens for misaligned
1423   // arguments to native calls.
1424   if( src_second == dst_second )
1425     return size;               // Self copy; no move
1426   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1427 
1428 #ifndef _LP64
1429   // In the LP64 build, all registers can be moved as aligned/adjacent
1430   // pairs, so there's never any need to move the high bits separately.
1431   // The 32-bit builds have to deal with the 32-bit ABI which can force
1432   // all sorts of silly alignment problems.
1433 
1434   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1435   // 32-bits of a 64-bit register, but are needed in low bits of another
1436   // register (else it's a hi-bits-to-hi-bits copy which should have
1437   // happened already as part of a 64-bit move)
1438   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1439     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1440     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1441     // Shift src_second down to dst_second's low bits.
1442     if( cbuf ) {
1443       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1444 #ifndef PRODUCT
1445     } else if( !do_size ) {
1446       if( size != 0 ) st->print("\n\t");
1447       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1448 #endif
1449     }
1450     return size+4;
1451   }
1452 
1453   // Check for high word integer store.  Must down-shift the hi bits
1454   // into a temp register, then fall into the case of storing int bits.
1455   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1456     // Shift src_second down to dst_second's low bits.
1457     if( cbuf ) {
1458       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1459 #ifndef PRODUCT
1460     } else if( !do_size ) {
1461       if( size != 0 ) st->print("\n\t");
1462       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1463 #endif
1464     }
1465     size+=4;
1466     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1467   }
1468 
1469   // Check for high word integer load
1470   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1471     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1472 
1473   // Check for high word integer store
1474   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1475     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1476 
1477   // Check for high word float store
1478   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1479     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1480 
1481 #endif // !_LP64
1482 
1483   Unimplemented();
1484 }
1485 
1486 #ifndef PRODUCT
1487 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1488   implementation( NULL, ra_, false, st );
1489 }
1490 #endif
1491 
1492 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1493   implementation( &cbuf, ra_, false, NULL );
1494 }
1495 
1496 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1497   return implementation( NULL, ra_, true, NULL );
1498 }
1499 
1500 //=============================================================================
1501 #ifndef PRODUCT
1502 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1503   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1504 }
1505 #endif
1506 
1507 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1508   MacroAssembler _masm(&cbuf);
1509   for(int i = 0; i < _count; i += 1) {
1510     __ nop();
1511   }
1512 }
1513 
1514 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1515   return 4 * _count;
1516 }
1517 
1518 
1519 //=============================================================================
1520 #ifndef PRODUCT
1521 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1522   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1523   int reg = ra_->get_reg_first(this);
1524   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1525 }
1526 #endif
1527 
1528 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1529   MacroAssembler _masm(&cbuf);
1530   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1531   int reg = ra_->get_encode(this);
1532 
1533   if (Assembler::is_simm13(offset)) {
1534      __ add(SP, offset, reg_to_register_object(reg));
1535   } else {
1536      __ set(offset, O7);
1537      __ add(SP, O7, reg_to_register_object(reg));
1538   }
1539 }
1540 
1541 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1542   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1543   assert(ra_ == ra_->C->regalloc(), "sanity");
1544   return ra_->C->scratch_emit_size(this);
1545 }
1546 
1547 //=============================================================================
1548 
1549 // emit call stub, compiled java to interpretor
1550 void emit_java_to_interp(CodeBuffer &cbuf ) {
1551 
1552   // Stub is fixed up when the corresponding call is converted from calling
1553   // compiled code to calling interpreted code.
1554   // set (empty), G5
1555   // jmp -1
1556 
1557   address mark = cbuf.inst_mark();  // get mark within main instrs section
1558 
1559   MacroAssembler _masm(&cbuf);
1560 
1561   address base =
1562   __ start_a_stub(Compile::MAX_stubs_size);
1563   if (base == NULL)  return;  // CodeBuffer::expand failed
1564 
1565   // static stub relocation stores the instruction address of the call
1566   __ relocate(static_stub_Relocation::spec(mark));
1567 
1568   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1569 
1570   __ set_inst_mark();
1571   AddressLiteral addrlit(-1);
1572   __ JUMP(addrlit, G3, 0);
1573 
1574   __ delayed()->nop();
1575 
1576   // Update current stubs pointer and restore code_end.
1577   __ end_a_stub();
1578 }
1579 
1580 // size of call stub, compiled java to interpretor
1581 uint size_java_to_interp() {
1582   // This doesn't need to be accurate but it must be larger or equal to
1583   // the real size of the stub.
1584   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1585           NativeJump::instruction_size + // sethi; jmp; nop
1586           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1587 }
1588 // relocation entries for call stub, compiled java to interpretor
1589 uint reloc_java_to_interp() {
1590   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1591 }
1592 
1593 
1594 //=============================================================================
1595 #ifndef PRODUCT
1596 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1597   st->print_cr("\nUEP:");
1598 #ifdef    _LP64
1599   if (UseCompressedOops) {
1600     assert(Universe::heap() != NULL, "java heap should be initialized");
1601     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1602     st->print_cr("\tSLL    R_G5,3,R_G5");
1603     if (Universe::narrow_oop_base() != NULL)
1604       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1605   } else {
1606     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1607   }
1608   st->print_cr("\tCMP    R_G5,R_G3" );
1609   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1610 #else  // _LP64
1611   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1612   st->print_cr("\tCMP    R_G5,R_G3" );
1613   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1614 #endif // _LP64
1615 }
1616 #endif
1617 
1618 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1619   MacroAssembler _masm(&cbuf);
1620   Label L;
1621   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1622   Register temp_reg   = G3;
1623   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1624 
1625   // Load klass from receiver
1626   __ load_klass(O0, temp_reg);
1627   // Compare against expected klass
1628   __ cmp(temp_reg, G5_ic_reg);
1629   // Branch to miss code, checks xcc or icc depending
1630   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1631 }
1632 
1633 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1634   return MachNode::size(ra_);
1635 }
1636 
1637 
1638 //=============================================================================
1639 
1640 uint size_exception_handler() {
1641   if (TraceJumps) {
1642     return (400); // just a guess
1643   }
1644   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1645 }
1646 
1647 uint size_deopt_handler() {
1648   if (TraceJumps) {
1649     return (400); // just a guess
1650   }
1651   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1652 }
1653 
1654 // Emit exception handler code.
1655 int emit_exception_handler(CodeBuffer& cbuf) {
1656   Register temp_reg = G3;
1657   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
1658   MacroAssembler _masm(&cbuf);
1659 
1660   address base =
1661   __ start_a_stub(size_exception_handler());
1662   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1663 
1664   int offset = __ offset();
1665 
1666   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1667   __ delayed()->nop();
1668 
1669   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1670 
1671   __ end_a_stub();
1672 
1673   return offset;
1674 }
1675 
1676 int emit_deopt_handler(CodeBuffer& cbuf) {
1677   // Can't use any of the current frame's registers as we may have deopted
1678   // at a poll and everything (including G3) can be live.
1679   Register temp_reg = L0;
1680   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1681   MacroAssembler _masm(&cbuf);
1682 
1683   address base =
1684   __ start_a_stub(size_deopt_handler());
1685   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1686 
1687   int offset = __ offset();
1688   __ save_frame(0);
1689   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1690   __ delayed()->restore();
1691 
1692   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1693 
1694   __ end_a_stub();
1695   return offset;
1696 
1697 }
1698 
1699 // Given a register encoding, produce a Integer Register object
1700 static Register reg_to_register_object(int register_encoding) {
1701   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1702   return as_Register(register_encoding);
1703 }
1704 
1705 // Given a register encoding, produce a single-precision Float Register object
1706 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1707   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1708   return as_SingleFloatRegister(register_encoding);
1709 }
1710 
1711 // Given a register encoding, produce a double-precision Float Register object
1712 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1713   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1714   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1715   return as_DoubleFloatRegister(register_encoding);
1716 }
1717 
1718 const bool Matcher::match_rule_supported(int opcode) {
1719   if (!has_match_rule(opcode))
1720     return false;
1721 
1722   switch (opcode) {
1723   case Op_CountLeadingZerosI:
1724   case Op_CountLeadingZerosL:
1725   case Op_CountTrailingZerosI:
1726   case Op_CountTrailingZerosL:
1727     if (!UsePopCountInstruction)
1728       return false;
1729     break;
1730   }
1731 
1732   return true;  // Per default match rules are supported.
1733 }
1734 
1735 int Matcher::regnum_to_fpu_offset(int regnum) {
1736   return regnum - 32; // The FP registers are in the second chunk
1737 }
1738 
1739 #ifdef ASSERT
1740 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1741 #endif
1742 
1743 // Vector width in bytes
1744 const uint Matcher::vector_width_in_bytes(void) {
1745   return 8;
1746 }
1747 
1748 // Vector ideal reg
1749 const uint Matcher::vector_ideal_reg(void) {
1750   return Op_RegD;
1751 }
1752 
1753 // USII supports fxtof through the whole range of number, USIII doesn't
1754 const bool Matcher::convL2FSupported(void) {
1755   return VM_Version::has_fast_fxtof();
1756 }
1757 
1758 // Is this branch offset short enough that a short branch can be used?
1759 //
1760 // NOTE: If the platform does not provide any short branch variants, then
1761 //       this method should return false for offset 0.
1762 bool Matcher::is_short_branch_offset(int rule, int offset) {
1763   return false;
1764 }
1765 
1766 const bool Matcher::isSimpleConstant64(jlong value) {
1767   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1768   // Depends on optimizations in MacroAssembler::setx.
1769   int hi = (int)(value >> 32);
1770   int lo = (int)(value & ~0);
1771   return (hi == 0) || (hi == -1) || (lo == 0);
1772 }
1773 
1774 // No scaling for the parameter the ClearArray node.
1775 const bool Matcher::init_array_count_is_in_bytes = true;
1776 
1777 // Threshold size for cleararray.
1778 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1779 
1780 // Should the Matcher clone shifts on addressing modes, expecting them to
1781 // be subsumed into complex addressing expressions or compute them into
1782 // registers?  True for Intel but false for most RISCs
1783 const bool Matcher::clone_shift_expressions = false;
1784 
1785 // Is it better to copy float constants, or load them directly from memory?
1786 // Intel can load a float constant from a direct address, requiring no
1787 // extra registers.  Most RISCs will have to materialize an address into a
1788 // register first, so they would do better to copy the constant from stack.
1789 const bool Matcher::rematerialize_float_constants = false;
1790 
1791 // If CPU can load and store mis-aligned doubles directly then no fixup is
1792 // needed.  Else we split the double into 2 integer pieces and move it
1793 // piece-by-piece.  Only happens when passing doubles into C code as the
1794 // Java calling convention forces doubles to be aligned.
1795 #ifdef _LP64
1796 const bool Matcher::misaligned_doubles_ok = true;
1797 #else
1798 const bool Matcher::misaligned_doubles_ok = false;
1799 #endif
1800 
1801 // No-op on SPARC.
1802 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1803 }
1804 
1805 // Advertise here if the CPU requires explicit rounding operations
1806 // to implement the UseStrictFP mode.
1807 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1808 
1809 // Are floats conerted to double when stored to stack during deoptimization?
1810 // Sparc does not handle callee-save floats.
1811 bool Matcher::float_in_double() { return false; }
1812 
1813 // Do ints take an entire long register or just half?
1814 // Note that we if-def off of _LP64.
1815 // The relevant question is how the int is callee-saved.  In _LP64
1816 // the whole long is written but de-opt'ing will have to extract
1817 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1818 #ifdef _LP64
1819 const bool Matcher::int_in_long = true;
1820 #else
1821 const bool Matcher::int_in_long = false;
1822 #endif
1823 
1824 // Return whether or not this register is ever used as an argument.  This
1825 // function is used on startup to build the trampoline stubs in generateOptoStub.
1826 // Registers not mentioned will be killed by the VM call in the trampoline, and
1827 // arguments in those registers not be available to the callee.
1828 bool Matcher::can_be_java_arg( int reg ) {
1829   // Standard sparc 6 args in registers
1830   if( reg == R_I0_num ||
1831       reg == R_I1_num ||
1832       reg == R_I2_num ||
1833       reg == R_I3_num ||
1834       reg == R_I4_num ||
1835       reg == R_I5_num ) return true;
1836 #ifdef _LP64
1837   // 64-bit builds can pass 64-bit pointers and longs in
1838   // the high I registers
1839   if( reg == R_I0H_num ||
1840       reg == R_I1H_num ||
1841       reg == R_I2H_num ||
1842       reg == R_I3H_num ||
1843       reg == R_I4H_num ||
1844       reg == R_I5H_num ) return true;
1845 
1846   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1847     return true;
1848   }
1849 
1850 #else
1851   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1852   // Longs cannot be passed in O regs, because O regs become I regs
1853   // after a 'save' and I regs get their high bits chopped off on
1854   // interrupt.
1855   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1856   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1857 #endif
1858   // A few float args in registers
1859   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1860 
1861   return false;
1862 }
1863 
1864 bool Matcher::is_spillable_arg( int reg ) {
1865   return can_be_java_arg(reg);
1866 }
1867 
1868 // Register for DIVI projection of divmodI
1869 RegMask Matcher::divI_proj_mask() {
1870   ShouldNotReachHere();
1871   return RegMask();
1872 }
1873 
1874 // Register for MODI projection of divmodI
1875 RegMask Matcher::modI_proj_mask() {
1876   ShouldNotReachHere();
1877   return RegMask();
1878 }
1879 
1880 // Register for DIVL projection of divmodL
1881 RegMask Matcher::divL_proj_mask() {
1882   ShouldNotReachHere();
1883   return RegMask();
1884 }
1885 
1886 // Register for MODL projection of divmodL
1887 RegMask Matcher::modL_proj_mask() {
1888   ShouldNotReachHere();
1889   return RegMask();
1890 }
1891 
1892 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1893   return RegMask();
1894 }
1895 
1896 %}
1897 
1898 
1899 // The intptr_t operand types, defined by textual substitution.
1900 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1901 #ifdef _LP64
1902 #define immX      immL
1903 #define immX13    immL13
1904 #define immX13m7  immL13m7
1905 #define iRegX     iRegL
1906 #define g1RegX    g1RegL
1907 #else
1908 #define immX      immI
1909 #define immX13    immI13
1910 #define immX13m7  immI13m7
1911 #define iRegX     iRegI
1912 #define g1RegX    g1RegI
1913 #endif
1914 
1915 //----------ENCODING BLOCK-----------------------------------------------------
1916 // This block specifies the encoding classes used by the compiler to output
1917 // byte streams.  Encoding classes are parameterized macros used by
1918 // Machine Instruction Nodes in order to generate the bit encoding of the
1919 // instruction.  Operands specify their base encoding interface with the
1920 // interface keyword.  There are currently supported four interfaces,
1921 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1922 // operand to generate a function which returns its register number when
1923 // queried.   CONST_INTER causes an operand to generate a function which
1924 // returns the value of the constant when queried.  MEMORY_INTER causes an
1925 // operand to generate four functions which return the Base Register, the
1926 // Index Register, the Scale Value, and the Offset Value of the operand when
1927 // queried.  COND_INTER causes an operand to generate six functions which
1928 // return the encoding code (ie - encoding bits for the instruction)
1929 // associated with each basic boolean condition for a conditional instruction.
1930 //
1931 // Instructions specify two basic values for encoding.  Again, a function
1932 // is available to check if the constant displacement is an oop. They use the
1933 // ins_encode keyword to specify their encoding classes (which must be
1934 // a sequence of enc_class names, and their parameters, specified in
1935 // the encoding block), and they use the
1936 // opcode keyword to specify, in order, their primary, secondary, and
1937 // tertiary opcode.  Only the opcode sections which a particular instruction
1938 // needs for encoding need to be specified.
1939 encode %{
1940   enc_class enc_untested %{
1941 #ifdef ASSERT
1942     MacroAssembler _masm(&cbuf);
1943     __ untested("encoding");
1944 #endif
1945   %}
1946 
1947   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1948     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1949                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1950   %}
1951 
1952   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1953     emit_form3_mem_reg(cbuf, this, $primary, -1,
1954                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1955   %}
1956 
1957   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1958     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
1959                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1960   %}
1961 
1962   enc_class form3_mem_prefetch_read( memory mem ) %{
1963     emit_form3_mem_reg(cbuf, this, $primary, -1,
1964                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1965   %}
1966 
1967   enc_class form3_mem_prefetch_write( memory mem ) %{
1968     emit_form3_mem_reg(cbuf, this, $primary, -1,
1969                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1970   %}
1971 
1972   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1973     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1974     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1975     guarantee($mem$$index == R_G0_enc, "double index?");
1976     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1977     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1978     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1979     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1980   %}
1981 
1982   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1983     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1984     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1985     guarantee($mem$$index == R_G0_enc, "double index?");
1986     // Load long with 2 instructions
1987     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1988     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1989   %}
1990 
1991   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1992   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1993     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1994     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1995   %}
1996 
1997   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1998     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1999     if( $rs2$$reg != $rd$$reg )
2000       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2001   %}
2002 
2003   // Target lo half of long
2004   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2005     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2006     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2007       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2008   %}
2009 
2010   // Source lo half of long
2011   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2012     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2013     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2014       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2015   %}
2016 
2017   // Target hi half of long
2018   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2019     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2020   %}
2021 
2022   // Source lo half of long, and leave it sign extended.
2023   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2024     // Sign extend low half
2025     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2026   %}
2027 
2028   // Source hi half of long, and leave it sign extended.
2029   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2030     // Shift high half to low half
2031     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2032   %}
2033 
2034   // Source hi half of long
2035   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2036     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2037     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2038       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2039   %}
2040 
2041   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2042     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2043   %}
2044 
2045   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2046     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2047     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2048   %}
2049 
2050   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2051     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2052     // clear if nothing else is happening
2053     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2054     // blt,a,pn done
2055     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2056     // mov dst,-1 in delay slot
2057     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2058   %}
2059 
2060   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2061     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2062   %}
2063 
2064   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2065     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2066   %}
2067 
2068   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2069     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2070   %}
2071 
2072   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2073     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2074   %}
2075 
2076   enc_class move_return_pc_to_o1() %{
2077     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2078   %}
2079 
2080 #ifdef _LP64
2081   /* %%% merge with enc_to_bool */
2082   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2083     MacroAssembler _masm(&cbuf);
2084 
2085     Register   src_reg = reg_to_register_object($src$$reg);
2086     Register   dst_reg = reg_to_register_object($dst$$reg);
2087     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2088   %}
2089 #endif
2090 
2091   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2092     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2093     MacroAssembler _masm(&cbuf);
2094 
2095     Register   p_reg = reg_to_register_object($p$$reg);
2096     Register   q_reg = reg_to_register_object($q$$reg);
2097     Register   y_reg = reg_to_register_object($y$$reg);
2098     Register tmp_reg = reg_to_register_object($tmp$$reg);
2099 
2100     __ subcc( p_reg, q_reg,   p_reg );
2101     __ add  ( p_reg, y_reg, tmp_reg );
2102     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2103   %}
2104 
2105   enc_class form_d2i_helper(regD src, regF dst) %{
2106     // fcmp %fcc0,$src,$src
2107     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2108     // branch %fcc0 not-nan, predict taken
2109     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2110     // fdtoi $src,$dst
2111     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2112     // fitos $dst,$dst (if nan)
2113     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2114     // clear $dst (if nan)
2115     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2116     // carry on here...
2117   %}
2118 
2119   enc_class form_d2l_helper(regD src, regD dst) %{
2120     // fcmp %fcc0,$src,$src  check for NAN
2121     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2122     // branch %fcc0 not-nan, predict taken
2123     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2124     // fdtox $src,$dst   convert in delay slot
2125     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2126     // fxtod $dst,$dst  (if nan)
2127     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2128     // clear $dst (if nan)
2129     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2130     // carry on here...
2131   %}
2132 
2133   enc_class form_f2i_helper(regF src, regF dst) %{
2134     // fcmps %fcc0,$src,$src
2135     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2136     // branch %fcc0 not-nan, predict taken
2137     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2138     // fstoi $src,$dst
2139     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2140     // fitos $dst,$dst (if nan)
2141     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2142     // clear $dst (if nan)
2143     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2144     // carry on here...
2145   %}
2146 
2147   enc_class form_f2l_helper(regF src, regD dst) %{
2148     // fcmps %fcc0,$src,$src
2149     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2150     // branch %fcc0 not-nan, predict taken
2151     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2152     // fstox $src,$dst
2153     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2154     // fxtod $dst,$dst (if nan)
2155     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2156     // clear $dst (if nan)
2157     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2158     // carry on here...
2159   %}
2160 
2161   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2162   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2163   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2164   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2165 
2166   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2167 
2168   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2169   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2170 
2171   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2172     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2173   %}
2174 
2175   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2176     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2177   %}
2178 
2179   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2180     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2181   %}
2182 
2183   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2184     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2185   %}
2186 
2187   enc_class form3_convI2F(regF rs2, regF rd) %{
2188     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2189   %}
2190 
2191   // Encloding class for traceable jumps
2192   enc_class form_jmpl(g3RegP dest) %{
2193     emit_jmpl(cbuf, $dest$$reg);
2194   %}
2195 
2196   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2197     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2198   %}
2199 
2200   enc_class form2_nop() %{
2201     emit_nop(cbuf);
2202   %}
2203 
2204   enc_class form2_illtrap() %{
2205     emit_illtrap(cbuf);
2206   %}
2207 
2208 
2209   // Compare longs and convert into -1, 0, 1.
2210   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2211     // CMP $src1,$src2
2212     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2213     // blt,a,pn done
2214     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2215     // mov dst,-1 in delay slot
2216     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2217     // bgt,a,pn done
2218     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2219     // mov dst,1 in delay slot
2220     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2221     // CLR    $dst
2222     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2223   %}
2224 
2225   enc_class enc_PartialSubtypeCheck() %{
2226     MacroAssembler _masm(&cbuf);
2227     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2228     __ delayed()->nop();
2229   %}
2230 
2231   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2232     MacroAssembler _masm(&cbuf);
2233     Label &L = *($labl$$label);
2234     Assembler::Predict predict_taken =
2235       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2236 
2237     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2238     __ delayed()->nop();
2239   %}
2240 
2241   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2242     MacroAssembler _masm(&cbuf);
2243     Label &L = *($labl$$label);
2244     Assembler::Predict predict_taken =
2245       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2246 
2247     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2248     __ delayed()->nop();
2249   %}
2250 
2251   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2252     MacroAssembler _masm(&cbuf);
2253     Label &L = *($labl$$label);
2254     Assembler::Predict predict_taken =
2255       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2256 
2257     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2258     __ delayed()->nop();
2259   %}
2260 
2261   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2262     MacroAssembler _masm(&cbuf);
2263     Label &L = *($labl$$label);
2264     Assembler::Predict predict_taken =
2265       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2266 
2267     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2268     __ delayed()->nop();
2269   %}
2270 
2271   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2272     MacroAssembler _masm(&cbuf);
2273 
2274     Register switch_reg       = as_Register($switch_val$$reg);
2275     Register table_reg        = O7;
2276 
2277     address table_base = __ address_table_constant(_index2label);
2278     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2279 
2280     // Move table address into a register.
2281     __ set(table_base, table_reg, rspec);
2282 
2283     // Jump to base address + switch value
2284     __ ld_ptr(table_reg, switch_reg, table_reg);
2285     __ jmp(table_reg, G0);
2286     __ delayed()->nop();
2287 
2288   %}
2289 
2290   enc_class enc_ba( Label labl ) %{
2291     MacroAssembler _masm(&cbuf);
2292     Label &L = *($labl$$label);
2293     __ ba(false, L);
2294     __ delayed()->nop();
2295   %}
2296 
2297   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2298     MacroAssembler _masm(&cbuf);
2299     Label &L = *$labl$$label;
2300     Assembler::Predict predict_taken =
2301       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2302 
2303     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2304     __ delayed()->nop();
2305   %}
2306 
2307   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2308     int op = (Assembler::arith_op << 30) |
2309              ($dst$$reg << 25) |
2310              (Assembler::movcc_op3 << 19) |
2311              (1 << 18) |                    // cc2 bit for 'icc'
2312              ($cmp$$cmpcode << 14) |
2313              (0 << 13) |                    // select register move
2314              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2315              ($src$$reg << 0);
2316     *((int*)(cbuf.code_end())) = op;
2317     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2318   %}
2319 
2320   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2321     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2322     int op = (Assembler::arith_op << 30) |
2323              ($dst$$reg << 25) |
2324              (Assembler::movcc_op3 << 19) |
2325              (1 << 18) |                    // cc2 bit for 'icc'
2326              ($cmp$$cmpcode << 14) |
2327              (1 << 13) |                    // select immediate move
2328              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2329              (simm11 << 0);
2330     *((int*)(cbuf.code_end())) = op;
2331     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2332   %}
2333 
2334   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2335     int op = (Assembler::arith_op << 30) |
2336              ($dst$$reg << 25) |
2337              (Assembler::movcc_op3 << 19) |
2338              (0 << 18) |                    // cc2 bit for 'fccX'
2339              ($cmp$$cmpcode << 14) |
2340              (0 << 13) |                    // select register move
2341              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2342              ($src$$reg << 0);
2343     *((int*)(cbuf.code_end())) = op;
2344     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2345   %}
2346 
2347   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2348     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2349     int op = (Assembler::arith_op << 30) |
2350              ($dst$$reg << 25) |
2351              (Assembler::movcc_op3 << 19) |
2352              (0 << 18) |                    // cc2 bit for 'fccX'
2353              ($cmp$$cmpcode << 14) |
2354              (1 << 13) |                    // select immediate move
2355              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2356              (simm11 << 0);
2357     *((int*)(cbuf.code_end())) = op;
2358     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2359   %}
2360 
2361   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2362     int op = (Assembler::arith_op << 30) |
2363              ($dst$$reg << 25) |
2364              (Assembler::fpop2_op3 << 19) |
2365              (0 << 18) |
2366              ($cmp$$cmpcode << 14) |
2367              (1 << 13) |                    // select register move
2368              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2369              ($primary << 5) |              // select single, double or quad
2370              ($src$$reg << 0);
2371     *((int*)(cbuf.code_end())) = op;
2372     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2373   %}
2374 
2375   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2376     int op = (Assembler::arith_op << 30) |
2377              ($dst$$reg << 25) |
2378              (Assembler::fpop2_op3 << 19) |
2379              (0 << 18) |
2380              ($cmp$$cmpcode << 14) |
2381              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2382              ($primary << 5) |              // select single, double or quad
2383              ($src$$reg << 0);
2384     *((int*)(cbuf.code_end())) = op;
2385     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2386   %}
2387 
2388   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2389   // the condition comes from opcode-field instead of an argument.
2390   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2391     int op = (Assembler::arith_op << 30) |
2392              ($dst$$reg << 25) |
2393              (Assembler::movcc_op3 << 19) |
2394              (1 << 18) |                    // cc2 bit for 'icc'
2395              ($primary << 14) |
2396              (0 << 13) |                    // select register move
2397              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2398              ($src$$reg << 0);
2399     *((int*)(cbuf.code_end())) = op;
2400     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2401   %}
2402 
2403   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2404     int op = (Assembler::arith_op << 30) |
2405              ($dst$$reg << 25) |
2406              (Assembler::movcc_op3 << 19) |
2407              (6 << 16) |                    // cc2 bit for 'xcc'
2408              ($primary << 14) |
2409              (0 << 13) |                    // select register move
2410              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2411              ($src$$reg << 0);
2412     *((int*)(cbuf.code_end())) = op;
2413     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2414   %}
2415 
2416   // Utility encoding for loading a 64 bit Pointer into a register
2417   // The 64 bit pointer is stored in the generated code stream
2418   enc_class SetPtr( immP src, iRegP rd ) %{
2419     Register dest = reg_to_register_object($rd$$reg);
2420     MacroAssembler _masm(&cbuf);
2421     // [RGV] This next line should be generated from ADLC
2422     if ( _opnds[1]->constant_is_oop() ) {
2423       intptr_t val = $src$$constant;
2424       __ set_oop_constant((jobject)val, dest);
2425     } else {          // non-oop pointers, e.g. card mark base, heap top
2426       __ set($src$$constant, dest);
2427     }
2428   %}
2429 
2430   enc_class Set13( immI13 src, iRegI rd ) %{
2431     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2432   %}
2433 
2434   enc_class SetHi22( immI src, iRegI rd ) %{
2435     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2436   %}
2437 
2438   enc_class Set32( immI src, iRegI rd ) %{
2439     MacroAssembler _masm(&cbuf);
2440     __ set($src$$constant, reg_to_register_object($rd$$reg));
2441   %}
2442 
2443   enc_class SetNull( iRegI rd ) %{
2444     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2445   %}
2446 
2447   enc_class call_epilog %{
2448     if( VerifyStackAtCalls ) {
2449       MacroAssembler _masm(&cbuf);
2450       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2451       Register temp_reg = G3;
2452       __ add(SP, framesize, temp_reg);
2453       __ cmp(temp_reg, FP);
2454       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2455     }
2456   %}
2457 
2458   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2459   // to G1 so the register allocator will not have to deal with the misaligned register
2460   // pair.
2461   enc_class adjust_long_from_native_call %{
2462 #ifndef _LP64
2463     if (returns_long()) {
2464       //    sllx  O0,32,O0
2465       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2466       //    srl   O1,0,O1
2467       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2468       //    or    O0,O1,G1
2469       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2470     }
2471 #endif
2472   %}
2473 
2474   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2475     // CALL directly to the runtime
2476     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2477     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2478                     /*preserve_g2=*/true, /*force far call*/true);
2479   %}
2480 
2481   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2482     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2483     // who we intended to call.
2484     if ( !_method ) {
2485       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2486     } else if (_optimized_virtual) {
2487       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2488     } else {
2489       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2490     }
2491     if( _method ) {  // Emit stub for static call
2492       emit_java_to_interp(cbuf);
2493     }
2494   %}
2495 
2496   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2497     MacroAssembler _masm(&cbuf);
2498     __ set_inst_mark();
2499     int vtable_index = this->_vtable_index;
2500     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2501     if (vtable_index < 0) {
2502       // must be invalid_vtable_index, not nonvirtual_vtable_index
2503       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2504       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2505       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2506       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2507       // !!!!!
2508       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2509       // emit_call_dynamic_prologue( cbuf );
2510       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2511 
2512       address  virtual_call_oop_addr = __ inst_mark();
2513       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2514       // who we intended to call.
2515       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2516       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2517     } else {
2518       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2519       // Just go thru the vtable
2520       // get receiver klass (receiver already checked for non-null)
2521       // If we end up going thru a c2i adapter interpreter expects method in G5
2522       int off = __ offset();
2523       __ load_klass(O0, G3_scratch);
2524       int klass_load_size;
2525       if (UseCompressedOops) {
2526         assert(Universe::heap() != NULL, "java heap should be initialized");
2527         if (Universe::narrow_oop_base() == NULL)
2528           klass_load_size = 2*BytesPerInstWord;
2529         else
2530           klass_load_size = 3*BytesPerInstWord;
2531       } else {
2532         klass_load_size = 1*BytesPerInstWord;
2533       }
2534       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2535       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2536       if( __ is_simm13(v_off) ) {
2537         __ ld_ptr(G3, v_off, G5_method);
2538       } else {
2539         // Generate 2 instructions
2540         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2541         __ or3(G5_method, v_off & 0x3ff, G5_method);
2542         // ld_ptr, set_hi, set
2543         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2544                "Unexpected instruction size(s)");
2545         __ ld_ptr(G3, G5_method, G5_method);
2546       }
2547       // NOTE: for vtable dispatches, the vtable entry will never be null.
2548       // However it may very well end up in handle_wrong_method if the
2549       // method is abstract for the particular class.
2550       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2551       // jump to target (either compiled code or c2iadapter)
2552       __ jmpl(G3_scratch, G0, O7);
2553       __ delayed()->nop();
2554     }
2555   %}
2556 
2557   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2558     MacroAssembler _masm(&cbuf);
2559 
2560     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2561     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2562                               // we might be calling a C2I adapter which needs it.
2563 
2564     assert(temp_reg != G5_ic_reg, "conflicting registers");
2565     // Load nmethod
2566     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2567 
2568     // CALL to compiled java, indirect the contents of G3
2569     __ set_inst_mark();
2570     __ callr(temp_reg, G0);
2571     __ delayed()->nop();
2572   %}
2573 
2574 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2575     MacroAssembler _masm(&cbuf);
2576     Register Rdividend = reg_to_register_object($src1$$reg);
2577     Register Rdivisor = reg_to_register_object($src2$$reg);
2578     Register Rresult = reg_to_register_object($dst$$reg);
2579 
2580     __ sra(Rdivisor, 0, Rdivisor);
2581     __ sra(Rdividend, 0, Rdividend);
2582     __ sdivx(Rdividend, Rdivisor, Rresult);
2583 %}
2584 
2585 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2586     MacroAssembler _masm(&cbuf);
2587 
2588     Register Rdividend = reg_to_register_object($src1$$reg);
2589     int divisor = $imm$$constant;
2590     Register Rresult = reg_to_register_object($dst$$reg);
2591 
2592     __ sra(Rdividend, 0, Rdividend);
2593     __ sdivx(Rdividend, divisor, Rresult);
2594 %}
2595 
2596 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2597     MacroAssembler _masm(&cbuf);
2598     Register Rsrc1 = reg_to_register_object($src1$$reg);
2599     Register Rsrc2 = reg_to_register_object($src2$$reg);
2600     Register Rdst  = reg_to_register_object($dst$$reg);
2601 
2602     __ sra( Rsrc1, 0, Rsrc1 );
2603     __ sra( Rsrc2, 0, Rsrc2 );
2604     __ mulx( Rsrc1, Rsrc2, Rdst );
2605     __ srlx( Rdst, 32, Rdst );
2606 %}
2607 
2608 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2609     MacroAssembler _masm(&cbuf);
2610     Register Rdividend = reg_to_register_object($src1$$reg);
2611     Register Rdivisor = reg_to_register_object($src2$$reg);
2612     Register Rresult = reg_to_register_object($dst$$reg);
2613     Register Rscratch = reg_to_register_object($scratch$$reg);
2614 
2615     assert(Rdividend != Rscratch, "");
2616     assert(Rdivisor  != Rscratch, "");
2617 
2618     __ sra(Rdividend, 0, Rdividend);
2619     __ sra(Rdivisor, 0, Rdivisor);
2620     __ sdivx(Rdividend, Rdivisor, Rscratch);
2621     __ mulx(Rscratch, Rdivisor, Rscratch);
2622     __ sub(Rdividend, Rscratch, Rresult);
2623 %}
2624 
2625 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2626     MacroAssembler _masm(&cbuf);
2627 
2628     Register Rdividend = reg_to_register_object($src1$$reg);
2629     int divisor = $imm$$constant;
2630     Register Rresult = reg_to_register_object($dst$$reg);
2631     Register Rscratch = reg_to_register_object($scratch$$reg);
2632 
2633     assert(Rdividend != Rscratch, "");
2634 
2635     __ sra(Rdividend, 0, Rdividend);
2636     __ sdivx(Rdividend, divisor, Rscratch);
2637     __ mulx(Rscratch, divisor, Rscratch);
2638     __ sub(Rdividend, Rscratch, Rresult);
2639 %}
2640 
2641 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2642     MacroAssembler _masm(&cbuf);
2643 
2644     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2645     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2646 
2647     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2648 %}
2649 
2650 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2651     MacroAssembler _masm(&cbuf);
2652 
2653     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2654     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2655 
2656     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2657 %}
2658 
2659 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2660     MacroAssembler _masm(&cbuf);
2661 
2662     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2663     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2664 
2665     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2666 %}
2667 
2668 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2669     MacroAssembler _masm(&cbuf);
2670 
2671     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2672     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2673 
2674     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2675 %}
2676 
2677 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2678     MacroAssembler _masm(&cbuf);
2679 
2680     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2681     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2682 
2683     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2684 %}
2685 
2686 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2687     MacroAssembler _masm(&cbuf);
2688 
2689     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2690     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2691 
2692     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2693 %}
2694 
2695 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2696     MacroAssembler _masm(&cbuf);
2697 
2698     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2699     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2700 
2701     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2702 %}
2703 
2704 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2705     MacroAssembler _masm(&cbuf);
2706 
2707     Register Roop  = reg_to_register_object($oop$$reg);
2708     Register Rbox  = reg_to_register_object($box$$reg);
2709     Register Rscratch = reg_to_register_object($scratch$$reg);
2710     Register Rmark =    reg_to_register_object($scratch2$$reg);
2711 
2712     assert(Roop  != Rscratch, "");
2713     assert(Roop  != Rmark, "");
2714     assert(Rbox  != Rscratch, "");
2715     assert(Rbox  != Rmark, "");
2716 
2717     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2718 %}
2719 
2720 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2721     MacroAssembler _masm(&cbuf);
2722 
2723     Register Roop  = reg_to_register_object($oop$$reg);
2724     Register Rbox  = reg_to_register_object($box$$reg);
2725     Register Rscratch = reg_to_register_object($scratch$$reg);
2726     Register Rmark =    reg_to_register_object($scratch2$$reg);
2727 
2728     assert(Roop  != Rscratch, "");
2729     assert(Roop  != Rmark, "");
2730     assert(Rbox  != Rscratch, "");
2731     assert(Rbox  != Rmark, "");
2732 
2733     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2734   %}
2735 
2736   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2737     MacroAssembler _masm(&cbuf);
2738     Register Rmem = reg_to_register_object($mem$$reg);
2739     Register Rold = reg_to_register_object($old$$reg);
2740     Register Rnew = reg_to_register_object($new$$reg);
2741 
2742     // casx_under_lock picks 1 of 3 encodings:
2743     // For 32-bit pointers you get a 32-bit CAS
2744     // For 64-bit pointers you get a 64-bit CASX
2745     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2746     __ cmp( Rold, Rnew );
2747   %}
2748 
2749   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2750     Register Rmem = reg_to_register_object($mem$$reg);
2751     Register Rold = reg_to_register_object($old$$reg);
2752     Register Rnew = reg_to_register_object($new$$reg);
2753 
2754     MacroAssembler _masm(&cbuf);
2755     __ mov(Rnew, O7);
2756     __ casx(Rmem, Rold, O7);
2757     __ cmp( Rold, O7 );
2758   %}
2759 
2760   // raw int cas, used for compareAndSwap
2761   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2762     Register Rmem = reg_to_register_object($mem$$reg);
2763     Register Rold = reg_to_register_object($old$$reg);
2764     Register Rnew = reg_to_register_object($new$$reg);
2765 
2766     MacroAssembler _masm(&cbuf);
2767     __ mov(Rnew, O7);
2768     __ cas(Rmem, Rold, O7);
2769     __ cmp( Rold, O7 );
2770   %}
2771 
2772   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2773     Register Rres = reg_to_register_object($res$$reg);
2774 
2775     MacroAssembler _masm(&cbuf);
2776     __ mov(1, Rres);
2777     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2778   %}
2779 
2780   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2781     Register Rres = reg_to_register_object($res$$reg);
2782 
2783     MacroAssembler _masm(&cbuf);
2784     __ mov(1, Rres);
2785     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2786   %}
2787 
2788   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2789     MacroAssembler _masm(&cbuf);
2790     Register Rdst = reg_to_register_object($dst$$reg);
2791     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2792                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2793     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2794                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2795 
2796     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2797     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2798   %}
2799 
2800   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2801     MacroAssembler _masm(&cbuf);
2802     Register dest = reg_to_register_object($dst$$reg);
2803     Register temp = reg_to_register_object($tmp$$reg);
2804     __ set64( $src$$constant, dest, temp );
2805   %}
2806 
2807   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2808     // Load a constant replicated "count" times with width "width"
2809     int bit_width = $width$$constant * 8;
2810     jlong elt_val = $src$$constant;
2811     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2812     jlong val = elt_val;
2813     for (int i = 0; i < $count$$constant - 1; i++) {
2814         val <<= bit_width;
2815         val |= elt_val;
2816     }
2817     jdouble dval = *(jdouble*)&val; // coerce to double type
2818     MacroAssembler _masm(&cbuf);
2819     address double_address = __ double_constant(dval);
2820     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2821     AddressLiteral addrlit(double_address, rspec);
2822 
2823     __ sethi(addrlit, $tmp$$Register);
2824     // XXX This is a quick fix for 6833573.
2825     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2826     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
2827   %}
2828 
2829   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2830   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2831     MacroAssembler _masm(&cbuf);
2832     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2833     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2834     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2835 
2836     Label loop;
2837     __ mov(nof_bytes_arg, nof_bytes_tmp);
2838 
2839     // Loop and clear, walking backwards through the array.
2840     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2841     __ bind(loop);
2842     __ deccc(nof_bytes_tmp, 8);
2843     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2844     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2845     // %%%% this mini-loop must not cross a cache boundary!
2846   %}
2847 
2848 
2849   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2850     Label Ldone, Lloop;
2851     MacroAssembler _masm(&cbuf);
2852 
2853     Register   str1_reg = reg_to_register_object($str1$$reg);
2854     Register   str2_reg = reg_to_register_object($str2$$reg);
2855     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2856     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2857     Register result_reg = reg_to_register_object($result$$reg);
2858 
2859     assert(result_reg != str1_reg &&
2860            result_reg != str2_reg &&
2861            result_reg != cnt1_reg &&
2862            result_reg != cnt2_reg ,
2863            "need different registers");
2864 
2865     // Compute the minimum of the string lengths(str1_reg) and the
2866     // difference of the string lengths (stack)
2867 
2868     // See if the lengths are different, and calculate min in str1_reg.
2869     // Stash diff in O7 in case we need it for a tie-breaker.
2870     Label Lskip;
2871     __ subcc(cnt1_reg, cnt2_reg, O7);
2872     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2873     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2874     // cnt2 is shorter, so use its count:
2875     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2876     __ bind(Lskip);
2877 
2878     // reallocate cnt1_reg, cnt2_reg, result_reg
2879     // Note:  limit_reg holds the string length pre-scaled by 2
2880     Register limit_reg =   cnt1_reg;
2881     Register  chr2_reg =   cnt2_reg;
2882     Register  chr1_reg = result_reg;
2883     // str{12} are the base pointers
2884 
2885     // Is the minimum length zero?
2886     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2887     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2888     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2889 
2890     // Load first characters
2891     __ lduh(str1_reg, 0, chr1_reg);
2892     __ lduh(str2_reg, 0, chr2_reg);
2893 
2894     // Compare first characters
2895     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2896     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2897     assert(chr1_reg == result_reg, "result must be pre-placed");
2898     __ delayed()->nop();
2899 
2900     {
2901       // Check after comparing first character to see if strings are equivalent
2902       Label LSkip2;
2903       // Check if the strings start at same location
2904       __ cmp(str1_reg, str2_reg);
2905       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2906       __ delayed()->nop();
2907 
2908       // Check if the length difference is zero (in O7)
2909       __ cmp(G0, O7);
2910       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2911       __ delayed()->mov(G0, result_reg);  // result is zero
2912 
2913       // Strings might not be equal
2914       __ bind(LSkip2);
2915     }
2916 
2917     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2918     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2919     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2920 
2921     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2922     __ add(str1_reg, limit_reg, str1_reg);
2923     __ add(str2_reg, limit_reg, str2_reg);
2924     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2925 
2926     // Compare the rest of the characters
2927     __ lduh(str1_reg, limit_reg, chr1_reg);
2928     __ bind(Lloop);
2929     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2930     __ lduh(str2_reg, limit_reg, chr2_reg);
2931     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2932     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2933     assert(chr1_reg == result_reg, "result must be pre-placed");
2934     __ delayed()->inccc(limit_reg, sizeof(jchar));
2935     // annul LDUH if branch is not taken to prevent access past end of string
2936     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2937     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2938 
2939     // If strings are equal up to min length, return the length difference.
2940     __ mov(O7, result_reg);
2941 
2942     // Otherwise, return the difference between the first mismatched chars.
2943     __ bind(Ldone);
2944   %}
2945 
2946 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2947     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2948     MacroAssembler _masm(&cbuf);
2949 
2950     Register   str1_reg = reg_to_register_object($str1$$reg);
2951     Register   str2_reg = reg_to_register_object($str2$$reg);
2952     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2953     Register   tmp1_reg = O7;
2954     Register result_reg = reg_to_register_object($result$$reg);
2955 
2956     assert(result_reg != str1_reg &&
2957            result_reg != str2_reg &&
2958            result_reg !=  cnt_reg &&
2959            result_reg != tmp1_reg ,
2960            "need different registers");
2961 
2962     __ cmp(str1_reg, str2_reg); //same char[] ?
2963     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2964     __ delayed()->add(G0, 1, result_reg);
2965 
2966     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
2967     __ delayed()->add(G0, 1, result_reg); // count == 0
2968 
2969     //rename registers
2970     Register limit_reg =    cnt_reg;
2971     Register  chr1_reg = result_reg;
2972     Register  chr2_reg =   tmp1_reg;
2973 
2974     //check for alignment and position the pointers to the ends
2975     __ or3(str1_reg, str2_reg, chr1_reg);
2976     __ andcc(chr1_reg, 0x3, chr1_reg);
2977     // notZero means at least one not 4-byte aligned.
2978     // We could optimize the case when both arrays are not aligned
2979     // but it is not frequent case and it requires additional checks.
2980     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2981     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2982 
2983     // Compare char[] arrays aligned to 4 bytes.
2984     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2985                           chr1_reg, chr2_reg, Ldone);
2986     __ ba(false,Ldone);
2987     __ delayed()->add(G0, 1, result_reg);
2988 
2989     // char by char compare
2990     __ bind(Lchar);
2991     __ add(str1_reg, limit_reg, str1_reg);
2992     __ add(str2_reg, limit_reg, str2_reg);
2993     __ neg(limit_reg); //negate count
2994 
2995     __ lduh(str1_reg, limit_reg, chr1_reg);
2996     // Lchar_loop
2997     __ bind(Lchar_loop);
2998     __ lduh(str2_reg, limit_reg, chr2_reg);
2999     __ cmp(chr1_reg, chr2_reg);
3000     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3001     __ delayed()->mov(G0, result_reg); //not equal
3002     __ inccc(limit_reg, sizeof(jchar));
3003     // annul LDUH if branch is not taken to prevent access past end of string
3004     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3005     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3006 
3007     __ add(G0, 1, result_reg);  //equal
3008 
3009     __ bind(Ldone);
3010   %}
3011 
3012 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3013     Label Lvector, Ldone, Lloop;
3014     MacroAssembler _masm(&cbuf);
3015 
3016     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3017     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3018     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3019     Register   tmp2_reg = O7;
3020     Register result_reg = reg_to_register_object($result$$reg);
3021 
3022     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3023     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3024 
3025     // return true if the same array
3026     __ cmp(ary1_reg, ary2_reg);
3027     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3028     __ delayed()->add(G0, 1, result_reg); // equal
3029 
3030     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3031     __ delayed()->mov(G0, result_reg);    // not equal
3032 
3033     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3034     __ delayed()->mov(G0, result_reg);    // not equal
3035 
3036     //load the lengths of arrays
3037     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3038     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3039 
3040     // return false if the two arrays are not equal length
3041     __ cmp(tmp1_reg, tmp2_reg);
3042     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3043     __ delayed()->mov(G0, result_reg);     // not equal
3044 
3045     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
3046     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3047 
3048     // load array addresses
3049     __ add(ary1_reg, base_offset, ary1_reg);
3050     __ add(ary2_reg, base_offset, ary2_reg);
3051 
3052     // renaming registers
3053     Register chr1_reg  =  result_reg; // for characters in ary1
3054     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3055     Register limit_reg =  tmp1_reg;   // length
3056 
3057     // set byte count
3058     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3059 
3060     // Compare char[] arrays aligned to 4 bytes.
3061     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3062                           chr1_reg, chr2_reg, Ldone);
3063     __ add(G0, 1, result_reg); // equals
3064 
3065     __ bind(Ldone);
3066   %}
3067 
3068   enc_class enc_rethrow() %{
3069     cbuf.set_inst_mark();
3070     Register temp_reg = G3;
3071     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3072     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3073     MacroAssembler _masm(&cbuf);
3074 #ifdef ASSERT
3075     __ save_frame(0);
3076     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3077     __ sethi(last_rethrow_addrlit, L1);
3078     Address addr(L1, last_rethrow_addrlit.low10());
3079     __ get_pc(L2);
3080     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3081     __ st_ptr(L2, addr);
3082     __ restore();
3083 #endif
3084     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3085     __ delayed()->nop();
3086   %}
3087 
3088   enc_class emit_mem_nop() %{
3089     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3090     unsigned int *code = (unsigned int*)cbuf.code_end();
3091     *code = (unsigned int)0xc0839040;
3092     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3093   %}
3094 
3095   enc_class emit_fadd_nop() %{
3096     // Generates the instruction FMOVS f31,f31
3097     unsigned int *code = (unsigned int*)cbuf.code_end();
3098     *code = (unsigned int)0xbfa0003f;
3099     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3100   %}
3101 
3102   enc_class emit_br_nop() %{
3103     // Generates the instruction BPN,PN .
3104     unsigned int *code = (unsigned int*)cbuf.code_end();
3105     *code = (unsigned int)0x00400000;
3106     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3107   %}
3108 
3109   enc_class enc_membar_acquire %{
3110     MacroAssembler _masm(&cbuf);
3111     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3112   %}
3113 
3114   enc_class enc_membar_release %{
3115     MacroAssembler _masm(&cbuf);
3116     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3117   %}
3118 
3119   enc_class enc_membar_volatile %{
3120     MacroAssembler _masm(&cbuf);
3121     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3122   %}
3123 
3124   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3125     MacroAssembler _masm(&cbuf);
3126     Register src_reg = reg_to_register_object($src$$reg);
3127     Register dst_reg = reg_to_register_object($dst$$reg);
3128     __ sllx(src_reg, 56, dst_reg);
3129     __ srlx(dst_reg,  8, O7);
3130     __ or3 (dst_reg, O7, dst_reg);
3131     __ srlx(dst_reg, 16, O7);
3132     __ or3 (dst_reg, O7, dst_reg);
3133     __ srlx(dst_reg, 32, O7);
3134     __ or3 (dst_reg, O7, dst_reg);
3135   %}
3136 
3137   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3138     MacroAssembler _masm(&cbuf);
3139     Register src_reg = reg_to_register_object($src$$reg);
3140     Register dst_reg = reg_to_register_object($dst$$reg);
3141     __ sll(src_reg, 24, dst_reg);
3142     __ srl(dst_reg,  8, O7);
3143     __ or3(dst_reg, O7, dst_reg);
3144     __ srl(dst_reg, 16, O7);
3145     __ or3(dst_reg, O7, dst_reg);
3146   %}
3147 
3148   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3149     MacroAssembler _masm(&cbuf);
3150     Register src_reg = reg_to_register_object($src$$reg);
3151     Register dst_reg = reg_to_register_object($dst$$reg);
3152     __ sllx(src_reg, 48, dst_reg);
3153     __ srlx(dst_reg, 16, O7);
3154     __ or3 (dst_reg, O7, dst_reg);
3155     __ srlx(dst_reg, 32, O7);
3156     __ or3 (dst_reg, O7, dst_reg);
3157   %}
3158 
3159   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3160     MacroAssembler _masm(&cbuf);
3161     Register src_reg = reg_to_register_object($src$$reg);
3162     Register dst_reg = reg_to_register_object($dst$$reg);
3163     __ sllx(src_reg, 32, dst_reg);
3164     __ srlx(dst_reg, 32, O7);
3165     __ or3 (dst_reg, O7, dst_reg);
3166   %}
3167 
3168 %}
3169 
3170 //----------FRAME--------------------------------------------------------------
3171 // Definition of frame structure and management information.
3172 //
3173 //  S T A C K   L A Y O U T    Allocators stack-slot number
3174 //                             |   (to get allocators register number
3175 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3176 //  r   CALLER     |        |
3177 //  o     |        +--------+      pad to even-align allocators stack-slot
3178 //  w     V        |  pad0  |        numbers; owned by CALLER
3179 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3180 //  h     ^        |   in   |  5
3181 //        |        |  args  |  4   Holes in incoming args owned by SELF
3182 //  |     |        |        |  3
3183 //  |     |        +--------+
3184 //  V     |        | old out|      Empty on Intel, window on Sparc
3185 //        |    old |preserve|      Must be even aligned.
3186 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3187 //        |        |   in   |  3   area for Intel ret address
3188 //     Owned by    |preserve|      Empty on Sparc.
3189 //       SELF      +--------+
3190 //        |        |  pad2  |  2   pad to align old SP
3191 //        |        +--------+  1
3192 //        |        | locks  |  0
3193 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3194 //        |        |  pad1  | 11   pad to align new SP
3195 //        |        +--------+
3196 //        |        |        | 10
3197 //        |        | spills |  9   spills
3198 //        V        |        |  8   (pad0 slot for callee)
3199 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3200 //        ^        |  out   |  7
3201 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3202 //     Owned by    +--------+
3203 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3204 //        |    new |preserve|      Must be even-aligned.
3205 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3206 //        |        |        |
3207 //
3208 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3209 //         known from SELF's arguments and the Java calling convention.
3210 //         Region 6-7 is determined per call site.
3211 // Note 2: If the calling convention leaves holes in the incoming argument
3212 //         area, those holes are owned by SELF.  Holes in the outgoing area
3213 //         are owned by the CALLEE.  Holes should not be nessecary in the
3214 //         incoming area, as the Java calling convention is completely under
3215 //         the control of the AD file.  Doubles can be sorted and packed to
3216 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3217 //         varargs C calling conventions.
3218 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3219 //         even aligned with pad0 as needed.
3220 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3221 //         region 6-11 is even aligned; it may be padded out more so that
3222 //         the region from SP to FP meets the minimum stack alignment.
3223 
3224 frame %{
3225   // What direction does stack grow in (assumed to be same for native & Java)
3226   stack_direction(TOWARDS_LOW);
3227 
3228   // These two registers define part of the calling convention
3229   // between compiled code and the interpreter.
3230   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3231   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3232 
3233   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3234   cisc_spilling_operand_name(indOffset);
3235 
3236   // Number of stack slots consumed by a Monitor enter
3237 #ifdef _LP64
3238   sync_stack_slots(2);
3239 #else
3240   sync_stack_slots(1);
3241 #endif
3242 
3243   // Compiled code's Frame Pointer
3244   frame_pointer(R_SP);
3245 
3246   // Stack alignment requirement
3247   stack_alignment(StackAlignmentInBytes);
3248   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3249   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3250 
3251   // Number of stack slots between incoming argument block and the start of
3252   // a new frame.  The PROLOG must add this many slots to the stack.  The
3253   // EPILOG must remove this many slots.
3254   in_preserve_stack_slots(0);
3255 
3256   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3257   // for calls to C.  Supports the var-args backing area for register parms.
3258   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3259 #ifdef _LP64
3260   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3261   varargs_C_out_slots_killed(12);
3262 #else
3263   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3264   varargs_C_out_slots_killed( 7);
3265 #endif
3266 
3267   // The after-PROLOG location of the return address.  Location of
3268   // return address specifies a type (REG or STACK) and a number
3269   // representing the register number (i.e. - use a register name) or
3270   // stack slot.
3271   return_addr(REG R_I7);          // Ret Addr is in register I7
3272 
3273   // Body of function which returns an OptoRegs array locating
3274   // arguments either in registers or in stack slots for calling
3275   // java
3276   calling_convention %{
3277     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3278 
3279   %}
3280 
3281   // Body of function which returns an OptoRegs array locating
3282   // arguments either in registers or in stack slots for callin
3283   // C.
3284   c_calling_convention %{
3285     // This is obviously always outgoing
3286     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3287   %}
3288 
3289   // Location of native (C/C++) and interpreter return values.  This is specified to
3290   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3291   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3292   // to and from the register pairs is done by the appropriate call and epilog
3293   // opcodes.  This simplifies the register allocator.
3294   c_return_value %{
3295     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3296 #ifdef     _LP64
3297     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3298     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3299     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3300     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3301 #else  // !_LP64
3302     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3303     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3304     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3305     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3306 #endif
3307     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3308                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3309   %}
3310 
3311   // Location of compiled Java return values.  Same as C
3312   return_value %{
3313     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3314 #ifdef     _LP64
3315     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3316     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3317     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3318     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3319 #else  // !_LP64
3320     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3321     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3322     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3323     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3324 #endif
3325     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3326                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3327   %}
3328 
3329 %}
3330 
3331 
3332 //----------ATTRIBUTES---------------------------------------------------------
3333 //----------Operand Attributes-------------------------------------------------
3334 op_attrib op_cost(1);          // Required cost attribute
3335 
3336 //----------Instruction Attributes---------------------------------------------
3337 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3338 ins_attrib ins_size(32);       // Required size attribute (in bits)
3339 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3340 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3341                                 // non-matching short branch variant of some
3342                                                             // long branch?
3343 
3344 //----------OPERANDS-----------------------------------------------------------
3345 // Operand definitions must precede instruction definitions for correct parsing
3346 // in the ADLC because operands constitute user defined types which are used in
3347 // instruction definitions.
3348 
3349 //----------Simple Operands----------------------------------------------------
3350 // Immediate Operands
3351 // Integer Immediate: 32-bit
3352 operand immI() %{
3353   match(ConI);
3354 
3355   op_cost(0);
3356   // formats are generated automatically for constants and base registers
3357   format %{ %}
3358   interface(CONST_INTER);
3359 %}
3360 
3361 // Integer Immediate: 8-bit
3362 operand immI8() %{
3363   predicate(Assembler::is_simm(n->get_int(), 8));
3364   match(ConI);
3365   op_cost(0);
3366   format %{ %}
3367   interface(CONST_INTER);
3368 %}
3369 
3370 // Integer Immediate: 13-bit
3371 operand immI13() %{
3372   predicate(Assembler::is_simm13(n->get_int()));
3373   match(ConI);
3374   op_cost(0);
3375 
3376   format %{ %}
3377   interface(CONST_INTER);
3378 %}
3379 
3380 // Integer Immediate: 13-bit minus 7
3381 operand immI13m7() %{
3382   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3383   match(ConI);
3384   op_cost(0);
3385 
3386   format %{ %}
3387   interface(CONST_INTER);
3388 %}
3389 
3390 // Integer Immediate: 16-bit
3391 operand immI16() %{
3392   predicate(Assembler::is_simm(n->get_int(), 16));
3393   match(ConI);
3394   op_cost(0);
3395   format %{ %}
3396   interface(CONST_INTER);
3397 %}
3398 
3399 // Unsigned (positive) Integer Immediate: 13-bit
3400 operand immU13() %{
3401   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3402   match(ConI);
3403   op_cost(0);
3404 
3405   format %{ %}
3406   interface(CONST_INTER);
3407 %}
3408 
3409 // Integer Immediate: 6-bit
3410 operand immU6() %{
3411   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3412   match(ConI);
3413   op_cost(0);
3414   format %{ %}
3415   interface(CONST_INTER);
3416 %}
3417 
3418 // Integer Immediate: 11-bit
3419 operand immI11() %{
3420   predicate(Assembler::is_simm(n->get_int(),11));
3421   match(ConI);
3422   op_cost(0);
3423   format %{ %}
3424   interface(CONST_INTER);
3425 %}
3426 
3427 // Integer Immediate: 0-bit
3428 operand immI0() %{
3429   predicate(n->get_int() == 0);
3430   match(ConI);
3431   op_cost(0);
3432 
3433   format %{ %}
3434   interface(CONST_INTER);
3435 %}
3436 
3437 // Integer Immediate: the value 10
3438 operand immI10() %{
3439   predicate(n->get_int() == 10);
3440   match(ConI);
3441   op_cost(0);
3442 
3443   format %{ %}
3444   interface(CONST_INTER);
3445 %}
3446 
3447 // Integer Immediate: the values 0-31
3448 operand immU5() %{
3449   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3450   match(ConI);
3451   op_cost(0);
3452 
3453   format %{ %}
3454   interface(CONST_INTER);
3455 %}
3456 
3457 // Integer Immediate: the values 1-31
3458 operand immI_1_31() %{
3459   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3460   match(ConI);
3461   op_cost(0);
3462 
3463   format %{ %}
3464   interface(CONST_INTER);
3465 %}
3466 
3467 // Integer Immediate: the values 32-63
3468 operand immI_32_63() %{
3469   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3470   match(ConI);
3471   op_cost(0);
3472 
3473   format %{ %}
3474   interface(CONST_INTER);
3475 %}
3476 
3477 // Immediates for special shifts (sign extend)
3478 
3479 // Integer Immediate: the value 16
3480 operand immI_16() %{
3481   predicate(n->get_int() == 16);
3482   match(ConI);
3483   op_cost(0);
3484 
3485   format %{ %}
3486   interface(CONST_INTER);
3487 %}
3488 
3489 // Integer Immediate: the value 24
3490 operand immI_24() %{
3491   predicate(n->get_int() == 24);
3492   match(ConI);
3493   op_cost(0);
3494 
3495   format %{ %}
3496   interface(CONST_INTER);
3497 %}
3498 
3499 // Integer Immediate: the value 255
3500 operand immI_255() %{
3501   predicate( n->get_int() == 255 );
3502   match(ConI);
3503   op_cost(0);
3504 
3505   format %{ %}
3506   interface(CONST_INTER);
3507 %}
3508 
3509 // Integer Immediate: the value 65535
3510 operand immI_65535() %{
3511   predicate(n->get_int() == 65535);
3512   match(ConI);
3513   op_cost(0);
3514 
3515   format %{ %}
3516   interface(CONST_INTER);
3517 %}
3518 
3519 // Long Immediate: the value FF
3520 operand immL_FF() %{
3521   predicate( n->get_long() == 0xFFL );
3522   match(ConL);
3523   op_cost(0);
3524 
3525   format %{ %}
3526   interface(CONST_INTER);
3527 %}
3528 
3529 // Long Immediate: the value FFFF
3530 operand immL_FFFF() %{
3531   predicate( n->get_long() == 0xFFFFL );
3532   match(ConL);
3533   op_cost(0);
3534 
3535   format %{ %}
3536   interface(CONST_INTER);
3537 %}
3538 
3539 // Pointer Immediate: 32 or 64-bit
3540 operand immP() %{
3541   match(ConP);
3542 
3543   op_cost(5);
3544   // formats are generated automatically for constants and base registers
3545   format %{ %}
3546   interface(CONST_INTER);
3547 %}
3548 
3549 operand immP13() %{
3550   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3551   match(ConP);
3552   op_cost(0);
3553 
3554   format %{ %}
3555   interface(CONST_INTER);
3556 %}
3557 
3558 operand immP0() %{
3559   predicate(n->get_ptr() == 0);
3560   match(ConP);
3561   op_cost(0);
3562 
3563   format %{ %}
3564   interface(CONST_INTER);
3565 %}
3566 
3567 operand immP_poll() %{
3568   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3569   match(ConP);
3570 
3571   // formats are generated automatically for constants and base registers
3572   format %{ %}
3573   interface(CONST_INTER);
3574 %}
3575 
3576 // Pointer Immediate
3577 operand immN()
3578 %{
3579   match(ConN);
3580 
3581   op_cost(10);
3582   format %{ %}
3583   interface(CONST_INTER);
3584 %}
3585 
3586 // NULL Pointer Immediate
3587 operand immN0()
3588 %{
3589   predicate(n->get_narrowcon() == 0);
3590   match(ConN);
3591 
3592   op_cost(0);
3593   format %{ %}
3594   interface(CONST_INTER);
3595 %}
3596 
3597 operand immL() %{
3598   match(ConL);
3599   op_cost(40);
3600   // formats are generated automatically for constants and base registers
3601   format %{ %}
3602   interface(CONST_INTER);
3603 %}
3604 
3605 operand immL0() %{
3606   predicate(n->get_long() == 0L);
3607   match(ConL);
3608   op_cost(0);
3609   // formats are generated automatically for constants and base registers
3610   format %{ %}
3611   interface(CONST_INTER);
3612 %}
3613 
3614 // Long Immediate: 13-bit
3615 operand immL13() %{
3616   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3617   match(ConL);
3618   op_cost(0);
3619 
3620   format %{ %}
3621   interface(CONST_INTER);
3622 %}
3623 
3624 // Long Immediate: 13-bit minus 7
3625 operand immL13m7() %{
3626   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3627   match(ConL);
3628   op_cost(0);
3629 
3630   format %{ %}
3631   interface(CONST_INTER);
3632 %}
3633 
3634 // Long Immediate: low 32-bit mask
3635 operand immL_32bits() %{
3636   predicate(n->get_long() == 0xFFFFFFFFL);
3637   match(ConL);
3638   op_cost(0);
3639 
3640   format %{ %}
3641   interface(CONST_INTER);
3642 %}
3643 
3644 // Double Immediate
3645 operand immD() %{
3646   match(ConD);
3647 
3648   op_cost(40);
3649   format %{ %}
3650   interface(CONST_INTER);
3651 %}
3652 
3653 operand immD0() %{
3654 #ifdef _LP64
3655   // on 64-bit architectures this comparision is faster
3656   predicate(jlong_cast(n->getd()) == 0);
3657 #else
3658   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3659 #endif
3660   match(ConD);
3661 
3662   op_cost(0);
3663   format %{ %}
3664   interface(CONST_INTER);
3665 %}
3666 
3667 // Float Immediate
3668 operand immF() %{
3669   match(ConF);
3670 
3671   op_cost(20);
3672   format %{ %}
3673   interface(CONST_INTER);
3674 %}
3675 
3676 // Float Immediate: 0
3677 operand immF0() %{
3678   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3679   match(ConF);
3680 
3681   op_cost(0);
3682   format %{ %}
3683   interface(CONST_INTER);
3684 %}
3685 
3686 // Integer Register Operands
3687 // Integer Register
3688 operand iRegI() %{
3689   constraint(ALLOC_IN_RC(int_reg));
3690   match(RegI);
3691 
3692   match(notemp_iRegI);
3693   match(g1RegI);
3694   match(o0RegI);
3695   match(iRegIsafe);
3696 
3697   format %{ %}
3698   interface(REG_INTER);
3699 %}
3700 
3701 operand notemp_iRegI() %{
3702   constraint(ALLOC_IN_RC(notemp_int_reg));
3703   match(RegI);
3704 
3705   match(o0RegI);
3706 
3707   format %{ %}
3708   interface(REG_INTER);
3709 %}
3710 
3711 operand o0RegI() %{
3712   constraint(ALLOC_IN_RC(o0_regI));
3713   match(iRegI);
3714 
3715   format %{ %}
3716   interface(REG_INTER);
3717 %}
3718 
3719 // Pointer Register
3720 operand iRegP() %{
3721   constraint(ALLOC_IN_RC(ptr_reg));
3722   match(RegP);
3723 
3724   match(lock_ptr_RegP);
3725   match(g1RegP);
3726   match(g2RegP);
3727   match(g3RegP);
3728   match(g4RegP);
3729   match(i0RegP);
3730   match(o0RegP);
3731   match(o1RegP);
3732   match(l7RegP);
3733 
3734   format %{ %}
3735   interface(REG_INTER);
3736 %}
3737 
3738 operand sp_ptr_RegP() %{
3739   constraint(ALLOC_IN_RC(sp_ptr_reg));
3740   match(RegP);
3741   match(iRegP);
3742 
3743   format %{ %}
3744   interface(REG_INTER);
3745 %}
3746 
3747 operand lock_ptr_RegP() %{
3748   constraint(ALLOC_IN_RC(lock_ptr_reg));
3749   match(RegP);
3750   match(i0RegP);
3751   match(o0RegP);
3752   match(o1RegP);
3753   match(l7RegP);
3754 
3755   format %{ %}
3756   interface(REG_INTER);
3757 %}
3758 
3759 operand g1RegP() %{
3760   constraint(ALLOC_IN_RC(g1_regP));
3761   match(iRegP);
3762 
3763   format %{ %}
3764   interface(REG_INTER);
3765 %}
3766 
3767 operand g2RegP() %{
3768   constraint(ALLOC_IN_RC(g2_regP));
3769   match(iRegP);
3770 
3771   format %{ %}
3772   interface(REG_INTER);
3773 %}
3774 
3775 operand g3RegP() %{
3776   constraint(ALLOC_IN_RC(g3_regP));
3777   match(iRegP);
3778 
3779   format %{ %}
3780   interface(REG_INTER);
3781 %}
3782 
3783 operand g1RegI() %{
3784   constraint(ALLOC_IN_RC(g1_regI));
3785   match(iRegI);
3786 
3787   format %{ %}
3788   interface(REG_INTER);
3789 %}
3790 
3791 operand g3RegI() %{
3792   constraint(ALLOC_IN_RC(g3_regI));
3793   match(iRegI);
3794 
3795   format %{ %}
3796   interface(REG_INTER);
3797 %}
3798 
3799 operand g4RegI() %{
3800   constraint(ALLOC_IN_RC(g4_regI));
3801   match(iRegI);
3802 
3803   format %{ %}
3804   interface(REG_INTER);
3805 %}
3806 
3807 operand g4RegP() %{
3808   constraint(ALLOC_IN_RC(g4_regP));
3809   match(iRegP);
3810 
3811   format %{ %}
3812   interface(REG_INTER);
3813 %}
3814 
3815 operand i0RegP() %{
3816   constraint(ALLOC_IN_RC(i0_regP));
3817   match(iRegP);
3818 
3819   format %{ %}
3820   interface(REG_INTER);
3821 %}
3822 
3823 operand o0RegP() %{
3824   constraint(ALLOC_IN_RC(o0_regP));
3825   match(iRegP);
3826 
3827   format %{ %}
3828   interface(REG_INTER);
3829 %}
3830 
3831 operand o1RegP() %{
3832   constraint(ALLOC_IN_RC(o1_regP));
3833   match(iRegP);
3834 
3835   format %{ %}
3836   interface(REG_INTER);
3837 %}
3838 
3839 operand o2RegP() %{
3840   constraint(ALLOC_IN_RC(o2_regP));
3841   match(iRegP);
3842 
3843   format %{ %}
3844   interface(REG_INTER);
3845 %}
3846 
3847 operand o7RegP() %{
3848   constraint(ALLOC_IN_RC(o7_regP));
3849   match(iRegP);
3850 
3851   format %{ %}
3852   interface(REG_INTER);
3853 %}
3854 
3855 operand l7RegP() %{
3856   constraint(ALLOC_IN_RC(l7_regP));
3857   match(iRegP);
3858 
3859   format %{ %}
3860   interface(REG_INTER);
3861 %}
3862 
3863 operand o7RegI() %{
3864   constraint(ALLOC_IN_RC(o7_regI));
3865   match(iRegI);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 operand iRegN() %{
3872   constraint(ALLOC_IN_RC(int_reg));
3873   match(RegN);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 // Long Register
3880 operand iRegL() %{
3881   constraint(ALLOC_IN_RC(long_reg));
3882   match(RegL);
3883 
3884   format %{ %}
3885   interface(REG_INTER);
3886 %}
3887 
3888 operand o2RegL() %{
3889   constraint(ALLOC_IN_RC(o2_regL));
3890   match(iRegL);
3891 
3892   format %{ %}
3893   interface(REG_INTER);
3894 %}
3895 
3896 operand o7RegL() %{
3897   constraint(ALLOC_IN_RC(o7_regL));
3898   match(iRegL);
3899 
3900   format %{ %}
3901   interface(REG_INTER);
3902 %}
3903 
3904 operand g1RegL() %{
3905   constraint(ALLOC_IN_RC(g1_regL));
3906   match(iRegL);
3907 
3908   format %{ %}
3909   interface(REG_INTER);
3910 %}
3911 
3912 operand g3RegL() %{
3913   constraint(ALLOC_IN_RC(g3_regL));
3914   match(iRegL);
3915 
3916   format %{ %}
3917   interface(REG_INTER);
3918 %}
3919 
3920 // Int Register safe
3921 // This is 64bit safe
3922 operand iRegIsafe() %{
3923   constraint(ALLOC_IN_RC(long_reg));
3924 
3925   match(iRegI);
3926 
3927   format %{ %}
3928   interface(REG_INTER);
3929 %}
3930 
3931 // Condition Code Flag Register
3932 operand flagsReg() %{
3933   constraint(ALLOC_IN_RC(int_flags));
3934   match(RegFlags);
3935 
3936   format %{ "ccr" %} // both ICC and XCC
3937   interface(REG_INTER);
3938 %}
3939 
3940 // Condition Code Register, unsigned comparisons.
3941 operand flagsRegU() %{
3942   constraint(ALLOC_IN_RC(int_flags));
3943   match(RegFlags);
3944 
3945   format %{ "icc_U" %}
3946   interface(REG_INTER);
3947 %}
3948 
3949 // Condition Code Register, pointer comparisons.
3950 operand flagsRegP() %{
3951   constraint(ALLOC_IN_RC(int_flags));
3952   match(RegFlags);
3953 
3954 #ifdef _LP64
3955   format %{ "xcc_P" %}
3956 #else
3957   format %{ "icc_P" %}
3958 #endif
3959   interface(REG_INTER);
3960 %}
3961 
3962 // Condition Code Register, long comparisons.
3963 operand flagsRegL() %{
3964   constraint(ALLOC_IN_RC(int_flags));
3965   match(RegFlags);
3966 
3967   format %{ "xcc_L" %}
3968   interface(REG_INTER);
3969 %}
3970 
3971 // Condition Code Register, floating comparisons, unordered same as "less".
3972 operand flagsRegF() %{
3973   constraint(ALLOC_IN_RC(float_flags));
3974   match(RegFlags);
3975   match(flagsRegF0);
3976 
3977   format %{ %}
3978   interface(REG_INTER);
3979 %}
3980 
3981 operand flagsRegF0() %{
3982   constraint(ALLOC_IN_RC(float_flag0));
3983   match(RegFlags);
3984 
3985   format %{ %}
3986   interface(REG_INTER);
3987 %}
3988 
3989 
3990 // Condition Code Flag Register used by long compare
3991 operand flagsReg_long_LTGE() %{
3992   constraint(ALLOC_IN_RC(int_flags));
3993   match(RegFlags);
3994   format %{ "icc_LTGE" %}
3995   interface(REG_INTER);
3996 %}
3997 operand flagsReg_long_EQNE() %{
3998   constraint(ALLOC_IN_RC(int_flags));
3999   match(RegFlags);
4000   format %{ "icc_EQNE" %}
4001   interface(REG_INTER);
4002 %}
4003 operand flagsReg_long_LEGT() %{
4004   constraint(ALLOC_IN_RC(int_flags));
4005   match(RegFlags);
4006   format %{ "icc_LEGT" %}
4007   interface(REG_INTER);
4008 %}
4009 
4010 
4011 operand regD() %{
4012   constraint(ALLOC_IN_RC(dflt_reg));
4013   match(RegD);
4014 
4015   match(regD_low);
4016 
4017   format %{ %}
4018   interface(REG_INTER);
4019 %}
4020 
4021 operand regF() %{
4022   constraint(ALLOC_IN_RC(sflt_reg));
4023   match(RegF);
4024 
4025   format %{ %}
4026   interface(REG_INTER);
4027 %}
4028 
4029 operand regD_low() %{
4030   constraint(ALLOC_IN_RC(dflt_low_reg));
4031   match(regD);
4032 
4033   format %{ %}
4034   interface(REG_INTER);
4035 %}
4036 
4037 // Special Registers
4038 
4039 // Method Register
4040 operand inline_cache_regP(iRegP reg) %{
4041   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4042   match(reg);
4043   format %{ %}
4044   interface(REG_INTER);
4045 %}
4046 
4047 operand interpreter_method_oop_regP(iRegP reg) %{
4048   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4049   match(reg);
4050   format %{ %}
4051   interface(REG_INTER);
4052 %}
4053 
4054 
4055 //----------Complex Operands---------------------------------------------------
4056 // Indirect Memory Reference
4057 operand indirect(sp_ptr_RegP reg) %{
4058   constraint(ALLOC_IN_RC(sp_ptr_reg));
4059   match(reg);
4060 
4061   op_cost(100);
4062   format %{ "[$reg]" %}
4063   interface(MEMORY_INTER) %{
4064     base($reg);
4065     index(0x0);
4066     scale(0x0);
4067     disp(0x0);
4068   %}
4069 %}
4070 
4071 // Indirect with simm13 Offset
4072 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4073   constraint(ALLOC_IN_RC(sp_ptr_reg));
4074   match(AddP reg offset);
4075 
4076   op_cost(100);
4077   format %{ "[$reg + $offset]" %}
4078   interface(MEMORY_INTER) %{
4079     base($reg);
4080     index(0x0);
4081     scale(0x0);
4082     disp($offset);
4083   %}
4084 %}
4085 
4086 // Indirect with simm13 Offset minus 7
4087 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4088   constraint(ALLOC_IN_RC(sp_ptr_reg));
4089   match(AddP reg offset);
4090 
4091   op_cost(100);
4092   format %{ "[$reg + $offset]" %}
4093   interface(MEMORY_INTER) %{
4094     base($reg);
4095     index(0x0);
4096     scale(0x0);
4097     disp($offset);
4098   %}
4099 %}
4100 
4101 // Note:  Intel has a swapped version also, like this:
4102 //operand indOffsetX(iRegI reg, immP offset) %{
4103 //  constraint(ALLOC_IN_RC(int_reg));
4104 //  match(AddP offset reg);
4105 //
4106 //  op_cost(100);
4107 //  format %{ "[$reg + $offset]" %}
4108 //  interface(MEMORY_INTER) %{
4109 //    base($reg);
4110 //    index(0x0);
4111 //    scale(0x0);
4112 //    disp($offset);
4113 //  %}
4114 //%}
4115 //// However, it doesn't make sense for SPARC, since
4116 // we have no particularly good way to embed oops in
4117 // single instructions.
4118 
4119 // Indirect with Register Index
4120 operand indIndex(iRegP addr, iRegX index) %{
4121   constraint(ALLOC_IN_RC(ptr_reg));
4122   match(AddP addr index);
4123 
4124   op_cost(100);
4125   format %{ "[$addr + $index]" %}
4126   interface(MEMORY_INTER) %{
4127     base($addr);
4128     index($index);
4129     scale(0x0);
4130     disp(0x0);
4131   %}
4132 %}
4133 
4134 //----------Special Memory Operands--------------------------------------------
4135 // Stack Slot Operand - This operand is used for loading and storing temporary
4136 //                      values on the stack where a match requires a value to
4137 //                      flow through memory.
4138 operand stackSlotI(sRegI reg) %{
4139   constraint(ALLOC_IN_RC(stack_slots));
4140   op_cost(100);
4141   //match(RegI);
4142   format %{ "[$reg]" %}
4143   interface(MEMORY_INTER) %{
4144     base(0xE);   // R_SP
4145     index(0x0);
4146     scale(0x0);
4147     disp($reg);  // Stack Offset
4148   %}
4149 %}
4150 
4151 operand stackSlotP(sRegP reg) %{
4152   constraint(ALLOC_IN_RC(stack_slots));
4153   op_cost(100);
4154   //match(RegP);
4155   format %{ "[$reg]" %}
4156   interface(MEMORY_INTER) %{
4157     base(0xE);   // R_SP
4158     index(0x0);
4159     scale(0x0);
4160     disp($reg);  // Stack Offset
4161   %}
4162 %}
4163 
4164 operand stackSlotF(sRegF reg) %{
4165   constraint(ALLOC_IN_RC(stack_slots));
4166   op_cost(100);
4167   //match(RegF);
4168   format %{ "[$reg]" %}
4169   interface(MEMORY_INTER) %{
4170     base(0xE);   // R_SP
4171     index(0x0);
4172     scale(0x0);
4173     disp($reg);  // Stack Offset
4174   %}
4175 %}
4176 operand stackSlotD(sRegD reg) %{
4177   constraint(ALLOC_IN_RC(stack_slots));
4178   op_cost(100);
4179   //match(RegD);
4180   format %{ "[$reg]" %}
4181   interface(MEMORY_INTER) %{
4182     base(0xE);   // R_SP
4183     index(0x0);
4184     scale(0x0);
4185     disp($reg);  // Stack Offset
4186   %}
4187 %}
4188 operand stackSlotL(sRegL reg) %{
4189   constraint(ALLOC_IN_RC(stack_slots));
4190   op_cost(100);
4191   //match(RegL);
4192   format %{ "[$reg]" %}
4193   interface(MEMORY_INTER) %{
4194     base(0xE);   // R_SP
4195     index(0x0);
4196     scale(0x0);
4197     disp($reg);  // Stack Offset
4198   %}
4199 %}
4200 
4201 // Operands for expressing Control Flow
4202 // NOTE:  Label is a predefined operand which should not be redefined in
4203 //        the AD file.  It is generically handled within the ADLC.
4204 
4205 //----------Conditional Branch Operands----------------------------------------
4206 // Comparison Op  - This is the operation of the comparison, and is limited to
4207 //                  the following set of codes:
4208 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4209 //
4210 // Other attributes of the comparison, such as unsignedness, are specified
4211 // by the comparison instruction that sets a condition code flags register.
4212 // That result is represented by a flags operand whose subtype is appropriate
4213 // to the unsignedness (etc.) of the comparison.
4214 //
4215 // Later, the instruction which matches both the Comparison Op (a Bool) and
4216 // the flags (produced by the Cmp) specifies the coding of the comparison op
4217 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4218 
4219 operand cmpOp() %{
4220   match(Bool);
4221 
4222   format %{ "" %}
4223   interface(COND_INTER) %{
4224     equal(0x1);
4225     not_equal(0x9);
4226     less(0x3);
4227     greater_equal(0xB);
4228     less_equal(0x2);
4229     greater(0xA);
4230   %}
4231 %}
4232 
4233 // Comparison Op, unsigned
4234 operand cmpOpU() %{
4235   match(Bool);
4236 
4237   format %{ "u" %}
4238   interface(COND_INTER) %{
4239     equal(0x1);
4240     not_equal(0x9);
4241     less(0x5);
4242     greater_equal(0xD);
4243     less_equal(0x4);
4244     greater(0xC);
4245   %}
4246 %}
4247 
4248 // Comparison Op, pointer (same as unsigned)
4249 operand cmpOpP() %{
4250   match(Bool);
4251 
4252   format %{ "p" %}
4253   interface(COND_INTER) %{
4254     equal(0x1);
4255     not_equal(0x9);
4256     less(0x5);
4257     greater_equal(0xD);
4258     less_equal(0x4);
4259     greater(0xC);
4260   %}
4261 %}
4262 
4263 // Comparison Op, branch-register encoding
4264 operand cmpOp_reg() %{
4265   match(Bool);
4266 
4267   format %{ "" %}
4268   interface(COND_INTER) %{
4269     equal        (0x1);
4270     not_equal    (0x5);
4271     less         (0x3);
4272     greater_equal(0x7);
4273     less_equal   (0x2);
4274     greater      (0x6);
4275   %}
4276 %}
4277 
4278 // Comparison Code, floating, unordered same as less
4279 operand cmpOpF() %{
4280   match(Bool);
4281 
4282   format %{ "fl" %}
4283   interface(COND_INTER) %{
4284     equal(0x9);
4285     not_equal(0x1);
4286     less(0x3);
4287     greater_equal(0xB);
4288     less_equal(0xE);
4289     greater(0x6);
4290   %}
4291 %}
4292 
4293 // Used by long compare
4294 operand cmpOp_commute() %{
4295   match(Bool);
4296 
4297   format %{ "" %}
4298   interface(COND_INTER) %{
4299     equal(0x1);
4300     not_equal(0x9);
4301     less(0xA);
4302     greater_equal(0x2);
4303     less_equal(0xB);
4304     greater(0x3);
4305   %}
4306 %}
4307 
4308 //----------OPERAND CLASSES----------------------------------------------------
4309 // Operand Classes are groups of operands that are used to simplify
4310 // instruction definitions by not requiring the AD writer to specify separate
4311 // instructions for every form of operand when the instruction accepts
4312 // multiple operand types with the same basic encoding and format.  The classic
4313 // case of this is memory operands.
4314 // Indirect is not included since its use is limited to Compare & Swap
4315 opclass memory( indirect, indOffset13, indIndex );
4316 
4317 //----------PIPELINE-----------------------------------------------------------
4318 pipeline %{
4319 
4320 //----------ATTRIBUTES---------------------------------------------------------
4321 attributes %{
4322   fixed_size_instructions;           // Fixed size instructions
4323   branch_has_delay_slot;             // Branch has delay slot following
4324   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4325   instruction_unit_size = 4;         // An instruction is 4 bytes long
4326   instruction_fetch_unit_size = 16;  // The processor fetches one line
4327   instruction_fetch_units = 1;       // of 16 bytes
4328 
4329   // List of nop instructions
4330   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4331 %}
4332 
4333 //----------RESOURCES----------------------------------------------------------
4334 // Resources are the functional units available to the machine
4335 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4336 
4337 //----------PIPELINE DESCRIPTION-----------------------------------------------
4338 // Pipeline Description specifies the stages in the machine's pipeline
4339 
4340 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4341 
4342 //----------PIPELINE CLASSES---------------------------------------------------
4343 // Pipeline Classes describe the stages in which input and output are
4344 // referenced by the hardware pipeline.
4345 
4346 // Integer ALU reg-reg operation
4347 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4348     single_instruction;
4349     dst   : E(write);
4350     src1  : R(read);
4351     src2  : R(read);
4352     IALU  : R;
4353 %}
4354 
4355 // Integer ALU reg-reg long operation
4356 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4357     instruction_count(2);
4358     dst   : E(write);
4359     src1  : R(read);
4360     src2  : R(read);
4361     IALU  : R;
4362     IALU  : R;
4363 %}
4364 
4365 // Integer ALU reg-reg long dependent operation
4366 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4367     instruction_count(1); multiple_bundles;
4368     dst   : E(write);
4369     src1  : R(read);
4370     src2  : R(read);
4371     cr    : E(write);
4372     IALU  : R(2);
4373 %}
4374 
4375 // Integer ALU reg-imm operaion
4376 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4377     single_instruction;
4378     dst   : E(write);
4379     src1  : R(read);
4380     IALU  : R;
4381 %}
4382 
4383 // Integer ALU reg-reg operation with condition code
4384 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4385     single_instruction;
4386     dst   : E(write);
4387     cr    : E(write);
4388     src1  : R(read);
4389     src2  : R(read);
4390     IALU  : R;
4391 %}
4392 
4393 // Integer ALU reg-imm operation with condition code
4394 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4395     single_instruction;
4396     dst   : E(write);
4397     cr    : E(write);
4398     src1  : R(read);
4399     IALU  : R;
4400 %}
4401 
4402 // Integer ALU zero-reg operation
4403 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4404     single_instruction;
4405     dst   : E(write);
4406     src2  : R(read);
4407     IALU  : R;
4408 %}
4409 
4410 // Integer ALU zero-reg operation with condition code only
4411 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4412     single_instruction;
4413     cr    : E(write);
4414     src   : R(read);
4415     IALU  : R;
4416 %}
4417 
4418 // Integer ALU reg-reg operation with condition code only
4419 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4420     single_instruction;
4421     cr    : E(write);
4422     src1  : R(read);
4423     src2  : R(read);
4424     IALU  : R;
4425 %}
4426 
4427 // Integer ALU reg-imm operation with condition code only
4428 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4429     single_instruction;
4430     cr    : E(write);
4431     src1  : R(read);
4432     IALU  : R;
4433 %}
4434 
4435 // Integer ALU reg-reg-zero operation with condition code only
4436 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4437     single_instruction;
4438     cr    : E(write);
4439     src1  : R(read);
4440     src2  : R(read);
4441     IALU  : R;
4442 %}
4443 
4444 // Integer ALU reg-imm-zero operation with condition code only
4445 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4446     single_instruction;
4447     cr    : E(write);
4448     src1  : R(read);
4449     IALU  : R;
4450 %}
4451 
4452 // Integer ALU reg-reg operation with condition code, src1 modified
4453 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4454     single_instruction;
4455     cr    : E(write);
4456     src1  : E(write);
4457     src1  : R(read);
4458     src2  : R(read);
4459     IALU  : R;
4460 %}
4461 
4462 // Integer ALU reg-imm operation with condition code, src1 modified
4463 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4464     single_instruction;
4465     cr    : E(write);
4466     src1  : E(write);
4467     src1  : R(read);
4468     IALU  : R;
4469 %}
4470 
4471 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4472     multiple_bundles;
4473     dst   : E(write)+4;
4474     cr    : E(write);
4475     src1  : R(read);
4476     src2  : R(read);
4477     IALU  : R(3);
4478     BR    : R(2);
4479 %}
4480 
4481 // Integer ALU operation
4482 pipe_class ialu_none(iRegI dst) %{
4483     single_instruction;
4484     dst   : E(write);
4485     IALU  : R;
4486 %}
4487 
4488 // Integer ALU reg operation
4489 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4490     single_instruction; may_have_no_code;
4491     dst   : E(write);
4492     src   : R(read);
4493     IALU  : R;
4494 %}
4495 
4496 // Integer ALU reg conditional operation
4497 // This instruction has a 1 cycle stall, and cannot execute
4498 // in the same cycle as the instruction setting the condition
4499 // code. We kludge this by pretending to read the condition code
4500 // 1 cycle earlier, and by marking the functional units as busy
4501 // for 2 cycles with the result available 1 cycle later than
4502 // is really the case.
4503 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4504     single_instruction;
4505     op2_out : C(write);
4506     op1     : R(read);
4507     cr      : R(read);       // This is really E, with a 1 cycle stall
4508     BR      : R(2);
4509     MS      : R(2);
4510 %}
4511 
4512 #ifdef _LP64
4513 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4514     instruction_count(1); multiple_bundles;
4515     dst     : C(write)+1;
4516     src     : R(read)+1;
4517     IALU    : R(1);
4518     BR      : E(2);
4519     MS      : E(2);
4520 %}
4521 #endif
4522 
4523 // Integer ALU reg operation
4524 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4525     single_instruction; may_have_no_code;
4526     dst   : E(write);
4527     src   : R(read);
4528     IALU  : R;
4529 %}
4530 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4531     single_instruction; may_have_no_code;
4532     dst   : E(write);
4533     src   : R(read);
4534     IALU  : R;
4535 %}
4536 
4537 // Two integer ALU reg operations
4538 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4539     instruction_count(2);
4540     dst   : E(write);
4541     src   : R(read);
4542     A0    : R;
4543     A1    : R;
4544 %}
4545 
4546 // Two integer ALU reg operations
4547 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4548     instruction_count(2); may_have_no_code;
4549     dst   : E(write);
4550     src   : R(read);
4551     A0    : R;
4552     A1    : R;
4553 %}
4554 
4555 // Integer ALU imm operation
4556 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4557     single_instruction;
4558     dst   : E(write);
4559     IALU  : R;
4560 %}
4561 
4562 // Integer ALU reg-reg with carry operation
4563 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4564     single_instruction;
4565     dst   : E(write);
4566     src1  : R(read);
4567     src2  : R(read);
4568     IALU  : R;
4569 %}
4570 
4571 // Integer ALU cc operation
4572 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4573     single_instruction;
4574     dst   : E(write);
4575     cc    : R(read);
4576     IALU  : R;
4577 %}
4578 
4579 // Integer ALU cc / second IALU operation
4580 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4581     instruction_count(1); multiple_bundles;
4582     dst   : E(write)+1;
4583     src   : R(read);
4584     IALU  : R;
4585 %}
4586 
4587 // Integer ALU cc / second IALU operation
4588 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4589     instruction_count(1); multiple_bundles;
4590     dst   : E(write)+1;
4591     p     : R(read);
4592     q     : R(read);
4593     IALU  : R;
4594 %}
4595 
4596 // Integer ALU hi-lo-reg operation
4597 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4598     instruction_count(1); multiple_bundles;
4599     dst   : E(write)+1;
4600     IALU  : R(2);
4601 %}
4602 
4603 // Float ALU hi-lo-reg operation (with temp)
4604 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4605     instruction_count(1); multiple_bundles;
4606     dst   : E(write)+1;
4607     IALU  : R(2);
4608 %}
4609 
4610 // Long Constant
4611 pipe_class loadConL( iRegL dst, immL src ) %{
4612     instruction_count(2); multiple_bundles;
4613     dst   : E(write)+1;
4614     IALU  : R(2);
4615     IALU  : R(2);
4616 %}
4617 
4618 // Pointer Constant
4619 pipe_class loadConP( iRegP dst, immP src ) %{
4620     instruction_count(0); multiple_bundles;
4621     fixed_latency(6);
4622 %}
4623 
4624 // Polling Address
4625 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4626 #ifdef _LP64
4627     instruction_count(0); multiple_bundles;
4628     fixed_latency(6);
4629 #else
4630     dst   : E(write);
4631     IALU  : R;
4632 #endif
4633 %}
4634 
4635 // Long Constant small
4636 pipe_class loadConLlo( iRegL dst, immL src ) %{
4637     instruction_count(2);
4638     dst   : E(write);
4639     IALU  : R;
4640     IALU  : R;
4641 %}
4642 
4643 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4644 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4645     instruction_count(1); multiple_bundles;
4646     src   : R(read);
4647     dst   : M(write)+1;
4648     IALU  : R;
4649     MS    : E;
4650 %}
4651 
4652 // Integer ALU nop operation
4653 pipe_class ialu_nop() %{
4654     single_instruction;
4655     IALU  : R;
4656 %}
4657 
4658 // Integer ALU nop operation
4659 pipe_class ialu_nop_A0() %{
4660     single_instruction;
4661     A0    : R;
4662 %}
4663 
4664 // Integer ALU nop operation
4665 pipe_class ialu_nop_A1() %{
4666     single_instruction;
4667     A1    : R;
4668 %}
4669 
4670 // Integer Multiply reg-reg operation
4671 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4672     single_instruction;
4673     dst   : E(write);
4674     src1  : R(read);
4675     src2  : R(read);
4676     MS    : R(5);
4677 %}
4678 
4679 // Integer Multiply reg-imm operation
4680 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4681     single_instruction;
4682     dst   : E(write);
4683     src1  : R(read);
4684     MS    : R(5);
4685 %}
4686 
4687 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4688     single_instruction;
4689     dst   : E(write)+4;
4690     src1  : R(read);
4691     src2  : R(read);
4692     MS    : R(6);
4693 %}
4694 
4695 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4696     single_instruction;
4697     dst   : E(write)+4;
4698     src1  : R(read);
4699     MS    : R(6);
4700 %}
4701 
4702 // Integer Divide reg-reg
4703 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4704     instruction_count(1); multiple_bundles;
4705     dst   : E(write);
4706     temp  : E(write);
4707     src1  : R(read);
4708     src2  : R(read);
4709     temp  : R(read);
4710     MS    : R(38);
4711 %}
4712 
4713 // Integer Divide reg-imm
4714 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4715     instruction_count(1); multiple_bundles;
4716     dst   : E(write);
4717     temp  : E(write);
4718     src1  : R(read);
4719     temp  : R(read);
4720     MS    : R(38);
4721 %}
4722 
4723 // Long Divide
4724 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4725     dst  : E(write)+71;
4726     src1 : R(read);
4727     src2 : R(read)+1;
4728     MS   : R(70);
4729 %}
4730 
4731 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4732     dst  : E(write)+71;
4733     src1 : R(read);
4734     MS   : R(70);
4735 %}
4736 
4737 // Floating Point Add Float
4738 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4739     single_instruction;
4740     dst   : X(write);
4741     src1  : E(read);
4742     src2  : E(read);
4743     FA    : R;
4744 %}
4745 
4746 // Floating Point Add Double
4747 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4748     single_instruction;
4749     dst   : X(write);
4750     src1  : E(read);
4751     src2  : E(read);
4752     FA    : R;
4753 %}
4754 
4755 // Floating Point Conditional Move based on integer flags
4756 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4757     single_instruction;
4758     dst   : X(write);
4759     src   : E(read);
4760     cr    : R(read);
4761     FA    : R(2);
4762     BR    : R(2);
4763 %}
4764 
4765 // Floating Point Conditional Move based on integer flags
4766 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4767     single_instruction;
4768     dst   : X(write);
4769     src   : E(read);
4770     cr    : R(read);
4771     FA    : R(2);
4772     BR    : R(2);
4773 %}
4774 
4775 // Floating Point Multiply Float
4776 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4777     single_instruction;
4778     dst   : X(write);
4779     src1  : E(read);
4780     src2  : E(read);
4781     FM    : R;
4782 %}
4783 
4784 // Floating Point Multiply Double
4785 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4786     single_instruction;
4787     dst   : X(write);
4788     src1  : E(read);
4789     src2  : E(read);
4790     FM    : R;
4791 %}
4792 
4793 // Floating Point Divide Float
4794 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4795     single_instruction;
4796     dst   : X(write);
4797     src1  : E(read);
4798     src2  : E(read);
4799     FM    : R;
4800     FDIV  : C(14);
4801 %}
4802 
4803 // Floating Point Divide Double
4804 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4805     single_instruction;
4806     dst   : X(write);
4807     src1  : E(read);
4808     src2  : E(read);
4809     FM    : R;
4810     FDIV  : C(17);
4811 %}
4812 
4813 // Floating Point Move/Negate/Abs Float
4814 pipe_class faddF_reg(regF dst, regF src) %{
4815     single_instruction;
4816     dst   : W(write);
4817     src   : E(read);
4818     FA    : R(1);
4819 %}
4820 
4821 // Floating Point Move/Negate/Abs Double
4822 pipe_class faddD_reg(regD dst, regD src) %{
4823     single_instruction;
4824     dst   : W(write);
4825     src   : E(read);
4826     FA    : R;
4827 %}
4828 
4829 // Floating Point Convert F->D
4830 pipe_class fcvtF2D(regD dst, regF src) %{
4831     single_instruction;
4832     dst   : X(write);
4833     src   : E(read);
4834     FA    : R;
4835 %}
4836 
4837 // Floating Point Convert I->D
4838 pipe_class fcvtI2D(regD dst, regF src) %{
4839     single_instruction;
4840     dst   : X(write);
4841     src   : E(read);
4842     FA    : R;
4843 %}
4844 
4845 // Floating Point Convert LHi->D
4846 pipe_class fcvtLHi2D(regD dst, regD src) %{
4847     single_instruction;
4848     dst   : X(write);
4849     src   : E(read);
4850     FA    : R;
4851 %}
4852 
4853 // Floating Point Convert L->D
4854 pipe_class fcvtL2D(regD dst, regF src) %{
4855     single_instruction;
4856     dst   : X(write);
4857     src   : E(read);
4858     FA    : R;
4859 %}
4860 
4861 // Floating Point Convert L->F
4862 pipe_class fcvtL2F(regD dst, regF src) %{
4863     single_instruction;
4864     dst   : X(write);
4865     src   : E(read);
4866     FA    : R;
4867 %}
4868 
4869 // Floating Point Convert D->F
4870 pipe_class fcvtD2F(regD dst, regF src) %{
4871     single_instruction;
4872     dst   : X(write);
4873     src   : E(read);
4874     FA    : R;
4875 %}
4876 
4877 // Floating Point Convert I->L
4878 pipe_class fcvtI2L(regD dst, regF src) %{
4879     single_instruction;
4880     dst   : X(write);
4881     src   : E(read);
4882     FA    : R;
4883 %}
4884 
4885 // Floating Point Convert D->F
4886 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4887     instruction_count(1); multiple_bundles;
4888     dst   : X(write)+6;
4889     src   : E(read);
4890     FA    : R;
4891 %}
4892 
4893 // Floating Point Convert D->L
4894 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4895     instruction_count(1); multiple_bundles;
4896     dst   : X(write)+6;
4897     src   : E(read);
4898     FA    : R;
4899 %}
4900 
4901 // Floating Point Convert F->I
4902 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4903     instruction_count(1); multiple_bundles;
4904     dst   : X(write)+6;
4905     src   : E(read);
4906     FA    : R;
4907 %}
4908 
4909 // Floating Point Convert F->L
4910 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4911     instruction_count(1); multiple_bundles;
4912     dst   : X(write)+6;
4913     src   : E(read);
4914     FA    : R;
4915 %}
4916 
4917 // Floating Point Convert I->F
4918 pipe_class fcvtI2F(regF dst, regF src) %{
4919     single_instruction;
4920     dst   : X(write);
4921     src   : E(read);
4922     FA    : R;
4923 %}
4924 
4925 // Floating Point Compare
4926 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4927     single_instruction;
4928     cr    : X(write);
4929     src1  : E(read);
4930     src2  : E(read);
4931     FA    : R;
4932 %}
4933 
4934 // Floating Point Compare
4935 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4936     single_instruction;
4937     cr    : X(write);
4938     src1  : E(read);
4939     src2  : E(read);
4940     FA    : R;
4941 %}
4942 
4943 // Floating Add Nop
4944 pipe_class fadd_nop() %{
4945     single_instruction;
4946     FA  : R;
4947 %}
4948 
4949 // Integer Store to Memory
4950 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4951     single_instruction;
4952     mem   : R(read);
4953     src   : C(read);
4954     MS    : R;
4955 %}
4956 
4957 // Integer Store to Memory
4958 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4959     single_instruction;
4960     mem   : R(read);
4961     src   : C(read);
4962     MS    : R;
4963 %}
4964 
4965 // Integer Store Zero to Memory
4966 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4967     single_instruction;
4968     mem   : R(read);
4969     MS    : R;
4970 %}
4971 
4972 // Special Stack Slot Store
4973 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4974     single_instruction;
4975     stkSlot : R(read);
4976     src     : C(read);
4977     MS      : R;
4978 %}
4979 
4980 // Special Stack Slot Store
4981 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4982     instruction_count(2); multiple_bundles;
4983     stkSlot : R(read);
4984     src     : C(read);
4985     MS      : R(2);
4986 %}
4987 
4988 // Float Store
4989 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4990     single_instruction;
4991     mem : R(read);
4992     src : C(read);
4993     MS  : R;
4994 %}
4995 
4996 // Float Store
4997 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4998     single_instruction;
4999     mem : R(read);
5000     MS  : R;
5001 %}
5002 
5003 // Double Store
5004 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5005     instruction_count(1);
5006     mem : R(read);
5007     src : C(read);
5008     MS  : R;
5009 %}
5010 
5011 // Double Store
5012 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5013     single_instruction;
5014     mem : R(read);
5015     MS  : R;
5016 %}
5017 
5018 // Special Stack Slot Float Store
5019 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5020     single_instruction;
5021     stkSlot : R(read);
5022     src     : C(read);
5023     MS      : R;
5024 %}
5025 
5026 // Special Stack Slot Double Store
5027 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5028     single_instruction;
5029     stkSlot : R(read);
5030     src     : C(read);
5031     MS      : R;
5032 %}
5033 
5034 // Integer Load (when sign bit propagation not needed)
5035 pipe_class iload_mem(iRegI dst, memory mem) %{
5036     single_instruction;
5037     mem : R(read);
5038     dst : C(write);
5039     MS  : R;
5040 %}
5041 
5042 // Integer Load from stack operand
5043 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5044     single_instruction;
5045     mem : R(read);
5046     dst : C(write);
5047     MS  : R;
5048 %}
5049 
5050 // Integer Load (when sign bit propagation or masking is needed)
5051 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5052     single_instruction;
5053     mem : R(read);
5054     dst : M(write);
5055     MS  : R;
5056 %}
5057 
5058 // Float Load
5059 pipe_class floadF_mem(regF dst, memory mem) %{
5060     single_instruction;
5061     mem : R(read);
5062     dst : M(write);
5063     MS  : R;
5064 %}
5065 
5066 // Float Load
5067 pipe_class floadD_mem(regD dst, memory mem) %{
5068     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5069     mem : R(read);
5070     dst : M(write);
5071     MS  : R;
5072 %}
5073 
5074 // Float Load
5075 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5076     single_instruction;
5077     stkSlot : R(read);
5078     dst : M(write);
5079     MS  : R;
5080 %}
5081 
5082 // Float Load
5083 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5084     single_instruction;
5085     stkSlot : R(read);
5086     dst : M(write);
5087     MS  : R;
5088 %}
5089 
5090 // Memory Nop
5091 pipe_class mem_nop() %{
5092     single_instruction;
5093     MS  : R;
5094 %}
5095 
5096 pipe_class sethi(iRegP dst, immI src) %{
5097     single_instruction;
5098     dst  : E(write);
5099     IALU : R;
5100 %}
5101 
5102 pipe_class loadPollP(iRegP poll) %{
5103     single_instruction;
5104     poll : R(read);
5105     MS   : R;
5106 %}
5107 
5108 pipe_class br(Universe br, label labl) %{
5109     single_instruction_with_delay_slot;
5110     BR  : R;
5111 %}
5112 
5113 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5114     single_instruction_with_delay_slot;
5115     cr    : E(read);
5116     BR    : R;
5117 %}
5118 
5119 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5120     single_instruction_with_delay_slot;
5121     op1 : E(read);
5122     BR  : R;
5123     MS  : R;
5124 %}
5125 
5126 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5127     single_instruction_with_delay_slot;
5128     cr    : E(read);
5129     BR    : R;
5130 %}
5131 
5132 pipe_class br_nop() %{
5133     single_instruction;
5134     BR  : R;
5135 %}
5136 
5137 pipe_class simple_call(method meth) %{
5138     instruction_count(2); multiple_bundles; force_serialization;
5139     fixed_latency(100);
5140     BR  : R(1);
5141     MS  : R(1);
5142     A0  : R(1);
5143 %}
5144 
5145 pipe_class compiled_call(method meth) %{
5146     instruction_count(1); multiple_bundles; force_serialization;
5147     fixed_latency(100);
5148     MS  : R(1);
5149 %}
5150 
5151 pipe_class call(method meth) %{
5152     instruction_count(0); multiple_bundles; force_serialization;
5153     fixed_latency(100);
5154 %}
5155 
5156 pipe_class tail_call(Universe ignore, label labl) %{
5157     single_instruction; has_delay_slot;
5158     fixed_latency(100);
5159     BR  : R(1);
5160     MS  : R(1);
5161 %}
5162 
5163 pipe_class ret(Universe ignore) %{
5164     single_instruction; has_delay_slot;
5165     BR  : R(1);
5166     MS  : R(1);
5167 %}
5168 
5169 pipe_class ret_poll(g3RegP poll) %{
5170     instruction_count(3); has_delay_slot;
5171     poll : E(read);
5172     MS   : R;
5173 %}
5174 
5175 // The real do-nothing guy
5176 pipe_class empty( ) %{
5177     instruction_count(0);
5178 %}
5179 
5180 pipe_class long_memory_op() %{
5181     instruction_count(0); multiple_bundles; force_serialization;
5182     fixed_latency(25);
5183     MS  : R(1);
5184 %}
5185 
5186 // Check-cast
5187 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5188     array : R(read);
5189     match  : R(read);
5190     IALU   : R(2);
5191     BR     : R(2);
5192     MS     : R;
5193 %}
5194 
5195 // Convert FPU flags into +1,0,-1
5196 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5197     src1  : E(read);
5198     src2  : E(read);
5199     dst   : E(write);
5200     FA    : R;
5201     MS    : R(2);
5202     BR    : R(2);
5203 %}
5204 
5205 // Compare for p < q, and conditionally add y
5206 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5207     p     : E(read);
5208     q     : E(read);
5209     y     : E(read);
5210     IALU  : R(3)
5211 %}
5212 
5213 // Perform a compare, then move conditionally in a branch delay slot.
5214 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5215     src2   : E(read);
5216     srcdst : E(read);
5217     IALU   : R;
5218     BR     : R;
5219 %}
5220 
5221 // Define the class for the Nop node
5222 define %{
5223    MachNop = ialu_nop;
5224 %}
5225 
5226 %}
5227 
5228 //----------INSTRUCTIONS-------------------------------------------------------
5229 
5230 //------------Special Stack Slot instructions - no match rules-----------------
5231 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5232   // No match rule to avoid chain rule match.
5233   effect(DEF dst, USE src);
5234   ins_cost(MEMORY_REF_COST);
5235   size(4);
5236   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5237   opcode(Assembler::ldf_op3);
5238   ins_encode(simple_form3_mem_reg(src, dst));
5239   ins_pipe(floadF_stk);
5240 %}
5241 
5242 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5243   // No match rule to avoid chain rule match.
5244   effect(DEF dst, USE src);
5245   ins_cost(MEMORY_REF_COST);
5246   size(4);
5247   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5248   opcode(Assembler::lddf_op3);
5249   ins_encode(simple_form3_mem_reg(src, dst));
5250   ins_pipe(floadD_stk);
5251 %}
5252 
5253 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5254   // No match rule to avoid chain rule match.
5255   effect(DEF dst, USE src);
5256   ins_cost(MEMORY_REF_COST);
5257   size(4);
5258   format %{ "STF    $src,$dst\t! regF to stkI" %}
5259   opcode(Assembler::stf_op3);
5260   ins_encode(simple_form3_mem_reg(dst, src));
5261   ins_pipe(fstoreF_stk_reg);
5262 %}
5263 
5264 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5265   // No match rule to avoid chain rule match.
5266   effect(DEF dst, USE src);
5267   ins_cost(MEMORY_REF_COST);
5268   size(4);
5269   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5270   opcode(Assembler::stdf_op3);
5271   ins_encode(simple_form3_mem_reg(dst, src));
5272   ins_pipe(fstoreD_stk_reg);
5273 %}
5274 
5275 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5276   effect(DEF dst, USE src);
5277   ins_cost(MEMORY_REF_COST*2);
5278   size(8);
5279   format %{ "STW    $src,$dst.hi\t! long\n\t"
5280             "STW    R_G0,$dst.lo" %}
5281   opcode(Assembler::stw_op3);
5282   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5283   ins_pipe(lstoreI_stk_reg);
5284 %}
5285 
5286 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5287   // No match rule to avoid chain rule match.
5288   effect(DEF dst, USE src);
5289   ins_cost(MEMORY_REF_COST);
5290   size(4);
5291   format %{ "STX    $src,$dst\t! regL to stkD" %}
5292   opcode(Assembler::stx_op3);
5293   ins_encode(simple_form3_mem_reg( dst, src ) );
5294   ins_pipe(istore_stk_reg);
5295 %}
5296 
5297 //---------- Chain stack slots between similar types --------
5298 
5299 // Load integer from stack slot
5300 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5301   match(Set dst src);
5302   ins_cost(MEMORY_REF_COST);
5303 
5304   size(4);
5305   format %{ "LDUW   $src,$dst\t!stk" %}
5306   opcode(Assembler::lduw_op3);
5307   ins_encode(simple_form3_mem_reg( src, dst ) );
5308   ins_pipe(iload_mem);
5309 %}
5310 
5311 // Store integer to stack slot
5312 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5313   match(Set dst src);
5314   ins_cost(MEMORY_REF_COST);
5315 
5316   size(4);
5317   format %{ "STW    $src,$dst\t!stk" %}
5318   opcode(Assembler::stw_op3);
5319   ins_encode(simple_form3_mem_reg( dst, src ) );
5320   ins_pipe(istore_mem_reg);
5321 %}
5322 
5323 // Load long from stack slot
5324 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5325   match(Set dst src);
5326 
5327   ins_cost(MEMORY_REF_COST);
5328   size(4);
5329   format %{ "LDX    $src,$dst\t! long" %}
5330   opcode(Assembler::ldx_op3);
5331   ins_encode(simple_form3_mem_reg( src, dst ) );
5332   ins_pipe(iload_mem);
5333 %}
5334 
5335 // Store long to stack slot
5336 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5337   match(Set dst src);
5338 
5339   ins_cost(MEMORY_REF_COST);
5340   size(4);
5341   format %{ "STX    $src,$dst\t! long" %}
5342   opcode(Assembler::stx_op3);
5343   ins_encode(simple_form3_mem_reg( dst, src ) );
5344   ins_pipe(istore_mem_reg);
5345 %}
5346 
5347 #ifdef _LP64
5348 // Load pointer from stack slot, 64-bit encoding
5349 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5350   match(Set dst src);
5351   ins_cost(MEMORY_REF_COST);
5352   size(4);
5353   format %{ "LDX    $src,$dst\t!ptr" %}
5354   opcode(Assembler::ldx_op3);
5355   ins_encode(simple_form3_mem_reg( src, dst ) );
5356   ins_pipe(iload_mem);
5357 %}
5358 
5359 // Store pointer to stack slot
5360 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5361   match(Set dst src);
5362   ins_cost(MEMORY_REF_COST);
5363   size(4);
5364   format %{ "STX    $src,$dst\t!ptr" %}
5365   opcode(Assembler::stx_op3);
5366   ins_encode(simple_form3_mem_reg( dst, src ) );
5367   ins_pipe(istore_mem_reg);
5368 %}
5369 #else // _LP64
5370 // Load pointer from stack slot, 32-bit encoding
5371 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5372   match(Set dst src);
5373   ins_cost(MEMORY_REF_COST);
5374   format %{ "LDUW   $src,$dst\t!ptr" %}
5375   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5376   ins_encode(simple_form3_mem_reg( src, dst ) );
5377   ins_pipe(iload_mem);
5378 %}
5379 
5380 // Store pointer to stack slot
5381 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5382   match(Set dst src);
5383   ins_cost(MEMORY_REF_COST);
5384   format %{ "STW    $src,$dst\t!ptr" %}
5385   opcode(Assembler::stw_op3, Assembler::ldst_op);
5386   ins_encode(simple_form3_mem_reg( dst, src ) );
5387   ins_pipe(istore_mem_reg);
5388 %}
5389 #endif // _LP64
5390 
5391 //------------Special Nop instructions for bundling - no match rules-----------
5392 // Nop using the A0 functional unit
5393 instruct Nop_A0() %{
5394   ins_cost(0);
5395 
5396   format %{ "NOP    ! Alu Pipeline" %}
5397   opcode(Assembler::or_op3, Assembler::arith_op);
5398   ins_encode( form2_nop() );
5399   ins_pipe(ialu_nop_A0);
5400 %}
5401 
5402 // Nop using the A1 functional unit
5403 instruct Nop_A1( ) %{
5404   ins_cost(0);
5405 
5406   format %{ "NOP    ! Alu Pipeline" %}
5407   opcode(Assembler::or_op3, Assembler::arith_op);
5408   ins_encode( form2_nop() );
5409   ins_pipe(ialu_nop_A1);
5410 %}
5411 
5412 // Nop using the memory functional unit
5413 instruct Nop_MS( ) %{
5414   ins_cost(0);
5415 
5416   format %{ "NOP    ! Memory Pipeline" %}
5417   ins_encode( emit_mem_nop );
5418   ins_pipe(mem_nop);
5419 %}
5420 
5421 // Nop using the floating add functional unit
5422 instruct Nop_FA( ) %{
5423   ins_cost(0);
5424 
5425   format %{ "NOP    ! Floating Add Pipeline" %}
5426   ins_encode( emit_fadd_nop );
5427   ins_pipe(fadd_nop);
5428 %}
5429 
5430 // Nop using the branch functional unit
5431 instruct Nop_BR( ) %{
5432   ins_cost(0);
5433 
5434   format %{ "NOP    ! Branch Pipeline" %}
5435   ins_encode( emit_br_nop );
5436   ins_pipe(br_nop);
5437 %}
5438 
5439 //----------Load/Store/Move Instructions---------------------------------------
5440 //----------Load Instructions--------------------------------------------------
5441 // Load Byte (8bit signed)
5442 instruct loadB(iRegI dst, memory mem) %{
5443   match(Set dst (LoadB mem));
5444   ins_cost(MEMORY_REF_COST);
5445 
5446   size(4);
5447   format %{ "LDSB   $mem,$dst\t! byte" %}
5448   ins_encode %{
5449     __ ldsb($mem$$Address, $dst$$Register);
5450   %}
5451   ins_pipe(iload_mask_mem);
5452 %}
5453 
5454 // Load Byte (8bit signed) into a Long Register
5455 instruct loadB2L(iRegL dst, memory mem) %{
5456   match(Set dst (ConvI2L (LoadB mem)));
5457   ins_cost(MEMORY_REF_COST);
5458 
5459   size(4);
5460   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5461   ins_encode %{
5462     __ ldsb($mem$$Address, $dst$$Register);
5463   %}
5464   ins_pipe(iload_mask_mem);
5465 %}
5466 
5467 // Load Unsigned Byte (8bit UNsigned) into an int reg
5468 instruct loadUB(iRegI dst, memory mem) %{
5469   match(Set dst (LoadUB mem));
5470   ins_cost(MEMORY_REF_COST);
5471 
5472   size(4);
5473   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5474   ins_encode %{
5475     __ ldub($mem$$Address, $dst$$Register);
5476   %}
5477   ins_pipe(iload_mem);
5478 %}
5479 
5480 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5481 instruct loadUB2L(iRegL dst, memory mem) %{
5482   match(Set dst (ConvI2L (LoadUB mem)));
5483   ins_cost(MEMORY_REF_COST);
5484 
5485   size(4);
5486   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5487   ins_encode %{
5488     __ ldub($mem$$Address, $dst$$Register);
5489   %}
5490   ins_pipe(iload_mem);
5491 %}
5492 
5493 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5494 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5495   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5496   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5497 
5498   size(2*4);
5499   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5500             "AND    $dst,$mask,$dst" %}
5501   ins_encode %{
5502     __ ldub($mem$$Address, $dst$$Register);
5503     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5504   %}
5505   ins_pipe(iload_mem);
5506 %}
5507 
5508 // Load Short (16bit signed)
5509 instruct loadS(iRegI dst, memory mem) %{
5510   match(Set dst (LoadS mem));
5511   ins_cost(MEMORY_REF_COST);
5512 
5513   size(4);
5514   format %{ "LDSH   $mem,$dst\t! short" %}
5515   ins_encode %{
5516     __ ldsh($mem$$Address, $dst$$Register);
5517   %}
5518   ins_pipe(iload_mask_mem);
5519 %}
5520 
5521 // Load Short (16 bit signed) to Byte (8 bit signed)
5522 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5523   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5524   ins_cost(MEMORY_REF_COST);
5525 
5526   size(4);
5527 
5528   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5529   ins_encode %{
5530     __ ldsb($mem$$Address, $dst$$Register, 1);
5531   %}
5532   ins_pipe(iload_mask_mem);
5533 %}
5534 
5535 // Load Short (16bit signed) into a Long Register
5536 instruct loadS2L(iRegL dst, memory mem) %{
5537   match(Set dst (ConvI2L (LoadS mem)));
5538   ins_cost(MEMORY_REF_COST);
5539 
5540   size(4);
5541   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5542   ins_encode %{
5543     __ ldsh($mem$$Address, $dst$$Register);
5544   %}
5545   ins_pipe(iload_mask_mem);
5546 %}
5547 
5548 // Load Unsigned Short/Char (16bit UNsigned)
5549 instruct loadUS(iRegI dst, memory mem) %{
5550   match(Set dst (LoadUS mem));
5551   ins_cost(MEMORY_REF_COST);
5552 
5553   size(4);
5554   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5555   ins_encode %{
5556     __ lduh($mem$$Address, $dst$$Register);
5557   %}
5558   ins_pipe(iload_mem);
5559 %}
5560 
5561 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5562 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5563   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5564   ins_cost(MEMORY_REF_COST);
5565 
5566   size(4);
5567   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5568   ins_encode %{
5569     __ ldsb($mem$$Address, $dst$$Register, 1);
5570   %}
5571   ins_pipe(iload_mask_mem);
5572 %}
5573 
5574 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5575 instruct loadUS2L(iRegL dst, memory mem) %{
5576   match(Set dst (ConvI2L (LoadUS mem)));
5577   ins_cost(MEMORY_REF_COST);
5578 
5579   size(4);
5580   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5581   ins_encode %{
5582     __ lduh($mem$$Address, $dst$$Register);
5583   %}
5584   ins_pipe(iload_mem);
5585 %}
5586 
5587 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5588 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5589   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5590   ins_cost(MEMORY_REF_COST);
5591 
5592   size(4);
5593   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5594   ins_encode %{
5595     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5596   %}
5597   ins_pipe(iload_mem);
5598 %}
5599 
5600 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5601 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5602   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5603   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5604 
5605   size(2*4);
5606   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5607             "AND    $dst,$mask,$dst" %}
5608   ins_encode %{
5609     Register Rdst = $dst$$Register;
5610     __ lduh($mem$$Address, Rdst);
5611     __ and3(Rdst, $mask$$constant, Rdst);
5612   %}
5613   ins_pipe(iload_mem);
5614 %}
5615 
5616 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5617 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5618   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5619   effect(TEMP dst, TEMP tmp);
5620   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5621 
5622   size((3+1)*4);  // set may use two instructions.
5623   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5624             "SET    $mask,$tmp\n\t"
5625             "AND    $dst,$tmp,$dst" %}
5626   ins_encode %{
5627     Register Rdst = $dst$$Register;
5628     Register Rtmp = $tmp$$Register;
5629     __ lduh($mem$$Address, Rdst);
5630     __ set($mask$$constant, Rtmp);
5631     __ and3(Rdst, Rtmp, Rdst);
5632   %}
5633   ins_pipe(iload_mem);
5634 %}
5635 
5636 // Load Integer
5637 instruct loadI(iRegI dst, memory mem) %{
5638   match(Set dst (LoadI mem));
5639   ins_cost(MEMORY_REF_COST);
5640 
5641   size(4);
5642   format %{ "LDUW   $mem,$dst\t! int" %}
5643   ins_encode %{
5644     __ lduw($mem$$Address, $dst$$Register);
5645   %}
5646   ins_pipe(iload_mem);
5647 %}
5648 
5649 // Load Integer to Byte (8 bit signed)
5650 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5651   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5652   ins_cost(MEMORY_REF_COST);
5653 
5654   size(4);
5655 
5656   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5657   ins_encode %{
5658     __ ldsb($mem$$Address, $dst$$Register, 3);
5659   %}
5660   ins_pipe(iload_mask_mem);
5661 %}
5662 
5663 // Load Integer to Unsigned Byte (8 bit UNsigned)
5664 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5665   match(Set dst (AndI (LoadI mem) mask));
5666   ins_cost(MEMORY_REF_COST);
5667 
5668   size(4);
5669 
5670   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5671   ins_encode %{
5672     __ ldub($mem$$Address, $dst$$Register, 3);
5673   %}
5674   ins_pipe(iload_mask_mem);
5675 %}
5676 
5677 // Load Integer to Short (16 bit signed)
5678 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5679   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5680   ins_cost(MEMORY_REF_COST);
5681 
5682   size(4);
5683 
5684   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5685   ins_encode %{
5686     __ ldsh($mem$$Address, $dst$$Register, 2);
5687   %}
5688   ins_pipe(iload_mask_mem);
5689 %}
5690 
5691 // Load Integer to Unsigned Short (16 bit UNsigned)
5692 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5693   match(Set dst (AndI (LoadI mem) mask));
5694   ins_cost(MEMORY_REF_COST);
5695 
5696   size(4);
5697 
5698   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5699   ins_encode %{
5700     __ lduh($mem$$Address, $dst$$Register, 2);
5701   %}
5702   ins_pipe(iload_mask_mem);
5703 %}
5704 
5705 // Load Integer into a Long Register
5706 instruct loadI2L(iRegL dst, memory mem) %{
5707   match(Set dst (ConvI2L (LoadI mem)));
5708   ins_cost(MEMORY_REF_COST);
5709 
5710   size(4);
5711   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5712   ins_encode %{
5713     __ ldsw($mem$$Address, $dst$$Register);
5714   %}
5715   ins_pipe(iload_mask_mem);
5716 %}
5717 
5718 // Load Integer with mask 0xFF into a Long Register
5719 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5720   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5721   ins_cost(MEMORY_REF_COST);
5722 
5723   size(4);
5724   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5725   ins_encode %{
5726     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5727   %}
5728   ins_pipe(iload_mem);
5729 %}
5730 
5731 // Load Integer with mask 0xFFFF into a Long Register
5732 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5733   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5734   ins_cost(MEMORY_REF_COST);
5735 
5736   size(4);
5737   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5738   ins_encode %{
5739     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5740   %}
5741   ins_pipe(iload_mem);
5742 %}
5743 
5744 // Load Integer with a 13-bit mask into a Long Register
5745 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5746   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5747   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5748 
5749   size(2*4);
5750   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5751             "AND    $dst,$mask,$dst" %}
5752   ins_encode %{
5753     Register Rdst = $dst$$Register;
5754     __ lduw($mem$$Address, Rdst);
5755     __ and3(Rdst, $mask$$constant, Rdst);
5756   %}
5757   ins_pipe(iload_mem);
5758 %}
5759 
5760 // Load Integer with a 32-bit mask into a Long Register
5761 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5762   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5763   effect(TEMP dst, TEMP tmp);
5764   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5765 
5766   size((3+1)*4);  // set may use two instructions.
5767   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5768             "SET    $mask,$tmp\n\t"
5769             "AND    $dst,$tmp,$dst" %}
5770   ins_encode %{
5771     Register Rdst = $dst$$Register;
5772     Register Rtmp = $tmp$$Register;
5773     __ lduw($mem$$Address, Rdst);
5774     __ set($mask$$constant, Rtmp);
5775     __ and3(Rdst, Rtmp, Rdst);
5776   %}
5777   ins_pipe(iload_mem);
5778 %}
5779 
5780 // Load Unsigned Integer into a Long Register
5781 instruct loadUI2L(iRegL dst, memory mem) %{
5782   match(Set dst (LoadUI2L mem));
5783   ins_cost(MEMORY_REF_COST);
5784 
5785   size(4);
5786   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5787   ins_encode %{
5788     __ lduw($mem$$Address, $dst$$Register);
5789   %}
5790   ins_pipe(iload_mem);
5791 %}
5792 
5793 // Load Long - aligned
5794 instruct loadL(iRegL dst, memory mem ) %{
5795   match(Set dst (LoadL mem));
5796   ins_cost(MEMORY_REF_COST);
5797 
5798   size(4);
5799   format %{ "LDX    $mem,$dst\t! long" %}
5800   ins_encode %{
5801     __ ldx($mem$$Address, $dst$$Register);
5802   %}
5803   ins_pipe(iload_mem);
5804 %}
5805 
5806 // Load Long - UNaligned
5807 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5808   match(Set dst (LoadL_unaligned mem));
5809   effect(KILL tmp);
5810   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5811   size(16);
5812   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5813           "\tLDUW   $mem  ,$dst\n"
5814           "\tSLLX   #32, $dst, $dst\n"
5815           "\tOR     $dst, R_O7, $dst" %}
5816   opcode(Assembler::lduw_op3);
5817   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5818   ins_pipe(iload_mem);
5819 %}
5820 
5821 // Load Aligned Packed Byte into a Double Register
5822 instruct loadA8B(regD dst, memory mem) %{
5823   match(Set dst (Load8B mem));
5824   ins_cost(MEMORY_REF_COST);
5825   size(4);
5826   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5827   opcode(Assembler::lddf_op3);
5828   ins_encode(simple_form3_mem_reg( mem, dst ) );
5829   ins_pipe(floadD_mem);
5830 %}
5831 
5832 // Load Aligned Packed Char into a Double Register
5833 instruct loadA4C(regD dst, memory mem) %{
5834   match(Set dst (Load4C mem));
5835   ins_cost(MEMORY_REF_COST);
5836   size(4);
5837   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5838   opcode(Assembler::lddf_op3);
5839   ins_encode(simple_form3_mem_reg( mem, dst ) );
5840   ins_pipe(floadD_mem);
5841 %}
5842 
5843 // Load Aligned Packed Short into a Double Register
5844 instruct loadA4S(regD dst, memory mem) %{
5845   match(Set dst (Load4S mem));
5846   ins_cost(MEMORY_REF_COST);
5847   size(4);
5848   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5849   opcode(Assembler::lddf_op3);
5850   ins_encode(simple_form3_mem_reg( mem, dst ) );
5851   ins_pipe(floadD_mem);
5852 %}
5853 
5854 // Load Aligned Packed Int into a Double Register
5855 instruct loadA2I(regD dst, memory mem) %{
5856   match(Set dst (Load2I mem));
5857   ins_cost(MEMORY_REF_COST);
5858   size(4);
5859   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5860   opcode(Assembler::lddf_op3);
5861   ins_encode(simple_form3_mem_reg( mem, dst ) );
5862   ins_pipe(floadD_mem);
5863 %}
5864 
5865 // Load Range
5866 instruct loadRange(iRegI dst, memory mem) %{
5867   match(Set dst (LoadRange mem));
5868   ins_cost(MEMORY_REF_COST);
5869 
5870   size(4);
5871   format %{ "LDUW   $mem,$dst\t! range" %}
5872   opcode(Assembler::lduw_op3);
5873   ins_encode(simple_form3_mem_reg( mem, dst ) );
5874   ins_pipe(iload_mem);
5875 %}
5876 
5877 // Load Integer into %f register (for fitos/fitod)
5878 instruct loadI_freg(regF dst, memory mem) %{
5879   match(Set dst (LoadI mem));
5880   ins_cost(MEMORY_REF_COST);
5881   size(4);
5882 
5883   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5884   opcode(Assembler::ldf_op3);
5885   ins_encode(simple_form3_mem_reg( mem, dst ) );
5886   ins_pipe(floadF_mem);
5887 %}
5888 
5889 // Load Pointer
5890 instruct loadP(iRegP dst, memory mem) %{
5891   match(Set dst (LoadP mem));
5892   ins_cost(MEMORY_REF_COST);
5893   size(4);
5894 
5895 #ifndef _LP64
5896   format %{ "LDUW   $mem,$dst\t! ptr" %}
5897   ins_encode %{
5898     __ lduw($mem$$Address, $dst$$Register);
5899   %}
5900 #else
5901   format %{ "LDX    $mem,$dst\t! ptr" %}
5902   ins_encode %{
5903     __ ldx($mem$$Address, $dst$$Register);
5904   %}
5905 #endif
5906   ins_pipe(iload_mem);
5907 %}
5908 
5909 // Load Compressed Pointer
5910 instruct loadN(iRegN dst, memory mem) %{
5911   match(Set dst (LoadN mem));
5912   ins_cost(MEMORY_REF_COST);
5913   size(4);
5914 
5915   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5916   ins_encode %{
5917     __ lduw($mem$$Address, $dst$$Register);
5918   %}
5919   ins_pipe(iload_mem);
5920 %}
5921 
5922 // Load Klass Pointer
5923 instruct loadKlass(iRegP dst, memory mem) %{
5924   match(Set dst (LoadKlass mem));
5925   ins_cost(MEMORY_REF_COST);
5926   size(4);
5927 
5928 #ifndef _LP64
5929   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5930   ins_encode %{
5931     __ lduw($mem$$Address, $dst$$Register);
5932   %}
5933 #else
5934   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5935   ins_encode %{
5936     __ ldx($mem$$Address, $dst$$Register);
5937   %}
5938 #endif
5939   ins_pipe(iload_mem);
5940 %}
5941 
5942 // Load narrow Klass Pointer
5943 instruct loadNKlass(iRegN dst, memory mem) %{
5944   match(Set dst (LoadNKlass mem));
5945   ins_cost(MEMORY_REF_COST);
5946   size(4);
5947 
5948   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5949   ins_encode %{
5950     __ lduw($mem$$Address, $dst$$Register);
5951   %}
5952   ins_pipe(iload_mem);
5953 %}
5954 
5955 // Load Double
5956 instruct loadD(regD dst, memory mem) %{
5957   match(Set dst (LoadD mem));
5958   ins_cost(MEMORY_REF_COST);
5959 
5960   size(4);
5961   format %{ "LDDF   $mem,$dst" %}
5962   opcode(Assembler::lddf_op3);
5963   ins_encode(simple_form3_mem_reg( mem, dst ) );
5964   ins_pipe(floadD_mem);
5965 %}
5966 
5967 // Load Double - UNaligned
5968 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5969   match(Set dst (LoadD_unaligned mem));
5970   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5971   size(8);
5972   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5973           "\tLDF    $mem+4,$dst.lo\t!" %}
5974   opcode(Assembler::ldf_op3);
5975   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5976   ins_pipe(iload_mem);
5977 %}
5978 
5979 // Load Float
5980 instruct loadF(regF dst, memory mem) %{
5981   match(Set dst (LoadF mem));
5982   ins_cost(MEMORY_REF_COST);
5983 
5984   size(4);
5985   format %{ "LDF    $mem,$dst" %}
5986   opcode(Assembler::ldf_op3);
5987   ins_encode(simple_form3_mem_reg( mem, dst ) );
5988   ins_pipe(floadF_mem);
5989 %}
5990 
5991 // Load Constant
5992 instruct loadConI( iRegI dst, immI src ) %{
5993   match(Set dst src);
5994   ins_cost(DEFAULT_COST * 3/2);
5995   format %{ "SET    $src,$dst" %}
5996   ins_encode( Set32(src, dst) );
5997   ins_pipe(ialu_hi_lo_reg);
5998 %}
5999 
6000 instruct loadConI13( iRegI dst, immI13 src ) %{
6001   match(Set dst src);
6002 
6003   size(4);
6004   format %{ "MOV    $src,$dst" %}
6005   ins_encode( Set13( src, dst ) );
6006   ins_pipe(ialu_imm);
6007 %}
6008 
6009 instruct loadConP(iRegP dst, immP src) %{
6010   match(Set dst src);
6011   ins_cost(DEFAULT_COST * 3/2);
6012   format %{ "SET    $src,$dst\t!ptr" %}
6013   // This rule does not use "expand" unlike loadConI because then
6014   // the result type is not known to be an Oop.  An ADLC
6015   // enhancement will be needed to make that work - not worth it!
6016 
6017   ins_encode( SetPtr( src, dst ) );
6018   ins_pipe(loadConP);
6019 
6020 %}
6021 
6022 instruct loadConP0(iRegP dst, immP0 src) %{
6023   match(Set dst src);
6024 
6025   size(4);
6026   format %{ "CLR    $dst\t!ptr" %}
6027   ins_encode( SetNull( dst ) );
6028   ins_pipe(ialu_imm);
6029 %}
6030 
6031 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6032   match(Set dst src);
6033   ins_cost(DEFAULT_COST);
6034   format %{ "SET    $src,$dst\t!ptr" %}
6035   ins_encode %{
6036     AddressLiteral polling_page(os::get_polling_page());
6037     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6038   %}
6039   ins_pipe(loadConP_poll);
6040 %}
6041 
6042 instruct loadConN0(iRegN dst, immN0 src) %{
6043   match(Set dst src);
6044 
6045   size(4);
6046   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6047   ins_encode( SetNull( dst ) );
6048   ins_pipe(ialu_imm);
6049 %}
6050 
6051 instruct loadConN(iRegN dst, immN src) %{
6052   match(Set dst src);
6053   ins_cost(DEFAULT_COST * 3/2);
6054   format %{ "SET    $src,$dst\t! compressed ptr" %}
6055   ins_encode %{
6056     Register dst = $dst$$Register;
6057     __ set_narrow_oop((jobject)$src$$constant, dst);
6058   %}
6059   ins_pipe(ialu_hi_lo_reg);
6060 %}
6061 
6062 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
6063   // %%% maybe this should work like loadConD
6064   match(Set dst src);
6065   effect(KILL tmp);
6066   ins_cost(DEFAULT_COST * 4);
6067   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
6068   ins_encode( LdImmL(src, dst, tmp) );
6069   ins_pipe(loadConL);
6070 %}
6071 
6072 instruct loadConL0( iRegL dst, immL0 src ) %{
6073   match(Set dst src);
6074   ins_cost(DEFAULT_COST);
6075   size(4);
6076   format %{ "CLR    $dst\t! long" %}
6077   ins_encode( Set13( src, dst ) );
6078   ins_pipe(ialu_imm);
6079 %}
6080 
6081 instruct loadConL13( iRegL dst, immL13 src ) %{
6082   match(Set dst src);
6083   ins_cost(DEFAULT_COST * 2);
6084 
6085   size(4);
6086   format %{ "MOV    $src,$dst\t! long" %}
6087   ins_encode( Set13( src, dst ) );
6088   ins_pipe(ialu_imm);
6089 %}
6090 
6091 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
6092   match(Set dst src);
6093   effect(KILL tmp);
6094 
6095 #ifdef _LP64
6096   size(8*4);
6097 #else
6098   size(2*4);
6099 #endif
6100 
6101   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
6102             "LDF    [$tmp+lo(&$src)],$dst" %}
6103   ins_encode %{
6104     address float_address = __ float_constant($src$$constant);
6105     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
6106     AddressLiteral addrlit(float_address, rspec);
6107 
6108     __ sethi(addrlit, $tmp$$Register);
6109     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6110   %}
6111   ins_pipe(loadConFD);
6112 %}
6113 
6114 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
6115   match(Set dst src);
6116   effect(KILL tmp);
6117 
6118 #ifdef _LP64
6119   size(8*4);
6120 #else
6121   size(2*4);
6122 #endif
6123 
6124   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
6125             "LDDF   [$tmp+lo(&$src)],$dst" %}
6126   ins_encode %{
6127     address double_address = __ double_constant($src$$constant);
6128     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
6129     AddressLiteral addrlit(double_address, rspec);
6130 
6131     __ sethi(addrlit, $tmp$$Register);
6132     // XXX This is a quick fix for 6833573.
6133     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6134     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
6135   %}
6136   ins_pipe(loadConFD);
6137 %}
6138 
6139 // Prefetch instructions.
6140 // Must be safe to execute with invalid address (cannot fault).
6141 
6142 instruct prefetchr( memory mem ) %{
6143   match( PrefetchRead mem );
6144   ins_cost(MEMORY_REF_COST);
6145 
6146   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6147   opcode(Assembler::prefetch_op3);
6148   ins_encode( form3_mem_prefetch_read( mem ) );
6149   ins_pipe(iload_mem);
6150 %}
6151 
6152 instruct prefetchw( memory mem ) %{
6153   predicate(AllocatePrefetchStyle != 3 );
6154   match( PrefetchWrite mem );
6155   ins_cost(MEMORY_REF_COST);
6156 
6157   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6158   opcode(Assembler::prefetch_op3);
6159   ins_encode( form3_mem_prefetch_write( mem ) );
6160   ins_pipe(iload_mem);
6161 %}
6162 
6163 // Use BIS instruction to prefetch.
6164 instruct prefetchw_bis( memory mem ) %{
6165   predicate(AllocatePrefetchStyle == 3);
6166   match( PrefetchWrite mem );
6167   ins_cost(MEMORY_REF_COST);
6168 
6169   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
6170   ins_encode %{
6171      Register base = as_Register($mem$$base);
6172      int disp = $mem$$disp;
6173      if (disp != 0) {
6174        __ add(base, AllocatePrefetchStepSize, base);
6175      }
6176      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
6177   %}
6178   ins_pipe(istore_mem_reg);
6179 %}
6180 
6181 //----------Store Instructions-------------------------------------------------
6182 // Store Byte
6183 instruct storeB(memory mem, iRegI src) %{
6184   match(Set mem (StoreB mem src));
6185   ins_cost(MEMORY_REF_COST);
6186 
6187   size(4);
6188   format %{ "STB    $src,$mem\t! byte" %}
6189   opcode(Assembler::stb_op3);
6190   ins_encode(simple_form3_mem_reg( mem, src ) );
6191   ins_pipe(istore_mem_reg);
6192 %}
6193 
6194 instruct storeB0(memory mem, immI0 src) %{
6195   match(Set mem (StoreB mem src));
6196   ins_cost(MEMORY_REF_COST);
6197 
6198   size(4);
6199   format %{ "STB    $src,$mem\t! byte" %}
6200   opcode(Assembler::stb_op3);
6201   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6202   ins_pipe(istore_mem_zero);
6203 %}
6204 
6205 instruct storeCM0(memory mem, immI0 src) %{
6206   match(Set mem (StoreCM mem src));
6207   ins_cost(MEMORY_REF_COST);
6208 
6209   size(4);
6210   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6211   opcode(Assembler::stb_op3);
6212   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6213   ins_pipe(istore_mem_zero);
6214 %}
6215 
6216 // Store Char/Short
6217 instruct storeC(memory mem, iRegI src) %{
6218   match(Set mem (StoreC mem src));
6219   ins_cost(MEMORY_REF_COST);
6220 
6221   size(4);
6222   format %{ "STH    $src,$mem\t! short" %}
6223   opcode(Assembler::sth_op3);
6224   ins_encode(simple_form3_mem_reg( mem, src ) );
6225   ins_pipe(istore_mem_reg);
6226 %}
6227 
6228 instruct storeC0(memory mem, immI0 src) %{
6229   match(Set mem (StoreC mem src));
6230   ins_cost(MEMORY_REF_COST);
6231 
6232   size(4);
6233   format %{ "STH    $src,$mem\t! short" %}
6234   opcode(Assembler::sth_op3);
6235   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6236   ins_pipe(istore_mem_zero);
6237 %}
6238 
6239 // Store Integer
6240 instruct storeI(memory mem, iRegI src) %{
6241   match(Set mem (StoreI mem src));
6242   ins_cost(MEMORY_REF_COST);
6243 
6244   size(4);
6245   format %{ "STW    $src,$mem" %}
6246   opcode(Assembler::stw_op3);
6247   ins_encode(simple_form3_mem_reg( mem, src ) );
6248   ins_pipe(istore_mem_reg);
6249 %}
6250 
6251 // Store Long
6252 instruct storeL(memory mem, iRegL src) %{
6253   match(Set mem (StoreL mem src));
6254   ins_cost(MEMORY_REF_COST);
6255   size(4);
6256   format %{ "STX    $src,$mem\t! long" %}
6257   opcode(Assembler::stx_op3);
6258   ins_encode(simple_form3_mem_reg( mem, src ) );
6259   ins_pipe(istore_mem_reg);
6260 %}
6261 
6262 instruct storeI0(memory mem, immI0 src) %{
6263   match(Set mem (StoreI mem src));
6264   ins_cost(MEMORY_REF_COST);
6265 
6266   size(4);
6267   format %{ "STW    $src,$mem" %}
6268   opcode(Assembler::stw_op3);
6269   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6270   ins_pipe(istore_mem_zero);
6271 %}
6272 
6273 instruct storeL0(memory mem, immL0 src) %{
6274   match(Set mem (StoreL mem src));
6275   ins_cost(MEMORY_REF_COST);
6276 
6277   size(4);
6278   format %{ "STX    $src,$mem" %}
6279   opcode(Assembler::stx_op3);
6280   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6281   ins_pipe(istore_mem_zero);
6282 %}
6283 
6284 // Store Integer from float register (used after fstoi)
6285 instruct storeI_Freg(memory mem, regF src) %{
6286   match(Set mem (StoreI mem src));
6287   ins_cost(MEMORY_REF_COST);
6288 
6289   size(4);
6290   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6291   opcode(Assembler::stf_op3);
6292   ins_encode(simple_form3_mem_reg( mem, src ) );
6293   ins_pipe(fstoreF_mem_reg);
6294 %}
6295 
6296 // Store Pointer
6297 instruct storeP(memory dst, sp_ptr_RegP src) %{
6298   match(Set dst (StoreP dst src));
6299   ins_cost(MEMORY_REF_COST);
6300   size(4);
6301 
6302 #ifndef _LP64
6303   format %{ "STW    $src,$dst\t! ptr" %}
6304   opcode(Assembler::stw_op3, 0, REGP_OP);
6305 #else
6306   format %{ "STX    $src,$dst\t! ptr" %}
6307   opcode(Assembler::stx_op3, 0, REGP_OP);
6308 #endif
6309   ins_encode( form3_mem_reg( dst, src ) );
6310   ins_pipe(istore_mem_spORreg);
6311 %}
6312 
6313 instruct storeP0(memory dst, immP0 src) %{
6314   match(Set dst (StoreP dst src));
6315   ins_cost(MEMORY_REF_COST);
6316   size(4);
6317 
6318 #ifndef _LP64
6319   format %{ "STW    $src,$dst\t! ptr" %}
6320   opcode(Assembler::stw_op3, 0, REGP_OP);
6321 #else
6322   format %{ "STX    $src,$dst\t! ptr" %}
6323   opcode(Assembler::stx_op3, 0, REGP_OP);
6324 #endif
6325   ins_encode( form3_mem_reg( dst, R_G0 ) );
6326   ins_pipe(istore_mem_zero);
6327 %}
6328 
6329 // Store Compressed Pointer
6330 instruct storeN(memory dst, iRegN src) %{
6331    match(Set dst (StoreN dst src));
6332    ins_cost(MEMORY_REF_COST);
6333    size(4);
6334 
6335    format %{ "STW    $src,$dst\t! compressed ptr" %}
6336    ins_encode %{
6337      Register base = as_Register($dst$$base);
6338      Register index = as_Register($dst$$index);
6339      Register src = $src$$Register;
6340      if (index != G0) {
6341        __ stw(src, base, index);
6342      } else {
6343        __ stw(src, base, $dst$$disp);
6344      }
6345    %}
6346    ins_pipe(istore_mem_spORreg);
6347 %}
6348 
6349 instruct storeN0(memory dst, immN0 src) %{
6350    match(Set dst (StoreN dst src));
6351    ins_cost(MEMORY_REF_COST);
6352    size(4);
6353 
6354    format %{ "STW    $src,$dst\t! compressed ptr" %}
6355    ins_encode %{
6356      Register base = as_Register($dst$$base);
6357      Register index = as_Register($dst$$index);
6358      if (index != G0) {
6359        __ stw(0, base, index);
6360      } else {
6361        __ stw(0, base, $dst$$disp);
6362      }
6363    %}
6364    ins_pipe(istore_mem_zero);
6365 %}
6366 
6367 // Store Double
6368 instruct storeD( memory mem, regD src) %{
6369   match(Set mem (StoreD mem src));
6370   ins_cost(MEMORY_REF_COST);
6371 
6372   size(4);
6373   format %{ "STDF   $src,$mem" %}
6374   opcode(Assembler::stdf_op3);
6375   ins_encode(simple_form3_mem_reg( mem, src ) );
6376   ins_pipe(fstoreD_mem_reg);
6377 %}
6378 
6379 instruct storeD0( memory mem, immD0 src) %{
6380   match(Set mem (StoreD mem src));
6381   ins_cost(MEMORY_REF_COST);
6382 
6383   size(4);
6384   format %{ "STX    $src,$mem" %}
6385   opcode(Assembler::stx_op3);
6386   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6387   ins_pipe(fstoreD_mem_zero);
6388 %}
6389 
6390 // Store Float
6391 instruct storeF( memory mem, regF src) %{
6392   match(Set mem (StoreF mem src));
6393   ins_cost(MEMORY_REF_COST);
6394 
6395   size(4);
6396   format %{ "STF    $src,$mem" %}
6397   opcode(Assembler::stf_op3);
6398   ins_encode(simple_form3_mem_reg( mem, src ) );
6399   ins_pipe(fstoreF_mem_reg);
6400 %}
6401 
6402 instruct storeF0( memory mem, immF0 src) %{
6403   match(Set mem (StoreF mem src));
6404   ins_cost(MEMORY_REF_COST);
6405 
6406   size(4);
6407   format %{ "STW    $src,$mem\t! storeF0" %}
6408   opcode(Assembler::stw_op3);
6409   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6410   ins_pipe(fstoreF_mem_zero);
6411 %}
6412 
6413 // Store Aligned Packed Bytes in Double register to memory
6414 instruct storeA8B(memory mem, regD src) %{
6415   match(Set mem (Store8B mem src));
6416   ins_cost(MEMORY_REF_COST);
6417   size(4);
6418   format %{ "STDF   $src,$mem\t! packed8B" %}
6419   opcode(Assembler::stdf_op3);
6420   ins_encode(simple_form3_mem_reg( mem, src ) );
6421   ins_pipe(fstoreD_mem_reg);
6422 %}
6423 
6424 // Convert oop pointer into compressed form
6425 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6426   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6427   match(Set dst (EncodeP src));
6428   format %{ "encode_heap_oop $src, $dst" %}
6429   ins_encode %{
6430     __ encode_heap_oop($src$$Register, $dst$$Register);
6431   %}
6432   ins_pipe(ialu_reg);
6433 %}
6434 
6435 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6436   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6437   match(Set dst (EncodeP src));
6438   format %{ "encode_heap_oop_not_null $src, $dst" %}
6439   ins_encode %{
6440     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6441   %}
6442   ins_pipe(ialu_reg);
6443 %}
6444 
6445 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6446   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6447             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6448   match(Set dst (DecodeN src));
6449   format %{ "decode_heap_oop $src, $dst" %}
6450   ins_encode %{
6451     __ decode_heap_oop($src$$Register, $dst$$Register);
6452   %}
6453   ins_pipe(ialu_reg);
6454 %}
6455 
6456 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6457   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6458             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6459   match(Set dst (DecodeN src));
6460   format %{ "decode_heap_oop_not_null $src, $dst" %}
6461   ins_encode %{
6462     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6463   %}
6464   ins_pipe(ialu_reg);
6465 %}
6466 
6467 
6468 // Store Zero into Aligned Packed Bytes
6469 instruct storeA8B0(memory mem, immI0 zero) %{
6470   match(Set mem (Store8B mem zero));
6471   ins_cost(MEMORY_REF_COST);
6472   size(4);
6473   format %{ "STX    $zero,$mem\t! packed8B" %}
6474   opcode(Assembler::stx_op3);
6475   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6476   ins_pipe(fstoreD_mem_zero);
6477 %}
6478 
6479 // Store Aligned Packed Chars/Shorts in Double register to memory
6480 instruct storeA4C(memory mem, regD src) %{
6481   match(Set mem (Store4C mem src));
6482   ins_cost(MEMORY_REF_COST);
6483   size(4);
6484   format %{ "STDF   $src,$mem\t! packed4C" %}
6485   opcode(Assembler::stdf_op3);
6486   ins_encode(simple_form3_mem_reg( mem, src ) );
6487   ins_pipe(fstoreD_mem_reg);
6488 %}
6489 
6490 // Store Zero into Aligned Packed Chars/Shorts
6491 instruct storeA4C0(memory mem, immI0 zero) %{
6492   match(Set mem (Store4C mem (Replicate4C zero)));
6493   ins_cost(MEMORY_REF_COST);
6494   size(4);
6495   format %{ "STX    $zero,$mem\t! packed4C" %}
6496   opcode(Assembler::stx_op3);
6497   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6498   ins_pipe(fstoreD_mem_zero);
6499 %}
6500 
6501 // Store Aligned Packed Ints in Double register to memory
6502 instruct storeA2I(memory mem, regD src) %{
6503   match(Set mem (Store2I mem src));
6504   ins_cost(MEMORY_REF_COST);
6505   size(4);
6506   format %{ "STDF   $src,$mem\t! packed2I" %}
6507   opcode(Assembler::stdf_op3);
6508   ins_encode(simple_form3_mem_reg( mem, src ) );
6509   ins_pipe(fstoreD_mem_reg);
6510 %}
6511 
6512 // Store Zero into Aligned Packed Ints
6513 instruct storeA2I0(memory mem, immI0 zero) %{
6514   match(Set mem (Store2I mem zero));
6515   ins_cost(MEMORY_REF_COST);
6516   size(4);
6517   format %{ "STX    $zero,$mem\t! packed2I" %}
6518   opcode(Assembler::stx_op3);
6519   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6520   ins_pipe(fstoreD_mem_zero);
6521 %}
6522 
6523 
6524 //----------MemBar Instructions-----------------------------------------------
6525 // Memory barrier flavors
6526 
6527 instruct membar_acquire() %{
6528   match(MemBarAcquire);
6529   ins_cost(4*MEMORY_REF_COST);
6530 
6531   size(0);
6532   format %{ "MEMBAR-acquire" %}
6533   ins_encode( enc_membar_acquire );
6534   ins_pipe(long_memory_op);
6535 %}
6536 
6537 instruct membar_acquire_lock() %{
6538   match(MemBarAcquire);
6539   predicate(Matcher::prior_fast_lock(n));
6540   ins_cost(0);
6541 
6542   size(0);
6543   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6544   ins_encode( );
6545   ins_pipe(empty);
6546 %}
6547 
6548 instruct membar_release() %{
6549   match(MemBarRelease);
6550   ins_cost(4*MEMORY_REF_COST);
6551 
6552   size(0);
6553   format %{ "MEMBAR-release" %}
6554   ins_encode( enc_membar_release );
6555   ins_pipe(long_memory_op);
6556 %}
6557 
6558 instruct membar_release_lock() %{
6559   match(MemBarRelease);
6560   predicate(Matcher::post_fast_unlock(n));
6561   ins_cost(0);
6562 
6563   size(0);
6564   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6565   ins_encode( );
6566   ins_pipe(empty);
6567 %}
6568 
6569 instruct membar_volatile() %{
6570   match(MemBarVolatile);
6571   ins_cost(4*MEMORY_REF_COST);
6572 
6573   size(4);
6574   format %{ "MEMBAR-volatile" %}
6575   ins_encode( enc_membar_volatile );
6576   ins_pipe(long_memory_op);
6577 %}
6578 
6579 instruct unnecessary_membar_volatile() %{
6580   match(MemBarVolatile);
6581   predicate(Matcher::post_store_load_barrier(n));
6582   ins_cost(0);
6583 
6584   size(0);
6585   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6586   ins_encode( );
6587   ins_pipe(empty);
6588 %}
6589 
6590 //----------Register Move Instructions-----------------------------------------
6591 instruct roundDouble_nop(regD dst) %{
6592   match(Set dst (RoundDouble dst));
6593   ins_cost(0);
6594   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6595   ins_encode( );
6596   ins_pipe(empty);
6597 %}
6598 
6599 
6600 instruct roundFloat_nop(regF dst) %{
6601   match(Set dst (RoundFloat dst));
6602   ins_cost(0);
6603   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6604   ins_encode( );
6605   ins_pipe(empty);
6606 %}
6607 
6608 
6609 // Cast Index to Pointer for unsafe natives
6610 instruct castX2P(iRegX src, iRegP dst) %{
6611   match(Set dst (CastX2P src));
6612 
6613   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6614   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6615   ins_pipe(ialu_reg);
6616 %}
6617 
6618 // Cast Pointer to Index for unsafe natives
6619 instruct castP2X(iRegP src, iRegX dst) %{
6620   match(Set dst (CastP2X src));
6621 
6622   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6623   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6624   ins_pipe(ialu_reg);
6625 %}
6626 
6627 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6628   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6629   match(Set stkSlot src);   // chain rule
6630   ins_cost(MEMORY_REF_COST);
6631   format %{ "STDF   $src,$stkSlot\t!stk" %}
6632   opcode(Assembler::stdf_op3);
6633   ins_encode(simple_form3_mem_reg(stkSlot, src));
6634   ins_pipe(fstoreD_stk_reg);
6635 %}
6636 
6637 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6638   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6639   match(Set dst stkSlot);   // chain rule
6640   ins_cost(MEMORY_REF_COST);
6641   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6642   opcode(Assembler::lddf_op3);
6643   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6644   ins_pipe(floadD_stk);
6645 %}
6646 
6647 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6648   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6649   match(Set stkSlot src);   // chain rule
6650   ins_cost(MEMORY_REF_COST);
6651   format %{ "STF   $src,$stkSlot\t!stk" %}
6652   opcode(Assembler::stf_op3);
6653   ins_encode(simple_form3_mem_reg(stkSlot, src));
6654   ins_pipe(fstoreF_stk_reg);
6655 %}
6656 
6657 //----------Conditional Move---------------------------------------------------
6658 // Conditional move
6659 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6660   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6661   ins_cost(150);
6662   format %{ "MOV$cmp $pcc,$src,$dst" %}
6663   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6664   ins_pipe(ialu_reg);
6665 %}
6666 
6667 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6668   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6669   ins_cost(140);
6670   format %{ "MOV$cmp $pcc,$src,$dst" %}
6671   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6672   ins_pipe(ialu_imm);
6673 %}
6674 
6675 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6676   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6677   ins_cost(150);
6678   size(4);
6679   format %{ "MOV$cmp  $icc,$src,$dst" %}
6680   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6681   ins_pipe(ialu_reg);
6682 %}
6683 
6684 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6685   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6686   ins_cost(140);
6687   size(4);
6688   format %{ "MOV$cmp  $icc,$src,$dst" %}
6689   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6690   ins_pipe(ialu_imm);
6691 %}
6692 
6693 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6694   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6695   ins_cost(150);
6696   size(4);
6697   format %{ "MOV$cmp  $icc,$src,$dst" %}
6698   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6699   ins_pipe(ialu_reg);
6700 %}
6701 
6702 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6703   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6704   ins_cost(140);
6705   size(4);
6706   format %{ "MOV$cmp  $icc,$src,$dst" %}
6707   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6708   ins_pipe(ialu_imm);
6709 %}
6710 
6711 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6712   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6713   ins_cost(150);
6714   size(4);
6715   format %{ "MOV$cmp $fcc,$src,$dst" %}
6716   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6717   ins_pipe(ialu_reg);
6718 %}
6719 
6720 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6721   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6722   ins_cost(140);
6723   size(4);
6724   format %{ "MOV$cmp $fcc,$src,$dst" %}
6725   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6726   ins_pipe(ialu_imm);
6727 %}
6728 
6729 // Conditional move for RegN. Only cmov(reg,reg).
6730 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6731   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6732   ins_cost(150);
6733   format %{ "MOV$cmp $pcc,$src,$dst" %}
6734   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6735   ins_pipe(ialu_reg);
6736 %}
6737 
6738 // This instruction also works with CmpN so we don't need cmovNN_reg.
6739 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6740   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6741   ins_cost(150);
6742   size(4);
6743   format %{ "MOV$cmp  $icc,$src,$dst" %}
6744   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6745   ins_pipe(ialu_reg);
6746 %}
6747 
6748 // This instruction also works with CmpN so we don't need cmovNN_reg.
6749 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6750   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6751   ins_cost(150);
6752   size(4);
6753   format %{ "MOV$cmp  $icc,$src,$dst" %}
6754   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6755   ins_pipe(ialu_reg);
6756 %}
6757 
6758 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6759   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6760   ins_cost(150);
6761   size(4);
6762   format %{ "MOV$cmp $fcc,$src,$dst" %}
6763   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6764   ins_pipe(ialu_reg);
6765 %}
6766 
6767 // Conditional move
6768 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6769   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6770   ins_cost(150);
6771   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6772   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6773   ins_pipe(ialu_reg);
6774 %}
6775 
6776 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6777   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6778   ins_cost(140);
6779   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6780   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6781   ins_pipe(ialu_imm);
6782 %}
6783 
6784 // This instruction also works with CmpN so we don't need cmovPN_reg.
6785 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6786   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6787   ins_cost(150);
6788 
6789   size(4);
6790   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6791   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6792   ins_pipe(ialu_reg);
6793 %}
6794 
6795 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6796   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6797   ins_cost(150);
6798 
6799   size(4);
6800   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6801   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6802   ins_pipe(ialu_reg);
6803 %}
6804 
6805 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6806   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6807   ins_cost(140);
6808 
6809   size(4);
6810   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6811   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6812   ins_pipe(ialu_imm);
6813 %}
6814 
6815 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6816   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6817   ins_cost(140);
6818 
6819   size(4);
6820   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6821   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6822   ins_pipe(ialu_imm);
6823 %}
6824 
6825 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6826   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6827   ins_cost(150);
6828   size(4);
6829   format %{ "MOV$cmp $fcc,$src,$dst" %}
6830   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6831   ins_pipe(ialu_imm);
6832 %}
6833 
6834 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6835   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6836   ins_cost(140);
6837   size(4);
6838   format %{ "MOV$cmp $fcc,$src,$dst" %}
6839   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6840   ins_pipe(ialu_imm);
6841 %}
6842 
6843 // Conditional move
6844 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6845   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6846   ins_cost(150);
6847   opcode(0x101);
6848   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6849   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6850   ins_pipe(int_conditional_float_move);
6851 %}
6852 
6853 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6854   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6855   ins_cost(150);
6856 
6857   size(4);
6858   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6859   opcode(0x101);
6860   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6861   ins_pipe(int_conditional_float_move);
6862 %}
6863 
6864 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6865   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6866   ins_cost(150);
6867 
6868   size(4);
6869   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6870   opcode(0x101);
6871   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6872   ins_pipe(int_conditional_float_move);
6873 %}
6874 
6875 // Conditional move,
6876 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6877   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6878   ins_cost(150);
6879   size(4);
6880   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6881   opcode(0x1);
6882   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6883   ins_pipe(int_conditional_double_move);
6884 %}
6885 
6886 // Conditional move
6887 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6888   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6889   ins_cost(150);
6890   size(4);
6891   opcode(0x102);
6892   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6893   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6894   ins_pipe(int_conditional_double_move);
6895 %}
6896 
6897 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6898   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6899   ins_cost(150);
6900 
6901   size(4);
6902   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6903   opcode(0x102);
6904   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6905   ins_pipe(int_conditional_double_move);
6906 %}
6907 
6908 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6909   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6910   ins_cost(150);
6911 
6912   size(4);
6913   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6914   opcode(0x102);
6915   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6916   ins_pipe(int_conditional_double_move);
6917 %}
6918 
6919 // Conditional move,
6920 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6921   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6922   ins_cost(150);
6923   size(4);
6924   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6925   opcode(0x2);
6926   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6927   ins_pipe(int_conditional_double_move);
6928 %}
6929 
6930 // Conditional move
6931 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6932   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6933   ins_cost(150);
6934   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6935   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6936   ins_pipe(ialu_reg);
6937 %}
6938 
6939 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6940   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6941   ins_cost(140);
6942   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6943   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6944   ins_pipe(ialu_imm);
6945 %}
6946 
6947 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6948   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6949   ins_cost(150);
6950 
6951   size(4);
6952   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6953   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6954   ins_pipe(ialu_reg);
6955 %}
6956 
6957 
6958 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6959   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6960   ins_cost(150);
6961 
6962   size(4);
6963   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6964   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6965   ins_pipe(ialu_reg);
6966 %}
6967 
6968 
6969 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6970   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6971   ins_cost(150);
6972 
6973   size(4);
6974   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6975   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6976   ins_pipe(ialu_reg);
6977 %}
6978 
6979 
6980 
6981 //----------OS and Locking Instructions----------------------------------------
6982 
6983 // This name is KNOWN by the ADLC and cannot be changed.
6984 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6985 // for this guy.
6986 instruct tlsLoadP(g2RegP dst) %{
6987   match(Set dst (ThreadLocal));
6988 
6989   size(0);
6990   ins_cost(0);
6991   format %{ "# TLS is in G2" %}
6992   ins_encode( /*empty encoding*/ );
6993   ins_pipe(ialu_none);
6994 %}
6995 
6996 instruct checkCastPP( iRegP dst ) %{
6997   match(Set dst (CheckCastPP dst));
6998 
6999   size(0);
7000   format %{ "# checkcastPP of $dst" %}
7001   ins_encode( /*empty encoding*/ );
7002   ins_pipe(empty);
7003 %}
7004 
7005 
7006 instruct castPP( iRegP dst ) %{
7007   match(Set dst (CastPP dst));
7008   format %{ "# castPP of $dst" %}
7009   ins_encode( /*empty encoding*/ );
7010   ins_pipe(empty);
7011 %}
7012 
7013 instruct castII( iRegI dst ) %{
7014   match(Set dst (CastII dst));
7015   format %{ "# castII of $dst" %}
7016   ins_encode( /*empty encoding*/ );
7017   ins_cost(0);
7018   ins_pipe(empty);
7019 %}
7020 
7021 //----------Arithmetic Instructions--------------------------------------------
7022 // Addition Instructions
7023 // Register Addition
7024 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7025   match(Set dst (AddI src1 src2));
7026 
7027   size(4);
7028   format %{ "ADD    $src1,$src2,$dst" %}
7029   ins_encode %{
7030     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7031   %}
7032   ins_pipe(ialu_reg_reg);
7033 %}
7034 
7035 // Immediate Addition
7036 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7037   match(Set dst (AddI src1 src2));
7038 
7039   size(4);
7040   format %{ "ADD    $src1,$src2,$dst" %}
7041   opcode(Assembler::add_op3, Assembler::arith_op);
7042   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7043   ins_pipe(ialu_reg_imm);
7044 %}
7045 
7046 // Pointer Register Addition
7047 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7048   match(Set dst (AddP src1 src2));
7049 
7050   size(4);
7051   format %{ "ADD    $src1,$src2,$dst" %}
7052   opcode(Assembler::add_op3, Assembler::arith_op);
7053   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7054   ins_pipe(ialu_reg_reg);
7055 %}
7056 
7057 // Pointer Immediate Addition
7058 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7059   match(Set dst (AddP src1 src2));
7060 
7061   size(4);
7062   format %{ "ADD    $src1,$src2,$dst" %}
7063   opcode(Assembler::add_op3, Assembler::arith_op);
7064   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7065   ins_pipe(ialu_reg_imm);
7066 %}
7067 
7068 // Long Addition
7069 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7070   match(Set dst (AddL src1 src2));
7071 
7072   size(4);
7073   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7074   opcode(Assembler::add_op3, Assembler::arith_op);
7075   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7076   ins_pipe(ialu_reg_reg);
7077 %}
7078 
7079 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7080   match(Set dst (AddL src1 con));
7081 
7082   size(4);
7083   format %{ "ADD    $src1,$con,$dst" %}
7084   opcode(Assembler::add_op3, Assembler::arith_op);
7085   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7086   ins_pipe(ialu_reg_imm);
7087 %}
7088 
7089 //----------Conditional_store--------------------------------------------------
7090 // Conditional-store of the updated heap-top.
7091 // Used during allocation of the shared heap.
7092 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7093 
7094 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7095 instruct loadPLocked(iRegP dst, memory mem) %{
7096   match(Set dst (LoadPLocked mem));
7097   ins_cost(MEMORY_REF_COST);
7098 
7099 #ifndef _LP64
7100   size(4);
7101   format %{ "LDUW   $mem,$dst\t! ptr" %}
7102   opcode(Assembler::lduw_op3, 0, REGP_OP);
7103 #else
7104   format %{ "LDX    $mem,$dst\t! ptr" %}
7105   opcode(Assembler::ldx_op3, 0, REGP_OP);
7106 #endif
7107   ins_encode( form3_mem_reg( mem, dst ) );
7108   ins_pipe(iload_mem);
7109 %}
7110 
7111 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7112 instruct loadLLocked(iRegL dst, memory mem) %{
7113   match(Set dst (LoadLLocked mem));
7114   ins_cost(MEMORY_REF_COST);
7115   size(4);
7116   format %{ "LDX    $mem,$dst\t! long" %}
7117   opcode(Assembler::ldx_op3);
7118   ins_encode(simple_form3_mem_reg( mem, dst ) );
7119   ins_pipe(iload_mem);
7120 %}
7121 
7122 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7123   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7124   effect( KILL newval );
7125   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7126             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7127   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7128   ins_pipe( long_memory_op );
7129 %}
7130 
7131 // Conditional-store of an int value.
7132 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7133   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7134   effect( KILL newval );
7135   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7136             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7137   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7138   ins_pipe( long_memory_op );
7139 %}
7140 
7141 // Conditional-store of a long value.
7142 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7143   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7144   effect( KILL newval );
7145   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7146             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7147   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7148   ins_pipe( long_memory_op );
7149 %}
7150 
7151 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7152 
7153 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7154   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7155   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7156   format %{
7157             "MOV    $newval,O7\n\t"
7158             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7159             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7160             "MOV    1,$res\n\t"
7161             "MOVne  xcc,R_G0,$res"
7162   %}
7163   ins_encode( enc_casx(mem_ptr, oldval, newval),
7164               enc_lflags_ne_to_boolean(res) );
7165   ins_pipe( long_memory_op );
7166 %}
7167 
7168 
7169 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7170   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7171   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7172   format %{
7173             "MOV    $newval,O7\n\t"
7174             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7175             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7176             "MOV    1,$res\n\t"
7177             "MOVne  icc,R_G0,$res"
7178   %}
7179   ins_encode( enc_casi(mem_ptr, oldval, newval),
7180               enc_iflags_ne_to_boolean(res) );
7181   ins_pipe( long_memory_op );
7182 %}
7183 
7184 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7185   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7186   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7187   format %{
7188             "MOV    $newval,O7\n\t"
7189             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7190             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7191             "MOV    1,$res\n\t"
7192             "MOVne  xcc,R_G0,$res"
7193   %}
7194 #ifdef _LP64
7195   ins_encode( enc_casx(mem_ptr, oldval, newval),
7196               enc_lflags_ne_to_boolean(res) );
7197 #else
7198   ins_encode( enc_casi(mem_ptr, oldval, newval),
7199               enc_iflags_ne_to_boolean(res) );
7200 #endif
7201   ins_pipe( long_memory_op );
7202 %}
7203 
7204 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7205   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7206   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7207   format %{
7208             "MOV    $newval,O7\n\t"
7209             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7210             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7211             "MOV    1,$res\n\t"
7212             "MOVne  icc,R_G0,$res"
7213   %}
7214   ins_encode( enc_casi(mem_ptr, oldval, newval),
7215               enc_iflags_ne_to_boolean(res) );
7216   ins_pipe( long_memory_op );
7217 %}
7218 
7219 //---------------------
7220 // Subtraction Instructions
7221 // Register Subtraction
7222 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7223   match(Set dst (SubI src1 src2));
7224 
7225   size(4);
7226   format %{ "SUB    $src1,$src2,$dst" %}
7227   opcode(Assembler::sub_op3, Assembler::arith_op);
7228   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7229   ins_pipe(ialu_reg_reg);
7230 %}
7231 
7232 // Immediate Subtraction
7233 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7234   match(Set dst (SubI src1 src2));
7235 
7236   size(4);
7237   format %{ "SUB    $src1,$src2,$dst" %}
7238   opcode(Assembler::sub_op3, Assembler::arith_op);
7239   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7240   ins_pipe(ialu_reg_imm);
7241 %}
7242 
7243 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7244   match(Set dst (SubI zero src2));
7245 
7246   size(4);
7247   format %{ "NEG    $src2,$dst" %}
7248   opcode(Assembler::sub_op3, Assembler::arith_op);
7249   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7250   ins_pipe(ialu_zero_reg);
7251 %}
7252 
7253 // Long subtraction
7254 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7255   match(Set dst (SubL src1 src2));
7256 
7257   size(4);
7258   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7259   opcode(Assembler::sub_op3, Assembler::arith_op);
7260   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7261   ins_pipe(ialu_reg_reg);
7262 %}
7263 
7264 // Immediate Subtraction
7265 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7266   match(Set dst (SubL src1 con));
7267 
7268   size(4);
7269   format %{ "SUB    $src1,$con,$dst\t! long" %}
7270   opcode(Assembler::sub_op3, Assembler::arith_op);
7271   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7272   ins_pipe(ialu_reg_imm);
7273 %}
7274 
7275 // Long negation
7276 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7277   match(Set dst (SubL zero src2));
7278 
7279   size(4);
7280   format %{ "NEG    $src2,$dst\t! long" %}
7281   opcode(Assembler::sub_op3, Assembler::arith_op);
7282   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7283   ins_pipe(ialu_zero_reg);
7284 %}
7285 
7286 // Multiplication Instructions
7287 // Integer Multiplication
7288 // Register Multiplication
7289 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7290   match(Set dst (MulI src1 src2));
7291 
7292   size(4);
7293   format %{ "MULX   $src1,$src2,$dst" %}
7294   opcode(Assembler::mulx_op3, Assembler::arith_op);
7295   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7296   ins_pipe(imul_reg_reg);
7297 %}
7298 
7299 // Immediate Multiplication
7300 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7301   match(Set dst (MulI src1 src2));
7302 
7303   size(4);
7304   format %{ "MULX   $src1,$src2,$dst" %}
7305   opcode(Assembler::mulx_op3, Assembler::arith_op);
7306   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7307   ins_pipe(imul_reg_imm);
7308 %}
7309 
7310 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7311   match(Set dst (MulL src1 src2));
7312   ins_cost(DEFAULT_COST * 5);
7313   size(4);
7314   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7315   opcode(Assembler::mulx_op3, Assembler::arith_op);
7316   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7317   ins_pipe(mulL_reg_reg);
7318 %}
7319 
7320 // Immediate Multiplication
7321 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7322   match(Set dst (MulL src1 src2));
7323   ins_cost(DEFAULT_COST * 5);
7324   size(4);
7325   format %{ "MULX   $src1,$src2,$dst" %}
7326   opcode(Assembler::mulx_op3, Assembler::arith_op);
7327   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7328   ins_pipe(mulL_reg_imm);
7329 %}
7330 
7331 // Integer Division
7332 // Register Division
7333 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7334   match(Set dst (DivI src1 src2));
7335   ins_cost((2+71)*DEFAULT_COST);
7336 
7337   format %{ "SRA     $src2,0,$src2\n\t"
7338             "SRA     $src1,0,$src1\n\t"
7339             "SDIVX   $src1,$src2,$dst" %}
7340   ins_encode( idiv_reg( src1, src2, dst ) );
7341   ins_pipe(sdiv_reg_reg);
7342 %}
7343 
7344 // Immediate Division
7345 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7346   match(Set dst (DivI src1 src2));
7347   ins_cost((2+71)*DEFAULT_COST);
7348 
7349   format %{ "SRA     $src1,0,$src1\n\t"
7350             "SDIVX   $src1,$src2,$dst" %}
7351   ins_encode( idiv_imm( src1, src2, dst ) );
7352   ins_pipe(sdiv_reg_imm);
7353 %}
7354 
7355 //----------Div-By-10-Expansion------------------------------------------------
7356 // Extract hi bits of a 32x32->64 bit multiply.
7357 // Expand rule only, not matched
7358 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7359   effect( DEF dst, USE src1, USE src2 );
7360   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7361             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7362   ins_encode( enc_mul_hi(dst,src1,src2));
7363   ins_pipe(sdiv_reg_reg);
7364 %}
7365 
7366 // Magic constant, reciprocal of 10
7367 instruct loadConI_x66666667(iRegIsafe dst) %{
7368   effect( DEF dst );
7369 
7370   size(8);
7371   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7372   ins_encode( Set32(0x66666667, dst) );
7373   ins_pipe(ialu_hi_lo_reg);
7374 %}
7375 
7376 // Register Shift Right Arithmetic Long by 32-63
7377 instruct sra_31( iRegI dst, iRegI src ) %{
7378   effect( DEF dst, USE src );
7379   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7380   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7381   ins_pipe(ialu_reg_reg);
7382 %}
7383 
7384 // Arithmetic Shift Right by 8-bit immediate
7385 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7386   effect( DEF dst, USE src );
7387   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7388   opcode(Assembler::sra_op3, Assembler::arith_op);
7389   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7390   ins_pipe(ialu_reg_imm);
7391 %}
7392 
7393 // Integer DIV with 10
7394 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7395   match(Set dst (DivI src div));
7396   ins_cost((6+6)*DEFAULT_COST);
7397   expand %{
7398     iRegIsafe tmp1;               // Killed temps;
7399     iRegIsafe tmp2;               // Killed temps;
7400     iRegI tmp3;                   // Killed temps;
7401     iRegI tmp4;                   // Killed temps;
7402     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7403     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7404     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7405     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7406     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7407   %}
7408 %}
7409 
7410 // Register Long Division
7411 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7412   match(Set dst (DivL src1 src2));
7413   ins_cost(DEFAULT_COST*71);
7414   size(4);
7415   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7416   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7417   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7418   ins_pipe(divL_reg_reg);
7419 %}
7420 
7421 // Register Long Division
7422 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7423   match(Set dst (DivL src1 src2));
7424   ins_cost(DEFAULT_COST*71);
7425   size(4);
7426   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7427   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7428   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7429   ins_pipe(divL_reg_imm);
7430 %}
7431 
7432 // Integer Remainder
7433 // Register Remainder
7434 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7435   match(Set dst (ModI src1 src2));
7436   effect( KILL ccr, KILL temp);
7437 
7438   format %{ "SREM   $src1,$src2,$dst" %}
7439   ins_encode( irem_reg(src1, src2, dst, temp) );
7440   ins_pipe(sdiv_reg_reg);
7441 %}
7442 
7443 // Immediate Remainder
7444 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7445   match(Set dst (ModI src1 src2));
7446   effect( KILL ccr, KILL temp);
7447 
7448   format %{ "SREM   $src1,$src2,$dst" %}
7449   ins_encode( irem_imm(src1, src2, dst, temp) );
7450   ins_pipe(sdiv_reg_imm);
7451 %}
7452 
7453 // Register Long Remainder
7454 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7455   effect(DEF dst, USE src1, USE src2);
7456   size(4);
7457   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7458   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7459   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7460   ins_pipe(divL_reg_reg);
7461 %}
7462 
7463 // Register Long Division
7464 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7465   effect(DEF dst, USE src1, USE src2);
7466   size(4);
7467   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7468   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7469   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7470   ins_pipe(divL_reg_imm);
7471 %}
7472 
7473 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7474   effect(DEF dst, USE src1, USE src2);
7475   size(4);
7476   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7477   opcode(Assembler::mulx_op3, Assembler::arith_op);
7478   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7479   ins_pipe(mulL_reg_reg);
7480 %}
7481 
7482 // Immediate Multiplication
7483 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7484   effect(DEF dst, USE src1, USE src2);
7485   size(4);
7486   format %{ "MULX   $src1,$src2,$dst" %}
7487   opcode(Assembler::mulx_op3, Assembler::arith_op);
7488   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7489   ins_pipe(mulL_reg_imm);
7490 %}
7491 
7492 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7493   effect(DEF dst, USE src1, USE src2);
7494   size(4);
7495   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7496   opcode(Assembler::sub_op3, Assembler::arith_op);
7497   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7498   ins_pipe(ialu_reg_reg);
7499 %}
7500 
7501 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7502   effect(DEF dst, USE src1, USE src2);
7503   size(4);
7504   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7505   opcode(Assembler::sub_op3, Assembler::arith_op);
7506   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7507   ins_pipe(ialu_reg_reg);
7508 %}
7509 
7510 // Register Long Remainder
7511 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7512   match(Set dst (ModL src1 src2));
7513   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7514   expand %{
7515     iRegL tmp1;
7516     iRegL tmp2;
7517     divL_reg_reg_1(tmp1, src1, src2);
7518     mulL_reg_reg_1(tmp2, tmp1, src2);
7519     subL_reg_reg_1(dst,  src1, tmp2);
7520   %}
7521 %}
7522 
7523 // Register Long Remainder
7524 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7525   match(Set dst (ModL src1 src2));
7526   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7527   expand %{
7528     iRegL tmp1;
7529     iRegL tmp2;
7530     divL_reg_imm13_1(tmp1, src1, src2);
7531     mulL_reg_imm13_1(tmp2, tmp1, src2);
7532     subL_reg_reg_2  (dst,  src1, tmp2);
7533   %}
7534 %}
7535 
7536 // Integer Shift Instructions
7537 // Register Shift Left
7538 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7539   match(Set dst (LShiftI src1 src2));
7540 
7541   size(4);
7542   format %{ "SLL    $src1,$src2,$dst" %}
7543   opcode(Assembler::sll_op3, Assembler::arith_op);
7544   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7545   ins_pipe(ialu_reg_reg);
7546 %}
7547 
7548 // Register Shift Left Immediate
7549 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7550   match(Set dst (LShiftI src1 src2));
7551 
7552   size(4);
7553   format %{ "SLL    $src1,$src2,$dst" %}
7554   opcode(Assembler::sll_op3, Assembler::arith_op);
7555   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7556   ins_pipe(ialu_reg_imm);
7557 %}
7558 
7559 // Register Shift Left
7560 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7561   match(Set dst (LShiftL src1 src2));
7562 
7563   size(4);
7564   format %{ "SLLX   $src1,$src2,$dst" %}
7565   opcode(Assembler::sllx_op3, Assembler::arith_op);
7566   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7567   ins_pipe(ialu_reg_reg);
7568 %}
7569 
7570 // Register Shift Left Immediate
7571 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7572   match(Set dst (LShiftL src1 src2));
7573 
7574   size(4);
7575   format %{ "SLLX   $src1,$src2,$dst" %}
7576   opcode(Assembler::sllx_op3, Assembler::arith_op);
7577   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7578   ins_pipe(ialu_reg_imm);
7579 %}
7580 
7581 // Register Arithmetic Shift Right
7582 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7583   match(Set dst (RShiftI src1 src2));
7584   size(4);
7585   format %{ "SRA    $src1,$src2,$dst" %}
7586   opcode(Assembler::sra_op3, Assembler::arith_op);
7587   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7588   ins_pipe(ialu_reg_reg);
7589 %}
7590 
7591 // Register Arithmetic Shift Right Immediate
7592 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7593   match(Set dst (RShiftI src1 src2));
7594 
7595   size(4);
7596   format %{ "SRA    $src1,$src2,$dst" %}
7597   opcode(Assembler::sra_op3, Assembler::arith_op);
7598   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7599   ins_pipe(ialu_reg_imm);
7600 %}
7601 
7602 // Register Shift Right Arithmatic Long
7603 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7604   match(Set dst (RShiftL src1 src2));
7605 
7606   size(4);
7607   format %{ "SRAX   $src1,$src2,$dst" %}
7608   opcode(Assembler::srax_op3, Assembler::arith_op);
7609   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7610   ins_pipe(ialu_reg_reg);
7611 %}
7612 
7613 // Register Shift Left Immediate
7614 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7615   match(Set dst (RShiftL src1 src2));
7616 
7617   size(4);
7618   format %{ "SRAX   $src1,$src2,$dst" %}
7619   opcode(Assembler::srax_op3, Assembler::arith_op);
7620   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7621   ins_pipe(ialu_reg_imm);
7622 %}
7623 
7624 // Register Shift Right
7625 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7626   match(Set dst (URShiftI src1 src2));
7627 
7628   size(4);
7629   format %{ "SRL    $src1,$src2,$dst" %}
7630   opcode(Assembler::srl_op3, Assembler::arith_op);
7631   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7632   ins_pipe(ialu_reg_reg);
7633 %}
7634 
7635 // Register Shift Right Immediate
7636 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7637   match(Set dst (URShiftI src1 src2));
7638 
7639   size(4);
7640   format %{ "SRL    $src1,$src2,$dst" %}
7641   opcode(Assembler::srl_op3, Assembler::arith_op);
7642   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7643   ins_pipe(ialu_reg_imm);
7644 %}
7645 
7646 // Register Shift Right
7647 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7648   match(Set dst (URShiftL src1 src2));
7649 
7650   size(4);
7651   format %{ "SRLX   $src1,$src2,$dst" %}
7652   opcode(Assembler::srlx_op3, Assembler::arith_op);
7653   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7654   ins_pipe(ialu_reg_reg);
7655 %}
7656 
7657 // Register Shift Right Immediate
7658 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7659   match(Set dst (URShiftL src1 src2));
7660 
7661   size(4);
7662   format %{ "SRLX   $src1,$src2,$dst" %}
7663   opcode(Assembler::srlx_op3, Assembler::arith_op);
7664   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7665   ins_pipe(ialu_reg_imm);
7666 %}
7667 
7668 // Register Shift Right Immediate with a CastP2X
7669 #ifdef _LP64
7670 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7671   match(Set dst (URShiftL (CastP2X src1) src2));
7672   size(4);
7673   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7674   opcode(Assembler::srlx_op3, Assembler::arith_op);
7675   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7676   ins_pipe(ialu_reg_imm);
7677 %}
7678 #else
7679 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7680   match(Set dst (URShiftI (CastP2X src1) src2));
7681   size(4);
7682   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7683   opcode(Assembler::srl_op3, Assembler::arith_op);
7684   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7685   ins_pipe(ialu_reg_imm);
7686 %}
7687 #endif
7688 
7689 
7690 //----------Floating Point Arithmetic Instructions-----------------------------
7691 
7692 //  Add float single precision
7693 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7694   match(Set dst (AddF src1 src2));
7695 
7696   size(4);
7697   format %{ "FADDS  $src1,$src2,$dst" %}
7698   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7699   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7700   ins_pipe(faddF_reg_reg);
7701 %}
7702 
7703 //  Add float double precision
7704 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7705   match(Set dst (AddD src1 src2));
7706 
7707   size(4);
7708   format %{ "FADDD  $src1,$src2,$dst" %}
7709   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7710   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7711   ins_pipe(faddD_reg_reg);
7712 %}
7713 
7714 //  Sub float single precision
7715 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7716   match(Set dst (SubF src1 src2));
7717 
7718   size(4);
7719   format %{ "FSUBS  $src1,$src2,$dst" %}
7720   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7721   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7722   ins_pipe(faddF_reg_reg);
7723 %}
7724 
7725 //  Sub float double precision
7726 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7727   match(Set dst (SubD src1 src2));
7728 
7729   size(4);
7730   format %{ "FSUBD  $src1,$src2,$dst" %}
7731   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7732   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7733   ins_pipe(faddD_reg_reg);
7734 %}
7735 
7736 //  Mul float single precision
7737 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7738   match(Set dst (MulF src1 src2));
7739 
7740   size(4);
7741   format %{ "FMULS  $src1,$src2,$dst" %}
7742   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7743   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7744   ins_pipe(fmulF_reg_reg);
7745 %}
7746 
7747 //  Mul float double precision
7748 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7749   match(Set dst (MulD src1 src2));
7750 
7751   size(4);
7752   format %{ "FMULD  $src1,$src2,$dst" %}
7753   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7754   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7755   ins_pipe(fmulD_reg_reg);
7756 %}
7757 
7758 //  Div float single precision
7759 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7760   match(Set dst (DivF src1 src2));
7761 
7762   size(4);
7763   format %{ "FDIVS  $src1,$src2,$dst" %}
7764   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7765   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7766   ins_pipe(fdivF_reg_reg);
7767 %}
7768 
7769 //  Div float double precision
7770 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7771   match(Set dst (DivD src1 src2));
7772 
7773   size(4);
7774   format %{ "FDIVD  $src1,$src2,$dst" %}
7775   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7776   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7777   ins_pipe(fdivD_reg_reg);
7778 %}
7779 
7780 //  Absolute float double precision
7781 instruct absD_reg(regD dst, regD src) %{
7782   match(Set dst (AbsD src));
7783 
7784   format %{ "FABSd  $src,$dst" %}
7785   ins_encode(fabsd(dst, src));
7786   ins_pipe(faddD_reg);
7787 %}
7788 
7789 //  Absolute float single precision
7790 instruct absF_reg(regF dst, regF src) %{
7791   match(Set dst (AbsF src));
7792 
7793   format %{ "FABSs  $src,$dst" %}
7794   ins_encode(fabss(dst, src));
7795   ins_pipe(faddF_reg);
7796 %}
7797 
7798 instruct negF_reg(regF dst, regF src) %{
7799   match(Set dst (NegF src));
7800 
7801   size(4);
7802   format %{ "FNEGs  $src,$dst" %}
7803   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7804   ins_encode(form3_opf_rs2F_rdF(src, dst));
7805   ins_pipe(faddF_reg);
7806 %}
7807 
7808 instruct negD_reg(regD dst, regD src) %{
7809   match(Set dst (NegD src));
7810 
7811   format %{ "FNEGd  $src,$dst" %}
7812   ins_encode(fnegd(dst, src));
7813   ins_pipe(faddD_reg);
7814 %}
7815 
7816 //  Sqrt float double precision
7817 instruct sqrtF_reg_reg(regF dst, regF src) %{
7818   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7819 
7820   size(4);
7821   format %{ "FSQRTS $src,$dst" %}
7822   ins_encode(fsqrts(dst, src));
7823   ins_pipe(fdivF_reg_reg);
7824 %}
7825 
7826 //  Sqrt float double precision
7827 instruct sqrtD_reg_reg(regD dst, regD src) %{
7828   match(Set dst (SqrtD src));
7829 
7830   size(4);
7831   format %{ "FSQRTD $src,$dst" %}
7832   ins_encode(fsqrtd(dst, src));
7833   ins_pipe(fdivD_reg_reg);
7834 %}
7835 
7836 //----------Logical Instructions-----------------------------------------------
7837 // And Instructions
7838 // Register And
7839 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7840   match(Set dst (AndI src1 src2));
7841 
7842   size(4);
7843   format %{ "AND    $src1,$src2,$dst" %}
7844   opcode(Assembler::and_op3, Assembler::arith_op);
7845   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7846   ins_pipe(ialu_reg_reg);
7847 %}
7848 
7849 // Immediate And
7850 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7851   match(Set dst (AndI src1 src2));
7852 
7853   size(4);
7854   format %{ "AND    $src1,$src2,$dst" %}
7855   opcode(Assembler::and_op3, Assembler::arith_op);
7856   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7857   ins_pipe(ialu_reg_imm);
7858 %}
7859 
7860 // Register And Long
7861 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7862   match(Set dst (AndL src1 src2));
7863 
7864   ins_cost(DEFAULT_COST);
7865   size(4);
7866   format %{ "AND    $src1,$src2,$dst\t! long" %}
7867   opcode(Assembler::and_op3, Assembler::arith_op);
7868   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7869   ins_pipe(ialu_reg_reg);
7870 %}
7871 
7872 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7873   match(Set dst (AndL src1 con));
7874 
7875   ins_cost(DEFAULT_COST);
7876   size(4);
7877   format %{ "AND    $src1,$con,$dst\t! long" %}
7878   opcode(Assembler::and_op3, Assembler::arith_op);
7879   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7880   ins_pipe(ialu_reg_imm);
7881 %}
7882 
7883 // Or Instructions
7884 // Register Or
7885 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7886   match(Set dst (OrI src1 src2));
7887 
7888   size(4);
7889   format %{ "OR     $src1,$src2,$dst" %}
7890   opcode(Assembler::or_op3, Assembler::arith_op);
7891   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7892   ins_pipe(ialu_reg_reg);
7893 %}
7894 
7895 // Immediate Or
7896 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7897   match(Set dst (OrI src1 src2));
7898 
7899   size(4);
7900   format %{ "OR     $src1,$src2,$dst" %}
7901   opcode(Assembler::or_op3, Assembler::arith_op);
7902   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7903   ins_pipe(ialu_reg_imm);
7904 %}
7905 
7906 // Register Or Long
7907 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7908   match(Set dst (OrL src1 src2));
7909 
7910   ins_cost(DEFAULT_COST);
7911   size(4);
7912   format %{ "OR     $src1,$src2,$dst\t! long" %}
7913   opcode(Assembler::or_op3, Assembler::arith_op);
7914   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7915   ins_pipe(ialu_reg_reg);
7916 %}
7917 
7918 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7919   match(Set dst (OrL src1 con));
7920   ins_cost(DEFAULT_COST*2);
7921 
7922   ins_cost(DEFAULT_COST);
7923   size(4);
7924   format %{ "OR     $src1,$con,$dst\t! long" %}
7925   opcode(Assembler::or_op3, Assembler::arith_op);
7926   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7927   ins_pipe(ialu_reg_imm);
7928 %}
7929 
7930 #ifndef _LP64
7931 
7932 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7933 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7934   match(Set dst (OrI src1 (CastP2X src2)));
7935 
7936   size(4);
7937   format %{ "OR     $src1,$src2,$dst" %}
7938   opcode(Assembler::or_op3, Assembler::arith_op);
7939   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7940   ins_pipe(ialu_reg_reg);
7941 %}
7942 
7943 #else
7944 
7945 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7946   match(Set dst (OrL src1 (CastP2X src2)));
7947 
7948   ins_cost(DEFAULT_COST);
7949   size(4);
7950   format %{ "OR     $src1,$src2,$dst\t! long" %}
7951   opcode(Assembler::or_op3, Assembler::arith_op);
7952   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7953   ins_pipe(ialu_reg_reg);
7954 %}
7955 
7956 #endif
7957 
7958 // Xor Instructions
7959 // Register Xor
7960 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7961   match(Set dst (XorI src1 src2));
7962 
7963   size(4);
7964   format %{ "XOR    $src1,$src2,$dst" %}
7965   opcode(Assembler::xor_op3, Assembler::arith_op);
7966   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7967   ins_pipe(ialu_reg_reg);
7968 %}
7969 
7970 // Immediate Xor
7971 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7972   match(Set dst (XorI src1 src2));
7973 
7974   size(4);
7975   format %{ "XOR    $src1,$src2,$dst" %}
7976   opcode(Assembler::xor_op3, Assembler::arith_op);
7977   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7978   ins_pipe(ialu_reg_imm);
7979 %}
7980 
7981 // Register Xor Long
7982 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7983   match(Set dst (XorL src1 src2));
7984 
7985   ins_cost(DEFAULT_COST);
7986   size(4);
7987   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7988   opcode(Assembler::xor_op3, Assembler::arith_op);
7989   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7990   ins_pipe(ialu_reg_reg);
7991 %}
7992 
7993 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7994   match(Set dst (XorL src1 con));
7995 
7996   ins_cost(DEFAULT_COST);
7997   size(4);
7998   format %{ "XOR    $src1,$con,$dst\t! long" %}
7999   opcode(Assembler::xor_op3, Assembler::arith_op);
8000   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8001   ins_pipe(ialu_reg_imm);
8002 %}
8003 
8004 //----------Convert to Boolean-------------------------------------------------
8005 // Nice hack for 32-bit tests but doesn't work for
8006 // 64-bit pointers.
8007 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8008   match(Set dst (Conv2B src));
8009   effect( KILL ccr );
8010   ins_cost(DEFAULT_COST*2);
8011   format %{ "CMP    R_G0,$src\n\t"
8012             "ADDX   R_G0,0,$dst" %}
8013   ins_encode( enc_to_bool( src, dst ) );
8014   ins_pipe(ialu_reg_ialu);
8015 %}
8016 
8017 #ifndef _LP64
8018 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8019   match(Set dst (Conv2B src));
8020   effect( KILL ccr );
8021   ins_cost(DEFAULT_COST*2);
8022   format %{ "CMP    R_G0,$src\n\t"
8023             "ADDX   R_G0,0,$dst" %}
8024   ins_encode( enc_to_bool( src, dst ) );
8025   ins_pipe(ialu_reg_ialu);
8026 %}
8027 #else
8028 instruct convP2B( iRegI dst, iRegP src ) %{
8029   match(Set dst (Conv2B src));
8030   ins_cost(DEFAULT_COST*2);
8031   format %{ "MOV    $src,$dst\n\t"
8032             "MOVRNZ $src,1,$dst" %}
8033   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8034   ins_pipe(ialu_clr_and_mover);
8035 %}
8036 #endif
8037 
8038 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8039   match(Set dst (CmpLTMask p q));
8040   effect( KILL ccr );
8041   ins_cost(DEFAULT_COST*4);
8042   format %{ "CMP    $p,$q\n\t"
8043             "MOV    #0,$dst\n\t"
8044             "BLT,a  .+8\n\t"
8045             "MOV    #-1,$dst" %}
8046   ins_encode( enc_ltmask(p,q,dst) );
8047   ins_pipe(ialu_reg_reg_ialu);
8048 %}
8049 
8050 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8051   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8052   effect(KILL ccr, TEMP tmp);
8053   ins_cost(DEFAULT_COST*3);
8054 
8055   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8056             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8057             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8058   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8059   ins_pipe( cadd_cmpltmask );
8060 %}
8061 
8062 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8063   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
8064   effect( KILL ccr, TEMP tmp);
8065   ins_cost(DEFAULT_COST*3);
8066 
8067   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8068             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8069             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8070   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8071   ins_pipe( cadd_cmpltmask );
8072 %}
8073 
8074 //----------Arithmetic Conversion Instructions---------------------------------
8075 // The conversions operations are all Alpha sorted.  Please keep it that way!
8076 
8077 instruct convD2F_reg(regF dst, regD src) %{
8078   match(Set dst (ConvD2F src));
8079   size(4);
8080   format %{ "FDTOS  $src,$dst" %}
8081   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8082   ins_encode(form3_opf_rs2D_rdF(src, dst));
8083   ins_pipe(fcvtD2F);
8084 %}
8085 
8086 
8087 // Convert a double to an int in a float register.
8088 // If the double is a NAN, stuff a zero in instead.
8089 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8090   effect(DEF dst, USE src, KILL fcc0);
8091   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8092             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8093             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8094             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8095             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8096       "skip:" %}
8097   ins_encode(form_d2i_helper(src,dst));
8098   ins_pipe(fcvtD2I);
8099 %}
8100 
8101 instruct convD2I_reg(stackSlotI dst, regD src) %{
8102   match(Set dst (ConvD2I src));
8103   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8104   expand %{
8105     regF tmp;
8106     convD2I_helper(tmp, src);
8107     regF_to_stkI(dst, tmp);
8108   %}
8109 %}
8110 
8111 // Convert a double to a long in a double register.
8112 // If the double is a NAN, stuff a zero in instead.
8113 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8114   effect(DEF dst, USE src, KILL fcc0);
8115   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8116             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8117             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8118             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8119             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8120       "skip:" %}
8121   ins_encode(form_d2l_helper(src,dst));
8122   ins_pipe(fcvtD2L);
8123 %}
8124 
8125 
8126 // Double to Long conversion
8127 instruct convD2L_reg(stackSlotL dst, regD src) %{
8128   match(Set dst (ConvD2L src));
8129   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8130   expand %{
8131     regD tmp;
8132     convD2L_helper(tmp, src);
8133     regD_to_stkL(dst, tmp);
8134   %}
8135 %}
8136 
8137 
8138 instruct convF2D_reg(regD dst, regF src) %{
8139   match(Set dst (ConvF2D src));
8140   format %{ "FSTOD  $src,$dst" %}
8141   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8142   ins_encode(form3_opf_rs2F_rdD(src, dst));
8143   ins_pipe(fcvtF2D);
8144 %}
8145 
8146 
8147 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8148   effect(DEF dst, USE src, KILL fcc0);
8149   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8150             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8151             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8152             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8153             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8154       "skip:" %}
8155   ins_encode(form_f2i_helper(src,dst));
8156   ins_pipe(fcvtF2I);
8157 %}
8158 
8159 instruct convF2I_reg(stackSlotI dst, regF src) %{
8160   match(Set dst (ConvF2I src));
8161   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8162   expand %{
8163     regF tmp;
8164     convF2I_helper(tmp, src);
8165     regF_to_stkI(dst, tmp);
8166   %}
8167 %}
8168 
8169 
8170 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8171   effect(DEF dst, USE src, KILL fcc0);
8172   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8173             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8174             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8175             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8176             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8177       "skip:" %}
8178   ins_encode(form_f2l_helper(src,dst));
8179   ins_pipe(fcvtF2L);
8180 %}
8181 
8182 // Float to Long conversion
8183 instruct convF2L_reg(stackSlotL dst, regF src) %{
8184   match(Set dst (ConvF2L src));
8185   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8186   expand %{
8187     regD tmp;
8188     convF2L_helper(tmp, src);
8189     regD_to_stkL(dst, tmp);
8190   %}
8191 %}
8192 
8193 
8194 instruct convI2D_helper(regD dst, regF tmp) %{
8195   effect(USE tmp, DEF dst);
8196   format %{ "FITOD  $tmp,$dst" %}
8197   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8198   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8199   ins_pipe(fcvtI2D);
8200 %}
8201 
8202 instruct convI2D_reg(stackSlotI src, regD dst) %{
8203   match(Set dst (ConvI2D src));
8204   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8205   expand %{
8206     regF tmp;
8207     stkI_to_regF( tmp, src);
8208     convI2D_helper( dst, tmp);
8209   %}
8210 %}
8211 
8212 instruct convI2D_mem( regD_low dst, memory mem ) %{
8213   match(Set dst (ConvI2D (LoadI mem)));
8214   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8215   size(8);
8216   format %{ "LDF    $mem,$dst\n\t"
8217             "FITOD  $dst,$dst" %}
8218   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8219   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8220   ins_pipe(floadF_mem);
8221 %}
8222 
8223 
8224 instruct convI2F_helper(regF dst, regF tmp) %{
8225   effect(DEF dst, USE tmp);
8226   format %{ "FITOS  $tmp,$dst" %}
8227   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8228   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8229   ins_pipe(fcvtI2F);
8230 %}
8231 
8232 instruct convI2F_reg( regF dst, stackSlotI src ) %{
8233   match(Set dst (ConvI2F src));
8234   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8235   expand %{
8236     regF tmp;
8237     stkI_to_regF(tmp,src);
8238     convI2F_helper(dst, tmp);
8239   %}
8240 %}
8241 
8242 instruct convI2F_mem( regF dst, memory mem ) %{
8243   match(Set dst (ConvI2F (LoadI mem)));
8244   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8245   size(8);
8246   format %{ "LDF    $mem,$dst\n\t"
8247             "FITOS  $dst,$dst" %}
8248   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8249   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8250   ins_pipe(floadF_mem);
8251 %}
8252 
8253 
8254 instruct convI2L_reg(iRegL dst, iRegI src) %{
8255   match(Set dst (ConvI2L src));
8256   size(4);
8257   format %{ "SRA    $src,0,$dst\t! int->long" %}
8258   opcode(Assembler::sra_op3, Assembler::arith_op);
8259   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8260   ins_pipe(ialu_reg_reg);
8261 %}
8262 
8263 // Zero-extend convert int to long
8264 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8265   match(Set dst (AndL (ConvI2L src) mask) );
8266   size(4);
8267   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8268   opcode(Assembler::srl_op3, Assembler::arith_op);
8269   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8270   ins_pipe(ialu_reg_reg);
8271 %}
8272 
8273 // Zero-extend long
8274 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8275   match(Set dst (AndL src mask) );
8276   size(4);
8277   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8278   opcode(Assembler::srl_op3, Assembler::arith_op);
8279   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8280   ins_pipe(ialu_reg_reg);
8281 %}
8282 
8283 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8284   match(Set dst (MoveF2I src));
8285   effect(DEF dst, USE src);
8286   ins_cost(MEMORY_REF_COST);
8287 
8288   size(4);
8289   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8290   opcode(Assembler::lduw_op3);
8291   ins_encode(simple_form3_mem_reg( src, dst ) );
8292   ins_pipe(iload_mem);
8293 %}
8294 
8295 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8296   match(Set dst (MoveI2F src));
8297   effect(DEF dst, USE src);
8298   ins_cost(MEMORY_REF_COST);
8299 
8300   size(4);
8301   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8302   opcode(Assembler::ldf_op3);
8303   ins_encode(simple_form3_mem_reg(src, dst));
8304   ins_pipe(floadF_stk);
8305 %}
8306 
8307 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8308   match(Set dst (MoveD2L src));
8309   effect(DEF dst, USE src);
8310   ins_cost(MEMORY_REF_COST);
8311 
8312   size(4);
8313   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8314   opcode(Assembler::ldx_op3);
8315   ins_encode(simple_form3_mem_reg( src, dst ) );
8316   ins_pipe(iload_mem);
8317 %}
8318 
8319 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8320   match(Set dst (MoveL2D src));
8321   effect(DEF dst, USE src);
8322   ins_cost(MEMORY_REF_COST);
8323 
8324   size(4);
8325   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8326   opcode(Assembler::lddf_op3);
8327   ins_encode(simple_form3_mem_reg(src, dst));
8328   ins_pipe(floadD_stk);
8329 %}
8330 
8331 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8332   match(Set dst (MoveF2I src));
8333   effect(DEF dst, USE src);
8334   ins_cost(MEMORY_REF_COST);
8335 
8336   size(4);
8337   format %{ "STF   $src,$dst\t!MoveF2I" %}
8338   opcode(Assembler::stf_op3);
8339   ins_encode(simple_form3_mem_reg(dst, src));
8340   ins_pipe(fstoreF_stk_reg);
8341 %}
8342 
8343 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8344   match(Set dst (MoveI2F src));
8345   effect(DEF dst, USE src);
8346   ins_cost(MEMORY_REF_COST);
8347 
8348   size(4);
8349   format %{ "STW    $src,$dst\t!MoveI2F" %}
8350   opcode(Assembler::stw_op3);
8351   ins_encode(simple_form3_mem_reg( dst, src ) );
8352   ins_pipe(istore_mem_reg);
8353 %}
8354 
8355 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8356   match(Set dst (MoveD2L src));
8357   effect(DEF dst, USE src);
8358   ins_cost(MEMORY_REF_COST);
8359 
8360   size(4);
8361   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8362   opcode(Assembler::stdf_op3);
8363   ins_encode(simple_form3_mem_reg(dst, src));
8364   ins_pipe(fstoreD_stk_reg);
8365 %}
8366 
8367 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8368   match(Set dst (MoveL2D src));
8369   effect(DEF dst, USE src);
8370   ins_cost(MEMORY_REF_COST);
8371 
8372   size(4);
8373   format %{ "STX    $src,$dst\t!MoveL2D" %}
8374   opcode(Assembler::stx_op3);
8375   ins_encode(simple_form3_mem_reg( dst, src ) );
8376   ins_pipe(istore_mem_reg);
8377 %}
8378 
8379 
8380 //-----------
8381 // Long to Double conversion using V8 opcodes.
8382 // Still useful because cheetah traps and becomes
8383 // amazingly slow for some common numbers.
8384 
8385 // Magic constant, 0x43300000
8386 instruct loadConI_x43300000(iRegI dst) %{
8387   effect(DEF dst);
8388   size(4);
8389   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8390   ins_encode(SetHi22(0x43300000, dst));
8391   ins_pipe(ialu_none);
8392 %}
8393 
8394 // Magic constant, 0x41f00000
8395 instruct loadConI_x41f00000(iRegI dst) %{
8396   effect(DEF dst);
8397   size(4);
8398   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8399   ins_encode(SetHi22(0x41f00000, dst));
8400   ins_pipe(ialu_none);
8401 %}
8402 
8403 // Construct a double from two float halves
8404 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8405   effect(DEF dst, USE src1, USE src2);
8406   size(8);
8407   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8408             "FMOVS  $src2.lo,$dst.lo" %}
8409   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8410   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8411   ins_pipe(faddD_reg_reg);
8412 %}
8413 
8414 // Convert integer in high half of a double register (in the lower half of
8415 // the double register file) to double
8416 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8417   effect(DEF dst, USE src);
8418   size(4);
8419   format %{ "FITOD  $src,$dst" %}
8420   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8421   ins_encode(form3_opf_rs2D_rdD(src, dst));
8422   ins_pipe(fcvtLHi2D);
8423 %}
8424 
8425 // Add float double precision
8426 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8427   effect(DEF dst, USE src1, USE src2);
8428   size(4);
8429   format %{ "FADDD  $src1,$src2,$dst" %}
8430   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8431   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8432   ins_pipe(faddD_reg_reg);
8433 %}
8434 
8435 // Sub float double precision
8436 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8437   effect(DEF dst, USE src1, USE src2);
8438   size(4);
8439   format %{ "FSUBD  $src1,$src2,$dst" %}
8440   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8441   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8442   ins_pipe(faddD_reg_reg);
8443 %}
8444 
8445 // Mul float double precision
8446 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8447   effect(DEF dst, USE src1, USE src2);
8448   size(4);
8449   format %{ "FMULD  $src1,$src2,$dst" %}
8450   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8451   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8452   ins_pipe(fmulD_reg_reg);
8453 %}
8454 
8455 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8456   match(Set dst (ConvL2D src));
8457   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8458 
8459   expand %{
8460     regD_low   tmpsrc;
8461     iRegI      ix43300000;
8462     iRegI      ix41f00000;
8463     stackSlotL lx43300000;
8464     stackSlotL lx41f00000;
8465     regD_low   dx43300000;
8466     regD       dx41f00000;
8467     regD       tmp1;
8468     regD_low   tmp2;
8469     regD       tmp3;
8470     regD       tmp4;
8471 
8472     stkL_to_regD(tmpsrc, src);
8473 
8474     loadConI_x43300000(ix43300000);
8475     loadConI_x41f00000(ix41f00000);
8476     regI_to_stkLHi(lx43300000, ix43300000);
8477     regI_to_stkLHi(lx41f00000, ix41f00000);
8478     stkL_to_regD(dx43300000, lx43300000);
8479     stkL_to_regD(dx41f00000, lx41f00000);
8480 
8481     convI2D_regDHi_regD(tmp1, tmpsrc);
8482     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8483     subD_regD_regD(tmp3, tmp2, dx43300000);
8484     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8485     addD_regD_regD(dst, tmp3, tmp4);
8486   %}
8487 %}
8488 
8489 // Long to Double conversion using fast fxtof
8490 instruct convL2D_helper(regD dst, regD tmp) %{
8491   effect(DEF dst, USE tmp);
8492   size(4);
8493   format %{ "FXTOD  $tmp,$dst" %}
8494   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8495   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8496   ins_pipe(fcvtL2D);
8497 %}
8498 
8499 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8500   predicate(VM_Version::has_fast_fxtof());
8501   match(Set dst (ConvL2D src));
8502   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8503   expand %{
8504     regD tmp;
8505     stkL_to_regD(tmp, src);
8506     convL2D_helper(dst, tmp);
8507   %}
8508 %}
8509 
8510 //-----------
8511 // Long to Float conversion using V8 opcodes.
8512 // Still useful because cheetah traps and becomes
8513 // amazingly slow for some common numbers.
8514 
8515 // Long to Float conversion using fast fxtof
8516 instruct convL2F_helper(regF dst, regD tmp) %{
8517   effect(DEF dst, USE tmp);
8518   size(4);
8519   format %{ "FXTOS  $tmp,$dst" %}
8520   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8521   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8522   ins_pipe(fcvtL2F);
8523 %}
8524 
8525 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8526   match(Set dst (ConvL2F src));
8527   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8528   expand %{
8529     regD tmp;
8530     stkL_to_regD(tmp, src);
8531     convL2F_helper(dst, tmp);
8532   %}
8533 %}
8534 //-----------
8535 
8536 instruct convL2I_reg(iRegI dst, iRegL src) %{
8537   match(Set dst (ConvL2I src));
8538 #ifndef _LP64
8539   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8540   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8541   ins_pipe(ialu_move_reg_I_to_L);
8542 #else
8543   size(4);
8544   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8545   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8546   ins_pipe(ialu_reg);
8547 #endif
8548 %}
8549 
8550 // Register Shift Right Immediate
8551 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8552   match(Set dst (ConvL2I (RShiftL src cnt)));
8553 
8554   size(4);
8555   format %{ "SRAX   $src,$cnt,$dst" %}
8556   opcode(Assembler::srax_op3, Assembler::arith_op);
8557   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8558   ins_pipe(ialu_reg_imm);
8559 %}
8560 
8561 // Replicate scalar to packed byte values in Double register
8562 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8563   effect(DEF dst, USE src);
8564   format %{ "SLLX  $src,56,$dst\n\t"
8565             "SRLX  $dst, 8,O7\n\t"
8566             "OR    $dst,O7,$dst\n\t"
8567             "SRLX  $dst,16,O7\n\t"
8568             "OR    $dst,O7,$dst\n\t"
8569             "SRLX  $dst,32,O7\n\t"
8570             "OR    $dst,O7,$dst\t! replicate8B" %}
8571   ins_encode( enc_repl8b(src, dst));
8572   ins_pipe(ialu_reg);
8573 %}
8574 
8575 // Replicate scalar to packed byte values in Double register
8576 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8577   match(Set dst (Replicate8B src));
8578   expand %{
8579     iRegL tmp;
8580     Repl8B_reg_helper(tmp, src);
8581     regL_to_stkD(dst, tmp);
8582   %}
8583 %}
8584 
8585 // Replicate scalar constant to packed byte values in Double register
8586 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8587   match(Set dst (Replicate8B src));
8588 #ifdef _LP64
8589   size(36);
8590 #else
8591   size(8);
8592 #endif
8593   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8594             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8595   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8596   ins_pipe(loadConFD);
8597 %}
8598 
8599 // Replicate scalar to packed char values into stack slot
8600 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8601   effect(DEF dst, USE src);
8602   format %{ "SLLX  $src,48,$dst\n\t"
8603             "SRLX  $dst,16,O7\n\t"
8604             "OR    $dst,O7,$dst\n\t"
8605             "SRLX  $dst,32,O7\n\t"
8606             "OR    $dst,O7,$dst\t! replicate4C" %}
8607   ins_encode( enc_repl4s(src, dst) );
8608   ins_pipe(ialu_reg);
8609 %}
8610 
8611 // Replicate scalar to packed char values into stack slot
8612 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8613   match(Set dst (Replicate4C src));
8614   expand %{
8615     iRegL tmp;
8616     Repl4C_reg_helper(tmp, src);
8617     regL_to_stkD(dst, tmp);
8618   %}
8619 %}
8620 
8621 // Replicate scalar constant to packed char values in Double register
8622 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8623   match(Set dst (Replicate4C src));
8624 #ifdef _LP64
8625   size(36);
8626 #else
8627   size(8);
8628 #endif
8629   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8630             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8631   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8632   ins_pipe(loadConFD);
8633 %}
8634 
8635 // Replicate scalar to packed short values into stack slot
8636 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8637   effect(DEF dst, USE src);
8638   format %{ "SLLX  $src,48,$dst\n\t"
8639             "SRLX  $dst,16,O7\n\t"
8640             "OR    $dst,O7,$dst\n\t"
8641             "SRLX  $dst,32,O7\n\t"
8642             "OR    $dst,O7,$dst\t! replicate4S" %}
8643   ins_encode( enc_repl4s(src, dst) );
8644   ins_pipe(ialu_reg);
8645 %}
8646 
8647 // Replicate scalar to packed short values into stack slot
8648 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8649   match(Set dst (Replicate4S src));
8650   expand %{
8651     iRegL tmp;
8652     Repl4S_reg_helper(tmp, src);
8653     regL_to_stkD(dst, tmp);
8654   %}
8655 %}
8656 
8657 // Replicate scalar constant to packed short values in Double register
8658 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8659   match(Set dst (Replicate4S src));
8660 #ifdef _LP64
8661   size(36);
8662 #else
8663   size(8);
8664 #endif
8665   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8666             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8667   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8668   ins_pipe(loadConFD);
8669 %}
8670 
8671 // Replicate scalar to packed int values in Double register
8672 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8673   effect(DEF dst, USE src);
8674   format %{ "SLLX  $src,32,$dst\n\t"
8675             "SRLX  $dst,32,O7\n\t"
8676             "OR    $dst,O7,$dst\t! replicate2I" %}
8677   ins_encode( enc_repl2i(src, dst));
8678   ins_pipe(ialu_reg);
8679 %}
8680 
8681 // Replicate scalar to packed int values in Double register
8682 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8683   match(Set dst (Replicate2I src));
8684   expand %{
8685     iRegL tmp;
8686     Repl2I_reg_helper(tmp, src);
8687     regL_to_stkD(dst, tmp);
8688   %}
8689 %}
8690 
8691 // Replicate scalar zero constant to packed int values in Double register
8692 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8693   match(Set dst (Replicate2I src));
8694 #ifdef _LP64
8695   size(36);
8696 #else
8697   size(8);
8698 #endif
8699   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8700             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8701   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8702   ins_pipe(loadConFD);
8703 %}
8704 
8705 //----------Control Flow Instructions------------------------------------------
8706 // Compare Instructions
8707 // Compare Integers
8708 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8709   match(Set icc (CmpI op1 op2));
8710   effect( DEF icc, USE op1, USE op2 );
8711 
8712   size(4);
8713   format %{ "CMP    $op1,$op2" %}
8714   opcode(Assembler::subcc_op3, Assembler::arith_op);
8715   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8716   ins_pipe(ialu_cconly_reg_reg);
8717 %}
8718 
8719 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8720   match(Set icc (CmpU op1 op2));
8721 
8722   size(4);
8723   format %{ "CMP    $op1,$op2\t! unsigned" %}
8724   opcode(Assembler::subcc_op3, Assembler::arith_op);
8725   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8726   ins_pipe(ialu_cconly_reg_reg);
8727 %}
8728 
8729 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8730   match(Set icc (CmpI op1 op2));
8731   effect( DEF icc, USE op1 );
8732 
8733   size(4);
8734   format %{ "CMP    $op1,$op2" %}
8735   opcode(Assembler::subcc_op3, Assembler::arith_op);
8736   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8737   ins_pipe(ialu_cconly_reg_imm);
8738 %}
8739 
8740 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8741   match(Set icc (CmpI (AndI op1 op2) zero));
8742 
8743   size(4);
8744   format %{ "BTST   $op2,$op1" %}
8745   opcode(Assembler::andcc_op3, Assembler::arith_op);
8746   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8747   ins_pipe(ialu_cconly_reg_reg_zero);
8748 %}
8749 
8750 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8751   match(Set icc (CmpI (AndI op1 op2) zero));
8752 
8753   size(4);
8754   format %{ "BTST   $op2,$op1" %}
8755   opcode(Assembler::andcc_op3, Assembler::arith_op);
8756   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8757   ins_pipe(ialu_cconly_reg_imm_zero);
8758 %}
8759 
8760 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8761   match(Set xcc (CmpL op1 op2));
8762   effect( DEF xcc, USE op1, USE op2 );
8763 
8764   size(4);
8765   format %{ "CMP    $op1,$op2\t\t! long" %}
8766   opcode(Assembler::subcc_op3, Assembler::arith_op);
8767   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8768   ins_pipe(ialu_cconly_reg_reg);
8769 %}
8770 
8771 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8772   match(Set xcc (CmpL op1 con));
8773   effect( DEF xcc, USE op1, USE con );
8774 
8775   size(4);
8776   format %{ "CMP    $op1,$con\t\t! long" %}
8777   opcode(Assembler::subcc_op3, Assembler::arith_op);
8778   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8779   ins_pipe(ialu_cconly_reg_reg);
8780 %}
8781 
8782 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8783   match(Set xcc (CmpL (AndL op1 op2) zero));
8784   effect( DEF xcc, USE op1, USE op2 );
8785 
8786   size(4);
8787   format %{ "BTST   $op1,$op2\t\t! long" %}
8788   opcode(Assembler::andcc_op3, Assembler::arith_op);
8789   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8790   ins_pipe(ialu_cconly_reg_reg);
8791 %}
8792 
8793 // useful for checking the alignment of a pointer:
8794 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8795   match(Set xcc (CmpL (AndL op1 con) zero));
8796   effect( DEF xcc, USE op1, USE con );
8797 
8798   size(4);
8799   format %{ "BTST   $op1,$con\t\t! long" %}
8800   opcode(Assembler::andcc_op3, Assembler::arith_op);
8801   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8802   ins_pipe(ialu_cconly_reg_reg);
8803 %}
8804 
8805 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8806   match(Set icc (CmpU op1 op2));
8807 
8808   size(4);
8809   format %{ "CMP    $op1,$op2\t! unsigned" %}
8810   opcode(Assembler::subcc_op3, Assembler::arith_op);
8811   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8812   ins_pipe(ialu_cconly_reg_imm);
8813 %}
8814 
8815 // Compare Pointers
8816 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8817   match(Set pcc (CmpP op1 op2));
8818 
8819   size(4);
8820   format %{ "CMP    $op1,$op2\t! ptr" %}
8821   opcode(Assembler::subcc_op3, Assembler::arith_op);
8822   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8823   ins_pipe(ialu_cconly_reg_reg);
8824 %}
8825 
8826 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8827   match(Set pcc (CmpP op1 op2));
8828 
8829   size(4);
8830   format %{ "CMP    $op1,$op2\t! ptr" %}
8831   opcode(Assembler::subcc_op3, Assembler::arith_op);
8832   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8833   ins_pipe(ialu_cconly_reg_imm);
8834 %}
8835 
8836 // Compare Narrow oops
8837 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8838   match(Set icc (CmpN op1 op2));
8839 
8840   size(4);
8841   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8842   opcode(Assembler::subcc_op3, Assembler::arith_op);
8843   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8844   ins_pipe(ialu_cconly_reg_reg);
8845 %}
8846 
8847 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8848   match(Set icc (CmpN op1 op2));
8849 
8850   size(4);
8851   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8852   opcode(Assembler::subcc_op3, Assembler::arith_op);
8853   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8854   ins_pipe(ialu_cconly_reg_imm);
8855 %}
8856 
8857 //----------Max and Min--------------------------------------------------------
8858 // Min Instructions
8859 // Conditional move for min
8860 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8861   effect( USE_DEF op2, USE op1, USE icc );
8862 
8863   size(4);
8864   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8865   opcode(Assembler::less);
8866   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8867   ins_pipe(ialu_reg_flags);
8868 %}
8869 
8870 // Min Register with Register.
8871 instruct minI_eReg(iRegI op1, iRegI op2) %{
8872   match(Set op2 (MinI op1 op2));
8873   ins_cost(DEFAULT_COST*2);
8874   expand %{
8875     flagsReg icc;
8876     compI_iReg(icc,op1,op2);
8877     cmovI_reg_lt(op2,op1,icc);
8878   %}
8879 %}
8880 
8881 // Max Instructions
8882 // Conditional move for max
8883 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8884   effect( USE_DEF op2, USE op1, USE icc );
8885   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8886   opcode(Assembler::greater);
8887   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8888   ins_pipe(ialu_reg_flags);
8889 %}
8890 
8891 // Max Register with Register
8892 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8893   match(Set op2 (MaxI op1 op2));
8894   ins_cost(DEFAULT_COST*2);
8895   expand %{
8896     flagsReg icc;
8897     compI_iReg(icc,op1,op2);
8898     cmovI_reg_gt(op2,op1,icc);
8899   %}
8900 %}
8901 
8902 
8903 //----------Float Compares----------------------------------------------------
8904 // Compare floating, generate condition code
8905 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8906   match(Set fcc (CmpF src1 src2));
8907 
8908   size(4);
8909   format %{ "FCMPs  $fcc,$src1,$src2" %}
8910   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8911   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8912   ins_pipe(faddF_fcc_reg_reg_zero);
8913 %}
8914 
8915 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8916   match(Set fcc (CmpD src1 src2));
8917 
8918   size(4);
8919   format %{ "FCMPd  $fcc,$src1,$src2" %}
8920   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8921   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8922   ins_pipe(faddD_fcc_reg_reg_zero);
8923 %}
8924 
8925 
8926 // Compare floating, generate -1,0,1
8927 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8928   match(Set dst (CmpF3 src1 src2));
8929   effect(KILL fcc0);
8930   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8931   format %{ "fcmpl  $dst,$src1,$src2" %}
8932   // Primary = float
8933   opcode( true );
8934   ins_encode( floating_cmp( dst, src1, src2 ) );
8935   ins_pipe( floating_cmp );
8936 %}
8937 
8938 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8939   match(Set dst (CmpD3 src1 src2));
8940   effect(KILL fcc0);
8941   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8942   format %{ "dcmpl  $dst,$src1,$src2" %}
8943   // Primary = double (not float)
8944   opcode( false );
8945   ins_encode( floating_cmp( dst, src1, src2 ) );
8946   ins_pipe( floating_cmp );
8947 %}
8948 
8949 //----------Branches---------------------------------------------------------
8950 // Jump
8951 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8952 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8953   match(Jump switch_val);
8954 
8955   ins_cost(350);
8956 
8957   format %{  "SETHI  [hi(table_base)],O7\n\t"
8958              "ADD    O7, lo(table_base), O7\n\t"
8959              "LD     [O7+$switch_val], O7\n\t"
8960              "JUMP   O7"
8961          %}
8962   ins_encode( jump_enc( switch_val, table) );
8963   ins_pc_relative(1);
8964   ins_pipe(ialu_reg_reg);
8965 %}
8966 
8967 // Direct Branch.  Use V8 version with longer range.
8968 instruct branch(label labl) %{
8969   match(Goto);
8970   effect(USE labl);
8971 
8972   size(8);
8973   ins_cost(BRANCH_COST);
8974   format %{ "BA     $labl" %}
8975   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8976   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8977   ins_encode( enc_ba( labl ) );
8978   ins_pc_relative(1);
8979   ins_pipe(br);
8980 %}
8981 
8982 // Conditional Direct Branch
8983 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8984   match(If cmp icc);
8985   effect(USE labl);
8986 
8987   size(8);
8988   ins_cost(BRANCH_COST);
8989   format %{ "BP$cmp   $icc,$labl" %}
8990   // Prim = bits 24-22, Secnd = bits 31-30
8991   ins_encode( enc_bp( labl, cmp, icc ) );
8992   ins_pc_relative(1);
8993   ins_pipe(br_cc);
8994 %}
8995 
8996 // Branch-on-register tests all 64 bits.  We assume that values
8997 // in 64-bit registers always remains zero or sign extended
8998 // unless our code munges the high bits.  Interrupts can chop
8999 // the high order bits to zero or sign at any time.
9000 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9001   match(If cmp (CmpI op1 zero));
9002   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9003   effect(USE labl);
9004 
9005   size(8);
9006   ins_cost(BRANCH_COST);
9007   format %{ "BR$cmp   $op1,$labl" %}
9008   ins_encode( enc_bpr( labl, cmp, op1 ) );
9009   ins_pc_relative(1);
9010   ins_pipe(br_reg);
9011 %}
9012 
9013 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9014   match(If cmp (CmpP op1 null));
9015   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9016   effect(USE labl);
9017 
9018   size(8);
9019   ins_cost(BRANCH_COST);
9020   format %{ "BR$cmp   $op1,$labl" %}
9021   ins_encode( enc_bpr( labl, cmp, op1 ) );
9022   ins_pc_relative(1);
9023   ins_pipe(br_reg);
9024 %}
9025 
9026 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9027   match(If cmp (CmpL op1 zero));
9028   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9029   effect(USE labl);
9030 
9031   size(8);
9032   ins_cost(BRANCH_COST);
9033   format %{ "BR$cmp   $op1,$labl" %}
9034   ins_encode( enc_bpr( labl, cmp, op1 ) );
9035   ins_pc_relative(1);
9036   ins_pipe(br_reg);
9037 %}
9038 
9039 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9040   match(If cmp icc);
9041   effect(USE labl);
9042 
9043   format %{ "BP$cmp  $icc,$labl" %}
9044   // Prim = bits 24-22, Secnd = bits 31-30
9045   ins_encode( enc_bp( labl, cmp, icc ) );
9046   ins_pc_relative(1);
9047   ins_pipe(br_cc);
9048 %}
9049 
9050 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9051   match(If cmp pcc);
9052   effect(USE labl);
9053 
9054   size(8);
9055   ins_cost(BRANCH_COST);
9056   format %{ "BP$cmp  $pcc,$labl" %}
9057   // Prim = bits 24-22, Secnd = bits 31-30
9058   ins_encode( enc_bpx( labl, cmp, pcc ) );
9059   ins_pc_relative(1);
9060   ins_pipe(br_cc);
9061 %}
9062 
9063 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9064   match(If cmp fcc);
9065   effect(USE labl);
9066 
9067   size(8);
9068   ins_cost(BRANCH_COST);
9069   format %{ "FBP$cmp $fcc,$labl" %}
9070   // Prim = bits 24-22, Secnd = bits 31-30
9071   ins_encode( enc_fbp( labl, cmp, fcc ) );
9072   ins_pc_relative(1);
9073   ins_pipe(br_fcc);
9074 %}
9075 
9076 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9077   match(CountedLoopEnd cmp icc);
9078   effect(USE labl);
9079 
9080   size(8);
9081   ins_cost(BRANCH_COST);
9082   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9083   // Prim = bits 24-22, Secnd = bits 31-30
9084   ins_encode( enc_bp( labl, cmp, icc ) );
9085   ins_pc_relative(1);
9086   ins_pipe(br_cc);
9087 %}
9088 
9089 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9090   match(CountedLoopEnd cmp icc);
9091   effect(USE labl);
9092 
9093   size(8);
9094   ins_cost(BRANCH_COST);
9095   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9096   // Prim = bits 24-22, Secnd = bits 31-30
9097   ins_encode( enc_bp( labl, cmp, icc ) );
9098   ins_pc_relative(1);
9099   ins_pipe(br_cc);
9100 %}
9101 
9102 // ============================================================================
9103 // Long Compare
9104 //
9105 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9106 // is tricky.  The flavor of compare used depends on whether we are testing
9107 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9108 // The GE test is the negated LT test.  The LE test can be had by commuting
9109 // the operands (yielding a GE test) and then negating; negate again for the
9110 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9111 // NE test is negated from that.
9112 
9113 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9114 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9115 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9116 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9117 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9118 // foo match ends up with the wrong leaf.  One fix is to not match both
9119 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9120 // both forms beat the trinary form of long-compare and both are very useful
9121 // on Intel which has so few registers.
9122 
9123 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9124   match(If cmp xcc);
9125   effect(USE labl);
9126 
9127   size(8);
9128   ins_cost(BRANCH_COST);
9129   format %{ "BP$cmp   $xcc,$labl" %}
9130   // Prim = bits 24-22, Secnd = bits 31-30
9131   ins_encode( enc_bpl( labl, cmp, xcc ) );
9132   ins_pc_relative(1);
9133   ins_pipe(br_cc);
9134 %}
9135 
9136 // Manifest a CmpL3 result in an integer register.  Very painful.
9137 // This is the test to avoid.
9138 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9139   match(Set dst (CmpL3 src1 src2) );
9140   effect( KILL ccr );
9141   ins_cost(6*DEFAULT_COST);
9142   size(24);
9143   format %{ "CMP    $src1,$src2\t\t! long\n"
9144           "\tBLT,a,pn done\n"
9145           "\tMOV    -1,$dst\t! delay slot\n"
9146           "\tBGT,a,pn done\n"
9147           "\tMOV    1,$dst\t! delay slot\n"
9148           "\tCLR    $dst\n"
9149     "done:"     %}
9150   ins_encode( cmpl_flag(src1,src2,dst) );
9151   ins_pipe(cmpL_reg);
9152 %}
9153 
9154 // Conditional move
9155 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9156   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9157   ins_cost(150);
9158   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9159   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9160   ins_pipe(ialu_reg);
9161 %}
9162 
9163 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9164   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9165   ins_cost(140);
9166   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9167   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9168   ins_pipe(ialu_imm);
9169 %}
9170 
9171 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9172   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9173   ins_cost(150);
9174   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9175   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9176   ins_pipe(ialu_reg);
9177 %}
9178 
9179 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9180   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9181   ins_cost(140);
9182   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9183   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9184   ins_pipe(ialu_imm);
9185 %}
9186 
9187 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9188   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9189   ins_cost(150);
9190   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9191   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9192   ins_pipe(ialu_reg);
9193 %}
9194 
9195 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9196   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9197   ins_cost(150);
9198   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9199   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9200   ins_pipe(ialu_reg);
9201 %}
9202 
9203 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9204   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9205   ins_cost(140);
9206   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9207   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9208   ins_pipe(ialu_imm);
9209 %}
9210 
9211 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9212   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9213   ins_cost(150);
9214   opcode(0x101);
9215   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9216   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9217   ins_pipe(int_conditional_float_move);
9218 %}
9219 
9220 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9221   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9222   ins_cost(150);
9223   opcode(0x102);
9224   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9225   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9226   ins_pipe(int_conditional_float_move);
9227 %}
9228 
9229 // ============================================================================
9230 // Safepoint Instruction
9231 instruct safePoint_poll(iRegP poll) %{
9232   match(SafePoint poll);
9233   effect(USE poll);
9234 
9235   size(4);
9236 #ifdef _LP64
9237   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9238 #else
9239   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9240 #endif
9241   ins_encode %{
9242     __ relocate(relocInfo::poll_type);
9243     __ ld_ptr($poll$$Register, 0, G0);
9244   %}
9245   ins_pipe(loadPollP);
9246 %}
9247 
9248 // ============================================================================
9249 // Call Instructions
9250 // Call Java Static Instruction
9251 instruct CallStaticJavaDirect( method meth ) %{
9252   match(CallStaticJava);
9253   effect(USE meth);
9254 
9255   size(8);
9256   ins_cost(CALL_COST);
9257   format %{ "CALL,static  ; NOP ==> " %}
9258   ins_encode( Java_Static_Call( meth ), call_epilog );
9259   ins_pc_relative(1);
9260   ins_pipe(simple_call);
9261 %}
9262 
9263 // Call Java Dynamic Instruction
9264 instruct CallDynamicJavaDirect( method meth ) %{
9265   match(CallDynamicJava);
9266   effect(USE meth);
9267 
9268   ins_cost(CALL_COST);
9269   format %{ "SET    (empty),R_G5\n\t"
9270             "CALL,dynamic  ; NOP ==> " %}
9271   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9272   ins_pc_relative(1);
9273   ins_pipe(call);
9274 %}
9275 
9276 // Call Runtime Instruction
9277 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9278   match(CallRuntime);
9279   effect(USE meth, KILL l7);
9280   ins_cost(CALL_COST);
9281   format %{ "CALL,runtime" %}
9282   ins_encode( Java_To_Runtime( meth ),
9283               call_epilog, adjust_long_from_native_call );
9284   ins_pc_relative(1);
9285   ins_pipe(simple_call);
9286 %}
9287 
9288 // Call runtime without safepoint - same as CallRuntime
9289 instruct CallLeafDirect(method meth, l7RegP l7) %{
9290   match(CallLeaf);
9291   effect(USE meth, KILL l7);
9292   ins_cost(CALL_COST);
9293   format %{ "CALL,runtime leaf" %}
9294   ins_encode( Java_To_Runtime( meth ),
9295               call_epilog,
9296               adjust_long_from_native_call );
9297   ins_pc_relative(1);
9298   ins_pipe(simple_call);
9299 %}
9300 
9301 // Call runtime without safepoint - same as CallLeaf
9302 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9303   match(CallLeafNoFP);
9304   effect(USE meth, KILL l7);
9305   ins_cost(CALL_COST);
9306   format %{ "CALL,runtime leaf nofp" %}
9307   ins_encode( Java_To_Runtime( meth ),
9308               call_epilog,
9309               adjust_long_from_native_call );
9310   ins_pc_relative(1);
9311   ins_pipe(simple_call);
9312 %}
9313 
9314 // Tail Call; Jump from runtime stub to Java code.
9315 // Also known as an 'interprocedural jump'.
9316 // Target of jump will eventually return to caller.
9317 // TailJump below removes the return address.
9318 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9319   match(TailCall jump_target method_oop );
9320 
9321   ins_cost(CALL_COST);
9322   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9323   ins_encode(form_jmpl(jump_target));
9324   ins_pipe(tail_call);
9325 %}
9326 
9327 
9328 // Return Instruction
9329 instruct Ret() %{
9330   match(Return);
9331 
9332   // The epilogue node did the ret already.
9333   size(0);
9334   format %{ "! return" %}
9335   ins_encode();
9336   ins_pipe(empty);
9337 %}
9338 
9339 
9340 // Tail Jump; remove the return address; jump to target.
9341 // TailCall above leaves the return address around.
9342 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9343 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9344 // "restore" before this instruction (in Epilogue), we need to materialize it
9345 // in %i0.
9346 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9347   match( TailJump jump_target ex_oop );
9348   ins_cost(CALL_COST);
9349   format %{ "! discard R_O7\n\t"
9350             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9351   ins_encode(form_jmpl_set_exception_pc(jump_target));
9352   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9353   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9354   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9355   ins_pipe(tail_call);
9356 %}
9357 
9358 // Create exception oop: created by stack-crawling runtime code.
9359 // Created exception is now available to this handler, and is setup
9360 // just prior to jumping to this handler.  No code emitted.
9361 instruct CreateException( o0RegP ex_oop )
9362 %{
9363   match(Set ex_oop (CreateEx));
9364   ins_cost(0);
9365 
9366   size(0);
9367   // use the following format syntax
9368   format %{ "! exception oop is in R_O0; no code emitted" %}
9369   ins_encode();
9370   ins_pipe(empty);
9371 %}
9372 
9373 
9374 // Rethrow exception:
9375 // The exception oop will come in the first argument position.
9376 // Then JUMP (not call) to the rethrow stub code.
9377 instruct RethrowException()
9378 %{
9379   match(Rethrow);
9380   ins_cost(CALL_COST);
9381 
9382   // use the following format syntax
9383   format %{ "Jmp    rethrow_stub" %}
9384   ins_encode(enc_rethrow);
9385   ins_pipe(tail_call);
9386 %}
9387 
9388 
9389 // Die now
9390 instruct ShouldNotReachHere( )
9391 %{
9392   match(Halt);
9393   ins_cost(CALL_COST);
9394 
9395   size(4);
9396   // Use the following format syntax
9397   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9398   ins_encode( form2_illtrap() );
9399   ins_pipe(tail_call);
9400 %}
9401 
9402 // ============================================================================
9403 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9404 // array for an instance of the superklass.  Set a hidden internal cache on a
9405 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9406 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9407 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9408   match(Set index (PartialSubtypeCheck sub super));
9409   effect( KILL pcc, KILL o7 );
9410   ins_cost(DEFAULT_COST*10);
9411   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9412   ins_encode( enc_PartialSubtypeCheck() );
9413   ins_pipe(partial_subtype_check_pipe);
9414 %}
9415 
9416 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9417   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9418   effect( KILL idx, KILL o7 );
9419   ins_cost(DEFAULT_COST*10);
9420   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9421   ins_encode( enc_PartialSubtypeCheck() );
9422   ins_pipe(partial_subtype_check_pipe);
9423 %}
9424 
9425 
9426 // ============================================================================
9427 // inlined locking and unlocking
9428 
9429 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9430   match(Set pcc (FastLock object box));
9431 
9432   effect(KILL scratch, TEMP scratch2);
9433   ins_cost(100);
9434 
9435   size(4*112);       // conservative overestimation ...
9436   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9437   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9438   ins_pipe(long_memory_op);
9439 %}
9440 
9441 
9442 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9443   match(Set pcc (FastUnlock object box));
9444   effect(KILL scratch, TEMP scratch2);
9445   ins_cost(100);
9446 
9447   size(4*120);       // conservative overestimation ...
9448   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9449   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9450   ins_pipe(long_memory_op);
9451 %}
9452 
9453 // Count and Base registers are fixed because the allocator cannot
9454 // kill unknown registers.  The encodings are generic.
9455 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9456   match(Set dummy (ClearArray cnt base));
9457   effect(TEMP temp, KILL ccr);
9458   ins_cost(300);
9459   format %{ "MOV    $cnt,$temp\n"
9460     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9461     "        BRge   loop\t\t! Clearing loop\n"
9462     "        STX    G0,[$base+$temp]\t! delay slot" %}
9463   ins_encode( enc_Clear_Array(cnt, base, temp) );
9464   ins_pipe(long_memory_op);
9465 %}
9466 
9467 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9468                         o7RegI tmp, flagsReg ccr) %{
9469   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9470   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9471   ins_cost(300);
9472   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9473   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9474   ins_pipe(long_memory_op);
9475 %}
9476 
9477 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9478                        o7RegI tmp, flagsReg ccr) %{
9479   match(Set result (StrEquals (Binary str1 str2) cnt));
9480   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9481   ins_cost(300);
9482   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9483   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9484   ins_pipe(long_memory_op);
9485 %}
9486 
9487 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9488                       o7RegI tmp2, flagsReg ccr) %{
9489   match(Set result (AryEq ary1 ary2));
9490   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9491   ins_cost(300);
9492   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9493   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9494   ins_pipe(long_memory_op);
9495 %}
9496 
9497 
9498 //---------- Zeros Count Instructions ------------------------------------------
9499 
9500 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9501   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9502   match(Set dst (CountLeadingZerosI src));
9503   effect(TEMP dst, TEMP tmp, KILL cr);
9504 
9505   // x |= (x >> 1);
9506   // x |= (x >> 2);
9507   // x |= (x >> 4);
9508   // x |= (x >> 8);
9509   // x |= (x >> 16);
9510   // return (WORDBITS - popc(x));
9511   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9512             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9513             "OR      $dst,$tmp,$dst\n\t"
9514             "SRL     $dst,2,$tmp\n\t"
9515             "OR      $dst,$tmp,$dst\n\t"
9516             "SRL     $dst,4,$tmp\n\t"
9517             "OR      $dst,$tmp,$dst\n\t"
9518             "SRL     $dst,8,$tmp\n\t"
9519             "OR      $dst,$tmp,$dst\n\t"
9520             "SRL     $dst,16,$tmp\n\t"
9521             "OR      $dst,$tmp,$dst\n\t"
9522             "POPC    $dst,$dst\n\t"
9523             "MOV     32,$tmp\n\t"
9524             "SUB     $tmp,$dst,$dst" %}
9525   ins_encode %{
9526     Register Rdst = $dst$$Register;
9527     Register Rsrc = $src$$Register;
9528     Register Rtmp = $tmp$$Register;
9529     __ srl(Rsrc, 1, Rtmp);
9530     __ srl(Rsrc, 0, Rdst);
9531     __ or3(Rdst, Rtmp, Rdst);
9532     __ srl(Rdst, 2, Rtmp);
9533     __ or3(Rdst, Rtmp, Rdst);
9534     __ srl(Rdst, 4, Rtmp);
9535     __ or3(Rdst, Rtmp, Rdst);
9536     __ srl(Rdst, 8, Rtmp);
9537     __ or3(Rdst, Rtmp, Rdst);
9538     __ srl(Rdst, 16, Rtmp);
9539     __ or3(Rdst, Rtmp, Rdst);
9540     __ popc(Rdst, Rdst);
9541     __ mov(BitsPerInt, Rtmp);
9542     __ sub(Rtmp, Rdst, Rdst);
9543   %}
9544   ins_pipe(ialu_reg);
9545 %}
9546 
9547 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
9548   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9549   match(Set dst (CountLeadingZerosL src));
9550   effect(TEMP dst, TEMP tmp, KILL cr);
9551 
9552   // x |= (x >> 1);
9553   // x |= (x >> 2);
9554   // x |= (x >> 4);
9555   // x |= (x >> 8);
9556   // x |= (x >> 16);
9557   // x |= (x >> 32);
9558   // return (WORDBITS - popc(x));
9559   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9560             "OR      $src,$tmp,$dst\n\t"
9561             "SRLX    $dst,2,$tmp\n\t"
9562             "OR      $dst,$tmp,$dst\n\t"
9563             "SRLX    $dst,4,$tmp\n\t"
9564             "OR      $dst,$tmp,$dst\n\t"
9565             "SRLX    $dst,8,$tmp\n\t"
9566             "OR      $dst,$tmp,$dst\n\t"
9567             "SRLX    $dst,16,$tmp\n\t"
9568             "OR      $dst,$tmp,$dst\n\t"
9569             "SRLX    $dst,32,$tmp\n\t"
9570             "OR      $dst,$tmp,$dst\n\t"
9571             "POPC    $dst,$dst\n\t"
9572             "MOV     64,$tmp\n\t"
9573             "SUB     $tmp,$dst,$dst" %}
9574   ins_encode %{
9575     Register Rdst = $dst$$Register;
9576     Register Rsrc = $src$$Register;
9577     Register Rtmp = $tmp$$Register;
9578     __ srlx(Rsrc, 1, Rtmp);
9579     __ or3(Rsrc, Rtmp, Rdst);
9580     __ srlx(Rdst, 2, Rtmp);
9581     __ or3(Rdst, Rtmp, Rdst);
9582     __ srlx(Rdst, 4, Rtmp);
9583     __ or3(Rdst, Rtmp, Rdst);
9584     __ srlx(Rdst, 8, Rtmp);
9585     __ or3(Rdst, Rtmp, Rdst);
9586     __ srlx(Rdst, 16, Rtmp);
9587     __ or3(Rdst, Rtmp, Rdst);
9588     __ srlx(Rdst, 32, Rtmp);
9589     __ or3(Rdst, Rtmp, Rdst);
9590     __ popc(Rdst, Rdst);
9591     __ mov(BitsPerLong, Rtmp);
9592     __ sub(Rtmp, Rdst, Rdst);
9593   %}
9594   ins_pipe(ialu_reg);
9595 %}
9596 
9597 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9598   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9599   match(Set dst (CountTrailingZerosI src));
9600   effect(TEMP dst, KILL cr);
9601 
9602   // return popc(~x & (x - 1));
9603   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9604             "ANDN    $dst,$src,$dst\n\t"
9605             "SRL     $dst,R_G0,$dst\n\t"
9606             "POPC    $dst,$dst" %}
9607   ins_encode %{
9608     Register Rdst = $dst$$Register;
9609     Register Rsrc = $src$$Register;
9610     __ sub(Rsrc, 1, Rdst);
9611     __ andn(Rdst, Rsrc, Rdst);
9612     __ srl(Rdst, G0, Rdst);
9613     __ popc(Rdst, Rdst);
9614   %}
9615   ins_pipe(ialu_reg);
9616 %}
9617 
9618 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9619   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9620   match(Set dst (CountTrailingZerosL src));
9621   effect(TEMP dst, KILL cr);
9622 
9623   // return popc(~x & (x - 1));
9624   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9625             "ANDN    $dst,$src,$dst\n\t"
9626             "POPC    $dst,$dst" %}
9627   ins_encode %{
9628     Register Rdst = $dst$$Register;
9629     Register Rsrc = $src$$Register;
9630     __ sub(Rsrc, 1, Rdst);
9631     __ andn(Rdst, Rsrc, Rdst);
9632     __ popc(Rdst, Rdst);
9633   %}
9634   ins_pipe(ialu_reg);
9635 %}
9636 
9637 
9638 //---------- Population Count Instructions -------------------------------------
9639 
9640 instruct popCountI(iRegI dst, iRegI src) %{
9641   predicate(UsePopCountInstruction);
9642   match(Set dst (PopCountI src));
9643 
9644   format %{ "POPC   $src, $dst" %}
9645   ins_encode %{
9646     __ popc($src$$Register, $dst$$Register);
9647   %}
9648   ins_pipe(ialu_reg);
9649 %}
9650 
9651 // Note: Long.bitCount(long) returns an int.
9652 instruct popCountL(iRegI dst, iRegL src) %{
9653   predicate(UsePopCountInstruction);
9654   match(Set dst (PopCountL src));
9655 
9656   format %{ "POPC   $src, $dst" %}
9657   ins_encode %{
9658     __ popc($src$$Register, $dst$$Register);
9659   %}
9660   ins_pipe(ialu_reg);
9661 %}
9662 
9663 
9664 // ============================================================================
9665 //------------Bytes reverse--------------------------------------------------
9666 
9667 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9668   match(Set dst (ReverseBytesI src));
9669   effect(DEF dst, USE src);
9670 
9671   // Op cost is artificially doubled to make sure that load or store
9672   // instructions are preferred over this one which requires a spill
9673   // onto a stack slot.
9674   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9675   size(8);
9676   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9677   opcode(Assembler::lduwa_op3);
9678   ins_encode( form3_mem_reg_little(src, dst) );
9679   ins_pipe( iload_mem );
9680 %}
9681 
9682 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9683   match(Set dst (ReverseBytesL src));
9684   effect(DEF dst, USE src);
9685 
9686   // Op cost is artificially doubled to make sure that load or store
9687   // instructions are preferred over this one which requires a spill
9688   // onto a stack slot.
9689   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9690   size(8);
9691   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9692 
9693   opcode(Assembler::ldxa_op3);
9694   ins_encode( form3_mem_reg_little(src, dst) );
9695   ins_pipe( iload_mem );
9696 %}
9697 
9698 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
9699   match(Set dst (ReverseBytesUS src));
9700   effect(DEF dst, USE src);
9701 
9702   // Op cost is artificially doubled to make sure that load or store
9703   // instructions are preferred over this one which requires a spill
9704   // onto a stack slot.
9705   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9706   size(8);
9707   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
9708 
9709   ins_encode %{
9710     int disp = $src$$disp;
9711     Register index = $src$$index;
9712     Register base = $src$$base;
9713     if (base == SP || base == FP) {
9714       disp += STACK_BIAS;
9715     }
9716     if (disp != 0) {
9717       index = O7;
9718       __ set(disp, index);
9719     }
9720     __ lduha(base, index, Assembler::ASI_PRIMARY_LITTLE, $dst$$reg);
9721   %}
9722 
9723   ins_pipe( iload_mem );
9724 %}
9725 
9726 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
9727   match(Set dst (ReverseBytesS src));
9728   effect(DEF dst, USE src);
9729 
9730   // Op cost is artificially doubled to make sure that load or store
9731   // instructions are preferred over this one which requires a spill
9732   // onto a stack slot.
9733   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9734   size(8);
9735   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
9736 
9737   ins_encode %{
9738     int disp = $src$$disp;
9739     Register index = $src$$index;
9740     Register base = $src$$base;
9741     if (base == SP || base == FP) {
9742       disp += STACK_BIAS;
9743     }
9744     if (disp != 0) {
9745       index = O7;
9746       __ set(disp, index);
9747     }
9748     __ ldsha(base, index, Assembler::ASI_PRIMARY_LITTLE, $dst$$reg);
9749   %}
9750 
9751   ins_pipe( iload_mem );
9752 %}
9753 
9754 // Load Integer reversed byte order
9755 instruct loadI_reversed(iRegI dst, memory src) %{
9756   match(Set dst (ReverseBytesI (LoadI src)));
9757 
9758   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9759   size(8);
9760   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9761 
9762   opcode(Assembler::lduwa_op3);
9763   ins_encode( form3_mem_reg_little( src, dst) );
9764   ins_pipe(iload_mem);
9765 %}
9766 
9767 // Load Long - aligned and reversed
9768 instruct loadL_reversed(iRegL dst, memory src) %{
9769   match(Set dst (ReverseBytesL (LoadL src)));
9770 
9771   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9772   size(8);
9773   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9774 
9775   opcode(Assembler::ldxa_op3);
9776   ins_encode( form3_mem_reg_little( src, dst ) );
9777   ins_pipe(iload_mem);
9778 %}
9779 
9780 // Load unsigned short / char reversed byte order
9781 instruct loadUS_reversed(iRegI dst, memory src) %{
9782   match(Set dst (ReverseBytesUS (LoadUS src)));
9783 
9784   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9785   size(8);
9786   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
9787 
9788   ins_encode %{
9789     int disp = $src$$disp;
9790     Register index = $src$$index;
9791     Register base = $src$$base;
9792     if (base == SP || base == FP) {
9793       disp += STACK_BIAS;
9794     }
9795     if (disp != 0) {
9796       index = O7;
9797       __ set(disp, index);
9798     }
9799     __ lduha(base, index, Assembler::ASI_PRIMARY_LITTLE, $dst$$reg);
9800   %}
9801 
9802   ins_pipe(iload_mem);
9803 %}
9804 
9805 // Load short reversed byte order
9806 instruct loadS_reversed(iRegI dst, memory src) %{
9807   match(Set dst (ReverseBytesS (LoadS src)));
9808 
9809   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9810   size(8);
9811   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
9812 
9813   ins_encode %{
9814     int disp = $src$$disp;
9815     Register index = $src$$index;
9816     Register base = $src$$base;
9817     if (base == SP || base == FP) {
9818       disp += STACK_BIAS;
9819     }
9820     if (disp != 0) {
9821       index = O7;
9822       __ set(disp, index);
9823     }
9824     __ ldsha(base, index, Assembler::ASI_PRIMARY_LITTLE, $dst$$reg);
9825   %}
9826 
9827   ins_pipe(iload_mem);
9828 %}
9829 
9830 // Store Integer reversed byte order
9831 instruct storeI_reversed(memory dst, iRegI src) %{
9832   match(Set dst (StoreI dst (ReverseBytesI src)));
9833 
9834   ins_cost(MEMORY_REF_COST);
9835   size(8);
9836   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9837 
9838   opcode(Assembler::stwa_op3);
9839   ins_encode( form3_mem_reg_little( dst, src) );
9840   ins_pipe(istore_mem_reg);
9841 %}
9842 
9843 // Store Long reversed byte order
9844 instruct storeL_reversed(memory dst, iRegL src) %{
9845   match(Set dst (StoreL dst (ReverseBytesL src)));
9846 
9847   ins_cost(MEMORY_REF_COST);
9848   size(8);
9849   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9850 
9851   opcode(Assembler::stxa_op3);
9852   ins_encode( form3_mem_reg_little( dst, src) );
9853   ins_pipe(istore_mem_reg);
9854 %}
9855 
9856 // Store unsighed short/char reversed byte order
9857 instruct storeUS_reversed(memory dst, iRegI src) %{
9858   match(Set dst (StoreUS dst (ReverseBytesUS src)));
9859 
9860   ins_cost(MEMORY_REF_COST);
9861   size(8);
9862   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
9863 
9864   ins_encode %{
9865     int disp = $dst$$disp;
9866     Register index = $dst$index;
9867     Register base = $dst$$base;
9868     if (base == SP || base == FP) {
9869       disp += STACK_BIAS;
9870     }
9871     if (disp != 0) {
9872       index = O7;
9873       __ set(disp, index);
9874     }
9875     __ stha($src$$reg, base, index, Assembler::ASI_PRIMARY_LITTLE);
9876   %}
9877 
9878   ins_pipe(istore_mem_reg);
9879 %}
9880 
9881 // Store short reversed byte order
9882 instruct storeS_reversed(memory dst, iRegI src) %{
9883   match(Set dst (StoreS dst (ReverseBytesS src)));
9884 
9885   ins_cost(MEMORY_REF_COST);
9886   size(8);
9887   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
9888 
9889   ins_encode %{
9890     int disp = $dst$$disp;
9891     Register index = $dst$index;
9892     Register base = $dst$$base;
9893     if (base == SP || base == FP) {
9894       disp += STACK_BIAS;
9895     }
9896     if (disp != 0) {
9897       index = O7;
9898       __ set(disp, index);
9899     }
9900     __ stha($src$$reg, base, index, Assembler::ASI_PRIMARY_LITTLE);
9901   %}
9902 
9903   ins_pipe(istore_mem_reg);
9904 %}
9905 
9906 //----------PEEPHOLE RULES-----------------------------------------------------
9907 // These must follow all instruction definitions as they use the names
9908 // defined in the instructions definitions.
9909 //
9910 // peepmatch ( root_instr_name [preceding_instruction]* );
9911 //
9912 // peepconstraint %{
9913 // (instruction_number.operand_name relational_op instruction_number.operand_name
9914 //  [, ...] );
9915 // // instruction numbers are zero-based using left to right order in peepmatch
9916 //
9917 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9918 // // provide an instruction_number.operand_name for each operand that appears
9919 // // in the replacement instruction's match rule
9920 //
9921 // ---------VM FLAGS---------------------------------------------------------
9922 //
9923 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9924 //
9925 // Each peephole rule is given an identifying number starting with zero and
9926 // increasing by one in the order seen by the parser.  An individual peephole
9927 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9928 // on the command-line.
9929 //
9930 // ---------CURRENT LIMITATIONS----------------------------------------------
9931 //
9932 // Only match adjacent instructions in same basic block
9933 // Only equality constraints
9934 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9935 // Only one replacement instruction
9936 //
9937 // ---------EXAMPLE----------------------------------------------------------
9938 //
9939 // // pertinent parts of existing instructions in architecture description
9940 // instruct movI(eRegI dst, eRegI src) %{
9941 //   match(Set dst (CopyI src));
9942 // %}
9943 //
9944 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9945 //   match(Set dst (AddI dst src));
9946 //   effect(KILL cr);
9947 // %}
9948 //
9949 // // Change (inc mov) to lea
9950 // peephole %{
9951 //   // increment preceeded by register-register move
9952 //   peepmatch ( incI_eReg movI );
9953 //   // require that the destination register of the increment
9954 //   // match the destination register of the move
9955 //   peepconstraint ( 0.dst == 1.dst );
9956 //   // construct a replacement instruction that sets
9957 //   // the destination to ( move's source register + one )
9958 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9959 // %}
9960 //
9961 
9962 // // Change load of spilled value to only a spill
9963 // instruct storeI(memory mem, eRegI src) %{
9964 //   match(Set mem (StoreI mem src));
9965 // %}
9966 //
9967 // instruct loadI(eRegI dst, memory mem) %{
9968 //   match(Set dst (LoadI mem));
9969 // %}
9970 //
9971 // peephole %{
9972 //   peepmatch ( loadI storeI );
9973 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9974 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9975 // %}
9976 
9977 //----------SMARTSPILL RULES---------------------------------------------------
9978 // These must follow all instruction definitions as they use the names
9979 // defined in the instructions definitions.
9980 //
9981 // SPARC will probably not have any of these rules due to RISC instruction set.
9982 
9983 //----------PIPELINE-----------------------------------------------------------
9984 // Rules which define the behavior of the target architectures pipeline.