1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "opto/vectornode.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "runtime/os.hpp"
  41 #ifdef TARGET_ARCH_MODEL_x86_32
  42 # include "adfiles/ad_x86_32.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_MODEL_x86_64
  45 # include "adfiles/ad_x86_64.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_MODEL_sparc
  48 # include "adfiles/ad_sparc.hpp"
  49 #endif
  50 #ifdef TARGET_ARCH_MODEL_zero
  51 # include "adfiles/ad_zero.hpp"
  52 #endif
  53 #ifdef TARGET_ARCH_MODEL_arm
  54 # include "adfiles/ad_arm.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_MODEL_ppc
  57 # include "adfiles/ad_ppc.hpp"
  58 #endif
  59 
  60 OptoReg::Name OptoReg::c_frame_pointer;
  61 
  62 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  63 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  64 RegMask Matcher::STACK_ONLY_mask;
  65 RegMask Matcher::c_frame_ptr_mask;
  66 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  67 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  68 
  69 //---------------------------Matcher-------------------------------------------
  70 Matcher::Matcher()
  71 : PhaseTransform( Phase::Ins_Select ),
  72 #ifdef ASSERT
  73   _old2new_map(C->comp_arena()),
  74   _new2old_map(C->comp_arena()),
  75 #endif
  76   _shared_nodes(C->comp_arena()),
  77   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  78   _swallowed(swallowed),
  79   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  80   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  81   _must_clone(must_clone),
  82   _register_save_policy(register_save_policy),
  83   _c_reg_save_policy(c_reg_save_policy),
  84   _register_save_type(register_save_type),
  85   _ruleName(ruleName),
  86   _allocation_started(false),
  87   _states_arena(Chunk::medium_size),
  88   _visited(&_states_arena),
  89   _shared(&_states_arena),
  90   _dontcare(&_states_arena) {
  91   C->set_matcher(this);
  92 
  93   idealreg2spillmask  [Op_RegI] = NULL;
  94   idealreg2spillmask  [Op_RegN] = NULL;
  95   idealreg2spillmask  [Op_RegL] = NULL;
  96   idealreg2spillmask  [Op_RegF] = NULL;
  97   idealreg2spillmask  [Op_RegD] = NULL;
  98   idealreg2spillmask  [Op_RegP] = NULL;
  99   idealreg2spillmask  [Op_VecS] = NULL;
 100   idealreg2spillmask  [Op_VecD] = NULL;
 101   idealreg2spillmask  [Op_VecX] = NULL;
 102   idealreg2spillmask  [Op_VecY] = NULL;
 103 
 104   idealreg2debugmask  [Op_RegI] = NULL;
 105   idealreg2debugmask  [Op_RegN] = NULL;
 106   idealreg2debugmask  [Op_RegL] = NULL;
 107   idealreg2debugmask  [Op_RegF] = NULL;
 108   idealreg2debugmask  [Op_RegD] = NULL;
 109   idealreg2debugmask  [Op_RegP] = NULL;
 110   idealreg2debugmask  [Op_VecS] = NULL;
 111   idealreg2debugmask  [Op_VecD] = NULL;
 112   idealreg2debugmask  [Op_VecX] = NULL;
 113   idealreg2debugmask  [Op_VecY] = NULL;
 114 
 115   idealreg2mhdebugmask[Op_RegI] = NULL;
 116   idealreg2mhdebugmask[Op_RegN] = NULL;
 117   idealreg2mhdebugmask[Op_RegL] = NULL;
 118   idealreg2mhdebugmask[Op_RegF] = NULL;
 119   idealreg2mhdebugmask[Op_RegD] = NULL;
 120   idealreg2mhdebugmask[Op_RegP] = NULL;
 121   idealreg2mhdebugmask[Op_VecS] = NULL;
 122   idealreg2mhdebugmask[Op_VecD] = NULL;
 123   idealreg2mhdebugmask[Op_VecX] = NULL;
 124   idealreg2mhdebugmask[Op_VecY] = NULL;
 125 
 126   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 127 }
 128 
 129 //------------------------------warp_incoming_stk_arg------------------------
 130 // This warps a VMReg into an OptoReg::Name
 131 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 132   OptoReg::Name warped;
 133   if( reg->is_stack() ) {  // Stack slot argument?
 134     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 135     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 136     if( warped >= _in_arg_limit )
 137       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 138     if (!RegMask::can_represent_arg(warped)) {
 139       // the compiler cannot represent this method's calling sequence
 140       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 141       return OptoReg::Bad;
 142     }
 143     return warped;
 144   }
 145   return OptoReg::as_OptoReg(reg);
 146 }
 147 
 148 //---------------------------compute_old_SP------------------------------------
 149 OptoReg::Name Compile::compute_old_SP() {
 150   int fixed    = fixed_slots();
 151   int preserve = in_preserve_stack_slots();
 152   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 153 }
 154 
 155 
 156 
 157 #ifdef ASSERT
 158 void Matcher::verify_new_nodes_only(Node* xroot) {
 159   // Make sure that the new graph only references new nodes
 160   ResourceMark rm;
 161   Unique_Node_List worklist;
 162   VectorSet visited(Thread::current()->resource_area());
 163   worklist.push(xroot);
 164   while (worklist.size() > 0) {
 165     Node* n = worklist.pop();
 166     visited <<= n->_idx;
 167     assert(C->node_arena()->contains(n), "dead node");
 168     for (uint j = 0; j < n->req(); j++) {
 169       Node* in = n->in(j);
 170       if (in != NULL) {
 171         assert(C->node_arena()->contains(in), "dead node");
 172         if (!visited.test(in->_idx)) {
 173           worklist.push(in);
 174         }
 175       }
 176     }
 177   }
 178 }
 179 #endif
 180 
 181 
 182 //---------------------------match---------------------------------------------
 183 void Matcher::match( ) {
 184   if( MaxLabelRootDepth < 100 ) { // Too small?
 185     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 186     MaxLabelRootDepth = 100;
 187   }
 188   // One-time initialization of some register masks.
 189   init_spill_mask( C->root()->in(1) );
 190   _return_addr_mask = return_addr();
 191 #ifdef _LP64
 192   // Pointers take 2 slots in 64-bit land
 193   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 194 #endif
 195 
 196   // Map a Java-signature return type into return register-value
 197   // machine registers for 0, 1 and 2 returned values.
 198   const TypeTuple *range = C->tf()->range();
 199   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 200     // Get ideal-register return type
 201     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 202     // Get machine return register
 203     uint sop = C->start()->Opcode();
 204     OptoRegPair regs = return_value(ireg, false);
 205 
 206     // And mask for same
 207     _return_value_mask = RegMask(regs.first());
 208     if( OptoReg::is_valid(regs.second()) )
 209       _return_value_mask.Insert(regs.second());
 210   }
 211 
 212   // ---------------
 213   // Frame Layout
 214 
 215   // Need the method signature to determine the incoming argument types,
 216   // because the types determine which registers the incoming arguments are
 217   // in, and this affects the matched code.
 218   const TypeTuple *domain = C->tf()->domain();
 219   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 220   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 221   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 222   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 223   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 224   uint i;
 225   for( i = 0; i<argcnt; i++ ) {
 226     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 227   }
 228 
 229   // Pass array of ideal registers and length to USER code (from the AD file)
 230   // that will convert this to an array of register numbers.
 231   const StartNode *start = C->start();
 232   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 233 #ifdef ASSERT
 234   // Sanity check users' calling convention.  Real handy while trying to
 235   // get the initial port correct.
 236   { for (uint i = 0; i<argcnt; i++) {
 237       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 238         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 239         _parm_regs[i].set_bad();
 240         continue;
 241       }
 242       VMReg parm_reg = vm_parm_regs[i].first();
 243       assert(parm_reg->is_valid(), "invalid arg?");
 244       if (parm_reg->is_reg()) {
 245         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 246         assert(can_be_java_arg(opto_parm_reg) ||
 247                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 248                opto_parm_reg == inline_cache_reg(),
 249                "parameters in register must be preserved by runtime stubs");
 250       }
 251       for (uint j = 0; j < i; j++) {
 252         assert(parm_reg != vm_parm_regs[j].first(),
 253                "calling conv. must produce distinct regs");
 254       }
 255     }
 256   }
 257 #endif
 258 
 259   // Do some initial frame layout.
 260 
 261   // Compute the old incoming SP (may be called FP) as
 262   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 263   _old_SP = C->compute_old_SP();
 264   assert( is_even(_old_SP), "must be even" );
 265 
 266   // Compute highest incoming stack argument as
 267   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 268   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 269   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 270   for( i = 0; i < argcnt; i++ ) {
 271     // Permit args to have no register
 272     _calling_convention_mask[i].Clear();
 273     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 274       continue;
 275     }
 276     // calling_convention returns stack arguments as a count of
 277     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 278     // the allocators point of view, taking into account all the
 279     // preserve area, locks & pad2.
 280 
 281     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 282     if( OptoReg::is_valid(reg1))
 283       _calling_convention_mask[i].Insert(reg1);
 284 
 285     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 286     if( OptoReg::is_valid(reg2))
 287       _calling_convention_mask[i].Insert(reg2);
 288 
 289     // Saved biased stack-slot register number
 290     _parm_regs[i].set_pair(reg2, reg1);
 291   }
 292 
 293   // Finally, make sure the incoming arguments take up an even number of
 294   // words, in case the arguments or locals need to contain doubleword stack
 295   // slots.  The rest of the system assumes that stack slot pairs (in
 296   // particular, in the spill area) which look aligned will in fact be
 297   // aligned relative to the stack pointer in the target machine.  Double
 298   // stack slots will always be allocated aligned.
 299   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 300 
 301   // Compute highest outgoing stack argument as
 302   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 303   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 304   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 305 
 306   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 307     // the compiler cannot represent this method's calling sequence
 308     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 309   }
 310 
 311   if (C->failing())  return;  // bailed out on incoming arg failure
 312 
 313   // ---------------
 314   // Collect roots of matcher trees.  Every node for which
 315   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 316   // can be a valid interior of some tree.
 317   find_shared( C->root() );
 318   find_shared( C->top() );
 319 
 320   C->print_method(PHASE_BEFORE_MATCHING);
 321 
 322   // Create new ideal node ConP #NULL even if it does exist in old space
 323   // to avoid false sharing if the corresponding mach node is not used.
 324   // The corresponding mach node is only used in rare cases for derived
 325   // pointers.
 326   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 327 
 328   // Swap out to old-space; emptying new-space
 329   Arena *old = C->node_arena()->move_contents(C->old_arena());
 330 
 331   // Save debug and profile information for nodes in old space:
 332   _old_node_note_array = C->node_note_array();
 333   if (_old_node_note_array != NULL) {
 334     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 335                            (C->comp_arena(), _old_node_note_array->length(),
 336                             0, NULL));
 337   }
 338 
 339   // Pre-size the new_node table to avoid the need for range checks.
 340   grow_new_node_array(C->unique());
 341 
 342   // Reset node counter so MachNodes start with _idx at 0
 343   int nodes = C->unique(); // save value
 344   C->set_unique(0);
 345   C->reset_dead_node_list();
 346 
 347   // Recursively match trees from old space into new space.
 348   // Correct leaves of new-space Nodes; they point to old-space.
 349   _visited.Clear();             // Clear visit bits for xform call
 350   C->set_cached_top_node(xform( C->top(), nodes ));
 351   if (!C->failing()) {
 352     Node* xroot =        xform( C->root(), 1 );
 353     if (xroot == NULL) {
 354       Matcher::soft_match_failure();  // recursive matching process failed
 355       C->record_method_not_compilable("instruction match failed");
 356     } else {
 357       // During matching shared constants were attached to C->root()
 358       // because xroot wasn't available yet, so transfer the uses to
 359       // the xroot.
 360       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 361         Node* n = C->root()->fast_out(j);
 362         if (C->node_arena()->contains(n)) {
 363           assert(n->in(0) == C->root(), "should be control user");
 364           n->set_req(0, xroot);
 365           --j;
 366           --jmax;
 367         }
 368       }
 369 
 370       // Generate new mach node for ConP #NULL
 371       assert(new_ideal_null != NULL, "sanity");
 372       _mach_null = match_tree(new_ideal_null);
 373       // Don't set control, it will confuse GCM since there are no uses.
 374       // The control will be set when this node is used first time
 375       // in find_base_for_derived().
 376       assert(_mach_null != NULL, "");
 377 
 378       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 379 
 380 #ifdef ASSERT
 381       verify_new_nodes_only(xroot);
 382 #endif
 383     }
 384   }
 385   if (C->top() == NULL || C->root() == NULL) {
 386     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 387   }
 388   if (C->failing()) {
 389     // delete old;
 390     old->destruct_contents();
 391     return;
 392   }
 393   assert( C->top(), "" );
 394   assert( C->root(), "" );
 395   validate_null_checks();
 396 
 397   // Now smoke old-space
 398   NOT_DEBUG( old->destruct_contents() );
 399 
 400   // ------------------------
 401   // Set up save-on-entry registers
 402   Fixup_Save_On_Entry( );
 403 }
 404 
 405 
 406 //------------------------------Fixup_Save_On_Entry----------------------------
 407 // The stated purpose of this routine is to take care of save-on-entry
 408 // registers.  However, the overall goal of the Match phase is to convert into
 409 // machine-specific instructions which have RegMasks to guide allocation.
 410 // So what this procedure really does is put a valid RegMask on each input
 411 // to the machine-specific variations of all Return, TailCall and Halt
 412 // instructions.  It also adds edgs to define the save-on-entry values (and of
 413 // course gives them a mask).
 414 
 415 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 416   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 417   // Do all the pre-defined register masks
 418   rms[TypeFunc::Control  ] = RegMask::Empty;
 419   rms[TypeFunc::I_O      ] = RegMask::Empty;
 420   rms[TypeFunc::Memory   ] = RegMask::Empty;
 421   rms[TypeFunc::ReturnAdr] = ret_adr;
 422   rms[TypeFunc::FramePtr ] = fp;
 423   return rms;
 424 }
 425 
 426 //---------------------------init_first_stack_mask-----------------------------
 427 // Create the initial stack mask used by values spilling to the stack.
 428 // Disallow any debug info in outgoing argument areas by setting the
 429 // initial mask accordingly.
 430 void Matcher::init_first_stack_mask() {
 431 
 432   // Allocate storage for spill masks as masks for the appropriate load type.
 433   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
 434 
 435   idealreg2spillmask  [Op_RegN] = &rms[0];
 436   idealreg2spillmask  [Op_RegI] = &rms[1];
 437   idealreg2spillmask  [Op_RegL] = &rms[2];
 438   idealreg2spillmask  [Op_RegF] = &rms[3];
 439   idealreg2spillmask  [Op_RegD] = &rms[4];
 440   idealreg2spillmask  [Op_RegP] = &rms[5];
 441 
 442   idealreg2debugmask  [Op_RegN] = &rms[6];
 443   idealreg2debugmask  [Op_RegI] = &rms[7];
 444   idealreg2debugmask  [Op_RegL] = &rms[8];
 445   idealreg2debugmask  [Op_RegF] = &rms[9];
 446   idealreg2debugmask  [Op_RegD] = &rms[10];
 447   idealreg2debugmask  [Op_RegP] = &rms[11];
 448 
 449   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 450   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 451   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 452   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 453   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 454   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 455 
 456   idealreg2spillmask  [Op_VecS] = &rms[18];
 457   idealreg2spillmask  [Op_VecD] = &rms[19];
 458   idealreg2spillmask  [Op_VecX] = &rms[20];
 459   idealreg2spillmask  [Op_VecY] = &rms[21];
 460 
 461   OptoReg::Name i;
 462 
 463   // At first, start with the empty mask
 464   C->FIRST_STACK_mask().Clear();
 465 
 466   // Add in the incoming argument area
 467   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 468   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 469     C->FIRST_STACK_mask().Insert(i);
 470 
 471   // Add in all bits past the outgoing argument area
 472   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 473             "must be able to represent all call arguments in reg mask");
 474   init = _out_arg_limit;
 475   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 476     C->FIRST_STACK_mask().Insert(i);
 477 
 478   // Finally, set the "infinite stack" bit.
 479   C->FIRST_STACK_mask().set_AllStack();
 480 
 481   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 482   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 483   // Keep spill masks aligned.
 484   aligned_stack_mask.clear_to_pairs();
 485   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 486 
 487   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 488 #ifdef _LP64
 489   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 490    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 491    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 492 #else
 493    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 494 #endif
 495   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 496    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 497   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 498    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 499   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 500    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 501   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 502    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 503 
 504   if (Matcher::vector_size_supported(T_BYTE,4)) {
 505     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 506      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 507   }
 508   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 509     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 510      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 511   }
 512   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 513      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 514      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 515     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 516      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 517   }
 518   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 519      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 520      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 521     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 522      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 523   }
 524    if (UseFPUForSpilling) {
 525      // This mask logic assumes that the spill operations are
 526      // symmetric and that the registers involved are the same size.
 527      // On sparc for instance we may have to use 64 bit moves will
 528      // kill 2 registers when used with F0-F31.
 529      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 530      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 531 #ifdef _LP64
 532      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 533      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 534      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 535      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 536 #else
 537      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 538 #ifdef ARM
 539      // ARM has support for moving 64bit values between a pair of
 540      // integer registers and a double register
 541      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 542      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 543 #endif
 544 #endif
 545    }
 546 
 547   // Make up debug masks.  Any spill slot plus callee-save registers.
 548   // Caller-save registers are assumed to be trashable by the various
 549   // inline-cache fixup routines.
 550   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 551   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 552   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 553   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 554   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 555   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 556 
 557   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 558   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 559   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 560   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 561   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 562   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 563 
 564   // Prevent stub compilations from attempting to reference
 565   // callee-saved registers from debug info
 566   bool exclude_soe = !Compile::current()->is_method_compilation();
 567 
 568   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 569     // registers the caller has to save do not work
 570     if( _register_save_policy[i] == 'C' ||
 571         _register_save_policy[i] == 'A' ||
 572         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 573       idealreg2debugmask  [Op_RegN]->Remove(i);
 574       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 575       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 576       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 577       idealreg2debugmask  [Op_RegD]->Remove(i);
 578       idealreg2debugmask  [Op_RegP]->Remove(i);
 579 
 580       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 581       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 582       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 583       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 584       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 585       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 586     }
 587   }
 588 
 589   // Subtract the register we use to save the SP for MethodHandle
 590   // invokes to from the debug mask.
 591   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 592   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 593   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 594   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 595   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 596   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 597   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 598 }
 599 
 600 //---------------------------is_save_on_entry----------------------------------
 601 bool Matcher::is_save_on_entry( int reg ) {
 602   return
 603     _register_save_policy[reg] == 'E' ||
 604     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 605     // Also save argument registers in the trampolining stubs
 606     (C->save_argument_registers() && is_spillable_arg(reg));
 607 }
 608 
 609 //---------------------------Fixup_Save_On_Entry-------------------------------
 610 void Matcher::Fixup_Save_On_Entry( ) {
 611   init_first_stack_mask();
 612 
 613   Node *root = C->root();       // Short name for root
 614   // Count number of save-on-entry registers.
 615   uint soe_cnt = number_of_saved_registers();
 616   uint i;
 617 
 618   // Find the procedure Start Node
 619   StartNode *start = C->start();
 620   assert( start, "Expect a start node" );
 621 
 622   // Save argument registers in the trampolining stubs
 623   if( C->save_argument_registers() )
 624     for( i = 0; i < _last_Mach_Reg; i++ )
 625       if( is_spillable_arg(i) )
 626         soe_cnt++;
 627 
 628   // Input RegMask array shared by all Returns.
 629   // The type for doubles and longs has a count of 2, but
 630   // there is only 1 returned value
 631   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 632   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 633   // Returns have 0 or 1 returned values depending on call signature.
 634   // Return register is specified by return_value in the AD file.
 635   if (ret_edge_cnt > TypeFunc::Parms)
 636     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 637 
 638   // Input RegMask array shared by all Rethrows.
 639   uint reth_edge_cnt = TypeFunc::Parms+1;
 640   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 641   // Rethrow takes exception oop only, but in the argument 0 slot.
 642   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 643 #ifdef _LP64
 644   // Need two slots for ptrs in 64-bit land
 645   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 646 #endif
 647 
 648   // Input RegMask array shared by all TailCalls
 649   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 650   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 651 
 652   // Input RegMask array shared by all TailJumps
 653   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 654   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 655 
 656   // TailCalls have 2 returned values (target & moop), whose masks come
 657   // from the usual MachNode/MachOper mechanism.  Find a sample
 658   // TailCall to extract these masks and put the correct masks into
 659   // the tail_call_rms array.
 660   for( i=1; i < root->req(); i++ ) {
 661     MachReturnNode *m = root->in(i)->as_MachReturn();
 662     if( m->ideal_Opcode() == Op_TailCall ) {
 663       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 664       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 665       break;
 666     }
 667   }
 668 
 669   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 670   // from the usual MachNode/MachOper mechanism.  Find a sample
 671   // TailJump to extract these masks and put the correct masks into
 672   // the tail_jump_rms array.
 673   for( i=1; i < root->req(); i++ ) {
 674     MachReturnNode *m = root->in(i)->as_MachReturn();
 675     if( m->ideal_Opcode() == Op_TailJump ) {
 676       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 677       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 678       break;
 679     }
 680   }
 681 
 682   // Input RegMask array shared by all Halts
 683   uint halt_edge_cnt = TypeFunc::Parms;
 684   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 685 
 686   // Capture the return input masks into each exit flavor
 687   for( i=1; i < root->req(); i++ ) {
 688     MachReturnNode *exit = root->in(i)->as_MachReturn();
 689     switch( exit->ideal_Opcode() ) {
 690       case Op_Return   : exit->_in_rms = ret_rms;  break;
 691       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 692       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 693       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 694       case Op_Halt     : exit->_in_rms = halt_rms; break;
 695       default          : ShouldNotReachHere();
 696     }
 697   }
 698 
 699   // Next unused projection number from Start.
 700   int proj_cnt = C->tf()->domain()->cnt();
 701 
 702   // Do all the save-on-entry registers.  Make projections from Start for
 703   // them, and give them a use at the exit points.  To the allocator, they
 704   // look like incoming register arguments.
 705   for( i = 0; i < _last_Mach_Reg; i++ ) {
 706     if( is_save_on_entry(i) ) {
 707 
 708       // Add the save-on-entry to the mask array
 709       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 710       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 711       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 712       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 713       // Halts need the SOE registers, but only in the stack as debug info.
 714       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 715       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 716 
 717       Node *mproj;
 718 
 719       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 720       // into a single RegD.
 721       if( (i&1) == 0 &&
 722           _register_save_type[i  ] == Op_RegF &&
 723           _register_save_type[i+1] == Op_RegF &&
 724           is_save_on_entry(i+1) ) {
 725         // Add other bit for double
 726         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 727         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 728         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 729         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 730         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 731         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 732         proj_cnt += 2;          // Skip 2 for doubles
 733       }
 734       else if( (i&1) == 1 &&    // Else check for high half of double
 735                _register_save_type[i-1] == Op_RegF &&
 736                _register_save_type[i  ] == Op_RegF &&
 737                is_save_on_entry(i-1) ) {
 738         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 739         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 740         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 741         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 742         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 743         mproj = C->top();
 744       }
 745       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 746       // into a single RegL.
 747       else if( (i&1) == 0 &&
 748           _register_save_type[i  ] == Op_RegI &&
 749           _register_save_type[i+1] == Op_RegI &&
 750         is_save_on_entry(i+1) ) {
 751         // Add other bit for long
 752         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 753         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 754         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 755         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 756         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 757         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 758         proj_cnt += 2;          // Skip 2 for longs
 759       }
 760       else if( (i&1) == 1 &&    // Else check for high half of long
 761                _register_save_type[i-1] == Op_RegI &&
 762                _register_save_type[i  ] == Op_RegI &&
 763                is_save_on_entry(i-1) ) {
 764         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 765         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 766         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 767         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 768         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 769         mproj = C->top();
 770       } else {
 771         // Make a projection for it off the Start
 772         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 773       }
 774 
 775       ret_edge_cnt ++;
 776       reth_edge_cnt ++;
 777       tail_call_edge_cnt ++;
 778       tail_jump_edge_cnt ++;
 779       halt_edge_cnt ++;
 780 
 781       // Add a use of the SOE register to all exit paths
 782       for( uint j=1; j < root->req(); j++ )
 783         root->in(j)->add_req(mproj);
 784     } // End of if a save-on-entry register
 785   } // End of for all machine registers
 786 }
 787 
 788 //------------------------------init_spill_mask--------------------------------
 789 void Matcher::init_spill_mask( Node *ret ) {
 790   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 791 
 792   OptoReg::c_frame_pointer = c_frame_pointer();
 793   c_frame_ptr_mask = c_frame_pointer();
 794 #ifdef _LP64
 795   // pointers are twice as big
 796   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 797 #endif
 798 
 799   // Start at OptoReg::stack0()
 800   STACK_ONLY_mask.Clear();
 801   OptoReg::Name init = OptoReg::stack2reg(0);
 802   // STACK_ONLY_mask is all stack bits
 803   OptoReg::Name i;
 804   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 805     STACK_ONLY_mask.Insert(i);
 806   // Also set the "infinite stack" bit.
 807   STACK_ONLY_mask.set_AllStack();
 808 
 809   // Copy the register names over into the shared world
 810   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 811     // SharedInfo::regName[i] = regName[i];
 812     // Handy RegMasks per machine register
 813     mreg2regmask[i].Insert(i);
 814   }
 815 
 816   // Grab the Frame Pointer
 817   Node *fp  = ret->in(TypeFunc::FramePtr);
 818   Node *mem = ret->in(TypeFunc::Memory);
 819   const TypePtr* atp = TypePtr::BOTTOM;
 820   // Share frame pointer while making spill ops
 821   set_shared(fp);
 822 
 823   // Compute generic short-offset Loads
 824 #ifdef _LP64
 825   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 826 #endif
 827   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
 828   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
 829   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
 830   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
 831   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 832   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 833          spillD != NULL && spillP != NULL, "");
 834 
 835   // Get the ADLC notion of the right regmask, for each basic type.
 836 #ifdef _LP64
 837   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 838 #endif
 839   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 840   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 841   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 842   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 843   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 844 
 845   // Vector regmasks.
 846   if (Matcher::vector_size_supported(T_BYTE,4)) {
 847     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 848     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 849     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 850   }
 851   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 852     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 853     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 854   }
 855   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 856     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 857     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 858   }
 859   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 860     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 861     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 862   }
 863 }
 864 
 865 #ifdef ASSERT
 866 static void match_alias_type(Compile* C, Node* n, Node* m) {
 867   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 868   const TypePtr* nat = n->adr_type();
 869   const TypePtr* mat = m->adr_type();
 870   int nidx = C->get_alias_index(nat);
 871   int midx = C->get_alias_index(mat);
 872   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 873   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 874     for (uint i = 1; i < n->req(); i++) {
 875       Node* n1 = n->in(i);
 876       const TypePtr* n1at = n1->adr_type();
 877       if (n1at != NULL) {
 878         nat = n1at;
 879         nidx = C->get_alias_index(n1at);
 880       }
 881     }
 882   }
 883   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 884   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 885     switch (n->Opcode()) {
 886     case Op_PrefetchRead:
 887     case Op_PrefetchWrite:
 888     case Op_PrefetchAllocation:
 889       nidx = Compile::AliasIdxRaw;
 890       nat = TypeRawPtr::BOTTOM;
 891       break;
 892     }
 893   }
 894   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 895     switch (n->Opcode()) {
 896     case Op_ClearArray:
 897       midx = Compile::AliasIdxRaw;
 898       mat = TypeRawPtr::BOTTOM;
 899       break;
 900     }
 901   }
 902   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 903     switch (n->Opcode()) {
 904     case Op_Return:
 905     case Op_Rethrow:
 906     case Op_Halt:
 907     case Op_TailCall:
 908     case Op_TailJump:
 909       nidx = Compile::AliasIdxBot;
 910       nat = TypePtr::BOTTOM;
 911       break;
 912     }
 913   }
 914   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 915     switch (n->Opcode()) {
 916     case Op_StrComp:
 917     case Op_StrEquals:
 918     case Op_StrIndexOf:
 919     case Op_AryEq:
 920     case Op_MemBarVolatile:
 921     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 922     case Op_EncodeISOArray:
 923       nidx = Compile::AliasIdxTop;
 924       nat = NULL;
 925       break;
 926     }
 927   }
 928   if (nidx != midx) {
 929     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 930       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 931       n->dump();
 932       m->dump();
 933     }
 934     assert(C->subsume_loads() && C->must_alias(nat, midx),
 935            "must not lose alias info when matching");
 936   }
 937 }
 938 #endif
 939 
 940 
 941 //------------------------------MStack-----------------------------------------
 942 // State and MStack class used in xform() and find_shared() iterative methods.
 943 enum Node_State { Pre_Visit,  // node has to be pre-visited
 944                       Visit,  // visit node
 945                  Post_Visit,  // post-visit node
 946              Alt_Post_Visit   // alternative post-visit path
 947                 };
 948 
 949 class MStack: public Node_Stack {
 950   public:
 951     MStack(int size) : Node_Stack(size) { }
 952 
 953     void push(Node *n, Node_State ns) {
 954       Node_Stack::push(n, (uint)ns);
 955     }
 956     void push(Node *n, Node_State ns, Node *parent, int indx) {
 957       ++_inode_top;
 958       if ((_inode_top + 1) >= _inode_max) grow();
 959       _inode_top->node = parent;
 960       _inode_top->indx = (uint)indx;
 961       ++_inode_top;
 962       _inode_top->node = n;
 963       _inode_top->indx = (uint)ns;
 964     }
 965     Node *parent() {
 966       pop();
 967       return node();
 968     }
 969     Node_State state() const {
 970       return (Node_State)index();
 971     }
 972     void set_state(Node_State ns) {
 973       set_index((uint)ns);
 974     }
 975 };
 976 
 977 
 978 //------------------------------xform------------------------------------------
 979 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 980 // Node in new-space.  Given a new-space Node, recursively walk his children.
 981 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 982 Node *Matcher::xform( Node *n, int max_stack ) {
 983   // Use one stack to keep both: child's node/state and parent's node/index
 984   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 985   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 986 
 987   while (mstack.is_nonempty()) {
 988     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
 989     if (C->failing()) return NULL;
 990     n = mstack.node();          // Leave node on stack
 991     Node_State nstate = mstack.state();
 992     if (nstate == Visit) {
 993       mstack.set_state(Post_Visit);
 994       Node *oldn = n;
 995       // Old-space or new-space check
 996       if (!C->node_arena()->contains(n)) {
 997         // Old space!
 998         Node* m;
 999         if (has_new_node(n)) {  // Not yet Label/Reduced
1000           m = new_node(n);
1001         } else {
1002           if (!is_dontcare(n)) { // Matcher can match this guy
1003             // Calls match special.  They match alone with no children.
1004             // Their children, the incoming arguments, match normally.
1005             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1006             if (C->failing())  return NULL;
1007             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1008           } else {                  // Nothing the matcher cares about
1009             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1010               // Convert to machine-dependent projection
1011               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1012 #ifdef ASSERT
1013               _new2old_map.map(m->_idx, n);
1014 #endif
1015               if (m->in(0) != NULL) // m might be top
1016                 collect_null_checks(m, n);
1017             } else {                // Else just a regular 'ol guy
1018               m = n->clone();       // So just clone into new-space
1019 #ifdef ASSERT
1020               _new2old_map.map(m->_idx, n);
1021 #endif
1022               // Def-Use edges will be added incrementally as Uses
1023               // of this node are matched.
1024               assert(m->outcnt() == 0, "no Uses of this clone yet");
1025             }
1026           }
1027 
1028           set_new_node(n, m);       // Map old to new
1029           if (_old_node_note_array != NULL) {
1030             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1031                                                   n->_idx);
1032             C->set_node_notes_at(m->_idx, nn);
1033           }
1034           debug_only(match_alias_type(C, n, m));
1035         }
1036         n = m;    // n is now a new-space node
1037         mstack.set_node(n);
1038       }
1039 
1040       // New space!
1041       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1042 
1043       int i;
1044       // Put precedence edges on stack first (match them last).
1045       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1046         Node *m = oldn->in(i);
1047         if (m == NULL) break;
1048         // set -1 to call add_prec() instead of set_req() during Step1
1049         mstack.push(m, Visit, n, -1);
1050       }
1051 
1052       // For constant debug info, I'd rather have unmatched constants.
1053       int cnt = n->req();
1054       JVMState* jvms = n->jvms();
1055       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1056 
1057       // Now do only debug info.  Clone constants rather than matching.
1058       // Constants are represented directly in the debug info without
1059       // the need for executable machine instructions.
1060       // Monitor boxes are also represented directly.
1061       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1062         Node *m = n->in(i);          // Get input
1063         int op = m->Opcode();
1064         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1065         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1066             op == Op_ConF || op == Op_ConD || op == Op_ConL
1067             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1068             ) {
1069           m = m->clone();
1070 #ifdef ASSERT
1071           _new2old_map.map(m->_idx, n);
1072 #endif
1073           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1074           mstack.push(m->in(0), Visit, m, 0);
1075         } else {
1076           mstack.push(m, Visit, n, i);
1077         }
1078       }
1079 
1080       // And now walk his children, and convert his inputs to new-space.
1081       for( ; i >= 0; --i ) { // For all normal inputs do
1082         Node *m = n->in(i);  // Get input
1083         if(m != NULL)
1084           mstack.push(m, Visit, n, i);
1085       }
1086 
1087     }
1088     else if (nstate == Post_Visit) {
1089       // Set xformed input
1090       Node *p = mstack.parent();
1091       if (p != NULL) { // root doesn't have parent
1092         int i = (int)mstack.index();
1093         if (i >= 0)
1094           p->set_req(i, n); // required input
1095         else if (i == -1)
1096           p->add_prec(n);   // precedence input
1097         else
1098           ShouldNotReachHere();
1099       }
1100       mstack.pop(); // remove processed node from stack
1101     }
1102     else {
1103       ShouldNotReachHere();
1104     }
1105   } // while (mstack.is_nonempty())
1106   return n; // Return new-space Node
1107 }
1108 
1109 //------------------------------warp_outgoing_stk_arg------------------------
1110 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1111   // Convert outgoing argument location to a pre-biased stack offset
1112   if (reg->is_stack()) {
1113     OptoReg::Name warped = reg->reg2stack();
1114     // Adjust the stack slot offset to be the register number used
1115     // by the allocator.
1116     warped = OptoReg::add(begin_out_arg_area, warped);
1117     // Keep track of the largest numbered stack slot used for an arg.
1118     // Largest used slot per call-site indicates the amount of stack
1119     // that is killed by the call.
1120     if( warped >= out_arg_limit_per_call )
1121       out_arg_limit_per_call = OptoReg::add(warped,1);
1122     if (!RegMask::can_represent_arg(warped)) {
1123       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1124       return OptoReg::Bad;
1125     }
1126     return warped;
1127   }
1128   return OptoReg::as_OptoReg(reg);
1129 }
1130 
1131 
1132 //------------------------------match_sfpt-------------------------------------
1133 // Helper function to match call instructions.  Calls match special.
1134 // They match alone with no children.  Their children, the incoming
1135 // arguments, match normally.
1136 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1137   MachSafePointNode *msfpt = NULL;
1138   MachCallNode      *mcall = NULL;
1139   uint               cnt;
1140   // Split out case for SafePoint vs Call
1141   CallNode *call;
1142   const TypeTuple *domain;
1143   ciMethod*        method = NULL;
1144   bool             is_method_handle_invoke = false;  // for special kill effects
1145   if( sfpt->is_Call() ) {
1146     call = sfpt->as_Call();
1147     domain = call->tf()->domain();
1148     cnt = domain->cnt();
1149 
1150     // Match just the call, nothing else
1151     MachNode *m = match_tree(call);
1152     if (C->failing())  return NULL;
1153     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1154 
1155     // Copy data from the Ideal SafePoint to the machine version
1156     mcall = m->as_MachCall();
1157 
1158     mcall->set_tf(         call->tf());
1159     mcall->set_entry_point(call->entry_point());
1160     mcall->set_cnt(        call->cnt());
1161 
1162     if( mcall->is_MachCallJava() ) {
1163       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1164       const CallJavaNode *call_java =  call->as_CallJava();
1165       method = call_java->method();
1166       mcall_java->_method = method;
1167       mcall_java->_bci = call_java->_bci;
1168       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1169       is_method_handle_invoke = call_java->is_method_handle_invoke();
1170       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1171       if (is_method_handle_invoke) {
1172         C->set_has_method_handle_invokes(true);
1173       }
1174       if( mcall_java->is_MachCallStaticJava() )
1175         mcall_java->as_MachCallStaticJava()->_name =
1176          call_java->as_CallStaticJava()->_name;
1177       if( mcall_java->is_MachCallDynamicJava() )
1178         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1179          call_java->as_CallDynamicJava()->_vtable_index;
1180     }
1181     else if( mcall->is_MachCallRuntime() ) {
1182       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1183     }
1184     msfpt = mcall;
1185   }
1186   // This is a non-call safepoint
1187   else {
1188     call = NULL;
1189     domain = NULL;
1190     MachNode *mn = match_tree(sfpt);
1191     if (C->failing())  return NULL;
1192     msfpt = mn->as_MachSafePoint();
1193     cnt = TypeFunc::Parms;
1194   }
1195 
1196   // Advertise the correct memory effects (for anti-dependence computation).
1197   msfpt->set_adr_type(sfpt->adr_type());
1198 
1199   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1200   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1201   // Empty them all.
1202   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1203 
1204   // Do all the pre-defined non-Empty register masks
1205   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1206   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1207 
1208   // Place first outgoing argument can possibly be put.
1209   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1210   assert( is_even(begin_out_arg_area), "" );
1211   // Compute max outgoing register number per call site.
1212   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1213   // Calls to C may hammer extra stack slots above and beyond any arguments.
1214   // These are usually backing store for register arguments for varargs.
1215   if( call != NULL && call->is_CallRuntime() )
1216     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1217 
1218 
1219   // Do the normal argument list (parameters) register masks
1220   int argcnt = cnt - TypeFunc::Parms;
1221   if( argcnt > 0 ) {          // Skip it all if we have no args
1222     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1223     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1224     int i;
1225     for( i = 0; i < argcnt; i++ ) {
1226       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1227     }
1228     // V-call to pick proper calling convention
1229     call->calling_convention( sig_bt, parm_regs, argcnt );
1230 
1231 #ifdef ASSERT
1232     // Sanity check users' calling convention.  Really handy during
1233     // the initial porting effort.  Fairly expensive otherwise.
1234     { for (int i = 0; i<argcnt; i++) {
1235       if( !parm_regs[i].first()->is_valid() &&
1236           !parm_regs[i].second()->is_valid() ) continue;
1237       VMReg reg1 = parm_regs[i].first();
1238       VMReg reg2 = parm_regs[i].second();
1239       for (int j = 0; j < i; j++) {
1240         if( !parm_regs[j].first()->is_valid() &&
1241             !parm_regs[j].second()->is_valid() ) continue;
1242         VMReg reg3 = parm_regs[j].first();
1243         VMReg reg4 = parm_regs[j].second();
1244         if( !reg1->is_valid() ) {
1245           assert( !reg2->is_valid(), "valid halvsies" );
1246         } else if( !reg3->is_valid() ) {
1247           assert( !reg4->is_valid(), "valid halvsies" );
1248         } else {
1249           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1250           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1251           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1252           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1253           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1254           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1255         }
1256       }
1257     }
1258     }
1259 #endif
1260 
1261     // Visit each argument.  Compute its outgoing register mask.
1262     // Return results now can have 2 bits returned.
1263     // Compute max over all outgoing arguments both per call-site
1264     // and over the entire method.
1265     for( i = 0; i < argcnt; i++ ) {
1266       // Address of incoming argument mask to fill in
1267       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1268       if( !parm_regs[i].first()->is_valid() &&
1269           !parm_regs[i].second()->is_valid() ) {
1270         continue;               // Avoid Halves
1271       }
1272       // Grab first register, adjust stack slots and insert in mask.
1273       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1274       if (OptoReg::is_valid(reg1))
1275         rm->Insert( reg1 );
1276       // Grab second register (if any), adjust stack slots and insert in mask.
1277       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1278       if (OptoReg::is_valid(reg2))
1279         rm->Insert( reg2 );
1280     } // End of for all arguments
1281 
1282     // Compute number of stack slots needed to restore stack in case of
1283     // Pascal-style argument popping.
1284     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1285   }
1286 
1287   // Compute the max stack slot killed by any call.  These will not be
1288   // available for debug info, and will be used to adjust FIRST_STACK_mask
1289   // after all call sites have been visited.
1290   if( _out_arg_limit < out_arg_limit_per_call)
1291     _out_arg_limit = out_arg_limit_per_call;
1292 
1293   if (mcall) {
1294     // Kill the outgoing argument area, including any non-argument holes and
1295     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1296     // Since the max-per-method covers the max-per-call-site and debug info
1297     // is excluded on the max-per-method basis, debug info cannot land in
1298     // this killed area.
1299     uint r_cnt = mcall->tf()->range()->cnt();
1300     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1301     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1302       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1303     } else {
1304       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1305         proj->_rout.Insert(OptoReg::Name(i));
1306     }
1307     if (proj->_rout.is_NotEmpty()) {
1308       push_projection(proj);
1309     }
1310   }
1311   // Transfer the safepoint information from the call to the mcall
1312   // Move the JVMState list
1313   msfpt->set_jvms(sfpt->jvms());
1314   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1315     jvms->set_map(sfpt);
1316   }
1317 
1318   // Debug inputs begin just after the last incoming parameter
1319   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1320           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1321 
1322   // Move the OopMap
1323   msfpt->_oop_map = sfpt->_oop_map;
1324 
1325   // Registers killed by the call are set in the local scheduling pass
1326   // of Global Code Motion.
1327   return msfpt;
1328 }
1329 
1330 //---------------------------match_tree----------------------------------------
1331 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1332 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1333 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1334 // a Load's result RegMask for memoization in idealreg2regmask[]
1335 MachNode *Matcher::match_tree( const Node *n ) {
1336   assert( n->Opcode() != Op_Phi, "cannot match" );
1337   assert( !n->is_block_start(), "cannot match" );
1338   // Set the mark for all locally allocated State objects.
1339   // When this call returns, the _states_arena arena will be reset
1340   // freeing all State objects.
1341   ResourceMark rm( &_states_arena );
1342 
1343   LabelRootDepth = 0;
1344 
1345   // StoreNodes require their Memory input to match any LoadNodes
1346   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1347 #ifdef ASSERT
1348   Node* save_mem_node = _mem_node;
1349   _mem_node = n->is_Store() ? (Node*)n : NULL;
1350 #endif
1351   // State object for root node of match tree
1352   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1353   State *s = new (&_states_arena) State;
1354   s->_kids[0] = NULL;
1355   s->_kids[1] = NULL;
1356   s->_leaf = (Node*)n;
1357   // Label the input tree, allocating labels from top-level arena
1358   Label_Root( n, s, n->in(0), mem );
1359   if (C->failing())  return NULL;
1360 
1361   // The minimum cost match for the whole tree is found at the root State
1362   uint mincost = max_juint;
1363   uint cost = max_juint;
1364   uint i;
1365   for( i = 0; i < NUM_OPERANDS; i++ ) {
1366     if( s->valid(i) &&                // valid entry and
1367         s->_cost[i] < cost &&         // low cost and
1368         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1369       cost = s->_cost[mincost=i];
1370   }
1371   if (mincost == max_juint) {
1372 #ifndef PRODUCT
1373     tty->print("No matching rule for:");
1374     s->dump();
1375 #endif
1376     Matcher::soft_match_failure();
1377     return NULL;
1378   }
1379   // Reduce input tree based upon the state labels to machine Nodes
1380   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1381 #ifdef ASSERT
1382   _old2new_map.map(n->_idx, m);
1383   _new2old_map.map(m->_idx, (Node*)n);
1384 #endif
1385 
1386   // Add any Matcher-ignored edges
1387   uint cnt = n->req();
1388   uint start = 1;
1389   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1390   if( n->is_AddP() ) {
1391     assert( mem == (Node*)1, "" );
1392     start = AddPNode::Base+1;
1393   }
1394   for( i = start; i < cnt; i++ ) {
1395     if( !n->match_edge(i) ) {
1396       if( i < m->req() )
1397         m->ins_req( i, n->in(i) );
1398       else
1399         m->add_req( n->in(i) );
1400     }
1401   }
1402 
1403   debug_only( _mem_node = save_mem_node; )
1404   return m;
1405 }
1406 
1407 
1408 //------------------------------match_into_reg---------------------------------
1409 // Choose to either match this Node in a register or part of the current
1410 // match tree.  Return true for requiring a register and false for matching
1411 // as part of the current match tree.
1412 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1413 
1414   const Type *t = m->bottom_type();
1415 
1416   if (t->singleton()) {
1417     // Never force constants into registers.  Allow them to match as
1418     // constants or registers.  Copies of the same value will share
1419     // the same register.  See find_shared_node.
1420     return false;
1421   } else {                      // Not a constant
1422     // Stop recursion if they have different Controls.
1423     Node* m_control = m->in(0);
1424     // Control of load's memory can post-dominates load's control.
1425     // So use it since load can't float above its memory.
1426     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1427     if (control && m_control && control != m_control && control != mem_control) {
1428 
1429       // Actually, we can live with the most conservative control we
1430       // find, if it post-dominates the others.  This allows us to
1431       // pick up load/op/store trees where the load can float a little
1432       // above the store.
1433       Node *x = control;
1434       const uint max_scan = 6;  // Arbitrary scan cutoff
1435       uint j;
1436       for (j=0; j<max_scan; j++) {
1437         if (x->is_Region())     // Bail out at merge points
1438           return true;
1439         x = x->in(0);
1440         if (x == m_control)     // Does 'control' post-dominate
1441           break;                // m->in(0)?  If so, we can use it
1442         if (x == mem_control)   // Does 'control' post-dominate
1443           break;                // mem_control?  If so, we can use it
1444       }
1445       if (j == max_scan)        // No post-domination before scan end?
1446         return true;            // Then break the match tree up
1447     }
1448     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1449         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1450       // These are commonly used in address expressions and can
1451       // efficiently fold into them on X64 in some cases.
1452       return false;
1453     }
1454   }
1455 
1456   // Not forceable cloning.  If shared, put it into a register.
1457   return shared;
1458 }
1459 
1460 
1461 //------------------------------Instruction Selection--------------------------
1462 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1463 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1464 // things the Matcher does not match (e.g., Memory), and things with different
1465 // Controls (hence forced into different blocks).  We pass in the Control
1466 // selected for this entire State tree.
1467 
1468 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1469 // Store and the Load must have identical Memories (as well as identical
1470 // pointers).  Since the Matcher does not have anything for Memory (and
1471 // does not handle DAGs), I have to match the Memory input myself.  If the
1472 // Tree root is a Store, I require all Loads to have the identical memory.
1473 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1474   // Since Label_Root is a recursive function, its possible that we might run
1475   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1476   LabelRootDepth++;
1477   if (LabelRootDepth > MaxLabelRootDepth) {
1478     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1479     return NULL;
1480   }
1481   uint care = 0;                // Edges matcher cares about
1482   uint cnt = n->req();
1483   uint i = 0;
1484 
1485   // Examine children for memory state
1486   // Can only subsume a child into your match-tree if that child's memory state
1487   // is not modified along the path to another input.
1488   // It is unsafe even if the other inputs are separate roots.
1489   Node *input_mem = NULL;
1490   for( i = 1; i < cnt; i++ ) {
1491     if( !n->match_edge(i) ) continue;
1492     Node *m = n->in(i);         // Get ith input
1493     assert( m, "expect non-null children" );
1494     if( m->is_Load() ) {
1495       if( input_mem == NULL ) {
1496         input_mem = m->in(MemNode::Memory);
1497       } else if( input_mem != m->in(MemNode::Memory) ) {
1498         input_mem = NodeSentinel;
1499       }
1500     }
1501   }
1502 
1503   for( i = 1; i < cnt; i++ ){// For my children
1504     if( !n->match_edge(i) ) continue;
1505     Node *m = n->in(i);         // Get ith input
1506     // Allocate states out of a private arena
1507     State *s = new (&_states_arena) State;
1508     svec->_kids[care++] = s;
1509     assert( care <= 2, "binary only for now" );
1510 
1511     // Recursively label the State tree.
1512     s->_kids[0] = NULL;
1513     s->_kids[1] = NULL;
1514     s->_leaf = m;
1515 
1516     // Check for leaves of the State Tree; things that cannot be a part of
1517     // the current tree.  If it finds any, that value is matched as a
1518     // register operand.  If not, then the normal matching is used.
1519     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1520         //
1521         // Stop recursion if this is LoadNode and the root of this tree is a
1522         // StoreNode and the load & store have different memories.
1523         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1524         // Can NOT include the match of a subtree when its memory state
1525         // is used by any of the other subtrees
1526         (input_mem == NodeSentinel) ) {
1527 #ifndef PRODUCT
1528       // Print when we exclude matching due to different memory states at input-loads
1529       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1530         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1531         tty->print_cr("invalid input_mem");
1532       }
1533 #endif
1534       // Switch to a register-only opcode; this value must be in a register
1535       // and cannot be subsumed as part of a larger instruction.
1536       s->DFA( m->ideal_reg(), m );
1537 
1538     } else {
1539       // If match tree has no control and we do, adopt it for entire tree
1540       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1541         control = m->in(0);         // Pick up control
1542       // Else match as a normal part of the match tree.
1543       control = Label_Root(m,s,control,mem);
1544       if (C->failing()) return NULL;
1545     }
1546   }
1547 
1548 
1549   // Call DFA to match this node, and return
1550   svec->DFA( n->Opcode(), n );
1551 
1552 #ifdef ASSERT
1553   uint x;
1554   for( x = 0; x < _LAST_MACH_OPER; x++ )
1555     if( svec->valid(x) )
1556       break;
1557 
1558   if (x >= _LAST_MACH_OPER) {
1559     n->dump();
1560     svec->dump();
1561     assert( false, "bad AD file" );
1562   }
1563 #endif
1564   return control;
1565 }
1566 
1567 
1568 // Con nodes reduced using the same rule can share their MachNode
1569 // which reduces the number of copies of a constant in the final
1570 // program.  The register allocator is free to split uses later to
1571 // split live ranges.
1572 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1573   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1574 
1575   // See if this Con has already been reduced using this rule.
1576   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1577   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1578   if (last != NULL && rule == last->rule()) {
1579     // Don't expect control change for DecodeN
1580     if (leaf->is_DecodeNarrowPtr())
1581       return last;
1582     // Get the new space root.
1583     Node* xroot = new_node(C->root());
1584     if (xroot == NULL) {
1585       // This shouldn't happen give the order of matching.
1586       return NULL;
1587     }
1588 
1589     // Shared constants need to have their control be root so they
1590     // can be scheduled properly.
1591     Node* control = last->in(0);
1592     if (control != xroot) {
1593       if (control == NULL || control == C->root()) {
1594         last->set_req(0, xroot);
1595       } else {
1596         assert(false, "unexpected control");
1597         return NULL;
1598       }
1599     }
1600     return last;
1601   }
1602   return NULL;
1603 }
1604 
1605 
1606 //------------------------------ReduceInst-------------------------------------
1607 // Reduce a State tree (with given Control) into a tree of MachNodes.
1608 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1609 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1610 // Each MachNode has a number of complicated MachOper operands; each
1611 // MachOper also covers a further tree of Ideal Nodes.
1612 
1613 // The root of the Ideal match tree is always an instruction, so we enter
1614 // the recursion here.  After building the MachNode, we need to recurse
1615 // the tree checking for these cases:
1616 // (1) Child is an instruction -
1617 //     Build the instruction (recursively), add it as an edge.
1618 //     Build a simple operand (register) to hold the result of the instruction.
1619 // (2) Child is an interior part of an instruction -
1620 //     Skip over it (do nothing)
1621 // (3) Child is the start of a operand -
1622 //     Build the operand, place it inside the instruction
1623 //     Call ReduceOper.
1624 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1625   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1626 
1627   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1628   if (shared_node != NULL) {
1629     return shared_node;
1630   }
1631 
1632   // Build the object to represent this state & prepare for recursive calls
1633   MachNode *mach = s->MachNodeGenerator( rule, C );
1634   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1635   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1636   Node *leaf = s->_leaf;
1637   // Check for instruction or instruction chain rule
1638   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1639     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1640            "duplicating node that's already been matched");
1641     // Instruction
1642     mach->add_req( leaf->in(0) ); // Set initial control
1643     // Reduce interior of complex instruction
1644     ReduceInst_Interior( s, rule, mem, mach, 1 );
1645   } else {
1646     // Instruction chain rules are data-dependent on their inputs
1647     mach->add_req(0);             // Set initial control to none
1648     ReduceInst_Chain_Rule( s, rule, mem, mach );
1649   }
1650 
1651   // If a Memory was used, insert a Memory edge
1652   if( mem != (Node*)1 ) {
1653     mach->ins_req(MemNode::Memory,mem);
1654 #ifdef ASSERT
1655     // Verify adr type after matching memory operation
1656     const MachOper* oper = mach->memory_operand();
1657     if (oper != NULL && oper != (MachOper*)-1) {
1658       // It has a unique memory operand.  Find corresponding ideal mem node.
1659       Node* m = NULL;
1660       if (leaf->is_Mem()) {
1661         m = leaf;
1662       } else {
1663         m = _mem_node;
1664         assert(m != NULL && m->is_Mem(), "expecting memory node");
1665       }
1666       const Type* mach_at = mach->adr_type();
1667       // DecodeN node consumed by an address may have different type
1668       // then its input. Don't compare types for such case.
1669       if (m->adr_type() != mach_at &&
1670           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1671            m->in(MemNode::Address)->is_AddP() &&
1672            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1673            m->in(MemNode::Address)->is_AddP() &&
1674            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1675            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1676         mach_at = m->adr_type();
1677       }
1678       if (m->adr_type() != mach_at) {
1679         m->dump();
1680         tty->print_cr("mach:");
1681         mach->dump(1);
1682       }
1683       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1684     }
1685 #endif
1686   }
1687 
1688   // If the _leaf is an AddP, insert the base edge
1689   if (leaf->is_AddP()) {
1690     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1691   }
1692 
1693   uint number_of_projections_prior = number_of_projections();
1694 
1695   // Perform any 1-to-many expansions required
1696   MachNode *ex = mach->Expand(s, _projection_list, mem);
1697   if (ex != mach) {
1698     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1699     if( ex->in(1)->is_Con() )
1700       ex->in(1)->set_req(0, C->root());
1701     // Remove old node from the graph
1702     for( uint i=0; i<mach->req(); i++ ) {
1703       mach->set_req(i,NULL);
1704     }
1705 #ifdef ASSERT
1706     _new2old_map.map(ex->_idx, s->_leaf);
1707 #endif
1708   }
1709 
1710   // PhaseChaitin::fixup_spills will sometimes generate spill code
1711   // via the matcher.  By the time, nodes have been wired into the CFG,
1712   // and any further nodes generated by expand rules will be left hanging
1713   // in space, and will not get emitted as output code.  Catch this.
1714   // Also, catch any new register allocation constraints ("projections")
1715   // generated belatedly during spill code generation.
1716   if (_allocation_started) {
1717     guarantee(ex == mach, "no expand rules during spill generation");
1718     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1719   }
1720 
1721   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1722     // Record the con for sharing
1723     _shared_nodes.map(leaf->_idx, ex);
1724   }
1725 
1726   return ex;
1727 }
1728 
1729 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1730   // 'op' is what I am expecting to receive
1731   int op = _leftOp[rule];
1732   // Operand type to catch childs result
1733   // This is what my child will give me.
1734   int opnd_class_instance = s->_rule[op];
1735   // Choose between operand class or not.
1736   // This is what I will receive.
1737   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1738   // New rule for child.  Chase operand classes to get the actual rule.
1739   int newrule = s->_rule[catch_op];
1740 
1741   if( newrule < NUM_OPERANDS ) {
1742     // Chain from operand or operand class, may be output of shared node
1743     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1744             "Bad AD file: Instruction chain rule must chain from operand");
1745     // Insert operand into array of operands for this instruction
1746     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1747 
1748     ReduceOper( s, newrule, mem, mach );
1749   } else {
1750     // Chain from the result of an instruction
1751     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1752     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1753     Node *mem1 = (Node*)1;
1754     debug_only(Node *save_mem_node = _mem_node;)
1755     mach->add_req( ReduceInst(s, newrule, mem1) );
1756     debug_only(_mem_node = save_mem_node;)
1757   }
1758   return;
1759 }
1760 
1761 
1762 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1763   if( s->_leaf->is_Load() ) {
1764     Node *mem2 = s->_leaf->in(MemNode::Memory);
1765     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1766     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1767     mem = mem2;
1768   }
1769   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1770     if( mach->in(0) == NULL )
1771       mach->set_req(0, s->_leaf->in(0));
1772   }
1773 
1774   // Now recursively walk the state tree & add operand list.
1775   for( uint i=0; i<2; i++ ) {   // binary tree
1776     State *newstate = s->_kids[i];
1777     if( newstate == NULL ) break;      // Might only have 1 child
1778     // 'op' is what I am expecting to receive
1779     int op;
1780     if( i == 0 ) {
1781       op = _leftOp[rule];
1782     } else {
1783       op = _rightOp[rule];
1784     }
1785     // Operand type to catch childs result
1786     // This is what my child will give me.
1787     int opnd_class_instance = newstate->_rule[op];
1788     // Choose between operand class or not.
1789     // This is what I will receive.
1790     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1791     // New rule for child.  Chase operand classes to get the actual rule.
1792     int newrule = newstate->_rule[catch_op];
1793 
1794     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1795       // Operand/operandClass
1796       // Insert operand into array of operands for this instruction
1797       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1798       ReduceOper( newstate, newrule, mem, mach );
1799 
1800     } else {                    // Child is internal operand or new instruction
1801       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1802         // internal operand --> call ReduceInst_Interior
1803         // Interior of complex instruction.  Do nothing but recurse.
1804         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1805       } else {
1806         // instruction --> call build operand(  ) to catch result
1807         //             --> ReduceInst( newrule )
1808         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1809         Node *mem1 = (Node*)1;
1810         debug_only(Node *save_mem_node = _mem_node;)
1811         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1812         debug_only(_mem_node = save_mem_node;)
1813       }
1814     }
1815     assert( mach->_opnds[num_opnds-1], "" );
1816   }
1817   return num_opnds;
1818 }
1819 
1820 // This routine walks the interior of possible complex operands.
1821 // At each point we check our children in the match tree:
1822 // (1) No children -
1823 //     We are a leaf; add _leaf field as an input to the MachNode
1824 // (2) Child is an internal operand -
1825 //     Skip over it ( do nothing )
1826 // (3) Child is an instruction -
1827 //     Call ReduceInst recursively and
1828 //     and instruction as an input to the MachNode
1829 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1830   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1831   State *kid = s->_kids[0];
1832   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1833 
1834   // Leaf?  And not subsumed?
1835   if( kid == NULL && !_swallowed[rule] ) {
1836     mach->add_req( s->_leaf );  // Add leaf pointer
1837     return;                     // Bail out
1838   }
1839 
1840   if( s->_leaf->is_Load() ) {
1841     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1842     mem = s->_leaf->in(MemNode::Memory);
1843     debug_only(_mem_node = s->_leaf;)
1844   }
1845   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1846     if( !mach->in(0) )
1847       mach->set_req(0,s->_leaf->in(0));
1848     else {
1849       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1850     }
1851   }
1852 
1853   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1854     int newrule;
1855     if( i == 0)
1856       newrule = kid->_rule[_leftOp[rule]];
1857     else
1858       newrule = kid->_rule[_rightOp[rule]];
1859 
1860     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1861       // Internal operand; recurse but do nothing else
1862       ReduceOper( kid, newrule, mem, mach );
1863 
1864     } else {                    // Child is a new instruction
1865       // Reduce the instruction, and add a direct pointer from this
1866       // machine instruction to the newly reduced one.
1867       Node *mem1 = (Node*)1;
1868       debug_only(Node *save_mem_node = _mem_node;)
1869       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1870       debug_only(_mem_node = save_mem_node;)
1871     }
1872   }
1873 }
1874 
1875 
1876 // -------------------------------------------------------------------------
1877 // Java-Java calling convention
1878 // (what you use when Java calls Java)
1879 
1880 //------------------------------find_receiver----------------------------------
1881 // For a given signature, return the OptoReg for parameter 0.
1882 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1883   VMRegPair regs;
1884   BasicType sig_bt = T_OBJECT;
1885   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1886   // Return argument 0 register.  In the LP64 build pointers
1887   // take 2 registers, but the VM wants only the 'main' name.
1888   return OptoReg::as_OptoReg(regs.first());
1889 }
1890 
1891 // A method-klass-holder may be passed in the inline_cache_reg
1892 // and then expanded into the inline_cache_reg and a method_oop register
1893 //   defined in ad_<arch>.cpp
1894 
1895 
1896 //------------------------------find_shared------------------------------------
1897 // Set bits if Node is shared or otherwise a root
1898 void Matcher::find_shared( Node *n ) {
1899   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1900   MStack mstack(C->unique() * 2);
1901   // Mark nodes as address_visited if they are inputs to an address expression
1902   VectorSet address_visited(Thread::current()->resource_area());
1903   mstack.push(n, Visit);     // Don't need to pre-visit root node
1904   while (mstack.is_nonempty()) {
1905     n = mstack.node();       // Leave node on stack
1906     Node_State nstate = mstack.state();
1907     uint nop = n->Opcode();
1908     if (nstate == Pre_Visit) {
1909       if (address_visited.test(n->_idx)) { // Visited in address already?
1910         // Flag as visited and shared now.
1911         set_visited(n);
1912       }
1913       if (is_visited(n)) {   // Visited already?
1914         // Node is shared and has no reason to clone.  Flag it as shared.
1915         // This causes it to match into a register for the sharing.
1916         set_shared(n);       // Flag as shared and
1917         mstack.pop();        // remove node from stack
1918         continue;
1919       }
1920       nstate = Visit; // Not already visited; so visit now
1921     }
1922     if (nstate == Visit) {
1923       mstack.set_state(Post_Visit);
1924       set_visited(n);   // Flag as visited now
1925       bool mem_op = false;
1926 
1927       switch( nop ) {  // Handle some opcodes special
1928       case Op_Phi:             // Treat Phis as shared roots
1929       case Op_Parm:
1930       case Op_Proj:            // All handled specially during matching
1931       case Op_SafePointScalarObject:
1932         set_shared(n);
1933         set_dontcare(n);
1934         break;
1935       case Op_If:
1936       case Op_CountedLoopEnd:
1937         mstack.set_state(Alt_Post_Visit); // Alternative way
1938         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1939         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1940         // Bool and CmpX side-by-side, because it can only get at constants
1941         // that are at the leaves of Match trees, and the Bool's condition acts
1942         // as a constant here.
1943         mstack.push(n->in(1), Visit);         // Clone the Bool
1944         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1945         continue; // while (mstack.is_nonempty())
1946       case Op_ConvI2D:         // These forms efficiently match with a prior
1947       case Op_ConvI2F:         //   Load but not a following Store
1948         if( n->in(1)->is_Load() &&        // Prior load
1949             n->outcnt() == 1 &&           // Not already shared
1950             n->unique_out()->is_Store() ) // Following store
1951           set_shared(n);       // Force it to be a root
1952         break;
1953       case Op_ReverseBytesI:
1954       case Op_ReverseBytesL:
1955         if( n->in(1)->is_Load() &&        // Prior load
1956             n->outcnt() == 1 )            // Not already shared
1957           set_shared(n);                  // Force it to be a root
1958         break;
1959       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1960       case Op_IfFalse:
1961       case Op_IfTrue:
1962       case Op_MachProj:
1963       case Op_MergeMem:
1964       case Op_Catch:
1965       case Op_CatchProj:
1966       case Op_CProj:
1967       case Op_FlagsProj:
1968       case Op_JumpProj:
1969       case Op_JProj:
1970       case Op_NeverBranch:
1971         set_dontcare(n);
1972         break;
1973       case Op_Jump:
1974         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
1975         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1976         continue;                             // while (mstack.is_nonempty())
1977       case Op_StrComp:
1978       case Op_StrEquals:
1979       case Op_StrIndexOf:
1980       case Op_AryEq:
1981       case Op_EncodeISOArray:
1982         set_shared(n); // Force result into register (it will be anyways)
1983         break;
1984       case Op_ConP: {  // Convert pointers above the centerline to NUL
1985         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1986         const TypePtr* tp = tn->type()->is_ptr();
1987         if (tp->_ptr == TypePtr::AnyNull) {
1988           tn->set_type(TypePtr::NULL_PTR);
1989         }
1990         break;
1991       }
1992       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1993         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1994         const TypePtr* tp = tn->type()->make_ptr();
1995         if (tp && tp->_ptr == TypePtr::AnyNull) {
1996           tn->set_type(TypeNarrowOop::NULL_PTR);
1997         }
1998         break;
1999       }
2000       case Op_Binary:         // These are introduced in the Post_Visit state.
2001         ShouldNotReachHere();
2002         break;
2003       case Op_ClearArray:
2004       case Op_SafePoint:
2005         mem_op = true;
2006         break;
2007       default:
2008         if( n->is_Store() ) {
2009           // Do match stores, despite no ideal reg
2010           mem_op = true;
2011           break;
2012         }
2013         if( n->is_Mem() ) { // Loads and LoadStores
2014           mem_op = true;
2015           // Loads must be root of match tree due to prior load conflict
2016           if( C->subsume_loads() == false )
2017             set_shared(n);
2018         }
2019         // Fall into default case
2020         if( !n->ideal_reg() )
2021           set_dontcare(n);  // Unmatchable Nodes
2022       } // end_switch
2023 
2024       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2025         Node *m = n->in(i); // Get ith input
2026         if (m == NULL) continue;  // Ignore NULLs
2027         uint mop = m->Opcode();
2028 
2029         // Only push the input of a FlagsProj if it only has the FlagsProj
2030         // as output. Otherwise all inputs to the node that produces FlagsProj
2031         // will be marked as shared.
2032         if (n->is_FlagsProj()) {
2033           if (m->outcnt() == 1) {
2034             mstack.push(m, Visit);
2035           }
2036           continue; // for(int i = ...)
2037         }
2038         // Must clone all producers of flags, or we will not match correctly.
2039         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2040         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2041         // are also there, so we may match a float-branch to int-flags and
2042         // expect the allocator to haul the flags from the int-side to the
2043         // fp-side.  No can do.
2044         if( _must_clone[mop] ) {
2045           mstack.push(m, Visit);
2046           continue; // for(int i = ...)
2047         }
2048 
2049         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2050           // Bases used in addresses must be shared but since
2051           // they are shared through a DecodeN they may appear
2052           // to have a single use so force sharing here.
2053           set_shared(m->in(AddPNode::Base)->in(1));
2054         }
2055 
2056         // Clone addressing expressions as they are "free" in memory access instructions
2057         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2058           // Some inputs for address expression are not put on stack
2059           // to avoid marking them as shared and forcing them into register
2060           // if they are used only in address expressions.
2061           // But they should be marked as shared if there are other uses
2062           // besides address expressions.
2063 
2064           Node *off = m->in(AddPNode::Offset);
2065           if( off->is_Con() &&
2066               // When there are other uses besides address expressions
2067               // put it on stack and mark as shared.
2068               !is_visited(m) ) {
2069             address_visited.test_set(m->_idx); // Flag as address_visited
2070             Node *adr = m->in(AddPNode::Address);
2071 
2072             // Intel, ARM and friends can handle 2 adds in addressing mode
2073             if( clone_shift_expressions && adr->is_AddP() &&
2074                 // AtomicAdd is not an addressing expression.
2075                 // Cheap to find it by looking for screwy base.
2076                 !adr->in(AddPNode::Base)->is_top() &&
2077                 // Are there other uses besides address expressions?
2078                 !is_visited(adr) ) {
2079               address_visited.set(adr->_idx); // Flag as address_visited
2080               Node *shift = adr->in(AddPNode::Offset);
2081               // Check for shift by small constant as well
2082               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2083                   shift->in(2)->get_int() <= 3 &&
2084                   // Are there other uses besides address expressions?
2085                   !is_visited(shift) ) {
2086                 address_visited.set(shift->_idx); // Flag as address_visited
2087                 mstack.push(shift->in(2), Visit);
2088                 Node *conv = shift->in(1);
2089 #ifdef _LP64
2090                 // Allow Matcher to match the rule which bypass
2091                 // ConvI2L operation for an array index on LP64
2092                 // if the index value is positive.
2093                 if( conv->Opcode() == Op_ConvI2L &&
2094                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2095                     // Are there other uses besides address expressions?
2096                     !is_visited(conv) ) {
2097                   address_visited.set(conv->_idx); // Flag as address_visited
2098                   mstack.push(conv->in(1), Pre_Visit);
2099                 } else
2100 #endif
2101                 mstack.push(conv, Pre_Visit);
2102               } else {
2103                 mstack.push(shift, Pre_Visit);
2104               }
2105               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2106               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2107             } else {  // Sparc, Alpha, PPC and friends
2108               mstack.push(adr, Pre_Visit);
2109             }
2110 
2111             // Clone X+offset as it also folds into most addressing expressions
2112             mstack.push(off, Visit);
2113             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2114             continue; // for(int i = ...)
2115           } // if( off->is_Con() )
2116         }   // if( mem_op &&
2117         mstack.push(m, Pre_Visit);
2118       }     // for(int i = ...)
2119     }
2120     else if (nstate == Alt_Post_Visit) {
2121       mstack.pop(); // Remove node from stack
2122       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2123       // shared and all users of the Bool need to move the Cmp in parallel.
2124       // This leaves both the Bool and the If pointing at the Cmp.  To
2125       // prevent the Matcher from trying to Match the Cmp along both paths
2126       // BoolNode::match_edge always returns a zero.
2127 
2128       // We reorder the Op_If in a pre-order manner, so we can visit without
2129       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2130       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2131     }
2132     else if (nstate == Post_Visit) {
2133       mstack.pop(); // Remove node from stack
2134 
2135       // Now hack a few special opcodes
2136       switch( n->Opcode() ) {       // Handle some opcodes special
2137       case Op_StorePConditional:
2138       case Op_StoreIConditional:
2139       case Op_StoreLConditional:
2140       case Op_CompareAndSwapI:
2141       case Op_CompareAndSwapL:
2142       case Op_CompareAndSwapP:
2143       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2144         Node *newval = n->in(MemNode::ValueIn );
2145         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2146         Node *pair = new (C) BinaryNode( oldval, newval );
2147         n->set_req(MemNode::ValueIn,pair);
2148         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2149         break;
2150       }
2151       case Op_CMoveD:              // Convert trinary to binary-tree
2152       case Op_CMoveF:
2153       case Op_CMoveI:
2154       case Op_CMoveL:
2155       case Op_CMoveN:
2156       case Op_CMoveP: {
2157         // Restructure into a binary tree for Matching.  It's possible that
2158         // we could move this code up next to the graph reshaping for IfNodes
2159         // or vice-versa, but I do not want to debug this for Ladybird.
2160         // 10/2/2000 CNC.
2161         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
2162         n->set_req(1,pair1);
2163         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
2164         n->set_req(2,pair2);
2165         n->del_req(3);
2166         break;
2167       }
2168       case Op_LoopLimit: {
2169         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
2170         n->set_req(1,pair1);
2171         n->set_req(2,n->in(3));
2172         n->del_req(3);
2173         break;
2174       }
2175       case Op_StrEquals: {
2176         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2177         n->set_req(2,pair1);
2178         n->set_req(3,n->in(4));
2179         n->del_req(4);
2180         break;
2181       }
2182       case Op_StrComp:
2183       case Op_StrIndexOf: {
2184         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2185         n->set_req(2,pair1);
2186         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
2187         n->set_req(3,pair2);
2188         n->del_req(5);
2189         n->del_req(4);
2190         break;
2191       }
2192       case Op_EncodeISOArray: {
2193         // Restructure into a binary tree for Matching.
2194         Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
2195         n->set_req(3, pair);
2196         n->del_req(4);
2197         break;
2198       }
2199       default:
2200         break;
2201       }
2202     }
2203     else {
2204       ShouldNotReachHere();
2205     }
2206   } // end of while (mstack.is_nonempty())
2207 }
2208 
2209 #ifdef ASSERT
2210 // machine-independent root to machine-dependent root
2211 void Matcher::dump_old2new_map() {
2212   _old2new_map.dump();
2213 }
2214 #endif
2215 
2216 //---------------------------collect_null_checks-------------------------------
2217 // Find null checks in the ideal graph; write a machine-specific node for
2218 // it.  Used by later implicit-null-check handling.  Actually collects
2219 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2220 // value being tested.
2221 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2222   Node *iff = proj->in(0);
2223   if( iff->Opcode() == Op_If ) {
2224     // During matching If's have Bool & Cmp side-by-side
2225     BoolNode *b = iff->in(1)->as_Bool();
2226     Node *cmp = iff->in(2);
2227     int opc = cmp->Opcode();
2228     if (opc != Op_CmpP && opc != Op_CmpN) return;
2229 
2230     const Type* ct = cmp->in(2)->bottom_type();
2231     if (ct == TypePtr::NULL_PTR ||
2232         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2233 
2234       bool push_it = false;
2235       if( proj->Opcode() == Op_IfTrue ) {
2236         extern int all_null_checks_found;
2237         all_null_checks_found++;
2238         if( b->_test._test == BoolTest::ne ) {
2239           push_it = true;
2240         }
2241       } else {
2242         assert( proj->Opcode() == Op_IfFalse, "" );
2243         if( b->_test._test == BoolTest::eq ) {
2244           push_it = true;
2245         }
2246       }
2247       if( push_it ) {
2248         _null_check_tests.push(proj);
2249         Node* val = cmp->in(1);
2250 #ifdef _LP64
2251         if (val->bottom_type()->isa_narrowoop() &&
2252             !Matcher::narrow_oop_use_complex_address()) {
2253           //
2254           // Look for DecodeN node which should be pinned to orig_proj.
2255           // On platforms (Sparc) which can not handle 2 adds
2256           // in addressing mode we have to keep a DecodeN node and
2257           // use it to do implicit NULL check in address.
2258           //
2259           // DecodeN node was pinned to non-null path (orig_proj) during
2260           // CastPP transformation in final_graph_reshaping_impl().
2261           //
2262           uint cnt = orig_proj->outcnt();
2263           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2264             Node* d = orig_proj->raw_out(i);
2265             if (d->is_DecodeN() && d->in(1) == val) {
2266               val = d;
2267               val->set_req(0, NULL); // Unpin now.
2268               // Mark this as special case to distinguish from
2269               // a regular case: CmpP(DecodeN, NULL).
2270               val = (Node*)(((intptr_t)val) | 1);
2271               break;
2272             }
2273           }
2274         }
2275 #endif
2276         _null_check_tests.push(val);
2277       }
2278     }
2279   }
2280 }
2281 
2282 //---------------------------validate_null_checks------------------------------
2283 // Its possible that the value being NULL checked is not the root of a match
2284 // tree.  If so, I cannot use the value in an implicit null check.
2285 void Matcher::validate_null_checks( ) {
2286   uint cnt = _null_check_tests.size();
2287   for( uint i=0; i < cnt; i+=2 ) {
2288     Node *test = _null_check_tests[i];
2289     Node *val = _null_check_tests[i+1];
2290     bool is_decoden = ((intptr_t)val) & 1;
2291     val = (Node*)(((intptr_t)val) & ~1);
2292     if (has_new_node(val)) {
2293       Node* new_val = new_node(val);
2294       if (is_decoden) {
2295         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2296         // Note: new_val may have a control edge if
2297         // the original ideal node DecodeN was matched before
2298         // it was unpinned in Matcher::collect_null_checks().
2299         // Unpin the mach node and mark it.
2300         new_val->set_req(0, NULL);
2301         new_val = (Node*)(((intptr_t)new_val) | 1);
2302       }
2303       // Is a match-tree root, so replace with the matched value
2304       _null_check_tests.map(i+1, new_val);
2305     } else {
2306       // Yank from candidate list
2307       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2308       _null_check_tests.map(i,_null_check_tests[--cnt]);
2309       _null_check_tests.pop();
2310       _null_check_tests.pop();
2311       i-=2;
2312     }
2313   }
2314 }
2315 
2316 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2317 // atomic instruction acting as a store_load barrier without any
2318 // intervening volatile load, and thus we don't need a barrier here.
2319 // We retain the Node to act as a compiler ordering barrier.
2320 bool Matcher::post_store_load_barrier(const Node* vmb) {
2321   Compile* C = Compile::current();
2322   assert(vmb->is_MemBar(), "");
2323   assert(vmb->Opcode() != Op_MemBarAcquire, "");
2324   const MemBarNode* membar = vmb->as_MemBar();
2325 
2326   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2327   Node* ctrl = NULL;
2328   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2329     Node* p = membar->fast_out(i);
2330     assert(p->is_Proj(), "only projections here");
2331     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2332         !C->node_arena()->contains(p)) { // Unmatched old-space only
2333       ctrl = p;
2334       break;
2335     }
2336   }
2337   assert((ctrl != NULL), "missing control projection");
2338 
2339   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2340     Node *x = ctrl->fast_out(j);
2341     int xop = x->Opcode();
2342 
2343     // We don't need current barrier if we see another or a lock
2344     // before seeing volatile load.
2345     //
2346     // Op_Fastunlock previously appeared in the Op_* list below.
2347     // With the advent of 1-0 lock operations we're no longer guaranteed
2348     // that a monitor exit operation contains a serializing instruction.
2349 
2350     if (xop == Op_MemBarVolatile ||
2351         xop == Op_CompareAndSwapL ||
2352         xop == Op_CompareAndSwapP ||
2353         xop == Op_CompareAndSwapN ||
2354         xop == Op_CompareAndSwapI) {
2355       return true;
2356     }
2357 
2358     // Op_FastLock previously appeared in the Op_* list above.
2359     // With biased locking we're no longer guaranteed that a monitor
2360     // enter operation contains a serializing instruction.
2361     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2362       return true;
2363     }
2364 
2365     if (x->is_MemBar()) {
2366       // We must retain this membar if there is an upcoming volatile
2367       // load, which will be followed by acquire membar.
2368       if (xop == Op_MemBarAcquire) {
2369         return false;
2370       } else {
2371         // For other kinds of barriers, check by pretending we
2372         // are them, and seeing if we can be removed.
2373         return post_store_load_barrier(x->as_MemBar());
2374       }
2375     }
2376 
2377     // probably not necessary to check for these
2378     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2379       return false;
2380     }
2381   }
2382   return false;
2383 }
2384 
2385 //=============================================================================
2386 //---------------------------State---------------------------------------------
2387 State::State(void) {
2388 #ifdef ASSERT
2389   _id = 0;
2390   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2391   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2392   //memset(_cost, -1, sizeof(_cost));
2393   //memset(_rule, -1, sizeof(_rule));
2394 #endif
2395   memset(_valid, 0, sizeof(_valid));
2396 }
2397 
2398 #ifdef ASSERT
2399 State::~State() {
2400   _id = 99;
2401   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2402   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2403   memset(_cost, -3, sizeof(_cost));
2404   memset(_rule, -3, sizeof(_rule));
2405 }
2406 #endif
2407 
2408 #ifndef PRODUCT
2409 //---------------------------dump----------------------------------------------
2410 void State::dump() {
2411   tty->print("\n");
2412   dump(0);
2413 }
2414 
2415 void State::dump(int depth) {
2416   for( int j = 0; j < depth; j++ )
2417     tty->print("   ");
2418   tty->print("--N: ");
2419   _leaf->dump();
2420   uint i;
2421   for( i = 0; i < _LAST_MACH_OPER; i++ )
2422     // Check for valid entry
2423     if( valid(i) ) {
2424       for( int j = 0; j < depth; j++ )
2425         tty->print("   ");
2426         assert(_cost[i] != max_juint, "cost must be a valid value");
2427         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2428         tty->print_cr("%s  %d  %s",
2429                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2430       }
2431   tty->print_cr("");
2432 
2433   for( i=0; i<2; i++ )
2434     if( _kids[i] )
2435       _kids[i]->dump(depth+1);
2436 }
2437 #endif