1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/exceptionHandlerTable.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/block.hpp"
  36 #include "opto/c2compiler.hpp"
  37 #include "opto/callGenerator.hpp"
  38 #include "opto/callnode.hpp"
  39 #include "opto/cfgnode.hpp"
  40 #include "opto/chaitin.hpp"
  41 #include "opto/compile.hpp"
  42 #include "opto/connode.hpp"
  43 #include "opto/divnode.hpp"
  44 #include "opto/escape.hpp"
  45 #include "opto/idealGraphPrinter.hpp"
  46 #include "opto/loopnode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/macro.hpp"
  49 #include "opto/matcher.hpp"
  50 #include "opto/mathexactnode.hpp"
  51 #include "opto/memnode.hpp"
  52 #include "opto/mulnode.hpp"
  53 #include "opto/node.hpp"
  54 #include "opto/opcodes.hpp"
  55 #include "opto/output.hpp"
  56 #include "opto/parse.hpp"
  57 #include "opto/phaseX.hpp"
  58 #include "opto/rootnode.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/stringopts.hpp"
  61 #include "opto/type.hpp"
  62 #include "opto/vectornode.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/timer.hpp"
  67 #include "trace/tracing.hpp"
  68 #include "utilities/copy.hpp"
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc
  85 # include "adfiles/ad_ppc.hpp"
  86 #endif
  87 
  88 
  89 // -------------------- Compile::mach_constant_base_node -----------------------
  90 // Constant table base node singleton.
  91 MachConstantBaseNode* Compile::mach_constant_base_node() {
  92   if (_mach_constant_base_node == NULL) {
  93     _mach_constant_base_node = new (C) MachConstantBaseNode();
  94     _mach_constant_base_node->add_req(C->root());
  95   }
  96   return _mach_constant_base_node;
  97 }
  98 
  99 
 100 /// Support for intrinsics.
 101 
 102 // Return the index at which m must be inserted (or already exists).
 103 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 104 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 105 #ifdef ASSERT
 106   for (int i = 1; i < _intrinsics->length(); i++) {
 107     CallGenerator* cg1 = _intrinsics->at(i-1);
 108     CallGenerator* cg2 = _intrinsics->at(i);
 109     assert(cg1->method() != cg2->method()
 110            ? cg1->method()     < cg2->method()
 111            : cg1->is_virtual() < cg2->is_virtual(),
 112            "compiler intrinsics list must stay sorted");
 113   }
 114 #endif
 115   // Binary search sorted list, in decreasing intervals [lo, hi].
 116   int lo = 0, hi = _intrinsics->length()-1;
 117   while (lo <= hi) {
 118     int mid = (uint)(hi + lo) / 2;
 119     ciMethod* mid_m = _intrinsics->at(mid)->method();
 120     if (m < mid_m) {
 121       hi = mid-1;
 122     } else if (m > mid_m) {
 123       lo = mid+1;
 124     } else {
 125       // look at minor sort key
 126       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 127       if (is_virtual < mid_virt) {
 128         hi = mid-1;
 129       } else if (is_virtual > mid_virt) {
 130         lo = mid+1;
 131       } else {
 132         return mid;  // exact match
 133       }
 134     }
 135   }
 136   return lo;  // inexact match
 137 }
 138 
 139 void Compile::register_intrinsic(CallGenerator* cg) {
 140   if (_intrinsics == NULL) {
 141     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 142   }
 143   // This code is stolen from ciObjectFactory::insert.
 144   // Really, GrowableArray should have methods for
 145   // insert_at, remove_at, and binary_search.
 146   int len = _intrinsics->length();
 147   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 148   if (index == len) {
 149     _intrinsics->append(cg);
 150   } else {
 151 #ifdef ASSERT
 152     CallGenerator* oldcg = _intrinsics->at(index);
 153     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 154 #endif
 155     _intrinsics->append(_intrinsics->at(len-1));
 156     int pos;
 157     for (pos = len-2; pos >= index; pos--) {
 158       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 159     }
 160     _intrinsics->at_put(index, cg);
 161   }
 162   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 163 }
 164 
 165 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 166   assert(m->is_loaded(), "don't try this on unloaded methods");
 167   if (_intrinsics != NULL) {
 168     int index = intrinsic_insertion_index(m, is_virtual);
 169     if (index < _intrinsics->length()
 170         && _intrinsics->at(index)->method() == m
 171         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 172       return _intrinsics->at(index);
 173     }
 174   }
 175   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 176   if (m->intrinsic_id() != vmIntrinsics::_none &&
 177       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 178     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 179     if (cg != NULL) {
 180       // Save it for next time:
 181       register_intrinsic(cg);
 182       return cg;
 183     } else {
 184       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 185     }
 186   }
 187   return NULL;
 188 }
 189 
 190 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 191 // in library_call.cpp.
 192 
 193 
 194 #ifndef PRODUCT
 195 // statistics gathering...
 196 
 197 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 198 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 199 
 200 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 201   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 202   int oflags = _intrinsic_hist_flags[id];
 203   assert(flags != 0, "what happened?");
 204   if (is_virtual) {
 205     flags |= _intrinsic_virtual;
 206   }
 207   bool changed = (flags != oflags);
 208   if ((flags & _intrinsic_worked) != 0) {
 209     juint count = (_intrinsic_hist_count[id] += 1);
 210     if (count == 1) {
 211       changed = true;           // first time
 212     }
 213     // increment the overall count also:
 214     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 215   }
 216   if (changed) {
 217     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 218       // Something changed about the intrinsic's virtuality.
 219       if ((flags & _intrinsic_virtual) != 0) {
 220         // This is the first use of this intrinsic as a virtual call.
 221         if (oflags != 0) {
 222           // We already saw it as a non-virtual, so note both cases.
 223           flags |= _intrinsic_both;
 224         }
 225       } else if ((oflags & _intrinsic_both) == 0) {
 226         // This is the first use of this intrinsic as a non-virtual
 227         flags |= _intrinsic_both;
 228       }
 229     }
 230     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 231   }
 232   // update the overall flags also:
 233   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 234   return changed;
 235 }
 236 
 237 static char* format_flags(int flags, char* buf) {
 238   buf[0] = 0;
 239   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 240   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 241   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 242   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 243   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 244   if (buf[0] == 0)  strcat(buf, ",");
 245   assert(buf[0] == ',', "must be");
 246   return &buf[1];
 247 }
 248 
 249 void Compile::print_intrinsic_statistics() {
 250   char flagsbuf[100];
 251   ttyLocker ttyl;
 252   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 253   tty->print_cr("Compiler intrinsic usage:");
 254   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 255   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 256   #define PRINT_STAT_LINE(name, c, f) \
 257     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 258   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 259     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 260     int   flags = _intrinsic_hist_flags[id];
 261     juint count = _intrinsic_hist_count[id];
 262     if ((flags | count) != 0) {
 263       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 264     }
 265   }
 266   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 267   if (xtty != NULL)  xtty->tail("statistics");
 268 }
 269 
 270 void Compile::print_statistics() {
 271   { ttyLocker ttyl;
 272     if (xtty != NULL)  xtty->head("statistics type='opto'");
 273     Parse::print_statistics();
 274     PhaseCCP::print_statistics();
 275     PhaseRegAlloc::print_statistics();
 276     Scheduling::print_statistics();
 277     PhasePeephole::print_statistics();
 278     PhaseIdealLoop::print_statistics();
 279     if (xtty != NULL)  xtty->tail("statistics");
 280   }
 281   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 282     // put this under its own <statistics> element.
 283     print_intrinsic_statistics();
 284   }
 285 }
 286 #endif //PRODUCT
 287 
 288 // Support for bundling info
 289 Bundle* Compile::node_bundling(const Node *n) {
 290   assert(valid_bundle_info(n), "oob");
 291   return &_node_bundling_base[n->_idx];
 292 }
 293 
 294 bool Compile::valid_bundle_info(const Node *n) {
 295   return (_node_bundling_limit > n->_idx);
 296 }
 297 
 298 
 299 void Compile::gvn_replace_by(Node* n, Node* nn) {
 300   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 301     Node* use = n->last_out(i);
 302     bool is_in_table = initial_gvn()->hash_delete(use);
 303     uint uses_found = 0;
 304     for (uint j = 0; j < use->len(); j++) {
 305       if (use->in(j) == n) {
 306         if (j < use->req())
 307           use->set_req(j, nn);
 308         else
 309           use->set_prec(j, nn);
 310         uses_found++;
 311       }
 312     }
 313     if (is_in_table) {
 314       // reinsert into table
 315       initial_gvn()->hash_find_insert(use);
 316     }
 317     record_for_igvn(use);
 318     i -= uses_found;    // we deleted 1 or more copies of this edge
 319   }
 320 }
 321 
 322 
 323 static inline bool not_a_node(const Node* n) {
 324   if (n == NULL)                   return true;
 325   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 326   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 327   return false;
 328 }
 329 
 330 // Identify all nodes that are reachable from below, useful.
 331 // Use breadth-first pass that records state in a Unique_Node_List,
 332 // recursive traversal is slower.
 333 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 334   int estimated_worklist_size = unique();
 335   useful.map( estimated_worklist_size, NULL );  // preallocate space
 336 
 337   // Initialize worklist
 338   if (root() != NULL)     { useful.push(root()); }
 339   // If 'top' is cached, declare it useful to preserve cached node
 340   if( cached_top_node() ) { useful.push(cached_top_node()); }
 341 
 342   // Push all useful nodes onto the list, breadthfirst
 343   for( uint next = 0; next < useful.size(); ++next ) {
 344     assert( next < unique(), "Unique useful nodes < total nodes");
 345     Node *n  = useful.at(next);
 346     uint max = n->len();
 347     for( uint i = 0; i < max; ++i ) {
 348       Node *m = n->in(i);
 349       if (not_a_node(m))  continue;
 350       useful.push(m);
 351     }
 352   }
 353 }
 354 
 355 // Update dead_node_list with any missing dead nodes using useful
 356 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 357 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 358   uint max_idx = unique();
 359   VectorSet& useful_node_set = useful.member_set();
 360 
 361   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 362     // If node with index node_idx is not in useful set,
 363     // mark it as dead in dead node list.
 364     if (! useful_node_set.test(node_idx) ) {
 365       record_dead_node(node_idx);
 366     }
 367   }
 368 }
 369 
 370 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 371   int shift = 0;
 372   for (int i = 0; i < inlines->length(); i++) {
 373     CallGenerator* cg = inlines->at(i);
 374     CallNode* call = cg->call_node();
 375     if (shift > 0) {
 376       inlines->at_put(i-shift, cg);
 377     }
 378     if (!useful.member(call)) {
 379       shift++;
 380     }
 381   }
 382   inlines->trunc_to(inlines->length()-shift);
 383 }
 384 
 385 // Disconnect all useless nodes by disconnecting those at the boundary.
 386 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 387   uint next = 0;
 388   while (next < useful.size()) {
 389     Node *n = useful.at(next++);
 390     // Use raw traversal of out edges since this code removes out edges
 391     int max = n->outcnt();
 392     for (int j = 0; j < max; ++j) {
 393       Node* child = n->raw_out(j);
 394       if (! useful.member(child)) {
 395         assert(!child->is_top() || child != top(),
 396                "If top is cached in Compile object it is in useful list");
 397         // Only need to remove this out-edge to the useless node
 398         n->raw_del_out(j);
 399         --j;
 400         --max;
 401       }
 402     }
 403     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 404       record_for_igvn(n->unique_out());
 405     }
 406   }
 407   // Remove useless macro and predicate opaq nodes
 408   for (int i = C->macro_count()-1; i >= 0; i--) {
 409     Node* n = C->macro_node(i);
 410     if (!useful.member(n)) {
 411       remove_macro_node(n);
 412     }
 413   }
 414   // Remove useless expensive node
 415   for (int i = C->expensive_count()-1; i >= 0; i--) {
 416     Node* n = C->expensive_node(i);
 417     if (!useful.member(n)) {
 418       remove_expensive_node(n);
 419     }
 420   }
 421   // clean up the late inline lists
 422   remove_useless_late_inlines(&_string_late_inlines, useful);
 423   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 424   remove_useless_late_inlines(&_late_inlines, useful);
 425   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 426 }
 427 
 428 //------------------------------frame_size_in_words-----------------------------
 429 // frame_slots in units of words
 430 int Compile::frame_size_in_words() const {
 431   // shift is 0 in LP32 and 1 in LP64
 432   const int shift = (LogBytesPerWord - LogBytesPerInt);
 433   int words = _frame_slots >> shift;
 434   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 435   return words;
 436 }
 437 
 438 // ============================================================================
 439 //------------------------------CompileWrapper---------------------------------
 440 class CompileWrapper : public StackObj {
 441   Compile *const _compile;
 442  public:
 443   CompileWrapper(Compile* compile);
 444 
 445   ~CompileWrapper();
 446 };
 447 
 448 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 449   // the Compile* pointer is stored in the current ciEnv:
 450   ciEnv* env = compile->env();
 451   assert(env == ciEnv::current(), "must already be a ciEnv active");
 452   assert(env->compiler_data() == NULL, "compile already active?");
 453   env->set_compiler_data(compile);
 454   assert(compile == Compile::current(), "sanity");
 455 
 456   compile->set_type_dict(NULL);
 457   compile->set_type_hwm(NULL);
 458   compile->set_type_last_size(0);
 459   compile->set_last_tf(NULL, NULL);
 460   compile->set_indexSet_arena(NULL);
 461   compile->set_indexSet_free_block_list(NULL);
 462   compile->init_type_arena();
 463   Type::Initialize(compile);
 464   _compile->set_scratch_buffer_blob(NULL);
 465   _compile->begin_method();
 466 }
 467 CompileWrapper::~CompileWrapper() {
 468   _compile->end_method();
 469   if (_compile->scratch_buffer_blob() != NULL)
 470     BufferBlob::free(_compile->scratch_buffer_blob());
 471   _compile->env()->set_compiler_data(NULL);
 472 }
 473 
 474 
 475 //----------------------------print_compile_messages---------------------------
 476 void Compile::print_compile_messages() {
 477 #ifndef PRODUCT
 478   // Check if recompiling
 479   if (_subsume_loads == false && PrintOpto) {
 480     // Recompiling without allowing machine instructions to subsume loads
 481     tty->print_cr("*********************************************************");
 482     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 483     tty->print_cr("*********************************************************");
 484   }
 485   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 486     // Recompiling without escape analysis
 487     tty->print_cr("*********************************************************");
 488     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 489     tty->print_cr("*********************************************************");
 490   }
 491   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 492     // Recompiling without boxing elimination
 493     tty->print_cr("*********************************************************");
 494     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 495     tty->print_cr("*********************************************************");
 496   }
 497   if (env()->break_at_compile()) {
 498     // Open the debugger when compiling this method.
 499     tty->print("### Breaking when compiling: ");
 500     method()->print_short_name();
 501     tty->cr();
 502     BREAKPOINT;
 503   }
 504 
 505   if( PrintOpto ) {
 506     if (is_osr_compilation()) {
 507       tty->print("[OSR]%3d", _compile_id);
 508     } else {
 509       tty->print("%3d", _compile_id);
 510     }
 511   }
 512 #endif
 513 }
 514 
 515 
 516 //-----------------------init_scratch_buffer_blob------------------------------
 517 // Construct a temporary BufferBlob and cache it for this compile.
 518 void Compile::init_scratch_buffer_blob(int const_size) {
 519   // If there is already a scratch buffer blob allocated and the
 520   // constant section is big enough, use it.  Otherwise free the
 521   // current and allocate a new one.
 522   BufferBlob* blob = scratch_buffer_blob();
 523   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 524     // Use the current blob.
 525   } else {
 526     if (blob != NULL) {
 527       BufferBlob::free(blob);
 528     }
 529 
 530     ResourceMark rm;
 531     _scratch_const_size = const_size;
 532     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 533     blob = BufferBlob::create("Compile::scratch_buffer", size);
 534     // Record the buffer blob for next time.
 535     set_scratch_buffer_blob(blob);
 536     // Have we run out of code space?
 537     if (scratch_buffer_blob() == NULL) {
 538       // Let CompilerBroker disable further compilations.
 539       record_failure("Not enough space for scratch buffer in CodeCache");
 540       return;
 541     }
 542   }
 543 
 544   // Initialize the relocation buffers
 545   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 546   set_scratch_locs_memory(locs_buf);
 547 }
 548 
 549 
 550 //-----------------------scratch_emit_size-------------------------------------
 551 // Helper function that computes size by emitting code
 552 uint Compile::scratch_emit_size(const Node* n) {
 553   // Start scratch_emit_size section.
 554   set_in_scratch_emit_size(true);
 555 
 556   // Emit into a trash buffer and count bytes emitted.
 557   // This is a pretty expensive way to compute a size,
 558   // but it works well enough if seldom used.
 559   // All common fixed-size instructions are given a size
 560   // method by the AD file.
 561   // Note that the scratch buffer blob and locs memory are
 562   // allocated at the beginning of the compile task, and
 563   // may be shared by several calls to scratch_emit_size.
 564   // The allocation of the scratch buffer blob is particularly
 565   // expensive, since it has to grab the code cache lock.
 566   BufferBlob* blob = this->scratch_buffer_blob();
 567   assert(blob != NULL, "Initialize BufferBlob at start");
 568   assert(blob->size() > MAX_inst_size, "sanity");
 569   relocInfo* locs_buf = scratch_locs_memory();
 570   address blob_begin = blob->content_begin();
 571   address blob_end   = (address)locs_buf;
 572   assert(blob->content_contains(blob_end), "sanity");
 573   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 574   buf.initialize_consts_size(_scratch_const_size);
 575   buf.initialize_stubs_size(MAX_stubs_size);
 576   assert(locs_buf != NULL, "sanity");
 577   int lsize = MAX_locs_size / 3;
 578   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 579   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 580   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 581 
 582   // Do the emission.
 583 
 584   Label fakeL; // Fake label for branch instructions.
 585   Label*   saveL = NULL;
 586   uint save_bnum = 0;
 587   bool is_branch = n->is_MachBranch();
 588   if (is_branch) {
 589     MacroAssembler masm(&buf);
 590     masm.bind(fakeL);
 591     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 592     n->as_MachBranch()->label_set(&fakeL, 0);
 593   }
 594   n->emit(buf, this->regalloc());
 595   if (is_branch) // Restore label.
 596     n->as_MachBranch()->label_set(saveL, save_bnum);
 597 
 598   // End scratch_emit_size section.
 599   set_in_scratch_emit_size(false);
 600 
 601   return buf.insts_size();
 602 }
 603 
 604 
 605 // ============================================================================
 606 //------------------------------Compile standard-------------------------------
 607 debug_only( int Compile::_debug_idx = 100000; )
 608 
 609 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 610 // the continuation bci for on stack replacement.
 611 
 612 
 613 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 614                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 615                 : Phase(Compiler),
 616                   _env(ci_env),
 617                   _log(ci_env->log()),
 618                   _compile_id(ci_env->compile_id()),
 619                   _save_argument_registers(false),
 620                   _stub_name(NULL),
 621                   _stub_function(NULL),
 622                   _stub_entry_point(NULL),
 623                   _method(target),
 624                   _entry_bci(osr_bci),
 625                   _initial_gvn(NULL),
 626                   _for_igvn(NULL),
 627                   _warm_calls(NULL),
 628                   _subsume_loads(subsume_loads),
 629                   _do_escape_analysis(do_escape_analysis),
 630                   _eliminate_boxing(eliminate_boxing),
 631                   _failure_reason(NULL),
 632                   _code_buffer("Compile::Fill_buffer"),
 633                   _orig_pc_slot(0),
 634                   _orig_pc_slot_offset_in_bytes(0),
 635                   _has_method_handle_invokes(false),
 636                   _mach_constant_base_node(NULL),
 637                   _node_bundling_limit(0),
 638                   _node_bundling_base(NULL),
 639                   _java_calls(0),
 640                   _inner_loops(0),
 641                   _scratch_const_size(-1),
 642                   _in_scratch_emit_size(false),
 643                   _dead_node_list(comp_arena()),
 644                   _dead_node_count(0),
 645 #ifndef PRODUCT
 646                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 647                   _printer(IdealGraphPrinter::printer()),
 648 #endif
 649                   _congraph(NULL),
 650                   _late_inlines(comp_arena(), 2, 0, NULL),
 651                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 652                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 653                   _late_inlines_pos(0),
 654                   _number_of_mh_late_inlines(0),
 655                   _inlining_progress(false),
 656                   _inlining_incrementally(false),
 657                   _print_inlining_list(NULL),
 658                   _print_inlining_idx(0) {
 659   C = this;
 660 
 661   CompileWrapper cw(this);
 662 #ifndef PRODUCT
 663   if (TimeCompiler2) {
 664     tty->print(" ");
 665     target->holder()->name()->print();
 666     tty->print(".");
 667     target->print_short_name();
 668     tty->print("  ");
 669   }
 670   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 671   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 672   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 673   if (!print_opto_assembly) {
 674     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 675     if (print_assembly && !Disassembler::can_decode()) {
 676       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 677       print_opto_assembly = true;
 678     }
 679   }
 680   set_print_assembly(print_opto_assembly);
 681   set_parsed_irreducible_loop(false);
 682 #endif
 683   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 684   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 685 
 686   if (ProfileTraps) {
 687     // Make sure the method being compiled gets its own MDO,
 688     // so we can at least track the decompile_count().
 689     method()->ensure_method_data();
 690   }
 691 
 692   Init(::AliasLevel);
 693 
 694 
 695   print_compile_messages();
 696 
 697   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 698     _ilt = InlineTree::build_inline_tree_root();
 699   else
 700     _ilt = NULL;
 701 
 702   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 703   assert(num_alias_types() >= AliasIdxRaw, "");
 704 
 705 #define MINIMUM_NODE_HASH  1023
 706   // Node list that Iterative GVN will start with
 707   Unique_Node_List for_igvn(comp_arena());
 708   set_for_igvn(&for_igvn);
 709 
 710   // GVN that will be run immediately on new nodes
 711   uint estimated_size = method()->code_size()*4+64;
 712   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 713   PhaseGVN gvn(node_arena(), estimated_size);
 714   set_initial_gvn(&gvn);
 715 
 716   if (print_inlining() || print_intrinsics()) {
 717     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 718   }
 719   { // Scope for timing the parser
 720     TracePhase t3("parse", &_t_parser, true);
 721 
 722     // Put top into the hash table ASAP.
 723     initial_gvn()->transform_no_reclaim(top());
 724 
 725     // Set up tf(), start(), and find a CallGenerator.
 726     CallGenerator* cg = NULL;
 727     if (is_osr_compilation()) {
 728       const TypeTuple *domain = StartOSRNode::osr_domain();
 729       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 730       init_tf(TypeFunc::make(domain, range));
 731       StartNode* s = new (this) StartOSRNode(root(), domain);
 732       initial_gvn()->set_type_bottom(s);
 733       init_start(s);
 734       cg = CallGenerator::for_osr(method(), entry_bci());
 735     } else {
 736       // Normal case.
 737       init_tf(TypeFunc::make(method()));
 738       StartNode* s = new (this) StartNode(root(), tf()->domain());
 739       initial_gvn()->set_type_bottom(s);
 740       init_start(s);
 741       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 742         // With java.lang.ref.reference.get() we must go through the
 743         // intrinsic when G1 is enabled - even when get() is the root
 744         // method of the compile - so that, if necessary, the value in
 745         // the referent field of the reference object gets recorded by
 746         // the pre-barrier code.
 747         // Specifically, if G1 is enabled, the value in the referent
 748         // field is recorded by the G1 SATB pre barrier. This will
 749         // result in the referent being marked live and the reference
 750         // object removed from the list of discovered references during
 751         // reference processing.
 752         cg = find_intrinsic(method(), false);
 753       }
 754       if (cg == NULL) {
 755         float past_uses = method()->interpreter_invocation_count();
 756         float expected_uses = past_uses;
 757         cg = CallGenerator::for_inline(method(), expected_uses);
 758       }
 759     }
 760     if (failing())  return;
 761     if (cg == NULL) {
 762       record_method_not_compilable_all_tiers("cannot parse method");
 763       return;
 764     }
 765     JVMState* jvms = build_start_state(start(), tf());
 766     if ((jvms = cg->generate(jvms)) == NULL) {
 767       record_method_not_compilable("method parse failed");
 768       return;
 769     }
 770     GraphKit kit(jvms);
 771 
 772     if (!kit.stopped()) {
 773       // Accept return values, and transfer control we know not where.
 774       // This is done by a special, unique ReturnNode bound to root.
 775       return_values(kit.jvms());
 776     }
 777 
 778     if (kit.has_exceptions()) {
 779       // Any exceptions that escape from this call must be rethrown
 780       // to whatever caller is dynamically above us on the stack.
 781       // This is done by a special, unique RethrowNode bound to root.
 782       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 783     }
 784 
 785     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 786 
 787     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 788       inline_string_calls(true);
 789     }
 790 
 791     if (failing())  return;
 792 
 793     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 794 
 795     // Remove clutter produced by parsing.
 796     if (!failing()) {
 797       ResourceMark rm;
 798       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 799     }
 800   }
 801 
 802   // Note:  Large methods are capped off in do_one_bytecode().
 803   if (failing())  return;
 804 
 805   // After parsing, node notes are no longer automagic.
 806   // They must be propagated by register_new_node_with_optimizer(),
 807   // clone(), or the like.
 808   set_default_node_notes(NULL);
 809 
 810   for (;;) {
 811     int successes = Inline_Warm();
 812     if (failing())  return;
 813     if (successes == 0)  break;
 814   }
 815 
 816   // Drain the list.
 817   Finish_Warm();
 818 #ifndef PRODUCT
 819   if (_printer) {
 820     _printer->print_inlining(this);
 821   }
 822 #endif
 823 
 824   if (failing())  return;
 825   NOT_PRODUCT( verify_graph_edges(); )
 826 
 827   // Now optimize
 828   Optimize();
 829   if (failing())  return;
 830   NOT_PRODUCT( verify_graph_edges(); )
 831 
 832 #ifndef PRODUCT
 833   if (PrintIdeal) {
 834     ttyLocker ttyl;  // keep the following output all in one block
 835     // This output goes directly to the tty, not the compiler log.
 836     // To enable tools to match it up with the compilation activity,
 837     // be sure to tag this tty output with the compile ID.
 838     if (xtty != NULL) {
 839       xtty->head("ideal compile_id='%d'%s", compile_id(),
 840                  is_osr_compilation()    ? " compile_kind='osr'" :
 841                  "");
 842     }
 843     root()->dump(9999);
 844     if (xtty != NULL) {
 845       xtty->tail("ideal");
 846     }
 847   }
 848 #endif
 849 
 850   // Now that we know the size of all the monitors we can add a fixed slot
 851   // for the original deopt pc.
 852 
 853   _orig_pc_slot =  fixed_slots();
 854   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 855   set_fixed_slots(next_slot);
 856 
 857   // Now generate code
 858   Code_Gen();
 859   if (failing())  return;
 860 
 861   // Check if we want to skip execution of all compiled code.
 862   {
 863 #ifndef PRODUCT
 864     if (OptoNoExecute) {
 865       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 866       return;
 867     }
 868     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 869 #endif
 870 
 871     if (is_osr_compilation()) {
 872       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 873       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 874     } else {
 875       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 876       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 877     }
 878 
 879     env()->register_method(_method, _entry_bci,
 880                            &_code_offsets,
 881                            _orig_pc_slot_offset_in_bytes,
 882                            code_buffer(),
 883                            frame_size_in_words(), _oop_map_set,
 884                            &_handler_table, &_inc_table,
 885                            compiler,
 886                            env()->comp_level(),
 887                            has_unsafe_access(),
 888                            SharedRuntime::is_wide_vector(max_vector_size())
 889                            );
 890 
 891     if (log() != NULL) // Print code cache state into compiler log
 892       log()->code_cache_state();
 893   }
 894 }
 895 
 896 //------------------------------Compile----------------------------------------
 897 // Compile a runtime stub
 898 Compile::Compile( ciEnv* ci_env,
 899                   TypeFunc_generator generator,
 900                   address stub_function,
 901                   const char *stub_name,
 902                   int is_fancy_jump,
 903                   bool pass_tls,
 904                   bool save_arg_registers,
 905                   bool return_pc )
 906   : Phase(Compiler),
 907     _env(ci_env),
 908     _log(ci_env->log()),
 909     _compile_id(0),
 910     _save_argument_registers(save_arg_registers),
 911     _method(NULL),
 912     _stub_name(stub_name),
 913     _stub_function(stub_function),
 914     _stub_entry_point(NULL),
 915     _entry_bci(InvocationEntryBci),
 916     _initial_gvn(NULL),
 917     _for_igvn(NULL),
 918     _warm_calls(NULL),
 919     _orig_pc_slot(0),
 920     _orig_pc_slot_offset_in_bytes(0),
 921     _subsume_loads(true),
 922     _do_escape_analysis(false),
 923     _eliminate_boxing(false),
 924     _failure_reason(NULL),
 925     _code_buffer("Compile::Fill_buffer"),
 926     _has_method_handle_invokes(false),
 927     _mach_constant_base_node(NULL),
 928     _node_bundling_limit(0),
 929     _node_bundling_base(NULL),
 930     _java_calls(0),
 931     _inner_loops(0),
 932 #ifndef PRODUCT
 933     _trace_opto_output(TraceOptoOutput),
 934     _printer(NULL),
 935 #endif
 936     _dead_node_list(comp_arena()),
 937     _dead_node_count(0),
 938     _congraph(NULL),
 939     _number_of_mh_late_inlines(0),
 940     _inlining_progress(false),
 941     _inlining_incrementally(false),
 942     _print_inlining_list(NULL),
 943     _print_inlining_idx(0) {
 944   C = this;
 945 
 946 #ifndef PRODUCT
 947   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 948   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 949   set_print_assembly(PrintFrameConverterAssembly);
 950   set_parsed_irreducible_loop(false);
 951 #endif
 952   CompileWrapper cw(this);
 953   Init(/*AliasLevel=*/ 0);
 954   init_tf((*generator)());
 955 
 956   {
 957     // The following is a dummy for the sake of GraphKit::gen_stub
 958     Unique_Node_List for_igvn(comp_arena());
 959     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 960     PhaseGVN gvn(Thread::current()->resource_area(),255);
 961     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 962     gvn.transform_no_reclaim(top());
 963 
 964     GraphKit kit;
 965     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 966   }
 967 
 968   NOT_PRODUCT( verify_graph_edges(); )
 969   Code_Gen();
 970   if (failing())  return;
 971 
 972 
 973   // Entry point will be accessed using compile->stub_entry_point();
 974   if (code_buffer() == NULL) {
 975     Matcher::soft_match_failure();
 976   } else {
 977     if (PrintAssembly && (WizardMode || Verbose))
 978       tty->print_cr("### Stub::%s", stub_name);
 979 
 980     if (!failing()) {
 981       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 982 
 983       // Make the NMethod
 984       // For now we mark the frame as never safe for profile stackwalking
 985       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 986                                                       code_buffer(),
 987                                                       CodeOffsets::frame_never_safe,
 988                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 989                                                       frame_size_in_words(),
 990                                                       _oop_map_set,
 991                                                       save_arg_registers);
 992       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 993 
 994       _stub_entry_point = rs->entry_point();
 995     }
 996   }
 997 }
 998 
 999 //------------------------------Init-------------------------------------------
1000 // Prepare for a single compilation
1001 void Compile::Init(int aliaslevel) {
1002   _unique  = 0;
1003   _regalloc = NULL;
1004 
1005   _tf      = NULL;  // filled in later
1006   _top     = NULL;  // cached later
1007   _matcher = NULL;  // filled in later
1008   _cfg     = NULL;  // filled in later
1009 
1010   set_24_bit_selection_and_mode(Use24BitFP, false);
1011 
1012   _node_note_array = NULL;
1013   _default_node_notes = NULL;
1014 
1015   _immutable_memory = NULL; // filled in at first inquiry
1016 
1017   // Globally visible Nodes
1018   // First set TOP to NULL to give safe behavior during creation of RootNode
1019   set_cached_top_node(NULL);
1020   set_root(new (this) RootNode());
1021   // Now that you have a Root to point to, create the real TOP
1022   set_cached_top_node( new (this) ConNode(Type::TOP) );
1023   set_recent_alloc(NULL, NULL);
1024 
1025   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1026   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1027   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1028   env()->set_dependencies(new Dependencies(env()));
1029 
1030   _fixed_slots = 0;
1031   set_has_split_ifs(false);
1032   set_has_loops(has_method() && method()->has_loops()); // first approximation
1033   set_has_stringbuilder(false);
1034   set_has_boxed_value(false);
1035   _trap_can_recompile = false;  // no traps emitted yet
1036   _major_progress = true; // start out assuming good things will happen
1037   set_has_unsafe_access(false);
1038   set_max_vector_size(0);
1039   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1040   set_decompile_count(0);
1041 
1042   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1043   set_num_loop_opts(LoopOptsCount);
1044   set_do_inlining(Inline);
1045   set_max_inline_size(MaxInlineSize);
1046   set_freq_inline_size(FreqInlineSize);
1047   set_do_scheduling(OptoScheduling);
1048   set_do_count_invocations(false);
1049   set_do_method_data_update(false);
1050 
1051   if (debug_info()->recording_non_safepoints()) {
1052     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1053                         (comp_arena(), 8, 0, NULL));
1054     set_default_node_notes(Node_Notes::make(this));
1055   }
1056 
1057   // // -- Initialize types before each compile --
1058   // // Update cached type information
1059   // if( _method && _method->constants() )
1060   //   Type::update_loaded_types(_method, _method->constants());
1061 
1062   // Init alias_type map.
1063   if (!_do_escape_analysis && aliaslevel == 3)
1064     aliaslevel = 2;  // No unique types without escape analysis
1065   _AliasLevel = aliaslevel;
1066   const int grow_ats = 16;
1067   _max_alias_types = grow_ats;
1068   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1069   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1070   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1071   {
1072     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1073   }
1074   // Initialize the first few types.
1075   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1076   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1077   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1078   _num_alias_types = AliasIdxRaw+1;
1079   // Zero out the alias type cache.
1080   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1081   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1082   probe_alias_cache(NULL)->_index = AliasIdxTop;
1083 
1084   _intrinsics = NULL;
1085   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1086   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1087   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1088   register_library_intrinsics();
1089 }
1090 
1091 //---------------------------init_start----------------------------------------
1092 // Install the StartNode on this compile object.
1093 void Compile::init_start(StartNode* s) {
1094   if (failing())
1095     return; // already failing
1096   assert(s == start(), "");
1097 }
1098 
1099 StartNode* Compile::start() const {
1100   assert(!failing(), "");
1101   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1102     Node* start = root()->fast_out(i);
1103     if( start->is_Start() )
1104       return start->as_Start();
1105   }
1106   ShouldNotReachHere();
1107   return NULL;
1108 }
1109 
1110 //-------------------------------immutable_memory-------------------------------------
1111 // Access immutable memory
1112 Node* Compile::immutable_memory() {
1113   if (_immutable_memory != NULL) {
1114     return _immutable_memory;
1115   }
1116   StartNode* s = start();
1117   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1118     Node *p = s->fast_out(i);
1119     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1120       _immutable_memory = p;
1121       return _immutable_memory;
1122     }
1123   }
1124   ShouldNotReachHere();
1125   return NULL;
1126 }
1127 
1128 //----------------------set_cached_top_node------------------------------------
1129 // Install the cached top node, and make sure Node::is_top works correctly.
1130 void Compile::set_cached_top_node(Node* tn) {
1131   if (tn != NULL)  verify_top(tn);
1132   Node* old_top = _top;
1133   _top = tn;
1134   // Calling Node::setup_is_top allows the nodes the chance to adjust
1135   // their _out arrays.
1136   if (_top != NULL)     _top->setup_is_top();
1137   if (old_top != NULL)  old_top->setup_is_top();
1138   assert(_top == NULL || top()->is_top(), "");
1139 }
1140 
1141 #ifdef ASSERT
1142 uint Compile::count_live_nodes_by_graph_walk() {
1143   Unique_Node_List useful(comp_arena());
1144   // Get useful node list by walking the graph.
1145   identify_useful_nodes(useful);
1146   return useful.size();
1147 }
1148 
1149 void Compile::print_missing_nodes() {
1150 
1151   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1152   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1153     return;
1154   }
1155 
1156   // This is an expensive function. It is executed only when the user
1157   // specifies VerifyIdealNodeCount option or otherwise knows the
1158   // additional work that needs to be done to identify reachable nodes
1159   // by walking the flow graph and find the missing ones using
1160   // _dead_node_list.
1161 
1162   Unique_Node_List useful(comp_arena());
1163   // Get useful node list by walking the graph.
1164   identify_useful_nodes(useful);
1165 
1166   uint l_nodes = C->live_nodes();
1167   uint l_nodes_by_walk = useful.size();
1168 
1169   if (l_nodes != l_nodes_by_walk) {
1170     if (_log != NULL) {
1171       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1172       _log->stamp();
1173       _log->end_head();
1174     }
1175     VectorSet& useful_member_set = useful.member_set();
1176     int last_idx = l_nodes_by_walk;
1177     for (int i = 0; i < last_idx; i++) {
1178       if (useful_member_set.test(i)) {
1179         if (_dead_node_list.test(i)) {
1180           if (_log != NULL) {
1181             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1182           }
1183           if (PrintIdealNodeCount) {
1184             // Print the log message to tty
1185               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1186               useful.at(i)->dump();
1187           }
1188         }
1189       }
1190       else if (! _dead_node_list.test(i)) {
1191         if (_log != NULL) {
1192           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1193         }
1194         if (PrintIdealNodeCount) {
1195           // Print the log message to tty
1196           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1197         }
1198       }
1199     }
1200     if (_log != NULL) {
1201       _log->tail("mismatched_nodes");
1202     }
1203   }
1204 }
1205 #endif
1206 
1207 #ifndef PRODUCT
1208 void Compile::verify_top(Node* tn) const {
1209   if (tn != NULL) {
1210     assert(tn->is_Con(), "top node must be a constant");
1211     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1212     assert(tn->in(0) != NULL, "must have live top node");
1213   }
1214 }
1215 #endif
1216 
1217 
1218 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1219 
1220 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1221   guarantee(arr != NULL, "");
1222   int num_blocks = arr->length();
1223   if (grow_by < num_blocks)  grow_by = num_blocks;
1224   int num_notes = grow_by * _node_notes_block_size;
1225   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1226   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1227   while (num_notes > 0) {
1228     arr->append(notes);
1229     notes     += _node_notes_block_size;
1230     num_notes -= _node_notes_block_size;
1231   }
1232   assert(num_notes == 0, "exact multiple, please");
1233 }
1234 
1235 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1236   if (source == NULL || dest == NULL)  return false;
1237 
1238   if (dest->is_Con())
1239     return false;               // Do not push debug info onto constants.
1240 
1241 #ifdef ASSERT
1242   // Leave a bread crumb trail pointing to the original node:
1243   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1244     dest->set_debug_orig(source);
1245   }
1246 #endif
1247 
1248   if (node_note_array() == NULL)
1249     return false;               // Not collecting any notes now.
1250 
1251   // This is a copy onto a pre-existing node, which may already have notes.
1252   // If both nodes have notes, do not overwrite any pre-existing notes.
1253   Node_Notes* source_notes = node_notes_at(source->_idx);
1254   if (source_notes == NULL || source_notes->is_clear())  return false;
1255   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1256   if (dest_notes == NULL || dest_notes->is_clear()) {
1257     return set_node_notes_at(dest->_idx, source_notes);
1258   }
1259 
1260   Node_Notes merged_notes = (*source_notes);
1261   // The order of operations here ensures that dest notes will win...
1262   merged_notes.update_from(dest_notes);
1263   return set_node_notes_at(dest->_idx, &merged_notes);
1264 }
1265 
1266 
1267 //--------------------------allow_range_check_smearing-------------------------
1268 // Gating condition for coalescing similar range checks.
1269 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1270 // single covering check that is at least as strong as any of them.
1271 // If the optimization succeeds, the simplified (strengthened) range check
1272 // will always succeed.  If it fails, we will deopt, and then give up
1273 // on the optimization.
1274 bool Compile::allow_range_check_smearing() const {
1275   // If this method has already thrown a range-check,
1276   // assume it was because we already tried range smearing
1277   // and it failed.
1278   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1279   return !already_trapped;
1280 }
1281 
1282 
1283 //------------------------------flatten_alias_type-----------------------------
1284 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1285   int offset = tj->offset();
1286   TypePtr::PTR ptr = tj->ptr();
1287 
1288   // Known instance (scalarizable allocation) alias only with itself.
1289   bool is_known_inst = tj->isa_oopptr() != NULL &&
1290                        tj->is_oopptr()->is_known_instance();
1291 
1292   // Process weird unsafe references.
1293   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1294     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1295     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1296     tj = TypeOopPtr::BOTTOM;
1297     ptr = tj->ptr();
1298     offset = tj->offset();
1299   }
1300 
1301   // Array pointers need some flattening
1302   const TypeAryPtr *ta = tj->isa_aryptr();
1303   if (ta && ta->is_stable()) {
1304     // Erase stability property for alias analysis.
1305     tj = ta = ta->cast_to_stable(false);
1306   }
1307   if( ta && is_known_inst ) {
1308     if ( offset != Type::OffsetBot &&
1309          offset > arrayOopDesc::length_offset_in_bytes() ) {
1310       offset = Type::OffsetBot; // Flatten constant access into array body only
1311       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1312     }
1313   } else if( ta && _AliasLevel >= 2 ) {
1314     // For arrays indexed by constant indices, we flatten the alias
1315     // space to include all of the array body.  Only the header, klass
1316     // and array length can be accessed un-aliased.
1317     if( offset != Type::OffsetBot ) {
1318       if( ta->const_oop() ) { // MethodData* or Method*
1319         offset = Type::OffsetBot;   // Flatten constant access into array body
1320         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1321       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1322         // range is OK as-is.
1323         tj = ta = TypeAryPtr::RANGE;
1324       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1325         tj = TypeInstPtr::KLASS; // all klass loads look alike
1326         ta = TypeAryPtr::RANGE; // generic ignored junk
1327         ptr = TypePtr::BotPTR;
1328       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1329         tj = TypeInstPtr::MARK;
1330         ta = TypeAryPtr::RANGE; // generic ignored junk
1331         ptr = TypePtr::BotPTR;
1332       } else {                  // Random constant offset into array body
1333         offset = Type::OffsetBot;   // Flatten constant access into array body
1334         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1335       }
1336     }
1337     // Arrays of fixed size alias with arrays of unknown size.
1338     if (ta->size() != TypeInt::POS) {
1339       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1340       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1341     }
1342     // Arrays of known objects become arrays of unknown objects.
1343     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1344       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1345       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1346     }
1347     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1348       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1349       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1350     }
1351     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1352     // cannot be distinguished by bytecode alone.
1353     if (ta->elem() == TypeInt::BOOL) {
1354       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1355       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1356       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1357     }
1358     // During the 2nd round of IterGVN, NotNull castings are removed.
1359     // Make sure the Bottom and NotNull variants alias the same.
1360     // Also, make sure exact and non-exact variants alias the same.
1361     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1362       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1363     }
1364   }
1365 
1366   // Oop pointers need some flattening
1367   const TypeInstPtr *to = tj->isa_instptr();
1368   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1369     ciInstanceKlass *k = to->klass()->as_instance_klass();
1370     if( ptr == TypePtr::Constant ) {
1371       if (to->klass() != ciEnv::current()->Class_klass() ||
1372           offset < k->size_helper() * wordSize) {
1373         // No constant oop pointers (such as Strings); they alias with
1374         // unknown strings.
1375         assert(!is_known_inst, "not scalarizable allocation");
1376         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1377       }
1378     } else if( is_known_inst ) {
1379       tj = to; // Keep NotNull and klass_is_exact for instance type
1380     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1381       // During the 2nd round of IterGVN, NotNull castings are removed.
1382       // Make sure the Bottom and NotNull variants alias the same.
1383       // Also, make sure exact and non-exact variants alias the same.
1384       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1385     }
1386     // Canonicalize the holder of this field
1387     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1388       // First handle header references such as a LoadKlassNode, even if the
1389       // object's klass is unloaded at compile time (4965979).
1390       if (!is_known_inst) { // Do it only for non-instance types
1391         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1392       }
1393     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1394       // Static fields are in the space above the normal instance
1395       // fields in the java.lang.Class instance.
1396       if (to->klass() != ciEnv::current()->Class_klass()) {
1397         to = NULL;
1398         tj = TypeOopPtr::BOTTOM;
1399         offset = tj->offset();
1400       }
1401     } else {
1402       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1403       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1404         if( is_known_inst ) {
1405           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1406         } else {
1407           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1408         }
1409       }
1410     }
1411   }
1412 
1413   // Klass pointers to object array klasses need some flattening
1414   const TypeKlassPtr *tk = tj->isa_klassptr();
1415   if( tk ) {
1416     // If we are referencing a field within a Klass, we need
1417     // to assume the worst case of an Object.  Both exact and
1418     // inexact types must flatten to the same alias class so
1419     // use NotNull as the PTR.
1420     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1421 
1422       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1423                                    TypeKlassPtr::OBJECT->klass(),
1424                                    offset);
1425     }
1426 
1427     ciKlass* klass = tk->klass();
1428     if( klass->is_obj_array_klass() ) {
1429       ciKlass* k = TypeAryPtr::OOPS->klass();
1430       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1431         k = TypeInstPtr::BOTTOM->klass();
1432       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1433     }
1434 
1435     // Check for precise loads from the primary supertype array and force them
1436     // to the supertype cache alias index.  Check for generic array loads from
1437     // the primary supertype array and also force them to the supertype cache
1438     // alias index.  Since the same load can reach both, we need to merge
1439     // these 2 disparate memories into the same alias class.  Since the
1440     // primary supertype array is read-only, there's no chance of confusion
1441     // where we bypass an array load and an array store.
1442     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1443     if (offset == Type::OffsetBot ||
1444         (offset >= primary_supers_offset &&
1445          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1446         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1447       offset = in_bytes(Klass::secondary_super_cache_offset());
1448       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1449     }
1450   }
1451 
1452   // Flatten all Raw pointers together.
1453   if (tj->base() == Type::RawPtr)
1454     tj = TypeRawPtr::BOTTOM;
1455 
1456   if (tj->base() == Type::AnyPtr)
1457     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1458 
1459   // Flatten all to bottom for now
1460   switch( _AliasLevel ) {
1461   case 0:
1462     tj = TypePtr::BOTTOM;
1463     break;
1464   case 1:                       // Flatten to: oop, static, field or array
1465     switch (tj->base()) {
1466     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1467     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1468     case Type::AryPtr:   // do not distinguish arrays at all
1469     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1470     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1471     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1472     default: ShouldNotReachHere();
1473     }
1474     break;
1475   case 2:                       // No collapsing at level 2; keep all splits
1476   case 3:                       // No collapsing at level 3; keep all splits
1477     break;
1478   default:
1479     Unimplemented();
1480   }
1481 
1482   offset = tj->offset();
1483   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1484 
1485   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1486           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1487           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1488           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1489           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1490           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1491           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1492           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1493   assert( tj->ptr() != TypePtr::TopPTR &&
1494           tj->ptr() != TypePtr::AnyNull &&
1495           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1496 //    assert( tj->ptr() != TypePtr::Constant ||
1497 //            tj->base() == Type::RawPtr ||
1498 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1499 
1500   return tj;
1501 }
1502 
1503 void Compile::AliasType::Init(int i, const TypePtr* at) {
1504   _index = i;
1505   _adr_type = at;
1506   _field = NULL;
1507   _element = NULL;
1508   _is_rewritable = true; // default
1509   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1510   if (atoop != NULL && atoop->is_known_instance()) {
1511     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1512     _general_index = Compile::current()->get_alias_index(gt);
1513   } else {
1514     _general_index = 0;
1515   }
1516 }
1517 
1518 //---------------------------------print_on------------------------------------
1519 #ifndef PRODUCT
1520 void Compile::AliasType::print_on(outputStream* st) {
1521   if (index() < 10)
1522         st->print("@ <%d> ", index());
1523   else  st->print("@ <%d>",  index());
1524   st->print(is_rewritable() ? "   " : " RO");
1525   int offset = adr_type()->offset();
1526   if (offset == Type::OffsetBot)
1527         st->print(" +any");
1528   else  st->print(" +%-3d", offset);
1529   st->print(" in ");
1530   adr_type()->dump_on(st);
1531   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1532   if (field() != NULL && tjp) {
1533     if (tjp->klass()  != field()->holder() ||
1534         tjp->offset() != field()->offset_in_bytes()) {
1535       st->print(" != ");
1536       field()->print();
1537       st->print(" ***");
1538     }
1539   }
1540 }
1541 
1542 void print_alias_types() {
1543   Compile* C = Compile::current();
1544   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1545   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1546     C->alias_type(idx)->print_on(tty);
1547     tty->cr();
1548   }
1549 }
1550 #endif
1551 
1552 
1553 //----------------------------probe_alias_cache--------------------------------
1554 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1555   intptr_t key = (intptr_t) adr_type;
1556   key ^= key >> logAliasCacheSize;
1557   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1558 }
1559 
1560 
1561 //-----------------------------grow_alias_types--------------------------------
1562 void Compile::grow_alias_types() {
1563   const int old_ats  = _max_alias_types; // how many before?
1564   const int new_ats  = old_ats;          // how many more?
1565   const int grow_ats = old_ats+new_ats;  // how many now?
1566   _max_alias_types = grow_ats;
1567   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1568   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1569   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1570   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1571 }
1572 
1573 
1574 //--------------------------------find_alias_type------------------------------
1575 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1576   if (_AliasLevel == 0)
1577     return alias_type(AliasIdxBot);
1578 
1579   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1580   if (ace->_adr_type == adr_type) {
1581     return alias_type(ace->_index);
1582   }
1583 
1584   // Handle special cases.
1585   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1586   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1587 
1588   // Do it the slow way.
1589   const TypePtr* flat = flatten_alias_type(adr_type);
1590 
1591 #ifdef ASSERT
1592   assert(flat == flatten_alias_type(flat), "idempotent");
1593   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1594   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1595     const TypeOopPtr* foop = flat->is_oopptr();
1596     // Scalarizable allocations have exact klass always.
1597     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1598     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1599     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1600   }
1601   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1602 #endif
1603 
1604   int idx = AliasIdxTop;
1605   for (int i = 0; i < num_alias_types(); i++) {
1606     if (alias_type(i)->adr_type() == flat) {
1607       idx = i;
1608       break;
1609     }
1610   }
1611 
1612   if (idx == AliasIdxTop) {
1613     if (no_create)  return NULL;
1614     // Grow the array if necessary.
1615     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1616     // Add a new alias type.
1617     idx = _num_alias_types++;
1618     _alias_types[idx]->Init(idx, flat);
1619     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1620     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1621     if (flat->isa_instptr()) {
1622       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1623           && flat->is_instptr()->klass() == env()->Class_klass())
1624         alias_type(idx)->set_rewritable(false);
1625     }
1626     if (flat->isa_aryptr()) {
1627 #ifdef ASSERT
1628       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1629       // (T_BYTE has the weakest alignment and size restrictions...)
1630       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1631 #endif
1632       if (flat->offset() == TypePtr::OffsetBot) {
1633         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1634       }
1635     }
1636     if (flat->isa_klassptr()) {
1637       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1638         alias_type(idx)->set_rewritable(false);
1639       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1640         alias_type(idx)->set_rewritable(false);
1641       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1642         alias_type(idx)->set_rewritable(false);
1643       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1644         alias_type(idx)->set_rewritable(false);
1645     }
1646     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1647     // but the base pointer type is not distinctive enough to identify
1648     // references into JavaThread.)
1649 
1650     // Check for final fields.
1651     const TypeInstPtr* tinst = flat->isa_instptr();
1652     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1653       ciField* field;
1654       if (tinst->const_oop() != NULL &&
1655           tinst->klass() == ciEnv::current()->Class_klass() &&
1656           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1657         // static field
1658         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1659         field = k->get_field_by_offset(tinst->offset(), true);
1660       } else {
1661         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1662         field = k->get_field_by_offset(tinst->offset(), false);
1663       }
1664       assert(field == NULL ||
1665              original_field == NULL ||
1666              (field->holder() == original_field->holder() &&
1667               field->offset() == original_field->offset() &&
1668               field->is_static() == original_field->is_static()), "wrong field?");
1669       // Set field() and is_rewritable() attributes.
1670       if (field != NULL)  alias_type(idx)->set_field(field);
1671     }
1672   }
1673 
1674   // Fill the cache for next time.
1675   ace->_adr_type = adr_type;
1676   ace->_index    = idx;
1677   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1678 
1679   // Might as well try to fill the cache for the flattened version, too.
1680   AliasCacheEntry* face = probe_alias_cache(flat);
1681   if (face->_adr_type == NULL) {
1682     face->_adr_type = flat;
1683     face->_index    = idx;
1684     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1685   }
1686 
1687   return alias_type(idx);
1688 }
1689 
1690 
1691 Compile::AliasType* Compile::alias_type(ciField* field) {
1692   const TypeOopPtr* t;
1693   if (field->is_static())
1694     t = TypeInstPtr::make(field->holder()->java_mirror());
1695   else
1696     t = TypeOopPtr::make_from_klass_raw(field->holder());
1697   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1698   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1699   return atp;
1700 }
1701 
1702 
1703 //------------------------------have_alias_type--------------------------------
1704 bool Compile::have_alias_type(const TypePtr* adr_type) {
1705   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1706   if (ace->_adr_type == adr_type) {
1707     return true;
1708   }
1709 
1710   // Handle special cases.
1711   if (adr_type == NULL)             return true;
1712   if (adr_type == TypePtr::BOTTOM)  return true;
1713 
1714   return find_alias_type(adr_type, true, NULL) != NULL;
1715 }
1716 
1717 //-----------------------------must_alias--------------------------------------
1718 // True if all values of the given address type are in the given alias category.
1719 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1720   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1721   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1722   if (alias_idx == AliasIdxTop)         return false; // the empty category
1723   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1724 
1725   // the only remaining possible overlap is identity
1726   int adr_idx = get_alias_index(adr_type);
1727   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1728   assert(adr_idx == alias_idx ||
1729          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1730           && adr_type                       != TypeOopPtr::BOTTOM),
1731          "should not be testing for overlap with an unsafe pointer");
1732   return adr_idx == alias_idx;
1733 }
1734 
1735 //------------------------------can_alias--------------------------------------
1736 // True if any values of the given address type are in the given alias category.
1737 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1738   if (alias_idx == AliasIdxTop)         return false; // the empty category
1739   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1740   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1741   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1742 
1743   // the only remaining possible overlap is identity
1744   int adr_idx = get_alias_index(adr_type);
1745   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1746   return adr_idx == alias_idx;
1747 }
1748 
1749 
1750 
1751 //---------------------------pop_warm_call-------------------------------------
1752 WarmCallInfo* Compile::pop_warm_call() {
1753   WarmCallInfo* wci = _warm_calls;
1754   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1755   return wci;
1756 }
1757 
1758 //----------------------------Inline_Warm--------------------------------------
1759 int Compile::Inline_Warm() {
1760   // If there is room, try to inline some more warm call sites.
1761   // %%% Do a graph index compaction pass when we think we're out of space?
1762   if (!InlineWarmCalls)  return 0;
1763 
1764   int calls_made_hot = 0;
1765   int room_to_grow   = NodeCountInliningCutoff - unique();
1766   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1767   int amount_grown   = 0;
1768   WarmCallInfo* call;
1769   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1770     int est_size = (int)call->size();
1771     if (est_size > (room_to_grow - amount_grown)) {
1772       // This one won't fit anyway.  Get rid of it.
1773       call->make_cold();
1774       continue;
1775     }
1776     call->make_hot();
1777     calls_made_hot++;
1778     amount_grown   += est_size;
1779     amount_to_grow -= est_size;
1780   }
1781 
1782   if (calls_made_hot > 0)  set_major_progress();
1783   return calls_made_hot;
1784 }
1785 
1786 
1787 //----------------------------Finish_Warm--------------------------------------
1788 void Compile::Finish_Warm() {
1789   if (!InlineWarmCalls)  return;
1790   if (failing())  return;
1791   if (warm_calls() == NULL)  return;
1792 
1793   // Clean up loose ends, if we are out of space for inlining.
1794   WarmCallInfo* call;
1795   while ((call = pop_warm_call()) != NULL) {
1796     call->make_cold();
1797   }
1798 }
1799 
1800 //---------------------cleanup_loop_predicates-----------------------
1801 // Remove the opaque nodes that protect the predicates so that all unused
1802 // checks and uncommon_traps will be eliminated from the ideal graph
1803 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1804   if (predicate_count()==0) return;
1805   for (int i = predicate_count(); i > 0; i--) {
1806     Node * n = predicate_opaque1_node(i-1);
1807     assert(n->Opcode() == Op_Opaque1, "must be");
1808     igvn.replace_node(n, n->in(1));
1809   }
1810   assert(predicate_count()==0, "should be clean!");
1811 }
1812 
1813 // StringOpts and late inlining of string methods
1814 void Compile::inline_string_calls(bool parse_time) {
1815   {
1816     // remove useless nodes to make the usage analysis simpler
1817     ResourceMark rm;
1818     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1819   }
1820 
1821   {
1822     ResourceMark rm;
1823     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1824     PhaseStringOpts pso(initial_gvn(), for_igvn());
1825     print_method(PHASE_AFTER_STRINGOPTS, 3);
1826   }
1827 
1828   // now inline anything that we skipped the first time around
1829   if (!parse_time) {
1830     _late_inlines_pos = _late_inlines.length();
1831   }
1832 
1833   while (_string_late_inlines.length() > 0) {
1834     CallGenerator* cg = _string_late_inlines.pop();
1835     cg->do_late_inline();
1836     if (failing())  return;
1837   }
1838   _string_late_inlines.trunc_to(0);
1839 }
1840 
1841 // Late inlining of boxing methods
1842 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1843   if (_boxing_late_inlines.length() > 0) {
1844     assert(has_boxed_value(), "inconsistent");
1845 
1846     PhaseGVN* gvn = initial_gvn();
1847     set_inlining_incrementally(true);
1848 
1849     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1850     for_igvn()->clear();
1851     gvn->replace_with(&igvn);
1852 
1853     while (_boxing_late_inlines.length() > 0) {
1854       CallGenerator* cg = _boxing_late_inlines.pop();
1855       cg->do_late_inline();
1856       if (failing())  return;
1857     }
1858     _boxing_late_inlines.trunc_to(0);
1859 
1860     {
1861       ResourceMark rm;
1862       PhaseRemoveUseless pru(gvn, for_igvn());
1863     }
1864 
1865     igvn = PhaseIterGVN(gvn);
1866     igvn.optimize();
1867 
1868     set_inlining_progress(false);
1869     set_inlining_incrementally(false);
1870   }
1871 }
1872 
1873 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1874   assert(IncrementalInline, "incremental inlining should be on");
1875   PhaseGVN* gvn = initial_gvn();
1876 
1877   set_inlining_progress(false);
1878   for_igvn()->clear();
1879   gvn->replace_with(&igvn);
1880 
1881   int i = 0;
1882 
1883   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1884     CallGenerator* cg = _late_inlines.at(i);
1885     _late_inlines_pos = i+1;
1886     cg->do_late_inline();
1887     if (failing())  return;
1888   }
1889   int j = 0;
1890   for (; i < _late_inlines.length(); i++, j++) {
1891     _late_inlines.at_put(j, _late_inlines.at(i));
1892   }
1893   _late_inlines.trunc_to(j);
1894 
1895   {
1896     ResourceMark rm;
1897     PhaseRemoveUseless pru(gvn, for_igvn());
1898   }
1899 
1900   igvn = PhaseIterGVN(gvn);
1901 }
1902 
1903 // Perform incremental inlining until bound on number of live nodes is reached
1904 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1905   PhaseGVN* gvn = initial_gvn();
1906 
1907   set_inlining_incrementally(true);
1908   set_inlining_progress(true);
1909   uint low_live_nodes = 0;
1910 
1911   while(inlining_progress() && _late_inlines.length() > 0) {
1912 
1913     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1914       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1915         // PhaseIdealLoop is expensive so we only try it once we are
1916         // out of loop and we only try it again if the previous helped
1917         // got the number of nodes down significantly
1918         PhaseIdealLoop ideal_loop( igvn, false, true );
1919         if (failing())  return;
1920         low_live_nodes = live_nodes();
1921         _major_progress = true;
1922       }
1923 
1924       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1925         break;
1926       }
1927     }
1928 
1929     inline_incrementally_one(igvn);
1930 
1931     if (failing())  return;
1932 
1933     igvn.optimize();
1934 
1935     if (failing())  return;
1936   }
1937 
1938   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1939 
1940   if (_string_late_inlines.length() > 0) {
1941     assert(has_stringbuilder(), "inconsistent");
1942     for_igvn()->clear();
1943     initial_gvn()->replace_with(&igvn);
1944 
1945     inline_string_calls(false);
1946 
1947     if (failing())  return;
1948 
1949     {
1950       ResourceMark rm;
1951       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1952     }
1953 
1954     igvn = PhaseIterGVN(gvn);
1955 
1956     igvn.optimize();
1957   }
1958 
1959   set_inlining_incrementally(false);
1960 }
1961 
1962 
1963 //------------------------------Optimize---------------------------------------
1964 // Given a graph, optimize it.
1965 void Compile::Optimize() {
1966   TracePhase t1("optimizer", &_t_optimizer, true);
1967 
1968 #ifndef PRODUCT
1969   if (env()->break_at_compile()) {
1970     BREAKPOINT;
1971   }
1972 
1973 #endif
1974 
1975   ResourceMark rm;
1976   int          loop_opts_cnt;
1977 
1978   NOT_PRODUCT( verify_graph_edges(); )
1979 
1980   print_method(PHASE_AFTER_PARSING);
1981 
1982  {
1983   // Iterative Global Value Numbering, including ideal transforms
1984   // Initialize IterGVN with types and values from parse-time GVN
1985   PhaseIterGVN igvn(initial_gvn());
1986   {
1987     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1988     igvn.optimize();
1989   }
1990 
1991   print_method(PHASE_ITER_GVN1, 2);
1992 
1993   if (failing())  return;
1994 
1995   {
1996     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
1997     inline_incrementally(igvn);
1998   }
1999 
2000   print_method(PHASE_INCREMENTAL_INLINE, 2);
2001 
2002   if (failing())  return;
2003 
2004   if (eliminate_boxing()) {
2005     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2006     // Inline valueOf() methods now.
2007     inline_boxing_calls(igvn);
2008 
2009     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2010 
2011     if (failing())  return;
2012   }
2013 
2014   // No more new expensive nodes will be added to the list from here
2015   // so keep only the actual candidates for optimizations.
2016   cleanup_expensive_nodes(igvn);
2017 
2018   // Perform escape analysis
2019   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2020     if (has_loops()) {
2021       // Cleanup graph (remove dead nodes).
2022       TracePhase t2("idealLoop", &_t_idealLoop, true);
2023       PhaseIdealLoop ideal_loop( igvn, false, true );
2024       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2025       if (failing())  return;
2026     }
2027     ConnectionGraph::do_analysis(this, &igvn);
2028 
2029     if (failing())  return;
2030 
2031     // Optimize out fields loads from scalar replaceable allocations.
2032     igvn.optimize();
2033     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2034 
2035     if (failing())  return;
2036 
2037     if (congraph() != NULL && macro_count() > 0) {
2038       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2039       PhaseMacroExpand mexp(igvn);
2040       mexp.eliminate_macro_nodes();
2041       igvn.set_delay_transform(false);
2042 
2043       igvn.optimize();
2044       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2045 
2046       if (failing())  return;
2047     }
2048   }
2049 
2050   // Loop transforms on the ideal graph.  Range Check Elimination,
2051   // peeling, unrolling, etc.
2052 
2053   // Set loop opts counter
2054   loop_opts_cnt = num_loop_opts();
2055   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2056     {
2057       TracePhase t2("idealLoop", &_t_idealLoop, true);
2058       PhaseIdealLoop ideal_loop( igvn, true );
2059       loop_opts_cnt--;
2060       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2061       if (failing())  return;
2062     }
2063     // Loop opts pass if partial peeling occurred in previous pass
2064     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2065       TracePhase t3("idealLoop", &_t_idealLoop, true);
2066       PhaseIdealLoop ideal_loop( igvn, false );
2067       loop_opts_cnt--;
2068       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2069       if (failing())  return;
2070     }
2071     // Loop opts pass for loop-unrolling before CCP
2072     if(major_progress() && (loop_opts_cnt > 0)) {
2073       TracePhase t4("idealLoop", &_t_idealLoop, true);
2074       PhaseIdealLoop ideal_loop( igvn, false );
2075       loop_opts_cnt--;
2076       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2077     }
2078     if (!failing()) {
2079       // Verify that last round of loop opts produced a valid graph
2080       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2081       PhaseIdealLoop::verify(igvn);
2082     }
2083   }
2084   if (failing())  return;
2085 
2086   // Conditional Constant Propagation;
2087   PhaseCCP ccp( &igvn );
2088   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2089   {
2090     TracePhase t2("ccp", &_t_ccp, true);
2091     ccp.do_transform();
2092   }
2093   print_method(PHASE_CPP1, 2);
2094 
2095   assert( true, "Break here to ccp.dump_old2new_map()");
2096 
2097   // Iterative Global Value Numbering, including ideal transforms
2098   {
2099     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2100     igvn = ccp;
2101     igvn.optimize();
2102   }
2103 
2104   print_method(PHASE_ITER_GVN2, 2);
2105 
2106   if (failing())  return;
2107 
2108   // Loop transforms on the ideal graph.  Range Check Elimination,
2109   // peeling, unrolling, etc.
2110   if(loop_opts_cnt > 0) {
2111     debug_only( int cnt = 0; );
2112     while(major_progress() && (loop_opts_cnt > 0)) {
2113       TracePhase t2("idealLoop", &_t_idealLoop, true);
2114       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2115       PhaseIdealLoop ideal_loop( igvn, true);
2116       loop_opts_cnt--;
2117       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2118       if (failing())  return;
2119     }
2120   }
2121 
2122   {
2123     // Verify that all previous optimizations produced a valid graph
2124     // at least to this point, even if no loop optimizations were done.
2125     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2126     PhaseIdealLoop::verify(igvn);
2127   }
2128 
2129   {
2130     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2131     PhaseMacroExpand  mex(igvn);
2132     if (mex.expand_macro_nodes()) {
2133       assert(failing(), "must bail out w/ explicit message");
2134       return;
2135     }
2136   }
2137 
2138  } // (End scope of igvn; run destructor if necessary for asserts.)
2139 
2140   dump_inlining();
2141   // A method with only infinite loops has no edges entering loops from root
2142   {
2143     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2144     if (final_graph_reshaping()) {
2145       assert(failing(), "must bail out w/ explicit message");
2146       return;
2147     }
2148   }
2149 
2150   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2151 }
2152 
2153 
2154 //------------------------------Code_Gen---------------------------------------
2155 // Given a graph, generate code for it
2156 void Compile::Code_Gen() {
2157   if (failing()) {
2158     return;
2159   }
2160 
2161   // Perform instruction selection.  You might think we could reclaim Matcher
2162   // memory PDQ, but actually the Matcher is used in generating spill code.
2163   // Internals of the Matcher (including some VectorSets) must remain live
2164   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2165   // set a bit in reclaimed memory.
2166 
2167   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2168   // nodes.  Mapping is only valid at the root of each matched subtree.
2169   NOT_PRODUCT( verify_graph_edges(); )
2170 
2171   Matcher matcher;
2172   _matcher = &matcher;
2173   {
2174     TracePhase t2("matcher", &_t_matcher, true);
2175     matcher.match();
2176   }
2177   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2178   // nodes.  Mapping is only valid at the root of each matched subtree.
2179   NOT_PRODUCT( verify_graph_edges(); )
2180 
2181   // If you have too many nodes, or if matching has failed, bail out
2182   check_node_count(0, "out of nodes matching instructions");
2183   if (failing()) {
2184     return;
2185   }
2186 
2187   // Build a proper-looking CFG
2188   PhaseCFG cfg(node_arena(), root(), matcher);
2189   _cfg = &cfg;
2190   {
2191     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2192     bool success = cfg.do_global_code_motion();
2193     if (!success) {
2194       return;
2195     }
2196 
2197     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2198     NOT_PRODUCT( verify_graph_edges(); )
2199     debug_only( cfg.verify(); )
2200   }
2201 
2202   PhaseChaitin regalloc(unique(), cfg, matcher);
2203   _regalloc = &regalloc;
2204   {
2205     TracePhase t2("regalloc", &_t_registerAllocation, true);
2206     // Perform register allocation.  After Chaitin, use-def chains are
2207     // no longer accurate (at spill code) and so must be ignored.
2208     // Node->LRG->reg mappings are still accurate.
2209     _regalloc->Register_Allocate();
2210 
2211     // Bail out if the allocator builds too many nodes
2212     if (failing()) {
2213       return;
2214     }
2215   }
2216 
2217   // Prior to register allocation we kept empty basic blocks in case the
2218   // the allocator needed a place to spill.  After register allocation we
2219   // are not adding any new instructions.  If any basic block is empty, we
2220   // can now safely remove it.
2221   {
2222     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2223     cfg.remove_empty_blocks();
2224     if (do_freq_based_layout()) {
2225       PhaseBlockLayout layout(cfg);
2226     } else {
2227       cfg.set_loop_alignment();
2228     }
2229     cfg.fixup_flow();
2230   }
2231 
2232   // Apply peephole optimizations
2233   if( OptoPeephole ) {
2234     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2235     PhasePeephole peep( _regalloc, cfg);
2236     peep.do_transform();
2237   }
2238 
2239   // Convert Nodes to instruction bits in a buffer
2240   {
2241     // %%%% workspace merge brought two timers together for one job
2242     TracePhase t2a("output", &_t_output, true);
2243     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2244     Output();
2245   }
2246 
2247   print_method(PHASE_FINAL_CODE);
2248 
2249   // He's dead, Jim.
2250   _cfg     = (PhaseCFG*)0xdeadbeef;
2251   _regalloc = (PhaseChaitin*)0xdeadbeef;
2252 }
2253 
2254 
2255 //------------------------------dump_asm---------------------------------------
2256 // Dump formatted assembly
2257 #ifndef PRODUCT
2258 void Compile::dump_asm(int *pcs, uint pc_limit) {
2259   bool cut_short = false;
2260   tty->print_cr("#");
2261   tty->print("#  ");  _tf->dump();  tty->cr();
2262   tty->print_cr("#");
2263 
2264   // For all blocks
2265   int pc = 0x0;                 // Program counter
2266   char starts_bundle = ' ';
2267   _regalloc->dump_frame();
2268 
2269   Node *n = NULL;
2270   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2271     if (VMThread::should_terminate()) {
2272       cut_short = true;
2273       break;
2274     }
2275     Block* block = _cfg->get_block(i);
2276     if (block->is_connector() && !Verbose) {
2277       continue;
2278     }
2279     n = block->head();
2280     if (pcs && n->_idx < pc_limit) {
2281       tty->print("%3.3x   ", pcs[n->_idx]);
2282     } else {
2283       tty->print("      ");
2284     }
2285     block->dump_head(_cfg);
2286     if (block->is_connector()) {
2287       tty->print_cr("        # Empty connector block");
2288     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2289       tty->print_cr("        # Block is sole successor of call");
2290     }
2291 
2292     // For all instructions
2293     Node *delay = NULL;
2294     for (uint j = 0; j < block->number_of_nodes(); j++) {
2295       if (VMThread::should_terminate()) {
2296         cut_short = true;
2297         break;
2298       }
2299       n = block->get_node(j);
2300       if (valid_bundle_info(n)) {
2301         Bundle* bundle = node_bundling(n);
2302         if (bundle->used_in_unconditional_delay()) {
2303           delay = n;
2304           continue;
2305         }
2306         if (bundle->starts_bundle()) {
2307           starts_bundle = '+';
2308         }
2309       }
2310 
2311       if (WizardMode) {
2312         n->dump();
2313       }
2314 
2315       if( !n->is_Region() &&    // Dont print in the Assembly
2316           !n->is_Phi() &&       // a few noisely useless nodes
2317           !n->is_Proj() &&
2318           !n->is_MachTemp() &&
2319           !n->is_SafePointScalarObject() &&
2320           !n->is_Catch() &&     // Would be nice to print exception table targets
2321           !n->is_MergeMem() &&  // Not very interesting
2322           !n->is_top() &&       // Debug info table constants
2323           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2324           ) {
2325         if (pcs && n->_idx < pc_limit)
2326           tty->print("%3.3x", pcs[n->_idx]);
2327         else
2328           tty->print("   ");
2329         tty->print(" %c ", starts_bundle);
2330         starts_bundle = ' ';
2331         tty->print("\t");
2332         n->format(_regalloc, tty);
2333         tty->cr();
2334       }
2335 
2336       // If we have an instruction with a delay slot, and have seen a delay,
2337       // then back up and print it
2338       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2339         assert(delay != NULL, "no unconditional delay instruction");
2340         if (WizardMode) delay->dump();
2341 
2342         if (node_bundling(delay)->starts_bundle())
2343           starts_bundle = '+';
2344         if (pcs && n->_idx < pc_limit)
2345           tty->print("%3.3x", pcs[n->_idx]);
2346         else
2347           tty->print("   ");
2348         tty->print(" %c ", starts_bundle);
2349         starts_bundle = ' ';
2350         tty->print("\t");
2351         delay->format(_regalloc, tty);
2352         tty->print_cr("");
2353         delay = NULL;
2354       }
2355 
2356       // Dump the exception table as well
2357       if( n->is_Catch() && (Verbose || WizardMode) ) {
2358         // Print the exception table for this offset
2359         _handler_table.print_subtable_for(pc);
2360       }
2361     }
2362 
2363     if (pcs && n->_idx < pc_limit)
2364       tty->print_cr("%3.3x", pcs[n->_idx]);
2365     else
2366       tty->print_cr("");
2367 
2368     assert(cut_short || delay == NULL, "no unconditional delay branch");
2369 
2370   } // End of per-block dump
2371   tty->print_cr("");
2372 
2373   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2374 }
2375 #endif
2376 
2377 //------------------------------Final_Reshape_Counts---------------------------
2378 // This class defines counters to help identify when a method
2379 // may/must be executed using hardware with only 24-bit precision.
2380 struct Final_Reshape_Counts : public StackObj {
2381   int  _call_count;             // count non-inlined 'common' calls
2382   int  _float_count;            // count float ops requiring 24-bit precision
2383   int  _double_count;           // count double ops requiring more precision
2384   int  _java_call_count;        // count non-inlined 'java' calls
2385   int  _inner_loop_count;       // count loops which need alignment
2386   VectorSet _visited;           // Visitation flags
2387   Node_List _tests;             // Set of IfNodes & PCTableNodes
2388 
2389   Final_Reshape_Counts() :
2390     _call_count(0), _float_count(0), _double_count(0),
2391     _java_call_count(0), _inner_loop_count(0),
2392     _visited( Thread::current()->resource_area() ) { }
2393 
2394   void inc_call_count  () { _call_count  ++; }
2395   void inc_float_count () { _float_count ++; }
2396   void inc_double_count() { _double_count++; }
2397   void inc_java_call_count() { _java_call_count++; }
2398   void inc_inner_loop_count() { _inner_loop_count++; }
2399 
2400   int  get_call_count  () const { return _call_count  ; }
2401   int  get_float_count () const { return _float_count ; }
2402   int  get_double_count() const { return _double_count; }
2403   int  get_java_call_count() const { return _java_call_count; }
2404   int  get_inner_loop_count() const { return _inner_loop_count; }
2405 };
2406 
2407 #ifdef ASSERT
2408 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2409   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2410   // Make sure the offset goes inside the instance layout.
2411   return k->contains_field_offset(tp->offset());
2412   // Note that OffsetBot and OffsetTop are very negative.
2413 }
2414 #endif
2415 
2416 // Eliminate trivially redundant StoreCMs and accumulate their
2417 // precedence edges.
2418 void Compile::eliminate_redundant_card_marks(Node* n) {
2419   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2420   if (n->in(MemNode::Address)->outcnt() > 1) {
2421     // There are multiple users of the same address so it might be
2422     // possible to eliminate some of the StoreCMs
2423     Node* mem = n->in(MemNode::Memory);
2424     Node* adr = n->in(MemNode::Address);
2425     Node* val = n->in(MemNode::ValueIn);
2426     Node* prev = n;
2427     bool done = false;
2428     // Walk the chain of StoreCMs eliminating ones that match.  As
2429     // long as it's a chain of single users then the optimization is
2430     // safe.  Eliminating partially redundant StoreCMs would require
2431     // cloning copies down the other paths.
2432     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2433       if (adr == mem->in(MemNode::Address) &&
2434           val == mem->in(MemNode::ValueIn)) {
2435         // redundant StoreCM
2436         if (mem->req() > MemNode::OopStore) {
2437           // Hasn't been processed by this code yet.
2438           n->add_prec(mem->in(MemNode::OopStore));
2439         } else {
2440           // Already converted to precedence edge
2441           for (uint i = mem->req(); i < mem->len(); i++) {
2442             // Accumulate any precedence edges
2443             if (mem->in(i) != NULL) {
2444               n->add_prec(mem->in(i));
2445             }
2446           }
2447           // Everything above this point has been processed.
2448           done = true;
2449         }
2450         // Eliminate the previous StoreCM
2451         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2452         assert(mem->outcnt() == 0, "should be dead");
2453         mem->disconnect_inputs(NULL, this);
2454       } else {
2455         prev = mem;
2456       }
2457       mem = prev->in(MemNode::Memory);
2458     }
2459   }
2460 }
2461 
2462 //------------------------------final_graph_reshaping_impl----------------------
2463 // Implement items 1-5 from final_graph_reshaping below.
2464 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2465 
2466   if ( n->outcnt() == 0 ) return; // dead node
2467   uint nop = n->Opcode();
2468 
2469   // Check for 2-input instruction with "last use" on right input.
2470   // Swap to left input.  Implements item (2).
2471   if( n->req() == 3 &&          // two-input instruction
2472       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2473       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2474       n->in(2)->outcnt() == 1 &&// right use IS a last use
2475       !n->in(2)->is_Con() ) {   // right use is not a constant
2476     // Check for commutative opcode
2477     switch( nop ) {
2478     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2479     case Op_MaxI:  case Op_MinI:
2480     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2481     case Op_AndL:  case Op_XorL:  case Op_OrL:
2482     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2483       // Move "last use" input to left by swapping inputs
2484       n->swap_edges(1, 2);
2485       break;
2486     }
2487     default:
2488       break;
2489     }
2490   }
2491 
2492 #ifdef ASSERT
2493   if( n->is_Mem() ) {
2494     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2495     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2496             // oop will be recorded in oop map if load crosses safepoint
2497             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2498                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2499             "raw memory operations should have control edge");
2500   }
2501 #endif
2502   // Count FPU ops and common calls, implements item (3)
2503   switch( nop ) {
2504   // Count all float operations that may use FPU
2505   case Op_AddF:
2506   case Op_SubF:
2507   case Op_MulF:
2508   case Op_DivF:
2509   case Op_NegF:
2510   case Op_ModF:
2511   case Op_ConvI2F:
2512   case Op_ConF:
2513   case Op_CmpF:
2514   case Op_CmpF3:
2515   // case Op_ConvL2F: // longs are split into 32-bit halves
2516     frc.inc_float_count();
2517     break;
2518 
2519   case Op_ConvF2D:
2520   case Op_ConvD2F:
2521     frc.inc_float_count();
2522     frc.inc_double_count();
2523     break;
2524 
2525   // Count all double operations that may use FPU
2526   case Op_AddD:
2527   case Op_SubD:
2528   case Op_MulD:
2529   case Op_DivD:
2530   case Op_NegD:
2531   case Op_ModD:
2532   case Op_ConvI2D:
2533   case Op_ConvD2I:
2534   // case Op_ConvL2D: // handled by leaf call
2535   // case Op_ConvD2L: // handled by leaf call
2536   case Op_ConD:
2537   case Op_CmpD:
2538   case Op_CmpD3:
2539     frc.inc_double_count();
2540     break;
2541   case Op_Opaque1:              // Remove Opaque Nodes before matching
2542   case Op_Opaque2:              // Remove Opaque Nodes before matching
2543     n->subsume_by(n->in(1), this);
2544     break;
2545   case Op_CallStaticJava:
2546   case Op_CallJava:
2547   case Op_CallDynamicJava:
2548     frc.inc_java_call_count(); // Count java call site;
2549   case Op_CallRuntime:
2550   case Op_CallLeaf:
2551   case Op_CallLeafNoFP: {
2552     assert( n->is_Call(), "" );
2553     CallNode *call = n->as_Call();
2554     // Count call sites where the FP mode bit would have to be flipped.
2555     // Do not count uncommon runtime calls:
2556     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2557     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2558     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2559       frc.inc_call_count();   // Count the call site
2560     } else {                  // See if uncommon argument is shared
2561       Node *n = call->in(TypeFunc::Parms);
2562       int nop = n->Opcode();
2563       // Clone shared simple arguments to uncommon calls, item (1).
2564       if( n->outcnt() > 1 &&
2565           !n->is_Proj() &&
2566           nop != Op_CreateEx &&
2567           nop != Op_CheckCastPP &&
2568           nop != Op_DecodeN &&
2569           nop != Op_DecodeNKlass &&
2570           !n->is_Mem() ) {
2571         Node *x = n->clone();
2572         call->set_req( TypeFunc::Parms, x );
2573       }
2574     }
2575     break;
2576   }
2577 
2578   case Op_StoreD:
2579   case Op_LoadD:
2580   case Op_LoadD_unaligned:
2581     frc.inc_double_count();
2582     goto handle_mem;
2583   case Op_StoreF:
2584   case Op_LoadF:
2585     frc.inc_float_count();
2586     goto handle_mem;
2587 
2588   case Op_StoreCM:
2589     {
2590       // Convert OopStore dependence into precedence edge
2591       Node* prec = n->in(MemNode::OopStore);
2592       n->del_req(MemNode::OopStore);
2593       n->add_prec(prec);
2594       eliminate_redundant_card_marks(n);
2595     }
2596 
2597     // fall through
2598 
2599   case Op_StoreB:
2600   case Op_StoreC:
2601   case Op_StorePConditional:
2602   case Op_StoreI:
2603   case Op_StoreL:
2604   case Op_StoreIConditional:
2605   case Op_StoreLConditional:
2606   case Op_CompareAndSwapI:
2607   case Op_CompareAndSwapL:
2608   case Op_CompareAndSwapP:
2609   case Op_CompareAndSwapN:
2610   case Op_GetAndAddI:
2611   case Op_GetAndAddL:
2612   case Op_GetAndSetI:
2613   case Op_GetAndSetL:
2614   case Op_GetAndSetP:
2615   case Op_GetAndSetN:
2616   case Op_StoreP:
2617   case Op_StoreN:
2618   case Op_StoreNKlass:
2619   case Op_LoadB:
2620   case Op_LoadUB:
2621   case Op_LoadUS:
2622   case Op_LoadI:
2623   case Op_LoadKlass:
2624   case Op_LoadNKlass:
2625   case Op_LoadL:
2626   case Op_LoadL_unaligned:
2627   case Op_LoadPLocked:
2628   case Op_LoadP:
2629   case Op_LoadN:
2630   case Op_LoadRange:
2631   case Op_LoadS: {
2632   handle_mem:
2633 #ifdef ASSERT
2634     if( VerifyOptoOopOffsets ) {
2635       assert( n->is_Mem(), "" );
2636       MemNode *mem  = (MemNode*)n;
2637       // Check to see if address types have grounded out somehow.
2638       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2639       assert( !tp || oop_offset_is_sane(tp), "" );
2640     }
2641 #endif
2642     break;
2643   }
2644 
2645   case Op_AddP: {               // Assert sane base pointers
2646     Node *addp = n->in(AddPNode::Address);
2647     assert( !addp->is_AddP() ||
2648             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2649             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2650             "Base pointers must match" );
2651 #ifdef _LP64
2652     if ((UseCompressedOops || UseCompressedClassPointers) &&
2653         addp->Opcode() == Op_ConP &&
2654         addp == n->in(AddPNode::Base) &&
2655         n->in(AddPNode::Offset)->is_Con()) {
2656       // Use addressing with narrow klass to load with offset on x86.
2657       // On sparc loading 32-bits constant and decoding it have less
2658       // instructions (4) then load 64-bits constant (7).
2659       // Do this transformation here since IGVN will convert ConN back to ConP.
2660       const Type* t = addp->bottom_type();
2661       if (t->isa_oopptr() || t->isa_klassptr()) {
2662         Node* nn = NULL;
2663 
2664         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2665 
2666         // Look for existing ConN node of the same exact type.
2667         Node* r  = root();
2668         uint cnt = r->outcnt();
2669         for (uint i = 0; i < cnt; i++) {
2670           Node* m = r->raw_out(i);
2671           if (m!= NULL && m->Opcode() == op &&
2672               m->bottom_type()->make_ptr() == t) {
2673             nn = m;
2674             break;
2675           }
2676         }
2677         if (nn != NULL) {
2678           // Decode a narrow oop to match address
2679           // [R12 + narrow_oop_reg<<3 + offset]
2680           if (t->isa_oopptr()) {
2681             nn = new (this) DecodeNNode(nn, t);
2682           } else {
2683             nn = new (this) DecodeNKlassNode(nn, t);
2684           }
2685           n->set_req(AddPNode::Base, nn);
2686           n->set_req(AddPNode::Address, nn);
2687           if (addp->outcnt() == 0) {
2688             addp->disconnect_inputs(NULL, this);
2689           }
2690         }
2691       }
2692     }
2693 #endif
2694     break;
2695   }
2696 
2697 #ifdef _LP64
2698   case Op_CastPP:
2699     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2700       Node* in1 = n->in(1);
2701       const Type* t = n->bottom_type();
2702       Node* new_in1 = in1->clone();
2703       new_in1->as_DecodeN()->set_type(t);
2704 
2705       if (!Matcher::narrow_oop_use_complex_address()) {
2706         //
2707         // x86, ARM and friends can handle 2 adds in addressing mode
2708         // and Matcher can fold a DecodeN node into address by using
2709         // a narrow oop directly and do implicit NULL check in address:
2710         //
2711         // [R12 + narrow_oop_reg<<3 + offset]
2712         // NullCheck narrow_oop_reg
2713         //
2714         // On other platforms (Sparc) we have to keep new DecodeN node and
2715         // use it to do implicit NULL check in address:
2716         //
2717         // decode_not_null narrow_oop_reg, base_reg
2718         // [base_reg + offset]
2719         // NullCheck base_reg
2720         //
2721         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2722         // to keep the information to which NULL check the new DecodeN node
2723         // corresponds to use it as value in implicit_null_check().
2724         //
2725         new_in1->set_req(0, n->in(0));
2726       }
2727 
2728       n->subsume_by(new_in1, this);
2729       if (in1->outcnt() == 0) {
2730         in1->disconnect_inputs(NULL, this);
2731       }
2732     }
2733     break;
2734 
2735   case Op_CmpP:
2736     // Do this transformation here to preserve CmpPNode::sub() and
2737     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2738     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2739       Node* in1 = n->in(1);
2740       Node* in2 = n->in(2);
2741       if (!in1->is_DecodeNarrowPtr()) {
2742         in2 = in1;
2743         in1 = n->in(2);
2744       }
2745       assert(in1->is_DecodeNarrowPtr(), "sanity");
2746 
2747       Node* new_in2 = NULL;
2748       if (in2->is_DecodeNarrowPtr()) {
2749         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2750         new_in2 = in2->in(1);
2751       } else if (in2->Opcode() == Op_ConP) {
2752         const Type* t = in2->bottom_type();
2753         if (t == TypePtr::NULL_PTR) {
2754           assert(in1->is_DecodeN(), "compare klass to null?");
2755           // Don't convert CmpP null check into CmpN if compressed
2756           // oops implicit null check is not generated.
2757           // This will allow to generate normal oop implicit null check.
2758           if (Matcher::gen_narrow_oop_implicit_null_checks())
2759             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2760           //
2761           // This transformation together with CastPP transformation above
2762           // will generated code for implicit NULL checks for compressed oops.
2763           //
2764           // The original code after Optimize()
2765           //
2766           //    LoadN memory, narrow_oop_reg
2767           //    decode narrow_oop_reg, base_reg
2768           //    CmpP base_reg, NULL
2769           //    CastPP base_reg // NotNull
2770           //    Load [base_reg + offset], val_reg
2771           //
2772           // after these transformations will be
2773           //
2774           //    LoadN memory, narrow_oop_reg
2775           //    CmpN narrow_oop_reg, NULL
2776           //    decode_not_null narrow_oop_reg, base_reg
2777           //    Load [base_reg + offset], val_reg
2778           //
2779           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2780           // since narrow oops can be used in debug info now (see the code in
2781           // final_graph_reshaping_walk()).
2782           //
2783           // At the end the code will be matched to
2784           // on x86:
2785           //
2786           //    Load_narrow_oop memory, narrow_oop_reg
2787           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2788           //    NullCheck narrow_oop_reg
2789           //
2790           // and on sparc:
2791           //
2792           //    Load_narrow_oop memory, narrow_oop_reg
2793           //    decode_not_null narrow_oop_reg, base_reg
2794           //    Load [base_reg + offset], val_reg
2795           //    NullCheck base_reg
2796           //
2797         } else if (t->isa_oopptr()) {
2798           new_in2 = ConNode::make(this, t->make_narrowoop());
2799         } else if (t->isa_klassptr()) {
2800           new_in2 = ConNode::make(this, t->make_narrowklass());
2801         }
2802       }
2803       if (new_in2 != NULL) {
2804         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2805         n->subsume_by(cmpN, this);
2806         if (in1->outcnt() == 0) {
2807           in1->disconnect_inputs(NULL, this);
2808         }
2809         if (in2->outcnt() == 0) {
2810           in2->disconnect_inputs(NULL, this);
2811         }
2812       }
2813     }
2814     break;
2815 
2816   case Op_DecodeN:
2817   case Op_DecodeNKlass:
2818     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2819     // DecodeN could be pinned when it can't be fold into
2820     // an address expression, see the code for Op_CastPP above.
2821     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2822     break;
2823 
2824   case Op_EncodeP:
2825   case Op_EncodePKlass: {
2826     Node* in1 = n->in(1);
2827     if (in1->is_DecodeNarrowPtr()) {
2828       n->subsume_by(in1->in(1), this);
2829     } else if (in1->Opcode() == Op_ConP) {
2830       const Type* t = in1->bottom_type();
2831       if (t == TypePtr::NULL_PTR) {
2832         assert(t->isa_oopptr(), "null klass?");
2833         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2834       } else if (t->isa_oopptr()) {
2835         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2836       } else if (t->isa_klassptr()) {
2837         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2838       }
2839     }
2840     if (in1->outcnt() == 0) {
2841       in1->disconnect_inputs(NULL, this);
2842     }
2843     break;
2844   }
2845 
2846   case Op_Proj: {
2847     if (OptimizeStringConcat) {
2848       ProjNode* p = n->as_Proj();
2849       if (p->_is_io_use) {
2850         // Separate projections were used for the exception path which
2851         // are normally removed by a late inline.  If it wasn't inlined
2852         // then they will hang around and should just be replaced with
2853         // the original one.
2854         Node* proj = NULL;
2855         // Replace with just one
2856         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2857           Node *use = i.get();
2858           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2859             proj = use;
2860             break;
2861           }
2862         }
2863         assert(proj != NULL, "must be found");
2864         p->subsume_by(proj, this);
2865       }
2866     }
2867     break;
2868   }
2869 
2870   case Op_Phi:
2871     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2872       // The EncodeP optimization may create Phi with the same edges
2873       // for all paths. It is not handled well by Register Allocator.
2874       Node* unique_in = n->in(1);
2875       assert(unique_in != NULL, "");
2876       uint cnt = n->req();
2877       for (uint i = 2; i < cnt; i++) {
2878         Node* m = n->in(i);
2879         assert(m != NULL, "");
2880         if (unique_in != m)
2881           unique_in = NULL;
2882       }
2883       if (unique_in != NULL) {
2884         n->subsume_by(unique_in, this);
2885       }
2886     }
2887     break;
2888 
2889 #endif
2890 
2891   case Op_ModI:
2892     if (UseDivMod) {
2893       // Check if a%b and a/b both exist
2894       Node* d = n->find_similar(Op_DivI);
2895       if (d) {
2896         // Replace them with a fused divmod if supported
2897         if (Matcher::has_match_rule(Op_DivModI)) {
2898           DivModINode* divmod = DivModINode::make(this, n);
2899           d->subsume_by(divmod->div_proj(), this);
2900           n->subsume_by(divmod->mod_proj(), this);
2901         } else {
2902           // replace a%b with a-((a/b)*b)
2903           Node* mult = new (this) MulINode(d, d->in(2));
2904           Node* sub  = new (this) SubINode(d->in(1), mult);
2905           n->subsume_by(sub, this);
2906         }
2907       }
2908     }
2909     break;
2910 
2911   case Op_ModL:
2912     if (UseDivMod) {
2913       // Check if a%b and a/b both exist
2914       Node* d = n->find_similar(Op_DivL);
2915       if (d) {
2916         // Replace them with a fused divmod if supported
2917         if (Matcher::has_match_rule(Op_DivModL)) {
2918           DivModLNode* divmod = DivModLNode::make(this, n);
2919           d->subsume_by(divmod->div_proj(), this);
2920           n->subsume_by(divmod->mod_proj(), this);
2921         } else {
2922           // replace a%b with a-((a/b)*b)
2923           Node* mult = new (this) MulLNode(d, d->in(2));
2924           Node* sub  = new (this) SubLNode(d->in(1), mult);
2925           n->subsume_by(sub, this);
2926         }
2927       }
2928     }
2929     break;
2930 
2931   case Op_LoadVector:
2932   case Op_StoreVector:
2933     break;
2934 
2935   case Op_PackB:
2936   case Op_PackS:
2937   case Op_PackI:
2938   case Op_PackF:
2939   case Op_PackL:
2940   case Op_PackD:
2941     if (n->req()-1 > 2) {
2942       // Replace many operand PackNodes with a binary tree for matching
2943       PackNode* p = (PackNode*) n;
2944       Node* btp = p->binary_tree_pack(this, 1, n->req());
2945       n->subsume_by(btp, this);
2946     }
2947     break;
2948   case Op_Loop:
2949   case Op_CountedLoop:
2950     if (n->as_Loop()->is_inner_loop()) {
2951       frc.inc_inner_loop_count();
2952     }
2953     break;
2954   case Op_LShiftI:
2955   case Op_RShiftI:
2956   case Op_URShiftI:
2957   case Op_LShiftL:
2958   case Op_RShiftL:
2959   case Op_URShiftL:
2960     if (Matcher::need_masked_shift_count) {
2961       // The cpu's shift instructions don't restrict the count to the
2962       // lower 5/6 bits. We need to do the masking ourselves.
2963       Node* in2 = n->in(2);
2964       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2965       const TypeInt* t = in2->find_int_type();
2966       if (t != NULL && t->is_con()) {
2967         juint shift = t->get_con();
2968         if (shift > mask) { // Unsigned cmp
2969           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2970         }
2971       } else {
2972         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2973           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2974           n->set_req(2, shift);
2975         }
2976       }
2977       if (in2->outcnt() == 0) { // Remove dead node
2978         in2->disconnect_inputs(NULL, this);
2979       }
2980     }
2981     break;
2982   case Op_MemBarStoreStore:
2983   case Op_MemBarRelease:
2984     // Break the link with AllocateNode: it is no longer useful and
2985     // confuses register allocation.
2986     if (n->req() > MemBarNode::Precedent) {
2987       n->set_req(MemBarNode::Precedent, top());
2988     }
2989     break;
2990     // Must set a control edge on all nodes that produce a FlagsProj
2991     // so they can't escape the block that consumes the flags.
2992     // Must also set the non throwing branch as the control
2993     // for all nodes that depends on the result. Unless the node
2994     // already have a control that isn't the control of the
2995     // flag producer
2996   case Op_FlagsProj:
2997     {
2998       MathExactNode* math = (MathExactNode*)  n->in(0);
2999       Node* ctrl = math->control_node();
3000       Node* non_throwing = math->non_throwing_branch();
3001       math->set_req(0, ctrl);
3002 
3003       Node* result = math->result_node();
3004       if (result != NULL) {
3005         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
3006           Node* out = result->fast_out(j);
3007           if (out->in(0) == NULL) {
3008             out->set_req(0, non_throwing);
3009           } else if (out->in(0) == ctrl) {
3010             out->set_req(0, non_throwing);
3011           }
3012         }
3013       }
3014     }
3015     break;
3016   default:
3017     assert( !n->is_Call(), "" );
3018     assert( !n->is_Mem(), "" );
3019     break;
3020   }
3021 
3022   // Collect CFG split points
3023   if (n->is_MultiBranch())
3024     frc._tests.push(n);
3025 }
3026 
3027 //------------------------------final_graph_reshaping_walk---------------------
3028 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3029 // requires that the walk visits a node's inputs before visiting the node.
3030 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3031   ResourceArea *area = Thread::current()->resource_area();
3032   Unique_Node_List sfpt(area);
3033 
3034   frc._visited.set(root->_idx); // first, mark node as visited
3035   uint cnt = root->req();
3036   Node *n = root;
3037   uint  i = 0;
3038   while (true) {
3039     if (i < cnt) {
3040       // Place all non-visited non-null inputs onto stack
3041       Node* m = n->in(i);
3042       ++i;
3043       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3044         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3045           sfpt.push(m);
3046         cnt = m->req();
3047         nstack.push(n, i); // put on stack parent and next input's index
3048         n = m;
3049         i = 0;
3050       }
3051     } else {
3052       // Now do post-visit work
3053       final_graph_reshaping_impl( n, frc );
3054       if (nstack.is_empty())
3055         break;             // finished
3056       n = nstack.node();   // Get node from stack
3057       cnt = n->req();
3058       i = nstack.index();
3059       nstack.pop();        // Shift to the next node on stack
3060     }
3061   }
3062 
3063   // Skip next transformation if compressed oops are not used.
3064   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3065       (!UseCompressedOops && !UseCompressedClassPointers))
3066     return;
3067 
3068   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3069   // It could be done for an uncommon traps or any safepoints/calls
3070   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3071   while (sfpt.size() > 0) {
3072     n = sfpt.pop();
3073     JVMState *jvms = n->as_SafePoint()->jvms();
3074     assert(jvms != NULL, "sanity");
3075     int start = jvms->debug_start();
3076     int end   = n->req();
3077     bool is_uncommon = (n->is_CallStaticJava() &&
3078                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3079     for (int j = start; j < end; j++) {
3080       Node* in = n->in(j);
3081       if (in->is_DecodeNarrowPtr()) {
3082         bool safe_to_skip = true;
3083         if (!is_uncommon ) {
3084           // Is it safe to skip?
3085           for (uint i = 0; i < in->outcnt(); i++) {
3086             Node* u = in->raw_out(i);
3087             if (!u->is_SafePoint() ||
3088                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3089               safe_to_skip = false;
3090             }
3091           }
3092         }
3093         if (safe_to_skip) {
3094           n->set_req(j, in->in(1));
3095         }
3096         if (in->outcnt() == 0) {
3097           in->disconnect_inputs(NULL, this);
3098         }
3099       }
3100     }
3101   }
3102 }
3103 
3104 //------------------------------final_graph_reshaping--------------------------
3105 // Final Graph Reshaping.
3106 //
3107 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3108 //     and not commoned up and forced early.  Must come after regular
3109 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3110 //     inputs to Loop Phis; these will be split by the allocator anyways.
3111 //     Remove Opaque nodes.
3112 // (2) Move last-uses by commutative operations to the left input to encourage
3113 //     Intel update-in-place two-address operations and better register usage
3114 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3115 //     calls canonicalizing them back.
3116 // (3) Count the number of double-precision FP ops, single-precision FP ops
3117 //     and call sites.  On Intel, we can get correct rounding either by
3118 //     forcing singles to memory (requires extra stores and loads after each
3119 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3120 //     clearing the mode bit around call sites).  The mode bit is only used
3121 //     if the relative frequency of single FP ops to calls is low enough.
3122 //     This is a key transform for SPEC mpeg_audio.
3123 // (4) Detect infinite loops; blobs of code reachable from above but not
3124 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3125 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3126 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3127 //     Detection is by looking for IfNodes where only 1 projection is
3128 //     reachable from below or CatchNodes missing some targets.
3129 // (5) Assert for insane oop offsets in debug mode.
3130 
3131 bool Compile::final_graph_reshaping() {
3132   // an infinite loop may have been eliminated by the optimizer,
3133   // in which case the graph will be empty.
3134   if (root()->req() == 1) {
3135     record_method_not_compilable("trivial infinite loop");
3136     return true;
3137   }
3138 
3139   // Expensive nodes have their control input set to prevent the GVN
3140   // from freely commoning them. There's no GVN beyond this point so
3141   // no need to keep the control input. We want the expensive nodes to
3142   // be freely moved to the least frequent code path by gcm.
3143   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3144   for (int i = 0; i < expensive_count(); i++) {
3145     _expensive_nodes->at(i)->set_req(0, NULL);
3146   }
3147 
3148   Final_Reshape_Counts frc;
3149 
3150   // Visit everybody reachable!
3151   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3152   Node_Stack nstack(unique() >> 1);
3153   final_graph_reshaping_walk(nstack, root(), frc);
3154 
3155   // Check for unreachable (from below) code (i.e., infinite loops).
3156   for( uint i = 0; i < frc._tests.size(); i++ ) {
3157     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3158     // Get number of CFG targets.
3159     // Note that PCTables include exception targets after calls.
3160     uint required_outcnt = n->required_outcnt();
3161     if (n->outcnt() != required_outcnt) {
3162       // Check for a few special cases.  Rethrow Nodes never take the
3163       // 'fall-thru' path, so expected kids is 1 less.
3164       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3165         if (n->in(0)->in(0)->is_Call()) {
3166           CallNode *call = n->in(0)->in(0)->as_Call();
3167           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3168             required_outcnt--;      // Rethrow always has 1 less kid
3169           } else if (call->req() > TypeFunc::Parms &&
3170                      call->is_CallDynamicJava()) {
3171             // Check for null receiver. In such case, the optimizer has
3172             // detected that the virtual call will always result in a null
3173             // pointer exception. The fall-through projection of this CatchNode
3174             // will not be populated.
3175             Node *arg0 = call->in(TypeFunc::Parms);
3176             if (arg0->is_Type() &&
3177                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3178               required_outcnt--;
3179             }
3180           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3181                      call->req() > TypeFunc::Parms+1 &&
3182                      call->is_CallStaticJava()) {
3183             // Check for negative array length. In such case, the optimizer has
3184             // detected that the allocation attempt will always result in an
3185             // exception. There is no fall-through projection of this CatchNode .
3186             Node *arg1 = call->in(TypeFunc::Parms+1);
3187             if (arg1->is_Type() &&
3188                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3189               required_outcnt--;
3190             }
3191           }
3192         }
3193       }
3194       // Recheck with a better notion of 'required_outcnt'
3195       if (n->outcnt() != required_outcnt) {
3196         record_method_not_compilable("malformed control flow");
3197         return true;            // Not all targets reachable!
3198       }
3199     }
3200     // Check that I actually visited all kids.  Unreached kids
3201     // must be infinite loops.
3202     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3203       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3204         record_method_not_compilable("infinite loop");
3205         return true;            // Found unvisited kid; must be unreach
3206       }
3207   }
3208 
3209   // If original bytecodes contained a mixture of floats and doubles
3210   // check if the optimizer has made it homogenous, item (3).
3211   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3212       frc.get_float_count() > 32 &&
3213       frc.get_double_count() == 0 &&
3214       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3215     set_24_bit_selection_and_mode( false,  true );
3216   }
3217 
3218   set_java_calls(frc.get_java_call_count());
3219   set_inner_loops(frc.get_inner_loop_count());
3220 
3221   // No infinite loops, no reason to bail out.
3222   return false;
3223 }
3224 
3225 //-----------------------------too_many_traps----------------------------------
3226 // Report if there are too many traps at the current method and bci.
3227 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3228 bool Compile::too_many_traps(ciMethod* method,
3229                              int bci,
3230                              Deoptimization::DeoptReason reason) {
3231   ciMethodData* md = method->method_data();
3232   if (md->is_empty()) {
3233     // Assume the trap has not occurred, or that it occurred only
3234     // because of a transient condition during start-up in the interpreter.
3235     return false;
3236   }
3237   if (md->has_trap_at(bci, reason) != 0) {
3238     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3239     // Also, if there are multiple reasons, or if there is no per-BCI record,
3240     // assume the worst.
3241     if (log())
3242       log()->elem("observe trap='%s' count='%d'",
3243                   Deoptimization::trap_reason_name(reason),
3244                   md->trap_count(reason));
3245     return true;
3246   } else {
3247     // Ignore method/bci and see if there have been too many globally.
3248     return too_many_traps(reason, md);
3249   }
3250 }
3251 
3252 // Less-accurate variant which does not require a method and bci.
3253 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3254                              ciMethodData* logmd) {
3255  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3256     // Too many traps globally.
3257     // Note that we use cumulative trap_count, not just md->trap_count.
3258     if (log()) {
3259       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3260       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3261                   Deoptimization::trap_reason_name(reason),
3262                   mcount, trap_count(reason));
3263     }
3264     return true;
3265   } else {
3266     // The coast is clear.
3267     return false;
3268   }
3269 }
3270 
3271 //--------------------------too_many_recompiles--------------------------------
3272 // Report if there are too many recompiles at the current method and bci.
3273 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3274 // Is not eager to return true, since this will cause the compiler to use
3275 // Action_none for a trap point, to avoid too many recompilations.
3276 bool Compile::too_many_recompiles(ciMethod* method,
3277                                   int bci,
3278                                   Deoptimization::DeoptReason reason) {
3279   ciMethodData* md = method->method_data();
3280   if (md->is_empty()) {
3281     // Assume the trap has not occurred, or that it occurred only
3282     // because of a transient condition during start-up in the interpreter.
3283     return false;
3284   }
3285   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3286   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3287   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3288   Deoptimization::DeoptReason per_bc_reason
3289     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3290   if ((per_bc_reason == Deoptimization::Reason_none
3291        || md->has_trap_at(bci, reason) != 0)
3292       // The trap frequency measure we care about is the recompile count:
3293       && md->trap_recompiled_at(bci)
3294       && md->overflow_recompile_count() >= bc_cutoff) {
3295     // Do not emit a trap here if it has already caused recompilations.
3296     // Also, if there are multiple reasons, or if there is no per-BCI record,
3297     // assume the worst.
3298     if (log())
3299       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3300                   Deoptimization::trap_reason_name(reason),
3301                   md->trap_count(reason),
3302                   md->overflow_recompile_count());
3303     return true;
3304   } else if (trap_count(reason) != 0
3305              && decompile_count() >= m_cutoff) {
3306     // Too many recompiles globally, and we have seen this sort of trap.
3307     // Use cumulative decompile_count, not just md->decompile_count.
3308     if (log())
3309       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3310                   Deoptimization::trap_reason_name(reason),
3311                   md->trap_count(reason), trap_count(reason),
3312                   md->decompile_count(), decompile_count());
3313     return true;
3314   } else {
3315     // The coast is clear.
3316     return false;
3317   }
3318 }
3319 
3320 
3321 #ifndef PRODUCT
3322 //------------------------------verify_graph_edges---------------------------
3323 // Walk the Graph and verify that there is a one-to-one correspondence
3324 // between Use-Def edges and Def-Use edges in the graph.
3325 void Compile::verify_graph_edges(bool no_dead_code) {
3326   if (VerifyGraphEdges) {
3327     ResourceArea *area = Thread::current()->resource_area();
3328     Unique_Node_List visited(area);
3329     // Call recursive graph walk to check edges
3330     _root->verify_edges(visited);
3331     if (no_dead_code) {
3332       // Now make sure that no visited node is used by an unvisited node.
3333       bool dead_nodes = 0;
3334       Unique_Node_List checked(area);
3335       while (visited.size() > 0) {
3336         Node* n = visited.pop();
3337         checked.push(n);
3338         for (uint i = 0; i < n->outcnt(); i++) {
3339           Node* use = n->raw_out(i);
3340           if (checked.member(use))  continue;  // already checked
3341           if (visited.member(use))  continue;  // already in the graph
3342           if (use->is_Con())        continue;  // a dead ConNode is OK
3343           // At this point, we have found a dead node which is DU-reachable.
3344           if (dead_nodes++ == 0)
3345             tty->print_cr("*** Dead nodes reachable via DU edges:");
3346           use->dump(2);
3347           tty->print_cr("---");
3348           checked.push(use);  // No repeats; pretend it is now checked.
3349         }
3350       }
3351       assert(dead_nodes == 0, "using nodes must be reachable from root");
3352     }
3353   }
3354 }
3355 #endif
3356 
3357 // The Compile object keeps track of failure reasons separately from the ciEnv.
3358 // This is required because there is not quite a 1-1 relation between the
3359 // ciEnv and its compilation task and the Compile object.  Note that one
3360 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3361 // to backtrack and retry without subsuming loads.  Other than this backtracking
3362 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3363 // by the logic in C2Compiler.
3364 void Compile::record_failure(const char* reason) {
3365   if (log() != NULL) {
3366     log()->elem("failure reason='%s' phase='compile'", reason);
3367   }
3368   if (_failure_reason == NULL) {
3369     // Record the first failure reason.
3370     _failure_reason = reason;
3371   }
3372 
3373   EventCompilerFailure event;
3374   if (event.should_commit()) {
3375     event.set_compileID(Compile::compile_id());
3376     event.set_failure(reason);
3377     event.commit();
3378   }
3379 
3380   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3381     C->print_method(PHASE_FAILURE);
3382   }
3383   _root = NULL;  // flush the graph, too
3384 }
3385 
3386 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3387   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3388     _phase_name(name), _dolog(dolog)
3389 {
3390   if (dolog) {
3391     C = Compile::current();
3392     _log = C->log();
3393   } else {
3394     C = NULL;
3395     _log = NULL;
3396   }
3397   if (_log != NULL) {
3398     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3399     _log->stamp();
3400     _log->end_head();
3401   }
3402 }
3403 
3404 Compile::TracePhase::~TracePhase() {
3405 
3406   C = Compile::current();
3407   if (_dolog) {
3408     _log = C->log();
3409   } else {
3410     _log = NULL;
3411   }
3412 
3413 #ifdef ASSERT
3414   if (PrintIdealNodeCount) {
3415     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3416                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3417   }
3418 
3419   if (VerifyIdealNodeCount) {
3420     Compile::current()->print_missing_nodes();
3421   }
3422 #endif
3423 
3424   if (_log != NULL) {
3425     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3426   }
3427 }
3428 
3429 //=============================================================================
3430 // Two Constant's are equal when the type and the value are equal.
3431 bool Compile::Constant::operator==(const Constant& other) {
3432   if (type()          != other.type()         )  return false;
3433   if (can_be_reused() != other.can_be_reused())  return false;
3434   // For floating point values we compare the bit pattern.
3435   switch (type()) {
3436   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3437   case T_LONG:
3438   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3439   case T_OBJECT:
3440   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3441   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3442   case T_METADATA: return (_v._metadata == other._v._metadata);
3443   default: ShouldNotReachHere();
3444   }
3445   return false;
3446 }
3447 
3448 static int type_to_size_in_bytes(BasicType t) {
3449   switch (t) {
3450   case T_LONG:    return sizeof(jlong  );
3451   case T_FLOAT:   return sizeof(jfloat );
3452   case T_DOUBLE:  return sizeof(jdouble);
3453   case T_METADATA: return sizeof(Metadata*);
3454     // We use T_VOID as marker for jump-table entries (labels) which
3455     // need an internal word relocation.
3456   case T_VOID:
3457   case T_ADDRESS:
3458   case T_OBJECT:  return sizeof(jobject);
3459   }
3460 
3461   ShouldNotReachHere();
3462   return -1;
3463 }
3464 
3465 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3466   // sort descending
3467   if (a->freq() > b->freq())  return -1;
3468   if (a->freq() < b->freq())  return  1;
3469   return 0;
3470 }
3471 
3472 void Compile::ConstantTable::calculate_offsets_and_size() {
3473   // First, sort the array by frequencies.
3474   _constants.sort(qsort_comparator);
3475 
3476 #ifdef ASSERT
3477   // Make sure all jump-table entries were sorted to the end of the
3478   // array (they have a negative frequency).
3479   bool found_void = false;
3480   for (int i = 0; i < _constants.length(); i++) {
3481     Constant con = _constants.at(i);
3482     if (con.type() == T_VOID)
3483       found_void = true;  // jump-tables
3484     else
3485       assert(!found_void, "wrong sorting");
3486   }
3487 #endif
3488 
3489   int offset = 0;
3490   for (int i = 0; i < _constants.length(); i++) {
3491     Constant* con = _constants.adr_at(i);
3492 
3493     // Align offset for type.
3494     int typesize = type_to_size_in_bytes(con->type());
3495     offset = align_size_up(offset, typesize);
3496     con->set_offset(offset);   // set constant's offset
3497 
3498     if (con->type() == T_VOID) {
3499       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3500       offset = offset + typesize * n->outcnt();  // expand jump-table
3501     } else {
3502       offset = offset + typesize;
3503     }
3504   }
3505 
3506   // Align size up to the next section start (which is insts; see
3507   // CodeBuffer::align_at_start).
3508   assert(_size == -1, "already set?");
3509   _size = align_size_up(offset, CodeEntryAlignment);
3510 }
3511 
3512 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3513   MacroAssembler _masm(&cb);
3514   for (int i = 0; i < _constants.length(); i++) {
3515     Constant con = _constants.at(i);
3516     address constant_addr;
3517     switch (con.type()) {
3518     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3519     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3520     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3521     case T_OBJECT: {
3522       jobject obj = con.get_jobject();
3523       int oop_index = _masm.oop_recorder()->find_index(obj);
3524       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3525       break;
3526     }
3527     case T_ADDRESS: {
3528       address addr = (address) con.get_jobject();
3529       constant_addr = _masm.address_constant(addr);
3530       break;
3531     }
3532     // We use T_VOID as marker for jump-table entries (labels) which
3533     // need an internal word relocation.
3534     case T_VOID: {
3535       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3536       // Fill the jump-table with a dummy word.  The real value is
3537       // filled in later in fill_jump_table.
3538       address dummy = (address) n;
3539       constant_addr = _masm.address_constant(dummy);
3540       // Expand jump-table
3541       for (uint i = 1; i < n->outcnt(); i++) {
3542         address temp_addr = _masm.address_constant(dummy + i);
3543         assert(temp_addr, "consts section too small");
3544       }
3545       break;
3546     }
3547     case T_METADATA: {
3548       Metadata* obj = con.get_metadata();
3549       int metadata_index = _masm.oop_recorder()->find_index(obj);
3550       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3551       break;
3552     }
3553     default: ShouldNotReachHere();
3554     }
3555     assert(constant_addr, "consts section too small");
3556     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3557   }
3558 }
3559 
3560 int Compile::ConstantTable::find_offset(Constant& con) const {
3561   int idx = _constants.find(con);
3562   assert(idx != -1, "constant must be in constant table");
3563   int offset = _constants.at(idx).offset();
3564   assert(offset != -1, "constant table not emitted yet?");
3565   return offset;
3566 }
3567 
3568 void Compile::ConstantTable::add(Constant& con) {
3569   if (con.can_be_reused()) {
3570     int idx = _constants.find(con);
3571     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3572       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3573       return;
3574     }
3575   }
3576   (void) _constants.append(con);
3577 }
3578 
3579 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3580   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3581   Constant con(type, value, b->_freq);
3582   add(con);
3583   return con;
3584 }
3585 
3586 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3587   Constant con(metadata);
3588   add(con);
3589   return con;
3590 }
3591 
3592 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3593   jvalue value;
3594   BasicType type = oper->type()->basic_type();
3595   switch (type) {
3596   case T_LONG:    value.j = oper->constantL(); break;
3597   case T_FLOAT:   value.f = oper->constantF(); break;
3598   case T_DOUBLE:  value.d = oper->constantD(); break;
3599   case T_OBJECT:
3600   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3601   case T_METADATA: return add((Metadata*)oper->constant()); break;
3602   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3603   }
3604   return add(n, type, value);
3605 }
3606 
3607 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3608   jvalue value;
3609   // We can use the node pointer here to identify the right jump-table
3610   // as this method is called from Compile::Fill_buffer right before
3611   // the MachNodes are emitted and the jump-table is filled (means the
3612   // MachNode pointers do not change anymore).
3613   value.l = (jobject) n;
3614   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3615   add(con);
3616   return con;
3617 }
3618 
3619 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3620   // If called from Compile::scratch_emit_size do nothing.
3621   if (Compile::current()->in_scratch_emit_size())  return;
3622 
3623   assert(labels.is_nonempty(), "must be");
3624   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3625 
3626   // Since MachConstantNode::constant_offset() also contains
3627   // table_base_offset() we need to subtract the table_base_offset()
3628   // to get the plain offset into the constant table.
3629   int offset = n->constant_offset() - table_base_offset();
3630 
3631   MacroAssembler _masm(&cb);
3632   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3633 
3634   for (uint i = 0; i < n->outcnt(); i++) {
3635     address* constant_addr = &jump_table_base[i];
3636     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3637     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3638     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3639   }
3640 }
3641 
3642 void Compile::dump_inlining() {
3643   if (print_inlining() || print_intrinsics()) {
3644     // Print inlining message for candidates that we couldn't inline
3645     // for lack of space or non constant receiver
3646     for (int i = 0; i < _late_inlines.length(); i++) {
3647       CallGenerator* cg = _late_inlines.at(i);
3648       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3649     }
3650     Unique_Node_List useful;
3651     useful.push(root());
3652     for (uint next = 0; next < useful.size(); ++next) {
3653       Node* n  = useful.at(next);
3654       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3655         CallNode* call = n->as_Call();
3656         CallGenerator* cg = call->generator();
3657         cg->print_inlining_late("receiver not constant");
3658       }
3659       uint max = n->len();
3660       for ( uint i = 0; i < max; ++i ) {
3661         Node *m = n->in(i);
3662         if ( m == NULL ) continue;
3663         useful.push(m);
3664       }
3665     }
3666     for (int i = 0; i < _print_inlining_list->length(); i++) {
3667       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3668     }
3669   }
3670 }
3671 
3672 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3673   if (n1->Opcode() < n2->Opcode())      return -1;
3674   else if (n1->Opcode() > n2->Opcode()) return 1;
3675 
3676   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3677   for (uint i = 1; i < n1->req(); i++) {
3678     if (n1->in(i) < n2->in(i))      return -1;
3679     else if (n1->in(i) > n2->in(i)) return 1;
3680   }
3681 
3682   return 0;
3683 }
3684 
3685 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3686   Node* n1 = *n1p;
3687   Node* n2 = *n2p;
3688 
3689   return cmp_expensive_nodes(n1, n2);
3690 }
3691 
3692 void Compile::sort_expensive_nodes() {
3693   if (!expensive_nodes_sorted()) {
3694     _expensive_nodes->sort(cmp_expensive_nodes);
3695   }
3696 }
3697 
3698 bool Compile::expensive_nodes_sorted() const {
3699   for (int i = 1; i < _expensive_nodes->length(); i++) {
3700     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3701       return false;
3702     }
3703   }
3704   return true;
3705 }
3706 
3707 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3708   if (_expensive_nodes->length() == 0) {
3709     return false;
3710   }
3711 
3712   assert(OptimizeExpensiveOps, "optimization off?");
3713 
3714   // Take this opportunity to remove dead nodes from the list
3715   int j = 0;
3716   for (int i = 0; i < _expensive_nodes->length(); i++) {
3717     Node* n = _expensive_nodes->at(i);
3718     if (!n->is_unreachable(igvn)) {
3719       assert(n->is_expensive(), "should be expensive");
3720       _expensive_nodes->at_put(j, n);
3721       j++;
3722     }
3723   }
3724   _expensive_nodes->trunc_to(j);
3725 
3726   // Then sort the list so that similar nodes are next to each other
3727   // and check for at least two nodes of identical kind with same data
3728   // inputs.
3729   sort_expensive_nodes();
3730 
3731   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3732     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3733       return true;
3734     }
3735   }
3736 
3737   return false;
3738 }
3739 
3740 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3741   if (_expensive_nodes->length() == 0) {
3742     return;
3743   }
3744 
3745   assert(OptimizeExpensiveOps, "optimization off?");
3746 
3747   // Sort to bring similar nodes next to each other and clear the
3748   // control input of nodes for which there's only a single copy.
3749   sort_expensive_nodes();
3750 
3751   int j = 0;
3752   int identical = 0;
3753   int i = 0;
3754   for (; i < _expensive_nodes->length()-1; i++) {
3755     assert(j <= i, "can't write beyond current index");
3756     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3757       identical++;
3758       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3759       continue;
3760     }
3761     if (identical > 0) {
3762       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3763       identical = 0;
3764     } else {
3765       Node* n = _expensive_nodes->at(i);
3766       igvn.hash_delete(n);
3767       n->set_req(0, NULL);
3768       igvn.hash_insert(n);
3769     }
3770   }
3771   if (identical > 0) {
3772     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3773   } else if (_expensive_nodes->length() >= 1) {
3774     Node* n = _expensive_nodes->at(i);
3775     igvn.hash_delete(n);
3776     n->set_req(0, NULL);
3777     igvn.hash_insert(n);
3778   }
3779   _expensive_nodes->trunc_to(j);
3780 }
3781 
3782 void Compile::add_expensive_node(Node * n) {
3783   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3784   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3785   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3786   if (OptimizeExpensiveOps) {
3787     _expensive_nodes->append(n);
3788   } else {
3789     // Clear control input and let IGVN optimize expensive nodes if
3790     // OptimizeExpensiveOps is off.
3791     n->set_req(0, NULL);
3792   }
3793 }
3794 
3795 // Auxiliary method to support randomized stressing/fuzzing.
3796 //
3797 // This method can be called the arbitrary number of times, with current count
3798 // as the argument. The logic allows selecting a single candidate from the
3799 // running list of candidates as follows:
3800 //    int count = 0;
3801 //    Cand* selected = null;
3802 //    while(cand = cand->next()) {
3803 //      if (randomized_select(++count)) {
3804 //        selected = cand;
3805 //      }
3806 //    }
3807 //
3808 // Including count equalizes the chances any candidate is "selected".
3809 // This is useful when we don't have the complete list of candidates to choose
3810 // from uniformly. In this case, we need to adjust the randomicity of the
3811 // selection, or else we will end up biasing the selection towards the latter
3812 // candidates.
3813 //
3814 // Quick back-envelope calculation shows that for the list of n candidates
3815 // the equal probability for the candidate to persist as "best" can be
3816 // achieved by replacing it with "next" k-th candidate with the probability
3817 // of 1/k. It can be easily shown that by the end of the run, the
3818 // probability for any candidate is converged to 1/n, thus giving the
3819 // uniform distribution among all the candidates.
3820 //
3821 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3822 #define RANDOMIZED_DOMAIN_POW 29
3823 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3824 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3825 bool Compile::randomized_select(int count) {
3826   assert(count > 0, "only positive");
3827   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3828 }