1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _is_predicted;
  50   bool             _does_virtual_dispatch;
  51   vmIntrinsics::ID _intrinsic_id;
  52 
  53  public:
  54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  55     : InlineCallGenerator(m),
  56       _is_virtual(is_virtual),
  57       _is_predicted(is_predicted),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _intrinsic_id(id)
  60   {
  61   }
  62   virtual bool is_intrinsic() const { return true; }
  63   virtual bool is_virtual()   const { return _is_virtual; }
  64   virtual bool is_predicted()   const { return _is_predicted; }
  65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  67   virtual Node* generate_predicate(JVMState* jvms);
  68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  69 };
  70 
  71 
  72 // Local helper class for LibraryIntrinsic:
  73 class LibraryCallKit : public GraphKit {
  74  private:
  75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  76   Node*             _result;        // the result node, if any
  77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  78 
  79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  80 
  81  public:
  82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  83     : GraphKit(jvms),
  84       _intrinsic(intrinsic),
  85       _result(NULL)
  86   {
  87     // Check if this is a root compile.  In that case we don't have a caller.
  88     if (!jvms->has_method()) {
  89       _reexecute_sp = sp();
  90     } else {
  91       // Find out how many arguments the interpreter needs when deoptimizing
  92       // and save the stack pointer value so it can used by uncommon_trap.
  93       // We find the argument count by looking at the declared signature.
  94       bool ignored_will_link;
  95       ciSignature* declared_signature = NULL;
  96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  99     }
 100   }
 101 
 102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 103 
 104   ciMethod*         caller()    const    { return jvms()->method(); }
 105   int               bci()       const    { return jvms()->bci(); }
 106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 108   ciMethod*         callee()    const    { return _intrinsic->method(); }
 109 
 110   bool try_to_inline();
 111   Node* try_to_predicate();
 112 
 113   void push_result() {
 114     // Push the result onto the stack.
 115     if (!stopped() && result() != NULL) {
 116       BasicType bt = result()->bottom_type()->basic_type();
 117       push_node(bt, result());
 118     }
 119   }
 120 
 121  private:
 122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 124   }
 125 
 126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 127   void  set_result(RegionNode* region, PhiNode* value);
 128   Node*     result() { return _result; }
 129 
 130   virtual int reexecute_sp() { return _reexecute_sp; }
 131 
 132   // Helper functions to inline natives
 133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 134   Node* generate_slow_guard(Node* test, RegionNode* region);
 135   Node* generate_fair_guard(Node* test, RegionNode* region);
 136   Node* generate_negative_guard(Node* index, RegionNode* region,
 137                                 // resulting CastII of index:
 138                                 Node* *pos_index = NULL);
 139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 140                                    // resulting CastII of index:
 141                                    Node* *pos_index = NULL);
 142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 143                              Node* array_length,
 144                              RegionNode* region);
 145   Node* generate_current_thread(Node* &tls_output);
 146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 148   Node* load_mirror_from_klass(Node* klass);
 149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 150                                       RegionNode* region, int null_path,
 151                                       int offset);
 152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 153                                RegionNode* region, int null_path) {
 154     int offset = java_lang_Class::klass_offset_in_bytes();
 155     return load_klass_from_mirror_common(mirror, never_see_null,
 156                                          region, null_path,
 157                                          offset);
 158   }
 159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                      RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::array_klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* generate_access_flags_guard(Node* kls,
 167                                     int modifier_mask, int modifier_bits,
 168                                     RegionNode* region);
 169   Node* generate_interface_guard(Node* kls, RegionNode* region);
 170   Node* generate_array_guard(Node* kls, RegionNode* region) {
 171     return generate_array_guard_common(kls, region, false, false);
 172   }
 173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, true);
 175   }
 176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, true, false);
 178   }
 179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, true);
 181   }
 182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 183                                     bool obj_array, bool not_array);
 184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 186                                      bool is_virtual = false, bool is_static = false);
 187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 188     return generate_method_call(method_id, false, true);
 189   }
 190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, true, false);
 192   }
 193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 194 
 195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 197   bool inline_string_compareTo();
 198   bool inline_string_indexOf();
 199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 200   bool inline_string_equals();
 201   Node* round_double_node(Node* n);
 202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 203   bool inline_math_native(vmIntrinsics::ID id);
 204   bool inline_trig(vmIntrinsics::ID id);
 205   bool inline_math(vmIntrinsics::ID id);
 206   void inline_math_mathExact(Node* math);
 207   bool inline_math_addExact();
 208   bool inline_math_addExactL();
 209   bool inline_math_decrementExact();
 210   bool inline_math_decrementExactL();
 211   bool inline_math_incrementExact();
 212   bool inline_math_incrementExactL();
 213   bool inline_math_multiplyExact();
 214   bool inline_math_multiplyExactL();
 215   bool inline_math_negateExact();
 216   bool inline_math_negateExactL();
 217   bool inline_math_subtractExact();
 218   bool inline_math_subtractExactL();
 219   bool inline_exp();
 220   bool inline_pow();
 221   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 222   bool inline_min_max(vmIntrinsics::ID id);
 223   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 224   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 225   int classify_unsafe_addr(Node* &base, Node* &offset);
 226   Node* make_unsafe_address(Node* base, Node* offset);
 227   // Helper for inline_unsafe_access.
 228   // Generates the guards that check whether the result of
 229   // Unsafe.getObject should be recorded in an SATB log buffer.
 230   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 231   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 232   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 233   static bool klass_needs_init_guard(Node* kls);
 234   bool inline_unsafe_allocate();
 235   bool inline_unsafe_copyMemory();
 236   bool inline_native_currentThread();
 237 #ifdef TRACE_HAVE_INTRINSICS
 238   bool inline_native_classID();
 239   bool inline_native_threadID();
 240 #endif
 241   bool inline_native_time_funcs(address method, const char* funcName);
 242   bool inline_native_isInterrupted();
 243   bool inline_native_Class_query(vmIntrinsics::ID id);
 244   bool inline_native_subtype_check();
 245 
 246   bool inline_native_newArray();
 247   bool inline_native_getLength();
 248   bool inline_array_copyOf(bool is_copyOfRange);
 249   bool inline_array_equals();
 250   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 251   bool inline_native_clone(bool is_virtual);
 252   bool inline_native_Reflection_getCallerClass();
 253   // Helper function for inlining native object hash method
 254   bool inline_native_hashcode(bool is_virtual, bool is_static);
 255   bool inline_native_getClass();
 256 
 257   // Helper functions for inlining arraycopy
 258   bool inline_arraycopy();
 259   void generate_arraycopy(const TypePtr* adr_type,
 260                           BasicType basic_elem_type,
 261                           Node* src,  Node* src_offset,
 262                           Node* dest, Node* dest_offset,
 263                           Node* copy_length,
 264                           bool disjoint_bases = false,
 265                           bool length_never_negative = false,
 266                           RegionNode* slow_region = NULL);
 267   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 268                                                 RegionNode* slow_region);
 269   void generate_clear_array(const TypePtr* adr_type,
 270                             Node* dest,
 271                             BasicType basic_elem_type,
 272                             Node* slice_off,
 273                             Node* slice_len,
 274                             Node* slice_end);
 275   bool generate_block_arraycopy(const TypePtr* adr_type,
 276                                 BasicType basic_elem_type,
 277                                 AllocateNode* alloc,
 278                                 Node* src,  Node* src_offset,
 279                                 Node* dest, Node* dest_offset,
 280                                 Node* dest_size, bool dest_uninitialized);
 281   void generate_slow_arraycopy(const TypePtr* adr_type,
 282                                Node* src,  Node* src_offset,
 283                                Node* dest, Node* dest_offset,
 284                                Node* copy_length, bool dest_uninitialized);
 285   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 286                                      Node* dest_elem_klass,
 287                                      Node* src,  Node* src_offset,
 288                                      Node* dest, Node* dest_offset,
 289                                      Node* copy_length, bool dest_uninitialized);
 290   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 291                                    Node* src,  Node* src_offset,
 292                                    Node* dest, Node* dest_offset,
 293                                    Node* copy_length, bool dest_uninitialized);
 294   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 295                                     BasicType basic_elem_type,
 296                                     bool disjoint_bases,
 297                                     Node* src,  Node* src_offset,
 298                                     Node* dest, Node* dest_offset,
 299                                     Node* copy_length, bool dest_uninitialized);
 300   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 301   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 302   bool inline_unsafe_ordered_store(BasicType type);
 303   bool inline_unsafe_fence(vmIntrinsics::ID id);
 304   bool inline_fp_conversions(vmIntrinsics::ID id);
 305   bool inline_number_methods(vmIntrinsics::ID id);
 306   bool inline_reference_get();
 307   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 308   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 309   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 310   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 311   bool inline_encodeISOArray();
 312   bool inline_updateCRC32();
 313   bool inline_updateBytesCRC32();
 314   bool inline_updateByteBufferCRC32();
 315 };
 316 
 317 
 318 //---------------------------make_vm_intrinsic----------------------------
 319 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 320   vmIntrinsics::ID id = m->intrinsic_id();
 321   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 322 
 323   if (DisableIntrinsic[0] != '\0'
 324       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 325     // disabled by a user request on the command line:
 326     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 327     return NULL;
 328   }
 329 
 330   if (!m->is_loaded()) {
 331     // do not attempt to inline unloaded methods
 332     return NULL;
 333   }
 334 
 335   // Only a few intrinsics implement a virtual dispatch.
 336   // They are expensive calls which are also frequently overridden.
 337   if (is_virtual) {
 338     switch (id) {
 339     case vmIntrinsics::_hashCode:
 340     case vmIntrinsics::_clone:
 341       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 342       break;
 343     default:
 344       return NULL;
 345     }
 346   }
 347 
 348   // -XX:-InlineNatives disables nearly all intrinsics:
 349   if (!InlineNatives) {
 350     switch (id) {
 351     case vmIntrinsics::_indexOf:
 352     case vmIntrinsics::_compareTo:
 353     case vmIntrinsics::_equals:
 354     case vmIntrinsics::_equalsC:
 355     case vmIntrinsics::_getAndAddInt:
 356     case vmIntrinsics::_getAndAddLong:
 357     case vmIntrinsics::_getAndSetInt:
 358     case vmIntrinsics::_getAndSetLong:
 359     case vmIntrinsics::_getAndSetObject:
 360     case vmIntrinsics::_loadFence:
 361     case vmIntrinsics::_storeFence:
 362     case vmIntrinsics::_fullFence:
 363       break;  // InlineNatives does not control String.compareTo
 364     case vmIntrinsics::_Reference_get:
 365       break;  // InlineNatives does not control Reference.get
 366     default:
 367       return NULL;
 368     }
 369   }
 370 
 371   bool is_predicted = false;
 372   bool does_virtual_dispatch = false;
 373 
 374   switch (id) {
 375   case vmIntrinsics::_compareTo:
 376     if (!SpecialStringCompareTo)  return NULL;
 377     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 378     break;
 379   case vmIntrinsics::_indexOf:
 380     if (!SpecialStringIndexOf)  return NULL;
 381     break;
 382   case vmIntrinsics::_equals:
 383     if (!SpecialStringEquals)  return NULL;
 384     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 385     break;
 386   case vmIntrinsics::_equalsC:
 387     if (!SpecialArraysEquals)  return NULL;
 388     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 389     break;
 390   case vmIntrinsics::_arraycopy:
 391     if (!InlineArrayCopy)  return NULL;
 392     break;
 393   case vmIntrinsics::_copyMemory:
 394     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 395     if (!InlineArrayCopy)  return NULL;
 396     break;
 397   case vmIntrinsics::_hashCode:
 398     if (!InlineObjectHash)  return NULL;
 399     does_virtual_dispatch = true;
 400     break;
 401   case vmIntrinsics::_clone:
 402     does_virtual_dispatch = true;
 403   case vmIntrinsics::_copyOf:
 404   case vmIntrinsics::_copyOfRange:
 405     if (!InlineObjectCopy)  return NULL;
 406     // These also use the arraycopy intrinsic mechanism:
 407     if (!InlineArrayCopy)  return NULL;
 408     break;
 409   case vmIntrinsics::_encodeISOArray:
 410     if (!SpecialEncodeISOArray)  return NULL;
 411     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 412     break;
 413   case vmIntrinsics::_checkIndex:
 414     // We do not intrinsify this.  The optimizer does fine with it.
 415     return NULL;
 416 
 417   case vmIntrinsics::_getCallerClass:
 418     if (!UseNewReflection)  return NULL;
 419     if (!InlineReflectionGetCallerClass)  return NULL;
 420     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_bitCount_i:
 424     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_bitCount_l:
 428     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 429     break;
 430 
 431   case vmIntrinsics::_numberOfLeadingZeros_i:
 432     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 433     break;
 434 
 435   case vmIntrinsics::_numberOfLeadingZeros_l:
 436     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 437     break;
 438 
 439   case vmIntrinsics::_numberOfTrailingZeros_i:
 440     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 441     break;
 442 
 443   case vmIntrinsics::_numberOfTrailingZeros_l:
 444     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 445     break;
 446 
 447   case vmIntrinsics::_reverseBytes_c:
 448     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 449     break;
 450   case vmIntrinsics::_reverseBytes_s:
 451     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 452     break;
 453   case vmIntrinsics::_reverseBytes_i:
 454     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 455     break;
 456   case vmIntrinsics::_reverseBytes_l:
 457     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 458     break;
 459 
 460   case vmIntrinsics::_Reference_get:
 461     // Use the intrinsic version of Reference.get() so that the value in
 462     // the referent field can be registered by the G1 pre-barrier code.
 463     // Also add memory barrier to prevent commoning reads from this field
 464     // across safepoint since GC can change it value.
 465     break;
 466 
 467   case vmIntrinsics::_compareAndSwapObject:
 468 #ifdef _LP64
 469     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 470 #endif
 471     break;
 472 
 473   case vmIntrinsics::_compareAndSwapLong:
 474     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 475     break;
 476 
 477   case vmIntrinsics::_getAndAddInt:
 478     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 479     break;
 480 
 481   case vmIntrinsics::_getAndAddLong:
 482     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 483     break;
 484 
 485   case vmIntrinsics::_getAndSetInt:
 486     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 487     break;
 488 
 489   case vmIntrinsics::_getAndSetLong:
 490     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 491     break;
 492 
 493   case vmIntrinsics::_getAndSetObject:
 494 #ifdef _LP64
 495     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 496     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 497     break;
 498 #else
 499     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 500     break;
 501 #endif
 502 
 503   case vmIntrinsics::_aescrypt_encryptBlock:
 504   case vmIntrinsics::_aescrypt_decryptBlock:
 505     if (!UseAESIntrinsics) return NULL;
 506     break;
 507 
 508   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 509   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 510     if (!UseAESIntrinsics) return NULL;
 511     // these two require the predicated logic
 512     is_predicted = true;
 513     break;
 514 
 515   case vmIntrinsics::_updateCRC32:
 516   case vmIntrinsics::_updateBytesCRC32:
 517   case vmIntrinsics::_updateByteBufferCRC32:
 518     if (!UseCRC32Intrinsics) return NULL;
 519     break;
 520 
 521   case vmIntrinsics::_incrementExact:
 522   case vmIntrinsics::_addExact:
 523     if (!Matcher::match_rule_supported(Op_AddExactI) || !UseMathExactIntrinsics) return NULL;
 524     break;
 525   case vmIntrinsics::_incrementExactL:
 526   case vmIntrinsics::_addExactL:
 527     if (!Matcher::match_rule_supported(Op_AddExactL) || !UseMathExactIntrinsics) return NULL;
 528     break;
 529   case vmIntrinsics::_decrementExact:
 530   case vmIntrinsics::_subtractExact:
 531     if (!Matcher::match_rule_supported(Op_SubExactI) || !UseMathExactIntrinsics) return NULL;
 532     break;
 533   case vmIntrinsics::_decrementExactL:
 534   case vmIntrinsics::_subtractExactL:
 535     if (!Matcher::match_rule_supported(Op_SubExactL) || !UseMathExactIntrinsics) return NULL;
 536     break;
 537   case vmIntrinsics::_negateExact:
 538     if (!Matcher::match_rule_supported(Op_NegExactI) || !UseMathExactIntrinsics) return NULL;
 539     break;
 540   case vmIntrinsics::_negateExactL:
 541     if (!Matcher::match_rule_supported(Op_NegExactL) || !UseMathExactIntrinsics) return NULL;
 542     break;
 543   case vmIntrinsics::_multiplyExact:
 544     if (!Matcher::match_rule_supported(Op_MulExactI) || !UseMathExactIntrinsics) return NULL;
 545     break;
 546   case vmIntrinsics::_multiplyExactL:
 547     if (!Matcher::match_rule_supported(Op_MulExactL) || !UseMathExactIntrinsics) return NULL;
 548     break;
 549 
 550  default:
 551     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 552     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 553     break;
 554   }
 555 
 556   // -XX:-InlineClassNatives disables natives from the Class class.
 557   // The flag applies to all reflective calls, notably Array.newArray
 558   // (visible to Java programmers as Array.newInstance).
 559   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 560       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 561     if (!InlineClassNatives)  return NULL;
 562   }
 563 
 564   // -XX:-InlineThreadNatives disables natives from the Thread class.
 565   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 566     if (!InlineThreadNatives)  return NULL;
 567   }
 568 
 569   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 570   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 571       m->holder()->name() == ciSymbol::java_lang_Float() ||
 572       m->holder()->name() == ciSymbol::java_lang_Double()) {
 573     if (!InlineMathNatives)  return NULL;
 574   }
 575 
 576   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 577   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 578     if (!InlineUnsafeOps)  return NULL;
 579   }
 580 
 581   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 582 }
 583 
 584 //----------------------register_library_intrinsics-----------------------
 585 // Initialize this file's data structures, for each Compile instance.
 586 void Compile::register_library_intrinsics() {
 587   // Nothing to do here.
 588 }
 589 
 590 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 591   LibraryCallKit kit(jvms, this);
 592   Compile* C = kit.C;
 593   int nodes = C->unique();
 594 #ifndef PRODUCT
 595   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 596     char buf[1000];
 597     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 598     tty->print_cr("Intrinsic %s", str);
 599   }
 600 #endif
 601   ciMethod* callee = kit.callee();
 602   const int bci    = kit.bci();
 603 
 604   // Try to inline the intrinsic.
 605   if (kit.try_to_inline()) {
 606     if (C->print_intrinsics() || C->print_inlining()) {
 607       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 608     }
 609     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 610     if (C->log()) {
 611       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 612                      vmIntrinsics::name_at(intrinsic_id()),
 613                      (is_virtual() ? " virtual='1'" : ""),
 614                      C->unique() - nodes);
 615     }
 616     // Push the result from the inlined method onto the stack.
 617     kit.push_result();
 618     return kit.transfer_exceptions_into_jvms();
 619   }
 620 
 621   // The intrinsic bailed out
 622   if (C->print_intrinsics() || C->print_inlining()) {
 623     if (jvms->has_method()) {
 624       // Not a root compile.
 625       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 626       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 627     } else {
 628       // Root compile
 629       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 630                vmIntrinsics::name_at(intrinsic_id()),
 631                (is_virtual() ? " (virtual)" : ""), bci);
 632     }
 633   }
 634   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 635   return NULL;
 636 }
 637 
 638 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 639   LibraryCallKit kit(jvms, this);
 640   Compile* C = kit.C;
 641   int nodes = C->unique();
 642 #ifndef PRODUCT
 643   assert(is_predicted(), "sanity");
 644   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 645     char buf[1000];
 646     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 647     tty->print_cr("Predicate for intrinsic %s", str);
 648   }
 649 #endif
 650   ciMethod* callee = kit.callee();
 651   const int bci    = kit.bci();
 652 
 653   Node* slow_ctl = kit.try_to_predicate();
 654   if (!kit.failing()) {
 655     if (C->print_intrinsics() || C->print_inlining()) {
 656       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 657     }
 658     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 659     if (C->log()) {
 660       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 661                      vmIntrinsics::name_at(intrinsic_id()),
 662                      (is_virtual() ? " virtual='1'" : ""),
 663                      C->unique() - nodes);
 664     }
 665     return slow_ctl; // Could be NULL if the check folds.
 666   }
 667 
 668   // The intrinsic bailed out
 669   if (C->print_intrinsics() || C->print_inlining()) {
 670     if (jvms->has_method()) {
 671       // Not a root compile.
 672       const char* msg = "failed to generate predicate for intrinsic";
 673       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 674     } else {
 675       // Root compile
 676       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 677                                         vmIntrinsics::name_at(intrinsic_id()),
 678                                         (is_virtual() ? " (virtual)" : ""), bci);
 679     }
 680   }
 681   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 682   return NULL;
 683 }
 684 
 685 bool LibraryCallKit::try_to_inline() {
 686   // Handle symbolic names for otherwise undistinguished boolean switches:
 687   const bool is_store       = true;
 688   const bool is_native_ptr  = true;
 689   const bool is_static      = true;
 690   const bool is_volatile    = true;
 691 
 692   if (!jvms()->has_method()) {
 693     // Root JVMState has a null method.
 694     assert(map()->memory()->Opcode() == Op_Parm, "");
 695     // Insert the memory aliasing node
 696     set_all_memory(reset_memory());
 697   }
 698   assert(merged_memory(), "");
 699 
 700 
 701   switch (intrinsic_id()) {
 702   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 703   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 704   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 705 
 706   case vmIntrinsics::_dsin:
 707   case vmIntrinsics::_dcos:
 708   case vmIntrinsics::_dtan:
 709   case vmIntrinsics::_dabs:
 710   case vmIntrinsics::_datan2:
 711   case vmIntrinsics::_dsqrt:
 712   case vmIntrinsics::_dexp:
 713   case vmIntrinsics::_dlog:
 714   case vmIntrinsics::_dlog10:
 715   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 716 
 717   case vmIntrinsics::_min:
 718   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 719 
 720   case vmIntrinsics::_addExact:                 return inline_math_addExact();
 721   case vmIntrinsics::_addExactL:                return inline_math_addExactL();
 722   case vmIntrinsics::_decrementExact:           return inline_math_decrementExact();
 723   case vmIntrinsics::_decrementExactL:          return inline_math_decrementExactL();
 724   case vmIntrinsics::_incrementExact:           return inline_math_incrementExact();
 725   case vmIntrinsics::_incrementExactL:          return inline_math_incrementExactL();
 726   case vmIntrinsics::_multiplyExact:            return inline_math_multiplyExact();
 727   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 728   case vmIntrinsics::_negateExact:              return inline_math_negateExact();
 729   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 730   case vmIntrinsics::_subtractExact:            return inline_math_subtractExact();
 731   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL();
 732 
 733   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 734 
 735   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 736   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 737   case vmIntrinsics::_equals:                   return inline_string_equals();
 738 
 739   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 740   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 741   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 742   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 743   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 744   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 745   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 746   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 747   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 748 
 749   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 750   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 751   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 752   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 753   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 754   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 755   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 756   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 757   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 758 
 759   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 760   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 761   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 762   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 763   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 764   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 765   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 766   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 767 
 768   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 769   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 770   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 771   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 772   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 773   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 774   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 775   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 776 
 777   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 778   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 779   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 780   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 781   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 782   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 783   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 784   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 785   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 786 
 787   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 788   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 789   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 790   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 791   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 792   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 793   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 794   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 795   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 796 
 797   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 798   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 799   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 800   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 801 
 802   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 803   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 804   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 805 
 806   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 807   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 808   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 809 
 810   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 811   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 812   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 813   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 814   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 815 
 816   case vmIntrinsics::_loadFence:
 817   case vmIntrinsics::_storeFence:
 818   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 819 
 820   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 821   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 822 
 823 #ifdef TRACE_HAVE_INTRINSICS
 824   case vmIntrinsics::_classID:                  return inline_native_classID();
 825   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 826   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 827 #endif
 828   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 829   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 830   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 831   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 832   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 833   case vmIntrinsics::_getLength:                return inline_native_getLength();
 834   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 835   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 836   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 837   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 838 
 839   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 840 
 841   case vmIntrinsics::_isInstance:
 842   case vmIntrinsics::_getModifiers:
 843   case vmIntrinsics::_isInterface:
 844   case vmIntrinsics::_isArray:
 845   case vmIntrinsics::_isPrimitive:
 846   case vmIntrinsics::_getSuperclass:
 847   case vmIntrinsics::_getComponentType:
 848   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 849 
 850   case vmIntrinsics::_floatToRawIntBits:
 851   case vmIntrinsics::_floatToIntBits:
 852   case vmIntrinsics::_intBitsToFloat:
 853   case vmIntrinsics::_doubleToRawLongBits:
 854   case vmIntrinsics::_doubleToLongBits:
 855   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 856 
 857   case vmIntrinsics::_numberOfLeadingZeros_i:
 858   case vmIntrinsics::_numberOfLeadingZeros_l:
 859   case vmIntrinsics::_numberOfTrailingZeros_i:
 860   case vmIntrinsics::_numberOfTrailingZeros_l:
 861   case vmIntrinsics::_bitCount_i:
 862   case vmIntrinsics::_bitCount_l:
 863   case vmIntrinsics::_reverseBytes_i:
 864   case vmIntrinsics::_reverseBytes_l:
 865   case vmIntrinsics::_reverseBytes_s:
 866   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 867 
 868   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 869 
 870   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 871 
 872   case vmIntrinsics::_aescrypt_encryptBlock:
 873   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 874 
 875   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 876   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 877     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 878 
 879   case vmIntrinsics::_encodeISOArray:
 880     return inline_encodeISOArray();
 881 
 882   case vmIntrinsics::_updateCRC32:
 883     return inline_updateCRC32();
 884   case vmIntrinsics::_updateBytesCRC32:
 885     return inline_updateBytesCRC32();
 886   case vmIntrinsics::_updateByteBufferCRC32:
 887     return inline_updateByteBufferCRC32();
 888 
 889   default:
 890     // If you get here, it may be that someone has added a new intrinsic
 891     // to the list in vmSymbols.hpp without implementing it here.
 892 #ifndef PRODUCT
 893     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 894       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 895                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 896     }
 897 #endif
 898     return false;
 899   }
 900 }
 901 
 902 Node* LibraryCallKit::try_to_predicate() {
 903   if (!jvms()->has_method()) {
 904     // Root JVMState has a null method.
 905     assert(map()->memory()->Opcode() == Op_Parm, "");
 906     // Insert the memory aliasing node
 907     set_all_memory(reset_memory());
 908   }
 909   assert(merged_memory(), "");
 910 
 911   switch (intrinsic_id()) {
 912   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 913     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 914   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 915     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 916 
 917   default:
 918     // If you get here, it may be that someone has added a new intrinsic
 919     // to the list in vmSymbols.hpp without implementing it here.
 920 #ifndef PRODUCT
 921     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 922       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 923                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 924     }
 925 #endif
 926     Node* slow_ctl = control();
 927     set_control(top()); // No fast path instrinsic
 928     return slow_ctl;
 929   }
 930 }
 931 
 932 //------------------------------set_result-------------------------------
 933 // Helper function for finishing intrinsics.
 934 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 935   record_for_igvn(region);
 936   set_control(_gvn.transform(region));
 937   set_result( _gvn.transform(value));
 938   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 939 }
 940 
 941 //------------------------------generate_guard---------------------------
 942 // Helper function for generating guarded fast-slow graph structures.
 943 // The given 'test', if true, guards a slow path.  If the test fails
 944 // then a fast path can be taken.  (We generally hope it fails.)
 945 // In all cases, GraphKit::control() is updated to the fast path.
 946 // The returned value represents the control for the slow path.
 947 // The return value is never 'top'; it is either a valid control
 948 // or NULL if it is obvious that the slow path can never be taken.
 949 // Also, if region and the slow control are not NULL, the slow edge
 950 // is appended to the region.
 951 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 952   if (stopped()) {
 953     // Already short circuited.
 954     return NULL;
 955   }
 956 
 957   // Build an if node and its projections.
 958   // If test is true we take the slow path, which we assume is uncommon.
 959   if (_gvn.type(test) == TypeInt::ZERO) {
 960     // The slow branch is never taken.  No need to build this guard.
 961     return NULL;
 962   }
 963 
 964   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 965 
 966   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 967   if (if_slow == top()) {
 968     // The slow branch is never taken.  No need to build this guard.
 969     return NULL;
 970   }
 971 
 972   if (region != NULL)
 973     region->add_req(if_slow);
 974 
 975   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 976   set_control(if_fast);
 977 
 978   return if_slow;
 979 }
 980 
 981 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 982   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 983 }
 984 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 985   return generate_guard(test, region, PROB_FAIR);
 986 }
 987 
 988 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 989                                                      Node* *pos_index) {
 990   if (stopped())
 991     return NULL;                // already stopped
 992   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 993     return NULL;                // index is already adequately typed
 994   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 995   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 996   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 997   if (is_neg != NULL && pos_index != NULL) {
 998     // Emulate effect of Parse::adjust_map_after_if.
 999     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1000     ccast->set_req(0, control());
1001     (*pos_index) = _gvn.transform(ccast);
1002   }
1003   return is_neg;
1004 }
1005 
1006 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1007                                                         Node* *pos_index) {
1008   if (stopped())
1009     return NULL;                // already stopped
1010   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1011     return NULL;                // index is already adequately typed
1012   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1013   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1014   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1015   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1016   if (is_notp != NULL && pos_index != NULL) {
1017     // Emulate effect of Parse::adjust_map_after_if.
1018     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1019     ccast->set_req(0, control());
1020     (*pos_index) = _gvn.transform(ccast);
1021   }
1022   return is_notp;
1023 }
1024 
1025 // Make sure that 'position' is a valid limit index, in [0..length].
1026 // There are two equivalent plans for checking this:
1027 //   A. (offset + copyLength)  unsigned<=  arrayLength
1028 //   B. offset  <=  (arrayLength - copyLength)
1029 // We require that all of the values above, except for the sum and
1030 // difference, are already known to be non-negative.
1031 // Plan A is robust in the face of overflow, if offset and copyLength
1032 // are both hugely positive.
1033 //
1034 // Plan B is less direct and intuitive, but it does not overflow at
1035 // all, since the difference of two non-negatives is always
1036 // representable.  Whenever Java methods must perform the equivalent
1037 // check they generally use Plan B instead of Plan A.
1038 // For the moment we use Plan A.
1039 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1040                                                   Node* subseq_length,
1041                                                   Node* array_length,
1042                                                   RegionNode* region) {
1043   if (stopped())
1044     return NULL;                // already stopped
1045   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1046   if (zero_offset && subseq_length->eqv_uncast(array_length))
1047     return NULL;                // common case of whole-array copy
1048   Node* last = subseq_length;
1049   if (!zero_offset)             // last += offset
1050     last = _gvn.transform(new (C) AddINode(last, offset));
1051   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1052   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1053   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1054   return is_over;
1055 }
1056 
1057 
1058 //--------------------------generate_current_thread--------------------
1059 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1060   ciKlass*    thread_klass = env()->Thread_klass();
1061   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1062   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1063   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1064   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
1065   tls_output = thread;
1066   return threadObj;
1067 }
1068 
1069 
1070 //------------------------------make_string_method_node------------------------
1071 // Helper method for String intrinsic functions. This version is called
1072 // with str1 and str2 pointing to String object nodes.
1073 //
1074 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1075   Node* no_ctrl = NULL;
1076 
1077   // Get start addr of string
1078   Node* str1_value   = load_String_value(no_ctrl, str1);
1079   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1080   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1081 
1082   // Get length of string 1
1083   Node* str1_len  = load_String_length(no_ctrl, str1);
1084 
1085   Node* str2_value   = load_String_value(no_ctrl, str2);
1086   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1087   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1088 
1089   Node* str2_len = NULL;
1090   Node* result = NULL;
1091 
1092   switch (opcode) {
1093   case Op_StrIndexOf:
1094     // Get length of string 2
1095     str2_len = load_String_length(no_ctrl, str2);
1096 
1097     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1098                                  str1_start, str1_len, str2_start, str2_len);
1099     break;
1100   case Op_StrComp:
1101     // Get length of string 2
1102     str2_len = load_String_length(no_ctrl, str2);
1103 
1104     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1105                                  str1_start, str1_len, str2_start, str2_len);
1106     break;
1107   case Op_StrEquals:
1108     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1109                                str1_start, str2_start, str1_len);
1110     break;
1111   default:
1112     ShouldNotReachHere();
1113     return NULL;
1114   }
1115 
1116   // All these intrinsics have checks.
1117   C->set_has_split_ifs(true); // Has chance for split-if optimization
1118 
1119   return _gvn.transform(result);
1120 }
1121 
1122 // Helper method for String intrinsic functions. This version is called
1123 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1124 // to Int nodes containing the lenghts of str1 and str2.
1125 //
1126 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1127   Node* result = NULL;
1128   switch (opcode) {
1129   case Op_StrIndexOf:
1130     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1131                                  str1_start, cnt1, str2_start, cnt2);
1132     break;
1133   case Op_StrComp:
1134     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1135                                  str1_start, cnt1, str2_start, cnt2);
1136     break;
1137   case Op_StrEquals:
1138     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1139                                  str1_start, str2_start, cnt1);
1140     break;
1141   default:
1142     ShouldNotReachHere();
1143     return NULL;
1144   }
1145 
1146   // All these intrinsics have checks.
1147   C->set_has_split_ifs(true); // Has chance for split-if optimization
1148 
1149   return _gvn.transform(result);
1150 }
1151 
1152 //------------------------------inline_string_compareTo------------------------
1153 // public int java.lang.String.compareTo(String anotherString);
1154 bool LibraryCallKit::inline_string_compareTo() {
1155   Node* receiver = null_check(argument(0));
1156   Node* arg      = null_check(argument(1));
1157   if (stopped()) {
1158     return true;
1159   }
1160   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1161   return true;
1162 }
1163 
1164 //------------------------------inline_string_equals------------------------
1165 bool LibraryCallKit::inline_string_equals() {
1166   Node* receiver = null_check_receiver();
1167   // NOTE: Do not null check argument for String.equals() because spec
1168   // allows to specify NULL as argument.
1169   Node* argument = this->argument(1);
1170   if (stopped()) {
1171     return true;
1172   }
1173 
1174   // paths (plus control) merge
1175   RegionNode* region = new (C) RegionNode(5);
1176   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1177 
1178   // does source == target string?
1179   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1180   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1181 
1182   Node* if_eq = generate_slow_guard(bol, NULL);
1183   if (if_eq != NULL) {
1184     // receiver == argument
1185     phi->init_req(2, intcon(1));
1186     region->init_req(2, if_eq);
1187   }
1188 
1189   // get String klass for instanceOf
1190   ciInstanceKlass* klass = env()->String_klass();
1191 
1192   if (!stopped()) {
1193     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1194     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1195     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1196 
1197     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1198     //instanceOf == true, fallthrough
1199 
1200     if (inst_false != NULL) {
1201       phi->init_req(3, intcon(0));
1202       region->init_req(3, inst_false);
1203     }
1204   }
1205 
1206   if (!stopped()) {
1207     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1208 
1209     // Properly cast the argument to String
1210     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1211     // This path is taken only when argument's type is String:NotNull.
1212     argument = cast_not_null(argument, false);
1213 
1214     Node* no_ctrl = NULL;
1215 
1216     // Get start addr of receiver
1217     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1218     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1219     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1220 
1221     // Get length of receiver
1222     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1223 
1224     // Get start addr of argument
1225     Node* argument_val    = load_String_value(no_ctrl, argument);
1226     Node* argument_offset = load_String_offset(no_ctrl, argument);
1227     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1228 
1229     // Get length of argument
1230     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1231 
1232     // Check for receiver count != argument count
1233     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1234     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1235     Node* if_ne = generate_slow_guard(bol, NULL);
1236     if (if_ne != NULL) {
1237       phi->init_req(4, intcon(0));
1238       region->init_req(4, if_ne);
1239     }
1240 
1241     // Check for count == 0 is done by assembler code for StrEquals.
1242 
1243     if (!stopped()) {
1244       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1245       phi->init_req(1, equals);
1246       region->init_req(1, control());
1247     }
1248   }
1249 
1250   // post merge
1251   set_control(_gvn.transform(region));
1252   record_for_igvn(region);
1253 
1254   set_result(_gvn.transform(phi));
1255   return true;
1256 }
1257 
1258 //------------------------------inline_array_equals----------------------------
1259 bool LibraryCallKit::inline_array_equals() {
1260   Node* arg1 = argument(0);
1261   Node* arg2 = argument(1);
1262   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1263   return true;
1264 }
1265 
1266 // Java version of String.indexOf(constant string)
1267 // class StringDecl {
1268 //   StringDecl(char[] ca) {
1269 //     offset = 0;
1270 //     count = ca.length;
1271 //     value = ca;
1272 //   }
1273 //   int offset;
1274 //   int count;
1275 //   char[] value;
1276 // }
1277 //
1278 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1279 //                             int targetOffset, int cache_i, int md2) {
1280 //   int cache = cache_i;
1281 //   int sourceOffset = string_object.offset;
1282 //   int sourceCount = string_object.count;
1283 //   int targetCount = target_object.length;
1284 //
1285 //   int targetCountLess1 = targetCount - 1;
1286 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1287 //
1288 //   char[] source = string_object.value;
1289 //   char[] target = target_object;
1290 //   int lastChar = target[targetCountLess1];
1291 //
1292 //  outer_loop:
1293 //   for (int i = sourceOffset; i < sourceEnd; ) {
1294 //     int src = source[i + targetCountLess1];
1295 //     if (src == lastChar) {
1296 //       // With random strings and a 4-character alphabet,
1297 //       // reverse matching at this point sets up 0.8% fewer
1298 //       // frames, but (paradoxically) makes 0.3% more probes.
1299 //       // Since those probes are nearer the lastChar probe,
1300 //       // there is may be a net D$ win with reverse matching.
1301 //       // But, reversing loop inhibits unroll of inner loop
1302 //       // for unknown reason.  So, does running outer loop from
1303 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1304 //       for (int j = 0; j < targetCountLess1; j++) {
1305 //         if (target[targetOffset + j] != source[i+j]) {
1306 //           if ((cache & (1 << source[i+j])) == 0) {
1307 //             if (md2 < j+1) {
1308 //               i += j+1;
1309 //               continue outer_loop;
1310 //             }
1311 //           }
1312 //           i += md2;
1313 //           continue outer_loop;
1314 //         }
1315 //       }
1316 //       return i - sourceOffset;
1317 //     }
1318 //     if ((cache & (1 << src)) == 0) {
1319 //       i += targetCountLess1;
1320 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1321 //     i++;
1322 //   }
1323 //   return -1;
1324 // }
1325 
1326 //------------------------------string_indexOf------------------------
1327 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1328                                      jint cache_i, jint md2_i) {
1329 
1330   Node* no_ctrl  = NULL;
1331   float likely   = PROB_LIKELY(0.9);
1332   float unlikely = PROB_UNLIKELY(0.9);
1333 
1334   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1335 
1336   Node* source        = load_String_value(no_ctrl, string_object);
1337   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1338   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1339 
1340   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1341   jint target_length = target_array->length();
1342   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1343   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1344 
1345   // String.value field is known to be @Stable.
1346   if (UseImplicitStableValues) {
1347     target = cast_array_to_stable(target, target_type);
1348   }
1349 
1350   IdealKit kit(this, false, true);
1351 #define __ kit.
1352   Node* zero             = __ ConI(0);
1353   Node* one              = __ ConI(1);
1354   Node* cache            = __ ConI(cache_i);
1355   Node* md2              = __ ConI(md2_i);
1356   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1357   Node* targetCount      = __ ConI(target_length);
1358   Node* targetCountLess1 = __ ConI(target_length - 1);
1359   Node* targetOffset     = __ ConI(targetOffset_i);
1360   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1361 
1362   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1363   Node* outer_loop = __ make_label(2 /* goto */);
1364   Node* return_    = __ make_label(1);
1365 
1366   __ set(rtn,__ ConI(-1));
1367   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1368        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1369        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1370        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1371        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1372          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1373               Node* tpj = __ AddI(targetOffset, __ value(j));
1374               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1375               Node* ipj  = __ AddI(__ value(i), __ value(j));
1376               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1377               __ if_then(targ, BoolTest::ne, src2); {
1378                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1379                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1380                     __ increment(i, __ AddI(__ value(j), one));
1381                     __ goto_(outer_loop);
1382                   } __ end_if(); __ dead(j);
1383                 }__ end_if(); __ dead(j);
1384                 __ increment(i, md2);
1385                 __ goto_(outer_loop);
1386               }__ end_if();
1387               __ increment(j, one);
1388          }__ end_loop(); __ dead(j);
1389          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1390          __ goto_(return_);
1391        }__ end_if();
1392        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1393          __ increment(i, targetCountLess1);
1394        }__ end_if();
1395        __ increment(i, one);
1396        __ bind(outer_loop);
1397   }__ end_loop(); __ dead(i);
1398   __ bind(return_);
1399 
1400   // Final sync IdealKit and GraphKit.
1401   final_sync(kit);
1402   Node* result = __ value(rtn);
1403 #undef __
1404   C->set_has_loops(true);
1405   return result;
1406 }
1407 
1408 //------------------------------inline_string_indexOf------------------------
1409 bool LibraryCallKit::inline_string_indexOf() {
1410   Node* receiver = argument(0);
1411   Node* arg      = argument(1);
1412 
1413   Node* result;
1414   // Disable the use of pcmpestri until it can be guaranteed that
1415   // the load doesn't cross into the uncommited space.
1416   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1417       UseSSE42Intrinsics) {
1418     // Generate SSE4.2 version of indexOf
1419     // We currently only have match rules that use SSE4.2
1420 
1421     receiver = null_check(receiver);
1422     arg      = null_check(arg);
1423     if (stopped()) {
1424       return true;
1425     }
1426 
1427     ciInstanceKlass* str_klass = env()->String_klass();
1428     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1429 
1430     // Make the merge point
1431     RegionNode* result_rgn = new (C) RegionNode(4);
1432     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1433     Node* no_ctrl  = NULL;
1434 
1435     // Get start addr of source string
1436     Node* source = load_String_value(no_ctrl, receiver);
1437     Node* source_offset = load_String_offset(no_ctrl, receiver);
1438     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1439 
1440     // Get length of source string
1441     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1442 
1443     // Get start addr of substring
1444     Node* substr = load_String_value(no_ctrl, arg);
1445     Node* substr_offset = load_String_offset(no_ctrl, arg);
1446     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1447 
1448     // Get length of source string
1449     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1450 
1451     // Check for substr count > string count
1452     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1453     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1454     Node* if_gt = generate_slow_guard(bol, NULL);
1455     if (if_gt != NULL) {
1456       result_phi->init_req(2, intcon(-1));
1457       result_rgn->init_req(2, if_gt);
1458     }
1459 
1460     if (!stopped()) {
1461       // Check for substr count == 0
1462       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1463       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1464       Node* if_zero = generate_slow_guard(bol, NULL);
1465       if (if_zero != NULL) {
1466         result_phi->init_req(3, intcon(0));
1467         result_rgn->init_req(3, if_zero);
1468       }
1469     }
1470 
1471     if (!stopped()) {
1472       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1473       result_phi->init_req(1, result);
1474       result_rgn->init_req(1, control());
1475     }
1476     set_control(_gvn.transform(result_rgn));
1477     record_for_igvn(result_rgn);
1478     result = _gvn.transform(result_phi);
1479 
1480   } else { // Use LibraryCallKit::string_indexOf
1481     // don't intrinsify if argument isn't a constant string.
1482     if (!arg->is_Con()) {
1483      return false;
1484     }
1485     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1486     if (str_type == NULL) {
1487       return false;
1488     }
1489     ciInstanceKlass* klass = env()->String_klass();
1490     ciObject* str_const = str_type->const_oop();
1491     if (str_const == NULL || str_const->klass() != klass) {
1492       return false;
1493     }
1494     ciInstance* str = str_const->as_instance();
1495     assert(str != NULL, "must be instance");
1496 
1497     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1498     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1499 
1500     int o;
1501     int c;
1502     if (java_lang_String::has_offset_field()) {
1503       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1504       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1505     } else {
1506       o = 0;
1507       c = pat->length();
1508     }
1509 
1510     // constant strings have no offset and count == length which
1511     // simplifies the resulting code somewhat so lets optimize for that.
1512     if (o != 0 || c != pat->length()) {
1513      return false;
1514     }
1515 
1516     receiver = null_check(receiver, T_OBJECT);
1517     // NOTE: No null check on the argument is needed since it's a constant String oop.
1518     if (stopped()) {
1519       return true;
1520     }
1521 
1522     // The null string as a pattern always returns 0 (match at beginning of string)
1523     if (c == 0) {
1524       set_result(intcon(0));
1525       return true;
1526     }
1527 
1528     // Generate default indexOf
1529     jchar lastChar = pat->char_at(o + (c - 1));
1530     int cache = 0;
1531     int i;
1532     for (i = 0; i < c - 1; i++) {
1533       assert(i < pat->length(), "out of range");
1534       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1535     }
1536 
1537     int md2 = c;
1538     for (i = 0; i < c - 1; i++) {
1539       assert(i < pat->length(), "out of range");
1540       if (pat->char_at(o + i) == lastChar) {
1541         md2 = (c - 1) - i;
1542       }
1543     }
1544 
1545     result = string_indexOf(receiver, pat, o, cache, md2);
1546   }
1547   set_result(result);
1548   return true;
1549 }
1550 
1551 //--------------------------round_double_node--------------------------------
1552 // Round a double node if necessary.
1553 Node* LibraryCallKit::round_double_node(Node* n) {
1554   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1555     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1556   return n;
1557 }
1558 
1559 //------------------------------inline_math-----------------------------------
1560 // public static double Math.abs(double)
1561 // public static double Math.sqrt(double)
1562 // public static double Math.log(double)
1563 // public static double Math.log10(double)
1564 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1565   Node* arg = round_double_node(argument(0));
1566   Node* n;
1567   switch (id) {
1568   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1569   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1570   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1571   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1572   default:  fatal_unexpected_iid(id);  break;
1573   }
1574   set_result(_gvn.transform(n));
1575   return true;
1576 }
1577 
1578 //------------------------------inline_trig----------------------------------
1579 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1580 // argument reduction which will turn into a fast/slow diamond.
1581 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1582   Node* arg = round_double_node(argument(0));
1583   Node* n = NULL;
1584 
1585   switch (id) {
1586   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1587   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1588   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1589   default:  fatal_unexpected_iid(id);  break;
1590   }
1591   n = _gvn.transform(n);
1592 
1593   // Rounding required?  Check for argument reduction!
1594   if (Matcher::strict_fp_requires_explicit_rounding) {
1595     static const double     pi_4 =  0.7853981633974483;
1596     static const double neg_pi_4 = -0.7853981633974483;
1597     // pi/2 in 80-bit extended precision
1598     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1599     // -pi/2 in 80-bit extended precision
1600     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1601     // Cutoff value for using this argument reduction technique
1602     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1603     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1604 
1605     // Pseudocode for sin:
1606     // if (x <= Math.PI / 4.0) {
1607     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1608     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1609     // } else {
1610     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1611     // }
1612     // return StrictMath.sin(x);
1613 
1614     // Pseudocode for cos:
1615     // if (x <= Math.PI / 4.0) {
1616     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1617     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1618     // } else {
1619     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1620     // }
1621     // return StrictMath.cos(x);
1622 
1623     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1624     // requires a special machine instruction to load it.  Instead we'll try
1625     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1626     // probably do the math inside the SIN encoding.
1627 
1628     // Make the merge point
1629     RegionNode* r = new (C) RegionNode(3);
1630     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1631 
1632     // Flatten arg so we need only 1 test
1633     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1634     // Node for PI/4 constant
1635     Node *pi4 = makecon(TypeD::make(pi_4));
1636     // Check PI/4 : abs(arg)
1637     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1638     // Check: If PI/4 < abs(arg) then go slow
1639     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1640     // Branch either way
1641     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1642     set_control(opt_iff(r,iff));
1643 
1644     // Set fast path result
1645     phi->init_req(2, n);
1646 
1647     // Slow path - non-blocking leaf call
1648     Node* call = NULL;
1649     switch (id) {
1650     case vmIntrinsics::_dsin:
1651       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1652                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1653                                "Sin", NULL, arg, top());
1654       break;
1655     case vmIntrinsics::_dcos:
1656       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1657                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1658                                "Cos", NULL, arg, top());
1659       break;
1660     case vmIntrinsics::_dtan:
1661       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1662                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1663                                "Tan", NULL, arg, top());
1664       break;
1665     }
1666     assert(control()->in(0) == call, "");
1667     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1668     r->init_req(1, control());
1669     phi->init_req(1, slow_result);
1670 
1671     // Post-merge
1672     set_control(_gvn.transform(r));
1673     record_for_igvn(r);
1674     n = _gvn.transform(phi);
1675 
1676     C->set_has_split_ifs(true); // Has chance for split-if optimization
1677   }
1678   set_result(n);
1679   return true;
1680 }
1681 
1682 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1683   //-------------------
1684   //result=(result.isNaN())? funcAddr():result;
1685   // Check: If isNaN() by checking result!=result? then either trap
1686   // or go to runtime
1687   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1688   // Build the boolean node
1689   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1690 
1691   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1692     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1693       // The pow or exp intrinsic returned a NaN, which requires a call
1694       // to the runtime.  Recompile with the runtime call.
1695       uncommon_trap(Deoptimization::Reason_intrinsic,
1696                     Deoptimization::Action_make_not_entrant);
1697     }
1698     set_result(result);
1699   } else {
1700     // If this inlining ever returned NaN in the past, we compile a call
1701     // to the runtime to properly handle corner cases
1702 
1703     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1704     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1705     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1706 
1707     if (!if_slow->is_top()) {
1708       RegionNode* result_region = new (C) RegionNode(3);
1709       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1710 
1711       result_region->init_req(1, if_fast);
1712       result_val->init_req(1, result);
1713 
1714       set_control(if_slow);
1715 
1716       const TypePtr* no_memory_effects = NULL;
1717       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1718                                    no_memory_effects,
1719                                    x, top(), y, y ? top() : NULL);
1720       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1721 #ifdef ASSERT
1722       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1723       assert(value_top == top(), "second value must be top");
1724 #endif
1725 
1726       result_region->init_req(2, control());
1727       result_val->init_req(2, value);
1728       set_result(result_region, result_val);
1729     } else {
1730       set_result(result);
1731     }
1732   }
1733 }
1734 
1735 //------------------------------inline_exp-------------------------------------
1736 // Inline exp instructions, if possible.  The Intel hardware only misses
1737 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1738 bool LibraryCallKit::inline_exp() {
1739   Node* arg = round_double_node(argument(0));
1740   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1741 
1742   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1743 
1744   C->set_has_split_ifs(true); // Has chance for split-if optimization
1745   return true;
1746 }
1747 
1748 //------------------------------inline_pow-------------------------------------
1749 // Inline power instructions, if possible.
1750 bool LibraryCallKit::inline_pow() {
1751   // Pseudocode for pow
1752   // if (x <= 0.0) {
1753   //   long longy = (long)y;
1754   //   if ((double)longy == y) { // if y is long
1755   //     if (y + 1 == y) longy = 0; // huge number: even
1756   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1757   //   } else {
1758   //     result = NaN;
1759   //   }
1760   // } else {
1761   //   result = DPow(x,y);
1762   // }
1763   // if (result != result)?  {
1764   //   result = uncommon_trap() or runtime_call();
1765   // }
1766   // return result;
1767 
1768   Node* x = round_double_node(argument(0));
1769   Node* y = round_double_node(argument(2));
1770 
1771   Node* result = NULL;
1772 
1773   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1774     // Short form: skip the fancy tests and just check for NaN result.
1775     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1776   } else {
1777     // If this inlining ever returned NaN in the past, include all
1778     // checks + call to the runtime.
1779 
1780     // Set the merge point for If node with condition of (x <= 0.0)
1781     // There are four possible paths to region node and phi node
1782     RegionNode *r = new (C) RegionNode(4);
1783     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1784 
1785     // Build the first if node: if (x <= 0.0)
1786     // Node for 0 constant
1787     Node *zeronode = makecon(TypeD::ZERO);
1788     // Check x:0
1789     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1790     // Check: If (x<=0) then go complex path
1791     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1792     // Branch either way
1793     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1794     // Fast path taken; set region slot 3
1795     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1796     r->init_req(3,fast_taken); // Capture fast-control
1797 
1798     // Fast path not-taken, i.e. slow path
1799     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1800 
1801     // Set fast path result
1802     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1803     phi->init_req(3, fast_result);
1804 
1805     // Complex path
1806     // Build the second if node (if y is long)
1807     // Node for (long)y
1808     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1809     // Node for (double)((long) y)
1810     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1811     // Check (double)((long) y) : y
1812     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1813     // Check if (y isn't long) then go to slow path
1814 
1815     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1816     // Branch either way
1817     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1818     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1819 
1820     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1821 
1822     // Calculate DPow(abs(x), y)*(1 & (long)y)
1823     // Node for constant 1
1824     Node *conone = longcon(1);
1825     // 1& (long)y
1826     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1827 
1828     // A huge number is always even. Detect a huge number by checking
1829     // if y + 1 == y and set integer to be tested for parity to 0.
1830     // Required for corner case:
1831     // (long)9.223372036854776E18 = max_jlong
1832     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1833     // max_jlong is odd but 9.223372036854776E18 is even
1834     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1835     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1836     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1837     Node* correctedsign = NULL;
1838     if (ConditionalMoveLimit != 0) {
1839       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1840     } else {
1841       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1842       RegionNode *r = new (C) RegionNode(3);
1843       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1844       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1845       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1846       phi->init_req(1, signnode);
1847       phi->init_req(2, longcon(0));
1848       correctedsign = _gvn.transform(phi);
1849       ylong_path = _gvn.transform(r);
1850       record_for_igvn(r);
1851     }
1852 
1853     // zero node
1854     Node *conzero = longcon(0);
1855     // Check (1&(long)y)==0?
1856     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1857     // Check if (1&(long)y)!=0?, if so the result is negative
1858     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1859     // abs(x)
1860     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1861     // abs(x)^y
1862     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1863     // -abs(x)^y
1864     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1865     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1866     Node *signresult = NULL;
1867     if (ConditionalMoveLimit != 0) {
1868       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1869     } else {
1870       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1871       RegionNode *r = new (C) RegionNode(3);
1872       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1873       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1874       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1875       phi->init_req(1, absxpowy);
1876       phi->init_req(2, negabsxpowy);
1877       signresult = _gvn.transform(phi);
1878       ylong_path = _gvn.transform(r);
1879       record_for_igvn(r);
1880     }
1881     // Set complex path fast result
1882     r->init_req(2, ylong_path);
1883     phi->init_req(2, signresult);
1884 
1885     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1886     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1887     r->init_req(1,slow_path);
1888     phi->init_req(1,slow_result);
1889 
1890     // Post merge
1891     set_control(_gvn.transform(r));
1892     record_for_igvn(r);
1893     result = _gvn.transform(phi);
1894   }
1895 
1896   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1897 
1898   C->set_has_split_ifs(true); // Has chance for split-if optimization
1899   return true;
1900 }
1901 
1902 //------------------------------runtime_math-----------------------------
1903 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1904   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1905          "must be (DD)D or (D)D type");
1906 
1907   // Inputs
1908   Node* a = round_double_node(argument(0));
1909   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1910 
1911   const TypePtr* no_memory_effects = NULL;
1912   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1913                                  no_memory_effects,
1914                                  a, top(), b, b ? top() : NULL);
1915   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1916 #ifdef ASSERT
1917   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1918   assert(value_top == top(), "second value must be top");
1919 #endif
1920 
1921   set_result(value);
1922   return true;
1923 }
1924 
1925 //------------------------------inline_math_native-----------------------------
1926 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1927 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1928   switch (id) {
1929     // These intrinsics are not properly supported on all hardware
1930   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1931     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1932   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1933     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1934   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1935     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1936 
1937   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1938     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1939   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1940     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1941 
1942     // These intrinsics are supported on all hardware
1943   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1944   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1945 
1946   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1947     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1948   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1949     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1950 #undef FN_PTR
1951 
1952    // These intrinsics are not yet correctly implemented
1953   case vmIntrinsics::_datan2:
1954     return false;
1955 
1956   default:
1957     fatal_unexpected_iid(id);
1958     return false;
1959   }
1960 }
1961 
1962 static bool is_simple_name(Node* n) {
1963   return (n->req() == 1         // constant
1964           || (n->is_Type() && n->as_Type()->type()->singleton())
1965           || n->is_Proj()       // parameter or return value
1966           || n->is_Phi()        // local of some sort
1967           );
1968 }
1969 
1970 //----------------------------inline_min_max-----------------------------------
1971 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1972   set_result(generate_min_max(id, argument(0), argument(1)));
1973   return true;
1974 }
1975 
1976 void LibraryCallKit::inline_math_mathExact(Node* math) {
1977   // If we didn't get the expected opcode it means we have optimized
1978   // the node to something else and don't need the exception edge.
1979   if (MathExactNode::is_MathExactOpcode(math->Opcode()) == false) {
1980     set_result(math);
1981     return;
1982   }
1983 
1984   Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
1985   Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
1986 
1987   Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
1988   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1989   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1990   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1991 
1992   {
1993     PreserveJVMState pjvms(this);
1994     PreserveReexecuteState preexecs(this);
1995     jvms()->set_should_reexecute(true);
1996 
1997     set_control(slow_path);
1998     set_i_o(i_o());
1999 
2000     uncommon_trap(Deoptimization::Reason_intrinsic,
2001                   Deoptimization::Action_none);
2002   }
2003 
2004   set_control(fast_path);
2005   set_result(result);
2006 }
2007 
2008 bool LibraryCallKit::inline_math_addExact() {
2009   Node* arg1 = argument(0);
2010   Node* arg2 = argument(1);
2011 
2012   Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
2013   inline_math_mathExact(add);
2014   return true;
2015 }
2016 
2017 bool LibraryCallKit::inline_math_addExactL() {
2018   Node* arg1 = argument(0); // type long
2019   // argument(1) == TOP
2020   Node* arg2 = argument(2); // type long
2021   // argument(4) == TOP
2022 
2023   Node* add = _gvn.transform( new(C) AddExactLNode(NULL, arg1, arg2) );
2024   inline_math_mathExact(add);
2025   return true;
2026 }
2027 
2028 bool LibraryCallKit::inline_math_subtractExactL() {
2029   Node* arg1 = argument(0); // type long
2030   // argument(1) == TOP
2031   Node* arg2 = argument(2); // type long
2032   // argument(4) == TOP
2033 
2034   Node* sub = _gvn.transform( new(C) SubExactLNode(NULL, arg1, arg2) );
2035   inline_math_mathExact(sub);
2036   return true;
2037 }
2038 
2039 bool LibraryCallKit::inline_math_subtractExact() {
2040   Node* arg1 = argument(0);
2041   Node* arg2 = argument(1);
2042 
2043   Node* sub = _gvn.transform( new(C) SubExactINode(NULL, arg1, arg2) );
2044   inline_math_mathExact(sub);
2045   return true;
2046 }
2047 
2048 bool LibraryCallKit::inline_math_negateExact() {
2049   Node* arg1 = argument(0);
2050 
2051   Node* neg = _gvn.transform( new(C) NegExactINode(NULL, arg1));
2052   inline_math_mathExact(neg);
2053   return true;
2054 }
2055 
2056 bool LibraryCallKit::inline_math_negateExactL() {
2057   Node* arg1 = argument(0);
2058   // argument(1) == TOP
2059 
2060   Node* neg = _gvn.transform( new(C) NegExactLNode(NULL, arg1));
2061   inline_math_mathExact(neg);
2062   return true;
2063 }
2064 
2065 bool LibraryCallKit::inline_math_multiplyExact() {
2066   Node* arg1 = argument(0);
2067   Node* arg2 = argument(1);
2068 
2069   Node* mul = _gvn.transform( new(C) MulExactINode(NULL, arg1, arg2) );
2070   inline_math_mathExact(mul);
2071   return true;
2072 }
2073 
2074 bool LibraryCallKit::inline_math_multiplyExactL() {
2075   Node* arg1 = argument(0);
2076   // argument(1) == TOP
2077   Node* arg2 = argument(2);
2078   // argument(3) == TOP
2079 
2080   Node* mul = _gvn.transform( new(C) MulExactLNode(NULL, arg1, arg2) );
2081   inline_math_mathExact(mul);
2082   return true;
2083 }
2084 
2085 bool LibraryCallKit::inline_math_incrementExact() {
2086   Node* arg1 = argument(0);
2087   Node* arg2 = intcon(1);
2088 
2089   Node* inc = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2));
2090   inline_math_mathExact(inc);
2091   return true;
2092 }
2093 
2094 bool LibraryCallKit::inline_math_incrementExactL() {
2095   Node* arg1 = argument(0);
2096   // argument(1) == TOP
2097   Node* arg2 = longcon(1);
2098 
2099   Node* inc = _gvn.transform( new(C) AddExactLNode(NULL, arg1, arg2));
2100   inline_math_mathExact(inc);
2101   return true;
2102 }
2103 
2104 bool LibraryCallKit::inline_math_decrementExact() {
2105   Node* arg1 = argument(0);
2106   Node* arg2 = intcon(1);
2107 
2108   Node* dec = _gvn.transform( new(C) SubExactINode(NULL, arg1, arg2));
2109   inline_math_mathExact(dec);
2110   return true;
2111 }
2112 
2113 bool LibraryCallKit::inline_math_decrementExactL() {
2114   Node* arg1 = argument(0);
2115   // argument(1) == TOP
2116   Node* arg2 = longcon(1);
2117 
2118   Node* dec = _gvn.transform( new(C) SubExactLNode(NULL, arg1, arg2));
2119   inline_math_mathExact(dec);
2120   return true;
2121 }
2122 
2123 Node*
2124 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2125   // These are the candidate return value:
2126   Node* xvalue = x0;
2127   Node* yvalue = y0;
2128 
2129   if (xvalue == yvalue) {
2130     return xvalue;
2131   }
2132 
2133   bool want_max = (id == vmIntrinsics::_max);
2134 
2135   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2136   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2137   if (txvalue == NULL || tyvalue == NULL)  return top();
2138   // This is not really necessary, but it is consistent with a
2139   // hypothetical MaxINode::Value method:
2140   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2141 
2142   // %%% This folding logic should (ideally) be in a different place.
2143   // Some should be inside IfNode, and there to be a more reliable
2144   // transformation of ?: style patterns into cmoves.  We also want
2145   // more powerful optimizations around cmove and min/max.
2146 
2147   // Try to find a dominating comparison of these guys.
2148   // It can simplify the index computation for Arrays.copyOf
2149   // and similar uses of System.arraycopy.
2150   // First, compute the normalized version of CmpI(x, y).
2151   int   cmp_op = Op_CmpI;
2152   Node* xkey = xvalue;
2153   Node* ykey = yvalue;
2154   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2155   if (ideal_cmpxy->is_Cmp()) {
2156     // E.g., if we have CmpI(length - offset, count),
2157     // it might idealize to CmpI(length, count + offset)
2158     cmp_op = ideal_cmpxy->Opcode();
2159     xkey = ideal_cmpxy->in(1);
2160     ykey = ideal_cmpxy->in(2);
2161   }
2162 
2163   // Start by locating any relevant comparisons.
2164   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2165   Node* cmpxy = NULL;
2166   Node* cmpyx = NULL;
2167   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2168     Node* cmp = start_from->fast_out(k);
2169     if (cmp->outcnt() > 0 &&            // must have prior uses
2170         cmp->in(0) == NULL &&           // must be context-independent
2171         cmp->Opcode() == cmp_op) {      // right kind of compare
2172       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2173       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2174     }
2175   }
2176 
2177   const int NCMPS = 2;
2178   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2179   int cmpn;
2180   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2181     if (cmps[cmpn] != NULL)  break;     // find a result
2182   }
2183   if (cmpn < NCMPS) {
2184     // Look for a dominating test that tells us the min and max.
2185     int depth = 0;                // Limit search depth for speed
2186     Node* dom = control();
2187     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2188       if (++depth >= 100)  break;
2189       Node* ifproj = dom;
2190       if (!ifproj->is_Proj())  continue;
2191       Node* iff = ifproj->in(0);
2192       if (!iff->is_If())  continue;
2193       Node* bol = iff->in(1);
2194       if (!bol->is_Bool())  continue;
2195       Node* cmp = bol->in(1);
2196       if (cmp == NULL)  continue;
2197       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2198         if (cmps[cmpn] == cmp)  break;
2199       if (cmpn == NCMPS)  continue;
2200       BoolTest::mask btest = bol->as_Bool()->_test._test;
2201       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2202       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2203       // At this point, we know that 'x btest y' is true.
2204       switch (btest) {
2205       case BoolTest::eq:
2206         // They are proven equal, so we can collapse the min/max.
2207         // Either value is the answer.  Choose the simpler.
2208         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2209           return yvalue;
2210         return xvalue;
2211       case BoolTest::lt:          // x < y
2212       case BoolTest::le:          // x <= y
2213         return (want_max ? yvalue : xvalue);
2214       case BoolTest::gt:          // x > y
2215       case BoolTest::ge:          // x >= y
2216         return (want_max ? xvalue : yvalue);
2217       }
2218     }
2219   }
2220 
2221   // We failed to find a dominating test.
2222   // Let's pick a test that might GVN with prior tests.
2223   Node*          best_bol   = NULL;
2224   BoolTest::mask best_btest = BoolTest::illegal;
2225   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2226     Node* cmp = cmps[cmpn];
2227     if (cmp == NULL)  continue;
2228     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2229       Node* bol = cmp->fast_out(j);
2230       if (!bol->is_Bool())  continue;
2231       BoolTest::mask btest = bol->as_Bool()->_test._test;
2232       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2233       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2234       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2235         best_bol   = bol->as_Bool();
2236         best_btest = btest;
2237       }
2238     }
2239   }
2240 
2241   Node* answer_if_true  = NULL;
2242   Node* answer_if_false = NULL;
2243   switch (best_btest) {
2244   default:
2245     if (cmpxy == NULL)
2246       cmpxy = ideal_cmpxy;
2247     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2248     // and fall through:
2249   case BoolTest::lt:          // x < y
2250   case BoolTest::le:          // x <= y
2251     answer_if_true  = (want_max ? yvalue : xvalue);
2252     answer_if_false = (want_max ? xvalue : yvalue);
2253     break;
2254   case BoolTest::gt:          // x > y
2255   case BoolTest::ge:          // x >= y
2256     answer_if_true  = (want_max ? xvalue : yvalue);
2257     answer_if_false = (want_max ? yvalue : xvalue);
2258     break;
2259   }
2260 
2261   jint hi, lo;
2262   if (want_max) {
2263     // We can sharpen the minimum.
2264     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2265     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2266   } else {
2267     // We can sharpen the maximum.
2268     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2269     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2270   }
2271 
2272   // Use a flow-free graph structure, to avoid creating excess control edges
2273   // which could hinder other optimizations.
2274   // Since Math.min/max is often used with arraycopy, we want
2275   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2276   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2277                                answer_if_false, answer_if_true,
2278                                TypeInt::make(lo, hi, widen));
2279 
2280   return _gvn.transform(cmov);
2281 
2282   /*
2283   // This is not as desirable as it may seem, since Min and Max
2284   // nodes do not have a full set of optimizations.
2285   // And they would interfere, anyway, with 'if' optimizations
2286   // and with CMoveI canonical forms.
2287   switch (id) {
2288   case vmIntrinsics::_min:
2289     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2290   case vmIntrinsics::_max:
2291     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2292   default:
2293     ShouldNotReachHere();
2294   }
2295   */
2296 }
2297 
2298 inline int
2299 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2300   const TypePtr* base_type = TypePtr::NULL_PTR;
2301   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2302   if (base_type == NULL) {
2303     // Unknown type.
2304     return Type::AnyPtr;
2305   } else if (base_type == TypePtr::NULL_PTR) {
2306     // Since this is a NULL+long form, we have to switch to a rawptr.
2307     base   = _gvn.transform(new (C) CastX2PNode(offset));
2308     offset = MakeConX(0);
2309     return Type::RawPtr;
2310   } else if (base_type->base() == Type::RawPtr) {
2311     return Type::RawPtr;
2312   } else if (base_type->isa_oopptr()) {
2313     // Base is never null => always a heap address.
2314     if (base_type->ptr() == TypePtr::NotNull) {
2315       return Type::OopPtr;
2316     }
2317     // Offset is small => always a heap address.
2318     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2319     if (offset_type != NULL &&
2320         base_type->offset() == 0 &&     // (should always be?)
2321         offset_type->_lo >= 0 &&
2322         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2323       return Type::OopPtr;
2324     }
2325     // Otherwise, it might either be oop+off or NULL+addr.
2326     return Type::AnyPtr;
2327   } else {
2328     // No information:
2329     return Type::AnyPtr;
2330   }
2331 }
2332 
2333 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2334   int kind = classify_unsafe_addr(base, offset);
2335   if (kind == Type::RawPtr) {
2336     return basic_plus_adr(top(), base, offset);
2337   } else {
2338     return basic_plus_adr(base, offset);
2339   }
2340 }
2341 
2342 //--------------------------inline_number_methods-----------------------------
2343 // inline int     Integer.numberOfLeadingZeros(int)
2344 // inline int        Long.numberOfLeadingZeros(long)
2345 //
2346 // inline int     Integer.numberOfTrailingZeros(int)
2347 // inline int        Long.numberOfTrailingZeros(long)
2348 //
2349 // inline int     Integer.bitCount(int)
2350 // inline int        Long.bitCount(long)
2351 //
2352 // inline char  Character.reverseBytes(char)
2353 // inline short     Short.reverseBytes(short)
2354 // inline int     Integer.reverseBytes(int)
2355 // inline long       Long.reverseBytes(long)
2356 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2357   Node* arg = argument(0);
2358   Node* n;
2359   switch (id) {
2360   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2361   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2362   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2363   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2364   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2365   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2366   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2367   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2368   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2369   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2370   default:  fatal_unexpected_iid(id);  break;
2371   }
2372   set_result(_gvn.transform(n));
2373   return true;
2374 }
2375 
2376 //----------------------------inline_unsafe_access----------------------------
2377 
2378 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2379 
2380 // Helper that guards and inserts a pre-barrier.
2381 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2382                                         Node* pre_val, bool need_mem_bar) {
2383   // We could be accessing the referent field of a reference object. If so, when G1
2384   // is enabled, we need to log the value in the referent field in an SATB buffer.
2385   // This routine performs some compile time filters and generates suitable
2386   // runtime filters that guard the pre-barrier code.
2387   // Also add memory barrier for non volatile load from the referent field
2388   // to prevent commoning of loads across safepoint.
2389   if (!UseG1GC && !need_mem_bar)
2390     return;
2391 
2392   // Some compile time checks.
2393 
2394   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2395   const TypeX* otype = offset->find_intptr_t_type();
2396   if (otype != NULL && otype->is_con() &&
2397       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2398     // Constant offset but not the reference_offset so just return
2399     return;
2400   }
2401 
2402   // We only need to generate the runtime guards for instances.
2403   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2404   if (btype != NULL) {
2405     if (btype->isa_aryptr()) {
2406       // Array type so nothing to do
2407       return;
2408     }
2409 
2410     const TypeInstPtr* itype = btype->isa_instptr();
2411     if (itype != NULL) {
2412       // Can the klass of base_oop be statically determined to be
2413       // _not_ a sub-class of Reference and _not_ Object?
2414       ciKlass* klass = itype->klass();
2415       if ( klass->is_loaded() &&
2416           !klass->is_subtype_of(env()->Reference_klass()) &&
2417           !env()->Object_klass()->is_subtype_of(klass)) {
2418         return;
2419       }
2420     }
2421   }
2422 
2423   // The compile time filters did not reject base_oop/offset so
2424   // we need to generate the following runtime filters
2425   //
2426   // if (offset == java_lang_ref_Reference::_reference_offset) {
2427   //   if (instance_of(base, java.lang.ref.Reference)) {
2428   //     pre_barrier(_, pre_val, ...);
2429   //   }
2430   // }
2431 
2432   float likely   = PROB_LIKELY(  0.999);
2433   float unlikely = PROB_UNLIKELY(0.999);
2434 
2435   IdealKit ideal(this);
2436 #define __ ideal.
2437 
2438   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2439 
2440   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2441       // Update graphKit memory and control from IdealKit.
2442       sync_kit(ideal);
2443 
2444       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2445       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2446 
2447       // Update IdealKit memory and control from graphKit.
2448       __ sync_kit(this);
2449 
2450       Node* one = __ ConI(1);
2451       // is_instof == 0 if base_oop == NULL
2452       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2453 
2454         // Update graphKit from IdeakKit.
2455         sync_kit(ideal);
2456 
2457         // Use the pre-barrier to record the value in the referent field
2458         pre_barrier(false /* do_load */,
2459                     __ ctrl(),
2460                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2461                     pre_val /* pre_val */,
2462                     T_OBJECT);
2463         if (need_mem_bar) {
2464           // Add memory barrier to prevent commoning reads from this field
2465           // across safepoint since GC can change its value.
2466           insert_mem_bar(Op_MemBarCPUOrder);
2467         }
2468         // Update IdealKit from graphKit.
2469         __ sync_kit(this);
2470 
2471       } __ end_if(); // _ref_type != ref_none
2472   } __ end_if(); // offset == referent_offset
2473 
2474   // Final sync IdealKit and GraphKit.
2475   final_sync(ideal);
2476 #undef __
2477 }
2478 
2479 
2480 // Interpret Unsafe.fieldOffset cookies correctly:
2481 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2482 
2483 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2484   // Attempt to infer a sharper value type from the offset and base type.
2485   ciKlass* sharpened_klass = NULL;
2486 
2487   // See if it is an instance field, with an object type.
2488   if (alias_type->field() != NULL) {
2489     assert(!is_native_ptr, "native pointer op cannot use a java address");
2490     if (alias_type->field()->type()->is_klass()) {
2491       sharpened_klass = alias_type->field()->type()->as_klass();
2492     }
2493   }
2494 
2495   // See if it is a narrow oop array.
2496   if (adr_type->isa_aryptr()) {
2497     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2498       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2499       if (elem_type != NULL) {
2500         sharpened_klass = elem_type->klass();
2501       }
2502     }
2503   }
2504 
2505   // The sharpened class might be unloaded if there is no class loader
2506   // contraint in place.
2507   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2508     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2509 
2510 #ifndef PRODUCT
2511     if (C->print_intrinsics() || C->print_inlining()) {
2512       tty->print("  from base type: ");  adr_type->dump();
2513       tty->print("  sharpened value: ");  tjp->dump();
2514     }
2515 #endif
2516     // Sharpen the value type.
2517     return tjp;
2518   }
2519   return NULL;
2520 }
2521 
2522 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2523   if (callee()->is_static())  return false;  // caller must have the capability!
2524 
2525 #ifndef PRODUCT
2526   {
2527     ResourceMark rm;
2528     // Check the signatures.
2529     ciSignature* sig = callee()->signature();
2530 #ifdef ASSERT
2531     if (!is_store) {
2532       // Object getObject(Object base, int/long offset), etc.
2533       BasicType rtype = sig->return_type()->basic_type();
2534       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2535           rtype = T_ADDRESS;  // it is really a C void*
2536       assert(rtype == type, "getter must return the expected value");
2537       if (!is_native_ptr) {
2538         assert(sig->count() == 2, "oop getter has 2 arguments");
2539         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2540         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2541       } else {
2542         assert(sig->count() == 1, "native getter has 1 argument");
2543         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2544       }
2545     } else {
2546       // void putObject(Object base, int/long offset, Object x), etc.
2547       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2548       if (!is_native_ptr) {
2549         assert(sig->count() == 3, "oop putter has 3 arguments");
2550         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2551         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2552       } else {
2553         assert(sig->count() == 2, "native putter has 2 arguments");
2554         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2555       }
2556       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2557       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2558         vtype = T_ADDRESS;  // it is really a C void*
2559       assert(vtype == type, "putter must accept the expected value");
2560     }
2561 #endif // ASSERT
2562  }
2563 #endif //PRODUCT
2564 
2565   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2566 
2567   Node* receiver = argument(0);  // type: oop
2568 
2569   // Build address expression.  See the code in inline_unsafe_prefetch.
2570   Node* adr;
2571   Node* heap_base_oop = top();
2572   Node* offset = top();
2573   Node* val;
2574 
2575   if (!is_native_ptr) {
2576     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2577     Node* base = argument(1);  // type: oop
2578     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2579     offset = argument(2);  // type: long
2580     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2581     // to be plain byte offsets, which are also the same as those accepted
2582     // by oopDesc::field_base.
2583     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2584            "fieldOffset must be byte-scaled");
2585     // 32-bit machines ignore the high half!
2586     offset = ConvL2X(offset);
2587     adr = make_unsafe_address(base, offset);
2588     heap_base_oop = base;
2589     val = is_store ? argument(4) : NULL;
2590   } else {
2591     Node* ptr = argument(1);  // type: long
2592     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2593     adr = make_unsafe_address(NULL, ptr);
2594     val = is_store ? argument(3) : NULL;
2595   }
2596 
2597   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2598 
2599   // First guess at the value type.
2600   const Type *value_type = Type::get_const_basic_type(type);
2601 
2602   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2603   // there was not enough information to nail it down.
2604   Compile::AliasType* alias_type = C->alias_type(adr_type);
2605   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2606 
2607   // We will need memory barriers unless we can determine a unique
2608   // alias category for this reference.  (Note:  If for some reason
2609   // the barriers get omitted and the unsafe reference begins to "pollute"
2610   // the alias analysis of the rest of the graph, either Compile::can_alias
2611   // or Compile::must_alias will throw a diagnostic assert.)
2612   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2613 
2614   // If we are reading the value of the referent field of a Reference
2615   // object (either by using Unsafe directly or through reflection)
2616   // then, if G1 is enabled, we need to record the referent in an
2617   // SATB log buffer using the pre-barrier mechanism.
2618   // Also we need to add memory barrier to prevent commoning reads
2619   // from this field across safepoint since GC can change its value.
2620   bool need_read_barrier = !is_native_ptr && !is_store &&
2621                            offset != top() && heap_base_oop != top();
2622 
2623   if (!is_store && type == T_OBJECT) {
2624     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2625     if (tjp != NULL) {
2626       value_type = tjp;
2627     }
2628   }
2629 
2630   receiver = null_check(receiver);
2631   if (stopped()) {
2632     return true;
2633   }
2634   // Heap pointers get a null-check from the interpreter,
2635   // as a courtesy.  However, this is not guaranteed by Unsafe,
2636   // and it is not possible to fully distinguish unintended nulls
2637   // from intended ones in this API.
2638 
2639   if (is_volatile) {
2640     // We need to emit leading and trailing CPU membars (see below) in
2641     // addition to memory membars when is_volatile. This is a little
2642     // too strong, but avoids the need to insert per-alias-type
2643     // volatile membars (for stores; compare Parse::do_put_xxx), which
2644     // we cannot do effectively here because we probably only have a
2645     // rough approximation of type.
2646     need_mem_bar = true;
2647     // For Stores, place a memory ordering barrier now.
2648     if (is_store)
2649       insert_mem_bar(Op_MemBarRelease);
2650   }
2651 
2652   // Memory barrier to prevent normal and 'unsafe' accesses from
2653   // bypassing each other.  Happens after null checks, so the
2654   // exception paths do not take memory state from the memory barrier,
2655   // so there's no problems making a strong assert about mixing users
2656   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2657   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2658   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2659 
2660   if (!is_store) {
2661     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2662     // load value
2663     switch (type) {
2664     case T_BOOLEAN:
2665     case T_CHAR:
2666     case T_BYTE:
2667     case T_SHORT:
2668     case T_INT:
2669     case T_LONG:
2670     case T_FLOAT:
2671     case T_DOUBLE:
2672       break;
2673     case T_OBJECT:
2674       if (need_read_barrier) {
2675         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2676       }
2677       break;
2678     case T_ADDRESS:
2679       // Cast to an int type.
2680       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2681       p = ConvX2L(p);
2682       break;
2683     default:
2684       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2685       break;
2686     }
2687     // The load node has the control of the preceding MemBarCPUOrder.  All
2688     // following nodes will have the control of the MemBarCPUOrder inserted at
2689     // the end of this method.  So, pushing the load onto the stack at a later
2690     // point is fine.
2691     set_result(p);
2692   } else {
2693     // place effect of store into memory
2694     switch (type) {
2695     case T_DOUBLE:
2696       val = dstore_rounding(val);
2697       break;
2698     case T_ADDRESS:
2699       // Repackage the long as a pointer.
2700       val = ConvL2X(val);
2701       val = _gvn.transform(new (C) CastX2PNode(val));
2702       break;
2703     }
2704 
2705     if (type != T_OBJECT ) {
2706       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2707     } else {
2708       // Possibly an oop being stored to Java heap or native memory
2709       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2710         // oop to Java heap.
2711         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2712       } else {
2713         // We can't tell at compile time if we are storing in the Java heap or outside
2714         // of it. So we need to emit code to conditionally do the proper type of
2715         // store.
2716 
2717         IdealKit ideal(this);
2718 #define __ ideal.
2719         // QQQ who knows what probability is here??
2720         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2721           // Sync IdealKit and graphKit.
2722           sync_kit(ideal);
2723           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2724           // Update IdealKit memory.
2725           __ sync_kit(this);
2726         } __ else_(); {
2727           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2728         } __ end_if();
2729         // Final sync IdealKit and GraphKit.
2730         final_sync(ideal);
2731 #undef __
2732       }
2733     }
2734   }
2735 
2736   if (is_volatile) {
2737     if (!is_store)
2738       insert_mem_bar(Op_MemBarAcquire);
2739     else
2740       insert_mem_bar(Op_MemBarVolatile);
2741   }
2742 
2743   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2744 
2745   return true;
2746 }
2747 
2748 //----------------------------inline_unsafe_prefetch----------------------------
2749 
2750 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2751 #ifndef PRODUCT
2752   {
2753     ResourceMark rm;
2754     // Check the signatures.
2755     ciSignature* sig = callee()->signature();
2756 #ifdef ASSERT
2757     // Object getObject(Object base, int/long offset), etc.
2758     BasicType rtype = sig->return_type()->basic_type();
2759     if (!is_native_ptr) {
2760       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2761       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2762       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2763     } else {
2764       assert(sig->count() == 1, "native prefetch has 1 argument");
2765       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2766     }
2767 #endif // ASSERT
2768   }
2769 #endif // !PRODUCT
2770 
2771   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2772 
2773   const int idx = is_static ? 0 : 1;
2774   if (!is_static) {
2775     null_check_receiver();
2776     if (stopped()) {
2777       return true;
2778     }
2779   }
2780 
2781   // Build address expression.  See the code in inline_unsafe_access.
2782   Node *adr;
2783   if (!is_native_ptr) {
2784     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2785     Node* base   = argument(idx + 0);  // type: oop
2786     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2787     Node* offset = argument(idx + 1);  // type: long
2788     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2789     // to be plain byte offsets, which are also the same as those accepted
2790     // by oopDesc::field_base.
2791     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2792            "fieldOffset must be byte-scaled");
2793     // 32-bit machines ignore the high half!
2794     offset = ConvL2X(offset);
2795     adr = make_unsafe_address(base, offset);
2796   } else {
2797     Node* ptr = argument(idx + 0);  // type: long
2798     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2799     adr = make_unsafe_address(NULL, ptr);
2800   }
2801 
2802   // Generate the read or write prefetch
2803   Node *prefetch;
2804   if (is_store) {
2805     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2806   } else {
2807     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2808   }
2809   prefetch->init_req(0, control());
2810   set_i_o(_gvn.transform(prefetch));
2811 
2812   return true;
2813 }
2814 
2815 //----------------------------inline_unsafe_load_store----------------------------
2816 // This method serves a couple of different customers (depending on LoadStoreKind):
2817 //
2818 // LS_cmpxchg:
2819 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2820 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2821 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2822 //
2823 // LS_xadd:
2824 //   public int  getAndAddInt( Object o, long offset, int  delta)
2825 //   public long getAndAddLong(Object o, long offset, long delta)
2826 //
2827 // LS_xchg:
2828 //   int    getAndSet(Object o, long offset, int    newValue)
2829 //   long   getAndSet(Object o, long offset, long   newValue)
2830 //   Object getAndSet(Object o, long offset, Object newValue)
2831 //
2832 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2833   // This basic scheme here is the same as inline_unsafe_access, but
2834   // differs in enough details that combining them would make the code
2835   // overly confusing.  (This is a true fact! I originally combined
2836   // them, but even I was confused by it!) As much code/comments as
2837   // possible are retained from inline_unsafe_access though to make
2838   // the correspondences clearer. - dl
2839 
2840   if (callee()->is_static())  return false;  // caller must have the capability!
2841 
2842 #ifndef PRODUCT
2843   BasicType rtype;
2844   {
2845     ResourceMark rm;
2846     // Check the signatures.
2847     ciSignature* sig = callee()->signature();
2848     rtype = sig->return_type()->basic_type();
2849     if (kind == LS_xadd || kind == LS_xchg) {
2850       // Check the signatures.
2851 #ifdef ASSERT
2852       assert(rtype == type, "get and set must return the expected type");
2853       assert(sig->count() == 3, "get and set has 3 arguments");
2854       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2855       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2856       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2857 #endif // ASSERT
2858     } else if (kind == LS_cmpxchg) {
2859       // Check the signatures.
2860 #ifdef ASSERT
2861       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2862       assert(sig->count() == 4, "CAS has 4 arguments");
2863       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2864       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2865 #endif // ASSERT
2866     } else {
2867       ShouldNotReachHere();
2868     }
2869   }
2870 #endif //PRODUCT
2871 
2872   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2873 
2874   // Get arguments:
2875   Node* receiver = NULL;
2876   Node* base     = NULL;
2877   Node* offset   = NULL;
2878   Node* oldval   = NULL;
2879   Node* newval   = NULL;
2880   if (kind == LS_cmpxchg) {
2881     const bool two_slot_type = type2size[type] == 2;
2882     receiver = argument(0);  // type: oop
2883     base     = argument(1);  // type: oop
2884     offset   = argument(2);  // type: long
2885     oldval   = argument(4);  // type: oop, int, or long
2886     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2887   } else if (kind == LS_xadd || kind == LS_xchg){
2888     receiver = argument(0);  // type: oop
2889     base     = argument(1);  // type: oop
2890     offset   = argument(2);  // type: long
2891     oldval   = NULL;
2892     newval   = argument(4);  // type: oop, int, or long
2893   }
2894 
2895   // Null check receiver.
2896   receiver = null_check(receiver);
2897   if (stopped()) {
2898     return true;
2899   }
2900 
2901   // Build field offset expression.
2902   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2903   // to be plain byte offsets, which are also the same as those accepted
2904   // by oopDesc::field_base.
2905   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2906   // 32-bit machines ignore the high half of long offsets
2907   offset = ConvL2X(offset);
2908   Node* adr = make_unsafe_address(base, offset);
2909   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2910 
2911   // For CAS, unlike inline_unsafe_access, there seems no point in
2912   // trying to refine types. Just use the coarse types here.
2913   const Type *value_type = Type::get_const_basic_type(type);
2914   Compile::AliasType* alias_type = C->alias_type(adr_type);
2915   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2916 
2917   if (kind == LS_xchg && type == T_OBJECT) {
2918     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2919     if (tjp != NULL) {
2920       value_type = tjp;
2921     }
2922   }
2923 
2924   int alias_idx = C->get_alias_index(adr_type);
2925 
2926   // Memory-model-wise, a LoadStore acts like a little synchronized
2927   // block, so needs barriers on each side.  These don't translate
2928   // into actual barriers on most machines, but we still need rest of
2929   // compiler to respect ordering.
2930 
2931   insert_mem_bar(Op_MemBarRelease);
2932   insert_mem_bar(Op_MemBarCPUOrder);
2933 
2934   // 4984716: MemBars must be inserted before this
2935   //          memory node in order to avoid a false
2936   //          dependency which will confuse the scheduler.
2937   Node *mem = memory(alias_idx);
2938 
2939   // For now, we handle only those cases that actually exist: ints,
2940   // longs, and Object. Adding others should be straightforward.
2941   Node* load_store;
2942   switch(type) {
2943   case T_INT:
2944     if (kind == LS_xadd) {
2945       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2946     } else if (kind == LS_xchg) {
2947       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2948     } else if (kind == LS_cmpxchg) {
2949       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2950     } else {
2951       ShouldNotReachHere();
2952     }
2953     break;
2954   case T_LONG:
2955     if (kind == LS_xadd) {
2956       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2957     } else if (kind == LS_xchg) {
2958       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2959     } else if (kind == LS_cmpxchg) {
2960       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2961     } else {
2962       ShouldNotReachHere();
2963     }
2964     break;
2965   case T_OBJECT:
2966     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2967     // could be delayed during Parse (for example, in adjust_map_after_if()).
2968     // Execute transformation here to avoid barrier generation in such case.
2969     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2970       newval = _gvn.makecon(TypePtr::NULL_PTR);
2971 
2972     // Reference stores need a store barrier.
2973     if (kind == LS_xchg) {
2974       // If pre-barrier must execute before the oop store, old value will require do_load here.
2975       if (!can_move_pre_barrier()) {
2976         pre_barrier(true /* do_load*/,
2977                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2978                     NULL /* pre_val*/,
2979                     T_OBJECT);
2980       } // Else move pre_barrier to use load_store value, see below.
2981     } else if (kind == LS_cmpxchg) {
2982       // Same as for newval above:
2983       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2984         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2985       }
2986       // The only known value which might get overwritten is oldval.
2987       pre_barrier(false /* do_load */,
2988                   control(), NULL, NULL, max_juint, NULL, NULL,
2989                   oldval /* pre_val */,
2990                   T_OBJECT);
2991     } else {
2992       ShouldNotReachHere();
2993     }
2994 
2995 #ifdef _LP64
2996     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2997       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2998       if (kind == LS_xchg) {
2999         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
3000                                                               newval_enc, adr_type, value_type->make_narrowoop()));
3001       } else {
3002         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3003         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3004         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
3005                                                                    newval_enc, oldval_enc));
3006       }
3007     } else
3008 #endif
3009     {
3010       if (kind == LS_xchg) {
3011         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3012       } else {
3013         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3014         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3015       }
3016     }
3017     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3018     break;
3019   default:
3020     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3021     break;
3022   }
3023 
3024   // SCMemProjNodes represent the memory state of a LoadStore. Their
3025   // main role is to prevent LoadStore nodes from being optimized away
3026   // when their results aren't used.
3027   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3028   set_memory(proj, alias_idx);
3029 
3030   if (type == T_OBJECT && kind == LS_xchg) {
3031 #ifdef _LP64
3032     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3033       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3034     }
3035 #endif
3036     if (can_move_pre_barrier()) {
3037       // Don't need to load pre_val. The old value is returned by load_store.
3038       // The pre_barrier can execute after the xchg as long as no safepoint
3039       // gets inserted between them.
3040       pre_barrier(false /* do_load */,
3041                   control(), NULL, NULL, max_juint, NULL, NULL,
3042                   load_store /* pre_val */,
3043                   T_OBJECT);
3044     }
3045   }
3046 
3047   // Add the trailing membar surrounding the access
3048   insert_mem_bar(Op_MemBarCPUOrder);
3049   insert_mem_bar(Op_MemBarAcquire);
3050 
3051   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3052   set_result(load_store);
3053   return true;
3054 }
3055 
3056 //----------------------------inline_unsafe_ordered_store----------------------
3057 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3058 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3059 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3060 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3061   // This is another variant of inline_unsafe_access, differing in
3062   // that it always issues store-store ("release") barrier and ensures
3063   // store-atomicity (which only matters for "long").
3064 
3065   if (callee()->is_static())  return false;  // caller must have the capability!
3066 
3067 #ifndef PRODUCT
3068   {
3069     ResourceMark rm;
3070     // Check the signatures.
3071     ciSignature* sig = callee()->signature();
3072 #ifdef ASSERT
3073     BasicType rtype = sig->return_type()->basic_type();
3074     assert(rtype == T_VOID, "must return void");
3075     assert(sig->count() == 3, "has 3 arguments");
3076     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3077     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3078 #endif // ASSERT
3079   }
3080 #endif //PRODUCT
3081 
3082   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3083 
3084   // Get arguments:
3085   Node* receiver = argument(0);  // type: oop
3086   Node* base     = argument(1);  // type: oop
3087   Node* offset   = argument(2);  // type: long
3088   Node* val      = argument(4);  // type: oop, int, or long
3089 
3090   // Null check receiver.
3091   receiver = null_check(receiver);
3092   if (stopped()) {
3093     return true;
3094   }
3095 
3096   // Build field offset expression.
3097   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3098   // 32-bit machines ignore the high half of long offsets
3099   offset = ConvL2X(offset);
3100   Node* adr = make_unsafe_address(base, offset);
3101   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3102   const Type *value_type = Type::get_const_basic_type(type);
3103   Compile::AliasType* alias_type = C->alias_type(adr_type);
3104 
3105   insert_mem_bar(Op_MemBarRelease);
3106   insert_mem_bar(Op_MemBarCPUOrder);
3107   // Ensure that the store is atomic for longs:
3108   const bool require_atomic_access = true;
3109   Node* store;
3110   if (type == T_OBJECT) // reference stores need a store barrier.
3111     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
3112   else {
3113     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
3114   }
3115   insert_mem_bar(Op_MemBarCPUOrder);
3116   return true;
3117 }
3118 
3119 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3120   // Regardless of form, don't allow previous ld/st to move down,
3121   // then issue acquire, release, or volatile mem_bar.
3122   insert_mem_bar(Op_MemBarCPUOrder);
3123   switch(id) {
3124     case vmIntrinsics::_loadFence:
3125       insert_mem_bar(Op_MemBarAcquire);
3126       return true;
3127     case vmIntrinsics::_storeFence:
3128       insert_mem_bar(Op_MemBarRelease);
3129       return true;
3130     case vmIntrinsics::_fullFence:
3131       insert_mem_bar(Op_MemBarVolatile);
3132       return true;
3133     default:
3134       fatal_unexpected_iid(id);
3135       return false;
3136   }
3137 }
3138 
3139 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3140   if (!kls->is_Con()) {
3141     return true;
3142   }
3143   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3144   if (klsptr == NULL) {
3145     return true;
3146   }
3147   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3148   // don't need a guard for a klass that is already initialized
3149   return !ik->is_initialized();
3150 }
3151 
3152 //----------------------------inline_unsafe_allocate---------------------------
3153 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3154 bool LibraryCallKit::inline_unsafe_allocate() {
3155   if (callee()->is_static())  return false;  // caller must have the capability!
3156 
3157   null_check_receiver();  // null-check, then ignore
3158   Node* cls = null_check(argument(1));
3159   if (stopped())  return true;
3160 
3161   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3162   kls = null_check(kls);
3163   if (stopped())  return true;  // argument was like int.class
3164 
3165   Node* test = NULL;
3166   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3167     // Note:  The argument might still be an illegal value like
3168     // Serializable.class or Object[].class.   The runtime will handle it.
3169     // But we must make an explicit check for initialization.
3170     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3171     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3172     // can generate code to load it as unsigned byte.
3173     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
3174     Node* bits = intcon(InstanceKlass::fully_initialized);
3175     test = _gvn.transform(new (C) SubINode(inst, bits));
3176     // The 'test' is non-zero if we need to take a slow path.
3177   }
3178 
3179   Node* obj = new_instance(kls, test);
3180   set_result(obj);
3181   return true;
3182 }
3183 
3184 #ifdef TRACE_HAVE_INTRINSICS
3185 /*
3186  * oop -> myklass
3187  * myklass->trace_id |= USED
3188  * return myklass->trace_id & ~0x3
3189  */
3190 bool LibraryCallKit::inline_native_classID() {
3191   null_check_receiver();  // null-check, then ignore
3192   Node* cls = null_check(argument(1), T_OBJECT);
3193   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3194   kls = null_check(kls, T_OBJECT);
3195   ByteSize offset = TRACE_ID_OFFSET;
3196   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3197   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
3198   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3199   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3200   Node* clsused = longcon(0x01l); // set the class bit
3201   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3202 
3203   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3204   store_to_memory(control(), insp, orl, T_LONG, adr_type);
3205   set_result(andl);
3206   return true;
3207 }
3208 
3209 bool LibraryCallKit::inline_native_threadID() {
3210   Node* tls_ptr = NULL;
3211   Node* cur_thr = generate_current_thread(tls_ptr);
3212   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3213   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3214   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3215 
3216   Node* threadid = NULL;
3217   size_t thread_id_size = OSThread::thread_id_size();
3218   if (thread_id_size == (size_t) BytesPerLong) {
3219     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
3220   } else if (thread_id_size == (size_t) BytesPerInt) {
3221     threadid = make_load(control(), p, TypeInt::INT, T_INT);
3222   } else {
3223     ShouldNotReachHere();
3224   }
3225   set_result(threadid);
3226   return true;
3227 }
3228 #endif
3229 
3230 //------------------------inline_native_time_funcs--------------
3231 // inline code for System.currentTimeMillis() and System.nanoTime()
3232 // these have the same type and signature
3233 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3234   const TypeFunc* tf = OptoRuntime::void_long_Type();
3235   const TypePtr* no_memory_effects = NULL;
3236   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3237   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3238 #ifdef ASSERT
3239   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3240   assert(value_top == top(), "second value must be top");
3241 #endif
3242   set_result(value);
3243   return true;
3244 }
3245 
3246 //------------------------inline_native_currentThread------------------
3247 bool LibraryCallKit::inline_native_currentThread() {
3248   Node* junk = NULL;
3249   set_result(generate_current_thread(junk));
3250   return true;
3251 }
3252 
3253 //------------------------inline_native_isInterrupted------------------
3254 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3255 bool LibraryCallKit::inline_native_isInterrupted() {
3256   // Add a fast path to t.isInterrupted(clear_int):
3257   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3258   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3259   // So, in the common case that the interrupt bit is false,
3260   // we avoid making a call into the VM.  Even if the interrupt bit
3261   // is true, if the clear_int argument is false, we avoid the VM call.
3262   // However, if the receiver is not currentThread, we must call the VM,
3263   // because there must be some locking done around the operation.
3264 
3265   // We only go to the fast case code if we pass two guards.
3266   // Paths which do not pass are accumulated in the slow_region.
3267 
3268   enum {
3269     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3270     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3271     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3272     PATH_LIMIT
3273   };
3274 
3275   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3276   // out of the function.
3277   insert_mem_bar(Op_MemBarCPUOrder);
3278 
3279   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3280   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3281 
3282   RegionNode* slow_region = new (C) RegionNode(1);
3283   record_for_igvn(slow_region);
3284 
3285   // (a) Receiving thread must be the current thread.
3286   Node* rec_thr = argument(0);
3287   Node* tls_ptr = NULL;
3288   Node* cur_thr = generate_current_thread(tls_ptr);
3289   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3290   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3291 
3292   generate_slow_guard(bol_thr, slow_region);
3293 
3294   // (b) Interrupt bit on TLS must be false.
3295   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3296   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3297   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3298 
3299   // Set the control input on the field _interrupted read to prevent it floating up.
3300   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3301   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3302   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3303 
3304   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3305 
3306   // First fast path:  if (!TLS._interrupted) return false;
3307   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3308   result_rgn->init_req(no_int_result_path, false_bit);
3309   result_val->init_req(no_int_result_path, intcon(0));
3310 
3311   // drop through to next case
3312   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3313 
3314   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3315   Node* clr_arg = argument(1);
3316   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3317   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3318   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3319 
3320   // Second fast path:  ... else if (!clear_int) return true;
3321   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3322   result_rgn->init_req(no_clear_result_path, false_arg);
3323   result_val->init_req(no_clear_result_path, intcon(1));
3324 
3325   // drop through to next case
3326   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3327 
3328   // (d) Otherwise, go to the slow path.
3329   slow_region->add_req(control());
3330   set_control( _gvn.transform(slow_region));
3331 
3332   if (stopped()) {
3333     // There is no slow path.
3334     result_rgn->init_req(slow_result_path, top());
3335     result_val->init_req(slow_result_path, top());
3336   } else {
3337     // non-virtual because it is a private non-static
3338     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3339 
3340     Node* slow_val = set_results_for_java_call(slow_call);
3341     // this->control() comes from set_results_for_java_call
3342 
3343     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3344     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3345 
3346     // These two phis are pre-filled with copies of of the fast IO and Memory
3347     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3348     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3349 
3350     result_rgn->init_req(slow_result_path, control());
3351     result_io ->init_req(slow_result_path, i_o());
3352     result_mem->init_req(slow_result_path, reset_memory());
3353     result_val->init_req(slow_result_path, slow_val);
3354 
3355     set_all_memory(_gvn.transform(result_mem));
3356     set_i_o(       _gvn.transform(result_io));
3357   }
3358 
3359   C->set_has_split_ifs(true); // Has chance for split-if optimization
3360   set_result(result_rgn, result_val);
3361   return true;
3362 }
3363 
3364 //---------------------------load_mirror_from_klass----------------------------
3365 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3366 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3367   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3368   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3369 }
3370 
3371 //-----------------------load_klass_from_mirror_common-------------------------
3372 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3373 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3374 // and branch to the given path on the region.
3375 // If never_see_null, take an uncommon trap on null, so we can optimistically
3376 // compile for the non-null case.
3377 // If the region is NULL, force never_see_null = true.
3378 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3379                                                     bool never_see_null,
3380                                                     RegionNode* region,
3381                                                     int null_path,
3382                                                     int offset) {
3383   if (region == NULL)  never_see_null = true;
3384   Node* p = basic_plus_adr(mirror, offset);
3385   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3386   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3387   Node* null_ctl = top();
3388   kls = null_check_oop(kls, &null_ctl, never_see_null);
3389   if (region != NULL) {
3390     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3391     region->init_req(null_path, null_ctl);
3392   } else {
3393     assert(null_ctl == top(), "no loose ends");
3394   }
3395   return kls;
3396 }
3397 
3398 //--------------------(inline_native_Class_query helpers)---------------------
3399 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3400 // Fall through if (mods & mask) == bits, take the guard otherwise.
3401 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3402   // Branch around if the given klass has the given modifier bit set.
3403   // Like generate_guard, adds a new path onto the region.
3404   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3405   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3406   Node* mask = intcon(modifier_mask);
3407   Node* bits = intcon(modifier_bits);
3408   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3409   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3410   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3411   return generate_fair_guard(bol, region);
3412 }
3413 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3414   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3415 }
3416 
3417 //-------------------------inline_native_Class_query-------------------
3418 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3419   const Type* return_type = TypeInt::BOOL;
3420   Node* prim_return_value = top();  // what happens if it's a primitive class?
3421   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3422   bool expect_prim = false;     // most of these guys expect to work on refs
3423 
3424   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3425 
3426   Node* mirror = argument(0);
3427   Node* obj    = top();
3428 
3429   switch (id) {
3430   case vmIntrinsics::_isInstance:
3431     // nothing is an instance of a primitive type
3432     prim_return_value = intcon(0);
3433     obj = argument(1);
3434     break;
3435   case vmIntrinsics::_getModifiers:
3436     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3437     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3438     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3439     break;
3440   case vmIntrinsics::_isInterface:
3441     prim_return_value = intcon(0);
3442     break;
3443   case vmIntrinsics::_isArray:
3444     prim_return_value = intcon(0);
3445     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3446     break;
3447   case vmIntrinsics::_isPrimitive:
3448     prim_return_value = intcon(1);
3449     expect_prim = true;  // obviously
3450     break;
3451   case vmIntrinsics::_getSuperclass:
3452     prim_return_value = null();
3453     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3454     break;
3455   case vmIntrinsics::_getComponentType:
3456     prim_return_value = null();
3457     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3458     break;
3459   case vmIntrinsics::_getClassAccessFlags:
3460     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3461     return_type = TypeInt::INT;  // not bool!  6297094
3462     break;
3463   default:
3464     fatal_unexpected_iid(id);
3465     break;
3466   }
3467 
3468   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3469   if (mirror_con == NULL)  return false;  // cannot happen?
3470 
3471 #ifndef PRODUCT
3472   if (C->print_intrinsics() || C->print_inlining()) {
3473     ciType* k = mirror_con->java_mirror_type();
3474     if (k) {
3475       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3476       k->print_name();
3477       tty->cr();
3478     }
3479   }
3480 #endif
3481 
3482   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3483   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3484   record_for_igvn(region);
3485   PhiNode* phi = new (C) PhiNode(region, return_type);
3486 
3487   // The mirror will never be null of Reflection.getClassAccessFlags, however
3488   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3489   // if it is. See bug 4774291.
3490 
3491   // For Reflection.getClassAccessFlags(), the null check occurs in
3492   // the wrong place; see inline_unsafe_access(), above, for a similar
3493   // situation.
3494   mirror = null_check(mirror);
3495   // If mirror or obj is dead, only null-path is taken.
3496   if (stopped())  return true;
3497 
3498   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3499 
3500   // Now load the mirror's klass metaobject, and null-check it.
3501   // Side-effects region with the control path if the klass is null.
3502   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3503   // If kls is null, we have a primitive mirror.
3504   phi->init_req(_prim_path, prim_return_value);
3505   if (stopped()) { set_result(region, phi); return true; }
3506 
3507   Node* p;  // handy temp
3508   Node* null_ctl;
3509 
3510   // Now that we have the non-null klass, we can perform the real query.
3511   // For constant classes, the query will constant-fold in LoadNode::Value.
3512   Node* query_value = top();
3513   switch (id) {
3514   case vmIntrinsics::_isInstance:
3515     // nothing is an instance of a primitive type
3516     query_value = gen_instanceof(obj, kls);
3517     break;
3518 
3519   case vmIntrinsics::_getModifiers:
3520     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3521     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3522     break;
3523 
3524   case vmIntrinsics::_isInterface:
3525     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3526     if (generate_interface_guard(kls, region) != NULL)
3527       // A guard was added.  If the guard is taken, it was an interface.
3528       phi->add_req(intcon(1));
3529     // If we fall through, it's a plain class.
3530     query_value = intcon(0);
3531     break;
3532 
3533   case vmIntrinsics::_isArray:
3534     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3535     if (generate_array_guard(kls, region) != NULL)
3536       // A guard was added.  If the guard is taken, it was an array.
3537       phi->add_req(intcon(1));
3538     // If we fall through, it's a plain class.
3539     query_value = intcon(0);
3540     break;
3541 
3542   case vmIntrinsics::_isPrimitive:
3543     query_value = intcon(0); // "normal" path produces false
3544     break;
3545 
3546   case vmIntrinsics::_getSuperclass:
3547     // The rules here are somewhat unfortunate, but we can still do better
3548     // with random logic than with a JNI call.
3549     // Interfaces store null or Object as _super, but must report null.
3550     // Arrays store an intermediate super as _super, but must report Object.
3551     // Other types can report the actual _super.
3552     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3553     if (generate_interface_guard(kls, region) != NULL)
3554       // A guard was added.  If the guard is taken, it was an interface.
3555       phi->add_req(null());
3556     if (generate_array_guard(kls, region) != NULL)
3557       // A guard was added.  If the guard is taken, it was an array.
3558       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3559     // If we fall through, it's a plain class.  Get its _super.
3560     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3561     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3562     null_ctl = top();
3563     kls = null_check_oop(kls, &null_ctl);
3564     if (null_ctl != top()) {
3565       // If the guard is taken, Object.superClass is null (both klass and mirror).
3566       region->add_req(null_ctl);
3567       phi   ->add_req(null());
3568     }
3569     if (!stopped()) {
3570       query_value = load_mirror_from_klass(kls);
3571     }
3572     break;
3573 
3574   case vmIntrinsics::_getComponentType:
3575     if (generate_array_guard(kls, region) != NULL) {
3576       // Be sure to pin the oop load to the guard edge just created:
3577       Node* is_array_ctrl = region->in(region->req()-1);
3578       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3579       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3580       phi->add_req(cmo);
3581     }
3582     query_value = null();  // non-array case is null
3583     break;
3584 
3585   case vmIntrinsics::_getClassAccessFlags:
3586     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3587     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3588     break;
3589 
3590   default:
3591     fatal_unexpected_iid(id);
3592     break;
3593   }
3594 
3595   // Fall-through is the normal case of a query to a real class.
3596   phi->init_req(1, query_value);
3597   region->init_req(1, control());
3598 
3599   C->set_has_split_ifs(true); // Has chance for split-if optimization
3600   set_result(region, phi);
3601   return true;
3602 }
3603 
3604 //--------------------------inline_native_subtype_check------------------------
3605 // This intrinsic takes the JNI calls out of the heart of
3606 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3607 bool LibraryCallKit::inline_native_subtype_check() {
3608   // Pull both arguments off the stack.
3609   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3610   args[0] = argument(0);
3611   args[1] = argument(1);
3612   Node* klasses[2];             // corresponding Klasses: superk, subk
3613   klasses[0] = klasses[1] = top();
3614 
3615   enum {
3616     // A full decision tree on {superc is prim, subc is prim}:
3617     _prim_0_path = 1,           // {P,N} => false
3618                                 // {P,P} & superc!=subc => false
3619     _prim_same_path,            // {P,P} & superc==subc => true
3620     _prim_1_path,               // {N,P} => false
3621     _ref_subtype_path,          // {N,N} & subtype check wins => true
3622     _both_ref_path,             // {N,N} & subtype check loses => false
3623     PATH_LIMIT
3624   };
3625 
3626   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3627   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3628   record_for_igvn(region);
3629 
3630   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3631   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3632   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3633 
3634   // First null-check both mirrors and load each mirror's klass metaobject.
3635   int which_arg;
3636   for (which_arg = 0; which_arg <= 1; which_arg++) {
3637     Node* arg = args[which_arg];
3638     arg = null_check(arg);
3639     if (stopped())  break;
3640     args[which_arg] = arg;
3641 
3642     Node* p = basic_plus_adr(arg, class_klass_offset);
3643     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3644     klasses[which_arg] = _gvn.transform(kls);
3645   }
3646 
3647   // Having loaded both klasses, test each for null.
3648   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3649   for (which_arg = 0; which_arg <= 1; which_arg++) {
3650     Node* kls = klasses[which_arg];
3651     Node* null_ctl = top();
3652     kls = null_check_oop(kls, &null_ctl, never_see_null);
3653     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3654     region->init_req(prim_path, null_ctl);
3655     if (stopped())  break;
3656     klasses[which_arg] = kls;
3657   }
3658 
3659   if (!stopped()) {
3660     // now we have two reference types, in klasses[0..1]
3661     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3662     Node* superk = klasses[0];  // the receiver
3663     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3664     // now we have a successful reference subtype check
3665     region->set_req(_ref_subtype_path, control());
3666   }
3667 
3668   // If both operands are primitive (both klasses null), then
3669   // we must return true when they are identical primitives.
3670   // It is convenient to test this after the first null klass check.
3671   set_control(region->in(_prim_0_path)); // go back to first null check
3672   if (!stopped()) {
3673     // Since superc is primitive, make a guard for the superc==subc case.
3674     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3675     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3676     generate_guard(bol_eq, region, PROB_FAIR);
3677     if (region->req() == PATH_LIMIT+1) {
3678       // A guard was added.  If the added guard is taken, superc==subc.
3679       region->swap_edges(PATH_LIMIT, _prim_same_path);
3680       region->del_req(PATH_LIMIT);
3681     }
3682     region->set_req(_prim_0_path, control()); // Not equal after all.
3683   }
3684 
3685   // these are the only paths that produce 'true':
3686   phi->set_req(_prim_same_path,   intcon(1));
3687   phi->set_req(_ref_subtype_path, intcon(1));
3688 
3689   // pull together the cases:
3690   assert(region->req() == PATH_LIMIT, "sane region");
3691   for (uint i = 1; i < region->req(); i++) {
3692     Node* ctl = region->in(i);
3693     if (ctl == NULL || ctl == top()) {
3694       region->set_req(i, top());
3695       phi   ->set_req(i, top());
3696     } else if (phi->in(i) == NULL) {
3697       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3698     }
3699   }
3700 
3701   set_control(_gvn.transform(region));
3702   set_result(_gvn.transform(phi));
3703   return true;
3704 }
3705 
3706 //---------------------generate_array_guard_common------------------------
3707 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3708                                                   bool obj_array, bool not_array) {
3709   // If obj_array/non_array==false/false:
3710   // Branch around if the given klass is in fact an array (either obj or prim).
3711   // If obj_array/non_array==false/true:
3712   // Branch around if the given klass is not an array klass of any kind.
3713   // If obj_array/non_array==true/true:
3714   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3715   // If obj_array/non_array==true/false:
3716   // Branch around if the kls is an oop array (Object[] or subtype)
3717   //
3718   // Like generate_guard, adds a new path onto the region.
3719   jint  layout_con = 0;
3720   Node* layout_val = get_layout_helper(kls, layout_con);
3721   if (layout_val == NULL) {
3722     bool query = (obj_array
3723                   ? Klass::layout_helper_is_objArray(layout_con)
3724                   : Klass::layout_helper_is_array(layout_con));
3725     if (query == not_array) {
3726       return NULL;                       // never a branch
3727     } else {                             // always a branch
3728       Node* always_branch = control();
3729       if (region != NULL)
3730         region->add_req(always_branch);
3731       set_control(top());
3732       return always_branch;
3733     }
3734   }
3735   // Now test the correct condition.
3736   jint  nval = (obj_array
3737                 ? ((jint)Klass::_lh_array_tag_type_value
3738                    <<    Klass::_lh_array_tag_shift)
3739                 : Klass::_lh_neutral_value);
3740   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3741   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3742   // invert the test if we are looking for a non-array
3743   if (not_array)  btest = BoolTest(btest).negate();
3744   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3745   return generate_fair_guard(bol, region);
3746 }
3747 
3748 
3749 //-----------------------inline_native_newArray--------------------------
3750 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3751 bool LibraryCallKit::inline_native_newArray() {
3752   Node* mirror    = argument(0);
3753   Node* count_val = argument(1);
3754 
3755   mirror = null_check(mirror);
3756   // If mirror or obj is dead, only null-path is taken.
3757   if (stopped())  return true;
3758 
3759   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3760   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3761   PhiNode*    result_val = new(C) PhiNode(result_reg,
3762                                           TypeInstPtr::NOTNULL);
3763   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3764   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3765                                           TypePtr::BOTTOM);
3766 
3767   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3768   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3769                                                   result_reg, _slow_path);
3770   Node* normal_ctl   = control();
3771   Node* no_array_ctl = result_reg->in(_slow_path);
3772 
3773   // Generate code for the slow case.  We make a call to newArray().
3774   set_control(no_array_ctl);
3775   if (!stopped()) {
3776     // Either the input type is void.class, or else the
3777     // array klass has not yet been cached.  Either the
3778     // ensuing call will throw an exception, or else it
3779     // will cache the array klass for next time.
3780     PreserveJVMState pjvms(this);
3781     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3782     Node* slow_result = set_results_for_java_call(slow_call);
3783     // this->control() comes from set_results_for_java_call
3784     result_reg->set_req(_slow_path, control());
3785     result_val->set_req(_slow_path, slow_result);
3786     result_io ->set_req(_slow_path, i_o());
3787     result_mem->set_req(_slow_path, reset_memory());
3788   }
3789 
3790   set_control(normal_ctl);
3791   if (!stopped()) {
3792     // Normal case:  The array type has been cached in the java.lang.Class.
3793     // The following call works fine even if the array type is polymorphic.
3794     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3795     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3796     result_reg->init_req(_normal_path, control());
3797     result_val->init_req(_normal_path, obj);
3798     result_io ->init_req(_normal_path, i_o());
3799     result_mem->init_req(_normal_path, reset_memory());
3800   }
3801 
3802   // Return the combined state.
3803   set_i_o(        _gvn.transform(result_io)  );
3804   set_all_memory( _gvn.transform(result_mem));
3805 
3806   C->set_has_split_ifs(true); // Has chance for split-if optimization
3807   set_result(result_reg, result_val);
3808   return true;
3809 }
3810 
3811 //----------------------inline_native_getLength--------------------------
3812 // public static native int java.lang.reflect.Array.getLength(Object array);
3813 bool LibraryCallKit::inline_native_getLength() {
3814   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3815 
3816   Node* array = null_check(argument(0));
3817   // If array is dead, only null-path is taken.
3818   if (stopped())  return true;
3819 
3820   // Deoptimize if it is a non-array.
3821   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3822 
3823   if (non_array != NULL) {
3824     PreserveJVMState pjvms(this);
3825     set_control(non_array);
3826     uncommon_trap(Deoptimization::Reason_intrinsic,
3827                   Deoptimization::Action_maybe_recompile);
3828   }
3829 
3830   // If control is dead, only non-array-path is taken.
3831   if (stopped())  return true;
3832 
3833   // The works fine even if the array type is polymorphic.
3834   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3835   Node* result = load_array_length(array);
3836 
3837   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3838   set_result(result);
3839   return true;
3840 }
3841 
3842 //------------------------inline_array_copyOf----------------------------
3843 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3844 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3845 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3846   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3847 
3848   // Get the arguments.
3849   Node* original          = argument(0);
3850   Node* start             = is_copyOfRange? argument(1): intcon(0);
3851   Node* end               = is_copyOfRange? argument(2): argument(1);
3852   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3853 
3854   Node* newcopy;
3855 
3856   // Set the original stack and the reexecute bit for the interpreter to reexecute
3857   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3858   { PreserveReexecuteState preexecs(this);
3859     jvms()->set_should_reexecute(true);
3860 
3861     array_type_mirror = null_check(array_type_mirror);
3862     original          = null_check(original);
3863 
3864     // Check if a null path was taken unconditionally.
3865     if (stopped())  return true;
3866 
3867     Node* orig_length = load_array_length(original);
3868 
3869     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3870     klass_node = null_check(klass_node);
3871 
3872     RegionNode* bailout = new (C) RegionNode(1);
3873     record_for_igvn(bailout);
3874 
3875     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3876     // Bail out if that is so.
3877     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3878     if (not_objArray != NULL) {
3879       // Improve the klass node's type from the new optimistic assumption:
3880       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3881       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3882       Node* cast = new (C) CastPPNode(klass_node, akls);
3883       cast->init_req(0, control());
3884       klass_node = _gvn.transform(cast);
3885     }
3886 
3887     // Bail out if either start or end is negative.
3888     generate_negative_guard(start, bailout, &start);
3889     generate_negative_guard(end,   bailout, &end);
3890 
3891     Node* length = end;
3892     if (_gvn.type(start) != TypeInt::ZERO) {
3893       length = _gvn.transform(new (C) SubINode(end, start));
3894     }
3895 
3896     // Bail out if length is negative.
3897     // Without this the new_array would throw
3898     // NegativeArraySizeException but IllegalArgumentException is what
3899     // should be thrown
3900     generate_negative_guard(length, bailout, &length);
3901 
3902     if (bailout->req() > 1) {
3903       PreserveJVMState pjvms(this);
3904       set_control(_gvn.transform(bailout));
3905       uncommon_trap(Deoptimization::Reason_intrinsic,
3906                     Deoptimization::Action_maybe_recompile);
3907     }
3908 
3909     if (!stopped()) {
3910       // How many elements will we copy from the original?
3911       // The answer is MinI(orig_length - start, length).
3912       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3913       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3914 
3915       newcopy = new_array(klass_node, length, 0);  // no argments to push
3916 
3917       // Generate a direct call to the right arraycopy function(s).
3918       // We know the copy is disjoint but we might not know if the
3919       // oop stores need checking.
3920       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3921       // This will fail a store-check if x contains any non-nulls.
3922       bool disjoint_bases = true;
3923       // if start > orig_length then the length of the copy may be
3924       // negative.
3925       bool length_never_negative = !is_copyOfRange;
3926       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3927                          original, start, newcopy, intcon(0), moved,
3928                          disjoint_bases, length_never_negative);
3929     }
3930   } // original reexecute is set back here
3931 
3932   C->set_has_split_ifs(true); // Has chance for split-if optimization
3933   if (!stopped()) {
3934     set_result(newcopy);
3935   }
3936   return true;
3937 }
3938 
3939 
3940 //----------------------generate_virtual_guard---------------------------
3941 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3942 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3943                                              RegionNode* slow_region) {
3944   ciMethod* method = callee();
3945   int vtable_index = method->vtable_index();
3946   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3947          err_msg_res("bad index %d", vtable_index));
3948   // Get the Method* out of the appropriate vtable entry.
3949   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3950                      vtable_index*vtableEntry::size()) * wordSize +
3951                      vtableEntry::method_offset_in_bytes();
3952   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3953   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3954 
3955   // Compare the target method with the expected method (e.g., Object.hashCode).
3956   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3957 
3958   Node* native_call = makecon(native_call_addr);
3959   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3960   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3961 
3962   return generate_slow_guard(test_native, slow_region);
3963 }
3964 
3965 //-----------------------generate_method_call----------------------------
3966 // Use generate_method_call to make a slow-call to the real
3967 // method if the fast path fails.  An alternative would be to
3968 // use a stub like OptoRuntime::slow_arraycopy_Java.
3969 // This only works for expanding the current library call,
3970 // not another intrinsic.  (E.g., don't use this for making an
3971 // arraycopy call inside of the copyOf intrinsic.)
3972 CallJavaNode*
3973 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3974   // When compiling the intrinsic method itself, do not use this technique.
3975   guarantee(callee() != C->method(), "cannot make slow-call to self");
3976 
3977   ciMethod* method = callee();
3978   // ensure the JVMS we have will be correct for this call
3979   guarantee(method_id == method->intrinsic_id(), "must match");
3980 
3981   const TypeFunc* tf = TypeFunc::make(method);
3982   CallJavaNode* slow_call;
3983   if (is_static) {
3984     assert(!is_virtual, "");
3985     slow_call = new(C) CallStaticJavaNode(C, tf,
3986                            SharedRuntime::get_resolve_static_call_stub(),
3987                            method, bci());
3988   } else if (is_virtual) {
3989     null_check_receiver();
3990     int vtable_index = Method::invalid_vtable_index;
3991     if (UseInlineCaches) {
3992       // Suppress the vtable call
3993     } else {
3994       // hashCode and clone are not a miranda methods,
3995       // so the vtable index is fixed.
3996       // No need to use the linkResolver to get it.
3997        vtable_index = method->vtable_index();
3998        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3999               err_msg_res("bad index %d", vtable_index));
4000     }
4001     slow_call = new(C) CallDynamicJavaNode(tf,
4002                           SharedRuntime::get_resolve_virtual_call_stub(),
4003                           method, vtable_index, bci());
4004   } else {  // neither virtual nor static:  opt_virtual
4005     null_check_receiver();
4006     slow_call = new(C) CallStaticJavaNode(C, tf,
4007                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4008                                 method, bci());
4009     slow_call->set_optimized_virtual(true);
4010   }
4011   set_arguments_for_java_call(slow_call);
4012   set_edges_for_java_call(slow_call);
4013   return slow_call;
4014 }
4015 
4016 
4017 //------------------------------inline_native_hashcode--------------------
4018 // Build special case code for calls to hashCode on an object.
4019 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4020   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4021   assert(!(is_virtual && is_static), "either virtual, special, or static");
4022 
4023   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4024 
4025   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4026   PhiNode*    result_val = new(C) PhiNode(result_reg,
4027                                           TypeInt::INT);
4028   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4029   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4030                                           TypePtr::BOTTOM);
4031   Node* obj = NULL;
4032   if (!is_static) {
4033     // Check for hashing null object
4034     obj = null_check_receiver();
4035     if (stopped())  return true;        // unconditionally null
4036     result_reg->init_req(_null_path, top());
4037     result_val->init_req(_null_path, top());
4038   } else {
4039     // Do a null check, and return zero if null.
4040     // System.identityHashCode(null) == 0
4041     obj = argument(0);
4042     Node* null_ctl = top();
4043     obj = null_check_oop(obj, &null_ctl);
4044     result_reg->init_req(_null_path, null_ctl);
4045     result_val->init_req(_null_path, _gvn.intcon(0));
4046   }
4047 
4048   // Unconditionally null?  Then return right away.
4049   if (stopped()) {
4050     set_control( result_reg->in(_null_path));
4051     if (!stopped())
4052       set_result(result_val->in(_null_path));
4053     return true;
4054   }
4055 
4056   // After null check, get the object's klass.
4057   Node* obj_klass = load_object_klass(obj);
4058 
4059   // This call may be virtual (invokevirtual) or bound (invokespecial).
4060   // For each case we generate slightly different code.
4061 
4062   // We only go to the fast case code if we pass a number of guards.  The
4063   // paths which do not pass are accumulated in the slow_region.
4064   RegionNode* slow_region = new (C) RegionNode(1);
4065   record_for_igvn(slow_region);
4066 
4067   // If this is a virtual call, we generate a funny guard.  We pull out
4068   // the vtable entry corresponding to hashCode() from the target object.
4069   // If the target method which we are calling happens to be the native
4070   // Object hashCode() method, we pass the guard.  We do not need this
4071   // guard for non-virtual calls -- the caller is known to be the native
4072   // Object hashCode().
4073   if (is_virtual) {
4074     generate_virtual_guard(obj_klass, slow_region);
4075   }
4076 
4077   // Get the header out of the object, use LoadMarkNode when available
4078   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4079   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
4080 
4081   // Test the header to see if it is unlocked.
4082   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4083   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4084   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4085   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4086   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4087 
4088   generate_slow_guard(test_unlocked, slow_region);
4089 
4090   // Get the hash value and check to see that it has been properly assigned.
4091   // We depend on hash_mask being at most 32 bits and avoid the use of
4092   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4093   // vm: see markOop.hpp.
4094   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4095   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4096   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4097   // This hack lets the hash bits live anywhere in the mark object now, as long
4098   // as the shift drops the relevant bits into the low 32 bits.  Note that
4099   // Java spec says that HashCode is an int so there's no point in capturing
4100   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4101   hshifted_header      = ConvX2I(hshifted_header);
4102   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4103 
4104   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4105   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4106   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4107 
4108   generate_slow_guard(test_assigned, slow_region);
4109 
4110   Node* init_mem = reset_memory();
4111   // fill in the rest of the null path:
4112   result_io ->init_req(_null_path, i_o());
4113   result_mem->init_req(_null_path, init_mem);
4114 
4115   result_val->init_req(_fast_path, hash_val);
4116   result_reg->init_req(_fast_path, control());
4117   result_io ->init_req(_fast_path, i_o());
4118   result_mem->init_req(_fast_path, init_mem);
4119 
4120   // Generate code for the slow case.  We make a call to hashCode().
4121   set_control(_gvn.transform(slow_region));
4122   if (!stopped()) {
4123     // No need for PreserveJVMState, because we're using up the present state.
4124     set_all_memory(init_mem);
4125     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4126     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4127     Node* slow_result = set_results_for_java_call(slow_call);
4128     // this->control() comes from set_results_for_java_call
4129     result_reg->init_req(_slow_path, control());
4130     result_val->init_req(_slow_path, slow_result);
4131     result_io  ->set_req(_slow_path, i_o());
4132     result_mem ->set_req(_slow_path, reset_memory());
4133   }
4134 
4135   // Return the combined state.
4136   set_i_o(        _gvn.transform(result_io)  );
4137   set_all_memory( _gvn.transform(result_mem));
4138 
4139   set_result(result_reg, result_val);
4140   return true;
4141 }
4142 
4143 //---------------------------inline_native_getClass----------------------------
4144 // public final native Class<?> java.lang.Object.getClass();
4145 //
4146 // Build special case code for calls to getClass on an object.
4147 bool LibraryCallKit::inline_native_getClass() {
4148   Node* obj = null_check_receiver();
4149   if (stopped())  return true;
4150   set_result(load_mirror_from_klass(load_object_klass(obj)));
4151   return true;
4152 }
4153 
4154 //-----------------inline_native_Reflection_getCallerClass---------------------
4155 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4156 //
4157 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4158 //
4159 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4160 // in that it must skip particular security frames and checks for
4161 // caller sensitive methods.
4162 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4163 #ifndef PRODUCT
4164   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4165     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4166   }
4167 #endif
4168 
4169   if (!jvms()->has_method()) {
4170 #ifndef PRODUCT
4171     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4172       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4173     }
4174 #endif
4175     return false;
4176   }
4177 
4178   // Walk back up the JVM state to find the caller at the required
4179   // depth.
4180   JVMState* caller_jvms = jvms();
4181 
4182   // Cf. JVM_GetCallerClass
4183   // NOTE: Start the loop at depth 1 because the current JVM state does
4184   // not include the Reflection.getCallerClass() frame.
4185   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4186     ciMethod* m = caller_jvms->method();
4187     switch (n) {
4188     case 0:
4189       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4190       break;
4191     case 1:
4192       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4193       if (!m->caller_sensitive()) {
4194 #ifndef PRODUCT
4195         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4196           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4197         }
4198 #endif
4199         return false;  // bail-out; let JVM_GetCallerClass do the work
4200       }
4201       break;
4202     default:
4203       if (!m->is_ignored_by_security_stack_walk()) {
4204         // We have reached the desired frame; return the holder class.
4205         // Acquire method holder as java.lang.Class and push as constant.
4206         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4207         ciInstance* caller_mirror = caller_klass->java_mirror();
4208         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4209 
4210 #ifndef PRODUCT
4211         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4212           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4213           tty->print_cr("  JVM state at this point:");
4214           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4215             ciMethod* m = jvms()->of_depth(i)->method();
4216             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4217           }
4218         }
4219 #endif
4220         return true;
4221       }
4222       break;
4223     }
4224   }
4225 
4226 #ifndef PRODUCT
4227   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4228     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4229     tty->print_cr("  JVM state at this point:");
4230     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4231       ciMethod* m = jvms()->of_depth(i)->method();
4232       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4233     }
4234   }
4235 #endif
4236 
4237   return false;  // bail-out; let JVM_GetCallerClass do the work
4238 }
4239 
4240 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4241   Node* arg = argument(0);
4242   Node* result;
4243 
4244   switch (id) {
4245   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4246   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4247   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4248   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4249 
4250   case vmIntrinsics::_doubleToLongBits: {
4251     // two paths (plus control) merge in a wood
4252     RegionNode *r = new (C) RegionNode(3);
4253     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4254 
4255     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4256     // Build the boolean node
4257     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4258 
4259     // Branch either way.
4260     // NaN case is less traveled, which makes all the difference.
4261     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4262     Node *opt_isnan = _gvn.transform(ifisnan);
4263     assert( opt_isnan->is_If(), "Expect an IfNode");
4264     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4265     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4266 
4267     set_control(iftrue);
4268 
4269     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4270     Node *slow_result = longcon(nan_bits); // return NaN
4271     phi->init_req(1, _gvn.transform( slow_result ));
4272     r->init_req(1, iftrue);
4273 
4274     // Else fall through
4275     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4276     set_control(iffalse);
4277 
4278     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4279     r->init_req(2, iffalse);
4280 
4281     // Post merge
4282     set_control(_gvn.transform(r));
4283     record_for_igvn(r);
4284 
4285     C->set_has_split_ifs(true); // Has chance for split-if optimization
4286     result = phi;
4287     assert(result->bottom_type()->isa_long(), "must be");
4288     break;
4289   }
4290 
4291   case vmIntrinsics::_floatToIntBits: {
4292     // two paths (plus control) merge in a wood
4293     RegionNode *r = new (C) RegionNode(3);
4294     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4295 
4296     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4297     // Build the boolean node
4298     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4299 
4300     // Branch either way.
4301     // NaN case is less traveled, which makes all the difference.
4302     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4303     Node *opt_isnan = _gvn.transform(ifisnan);
4304     assert( opt_isnan->is_If(), "Expect an IfNode");
4305     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4306     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4307 
4308     set_control(iftrue);
4309 
4310     static const jint nan_bits = 0x7fc00000;
4311     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4312     phi->init_req(1, _gvn.transform( slow_result ));
4313     r->init_req(1, iftrue);
4314 
4315     // Else fall through
4316     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4317     set_control(iffalse);
4318 
4319     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4320     r->init_req(2, iffalse);
4321 
4322     // Post merge
4323     set_control(_gvn.transform(r));
4324     record_for_igvn(r);
4325 
4326     C->set_has_split_ifs(true); // Has chance for split-if optimization
4327     result = phi;
4328     assert(result->bottom_type()->isa_int(), "must be");
4329     break;
4330   }
4331 
4332   default:
4333     fatal_unexpected_iid(id);
4334     break;
4335   }
4336   set_result(_gvn.transform(result));
4337   return true;
4338 }
4339 
4340 #ifdef _LP64
4341 #define XTOP ,top() /*additional argument*/
4342 #else  //_LP64
4343 #define XTOP        /*no additional argument*/
4344 #endif //_LP64
4345 
4346 //----------------------inline_unsafe_copyMemory-------------------------
4347 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4348 bool LibraryCallKit::inline_unsafe_copyMemory() {
4349   if (callee()->is_static())  return false;  // caller must have the capability!
4350   null_check_receiver();  // null-check receiver
4351   if (stopped())  return true;
4352 
4353   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4354 
4355   Node* src_ptr =         argument(1);   // type: oop
4356   Node* src_off = ConvL2X(argument(2));  // type: long
4357   Node* dst_ptr =         argument(4);   // type: oop
4358   Node* dst_off = ConvL2X(argument(5));  // type: long
4359   Node* size    = ConvL2X(argument(7));  // type: long
4360 
4361   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4362          "fieldOffset must be byte-scaled");
4363 
4364   Node* src = make_unsafe_address(src_ptr, src_off);
4365   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4366 
4367   // Conservatively insert a memory barrier on all memory slices.
4368   // Do not let writes of the copy source or destination float below the copy.
4369   insert_mem_bar(Op_MemBarCPUOrder);
4370 
4371   // Call it.  Note that the length argument is not scaled.
4372   make_runtime_call(RC_LEAF|RC_NO_FP,
4373                     OptoRuntime::fast_arraycopy_Type(),
4374                     StubRoutines::unsafe_arraycopy(),
4375                     "unsafe_arraycopy",
4376                     TypeRawPtr::BOTTOM,
4377                     src, dst, size XTOP);
4378 
4379   // Do not let reads of the copy destination float above the copy.
4380   insert_mem_bar(Op_MemBarCPUOrder);
4381 
4382   return true;
4383 }
4384 
4385 //------------------------clone_coping-----------------------------------
4386 // Helper function for inline_native_clone.
4387 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4388   assert(obj_size != NULL, "");
4389   Node* raw_obj = alloc_obj->in(1);
4390   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4391 
4392   AllocateNode* alloc = NULL;
4393   if (ReduceBulkZeroing) {
4394     // We will be completely responsible for initializing this object -
4395     // mark Initialize node as complete.
4396     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4397     // The object was just allocated - there should be no any stores!
4398     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4399     // Mark as complete_with_arraycopy so that on AllocateNode
4400     // expansion, we know this AllocateNode is initialized by an array
4401     // copy and a StoreStore barrier exists after the array copy.
4402     alloc->initialization()->set_complete_with_arraycopy();
4403   }
4404 
4405   // Copy the fastest available way.
4406   // TODO: generate fields copies for small objects instead.
4407   Node* src  = obj;
4408   Node* dest = alloc_obj;
4409   Node* size = _gvn.transform(obj_size);
4410 
4411   // Exclude the header but include array length to copy by 8 bytes words.
4412   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4413   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4414                             instanceOopDesc::base_offset_in_bytes();
4415   // base_off:
4416   // 8  - 32-bit VM
4417   // 12 - 64-bit VM, compressed klass
4418   // 16 - 64-bit VM, normal klass
4419   if (base_off % BytesPerLong != 0) {
4420     assert(UseCompressedClassPointers, "");
4421     if (is_array) {
4422       // Exclude length to copy by 8 bytes words.
4423       base_off += sizeof(int);
4424     } else {
4425       // Include klass to copy by 8 bytes words.
4426       base_off = instanceOopDesc::klass_offset_in_bytes();
4427     }
4428     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4429   }
4430   src  = basic_plus_adr(src,  base_off);
4431   dest = basic_plus_adr(dest, base_off);
4432 
4433   // Compute the length also, if needed:
4434   Node* countx = size;
4435   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4436   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4437 
4438   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4439   bool disjoint_bases = true;
4440   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4441                                src, NULL, dest, NULL, countx,
4442                                /*dest_uninitialized*/true);
4443 
4444   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4445   if (card_mark) {
4446     assert(!is_array, "");
4447     // Put in store barrier for any and all oops we are sticking
4448     // into this object.  (We could avoid this if we could prove
4449     // that the object type contains no oop fields at all.)
4450     Node* no_particular_value = NULL;
4451     Node* no_particular_field = NULL;
4452     int raw_adr_idx = Compile::AliasIdxRaw;
4453     post_barrier(control(),
4454                  memory(raw_adr_type),
4455                  alloc_obj,
4456                  no_particular_field,
4457                  raw_adr_idx,
4458                  no_particular_value,
4459                  T_OBJECT,
4460                  false);
4461   }
4462 
4463   // Do not let reads from the cloned object float above the arraycopy.
4464   if (alloc != NULL) {
4465     // Do not let stores that initialize this object be reordered with
4466     // a subsequent store that would make this object accessible by
4467     // other threads.
4468     // Record what AllocateNode this StoreStore protects so that
4469     // escape analysis can go from the MemBarStoreStoreNode to the
4470     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4471     // based on the escape status of the AllocateNode.
4472     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4473   } else {
4474     insert_mem_bar(Op_MemBarCPUOrder);
4475   }
4476 }
4477 
4478 //------------------------inline_native_clone----------------------------
4479 // protected native Object java.lang.Object.clone();
4480 //
4481 // Here are the simple edge cases:
4482 //  null receiver => normal trap
4483 //  virtual and clone was overridden => slow path to out-of-line clone
4484 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4485 //
4486 // The general case has two steps, allocation and copying.
4487 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4488 //
4489 // Copying also has two cases, oop arrays and everything else.
4490 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4491 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4492 //
4493 // These steps fold up nicely if and when the cloned object's klass
4494 // can be sharply typed as an object array, a type array, or an instance.
4495 //
4496 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4497   PhiNode* result_val;
4498 
4499   // Set the reexecute bit for the interpreter to reexecute
4500   // the bytecode that invokes Object.clone if deoptimization happens.
4501   { PreserveReexecuteState preexecs(this);
4502     jvms()->set_should_reexecute(true);
4503 
4504     Node* obj = null_check_receiver();
4505     if (stopped())  return true;
4506 
4507     Node* obj_klass = load_object_klass(obj);
4508     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4509     const TypeOopPtr*   toop   = ((tklass != NULL)
4510                                 ? tklass->as_instance_type()
4511                                 : TypeInstPtr::NOTNULL);
4512 
4513     // Conservatively insert a memory barrier on all memory slices.
4514     // Do not let writes into the original float below the clone.
4515     insert_mem_bar(Op_MemBarCPUOrder);
4516 
4517     // paths into result_reg:
4518     enum {
4519       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4520       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4521       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4522       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4523       PATH_LIMIT
4524     };
4525     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4526     result_val             = new(C) PhiNode(result_reg,
4527                                             TypeInstPtr::NOTNULL);
4528     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4529     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4530                                             TypePtr::BOTTOM);
4531     record_for_igvn(result_reg);
4532 
4533     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4534     int raw_adr_idx = Compile::AliasIdxRaw;
4535 
4536     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4537     if (array_ctl != NULL) {
4538       // It's an array.
4539       PreserveJVMState pjvms(this);
4540       set_control(array_ctl);
4541       Node* obj_length = load_array_length(obj);
4542       Node* obj_size  = NULL;
4543       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4544 
4545       if (!use_ReduceInitialCardMarks()) {
4546         // If it is an oop array, it requires very special treatment,
4547         // because card marking is required on each card of the array.
4548         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4549         if (is_obja != NULL) {
4550           PreserveJVMState pjvms2(this);
4551           set_control(is_obja);
4552           // Generate a direct call to the right arraycopy function(s).
4553           bool disjoint_bases = true;
4554           bool length_never_negative = true;
4555           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4556                              obj, intcon(0), alloc_obj, intcon(0),
4557                              obj_length,
4558                              disjoint_bases, length_never_negative);
4559           result_reg->init_req(_objArray_path, control());
4560           result_val->init_req(_objArray_path, alloc_obj);
4561           result_i_o ->set_req(_objArray_path, i_o());
4562           result_mem ->set_req(_objArray_path, reset_memory());
4563         }
4564       }
4565       // Otherwise, there are no card marks to worry about.
4566       // (We can dispense with card marks if we know the allocation
4567       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4568       //  causes the non-eden paths to take compensating steps to
4569       //  simulate a fresh allocation, so that no further
4570       //  card marks are required in compiled code to initialize
4571       //  the object.)
4572 
4573       if (!stopped()) {
4574         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4575 
4576         // Present the results of the copy.
4577         result_reg->init_req(_array_path, control());
4578         result_val->init_req(_array_path, alloc_obj);
4579         result_i_o ->set_req(_array_path, i_o());
4580         result_mem ->set_req(_array_path, reset_memory());
4581       }
4582     }
4583 
4584     // We only go to the instance fast case code if we pass a number of guards.
4585     // The paths which do not pass are accumulated in the slow_region.
4586     RegionNode* slow_region = new (C) RegionNode(1);
4587     record_for_igvn(slow_region);
4588     if (!stopped()) {
4589       // It's an instance (we did array above).  Make the slow-path tests.
4590       // If this is a virtual call, we generate a funny guard.  We grab
4591       // the vtable entry corresponding to clone() from the target object.
4592       // If the target method which we are calling happens to be the
4593       // Object clone() method, we pass the guard.  We do not need this
4594       // guard for non-virtual calls; the caller is known to be the native
4595       // Object clone().
4596       if (is_virtual) {
4597         generate_virtual_guard(obj_klass, slow_region);
4598       }
4599 
4600       // The object must be cloneable and must not have a finalizer.
4601       // Both of these conditions may be checked in a single test.
4602       // We could optimize the cloneable test further, but we don't care.
4603       generate_access_flags_guard(obj_klass,
4604                                   // Test both conditions:
4605                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4606                                   // Must be cloneable but not finalizer:
4607                                   JVM_ACC_IS_CLONEABLE,
4608                                   slow_region);
4609     }
4610 
4611     if (!stopped()) {
4612       // It's an instance, and it passed the slow-path tests.
4613       PreserveJVMState pjvms(this);
4614       Node* obj_size  = NULL;
4615       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4616 
4617       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4618 
4619       // Present the results of the slow call.
4620       result_reg->init_req(_instance_path, control());
4621       result_val->init_req(_instance_path, alloc_obj);
4622       result_i_o ->set_req(_instance_path, i_o());
4623       result_mem ->set_req(_instance_path, reset_memory());
4624     }
4625 
4626     // Generate code for the slow case.  We make a call to clone().
4627     set_control(_gvn.transform(slow_region));
4628     if (!stopped()) {
4629       PreserveJVMState pjvms(this);
4630       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4631       Node* slow_result = set_results_for_java_call(slow_call);
4632       // this->control() comes from set_results_for_java_call
4633       result_reg->init_req(_slow_path, control());
4634       result_val->init_req(_slow_path, slow_result);
4635       result_i_o ->set_req(_slow_path, i_o());
4636       result_mem ->set_req(_slow_path, reset_memory());
4637     }
4638 
4639     // Return the combined state.
4640     set_control(    _gvn.transform(result_reg));
4641     set_i_o(        _gvn.transform(result_i_o));
4642     set_all_memory( _gvn.transform(result_mem));
4643   } // original reexecute is set back here
4644 
4645   set_result(_gvn.transform(result_val));
4646   return true;
4647 }
4648 
4649 //------------------------------basictype2arraycopy----------------------------
4650 address LibraryCallKit::basictype2arraycopy(BasicType t,
4651                                             Node* src_offset,
4652                                             Node* dest_offset,
4653                                             bool disjoint_bases,
4654                                             const char* &name,
4655                                             bool dest_uninitialized) {
4656   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4657   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4658 
4659   bool aligned = false;
4660   bool disjoint = disjoint_bases;
4661 
4662   // if the offsets are the same, we can treat the memory regions as
4663   // disjoint, because either the memory regions are in different arrays,
4664   // or they are identical (which we can treat as disjoint.)  We can also
4665   // treat a copy with a destination index  less that the source index
4666   // as disjoint since a low->high copy will work correctly in this case.
4667   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4668       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4669     // both indices are constants
4670     int s_offs = src_offset_inttype->get_con();
4671     int d_offs = dest_offset_inttype->get_con();
4672     int element_size = type2aelembytes(t);
4673     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4674               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4675     if (s_offs >= d_offs)  disjoint = true;
4676   } else if (src_offset == dest_offset && src_offset != NULL) {
4677     // This can occur if the offsets are identical non-constants.
4678     disjoint = true;
4679   }
4680 
4681   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4682 }
4683 
4684 
4685 //------------------------------inline_arraycopy-----------------------
4686 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4687 //                                                      Object dest, int destPos,
4688 //                                                      int length);
4689 bool LibraryCallKit::inline_arraycopy() {
4690   // Get the arguments.
4691   Node* src         = argument(0);  // type: oop
4692   Node* src_offset  = argument(1);  // type: int
4693   Node* dest        = argument(2);  // type: oop
4694   Node* dest_offset = argument(3);  // type: int
4695   Node* length      = argument(4);  // type: int
4696 
4697   // Compile time checks.  If any of these checks cannot be verified at compile time,
4698   // we do not make a fast path for this call.  Instead, we let the call remain as it
4699   // is.  The checks we choose to mandate at compile time are:
4700   //
4701   // (1) src and dest are arrays.
4702   const Type* src_type  = src->Value(&_gvn);
4703   const Type* dest_type = dest->Value(&_gvn);
4704   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4705   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4706   if (top_src  == NULL || top_src->klass()  == NULL ||
4707       top_dest == NULL || top_dest->klass() == NULL) {
4708     // Conservatively insert a memory barrier on all memory slices.
4709     // Do not let writes into the source float below the arraycopy.
4710     insert_mem_bar(Op_MemBarCPUOrder);
4711 
4712     // Call StubRoutines::generic_arraycopy stub.
4713     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4714                        src, src_offset, dest, dest_offset, length);
4715 
4716     // Do not let reads from the destination float above the arraycopy.
4717     // Since we cannot type the arrays, we don't know which slices
4718     // might be affected.  We could restrict this barrier only to those
4719     // memory slices which pertain to array elements--but don't bother.
4720     if (!InsertMemBarAfterArraycopy)
4721       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4722       insert_mem_bar(Op_MemBarCPUOrder);
4723     return true;
4724   }
4725 
4726   // (2) src and dest arrays must have elements of the same BasicType
4727   // Figure out the size and type of the elements we will be copying.
4728   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4729   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4730   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4731   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4732 
4733   if (src_elem != dest_elem || dest_elem == T_VOID) {
4734     // The component types are not the same or are not recognized.  Punt.
4735     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4736     generate_slow_arraycopy(TypePtr::BOTTOM,
4737                             src, src_offset, dest, dest_offset, length,
4738                             /*dest_uninitialized*/false);
4739     return true;
4740   }
4741 
4742   //---------------------------------------------------------------------------
4743   // We will make a fast path for this call to arraycopy.
4744 
4745   // We have the following tests left to perform:
4746   //
4747   // (3) src and dest must not be null.
4748   // (4) src_offset must not be negative.
4749   // (5) dest_offset must not be negative.
4750   // (6) length must not be negative.
4751   // (7) src_offset + length must not exceed length of src.
4752   // (8) dest_offset + length must not exceed length of dest.
4753   // (9) each element of an oop array must be assignable
4754 
4755   RegionNode* slow_region = new (C) RegionNode(1);
4756   record_for_igvn(slow_region);
4757 
4758   // (3) operands must not be null
4759   // We currently perform our null checks with the null_check routine.
4760   // This means that the null exceptions will be reported in the caller
4761   // rather than (correctly) reported inside of the native arraycopy call.
4762   // This should be corrected, given time.  We do our null check with the
4763   // stack pointer restored.
4764   src  = null_check(src,  T_ARRAY);
4765   dest = null_check(dest, T_ARRAY);
4766 
4767   // (4) src_offset must not be negative.
4768   generate_negative_guard(src_offset, slow_region);
4769 
4770   // (5) dest_offset must not be negative.
4771   generate_negative_guard(dest_offset, slow_region);
4772 
4773   // (6) length must not be negative (moved to generate_arraycopy()).
4774   // generate_negative_guard(length, slow_region);
4775 
4776   // (7) src_offset + length must not exceed length of src.
4777   generate_limit_guard(src_offset, length,
4778                        load_array_length(src),
4779                        slow_region);
4780 
4781   // (8) dest_offset + length must not exceed length of dest.
4782   generate_limit_guard(dest_offset, length,
4783                        load_array_length(dest),
4784                        slow_region);
4785 
4786   // (9) each element of an oop array must be assignable
4787   // The generate_arraycopy subroutine checks this.
4788 
4789   // This is where the memory effects are placed:
4790   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4791   generate_arraycopy(adr_type, dest_elem,
4792                      src, src_offset, dest, dest_offset, length,
4793                      false, false, slow_region);
4794 
4795   return true;
4796 }
4797 
4798 //-----------------------------generate_arraycopy----------------------
4799 // Generate an optimized call to arraycopy.
4800 // Caller must guard against non-arrays.
4801 // Caller must determine a common array basic-type for both arrays.
4802 // Caller must validate offsets against array bounds.
4803 // The slow_region has already collected guard failure paths
4804 // (such as out of bounds length or non-conformable array types).
4805 // The generated code has this shape, in general:
4806 //
4807 //     if (length == 0)  return   // via zero_path
4808 //     slowval = -1
4809 //     if (types unknown) {
4810 //       slowval = call generic copy loop
4811 //       if (slowval == 0)  return  // via checked_path
4812 //     } else if (indexes in bounds) {
4813 //       if ((is object array) && !(array type check)) {
4814 //         slowval = call checked copy loop
4815 //         if (slowval == 0)  return  // via checked_path
4816 //       } else {
4817 //         call bulk copy loop
4818 //         return  // via fast_path
4819 //       }
4820 //     }
4821 //     // adjust params for remaining work:
4822 //     if (slowval != -1) {
4823 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4824 //     }
4825 //   slow_region:
4826 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4827 //     return  // via slow_call_path
4828 //
4829 // This routine is used from several intrinsics:  System.arraycopy,
4830 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4831 //
4832 void
4833 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4834                                    BasicType basic_elem_type,
4835                                    Node* src,  Node* src_offset,
4836                                    Node* dest, Node* dest_offset,
4837                                    Node* copy_length,
4838                                    bool disjoint_bases,
4839                                    bool length_never_negative,
4840                                    RegionNode* slow_region) {
4841 
4842   if (slow_region == NULL) {
4843     slow_region = new(C) RegionNode(1);
4844     record_for_igvn(slow_region);
4845   }
4846 
4847   Node* original_dest      = dest;
4848   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4849   bool  dest_uninitialized = false;
4850 
4851   // See if this is the initialization of a newly-allocated array.
4852   // If so, we will take responsibility here for initializing it to zero.
4853   // (Note:  Because tightly_coupled_allocation performs checks on the
4854   // out-edges of the dest, we need to avoid making derived pointers
4855   // from it until we have checked its uses.)
4856   if (ReduceBulkZeroing
4857       && !ZeroTLAB              // pointless if already zeroed
4858       && basic_elem_type != T_CONFLICT // avoid corner case
4859       && !src->eqv_uncast(dest)
4860       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4861           != NULL)
4862       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4863       && alloc->maybe_set_complete(&_gvn)) {
4864     // "You break it, you buy it."
4865     InitializeNode* init = alloc->initialization();
4866     assert(init->is_complete(), "we just did this");
4867     init->set_complete_with_arraycopy();
4868     assert(dest->is_CheckCastPP(), "sanity");
4869     assert(dest->in(0)->in(0) == init, "dest pinned");
4870     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4871     // From this point on, every exit path is responsible for
4872     // initializing any non-copied parts of the object to zero.
4873     // Also, if this flag is set we make sure that arraycopy interacts properly
4874     // with G1, eliding pre-barriers. See CR 6627983.
4875     dest_uninitialized = true;
4876   } else {
4877     // No zeroing elimination here.
4878     alloc             = NULL;
4879     //original_dest   = dest;
4880     //dest_uninitialized = false;
4881   }
4882 
4883   // Results are placed here:
4884   enum { fast_path        = 1,  // normal void-returning assembly stub
4885          checked_path     = 2,  // special assembly stub with cleanup
4886          slow_call_path   = 3,  // something went wrong; call the VM
4887          zero_path        = 4,  // bypass when length of copy is zero
4888          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4889          PATH_LIMIT       = 6
4890   };
4891   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4892   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4893   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4894   record_for_igvn(result_region);
4895   _gvn.set_type_bottom(result_i_o);
4896   _gvn.set_type_bottom(result_memory);
4897   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4898 
4899   // The slow_control path:
4900   Node* slow_control;
4901   Node* slow_i_o = i_o();
4902   Node* slow_mem = memory(adr_type);
4903   debug_only(slow_control = (Node*) badAddress);
4904 
4905   // Checked control path:
4906   Node* checked_control = top();
4907   Node* checked_mem     = NULL;
4908   Node* checked_i_o     = NULL;
4909   Node* checked_value   = NULL;
4910 
4911   if (basic_elem_type == T_CONFLICT) {
4912     assert(!dest_uninitialized, "");
4913     Node* cv = generate_generic_arraycopy(adr_type,
4914                                           src, src_offset, dest, dest_offset,
4915                                           copy_length, dest_uninitialized);
4916     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4917     checked_control = control();
4918     checked_i_o     = i_o();
4919     checked_mem     = memory(adr_type);
4920     checked_value   = cv;
4921     set_control(top());         // no fast path
4922   }
4923 
4924   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4925   if (not_pos != NULL) {
4926     PreserveJVMState pjvms(this);
4927     set_control(not_pos);
4928 
4929     // (6) length must not be negative.
4930     if (!length_never_negative) {
4931       generate_negative_guard(copy_length, slow_region);
4932     }
4933 
4934     // copy_length is 0.
4935     if (!stopped() && dest_uninitialized) {
4936       Node* dest_length = alloc->in(AllocateNode::ALength);
4937       if (copy_length->eqv_uncast(dest_length)
4938           || _gvn.find_int_con(dest_length, 1) <= 0) {
4939         // There is no zeroing to do. No need for a secondary raw memory barrier.
4940       } else {
4941         // Clear the whole thing since there are no source elements to copy.
4942         generate_clear_array(adr_type, dest, basic_elem_type,
4943                              intcon(0), NULL,
4944                              alloc->in(AllocateNode::AllocSize));
4945         // Use a secondary InitializeNode as raw memory barrier.
4946         // Currently it is needed only on this path since other
4947         // paths have stub or runtime calls as raw memory barriers.
4948         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4949                                                        Compile::AliasIdxRaw,
4950                                                        top())->as_Initialize();
4951         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4952       }
4953     }
4954 
4955     // Present the results of the fast call.
4956     result_region->init_req(zero_path, control());
4957     result_i_o   ->init_req(zero_path, i_o());
4958     result_memory->init_req(zero_path, memory(adr_type));
4959   }
4960 
4961   if (!stopped() && dest_uninitialized) {
4962     // We have to initialize the *uncopied* part of the array to zero.
4963     // The copy destination is the slice dest[off..off+len].  The other slices
4964     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4965     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4966     Node* dest_length = alloc->in(AllocateNode::ALength);
4967     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4968                                                           copy_length));
4969 
4970     // If there is a head section that needs zeroing, do it now.
4971     if (find_int_con(dest_offset, -1) != 0) {
4972       generate_clear_array(adr_type, dest, basic_elem_type,
4973                            intcon(0), dest_offset,
4974                            NULL);
4975     }
4976 
4977     // Next, perform a dynamic check on the tail length.
4978     // It is often zero, and we can win big if we prove this.
4979     // There are two wins:  Avoid generating the ClearArray
4980     // with its attendant messy index arithmetic, and upgrade
4981     // the copy to a more hardware-friendly word size of 64 bits.
4982     Node* tail_ctl = NULL;
4983     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4984       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
4985       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
4986       tail_ctl = generate_slow_guard(bol_lt, NULL);
4987       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4988     }
4989 
4990     // At this point, let's assume there is no tail.
4991     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4992       // There is no tail.  Try an upgrade to a 64-bit copy.
4993       bool didit = false;
4994       { PreserveJVMState pjvms(this);
4995         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4996                                          src, src_offset, dest, dest_offset,
4997                                          dest_size, dest_uninitialized);
4998         if (didit) {
4999           // Present the results of the block-copying fast call.
5000           result_region->init_req(bcopy_path, control());
5001           result_i_o   ->init_req(bcopy_path, i_o());
5002           result_memory->init_req(bcopy_path, memory(adr_type));
5003         }
5004       }
5005       if (didit)
5006         set_control(top());     // no regular fast path
5007     }
5008 
5009     // Clear the tail, if any.
5010     if (tail_ctl != NULL) {
5011       Node* notail_ctl = stopped() ? NULL : control();
5012       set_control(tail_ctl);
5013       if (notail_ctl == NULL) {
5014         generate_clear_array(adr_type, dest, basic_elem_type,
5015                              dest_tail, NULL,
5016                              dest_size);
5017       } else {
5018         // Make a local merge.
5019         Node* done_ctl = new(C) RegionNode(3);
5020         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5021         done_ctl->init_req(1, notail_ctl);
5022         done_mem->init_req(1, memory(adr_type));
5023         generate_clear_array(adr_type, dest, basic_elem_type,
5024                              dest_tail, NULL,
5025                              dest_size);
5026         done_ctl->init_req(2, control());
5027         done_mem->init_req(2, memory(adr_type));
5028         set_control( _gvn.transform(done_ctl));
5029         set_memory(  _gvn.transform(done_mem), adr_type );
5030       }
5031     }
5032   }
5033 
5034   BasicType copy_type = basic_elem_type;
5035   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5036   if (!stopped() && copy_type == T_OBJECT) {
5037     // If src and dest have compatible element types, we can copy bits.
5038     // Types S[] and D[] are compatible if D is a supertype of S.
5039     //
5040     // If they are not, we will use checked_oop_disjoint_arraycopy,
5041     // which performs a fast optimistic per-oop check, and backs off
5042     // further to JVM_ArrayCopy on the first per-oop check that fails.
5043     // (Actually, we don't move raw bits only; the GC requires card marks.)
5044 
5045     // Get the Klass* for both src and dest
5046     Node* src_klass  = load_object_klass(src);
5047     Node* dest_klass = load_object_klass(dest);
5048 
5049     // Generate the subtype check.
5050     // This might fold up statically, or then again it might not.
5051     //
5052     // Non-static example:  Copying List<String>.elements to a new String[].
5053     // The backing store for a List<String> is always an Object[],
5054     // but its elements are always type String, if the generic types
5055     // are correct at the source level.
5056     //
5057     // Test S[] against D[], not S against D, because (probably)
5058     // the secondary supertype cache is less busy for S[] than S.
5059     // This usually only matters when D is an interface.
5060     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5061     // Plug failing path into checked_oop_disjoint_arraycopy
5062     if (not_subtype_ctrl != top()) {
5063       PreserveJVMState pjvms(this);
5064       set_control(not_subtype_ctrl);
5065       // (At this point we can assume disjoint_bases, since types differ.)
5066       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5067       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5068       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5069       Node* dest_elem_klass = _gvn.transform(n1);
5070       Node* cv = generate_checkcast_arraycopy(adr_type,
5071                                               dest_elem_klass,
5072                                               src, src_offset, dest, dest_offset,
5073                                               ConvI2X(copy_length), dest_uninitialized);
5074       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5075       checked_control = control();
5076       checked_i_o     = i_o();
5077       checked_mem     = memory(adr_type);
5078       checked_value   = cv;
5079     }
5080     // At this point we know we do not need type checks on oop stores.
5081 
5082     // Let's see if we need card marks:
5083     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5084       // If we do not need card marks, copy using the jint or jlong stub.
5085       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5086       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5087              "sizes agree");
5088     }
5089   }
5090 
5091   if (!stopped()) {
5092     // Generate the fast path, if possible.
5093     PreserveJVMState pjvms(this);
5094     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5095                                  src, src_offset, dest, dest_offset,
5096                                  ConvI2X(copy_length), dest_uninitialized);
5097 
5098     // Present the results of the fast call.
5099     result_region->init_req(fast_path, control());
5100     result_i_o   ->init_req(fast_path, i_o());
5101     result_memory->init_req(fast_path, memory(adr_type));
5102   }
5103 
5104   // Here are all the slow paths up to this point, in one bundle:
5105   slow_control = top();
5106   if (slow_region != NULL)
5107     slow_control = _gvn.transform(slow_region);
5108   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5109 
5110   set_control(checked_control);
5111   if (!stopped()) {
5112     // Clean up after the checked call.
5113     // The returned value is either 0 or -1^K,
5114     // where K = number of partially transferred array elements.
5115     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5116     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5117     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5118 
5119     // If it is 0, we are done, so transfer to the end.
5120     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5121     result_region->init_req(checked_path, checks_done);
5122     result_i_o   ->init_req(checked_path, checked_i_o);
5123     result_memory->init_req(checked_path, checked_mem);
5124 
5125     // If it is not zero, merge into the slow call.
5126     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5127     RegionNode* slow_reg2 = new(C) RegionNode(3);
5128     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5129     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5130     record_for_igvn(slow_reg2);
5131     slow_reg2  ->init_req(1, slow_control);
5132     slow_i_o2  ->init_req(1, slow_i_o);
5133     slow_mem2  ->init_req(1, slow_mem);
5134     slow_reg2  ->init_req(2, control());
5135     slow_i_o2  ->init_req(2, checked_i_o);
5136     slow_mem2  ->init_req(2, checked_mem);
5137 
5138     slow_control = _gvn.transform(slow_reg2);
5139     slow_i_o     = _gvn.transform(slow_i_o2);
5140     slow_mem     = _gvn.transform(slow_mem2);
5141 
5142     if (alloc != NULL) {
5143       // We'll restart from the very beginning, after zeroing the whole thing.
5144       // This can cause double writes, but that's OK since dest is brand new.
5145       // So we ignore the low 31 bits of the value returned from the stub.
5146     } else {
5147       // We must continue the copy exactly where it failed, or else
5148       // another thread might see the wrong number of writes to dest.
5149       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5150       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5151       slow_offset->init_req(1, intcon(0));
5152       slow_offset->init_req(2, checked_offset);
5153       slow_offset  = _gvn.transform(slow_offset);
5154 
5155       // Adjust the arguments by the conditionally incoming offset.
5156       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5157       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5158       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5159 
5160       // Tweak the node variables to adjust the code produced below:
5161       src_offset  = src_off_plus;
5162       dest_offset = dest_off_plus;
5163       copy_length = length_minus;
5164     }
5165   }
5166 
5167   set_control(slow_control);
5168   if (!stopped()) {
5169     // Generate the slow path, if needed.
5170     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5171 
5172     set_memory(slow_mem, adr_type);
5173     set_i_o(slow_i_o);
5174 
5175     if (dest_uninitialized) {
5176       generate_clear_array(adr_type, dest, basic_elem_type,
5177                            intcon(0), NULL,
5178                            alloc->in(AllocateNode::AllocSize));
5179     }
5180 
5181     generate_slow_arraycopy(adr_type,
5182                             src, src_offset, dest, dest_offset,
5183                             copy_length, /*dest_uninitialized*/false);
5184 
5185     result_region->init_req(slow_call_path, control());
5186     result_i_o   ->init_req(slow_call_path, i_o());
5187     result_memory->init_req(slow_call_path, memory(adr_type));
5188   }
5189 
5190   // Remove unused edges.
5191   for (uint i = 1; i < result_region->req(); i++) {
5192     if (result_region->in(i) == NULL)
5193       result_region->init_req(i, top());
5194   }
5195 
5196   // Finished; return the combined state.
5197   set_control( _gvn.transform(result_region));
5198   set_i_o(     _gvn.transform(result_i_o)    );
5199   set_memory(  _gvn.transform(result_memory), adr_type );
5200 
5201   // The memory edges above are precise in order to model effects around
5202   // array copies accurately to allow value numbering of field loads around
5203   // arraycopy.  Such field loads, both before and after, are common in Java
5204   // collections and similar classes involving header/array data structures.
5205   //
5206   // But with low number of register or when some registers are used or killed
5207   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5208   // The next memory barrier is added to avoid it. If the arraycopy can be
5209   // optimized away (which it can, sometimes) then we can manually remove
5210   // the membar also.
5211   //
5212   // Do not let reads from the cloned object float above the arraycopy.
5213   if (alloc != NULL) {
5214     // Do not let stores that initialize this object be reordered with
5215     // a subsequent store that would make this object accessible by
5216     // other threads.
5217     // Record what AllocateNode this StoreStore protects so that
5218     // escape analysis can go from the MemBarStoreStoreNode to the
5219     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5220     // based on the escape status of the AllocateNode.
5221     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5222   } else if (InsertMemBarAfterArraycopy)
5223     insert_mem_bar(Op_MemBarCPUOrder);
5224 }
5225 
5226 
5227 // Helper function which determines if an arraycopy immediately follows
5228 // an allocation, with no intervening tests or other escapes for the object.
5229 AllocateArrayNode*
5230 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5231                                            RegionNode* slow_region) {
5232   if (stopped())             return NULL;  // no fast path
5233   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5234 
5235   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5236   if (alloc == NULL)  return NULL;
5237 
5238   Node* rawmem = memory(Compile::AliasIdxRaw);
5239   // Is the allocation's memory state untouched?
5240   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5241     // Bail out if there have been raw-memory effects since the allocation.
5242     // (Example:  There might have been a call or safepoint.)
5243     return NULL;
5244   }
5245   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5246   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5247     return NULL;
5248   }
5249 
5250   // There must be no unexpected observers of this allocation.
5251   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5252     Node* obs = ptr->fast_out(i);
5253     if (obs != this->map()) {
5254       return NULL;
5255     }
5256   }
5257 
5258   // This arraycopy must unconditionally follow the allocation of the ptr.
5259   Node* alloc_ctl = ptr->in(0);
5260   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5261 
5262   Node* ctl = control();
5263   while (ctl != alloc_ctl) {
5264     // There may be guards which feed into the slow_region.
5265     // Any other control flow means that we might not get a chance
5266     // to finish initializing the allocated object.
5267     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5268       IfNode* iff = ctl->in(0)->as_If();
5269       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5270       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5271       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5272         ctl = iff->in(0);       // This test feeds the known slow_region.
5273         continue;
5274       }
5275       // One more try:  Various low-level checks bottom out in
5276       // uncommon traps.  If the debug-info of the trap omits
5277       // any reference to the allocation, as we've already
5278       // observed, then there can be no objection to the trap.
5279       bool found_trap = false;
5280       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5281         Node* obs = not_ctl->fast_out(j);
5282         if (obs->in(0) == not_ctl && obs->is_Call() &&
5283             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5284           found_trap = true; break;
5285         }
5286       }
5287       if (found_trap) {
5288         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5289         continue;
5290       }
5291     }
5292     return NULL;
5293   }
5294 
5295   // If we get this far, we have an allocation which immediately
5296   // precedes the arraycopy, and we can take over zeroing the new object.
5297   // The arraycopy will finish the initialization, and provide
5298   // a new control state to which we will anchor the destination pointer.
5299 
5300   return alloc;
5301 }
5302 
5303 // Helper for initialization of arrays, creating a ClearArray.
5304 // It writes zero bits in [start..end), within the body of an array object.
5305 // The memory effects are all chained onto the 'adr_type' alias category.
5306 //
5307 // Since the object is otherwise uninitialized, we are free
5308 // to put a little "slop" around the edges of the cleared area,
5309 // as long as it does not go back into the array's header,
5310 // or beyond the array end within the heap.
5311 //
5312 // The lower edge can be rounded down to the nearest jint and the
5313 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5314 //
5315 // Arguments:
5316 //   adr_type           memory slice where writes are generated
5317 //   dest               oop of the destination array
5318 //   basic_elem_type    element type of the destination
5319 //   slice_idx          array index of first element to store
5320 //   slice_len          number of elements to store (or NULL)
5321 //   dest_size          total size in bytes of the array object
5322 //
5323 // Exactly one of slice_len or dest_size must be non-NULL.
5324 // If dest_size is non-NULL, zeroing extends to the end of the object.
5325 // If slice_len is non-NULL, the slice_idx value must be a constant.
5326 void
5327 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5328                                      Node* dest,
5329                                      BasicType basic_elem_type,
5330                                      Node* slice_idx,
5331                                      Node* slice_len,
5332                                      Node* dest_size) {
5333   // one or the other but not both of slice_len and dest_size:
5334   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5335   if (slice_len == NULL)  slice_len = top();
5336   if (dest_size == NULL)  dest_size = top();
5337 
5338   // operate on this memory slice:
5339   Node* mem = memory(adr_type); // memory slice to operate on
5340 
5341   // scaling and rounding of indexes:
5342   int scale = exact_log2(type2aelembytes(basic_elem_type));
5343   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5344   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5345   int bump_bit  = (-1 << scale) & BytesPerInt;
5346 
5347   // determine constant starts and ends
5348   const intptr_t BIG_NEG = -128;
5349   assert(BIG_NEG + 2*abase < 0, "neg enough");
5350   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5351   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5352   if (slice_len_con == 0) {
5353     return;                     // nothing to do here
5354   }
5355   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5356   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5357   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5358     assert(end_con < 0, "not two cons");
5359     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5360                        BytesPerLong);
5361   }
5362 
5363   if (start_con >= 0 && end_con >= 0) {
5364     // Constant start and end.  Simple.
5365     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5366                                        start_con, end_con, &_gvn);
5367   } else if (start_con >= 0 && dest_size != top()) {
5368     // Constant start, pre-rounded end after the tail of the array.
5369     Node* end = dest_size;
5370     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5371                                        start_con, end, &_gvn);
5372   } else if (start_con >= 0 && slice_len != top()) {
5373     // Constant start, non-constant end.  End needs rounding up.
5374     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5375     intptr_t end_base  = abase + (slice_idx_con << scale);
5376     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5377     Node*    end       = ConvI2X(slice_len);
5378     if (scale != 0)
5379       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5380     end_base += end_round;
5381     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5382     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5383     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5384                                        start_con, end, &_gvn);
5385   } else if (start_con < 0 && dest_size != top()) {
5386     // Non-constant start, pre-rounded end after the tail of the array.
5387     // This is almost certainly a "round-to-end" operation.
5388     Node* start = slice_idx;
5389     start = ConvI2X(start);
5390     if (scale != 0)
5391       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5392     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5393     if ((bump_bit | clear_low) != 0) {
5394       int to_clear = (bump_bit | clear_low);
5395       // Align up mod 8, then store a jint zero unconditionally
5396       // just before the mod-8 boundary.
5397       if (((abase + bump_bit) & ~to_clear) - bump_bit
5398           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5399         bump_bit = 0;
5400         assert((abase & to_clear) == 0, "array base must be long-aligned");
5401       } else {
5402         // Bump 'start' up to (or past) the next jint boundary:
5403         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5404         assert((abase & clear_low) == 0, "array base must be int-aligned");
5405       }
5406       // Round bumped 'start' down to jlong boundary in body of array.
5407       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5408       if (bump_bit != 0) {
5409         // Store a zero to the immediately preceding jint:
5410         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5411         Node* p1 = basic_plus_adr(dest, x1);
5412         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5413         mem = _gvn.transform(mem);
5414       }
5415     }
5416     Node* end = dest_size; // pre-rounded
5417     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5418                                        start, end, &_gvn);
5419   } else {
5420     // Non-constant start, unrounded non-constant end.
5421     // (Nobody zeroes a random midsection of an array using this routine.)
5422     ShouldNotReachHere();       // fix caller
5423   }
5424 
5425   // Done.
5426   set_memory(mem, adr_type);
5427 }
5428 
5429 
5430 bool
5431 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5432                                          BasicType basic_elem_type,
5433                                          AllocateNode* alloc,
5434                                          Node* src,  Node* src_offset,
5435                                          Node* dest, Node* dest_offset,
5436                                          Node* dest_size, bool dest_uninitialized) {
5437   // See if there is an advantage from block transfer.
5438   int scale = exact_log2(type2aelembytes(basic_elem_type));
5439   if (scale >= LogBytesPerLong)
5440     return false;               // it is already a block transfer
5441 
5442   // Look at the alignment of the starting offsets.
5443   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5444 
5445   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5446   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5447   if (src_off_con < 0 || dest_off_con < 0)
5448     // At present, we can only understand constants.
5449     return false;
5450 
5451   intptr_t src_off  = abase + (src_off_con  << scale);
5452   intptr_t dest_off = abase + (dest_off_con << scale);
5453 
5454   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5455     // Non-aligned; too bad.
5456     // One more chance:  Pick off an initial 32-bit word.
5457     // This is a common case, since abase can be odd mod 8.
5458     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5459         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5460       Node* sptr = basic_plus_adr(src,  src_off);
5461       Node* dptr = basic_plus_adr(dest, dest_off);
5462       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5463       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5464       src_off += BytesPerInt;
5465       dest_off += BytesPerInt;
5466     } else {
5467       return false;
5468     }
5469   }
5470   assert(src_off % BytesPerLong == 0, "");
5471   assert(dest_off % BytesPerLong == 0, "");
5472 
5473   // Do this copy by giant steps.
5474   Node* sptr  = basic_plus_adr(src,  src_off);
5475   Node* dptr  = basic_plus_adr(dest, dest_off);
5476   Node* countx = dest_size;
5477   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5478   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5479 
5480   bool disjoint_bases = true;   // since alloc != NULL
5481   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5482                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5483 
5484   return true;
5485 }
5486 
5487 
5488 // Helper function; generates code for the slow case.
5489 // We make a call to a runtime method which emulates the native method,
5490 // but without the native wrapper overhead.
5491 void
5492 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5493                                         Node* src,  Node* src_offset,
5494                                         Node* dest, Node* dest_offset,
5495                                         Node* copy_length, bool dest_uninitialized) {
5496   assert(!dest_uninitialized, "Invariant");
5497   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5498                                  OptoRuntime::slow_arraycopy_Type(),
5499                                  OptoRuntime::slow_arraycopy_Java(),
5500                                  "slow_arraycopy", adr_type,
5501                                  src, src_offset, dest, dest_offset,
5502                                  copy_length);
5503 
5504   // Handle exceptions thrown by this fellow:
5505   make_slow_call_ex(call, env()->Throwable_klass(), false);
5506 }
5507 
5508 // Helper function; generates code for cases requiring runtime checks.
5509 Node*
5510 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5511                                              Node* dest_elem_klass,
5512                                              Node* src,  Node* src_offset,
5513                                              Node* dest, Node* dest_offset,
5514                                              Node* copy_length, bool dest_uninitialized) {
5515   if (stopped())  return NULL;
5516 
5517   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5518   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5519     return NULL;
5520   }
5521 
5522   // Pick out the parameters required to perform a store-check
5523   // for the target array.  This is an optimistic check.  It will
5524   // look in each non-null element's class, at the desired klass's
5525   // super_check_offset, for the desired klass.
5526   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5527   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5528   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5529   Node* check_offset = ConvI2X(_gvn.transform(n3));
5530   Node* check_value  = dest_elem_klass;
5531 
5532   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5533   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5534 
5535   // (We know the arrays are never conjoint, because their types differ.)
5536   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5537                                  OptoRuntime::checkcast_arraycopy_Type(),
5538                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5539                                  // five arguments, of which two are
5540                                  // intptr_t (jlong in LP64)
5541                                  src_start, dest_start,
5542                                  copy_length XTOP,
5543                                  check_offset XTOP,
5544                                  check_value);
5545 
5546   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5547 }
5548 
5549 
5550 // Helper function; generates code for cases requiring runtime checks.
5551 Node*
5552 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5553                                            Node* src,  Node* src_offset,
5554                                            Node* dest, Node* dest_offset,
5555                                            Node* copy_length, bool dest_uninitialized) {
5556   assert(!dest_uninitialized, "Invariant");
5557   if (stopped())  return NULL;
5558   address copyfunc_addr = StubRoutines::generic_arraycopy();
5559   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5560     return NULL;
5561   }
5562 
5563   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5564                     OptoRuntime::generic_arraycopy_Type(),
5565                     copyfunc_addr, "generic_arraycopy", adr_type,
5566                     src, src_offset, dest, dest_offset, copy_length);
5567 
5568   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5569 }
5570 
5571 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5572 void
5573 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5574                                              BasicType basic_elem_type,
5575                                              bool disjoint_bases,
5576                                              Node* src,  Node* src_offset,
5577                                              Node* dest, Node* dest_offset,
5578                                              Node* copy_length, bool dest_uninitialized) {
5579   if (stopped())  return;               // nothing to do
5580 
5581   Node* src_start  = src;
5582   Node* dest_start = dest;
5583   if (src_offset != NULL || dest_offset != NULL) {
5584     assert(src_offset != NULL && dest_offset != NULL, "");
5585     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5586     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5587   }
5588 
5589   // Figure out which arraycopy runtime method to call.
5590   const char* copyfunc_name = "arraycopy";
5591   address     copyfunc_addr =
5592       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5593                           disjoint_bases, copyfunc_name, dest_uninitialized);
5594 
5595   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5596   make_runtime_call(RC_LEAF|RC_NO_FP,
5597                     OptoRuntime::fast_arraycopy_Type(),
5598                     copyfunc_addr, copyfunc_name, adr_type,
5599                     src_start, dest_start, copy_length XTOP);
5600 }
5601 
5602 //-------------inline_encodeISOArray-----------------------------------
5603 // encode char[] to byte[] in ISO_8859_1
5604 bool LibraryCallKit::inline_encodeISOArray() {
5605   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5606   // no receiver since it is static method
5607   Node *src         = argument(0);
5608   Node *src_offset  = argument(1);
5609   Node *dst         = argument(2);
5610   Node *dst_offset  = argument(3);
5611   Node *length      = argument(4);
5612 
5613   const Type* src_type = src->Value(&_gvn);
5614   const Type* dst_type = dst->Value(&_gvn);
5615   const TypeAryPtr* top_src = src_type->isa_aryptr();
5616   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5617   if (top_src  == NULL || top_src->klass()  == NULL ||
5618       top_dest == NULL || top_dest->klass() == NULL) {
5619     // failed array check
5620     return false;
5621   }
5622 
5623   // Figure out the size and type of the elements we will be copying.
5624   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5625   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5626   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5627     return false;
5628   }
5629   Node* src_start = array_element_address(src, src_offset, src_elem);
5630   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5631   // 'src_start' points to src array + scaled offset
5632   // 'dst_start' points to dst array + scaled offset
5633 
5634   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5635   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5636   enc = _gvn.transform(enc);
5637   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5638   set_memory(res_mem, mtype);
5639   set_result(enc);
5640   return true;
5641 }
5642 
5643 /**
5644  * Calculate CRC32 for byte.
5645  * int java.util.zip.CRC32.update(int crc, int b)
5646  */
5647 bool LibraryCallKit::inline_updateCRC32() {
5648   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5649   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5650   // no receiver since it is static method
5651   Node* crc  = argument(0); // type: int
5652   Node* b    = argument(1); // type: int
5653 
5654   /*
5655    *    int c = ~ crc;
5656    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5657    *    b = b ^ (c >>> 8);
5658    *    crc = ~b;
5659    */
5660 
5661   Node* M1 = intcon(-1);
5662   crc = _gvn.transform(new (C) XorINode(crc, M1));
5663   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5664   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5665 
5666   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5667   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5668   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5669   result = make_load(control(), adr, TypeInt::INT, T_INT);
5670 
5671   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5672   result = _gvn.transform(new (C) XorINode(crc, result));
5673   result = _gvn.transform(new (C) XorINode(result, M1));
5674   set_result(result);
5675   return true;
5676 }
5677 
5678 /**
5679  * Calculate CRC32 for byte[] array.
5680  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5681  */
5682 bool LibraryCallKit::inline_updateBytesCRC32() {
5683   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5684   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5685   // no receiver since it is static method
5686   Node* crc     = argument(0); // type: int
5687   Node* src     = argument(1); // type: oop
5688   Node* offset  = argument(2); // type: int
5689   Node* length  = argument(3); // type: int
5690 
5691   const Type* src_type = src->Value(&_gvn);
5692   const TypeAryPtr* top_src = src_type->isa_aryptr();
5693   if (top_src  == NULL || top_src->klass()  == NULL) {
5694     // failed array check
5695     return false;
5696   }
5697 
5698   // Figure out the size and type of the elements we will be copying.
5699   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5700   if (src_elem != T_BYTE) {
5701     return false;
5702   }
5703 
5704   // 'src_start' points to src array + scaled offset
5705   Node* src_start = array_element_address(src, offset, src_elem);
5706 
5707   // We assume that range check is done by caller.
5708   // TODO: generate range check (offset+length < src.length) in debug VM.
5709 
5710   // Call the stub.
5711   address stubAddr = StubRoutines::updateBytesCRC32();
5712   const char *stubName = "updateBytesCRC32";
5713 
5714   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5715                                  stubAddr, stubName, TypePtr::BOTTOM,
5716                                  crc, src_start, length);
5717   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5718   set_result(result);
5719   return true;
5720 }
5721 
5722 /**
5723  * Calculate CRC32 for ByteBuffer.
5724  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5725  */
5726 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5727   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5728   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5729   // no receiver since it is static method
5730   Node* crc     = argument(0); // type: int
5731   Node* src     = argument(1); // type: long
5732   Node* offset  = argument(3); // type: int
5733   Node* length  = argument(4); // type: int
5734 
5735   src = ConvL2X(src);  // adjust Java long to machine word
5736   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5737   offset = ConvI2X(offset);
5738 
5739   // 'src_start' points to src array + scaled offset
5740   Node* src_start = basic_plus_adr(top(), base, offset);
5741 
5742   // Call the stub.
5743   address stubAddr = StubRoutines::updateBytesCRC32();
5744   const char *stubName = "updateBytesCRC32";
5745 
5746   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5747                                  stubAddr, stubName, TypePtr::BOTTOM,
5748                                  crc, src_start, length);
5749   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5750   set_result(result);
5751   return true;
5752 }
5753 
5754 //----------------------------inline_reference_get----------------------------
5755 // public T java.lang.ref.Reference.get();
5756 bool LibraryCallKit::inline_reference_get() {
5757   const int referent_offset = java_lang_ref_Reference::referent_offset;
5758   guarantee(referent_offset > 0, "should have already been set");
5759 
5760   // Get the argument:
5761   Node* reference_obj = null_check_receiver();
5762   if (stopped()) return true;
5763 
5764   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5765 
5766   ciInstanceKlass* klass = env()->Object_klass();
5767   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5768 
5769   Node* no_ctrl = NULL;
5770   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5771 
5772   // Use the pre-barrier to record the value in the referent field
5773   pre_barrier(false /* do_load */,
5774               control(),
5775               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5776               result /* pre_val */,
5777               T_OBJECT);
5778 
5779   // Add memory barrier to prevent commoning reads from this field
5780   // across safepoint since GC can change its value.
5781   insert_mem_bar(Op_MemBarCPUOrder);
5782 
5783   set_result(result);
5784   return true;
5785 }
5786 
5787 
5788 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5789                                               bool is_exact=true, bool is_static=false) {
5790 
5791   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5792   assert(tinst != NULL, "obj is null");
5793   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5794   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5795 
5796   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5797                                                                           ciSymbol::make(fieldTypeString),
5798                                                                           is_static);
5799   if (field == NULL) return (Node *) NULL;
5800   assert (field != NULL, "undefined field");
5801 
5802   // Next code  copied from Parse::do_get_xxx():
5803 
5804   // Compute address and memory type.
5805   int offset  = field->offset_in_bytes();
5806   bool is_vol = field->is_volatile();
5807   ciType* field_klass = field->type();
5808   assert(field_klass->is_loaded(), "should be loaded");
5809   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5810   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5811   BasicType bt = field->layout_type();
5812 
5813   // Build the resultant type of the load
5814   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5815 
5816   // Build the load.
5817   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5818   return loadedField;
5819 }
5820 
5821 
5822 //------------------------------inline_aescrypt_Block-----------------------
5823 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5824   address stubAddr;
5825   const char *stubName;
5826   assert(UseAES, "need AES instruction support");
5827 
5828   switch(id) {
5829   case vmIntrinsics::_aescrypt_encryptBlock:
5830     stubAddr = StubRoutines::aescrypt_encryptBlock();
5831     stubName = "aescrypt_encryptBlock";
5832     break;
5833   case vmIntrinsics::_aescrypt_decryptBlock:
5834     stubAddr = StubRoutines::aescrypt_decryptBlock();
5835     stubName = "aescrypt_decryptBlock";
5836     break;
5837   }
5838   if (stubAddr == NULL) return false;
5839 
5840   Node* aescrypt_object = argument(0);
5841   Node* src             = argument(1);
5842   Node* src_offset      = argument(2);
5843   Node* dest            = argument(3);
5844   Node* dest_offset     = argument(4);
5845 
5846   // (1) src and dest are arrays.
5847   const Type* src_type = src->Value(&_gvn);
5848   const Type* dest_type = dest->Value(&_gvn);
5849   const TypeAryPtr* top_src = src_type->isa_aryptr();
5850   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5851   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5852 
5853   // for the quick and dirty code we will skip all the checks.
5854   // we are just trying to get the call to be generated.
5855   Node* src_start  = src;
5856   Node* dest_start = dest;
5857   if (src_offset != NULL || dest_offset != NULL) {
5858     assert(src_offset != NULL && dest_offset != NULL, "");
5859     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5860     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5861   }
5862 
5863   // now need to get the start of its expanded key array
5864   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5865   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5866   if (k_start == NULL) return false;
5867 
5868   // Call the stub.
5869   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5870                     stubAddr, stubName, TypePtr::BOTTOM,
5871                     src_start, dest_start, k_start);
5872 
5873   return true;
5874 }
5875 
5876 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5877 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5878   address stubAddr;
5879   const char *stubName;
5880 
5881   assert(UseAES, "need AES instruction support");
5882 
5883   switch(id) {
5884   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5885     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5886     stubName = "cipherBlockChaining_encryptAESCrypt";
5887     break;
5888   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5889     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5890     stubName = "cipherBlockChaining_decryptAESCrypt";
5891     break;
5892   }
5893   if (stubAddr == NULL) return false;
5894 
5895   Node* cipherBlockChaining_object = argument(0);
5896   Node* src                        = argument(1);
5897   Node* src_offset                 = argument(2);
5898   Node* len                        = argument(3);
5899   Node* dest                       = argument(4);
5900   Node* dest_offset                = argument(5);
5901 
5902   // (1) src and dest are arrays.
5903   const Type* src_type = src->Value(&_gvn);
5904   const Type* dest_type = dest->Value(&_gvn);
5905   const TypeAryPtr* top_src = src_type->isa_aryptr();
5906   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5907   assert (top_src  != NULL && top_src->klass()  != NULL
5908           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5909 
5910   // checks are the responsibility of the caller
5911   Node* src_start  = src;
5912   Node* dest_start = dest;
5913   if (src_offset != NULL || dest_offset != NULL) {
5914     assert(src_offset != NULL && dest_offset != NULL, "");
5915     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5916     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5917   }
5918 
5919   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5920   // (because of the predicated logic executed earlier).
5921   // so we cast it here safely.
5922   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5923 
5924   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5925   if (embeddedCipherObj == NULL) return false;
5926 
5927   // cast it to what we know it will be at runtime
5928   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5929   assert(tinst != NULL, "CBC obj is null");
5930   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5931   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5932   if (!klass_AESCrypt->is_loaded()) return false;
5933 
5934   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5935   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5936   const TypeOopPtr* xtype = aklass->as_instance_type();
5937   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5938   aescrypt_object = _gvn.transform(aescrypt_object);
5939 
5940   // we need to get the start of the aescrypt_object's expanded key array
5941   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5942   if (k_start == NULL) return false;
5943 
5944   // similarly, get the start address of the r vector
5945   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5946   if (objRvec == NULL) return false;
5947   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5948 
5949   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5950   make_runtime_call(RC_LEAF|RC_NO_FP,
5951                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5952                     stubAddr, stubName, TypePtr::BOTTOM,
5953                     src_start, dest_start, k_start, r_start, len);
5954 
5955   // return is void so no result needs to be pushed
5956 
5957   return true;
5958 }
5959 
5960 //------------------------------get_key_start_from_aescrypt_object-----------------------
5961 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5962   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5963   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5964   if (objAESCryptKey == NULL) return (Node *) NULL;
5965 
5966   // now have the array, need to get the start address of the K array
5967   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5968   return k_start;
5969 }
5970 
5971 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5972 // Return node representing slow path of predicate check.
5973 // the pseudo code we want to emulate with this predicate is:
5974 // for encryption:
5975 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5976 // for decryption:
5977 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5978 //    note cipher==plain is more conservative than the original java code but that's OK
5979 //
5980 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5981   // First, check receiver for NULL since it is virtual method.
5982   Node* objCBC = argument(0);
5983   objCBC = null_check(objCBC);
5984 
5985   if (stopped()) return NULL; // Always NULL
5986 
5987   // Load embeddedCipher field of CipherBlockChaining object.
5988   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5989 
5990   // get AESCrypt klass for instanceOf check
5991   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5992   // will have same classloader as CipherBlockChaining object
5993   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5994   assert(tinst != NULL, "CBCobj is null");
5995   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5996 
5997   // we want to do an instanceof comparison against the AESCrypt class
5998   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5999   if (!klass_AESCrypt->is_loaded()) {
6000     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6001     Node* ctrl = control();
6002     set_control(top()); // no regular fast path
6003     return ctrl;
6004   }
6005   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6006 
6007   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6008   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6009   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6010 
6011   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6012 
6013   // for encryption, we are done
6014   if (!decrypting)
6015     return instof_false;  // even if it is NULL
6016 
6017   // for decryption, we need to add a further check to avoid
6018   // taking the intrinsic path when cipher and plain are the same
6019   // see the original java code for why.
6020   RegionNode* region = new(C) RegionNode(3);
6021   region->init_req(1, instof_false);
6022   Node* src = argument(1);
6023   Node* dest = argument(4);
6024   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6025   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6026   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6027   region->init_req(2, src_dest_conjoint);
6028 
6029   record_for_igvn(region);
6030   return _gvn.transform(region);
6031 }