1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  58   _is_lval = false;
  59   _target = target;
  60   switch (rtype) {
  61   case relocInfo::oop_type:
  62   case relocInfo::metadata_type:
  63     // Oops are a special case. Normally they would be their own section
  64     // but in cases like icBuffer they are literals in the code stream that
  65     // we don't have a section for. We use none so that we get a literal address
  66     // which is always patchable.
  67     break;
  68   case relocInfo::external_word_type:
  69     _rspec = external_word_Relocation::spec(target);
  70     break;
  71   case relocInfo::internal_word_type:
  72     _rspec = internal_word_Relocation::spec(target);
  73     break;
  74   case relocInfo::opt_virtual_call_type:
  75     _rspec = opt_virtual_call_Relocation::spec();
  76     break;
  77   case relocInfo::static_call_type:
  78     _rspec = static_call_Relocation::spec();
  79     break;
  80   case relocInfo::runtime_call_type:
  81     _rspec = runtime_call_Relocation::spec();
  82     break;
  83   case relocInfo::poll_type:
  84   case relocInfo::poll_return_type:
  85     _rspec = Relocation::spec_simple(rtype);
  86     break;
  87   case relocInfo::none:
  88     break;
  89   default:
  90     ShouldNotReachHere();
  91     break;
  92   }
  93 }
  94 
  95 // Implementation of Address
  96 
  97 #ifdef _LP64
  98 
  99 Address Address::make_array(ArrayAddress adr) {
 100   // Not implementable on 64bit machines
 101   // Should have been handled higher up the call chain.
 102   ShouldNotReachHere();
 103   return Address();
 104 }
 105 
 106 // exceedingly dangerous constructor
 107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 108   _base  = noreg;
 109   _index = noreg;
 110   _scale = no_scale;
 111   _disp  = disp;
 112   switch (rtype) {
 113     case relocInfo::external_word_type:
 114       _rspec = external_word_Relocation::spec(loc);
 115       break;
 116     case relocInfo::internal_word_type:
 117       _rspec = internal_word_Relocation::spec(loc);
 118       break;
 119     case relocInfo::runtime_call_type:
 120       // HMM
 121       _rspec = runtime_call_Relocation::spec();
 122       break;
 123     case relocInfo::poll_type:
 124     case relocInfo::poll_return_type:
 125       _rspec = Relocation::spec_simple(rtype);
 126       break;
 127     case relocInfo::none:
 128       break;
 129     default:
 130       ShouldNotReachHere();
 131   }
 132 }
 133 #else // LP64
 134 
 135 Address Address::make_array(ArrayAddress adr) {
 136   AddressLiteral base = adr.base();
 137   Address index = adr.index();
 138   assert(index._disp == 0, "must not have disp"); // maybe it can?
 139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 140   array._rspec = base._rspec;
 141   return array;
 142 }
 143 
 144 // exceedingly dangerous constructor
 145 Address::Address(address loc, RelocationHolder spec) {
 146   _base  = noreg;
 147   _index = noreg;
 148   _scale = no_scale;
 149   _disp  = (intptr_t) loc;
 150   _rspec = spec;
 151 }
 152 
 153 #endif // _LP64
 154 
 155 
 156 
 157 // Convert the raw encoding form into the form expected by the constructor for
 158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 159 // that to noreg for the Address constructor.
 160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 161   RelocationHolder rspec;
 162   if (disp_reloc != relocInfo::none) {
 163     rspec = Relocation::spec_simple(disp_reloc);
 164   }
 165   bool valid_index = index != rsp->encoding();
 166   if (valid_index) {
 167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 168     madr._rspec = rspec;
 169     return madr;
 170   } else {
 171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 172     madr._rspec = rspec;
 173     return madr;
 174   }
 175 }
 176 
 177 // Implementation of Assembler
 178 
 179 int AbstractAssembler::code_fill_byte() {
 180   return (u_char)'\xF4'; // hlt
 181 }
 182 
 183 // make this go away someday
 184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 185   if (rtype == relocInfo::none)
 186         emit_int32(data);
 187   else  emit_data(data, Relocation::spec_simple(rtype), format);
 188 }
 189 
 190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 191   assert(imm_operand == 0, "default format must be immediate in this file");
 192   assert(inst_mark() != NULL, "must be inside InstructionMark");
 193   if (rspec.type() !=  relocInfo::none) {
 194     #ifdef ASSERT
 195       check_relocation(rspec, format);
 196     #endif
 197     // Do not use AbstractAssembler::relocate, which is not intended for
 198     // embedded words.  Instead, relocate to the enclosing instruction.
 199 
 200     // hack. call32 is too wide for mask so use disp32
 201     if (format == call32_operand)
 202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 203     else
 204       code_section()->relocate(inst_mark(), rspec, format);
 205   }
 206   emit_int32(data);
 207 }
 208 
 209 static int encode(Register r) {
 210   int enc = r->encoding();
 211   if (enc >= 8) {
 212     enc -= 8;
 213   }
 214   return enc;
 215 }
 216 
 217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 218   assert(dst->has_byte_register(), "must have byte register");
 219   assert(isByte(op1) && isByte(op2), "wrong opcode");
 220   assert(isByte(imm8), "not a byte");
 221   assert((op1 & 0x01) == 0, "should be 8bit operation");
 222   emit_int8(op1);
 223   emit_int8(op2 | encode(dst));
 224   emit_int8(imm8);
 225 }
 226 
 227 
 228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 229   assert(isByte(op1) && isByte(op2), "wrong opcode");
 230   assert((op1 & 0x01) == 1, "should be 32bit operation");
 231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 232   if (is8bit(imm32)) {
 233     emit_int8(op1 | 0x02); // set sign bit
 234     emit_int8(op2 | encode(dst));
 235     emit_int8(imm32 & 0xFF);
 236   } else {
 237     emit_int8(op1);
 238     emit_int8(op2 | encode(dst));
 239     emit_int32(imm32);
 240   }
 241 }
 242 
 243 // Force generation of a 4 byte immediate value even if it fits into 8bit
 244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 245   assert(isByte(op1) && isByte(op2), "wrong opcode");
 246   assert((op1 & 0x01) == 1, "should be 32bit operation");
 247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 248   emit_int8(op1);
 249   emit_int8(op2 | encode(dst));
 250   emit_int32(imm32);
 251 }
 252 
 253 // immediate-to-memory forms
 254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 255   assert((op1 & 0x01) == 1, "should be 32bit operation");
 256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 257   if (is8bit(imm32)) {
 258     emit_int8(op1 | 0x02); // set sign bit
 259     emit_operand(rm, adr, 1);
 260     emit_int8(imm32 & 0xFF);
 261   } else {
 262     emit_int8(op1);
 263     emit_operand(rm, adr, 4);
 264     emit_int32(imm32);
 265   }
 266 }
 267 
 268 
 269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 270   assert(isByte(op1) && isByte(op2), "wrong opcode");
 271   emit_int8(op1);
 272   emit_int8(op2 | encode(dst) << 3 | encode(src));
 273 }
 274 
 275 
 276 void Assembler::emit_operand(Register reg, Register base, Register index,
 277                              Address::ScaleFactor scale, int disp,
 278                              RelocationHolder const& rspec,
 279                              int rip_relative_correction) {
 280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 281 
 282   // Encode the registers as needed in the fields they are used in
 283 
 284   int regenc = encode(reg) << 3;
 285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 286   int baseenc = base->is_valid() ? encode(base) : 0;
 287 
 288   if (base->is_valid()) {
 289     if (index->is_valid()) {
 290       assert(scale != Address::no_scale, "inconsistent address");
 291       // [base + index*scale + disp]
 292       if (disp == 0 && rtype == relocInfo::none  &&
 293           base != rbp LP64_ONLY(&& base != r13)) {
 294         // [base + index*scale]
 295         // [00 reg 100][ss index base]
 296         assert(index != rsp, "illegal addressing mode");
 297         emit_int8(0x04 | regenc);
 298         emit_int8(scale << 6 | indexenc | baseenc);
 299       } else if (is8bit(disp) && rtype == relocInfo::none) {
 300         // [base + index*scale + imm8]
 301         // [01 reg 100][ss index base] imm8
 302         assert(index != rsp, "illegal addressing mode");
 303         emit_int8(0x44 | regenc);
 304         emit_int8(scale << 6 | indexenc | baseenc);
 305         emit_int8(disp & 0xFF);
 306       } else {
 307         // [base + index*scale + disp32]
 308         // [10 reg 100][ss index base] disp32
 309         assert(index != rsp, "illegal addressing mode");
 310         emit_int8(0x84 | regenc);
 311         emit_int8(scale << 6 | indexenc | baseenc);
 312         emit_data(disp, rspec, disp32_operand);
 313       }
 314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 315       // [rsp + disp]
 316       if (disp == 0 && rtype == relocInfo::none) {
 317         // [rsp]
 318         // [00 reg 100][00 100 100]
 319         emit_int8(0x04 | regenc);
 320         emit_int8(0x24);
 321       } else if (is8bit(disp) && rtype == relocInfo::none) {
 322         // [rsp + imm8]
 323         // [01 reg 100][00 100 100] disp8
 324         emit_int8(0x44 | regenc);
 325         emit_int8(0x24);
 326         emit_int8(disp & 0xFF);
 327       } else {
 328         // [rsp + imm32]
 329         // [10 reg 100][00 100 100] disp32
 330         emit_int8(0x84 | regenc);
 331         emit_int8(0x24);
 332         emit_data(disp, rspec, disp32_operand);
 333       }
 334     } else {
 335       // [base + disp]
 336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 337       if (disp == 0 && rtype == relocInfo::none &&
 338           base != rbp LP64_ONLY(&& base != r13)) {
 339         // [base]
 340         // [00 reg base]
 341         emit_int8(0x00 | regenc | baseenc);
 342       } else if (is8bit(disp) && rtype == relocInfo::none) {
 343         // [base + disp8]
 344         // [01 reg base] disp8
 345         emit_int8(0x40 | regenc | baseenc);
 346         emit_int8(disp & 0xFF);
 347       } else {
 348         // [base + disp32]
 349         // [10 reg base] disp32
 350         emit_int8(0x80 | regenc | baseenc);
 351         emit_data(disp, rspec, disp32_operand);
 352       }
 353     }
 354   } else {
 355     if (index->is_valid()) {
 356       assert(scale != Address::no_scale, "inconsistent address");
 357       // [index*scale + disp]
 358       // [00 reg 100][ss index 101] disp32
 359       assert(index != rsp, "illegal addressing mode");
 360       emit_int8(0x04 | regenc);
 361       emit_int8(scale << 6 | indexenc | 0x05);
 362       emit_data(disp, rspec, disp32_operand);
 363     } else if (rtype != relocInfo::none ) {
 364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 365       // [00 000 101] disp32
 366 
 367       emit_int8(0x05 | regenc);
 368       // Note that the RIP-rel. correction applies to the generated
 369       // disp field, but _not_ to the target address in the rspec.
 370 
 371       // disp was created by converting the target address minus the pc
 372       // at the start of the instruction. That needs more correction here.
 373       // intptr_t disp = target - next_ip;
 374       assert(inst_mark() != NULL, "must be inside InstructionMark");
 375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 376       int64_t adjusted = disp;
 377       // Do rip-rel adjustment for 64bit
 378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 379       assert(is_simm32(adjusted),
 380              "must be 32bit offset (RIP relative address)");
 381       emit_data((int32_t) adjusted, rspec, disp32_operand);
 382 
 383     } else {
 384       // 32bit never did this, did everything as the rip-rel/disp code above
 385       // [disp] ABSOLUTE
 386       // [00 reg 100][00 100 101] disp32
 387       emit_int8(0x04 | regenc);
 388       emit_int8(0x25);
 389       emit_data(disp, rspec, disp32_operand);
 390     }
 391   }
 392 }
 393 
 394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 395                              Address::ScaleFactor scale, int disp,
 396                              RelocationHolder const& rspec) {
 397   emit_operand((Register)reg, base, index, scale, disp, rspec);
 398 }
 399 
 400 // Secret local extension to Assembler::WhichOperand:
 401 #define end_pc_operand (_WhichOperand_limit)
 402 
 403 address Assembler::locate_operand(address inst, WhichOperand which) {
 404   // Decode the given instruction, and return the address of
 405   // an embedded 32-bit operand word.
 406 
 407   // If "which" is disp32_operand, selects the displacement portion
 408   // of an effective address specifier.
 409   // If "which" is imm64_operand, selects the trailing immediate constant.
 410   // If "which" is call32_operand, selects the displacement of a call or jump.
 411   // Caller is responsible for ensuring that there is such an operand,
 412   // and that it is 32/64 bits wide.
 413 
 414   // If "which" is end_pc_operand, find the end of the instruction.
 415 
 416   address ip = inst;
 417   bool is_64bit = false;
 418 
 419   debug_only(bool has_disp32 = false);
 420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 421 
 422   again_after_prefix:
 423   switch (0xFF & *ip++) {
 424 
 425   // These convenience macros generate groups of "case" labels for the switch.
 426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 429 #define REP16(x) REP8((x)+0): \
 430               case REP8((x)+8)
 431 
 432   case CS_segment:
 433   case SS_segment:
 434   case DS_segment:
 435   case ES_segment:
 436   case FS_segment:
 437   case GS_segment:
 438     // Seems dubious
 439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 440     assert(ip == inst+1, "only one prefix allowed");
 441     goto again_after_prefix;
 442 
 443   case 0x67:
 444   case REX:
 445   case REX_B:
 446   case REX_X:
 447   case REX_XB:
 448   case REX_R:
 449   case REX_RB:
 450   case REX_RX:
 451   case REX_RXB:
 452     NOT_LP64(assert(false, "64bit prefixes"));
 453     goto again_after_prefix;
 454 
 455   case REX_W:
 456   case REX_WB:
 457   case REX_WX:
 458   case REX_WXB:
 459   case REX_WR:
 460   case REX_WRB:
 461   case REX_WRX:
 462   case REX_WRXB:
 463     NOT_LP64(assert(false, "64bit prefixes"));
 464     is_64bit = true;
 465     goto again_after_prefix;
 466 
 467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 468   case 0x88: // movb a, r
 469   case 0x89: // movl a, r
 470   case 0x8A: // movb r, a
 471   case 0x8B: // movl r, a
 472   case 0x8F: // popl a
 473     debug_only(has_disp32 = true);
 474     break;
 475 
 476   case 0x68: // pushq #32
 477     if (which == end_pc_operand) {
 478       return ip + 4;
 479     }
 480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 481     return ip;                  // not produced by emit_operand
 482 
 483   case 0x66: // movw ... (size prefix)
 484     again_after_size_prefix2:
 485     switch (0xFF & *ip++) {
 486     case REX:
 487     case REX_B:
 488     case REX_X:
 489     case REX_XB:
 490     case REX_R:
 491     case REX_RB:
 492     case REX_RX:
 493     case REX_RXB:
 494     case REX_W:
 495     case REX_WB:
 496     case REX_WX:
 497     case REX_WXB:
 498     case REX_WR:
 499     case REX_WRB:
 500     case REX_WRX:
 501     case REX_WRXB:
 502       NOT_LP64(assert(false, "64bit prefix found"));
 503       goto again_after_size_prefix2;
 504     case 0x8B: // movw r, a
 505     case 0x89: // movw a, r
 506       debug_only(has_disp32 = true);
 507       break;
 508     case 0xC7: // movw a, #16
 509       debug_only(has_disp32 = true);
 510       tail_size = 2;  // the imm16
 511       break;
 512     case 0x0F: // several SSE/SSE2 variants
 513       ip--;    // reparse the 0x0F
 514       goto again_after_prefix;
 515     default:
 516       ShouldNotReachHere();
 517     }
 518     break;
 519 
 520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 522     // these asserts are somewhat nonsensical
 523 #ifndef _LP64
 524     assert(which == imm_operand || which == disp32_operand,
 525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
 526 #else
 527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 528            which == narrow_oop_operand && !is_64bit,
 529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
 530 #endif // _LP64
 531     return ip;
 532 
 533   case 0x69: // imul r, a, #32
 534   case 0xC7: // movl a, #32(oop?)
 535     tail_size = 4;
 536     debug_only(has_disp32 = true); // has both kinds of operands!
 537     break;
 538 
 539   case 0x0F: // movx..., etc.
 540     switch (0xFF & *ip++) {
 541     case 0x3A: // pcmpestri
 542       tail_size = 1;
 543     case 0x38: // ptest, pmovzxbw
 544       ip++; // skip opcode
 545       debug_only(has_disp32 = true); // has both kinds of operands!
 546       break;
 547 
 548     case 0x70: // pshufd r, r/a, #8
 549       debug_only(has_disp32 = true); // has both kinds of operands!
 550     case 0x73: // psrldq r, #8
 551       tail_size = 1;
 552       break;
 553 
 554     case 0x12: // movlps
 555     case 0x28: // movaps
 556     case 0x2E: // ucomiss
 557     case 0x2F: // comiss
 558     case 0x54: // andps
 559     case 0x55: // andnps
 560     case 0x56: // orps
 561     case 0x57: // xorps
 562     case 0x6E: // movd
 563     case 0x7E: // movd
 564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 565       debug_only(has_disp32 = true);
 566       break;
 567 
 568     case 0xAD: // shrd r, a, %cl
 569     case 0xAF: // imul r, a
 570     case 0xBE: // movsbl r, a (movsxb)
 571     case 0xBF: // movswl r, a (movsxw)
 572     case 0xB6: // movzbl r, a (movzxb)
 573     case 0xB7: // movzwl r, a (movzxw)
 574     case REP16(0x40): // cmovl cc, r, a
 575     case 0xB0: // cmpxchgb
 576     case 0xB1: // cmpxchg
 577     case 0xC1: // xaddl
 578     case 0xC7: // cmpxchg8
 579     case REP16(0x90): // setcc a
 580       debug_only(has_disp32 = true);
 581       // fall out of the switch to decode the address
 582       break;
 583 
 584     case 0xC4: // pinsrw r, a, #8
 585       debug_only(has_disp32 = true);
 586     case 0xC5: // pextrw r, r, #8
 587       tail_size = 1;  // the imm8
 588       break;
 589 
 590     case 0xAC: // shrd r, a, #8
 591       debug_only(has_disp32 = true);
 592       tail_size = 1;  // the imm8
 593       break;
 594 
 595     case REP16(0x80): // jcc rdisp32
 596       if (which == end_pc_operand)  return ip + 4;
 597       assert(which == call32_operand, "jcc has no disp32 or imm");
 598       return ip;
 599     default:
 600       ShouldNotReachHere();
 601     }
 602     break;
 603 
 604   case 0x81: // addl a, #32; addl r, #32
 605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 606     // on 32bit in the case of cmpl, the imm might be an oop
 607     tail_size = 4;
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     break;
 610 
 611   case 0x83: // addl a, #8; addl r, #8
 612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 613     debug_only(has_disp32 = true); // has both kinds of operands!
 614     tail_size = 1;
 615     break;
 616 
 617   case 0x9B:
 618     switch (0xFF & *ip++) {
 619     case 0xD9: // fnstcw a
 620       debug_only(has_disp32 = true);
 621       break;
 622     default:
 623       ShouldNotReachHere();
 624     }
 625     break;
 626 
 627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 628   case REP4(0x10): // adc...
 629   case REP4(0x20): // and...
 630   case REP4(0x30): // xor...
 631   case REP4(0x08): // or...
 632   case REP4(0x18): // sbb...
 633   case REP4(0x28): // sub...
 634   case 0xF7: // mull a
 635   case 0x8D: // lea r, a
 636   case 0x87: // xchg r, a
 637   case REP4(0x38): // cmp...
 638   case 0x85: // test r, a
 639     debug_only(has_disp32 = true); // has both kinds of operands!
 640     break;
 641 
 642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 643   case 0xC6: // movb a, #8
 644   case 0x80: // cmpb a, #8
 645   case 0x6B: // imul r, a, #8
 646     debug_only(has_disp32 = true); // has both kinds of operands!
 647     tail_size = 1; // the imm8
 648     break;
 649 
 650   case 0xC4: // VEX_3bytes
 651   case 0xC5: // VEX_2bytes
 652     assert((UseAVX > 0), "shouldn't have VEX prefix");
 653     assert(ip == inst+1, "no prefixes allowed");
 654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 655     // but they have prefix 0x0F and processed when 0x0F processed above.
 656     //
 657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 658     // instructions (these instructions are not supported in 64-bit mode).
 659     // To distinguish them bits [7:6] are set in the VEX second byte since
 660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 661     // those VEX bits REX and vvvv bits are inverted.
 662     //
 663     // Fortunately C2 doesn't generate these instructions so we don't need
 664     // to check for them in product version.
 665 
 666     // Check second byte
 667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 668 
 669     // First byte
 670     if ((0xFF & *inst) == VEX_3bytes) {
 671       ip++; // third byte
 672       is_64bit = ((VEX_W & *ip) == VEX_W);
 673     }
 674     ip++; // opcode
 675     // To find the end of instruction (which == end_pc_operand).
 676     switch (0xFF & *ip) {
 677     case 0x61: // pcmpestri r, r/a, #8
 678     case 0x70: // pshufd r, r/a, #8
 679     case 0x73: // psrldq r, #8
 680       tail_size = 1;  // the imm8
 681       break;
 682     default:
 683       break;
 684     }
 685     ip++; // skip opcode
 686     debug_only(has_disp32 = true); // has both kinds of operands!
 687     break;
 688 
 689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 692   case 0xDD: // fld_d a; fst_d a; fstp_d a
 693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 694   case 0xDF: // fild_d a; fistp_d a
 695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 698     debug_only(has_disp32 = true);
 699     break;
 700 
 701   case 0xE8: // call rdisp32
 702   case 0xE9: // jmp  rdisp32
 703     if (which == end_pc_operand)  return ip + 4;
 704     assert(which == call32_operand, "call has no disp32 or imm");
 705     return ip;
 706 
 707   case 0xF0:                    // Lock
 708     assert(os::is_MP(), "only on MP");
 709     goto again_after_prefix;
 710 
 711   case 0xF3:                    // For SSE
 712   case 0xF2:                    // For SSE2
 713     switch (0xFF & *ip++) {
 714     case REX:
 715     case REX_B:
 716     case REX_X:
 717     case REX_XB:
 718     case REX_R:
 719     case REX_RB:
 720     case REX_RX:
 721     case REX_RXB:
 722     case REX_W:
 723     case REX_WB:
 724     case REX_WX:
 725     case REX_WXB:
 726     case REX_WR:
 727     case REX_WRB:
 728     case REX_WRX:
 729     case REX_WRXB:
 730       NOT_LP64(assert(false, "found 64bit prefix"));
 731       ip++;
 732     default:
 733       ip++;
 734     }
 735     debug_only(has_disp32 = true); // has both kinds of operands!
 736     break;
 737 
 738   default:
 739     ShouldNotReachHere();
 740 
 741 #undef REP8
 742 #undef REP16
 743   }
 744 
 745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 746 #ifdef _LP64
 747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 748 #else
 749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 751 #endif // LP64
 752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 753 
 754   // parse the output of emit_operand
 755   int op2 = 0xFF & *ip++;
 756   int base = op2 & 0x07;
 757   int op3 = -1;
 758   const int b100 = 4;
 759   const int b101 = 5;
 760   if (base == b100 && (op2 >> 6) != 3) {
 761     op3 = 0xFF & *ip++;
 762     base = op3 & 0x07;   // refetch the base
 763   }
 764   // now ip points at the disp (if any)
 765 
 766   switch (op2 >> 6) {
 767   case 0:
 768     // [00 reg  100][ss index base]
 769     // [00 reg  100][00   100  esp]
 770     // [00 reg base]
 771     // [00 reg  100][ss index  101][disp32]
 772     // [00 reg  101]               [disp32]
 773 
 774     if (base == b101) {
 775       if (which == disp32_operand)
 776         return ip;              // caller wants the disp32
 777       ip += 4;                  // skip the disp32
 778     }
 779     break;
 780 
 781   case 1:
 782     // [01 reg  100][ss index base][disp8]
 783     // [01 reg  100][00   100  esp][disp8]
 784     // [01 reg base]               [disp8]
 785     ip += 1;                    // skip the disp8
 786     break;
 787 
 788   case 2:
 789     // [10 reg  100][ss index base][disp32]
 790     // [10 reg  100][00   100  esp][disp32]
 791     // [10 reg base]               [disp32]
 792     if (which == disp32_operand)
 793       return ip;                // caller wants the disp32
 794     ip += 4;                    // skip the disp32
 795     break;
 796 
 797   case 3:
 798     // [11 reg base]  (not a memory addressing mode)
 799     break;
 800   }
 801 
 802   if (which == end_pc_operand) {
 803     return ip + tail_size;
 804   }
 805 
 806 #ifdef _LP64
 807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 808 #else
 809   assert(which == imm_operand, "instruction has only an imm field");
 810 #endif // LP64
 811   return ip;
 812 }
 813 
 814 address Assembler::locate_next_instruction(address inst) {
 815   // Secretly share code with locate_operand:
 816   return locate_operand(inst, end_pc_operand);
 817 }
 818 
 819 
 820 #ifdef ASSERT
 821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 822   address inst = inst_mark();
 823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 824   address opnd;
 825 
 826   Relocation* r = rspec.reloc();
 827   if (r->type() == relocInfo::none) {
 828     return;
 829   } else if (r->is_call() || format == call32_operand) {
 830     // assert(format == imm32_operand, "cannot specify a nonzero format");
 831     opnd = locate_operand(inst, call32_operand);
 832   } else if (r->is_data()) {
 833     assert(format == imm_operand || format == disp32_operand
 834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 835     opnd = locate_operand(inst, (WhichOperand)format);
 836   } else {
 837     assert(format == imm_operand, "cannot specify a format");
 838     return;
 839   }
 840   assert(opnd == pc(), "must put operand where relocs can find it");
 841 }
 842 #endif // ASSERT
 843 
 844 void Assembler::emit_operand32(Register reg, Address adr) {
 845   assert(reg->encoding() < 8, "no extended registers");
 846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 848                adr._rspec);
 849 }
 850 
 851 void Assembler::emit_operand(Register reg, Address adr,
 852                              int rip_relative_correction) {
 853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 854                adr._rspec,
 855                rip_relative_correction);
 856 }
 857 
 858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 860                adr._rspec);
 861 }
 862 
 863 // MMX operations
 864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 867 }
 868 
 869 // work around gcc (3.2.1-7a) bug
 870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 873 }
 874 
 875 
 876 void Assembler::emit_farith(int b1, int b2, int i) {
 877   assert(isByte(b1) && isByte(b2), "wrong opcode");
 878   assert(0 <= i &&  i < 8, "illegal stack offset");
 879   emit_int8(b1);
 880   emit_int8(b2 + i);
 881 }
 882 
 883 
 884 // Now the Assembler instructions (identical for 32/64 bits)
 885 
 886 void Assembler::adcl(Address dst, int32_t imm32) {
 887   InstructionMark im(this);
 888   prefix(dst);
 889   emit_arith_operand(0x81, rdx, dst, imm32);
 890 }
 891 
 892 void Assembler::adcl(Address dst, Register src) {
 893   InstructionMark im(this);
 894   prefix(dst, src);
 895   emit_int8(0x11);
 896   emit_operand(src, dst);
 897 }
 898 
 899 void Assembler::adcl(Register dst, int32_t imm32) {
 900   prefix(dst);
 901   emit_arith(0x81, 0xD0, dst, imm32);
 902 }
 903 
 904 void Assembler::adcl(Register dst, Address src) {
 905   InstructionMark im(this);
 906   prefix(src, dst);
 907   emit_int8(0x13);
 908   emit_operand(dst, src);
 909 }
 910 
 911 void Assembler::adcl(Register dst, Register src) {
 912   (void) prefix_and_encode(dst->encoding(), src->encoding());
 913   emit_arith(0x13, 0xC0, dst, src);
 914 }
 915 
 916 void Assembler::addl(Address dst, int32_t imm32) {
 917   InstructionMark im(this);
 918   prefix(dst);
 919   emit_arith_operand(0x81, rax, dst, imm32);
 920 }
 921 
 922 void Assembler::addl(Address dst, Register src) {
 923   InstructionMark im(this);
 924   prefix(dst, src);
 925   emit_int8(0x01);
 926   emit_operand(src, dst);
 927 }
 928 
 929 void Assembler::addl(Register dst, int32_t imm32) {
 930   prefix(dst);
 931   emit_arith(0x81, 0xC0, dst, imm32);
 932 }
 933 
 934 void Assembler::addl(Register dst, Address src) {
 935   InstructionMark im(this);
 936   prefix(src, dst);
 937   emit_int8(0x03);
 938   emit_operand(dst, src);
 939 }
 940 
 941 void Assembler::addl(Register dst, Register src) {
 942   (void) prefix_and_encode(dst->encoding(), src->encoding());
 943   emit_arith(0x03, 0xC0, dst, src);
 944 }
 945 
 946 void Assembler::addr_nop_4() {
 947   assert(UseAddressNop, "no CPU support");
 948   // 4 bytes: NOP DWORD PTR [EAX+0]
 949   emit_int8(0x0F);
 950   emit_int8(0x1F);
 951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 952   emit_int8(0);    // 8-bits offset (1 byte)
 953 }
 954 
 955 void Assembler::addr_nop_5() {
 956   assert(UseAddressNop, "no CPU support");
 957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 958   emit_int8(0x0F);
 959   emit_int8(0x1F);
 960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 962   emit_int8(0);    // 8-bits offset (1 byte)
 963 }
 964 
 965 void Assembler::addr_nop_7() {
 966   assert(UseAddressNop, "no CPU support");
 967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 968   emit_int8(0x0F);
 969   emit_int8(0x1F);
 970   emit_int8((unsigned char)0x80);
 971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 972   emit_int32(0);   // 32-bits offset (4 bytes)
 973 }
 974 
 975 void Assembler::addr_nop_8() {
 976   assert(UseAddressNop, "no CPU support");
 977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 978   emit_int8(0x0F);
 979   emit_int8(0x1F);
 980   emit_int8((unsigned char)0x84);
 981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 983   emit_int32(0);   // 32-bits offset (4 bytes)
 984 }
 985 
 986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 989 }
 990 
 991 void Assembler::addsd(XMMRegister dst, Address src) {
 992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 994 }
 995 
 996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
 999 }
1000 
1001 void Assembler::addss(XMMRegister dst, Address src) {
1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 }
1005 
1006 void Assembler::aesdec(XMMRegister dst, Address src) {
1007   assert(VM_Version::supports_aes(), "");
1008   InstructionMark im(this);
1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1010   emit_int8((unsigned char)0xDE);
1011   emit_operand(dst, src);
1012 }
1013 
1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1015   assert(VM_Version::supports_aes(), "");
1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1017   emit_int8((unsigned char)0xDE);
1018   emit_int8(0xC0 | encode);
1019 }
1020 
1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1022   assert(VM_Version::supports_aes(), "");
1023   InstructionMark im(this);
1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025   emit_int8((unsigned char)0xDF);
1026   emit_operand(dst, src);
1027 }
1028 
1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1030   assert(VM_Version::supports_aes(), "");
1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1032   emit_int8((unsigned char)0xDF);
1033   emit_int8((unsigned char)(0xC0 | encode));
1034 }
1035 
1036 void Assembler::aesenc(XMMRegister dst, Address src) {
1037   assert(VM_Version::supports_aes(), "");
1038   InstructionMark im(this);
1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040   emit_int8((unsigned char)0xDC);
1041   emit_operand(dst, src);
1042 }
1043 
1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1045   assert(VM_Version::supports_aes(), "");
1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1047   emit_int8((unsigned char)0xDC);
1048   emit_int8(0xC0 | encode);
1049 }
1050 
1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
1052   assert(VM_Version::supports_aes(), "");
1053   InstructionMark im(this);
1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055   emit_int8((unsigned char)0xDD);
1056   emit_operand(dst, src);
1057 }
1058 
1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1060   assert(VM_Version::supports_aes(), "");
1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1062   emit_int8((unsigned char)0xDD);
1063   emit_int8((unsigned char)(0xC0 | encode));
1064 }
1065 
1066 
1067 void Assembler::andl(Address dst, int32_t imm32) {
1068   InstructionMark im(this);
1069   prefix(dst);
1070   emit_int8((unsigned char)0x81);
1071   emit_operand(rsp, dst, 4);
1072   emit_int32(imm32);
1073 }
1074 
1075 void Assembler::andl(Register dst, int32_t imm32) {
1076   prefix(dst);
1077   emit_arith(0x81, 0xE0, dst, imm32);
1078 }
1079 
1080 void Assembler::andl(Register dst, Address src) {
1081   InstructionMark im(this);
1082   prefix(src, dst);
1083   emit_int8(0x23);
1084   emit_operand(dst, src);
1085 }
1086 
1087 void Assembler::andl(Register dst, Register src) {
1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
1089   emit_arith(0x23, 0xC0, dst, src);
1090 }
1091 
1092 void Assembler::bsfl(Register dst, Register src) {
1093   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1094   emit_int8(0x0F);
1095   emit_int8((unsigned char)0xBC);
1096   emit_int8((unsigned char)(0xC0 | encode));
1097 }
1098 
1099 void Assembler::bsrl(Register dst, Register src) {
1100   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
1101   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1102   emit_int8(0x0F);
1103   emit_int8((unsigned char)0xBD);
1104   emit_int8((unsigned char)(0xC0 | encode));
1105 }
1106 
1107 void Assembler::bswapl(Register reg) { // bswap
1108   int encode = prefix_and_encode(reg->encoding());
1109   emit_int8(0x0F);
1110   emit_int8((unsigned char)(0xC8 | encode));
1111 }
1112 
1113 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1114   // suspect disp32 is always good
1115   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1116 
1117   if (L.is_bound()) {
1118     const int long_size = 5;
1119     int offs = (int)( target(L) - pc() );
1120     assert(offs <= 0, "assembler error");
1121     InstructionMark im(this);
1122     // 1110 1000 #32-bit disp
1123     emit_int8((unsigned char)0xE8);
1124     emit_data(offs - long_size, rtype, operand);
1125   } else {
1126     InstructionMark im(this);
1127     // 1110 1000 #32-bit disp
1128     L.add_patch_at(code(), locator());
1129 
1130     emit_int8((unsigned char)0xE8);
1131     emit_data(int(0), rtype, operand);
1132   }
1133 }
1134 
1135 void Assembler::call(Register dst) {
1136   int encode = prefix_and_encode(dst->encoding());
1137   emit_int8((unsigned char)0xFF);
1138   emit_int8((unsigned char)(0xD0 | encode));
1139 }
1140 
1141 
1142 void Assembler::call(Address adr) {
1143   InstructionMark im(this);
1144   prefix(adr);
1145   emit_int8((unsigned char)0xFF);
1146   emit_operand(rdx, adr);
1147 }
1148 
1149 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1150   assert(entry != NULL, "call most probably wrong");
1151   InstructionMark im(this);
1152   emit_int8((unsigned char)0xE8);
1153   intptr_t disp = entry - (pc() + sizeof(int32_t));
1154   assert(is_simm32(disp), "must be 32bit offset (call2)");
1155   // Technically, should use call32_operand, but this format is
1156   // implied by the fact that we're emitting a call instruction.
1157 
1158   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1159   emit_data((int) disp, rspec, operand);
1160 }
1161 
1162 void Assembler::cdql() {
1163   emit_int8((unsigned char)0x99);
1164 }
1165 
1166 void Assembler::cld() {
1167   emit_int8((unsigned char)0xFC);
1168 }
1169 
1170 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1171   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1172   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1173   emit_int8(0x0F);
1174   emit_int8(0x40 | cc);
1175   emit_int8((unsigned char)(0xC0 | encode));
1176 }
1177 
1178 
1179 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1180   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1181   prefix(src, dst);
1182   emit_int8(0x0F);
1183   emit_int8(0x40 | cc);
1184   emit_operand(dst, src);
1185 }
1186 
1187 void Assembler::cmpb(Address dst, int imm8) {
1188   InstructionMark im(this);
1189   prefix(dst);
1190   emit_int8((unsigned char)0x80);
1191   emit_operand(rdi, dst, 1);
1192   emit_int8(imm8);
1193 }
1194 
1195 void Assembler::cmpl(Address dst, int32_t imm32) {
1196   InstructionMark im(this);
1197   prefix(dst);
1198   emit_int8((unsigned char)0x81);
1199   emit_operand(rdi, dst, 4);
1200   emit_int32(imm32);
1201 }
1202 
1203 void Assembler::cmpl(Register dst, int32_t imm32) {
1204   prefix(dst);
1205   emit_arith(0x81, 0xF8, dst, imm32);
1206 }
1207 
1208 void Assembler::cmpl(Register dst, Register src) {
1209   (void) prefix_and_encode(dst->encoding(), src->encoding());
1210   emit_arith(0x3B, 0xC0, dst, src);
1211 }
1212 
1213 
1214 void Assembler::cmpl(Register dst, Address  src) {
1215   InstructionMark im(this);
1216   prefix(src, dst);
1217   emit_int8((unsigned char)0x3B);
1218   emit_operand(dst, src);
1219 }
1220 
1221 void Assembler::cmpw(Address dst, int imm16) {
1222   InstructionMark im(this);
1223   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1224   emit_int8(0x66);
1225   emit_int8((unsigned char)0x81);
1226   emit_operand(rdi, dst, 2);
1227   emit_int16(imm16);
1228 }
1229 
1230 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1231 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1232 // The ZF is set if the compared values were equal, and cleared otherwise.
1233 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1234   InstructionMark im(this);
1235   prefix(adr, reg);
1236   emit_int8(0x0F);
1237   emit_int8((unsigned char)0xB1);
1238   emit_operand(reg, adr);
1239 }
1240 
1241 void Assembler::comisd(XMMRegister dst, Address src) {
1242   // NOTE: dbx seems to decode this as comiss even though the
1243   // 0x66 is there. Strangly ucomisd comes out correct
1244   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1245   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1246 }
1247 
1248 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1250   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1251 }
1252 
1253 void Assembler::comiss(XMMRegister dst, Address src) {
1254   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1255   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1256 }
1257 
1258 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1259   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1260   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1261 }
1262 
1263 void Assembler::cpuid() {
1264   emit_int8(0x0F);
1265   emit_int8((unsigned char)0xA2);
1266 }
1267 
1268 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1270   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1271 }
1272 
1273 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1275   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1276 }
1277 
1278 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1279   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1280   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1281 }
1282 
1283 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1284   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1285   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1286 }
1287 
1288 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1289   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1290   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1291   emit_int8(0x2A);
1292   emit_int8((unsigned char)(0xC0 | encode));
1293 }
1294 
1295 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1296   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1297   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1298 }
1299 
1300 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1301   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1302   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1303   emit_int8(0x2A);
1304   emit_int8((unsigned char)(0xC0 | encode));
1305 }
1306 
1307 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1308   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1309   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
1310 }
1311 
1312 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1313   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1314   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1315 }
1316 
1317 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1319   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1320 }
1321 
1322 
1323 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1324   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1325   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1326   emit_int8(0x2C);
1327   emit_int8((unsigned char)(0xC0 | encode));
1328 }
1329 
1330 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1331   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1332   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1333   emit_int8(0x2C);
1334   emit_int8((unsigned char)(0xC0 | encode));
1335 }
1336 
1337 void Assembler::decl(Address dst) {
1338   // Don't use it directly. Use MacroAssembler::decrement() instead.
1339   InstructionMark im(this);
1340   prefix(dst);
1341   emit_int8((unsigned char)0xFF);
1342   emit_operand(rcx, dst);
1343 }
1344 
1345 void Assembler::divsd(XMMRegister dst, Address src) {
1346   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1347   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1348 }
1349 
1350 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1352   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1353 }
1354 
1355 void Assembler::divss(XMMRegister dst, Address src) {
1356   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1357   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1358 }
1359 
1360 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1361   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1362   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1363 }
1364 
1365 void Assembler::emms() {
1366   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1367   emit_int8(0x0F);
1368   emit_int8(0x77);
1369 }
1370 
1371 void Assembler::hlt() {
1372   emit_int8((unsigned char)0xF4);
1373 }
1374 
1375 void Assembler::idivl(Register src) {
1376   int encode = prefix_and_encode(src->encoding());
1377   emit_int8((unsigned char)0xF7);
1378   emit_int8((unsigned char)(0xF8 | encode));
1379 }
1380 
1381 void Assembler::divl(Register src) { // Unsigned
1382   int encode = prefix_and_encode(src->encoding());
1383   emit_int8((unsigned char)0xF7);
1384   emit_int8((unsigned char)(0xF0 | encode));
1385 }
1386 
1387 void Assembler::imull(Register dst, Register src) {
1388   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1389   emit_int8(0x0F);
1390   emit_int8((unsigned char)0xAF);
1391   emit_int8((unsigned char)(0xC0 | encode));
1392 }
1393 
1394 
1395 void Assembler::imull(Register dst, Register src, int value) {
1396   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1397   if (is8bit(value)) {
1398     emit_int8(0x6B);
1399     emit_int8((unsigned char)(0xC0 | encode));
1400     emit_int8(value & 0xFF);
1401   } else {
1402     emit_int8(0x69);
1403     emit_int8((unsigned char)(0xC0 | encode));
1404     emit_int32(value);
1405   }
1406 }
1407 
1408 void Assembler::incl(Address dst) {
1409   // Don't use it directly. Use MacroAssembler::increment() instead.
1410   InstructionMark im(this);
1411   prefix(dst);
1412   emit_int8((unsigned char)0xFF);
1413   emit_operand(rax, dst);
1414 }
1415 
1416 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1417   InstructionMark im(this);
1418   assert((0 <= cc) && (cc < 16), "illegal cc");
1419   if (L.is_bound()) {
1420     address dst = target(L);
1421     assert(dst != NULL, "jcc most probably wrong");
1422 
1423     const int short_size = 2;
1424     const int long_size = 6;
1425     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1426     if (maybe_short && is8bit(offs - short_size)) {
1427       // 0111 tttn #8-bit disp
1428       emit_int8(0x70 | cc);
1429       emit_int8((offs - short_size) & 0xFF);
1430     } else {
1431       // 0000 1111 1000 tttn #32-bit disp
1432       assert(is_simm32(offs - long_size),
1433              "must be 32bit offset (call4)");
1434       emit_int8(0x0F);
1435       emit_int8((unsigned char)(0x80 | cc));
1436       emit_int32(offs - long_size);
1437     }
1438   } else {
1439     // Note: could eliminate cond. jumps to this jump if condition
1440     //       is the same however, seems to be rather unlikely case.
1441     // Note: use jccb() if label to be bound is very close to get
1442     //       an 8-bit displacement
1443     L.add_patch_at(code(), locator());
1444     emit_int8(0x0F);
1445     emit_int8((unsigned char)(0x80 | cc));
1446     emit_int32(0);
1447   }
1448 }
1449 
1450 void Assembler::jccb(Condition cc, Label& L) {
1451   if (L.is_bound()) {
1452     const int short_size = 2;
1453     address entry = target(L);
1454 #ifdef ASSERT
1455     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1456     intptr_t delta = short_branch_delta();
1457     if (delta != 0) {
1458       dist += (dist < 0 ? (-delta) :delta);
1459     }
1460     assert(is8bit(dist), "Dispacement too large for a short jmp");
1461 #endif
1462     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1463     // 0111 tttn #8-bit disp
1464     emit_int8(0x70 | cc);
1465     emit_int8((offs - short_size) & 0xFF);
1466   } else {
1467     InstructionMark im(this);
1468     L.add_patch_at(code(), locator());
1469     emit_int8(0x70 | cc);
1470     emit_int8(0);
1471   }
1472 }
1473 
1474 void Assembler::jmp(Address adr) {
1475   InstructionMark im(this);
1476   prefix(adr);
1477   emit_int8((unsigned char)0xFF);
1478   emit_operand(rsp, adr);
1479 }
1480 
1481 void Assembler::jmp(Label& L, bool maybe_short) {
1482   if (L.is_bound()) {
1483     address entry = target(L);
1484     assert(entry != NULL, "jmp most probably wrong");
1485     InstructionMark im(this);
1486     const int short_size = 2;
1487     const int long_size = 5;
1488     intptr_t offs = entry - pc();
1489     if (maybe_short && is8bit(offs - short_size)) {
1490       emit_int8((unsigned char)0xEB);
1491       emit_int8((offs - short_size) & 0xFF);
1492     } else {
1493       emit_int8((unsigned char)0xE9);
1494       emit_int32(offs - long_size);
1495     }
1496   } else {
1497     // By default, forward jumps are always 32-bit displacements, since
1498     // we can't yet know where the label will be bound.  If you're sure that
1499     // the forward jump will not run beyond 256 bytes, use jmpb to
1500     // force an 8-bit displacement.
1501     InstructionMark im(this);
1502     L.add_patch_at(code(), locator());
1503     emit_int8((unsigned char)0xE9);
1504     emit_int32(0);
1505   }
1506 }
1507 
1508 void Assembler::jmp(Register entry) {
1509   int encode = prefix_and_encode(entry->encoding());
1510   emit_int8((unsigned char)0xFF);
1511   emit_int8((unsigned char)(0xE0 | encode));
1512 }
1513 
1514 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1515   InstructionMark im(this);
1516   emit_int8((unsigned char)0xE9);
1517   assert(dest != NULL, "must have a target");
1518   intptr_t disp = dest - (pc() + sizeof(int32_t));
1519   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1520   emit_data(disp, rspec.reloc(), call32_operand);
1521 }
1522 
1523 void Assembler::jmpb(Label& L) {
1524   if (L.is_bound()) {
1525     const int short_size = 2;
1526     address entry = target(L);
1527     assert(entry != NULL, "jmp most probably wrong");
1528 #ifdef ASSERT
1529     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1530     intptr_t delta = short_branch_delta();
1531     if (delta != 0) {
1532       dist += (dist < 0 ? (-delta) :delta);
1533     }
1534     assert(is8bit(dist), "Dispacement too large for a short jmp");
1535 #endif
1536     intptr_t offs = entry - pc();
1537     emit_int8((unsigned char)0xEB);
1538     emit_int8((offs - short_size) & 0xFF);
1539   } else {
1540     InstructionMark im(this);
1541     L.add_patch_at(code(), locator());
1542     emit_int8((unsigned char)0xEB);
1543     emit_int8(0);
1544   }
1545 }
1546 
1547 void Assembler::ldmxcsr( Address src) {
1548   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1549   InstructionMark im(this);
1550   prefix(src);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xAE);
1553   emit_operand(as_Register(2), src);
1554 }
1555 
1556 void Assembler::leal(Register dst, Address src) {
1557   InstructionMark im(this);
1558 #ifdef _LP64
1559   emit_int8(0x67); // addr32
1560   prefix(src, dst);
1561 #endif // LP64
1562   emit_int8((unsigned char)0x8D);
1563   emit_operand(dst, src);
1564 }
1565 
1566 void Assembler::lfence() {
1567   emit_int8(0x0F);
1568   emit_int8((unsigned char)0xAE);
1569   emit_int8((unsigned char)0xE8);
1570 }
1571 
1572 void Assembler::lock() {
1573   emit_int8((unsigned char)0xF0);
1574 }
1575 
1576 void Assembler::lzcntl(Register dst, Register src) {
1577   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1578   emit_int8((unsigned char)0xF3);
1579   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1580   emit_int8(0x0F);
1581   emit_int8((unsigned char)0xBD);
1582   emit_int8((unsigned char)(0xC0 | encode));
1583 }
1584 
1585 // Emit mfence instruction
1586 void Assembler::mfence() {
1587   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1588   emit_int8(0x0F);
1589   emit_int8((unsigned char)0xAE);
1590   emit_int8((unsigned char)0xF0);
1591 }
1592 
1593 void Assembler::mov(Register dst, Register src) {
1594   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1595 }
1596 
1597 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1598   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1599   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1600 }
1601 
1602 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1603   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1604   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1605 }
1606 
1607 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
1608   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1609   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1610   emit_int8(0x16);
1611   emit_int8((unsigned char)(0xC0 | encode));
1612 }
1613 
1614 void Assembler::movb(Register dst, Address src) {
1615   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1616   InstructionMark im(this);
1617   prefix(src, dst, true);
1618   emit_int8((unsigned char)0x8A);
1619   emit_operand(dst, src);
1620 }
1621 
1622 
1623 void Assembler::movb(Address dst, int imm8) {
1624   InstructionMark im(this);
1625    prefix(dst);
1626   emit_int8((unsigned char)0xC6);
1627   emit_operand(rax, dst, 1);
1628   emit_int8(imm8);
1629 }
1630 
1631 
1632 void Assembler::movb(Address dst, Register src) {
1633   assert(src->has_byte_register(), "must have byte register");
1634   InstructionMark im(this);
1635   prefix(dst, src, true);
1636   emit_int8((unsigned char)0x88);
1637   emit_operand(src, dst);
1638 }
1639 
1640 void Assembler::movdl(XMMRegister dst, Register src) {
1641   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1642   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1643   emit_int8(0x6E);
1644   emit_int8((unsigned char)(0xC0 | encode));
1645 }
1646 
1647 void Assembler::movdl(Register dst, XMMRegister src) {
1648   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1649   // swap src/dst to get correct prefix
1650   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1651   emit_int8(0x7E);
1652   emit_int8((unsigned char)(0xC0 | encode));
1653 }
1654 
1655 void Assembler::movdl(XMMRegister dst, Address src) {
1656   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1657   InstructionMark im(this);
1658   simd_prefix(dst, src, VEX_SIMD_66);
1659   emit_int8(0x6E);
1660   emit_operand(dst, src);
1661 }
1662 
1663 void Assembler::movdl(Address dst, XMMRegister src) {
1664   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1665   InstructionMark im(this);
1666   simd_prefix(dst, src, VEX_SIMD_66);
1667   emit_int8(0x7E);
1668   emit_operand(src, dst);
1669 }
1670 
1671 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1672   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1673   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1674 }
1675 
1676 void Assembler::movdqa(XMMRegister dst, Address src) {
1677   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1678   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1679 }
1680 
1681 void Assembler::movdqu(XMMRegister dst, Address src) {
1682   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1683   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1684 }
1685 
1686 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 void Assembler::movdqu(Address dst, XMMRegister src) {
1692   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1693   InstructionMark im(this);
1694   simd_prefix(dst, src, VEX_SIMD_F3);
1695   emit_int8(0x7F);
1696   emit_operand(src, dst);
1697 }
1698 
1699 // Move Unaligned 256bit Vector
1700 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
1701   assert(UseAVX, "");
1702   bool vector256 = true;
1703   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1704   emit_int8(0x6F);
1705   emit_int8((unsigned char)(0xC0 | encode));
1706 }
1707 
1708 void Assembler::vmovdqu(XMMRegister dst, Address src) {
1709   assert(UseAVX, "");
1710   InstructionMark im(this);
1711   bool vector256 = true;
1712   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1713   emit_int8(0x6F);
1714   emit_operand(dst, src);
1715 }
1716 
1717 void Assembler::vmovdqu(Address dst, XMMRegister src) {
1718   assert(UseAVX, "");
1719   InstructionMark im(this);
1720   bool vector256 = true;
1721   // swap src<->dst for encoding
1722   assert(src != xnoreg, "sanity");
1723   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1724   emit_int8(0x7F);
1725   emit_operand(src, dst);
1726 }
1727 
1728 // Uses zero extension on 64bit
1729 
1730 void Assembler::movl(Register dst, int32_t imm32) {
1731   int encode = prefix_and_encode(dst->encoding());
1732   emit_int8((unsigned char)(0xB8 | encode));
1733   emit_int32(imm32);
1734 }
1735 
1736 void Assembler::movl(Register dst, Register src) {
1737   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1738   emit_int8((unsigned char)0x8B);
1739   emit_int8((unsigned char)(0xC0 | encode));
1740 }
1741 
1742 void Assembler::movl(Register dst, Address src) {
1743   InstructionMark im(this);
1744   prefix(src, dst);
1745   emit_int8((unsigned char)0x8B);
1746   emit_operand(dst, src);
1747 }
1748 
1749 void Assembler::movl(Address dst, int32_t imm32) {
1750   InstructionMark im(this);
1751   prefix(dst);
1752   emit_int8((unsigned char)0xC7);
1753   emit_operand(rax, dst, 4);
1754   emit_int32(imm32);
1755 }
1756 
1757 void Assembler::movl(Address dst, Register src) {
1758   InstructionMark im(this);
1759   prefix(dst, src);
1760   emit_int8((unsigned char)0x89);
1761   emit_operand(src, dst);
1762 }
1763 
1764 // New cpus require to use movsd and movss to avoid partial register stall
1765 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1766 // The selection is done in MacroAssembler::movdbl() and movflt().
1767 void Assembler::movlpd(XMMRegister dst, Address src) {
1768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1769   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
1770 }
1771 
1772 void Assembler::movq( MMXRegister dst, Address src ) {
1773   assert( VM_Version::supports_mmx(), "" );
1774   emit_int8(0x0F);
1775   emit_int8(0x6F);
1776   emit_operand(dst, src);
1777 }
1778 
1779 void Assembler::movq( Address dst, MMXRegister src ) {
1780   assert( VM_Version::supports_mmx(), "" );
1781   emit_int8(0x0F);
1782   emit_int8(0x7F);
1783   // workaround gcc (3.2.1-7a) bug
1784   // In that version of gcc with only an emit_operand(MMX, Address)
1785   // gcc will tail jump and try and reverse the parameters completely
1786   // obliterating dst in the process. By having a version available
1787   // that doesn't need to swap the args at the tail jump the bug is
1788   // avoided.
1789   emit_operand(dst, src);
1790 }
1791 
1792 void Assembler::movq(XMMRegister dst, Address src) {
1793   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1794   InstructionMark im(this);
1795   simd_prefix(dst, src, VEX_SIMD_F3);
1796   emit_int8(0x7E);
1797   emit_operand(dst, src);
1798 }
1799 
1800 void Assembler::movq(Address dst, XMMRegister src) {
1801   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1802   InstructionMark im(this);
1803   simd_prefix(dst, src, VEX_SIMD_66);
1804   emit_int8((unsigned char)0xD6);
1805   emit_operand(src, dst);
1806 }
1807 
1808 void Assembler::movsbl(Register dst, Address src) { // movsxb
1809   InstructionMark im(this);
1810   prefix(src, dst);
1811   emit_int8(0x0F);
1812   emit_int8((unsigned char)0xBE);
1813   emit_operand(dst, src);
1814 }
1815 
1816 void Assembler::movsbl(Register dst, Register src) { // movsxb
1817   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1818   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1819   emit_int8(0x0F);
1820   emit_int8((unsigned char)0xBE);
1821   emit_int8((unsigned char)(0xC0 | encode));
1822 }
1823 
1824 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1825   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1826   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
1827 }
1828 
1829 void Assembler::movsd(XMMRegister dst, Address src) {
1830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1831   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
1832 }
1833 
1834 void Assembler::movsd(Address dst, XMMRegister src) {
1835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1836   InstructionMark im(this);
1837   simd_prefix(dst, src, VEX_SIMD_F2);
1838   emit_int8(0x11);
1839   emit_operand(src, dst);
1840 }
1841 
1842 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1843   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1844   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
1845 }
1846 
1847 void Assembler::movss(XMMRegister dst, Address src) {
1848   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1849   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
1850 }
1851 
1852 void Assembler::movss(Address dst, XMMRegister src) {
1853   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1854   InstructionMark im(this);
1855   simd_prefix(dst, src, VEX_SIMD_F3);
1856   emit_int8(0x11);
1857   emit_operand(src, dst);
1858 }
1859 
1860 void Assembler::movswl(Register dst, Address src) { // movsxw
1861   InstructionMark im(this);
1862   prefix(src, dst);
1863   emit_int8(0x0F);
1864   emit_int8((unsigned char)0xBF);
1865   emit_operand(dst, src);
1866 }
1867 
1868 void Assembler::movswl(Register dst, Register src) { // movsxw
1869   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1870   emit_int8(0x0F);
1871   emit_int8((unsigned char)0xBF);
1872   emit_int8((unsigned char)(0xC0 | encode));
1873 }
1874 
1875 void Assembler::movw(Address dst, int imm16) {
1876   InstructionMark im(this);
1877 
1878   emit_int8(0x66); // switch to 16-bit mode
1879   prefix(dst);
1880   emit_int8((unsigned char)0xC7);
1881   emit_operand(rax, dst, 2);
1882   emit_int16(imm16);
1883 }
1884 
1885 void Assembler::movw(Register dst, Address src) {
1886   InstructionMark im(this);
1887   emit_int8(0x66);
1888   prefix(src, dst);
1889   emit_int8((unsigned char)0x8B);
1890   emit_operand(dst, src);
1891 }
1892 
1893 void Assembler::movw(Address dst, Register src) {
1894   InstructionMark im(this);
1895   emit_int8(0x66);
1896   prefix(dst, src);
1897   emit_int8((unsigned char)0x89);
1898   emit_operand(src, dst);
1899 }
1900 
1901 void Assembler::movzbl(Register dst, Address src) { // movzxb
1902   InstructionMark im(this);
1903   prefix(src, dst);
1904   emit_int8(0x0F);
1905   emit_int8((unsigned char)0xB6);
1906   emit_operand(dst, src);
1907 }
1908 
1909 void Assembler::movzbl(Register dst, Register src) { // movzxb
1910   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1911   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1912   emit_int8(0x0F);
1913   emit_int8((unsigned char)0xB6);
1914   emit_int8(0xC0 | encode);
1915 }
1916 
1917 void Assembler::movzwl(Register dst, Address src) { // movzxw
1918   InstructionMark im(this);
1919   prefix(src, dst);
1920   emit_int8(0x0F);
1921   emit_int8((unsigned char)0xB7);
1922   emit_operand(dst, src);
1923 }
1924 
1925 void Assembler::movzwl(Register dst, Register src) { // movzxw
1926   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1927   emit_int8(0x0F);
1928   emit_int8((unsigned char)0xB7);
1929   emit_int8(0xC0 | encode);
1930 }
1931 
1932 void Assembler::mull(Address src) {
1933   InstructionMark im(this);
1934   prefix(src);
1935   emit_int8((unsigned char)0xF7);
1936   emit_operand(rsp, src);
1937 }
1938 
1939 void Assembler::mull(Register src) {
1940   int encode = prefix_and_encode(src->encoding());
1941   emit_int8((unsigned char)0xF7);
1942   emit_int8((unsigned char)(0xE0 | encode));
1943 }
1944 
1945 void Assembler::mulsd(XMMRegister dst, Address src) {
1946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1947   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
1948 }
1949 
1950 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
1951   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1952   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
1953 }
1954 
1955 void Assembler::mulss(XMMRegister dst, Address src) {
1956   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1957   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
1958 }
1959 
1960 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
1961   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1962   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
1963 }
1964 
1965 void Assembler::negl(Register dst) {
1966   int encode = prefix_and_encode(dst->encoding());
1967   emit_int8((unsigned char)0xF7);
1968   emit_int8((unsigned char)(0xD8 | encode));
1969 }
1970 
1971 void Assembler::nop(int i) {
1972 #ifdef ASSERT
1973   assert(i > 0, " ");
1974   // The fancy nops aren't currently recognized by debuggers making it a
1975   // pain to disassemble code while debugging. If asserts are on clearly
1976   // speed is not an issue so simply use the single byte traditional nop
1977   // to do alignment.
1978 
1979   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
1980   return;
1981 
1982 #endif // ASSERT
1983 
1984   if (UseAddressNop && VM_Version::is_intel()) {
1985     //
1986     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
1987     //  1: 0x90
1988     //  2: 0x66 0x90
1989     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
1990     //  4: 0x0F 0x1F 0x40 0x00
1991     //  5: 0x0F 0x1F 0x44 0x00 0x00
1992     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
1993     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
1994     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1995     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1996     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1997     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1998 
1999     // The rest coding is Intel specific - don't use consecutive address nops
2000 
2001     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2002     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2003     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2004     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2005 
2006     while(i >= 15) {
2007       // For Intel don't generate consecutive addess nops (mix with regular nops)
2008       i -= 15;
2009       emit_int8(0x66);   // size prefix
2010       emit_int8(0x66);   // size prefix
2011       emit_int8(0x66);   // size prefix
2012       addr_nop_8();
2013       emit_int8(0x66);   // size prefix
2014       emit_int8(0x66);   // size prefix
2015       emit_int8(0x66);   // size prefix
2016       emit_int8((unsigned char)0x90);
2017                          // nop
2018     }
2019     switch (i) {
2020       case 14:
2021         emit_int8(0x66); // size prefix
2022       case 13:
2023         emit_int8(0x66); // size prefix
2024       case 12:
2025         addr_nop_8();
2026         emit_int8(0x66); // size prefix
2027         emit_int8(0x66); // size prefix
2028         emit_int8(0x66); // size prefix
2029         emit_int8((unsigned char)0x90);
2030                          // nop
2031         break;
2032       case 11:
2033         emit_int8(0x66); // size prefix
2034       case 10:
2035         emit_int8(0x66); // size prefix
2036       case 9:
2037         emit_int8(0x66); // size prefix
2038       case 8:
2039         addr_nop_8();
2040         break;
2041       case 7:
2042         addr_nop_7();
2043         break;
2044       case 6:
2045         emit_int8(0x66); // size prefix
2046       case 5:
2047         addr_nop_5();
2048         break;
2049       case 4:
2050         addr_nop_4();
2051         break;
2052       case 3:
2053         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2054         emit_int8(0x66); // size prefix
2055       case 2:
2056         emit_int8(0x66); // size prefix
2057       case 1:
2058         emit_int8((unsigned char)0x90);
2059                          // nop
2060         break;
2061       default:
2062         assert(i == 0, " ");
2063     }
2064     return;
2065   }
2066   if (UseAddressNop && VM_Version::is_amd()) {
2067     //
2068     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2069     //  1: 0x90
2070     //  2: 0x66 0x90
2071     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2072     //  4: 0x0F 0x1F 0x40 0x00
2073     //  5: 0x0F 0x1F 0x44 0x00 0x00
2074     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2075     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2076     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2077     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2078     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2079     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2080 
2081     // The rest coding is AMD specific - use consecutive address nops
2082 
2083     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2084     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2085     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2086     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2087     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2088     //     Size prefixes (0x66) are added for larger sizes
2089 
2090     while(i >= 22) {
2091       i -= 11;
2092       emit_int8(0x66); // size prefix
2093       emit_int8(0x66); // size prefix
2094       emit_int8(0x66); // size prefix
2095       addr_nop_8();
2096     }
2097     // Generate first nop for size between 21-12
2098     switch (i) {
2099       case 21:
2100         i -= 1;
2101         emit_int8(0x66); // size prefix
2102       case 20:
2103       case 19:
2104         i -= 1;
2105         emit_int8(0x66); // size prefix
2106       case 18:
2107       case 17:
2108         i -= 1;
2109         emit_int8(0x66); // size prefix
2110       case 16:
2111       case 15:
2112         i -= 8;
2113         addr_nop_8();
2114         break;
2115       case 14:
2116       case 13:
2117         i -= 7;
2118         addr_nop_7();
2119         break;
2120       case 12:
2121         i -= 6;
2122         emit_int8(0x66); // size prefix
2123         addr_nop_5();
2124         break;
2125       default:
2126         assert(i < 12, " ");
2127     }
2128 
2129     // Generate second nop for size between 11-1
2130     switch (i) {
2131       case 11:
2132         emit_int8(0x66); // size prefix
2133       case 10:
2134         emit_int8(0x66); // size prefix
2135       case 9:
2136         emit_int8(0x66); // size prefix
2137       case 8:
2138         addr_nop_8();
2139         break;
2140       case 7:
2141         addr_nop_7();
2142         break;
2143       case 6:
2144         emit_int8(0x66); // size prefix
2145       case 5:
2146         addr_nop_5();
2147         break;
2148       case 4:
2149         addr_nop_4();
2150         break;
2151       case 3:
2152         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2153         emit_int8(0x66); // size prefix
2154       case 2:
2155         emit_int8(0x66); // size prefix
2156       case 1:
2157         emit_int8((unsigned char)0x90);
2158                          // nop
2159         break;
2160       default:
2161         assert(i == 0, " ");
2162     }
2163     return;
2164   }
2165 
2166   // Using nops with size prefixes "0x66 0x90".
2167   // From AMD Optimization Guide:
2168   //  1: 0x90
2169   //  2: 0x66 0x90
2170   //  3: 0x66 0x66 0x90
2171   //  4: 0x66 0x66 0x66 0x90
2172   //  5: 0x66 0x66 0x90 0x66 0x90
2173   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2174   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2175   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2176   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2177   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2178   //
2179   while(i > 12) {
2180     i -= 4;
2181     emit_int8(0x66); // size prefix
2182     emit_int8(0x66);
2183     emit_int8(0x66);
2184     emit_int8((unsigned char)0x90);
2185                      // nop
2186   }
2187   // 1 - 12 nops
2188   if(i > 8) {
2189     if(i > 9) {
2190       i -= 1;
2191       emit_int8(0x66);
2192     }
2193     i -= 3;
2194     emit_int8(0x66);
2195     emit_int8(0x66);
2196     emit_int8((unsigned char)0x90);
2197   }
2198   // 1 - 8 nops
2199   if(i > 4) {
2200     if(i > 6) {
2201       i -= 1;
2202       emit_int8(0x66);
2203     }
2204     i -= 3;
2205     emit_int8(0x66);
2206     emit_int8(0x66);
2207     emit_int8((unsigned char)0x90);
2208   }
2209   switch (i) {
2210     case 4:
2211       emit_int8(0x66);
2212     case 3:
2213       emit_int8(0x66);
2214     case 2:
2215       emit_int8(0x66);
2216     case 1:
2217       emit_int8((unsigned char)0x90);
2218       break;
2219     default:
2220       assert(i == 0, " ");
2221   }
2222 }
2223 
2224 void Assembler::notl(Register dst) {
2225   int encode = prefix_and_encode(dst->encoding());
2226   emit_int8((unsigned char)0xF7);
2227   emit_int8((unsigned char)(0xD0 | encode));
2228 }
2229 
2230 void Assembler::orl(Address dst, int32_t imm32) {
2231   InstructionMark im(this);
2232   prefix(dst);
2233   emit_arith_operand(0x81, rcx, dst, imm32);
2234 }
2235 
2236 void Assembler::orl(Register dst, int32_t imm32) {
2237   prefix(dst);
2238   emit_arith(0x81, 0xC8, dst, imm32);
2239 }
2240 
2241 void Assembler::orl(Register dst, Address src) {
2242   InstructionMark im(this);
2243   prefix(src, dst);
2244   emit_int8(0x0B);
2245   emit_operand(dst, src);
2246 }
2247 
2248 void Assembler::orl(Register dst, Register src) {
2249   (void) prefix_and_encode(dst->encoding(), src->encoding());
2250   emit_arith(0x0B, 0xC0, dst, src);
2251 }
2252 
2253 void Assembler::packuswb(XMMRegister dst, Address src) {
2254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2255   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2256   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2257 }
2258 
2259 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2260   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2261   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2262 }
2263 
2264 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2265   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
2266   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
2267 }
2268 
2269 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2270   assert(VM_Version::supports_avx2(), "");
2271   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
2272   emit_int8(0x00);
2273   emit_int8(0xC0 | encode);
2274   emit_int8(imm8);
2275 }
2276 
2277 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2278   assert(VM_Version::supports_sse4_2(), "");
2279   InstructionMark im(this);
2280   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2281   emit_int8(0x61);
2282   emit_operand(dst, src);
2283   emit_int8(imm8);
2284 }
2285 
2286 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2287   assert(VM_Version::supports_sse4_2(), "");
2288   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2289   emit_int8(0x61);
2290   emit_int8((unsigned char)(0xC0 | encode));
2291   emit_int8(imm8);
2292 }
2293 
2294 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2295   assert(VM_Version::supports_sse4_1(), "");
2296   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2297   emit_int8(0x16);
2298   emit_int8((unsigned char)(0xC0 | encode));
2299   emit_int8(imm8);
2300 }
2301 
2302 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2303   assert(VM_Version::supports_sse4_1(), "");
2304   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2305   emit_int8(0x16);
2306   emit_int8((unsigned char)(0xC0 | encode));
2307   emit_int8(imm8);
2308 }
2309 
2310 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2311   assert(VM_Version::supports_sse4_1(), "");
2312   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2313   emit_int8(0x22);
2314   emit_int8((unsigned char)(0xC0 | encode));
2315   emit_int8(imm8);
2316 }
2317 
2318 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2319   assert(VM_Version::supports_sse4_1(), "");
2320   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2321   emit_int8(0x22);
2322   emit_int8((unsigned char)(0xC0 | encode));
2323   emit_int8(imm8);
2324 }
2325 
2326 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2327   assert(VM_Version::supports_sse4_1(), "");
2328   InstructionMark im(this);
2329   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2330   emit_int8(0x30);
2331   emit_operand(dst, src);
2332 }
2333 
2334 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2335   assert(VM_Version::supports_sse4_1(), "");
2336   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2337   emit_int8(0x30);
2338   emit_int8((unsigned char)(0xC0 | encode));
2339 }
2340 
2341 // generic
2342 void Assembler::pop(Register dst) {
2343   int encode = prefix_and_encode(dst->encoding());
2344   emit_int8(0x58 | encode);
2345 }
2346 
2347 void Assembler::popcntl(Register dst, Address src) {
2348   assert(VM_Version::supports_popcnt(), "must support");
2349   InstructionMark im(this);
2350   emit_int8((unsigned char)0xF3);
2351   prefix(src, dst);
2352   emit_int8(0x0F);
2353   emit_int8((unsigned char)0xB8);
2354   emit_operand(dst, src);
2355 }
2356 
2357 void Assembler::popcntl(Register dst, Register src) {
2358   assert(VM_Version::supports_popcnt(), "must support");
2359   emit_int8((unsigned char)0xF3);
2360   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2361   emit_int8(0x0F);
2362   emit_int8((unsigned char)0xB8);
2363   emit_int8((unsigned char)(0xC0 | encode));
2364 }
2365 
2366 void Assembler::popf() {
2367   emit_int8((unsigned char)0x9D);
2368 }
2369 
2370 #ifndef _LP64 // no 32bit push/pop on amd64
2371 void Assembler::popl(Address dst) {
2372   // NOTE: this will adjust stack by 8byte on 64bits
2373   InstructionMark im(this);
2374   prefix(dst);
2375   emit_int8((unsigned char)0x8F);
2376   emit_operand(rax, dst);
2377 }
2378 #endif
2379 
2380 void Assembler::prefetch_prefix(Address src) {
2381   prefix(src);
2382   emit_int8(0x0F);
2383 }
2384 
2385 void Assembler::prefetchnta(Address src) {
2386   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2387   InstructionMark im(this);
2388   prefetch_prefix(src);
2389   emit_int8(0x18);
2390   emit_operand(rax, src); // 0, src
2391 }
2392 
2393 void Assembler::prefetchr(Address src) {
2394   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2395   InstructionMark im(this);
2396   prefetch_prefix(src);
2397   emit_int8(0x0D);
2398   emit_operand(rax, src); // 0, src
2399 }
2400 
2401 void Assembler::prefetcht0(Address src) {
2402   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2403   InstructionMark im(this);
2404   prefetch_prefix(src);
2405   emit_int8(0x18);
2406   emit_operand(rcx, src); // 1, src
2407 }
2408 
2409 void Assembler::prefetcht1(Address src) {
2410   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2411   InstructionMark im(this);
2412   prefetch_prefix(src);
2413   emit_int8(0x18);
2414   emit_operand(rdx, src); // 2, src
2415 }
2416 
2417 void Assembler::prefetcht2(Address src) {
2418   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2419   InstructionMark im(this);
2420   prefetch_prefix(src);
2421   emit_int8(0x18);
2422   emit_operand(rbx, src); // 3, src
2423 }
2424 
2425 void Assembler::prefetchw(Address src) {
2426   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2427   InstructionMark im(this);
2428   prefetch_prefix(src);
2429   emit_int8(0x0D);
2430   emit_operand(rcx, src); // 1, src
2431 }
2432 
2433 void Assembler::prefix(Prefix p) {
2434   emit_int8(p);
2435 }
2436 
2437 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
2438   assert(VM_Version::supports_ssse3(), "");
2439   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2440   emit_int8(0x00);
2441   emit_int8((unsigned char)(0xC0 | encode));
2442 }
2443 
2444 void Assembler::pshufb(XMMRegister dst, Address src) {
2445   assert(VM_Version::supports_ssse3(), "");
2446   InstructionMark im(this);
2447   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2448   emit_int8(0x00);
2449   emit_operand(dst, src);
2450 }
2451 
2452 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2453   assert(isByte(mode), "invalid value");
2454   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2455   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2456   emit_int8(mode & 0xFF);
2457 
2458 }
2459 
2460 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2461   assert(isByte(mode), "invalid value");
2462   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2463   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2464   InstructionMark im(this);
2465   simd_prefix(dst, src, VEX_SIMD_66);
2466   emit_int8(0x70);
2467   emit_operand(dst, src);
2468   emit_int8(mode & 0xFF);
2469 }
2470 
2471 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2472   assert(isByte(mode), "invalid value");
2473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2474   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2475   emit_int8(mode & 0xFF);
2476 }
2477 
2478 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2479   assert(isByte(mode), "invalid value");
2480   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2481   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2482   InstructionMark im(this);
2483   simd_prefix(dst, src, VEX_SIMD_F2);
2484   emit_int8(0x70);
2485   emit_operand(dst, src);
2486   emit_int8(mode & 0xFF);
2487 }
2488 
2489 void Assembler::psrldq(XMMRegister dst, int shift) {
2490   // Shift 128 bit value in xmm register by number of bytes.
2491   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2492   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2493   emit_int8(0x73);
2494   emit_int8((unsigned char)(0xC0 | encode));
2495   emit_int8(shift);
2496 }
2497 
2498 void Assembler::ptest(XMMRegister dst, Address src) {
2499   assert(VM_Version::supports_sse4_1(), "");
2500   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2501   InstructionMark im(this);
2502   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2503   emit_int8(0x17);
2504   emit_operand(dst, src);
2505 }
2506 
2507 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2508   assert(VM_Version::supports_sse4_1(), "");
2509   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2510   emit_int8(0x17);
2511   emit_int8((unsigned char)(0xC0 | encode));
2512 }
2513 
2514 void Assembler::vptest(XMMRegister dst, Address src) {
2515   assert(VM_Version::supports_avx(), "");
2516   InstructionMark im(this);
2517   bool vector256 = true;
2518   assert(dst != xnoreg, "sanity");
2519   int dst_enc = dst->encoding();
2520   // swap src<->dst for encoding
2521   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2522   emit_int8(0x17);
2523   emit_operand(dst, src);
2524 }
2525 
2526 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
2527   assert(VM_Version::supports_avx(), "");
2528   bool vector256 = true;
2529   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
2530   emit_int8(0x17);
2531   emit_int8((unsigned char)(0xC0 | encode));
2532 }
2533 
2534 void Assembler::punpcklbw(XMMRegister dst, Address src) {
2535   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2536   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2537   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2538 }
2539 
2540 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2541   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2542   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2543 }
2544 
2545 void Assembler::punpckldq(XMMRegister dst, Address src) {
2546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2547   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2548   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2549 }
2550 
2551 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2552   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2553   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2554 }
2555 
2556 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
2557   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2558   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
2559 }
2560 
2561 void Assembler::push(int32_t imm32) {
2562   // in 64bits we push 64bits onto the stack but only
2563   // take a 32bit immediate
2564   emit_int8(0x68);
2565   emit_int32(imm32);
2566 }
2567 
2568 void Assembler::push(Register src) {
2569   int encode = prefix_and_encode(src->encoding());
2570 
2571   emit_int8(0x50 | encode);
2572 }
2573 
2574 void Assembler::pushf() {
2575   emit_int8((unsigned char)0x9C);
2576 }
2577 
2578 #ifndef _LP64 // no 32bit push/pop on amd64
2579 void Assembler::pushl(Address src) {
2580   // Note this will push 64bit on 64bit
2581   InstructionMark im(this);
2582   prefix(src);
2583   emit_int8((unsigned char)0xFF);
2584   emit_operand(rsi, src);
2585 }
2586 #endif
2587 
2588 void Assembler::rcll(Register dst, int imm8) {
2589   assert(isShiftCount(imm8), "illegal shift count");
2590   int encode = prefix_and_encode(dst->encoding());
2591   if (imm8 == 1) {
2592     emit_int8((unsigned char)0xD1);
2593     emit_int8((unsigned char)(0xD0 | encode));
2594   } else {
2595     emit_int8((unsigned char)0xC1);
2596     emit_int8((unsigned char)0xD0 | encode);
2597     emit_int8(imm8);
2598   }
2599 }
2600 
2601 // copies data from [esi] to [edi] using rcx pointer sized words
2602 // generic
2603 void Assembler::rep_mov() {
2604   emit_int8((unsigned char)0xF3);
2605   // MOVSQ
2606   LP64_ONLY(prefix(REX_W));
2607   emit_int8((unsigned char)0xA5);
2608 }
2609 
2610 // sets rcx bytes with rax, value at [edi]
2611 void Assembler::rep_stosb() {
2612   emit_int8((unsigned char)0xF3); // REP
2613   LP64_ONLY(prefix(REX_W));
2614   emit_int8((unsigned char)0xAA); // STOSB
2615 }
2616 
2617 // sets rcx pointer sized words with rax, value at [edi]
2618 // generic
2619 void Assembler::rep_stos() {
2620   emit_int8((unsigned char)0xF3); // REP
2621   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2622   emit_int8((unsigned char)0xAB);
2623 }
2624 
2625 // scans rcx pointer sized words at [edi] for occurance of rax,
2626 // generic
2627 void Assembler::repne_scan() { // repne_scan
2628   emit_int8((unsigned char)0xF2);
2629   // SCASQ
2630   LP64_ONLY(prefix(REX_W));
2631   emit_int8((unsigned char)0xAF);
2632 }
2633 
2634 #ifdef _LP64
2635 // scans rcx 4 byte words at [edi] for occurance of rax,
2636 // generic
2637 void Assembler::repne_scanl() { // repne_scan
2638   emit_int8((unsigned char)0xF2);
2639   // SCASL
2640   emit_int8((unsigned char)0xAF);
2641 }
2642 #endif
2643 
2644 void Assembler::ret(int imm16) {
2645   if (imm16 == 0) {
2646     emit_int8((unsigned char)0xC3);
2647   } else {
2648     emit_int8((unsigned char)0xC2);
2649     emit_int16(imm16);
2650   }
2651 }
2652 
2653 void Assembler::sahf() {
2654 #ifdef _LP64
2655   // Not supported in 64bit mode
2656   ShouldNotReachHere();
2657 #endif
2658   emit_int8((unsigned char)0x9E);
2659 }
2660 
2661 void Assembler::sarl(Register dst, int imm8) {
2662   int encode = prefix_and_encode(dst->encoding());
2663   assert(isShiftCount(imm8), "illegal shift count");
2664   if (imm8 == 1) {
2665     emit_int8((unsigned char)0xD1);
2666     emit_int8((unsigned char)(0xF8 | encode));
2667   } else {
2668     emit_int8((unsigned char)0xC1);
2669     emit_int8((unsigned char)(0xF8 | encode));
2670     emit_int8(imm8);
2671   }
2672 }
2673 
2674 void Assembler::sarl(Register dst) {
2675   int encode = prefix_and_encode(dst->encoding());
2676   emit_int8((unsigned char)0xD3);
2677   emit_int8((unsigned char)(0xF8 | encode));
2678 }
2679 
2680 void Assembler::sbbl(Address dst, int32_t imm32) {
2681   InstructionMark im(this);
2682   prefix(dst);
2683   emit_arith_operand(0x81, rbx, dst, imm32);
2684 }
2685 
2686 void Assembler::sbbl(Register dst, int32_t imm32) {
2687   prefix(dst);
2688   emit_arith(0x81, 0xD8, dst, imm32);
2689 }
2690 
2691 
2692 void Assembler::sbbl(Register dst, Address src) {
2693   InstructionMark im(this);
2694   prefix(src, dst);
2695   emit_int8(0x1B);
2696   emit_operand(dst, src);
2697 }
2698 
2699 void Assembler::sbbl(Register dst, Register src) {
2700   (void) prefix_and_encode(dst->encoding(), src->encoding());
2701   emit_arith(0x1B, 0xC0, dst, src);
2702 }
2703 
2704 void Assembler::setb(Condition cc, Register dst) {
2705   assert(0 <= cc && cc < 16, "illegal cc");
2706   int encode = prefix_and_encode(dst->encoding(), true);
2707   emit_int8(0x0F);
2708   emit_int8((unsigned char)0x90 | cc);
2709   emit_int8((unsigned char)(0xC0 | encode));
2710 }
2711 
2712 void Assembler::shll(Register dst, int imm8) {
2713   assert(isShiftCount(imm8), "illegal shift count");
2714   int encode = prefix_and_encode(dst->encoding());
2715   if (imm8 == 1 ) {
2716     emit_int8((unsigned char)0xD1);
2717     emit_int8((unsigned char)(0xE0 | encode));
2718   } else {
2719     emit_int8((unsigned char)0xC1);
2720     emit_int8((unsigned char)(0xE0 | encode));
2721     emit_int8(imm8);
2722   }
2723 }
2724 
2725 void Assembler::shll(Register dst) {
2726   int encode = prefix_and_encode(dst->encoding());
2727   emit_int8((unsigned char)0xD3);
2728   emit_int8((unsigned char)(0xE0 | encode));
2729 }
2730 
2731 void Assembler::shrl(Register dst, int imm8) {
2732   assert(isShiftCount(imm8), "illegal shift count");
2733   int encode = prefix_and_encode(dst->encoding());
2734   emit_int8((unsigned char)0xC1);
2735   emit_int8((unsigned char)(0xE8 | encode));
2736   emit_int8(imm8);
2737 }
2738 
2739 void Assembler::shrl(Register dst) {
2740   int encode = prefix_and_encode(dst->encoding());
2741   emit_int8((unsigned char)0xD3);
2742   emit_int8((unsigned char)(0xE8 | encode));
2743 }
2744 
2745 // copies a single word from [esi] to [edi]
2746 void Assembler::smovl() {
2747   emit_int8((unsigned char)0xA5);
2748 }
2749 
2750 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2752   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2753 }
2754 
2755 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2757   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2758 }
2759 
2760 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2761   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2762   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2763 }
2764 
2765 void Assembler::std() {
2766   emit_int8((unsigned char)0xFD);
2767 }
2768 
2769 void Assembler::sqrtss(XMMRegister dst, Address src) {
2770   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2771   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2772 }
2773 
2774 void Assembler::stmxcsr( Address dst) {
2775   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2776   InstructionMark im(this);
2777   prefix(dst);
2778   emit_int8(0x0F);
2779   emit_int8((unsigned char)0xAE);
2780   emit_operand(as_Register(3), dst);
2781 }
2782 
2783 void Assembler::subl(Address dst, int32_t imm32) {
2784   InstructionMark im(this);
2785   prefix(dst);
2786   emit_arith_operand(0x81, rbp, dst, imm32);
2787 }
2788 
2789 void Assembler::subl(Address dst, Register src) {
2790   InstructionMark im(this);
2791   prefix(dst, src);
2792   emit_int8(0x29);
2793   emit_operand(src, dst);
2794 }
2795 
2796 void Assembler::subl(Register dst, int32_t imm32) {
2797   prefix(dst);
2798   emit_arith(0x81, 0xE8, dst, imm32);
2799 }
2800 
2801 // Force generation of a 4 byte immediate value even if it fits into 8bit
2802 void Assembler::subl_imm32(Register dst, int32_t imm32) {
2803   prefix(dst);
2804   emit_arith_imm32(0x81, 0xE8, dst, imm32);
2805 }
2806 
2807 void Assembler::subl(Register dst, Address src) {
2808   InstructionMark im(this);
2809   prefix(src, dst);
2810   emit_int8(0x2B);
2811   emit_operand(dst, src);
2812 }
2813 
2814 void Assembler::subl(Register dst, Register src) {
2815   (void) prefix_and_encode(dst->encoding(), src->encoding());
2816   emit_arith(0x2B, 0xC0, dst, src);
2817 }
2818 
2819 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2820   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2821   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2822 }
2823 
2824 void Assembler::subsd(XMMRegister dst, Address src) {
2825   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2826   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2827 }
2828 
2829 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2830   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2831   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2832 }
2833 
2834 void Assembler::subss(XMMRegister dst, Address src) {
2835   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2836   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2837 }
2838 
2839 void Assembler::testb(Register dst, int imm8) {
2840   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2841   (void) prefix_and_encode(dst->encoding(), true);
2842   emit_arith_b(0xF6, 0xC0, dst, imm8);
2843 }
2844 
2845 void Assembler::testl(Register dst, int32_t imm32) {
2846   // not using emit_arith because test
2847   // doesn't support sign-extension of
2848   // 8bit operands
2849   int encode = dst->encoding();
2850   if (encode == 0) {
2851     emit_int8((unsigned char)0xA9);
2852   } else {
2853     encode = prefix_and_encode(encode);
2854     emit_int8((unsigned char)0xF7);
2855     emit_int8((unsigned char)(0xC0 | encode));
2856   }
2857   emit_int32(imm32);
2858 }
2859 
2860 void Assembler::testl(Register dst, Register src) {
2861   (void) prefix_and_encode(dst->encoding(), src->encoding());
2862   emit_arith(0x85, 0xC0, dst, src);
2863 }
2864 
2865 void Assembler::testl(Register dst, Address  src) {
2866   InstructionMark im(this);
2867   prefix(src, dst);
2868   emit_int8((unsigned char)0x85);
2869   emit_operand(dst, src);
2870 }
2871 
2872 void Assembler::ucomisd(XMMRegister dst, Address src) {
2873   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2874   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2875 }
2876 
2877 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2878   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2879   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2880 }
2881 
2882 void Assembler::ucomiss(XMMRegister dst, Address src) {
2883   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2884   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2885 }
2886 
2887 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2888   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2889   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2890 }
2891 
2892 
2893 void Assembler::xaddl(Address dst, Register src) {
2894   InstructionMark im(this);
2895   prefix(dst, src);
2896   emit_int8(0x0F);
2897   emit_int8((unsigned char)0xC1);
2898   emit_operand(src, dst);
2899 }
2900 
2901 void Assembler::xchgl(Register dst, Address src) { // xchg
2902   InstructionMark im(this);
2903   prefix(src, dst);
2904   emit_int8((unsigned char)0x87);
2905   emit_operand(dst, src);
2906 }
2907 
2908 void Assembler::xchgl(Register dst, Register src) {
2909   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2910   emit_int8((unsigned char)0x87);
2911   emit_int8((unsigned char)(0xC0 | encode));
2912 }
2913 
2914 void Assembler::xgetbv() {
2915   emit_int8(0x0F);
2916   emit_int8(0x01);
2917   emit_int8((unsigned char)0xD0);
2918 }
2919 
2920 void Assembler::xorl(Register dst, int32_t imm32) {
2921   prefix(dst);
2922   emit_arith(0x81, 0xF0, dst, imm32);
2923 }
2924 
2925 void Assembler::xorl(Register dst, Address src) {
2926   InstructionMark im(this);
2927   prefix(src, dst);
2928   emit_int8(0x33);
2929   emit_operand(dst, src);
2930 }
2931 
2932 void Assembler::xorl(Register dst, Register src) {
2933   (void) prefix_and_encode(dst->encoding(), src->encoding());
2934   emit_arith(0x33, 0xC0, dst, src);
2935 }
2936 
2937 
2938 // AVX 3-operands scalar float-point arithmetic instructions
2939 
2940 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
2941   assert(VM_Version::supports_avx(), "");
2942   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2943 }
2944 
2945 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2946   assert(VM_Version::supports_avx(), "");
2947   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2948 }
2949 
2950 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
2951   assert(VM_Version::supports_avx(), "");
2952   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2953 }
2954 
2955 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2956   assert(VM_Version::supports_avx(), "");
2957   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2958 }
2959 
2960 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
2961   assert(VM_Version::supports_avx(), "");
2962   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2963 }
2964 
2965 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2966   assert(VM_Version::supports_avx(), "");
2967   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2968 }
2969 
2970 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
2971   assert(VM_Version::supports_avx(), "");
2972   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2973 }
2974 
2975 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2976   assert(VM_Version::supports_avx(), "");
2977   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2978 }
2979 
2980 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
2981   assert(VM_Version::supports_avx(), "");
2982   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2983 }
2984 
2985 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2986   assert(VM_Version::supports_avx(), "");
2987   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
2988 }
2989 
2990 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
2991   assert(VM_Version::supports_avx(), "");
2992   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2993 }
2994 
2995 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
2996   assert(VM_Version::supports_avx(), "");
2997   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
2998 }
2999 
3000 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3001   assert(VM_Version::supports_avx(), "");
3002   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3003 }
3004 
3005 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3006   assert(VM_Version::supports_avx(), "");
3007   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3008 }
3009 
3010 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3011   assert(VM_Version::supports_avx(), "");
3012   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3013 }
3014 
3015 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3016   assert(VM_Version::supports_avx(), "");
3017   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3018 }
3019 
3020 //====================VECTOR ARITHMETIC=====================================
3021 
3022 // Float-point vector arithmetic
3023 
3024 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3025   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3026   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3027 }
3028 
3029 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3030   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3031   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3032 }
3033 
3034 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3035   assert(VM_Version::supports_avx(), "");
3036   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3037 }
3038 
3039 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3040   assert(VM_Version::supports_avx(), "");
3041   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3042 }
3043 
3044 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3045   assert(VM_Version::supports_avx(), "");
3046   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3047 }
3048 
3049 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3050   assert(VM_Version::supports_avx(), "");
3051   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3052 }
3053 
3054 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3055   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3056   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3057 }
3058 
3059 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3060   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3061   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3062 }
3063 
3064 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3065   assert(VM_Version::supports_avx(), "");
3066   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3067 }
3068 
3069 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3070   assert(VM_Version::supports_avx(), "");
3071   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3072 }
3073 
3074 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3075   assert(VM_Version::supports_avx(), "");
3076   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3077 }
3078 
3079 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3080   assert(VM_Version::supports_avx(), "");
3081   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3082 }
3083 
3084 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3085   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3086   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3087 }
3088 
3089 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3091   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3092 }
3093 
3094 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3095   assert(VM_Version::supports_avx(), "");
3096   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3097 }
3098 
3099 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3100   assert(VM_Version::supports_avx(), "");
3101   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3102 }
3103 
3104 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3105   assert(VM_Version::supports_avx(), "");
3106   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3107 }
3108 
3109 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3110   assert(VM_Version::supports_avx(), "");
3111   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3112 }
3113 
3114 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3115   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3116   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3117 }
3118 
3119 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3120   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3121   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3122 }
3123 
3124 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3125   assert(VM_Version::supports_avx(), "");
3126   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3127 }
3128 
3129 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3130   assert(VM_Version::supports_avx(), "");
3131   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3132 }
3133 
3134 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3135   assert(VM_Version::supports_avx(), "");
3136   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3137 }
3138 
3139 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3140   assert(VM_Version::supports_avx(), "");
3141   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3142 }
3143 
3144 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3145   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3146   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3147 }
3148 
3149 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3150   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3151   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3152 }
3153 
3154 void Assembler::andps(XMMRegister dst, Address src) {
3155   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3156   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3157 }
3158 
3159 void Assembler::andpd(XMMRegister dst, Address src) {
3160   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3161   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3162 }
3163 
3164 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3165   assert(VM_Version::supports_avx(), "");
3166   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3167 }
3168 
3169 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3170   assert(VM_Version::supports_avx(), "");
3171   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3172 }
3173 
3174 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3175   assert(VM_Version::supports_avx(), "");
3176   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3177 }
3178 
3179 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3180   assert(VM_Version::supports_avx(), "");
3181   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3182 }
3183 
3184 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
3185   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3186   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3187 }
3188 
3189 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
3190   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3191   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3192 }
3193 
3194 void Assembler::xorpd(XMMRegister dst, Address src) {
3195   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3196   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3197 }
3198 
3199 void Assembler::xorps(XMMRegister dst, Address src) {
3200   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3201   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3202 }
3203 
3204 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3205   assert(VM_Version::supports_avx(), "");
3206   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3207 }
3208 
3209 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3210   assert(VM_Version::supports_avx(), "");
3211   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3212 }
3213 
3214 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3215   assert(VM_Version::supports_avx(), "");
3216   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3217 }
3218 
3219 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3220   assert(VM_Version::supports_avx(), "");
3221   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3222 }
3223 
3224 
3225 // Integer vector arithmetic
3226 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
3227   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3228   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
3229 }
3230 
3231 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
3232   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3233   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
3234 }
3235 
3236 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
3237   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3238   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
3239 }
3240 
3241 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
3242   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3243   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
3244 }
3245 
3246 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3247   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3248   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3249 }
3250 
3251 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3252   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3253   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3254 }
3255 
3256 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3257   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3258   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3259 }
3260 
3261 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3262   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3263   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3264 }
3265 
3266 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3267   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3268   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3269 }
3270 
3271 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3272   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3273   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3274 }
3275 
3276 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3277   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3278   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3279 }
3280 
3281 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3282   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3283   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3284 }
3285 
3286 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
3287   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3288   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
3289 }
3290 
3291 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
3292   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3293   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
3294 }
3295 
3296 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
3297   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3298   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
3299 }
3300 
3301 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
3302   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3303   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
3304 }
3305 
3306 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3307   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3308   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3309 }
3310 
3311 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3312   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3313   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3314 }
3315 
3316 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3317   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3318   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3319 }
3320 
3321 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3322   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3323   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3324 }
3325 
3326 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3327   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3328   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3329 }
3330 
3331 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3332   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3333   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3334 }
3335 
3336 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3337   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3338   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3339 }
3340 
3341 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3342   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3343   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3344 }
3345 
3346 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
3347   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3348   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
3349 }
3350 
3351 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
3352   assert(VM_Version::supports_sse4_1(), "");
3353   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3354   emit_int8(0x40);
3355   emit_int8((unsigned char)(0xC0 | encode));
3356 }
3357 
3358 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3359   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3360   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3361 }
3362 
3363 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3364   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3365   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3366   emit_int8(0x40);
3367   emit_int8((unsigned char)(0xC0 | encode));
3368 }
3369 
3370 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3371   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3372   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3373 }
3374 
3375 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3376   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3377   InstructionMark im(this);
3378   int dst_enc = dst->encoding();
3379   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3380   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3381   emit_int8(0x40);
3382   emit_operand(dst, src);
3383 }
3384 
3385 // Shift packed integers left by specified number of bits.
3386 void Assembler::psllw(XMMRegister dst, int shift) {
3387   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3388   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3389   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3390   emit_int8(0x71);
3391   emit_int8((unsigned char)(0xC0 | encode));
3392   emit_int8(shift & 0xFF);
3393 }
3394 
3395 void Assembler::pslld(XMMRegister dst, int shift) {
3396   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3397   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3398   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3399   emit_int8(0x72);
3400   emit_int8((unsigned char)(0xC0 | encode));
3401   emit_int8(shift & 0xFF);
3402 }
3403 
3404 void Assembler::psllq(XMMRegister dst, int shift) {
3405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3406   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3407   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3408   emit_int8(0x73);
3409   emit_int8((unsigned char)(0xC0 | encode));
3410   emit_int8(shift & 0xFF);
3411 }
3412 
3413 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
3414   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3415   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
3416 }
3417 
3418 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
3419   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3420   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
3421 }
3422 
3423 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
3424   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3425   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
3426 }
3427 
3428 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3429   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3430   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3431   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3432   emit_int8(shift & 0xFF);
3433 }
3434 
3435 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3436   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3437   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3438   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3439   emit_int8(shift & 0xFF);
3440 }
3441 
3442 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3443   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3444   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3445   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3446   emit_int8(shift & 0xFF);
3447 }
3448 
3449 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3450   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3451   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
3452 }
3453 
3454 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3455   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3456   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
3457 }
3458 
3459 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3460   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3461   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
3462 }
3463 
3464 // Shift packed integers logically right by specified number of bits.
3465 void Assembler::psrlw(XMMRegister dst, int shift) {
3466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3467   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
3468   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3469   emit_int8(0x71);
3470   emit_int8((unsigned char)(0xC0 | encode));
3471   emit_int8(shift & 0xFF);
3472 }
3473 
3474 void Assembler::psrld(XMMRegister dst, int shift) {
3475   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3476   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
3477   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3478   emit_int8(0x72);
3479   emit_int8((unsigned char)(0xC0 | encode));
3480   emit_int8(shift & 0xFF);
3481 }
3482 
3483 void Assembler::psrlq(XMMRegister dst, int shift) {
3484   // Do not confuse it with psrldq SSE2 instruction which
3485   // shifts 128 bit value in xmm register by number of bytes.
3486   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3487   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3488   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3489   emit_int8(0x73);
3490   emit_int8((unsigned char)(0xC0 | encode));
3491   emit_int8(shift & 0xFF);
3492 }
3493 
3494 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
3495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3496   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
3497 }
3498 
3499 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
3500   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3501   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
3502 }
3503 
3504 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
3505   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3506   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
3507 }
3508 
3509 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3510   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3511   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3512   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3513   emit_int8(shift & 0xFF);
3514 }
3515 
3516 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3517   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3518   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3519   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3520   emit_int8(shift & 0xFF);
3521 }
3522 
3523 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3524   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3525   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3526   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3527   emit_int8(shift & 0xFF);
3528 }
3529 
3530 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3531   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3532   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
3533 }
3534 
3535 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3536   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3537   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
3538 }
3539 
3540 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3541   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3542   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
3543 }
3544 
3545 // Shift packed integers arithmetically right by specified number of bits.
3546 void Assembler::psraw(XMMRegister dst, int shift) {
3547   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3548   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3549   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3550   emit_int8(0x71);
3551   emit_int8((unsigned char)(0xC0 | encode));
3552   emit_int8(shift & 0xFF);
3553 }
3554 
3555 void Assembler::psrad(XMMRegister dst, int shift) {
3556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3557   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
3558   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3559   emit_int8(0x72);
3560   emit_int8((unsigned char)(0xC0 | encode));
3561   emit_int8(shift & 0xFF);
3562 }
3563 
3564 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
3565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3566   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
3567 }
3568 
3569 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
3570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3571   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
3572 }
3573 
3574 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3575   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3576   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3577   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3578   emit_int8(shift & 0xFF);
3579 }
3580 
3581 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3582   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3583   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3584   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3585   emit_int8(shift & 0xFF);
3586 }
3587 
3588 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3589   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3590   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
3591 }
3592 
3593 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3594   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3595   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
3596 }
3597 
3598 
3599 // AND packed integers
3600 void Assembler::pand(XMMRegister dst, XMMRegister src) {
3601   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3602   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
3603 }
3604 
3605 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3606   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3607   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3608 }
3609 
3610 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3611   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3612   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3613 }
3614 
3615 void Assembler::por(XMMRegister dst, XMMRegister src) {
3616   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3617   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
3618 }
3619 
3620 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3621   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3622   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3623 }
3624 
3625 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3626   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3627   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3628 }
3629 
3630 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
3631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3632   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
3633 }
3634 
3635 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3636   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3637   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3638 }
3639 
3640 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3641   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3642   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3643 }
3644 
3645 
3646 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3647   assert(VM_Version::supports_avx(), "");
3648   bool vector256 = true;
3649   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3650   emit_int8(0x18);
3651   emit_int8((unsigned char)(0xC0 | encode));
3652   // 0x00 - insert into lower 128 bits
3653   // 0x01 - insert into upper 128 bits
3654   emit_int8(0x01);
3655 }
3656 
3657 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
3658   assert(VM_Version::supports_avx(), "");
3659   InstructionMark im(this);
3660   bool vector256 = true;
3661   assert(dst != xnoreg, "sanity");
3662   int dst_enc = dst->encoding();
3663   // swap src<->dst for encoding
3664   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3665   emit_int8(0x18);
3666   emit_operand(dst, src);
3667   // 0x01 - insert into upper 128 bits
3668   emit_int8(0x01);
3669 }
3670 
3671 void Assembler::vextractf128h(Address dst, XMMRegister src) {
3672   assert(VM_Version::supports_avx(), "");
3673   InstructionMark im(this);
3674   bool vector256 = true;
3675   assert(src != xnoreg, "sanity");
3676   int src_enc = src->encoding();
3677   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3678   emit_int8(0x19);
3679   emit_operand(src, dst);
3680   // 0x01 - extract from upper 128 bits
3681   emit_int8(0x01);
3682 }
3683 
3684 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3685   assert(VM_Version::supports_avx2(), "");
3686   bool vector256 = true;
3687   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3688   emit_int8(0x38);
3689   emit_int8((unsigned char)(0xC0 | encode));
3690   // 0x00 - insert into lower 128 bits
3691   // 0x01 - insert into upper 128 bits
3692   emit_int8(0x01);
3693 }
3694 
3695 void Assembler::vinserti128h(XMMRegister dst, Address src) {
3696   assert(VM_Version::supports_avx2(), "");
3697   InstructionMark im(this);
3698   bool vector256 = true;
3699   assert(dst != xnoreg, "sanity");
3700   int dst_enc = dst->encoding();
3701   // swap src<->dst for encoding
3702   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3703   emit_int8(0x38);
3704   emit_operand(dst, src);
3705   // 0x01 - insert into upper 128 bits
3706   emit_int8(0x01);
3707 }
3708 
3709 void Assembler::vextracti128h(Address dst, XMMRegister src) {
3710   assert(VM_Version::supports_avx2(), "");
3711   InstructionMark im(this);
3712   bool vector256 = true;
3713   assert(src != xnoreg, "sanity");
3714   int src_enc = src->encoding();
3715   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3716   emit_int8(0x39);
3717   emit_operand(src, dst);
3718   // 0x01 - extract from upper 128 bits
3719   emit_int8(0x01);
3720 }
3721 
3722 // duplicate 4-bytes integer data from src into 8 locations in dest
3723 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
3724   assert(VM_Version::supports_avx2(), "");
3725   bool vector256 = true;
3726   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3727   emit_int8(0x58);
3728   emit_int8((unsigned char)(0xC0 | encode));
3729 }
3730 
3731 // Carry-Less Multiplication Quadword
3732 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
3733   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
3734   bool vector256 = false;
3735   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3736   emit_int8(0x44);
3737   emit_int8((unsigned char)(0xC0 | encode));
3738   emit_int8((unsigned char)mask);
3739 }
3740 
3741 void Assembler::vzeroupper() {
3742   assert(VM_Version::supports_avx(), "");
3743   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3744   emit_int8(0x77);
3745 }
3746 
3747 
3748 #ifndef _LP64
3749 // 32bit only pieces of the assembler
3750 
3751 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3752   // NO PREFIX AS NEVER 64BIT
3753   InstructionMark im(this);
3754   emit_int8((unsigned char)0x81);
3755   emit_int8((unsigned char)(0xF8 | src1->encoding()));
3756   emit_data(imm32, rspec, 0);
3757 }
3758 
3759 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3760   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
3761   InstructionMark im(this);
3762   emit_int8((unsigned char)0x81);
3763   emit_operand(rdi, src1);
3764   emit_data(imm32, rspec, 0);
3765 }
3766 
3767 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
3768 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
3769 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
3770 void Assembler::cmpxchg8(Address adr) {
3771   InstructionMark im(this);
3772   emit_int8(0x0F);
3773   emit_int8((unsigned char)0xC7);
3774   emit_operand(rcx, adr);
3775 }
3776 
3777 void Assembler::decl(Register dst) {
3778   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3779  emit_int8(0x48 | dst->encoding());
3780 }
3781 
3782 #endif // _LP64
3783 
3784 // 64bit typically doesn't use the x87 but needs to for the trig funcs
3785 
3786 void Assembler::fabs() {
3787   emit_int8((unsigned char)0xD9);
3788   emit_int8((unsigned char)0xE1);
3789 }
3790 
3791 void Assembler::fadd(int i) {
3792   emit_farith(0xD8, 0xC0, i);
3793 }
3794 
3795 void Assembler::fadd_d(Address src) {
3796   InstructionMark im(this);
3797   emit_int8((unsigned char)0xDC);
3798   emit_operand32(rax, src);
3799 }
3800 
3801 void Assembler::fadd_s(Address src) {
3802   InstructionMark im(this);
3803   emit_int8((unsigned char)0xD8);
3804   emit_operand32(rax, src);
3805 }
3806 
3807 void Assembler::fadda(int i) {
3808   emit_farith(0xDC, 0xC0, i);
3809 }
3810 
3811 void Assembler::faddp(int i) {
3812   emit_farith(0xDE, 0xC0, i);
3813 }
3814 
3815 void Assembler::fchs() {
3816   emit_int8((unsigned char)0xD9);
3817   emit_int8((unsigned char)0xE0);
3818 }
3819 
3820 void Assembler::fcom(int i) {
3821   emit_farith(0xD8, 0xD0, i);
3822 }
3823 
3824 void Assembler::fcomp(int i) {
3825   emit_farith(0xD8, 0xD8, i);
3826 }
3827 
3828 void Assembler::fcomp_d(Address src) {
3829   InstructionMark im(this);
3830   emit_int8((unsigned char)0xDC);
3831   emit_operand32(rbx, src);
3832 }
3833 
3834 void Assembler::fcomp_s(Address src) {
3835   InstructionMark im(this);
3836   emit_int8((unsigned char)0xD8);
3837   emit_operand32(rbx, src);
3838 }
3839 
3840 void Assembler::fcompp() {
3841   emit_int8((unsigned char)0xDE);
3842   emit_int8((unsigned char)0xD9);
3843 }
3844 
3845 void Assembler::fcos() {
3846   emit_int8((unsigned char)0xD9);
3847   emit_int8((unsigned char)0xFF);
3848 }
3849 
3850 void Assembler::fdecstp() {
3851   emit_int8((unsigned char)0xD9);
3852   emit_int8((unsigned char)0xF6);
3853 }
3854 
3855 void Assembler::fdiv(int i) {
3856   emit_farith(0xD8, 0xF0, i);
3857 }
3858 
3859 void Assembler::fdiv_d(Address src) {
3860   InstructionMark im(this);
3861   emit_int8((unsigned char)0xDC);
3862   emit_operand32(rsi, src);
3863 }
3864 
3865 void Assembler::fdiv_s(Address src) {
3866   InstructionMark im(this);
3867   emit_int8((unsigned char)0xD8);
3868   emit_operand32(rsi, src);
3869 }
3870 
3871 void Assembler::fdiva(int i) {
3872   emit_farith(0xDC, 0xF8, i);
3873 }
3874 
3875 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
3876 //       is erroneous for some of the floating-point instructions below.
3877 
3878 void Assembler::fdivp(int i) {
3879   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
3880 }
3881 
3882 void Assembler::fdivr(int i) {
3883   emit_farith(0xD8, 0xF8, i);
3884 }
3885 
3886 void Assembler::fdivr_d(Address src) {
3887   InstructionMark im(this);
3888   emit_int8((unsigned char)0xDC);
3889   emit_operand32(rdi, src);
3890 }
3891 
3892 void Assembler::fdivr_s(Address src) {
3893   InstructionMark im(this);
3894   emit_int8((unsigned char)0xD8);
3895   emit_operand32(rdi, src);
3896 }
3897 
3898 void Assembler::fdivra(int i) {
3899   emit_farith(0xDC, 0xF0, i);
3900 }
3901 
3902 void Assembler::fdivrp(int i) {
3903   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
3904 }
3905 
3906 void Assembler::ffree(int i) {
3907   emit_farith(0xDD, 0xC0, i);
3908 }
3909 
3910 void Assembler::fild_d(Address adr) {
3911   InstructionMark im(this);
3912   emit_int8((unsigned char)0xDF);
3913   emit_operand32(rbp, adr);
3914 }
3915 
3916 void Assembler::fild_s(Address adr) {
3917   InstructionMark im(this);
3918   emit_int8((unsigned char)0xDB);
3919   emit_operand32(rax, adr);
3920 }
3921 
3922 void Assembler::fincstp() {
3923   emit_int8((unsigned char)0xD9);
3924   emit_int8((unsigned char)0xF7);
3925 }
3926 
3927 void Assembler::finit() {
3928   emit_int8((unsigned char)0x9B);
3929   emit_int8((unsigned char)0xDB);
3930   emit_int8((unsigned char)0xE3);
3931 }
3932 
3933 void Assembler::fist_s(Address adr) {
3934   InstructionMark im(this);
3935   emit_int8((unsigned char)0xDB);
3936   emit_operand32(rdx, adr);
3937 }
3938 
3939 void Assembler::fistp_d(Address adr) {
3940   InstructionMark im(this);
3941   emit_int8((unsigned char)0xDF);
3942   emit_operand32(rdi, adr);
3943 }
3944 
3945 void Assembler::fistp_s(Address adr) {
3946   InstructionMark im(this);
3947   emit_int8((unsigned char)0xDB);
3948   emit_operand32(rbx, adr);
3949 }
3950 
3951 void Assembler::fld1() {
3952   emit_int8((unsigned char)0xD9);
3953   emit_int8((unsigned char)0xE8);
3954 }
3955 
3956 void Assembler::fld_d(Address adr) {
3957   InstructionMark im(this);
3958   emit_int8((unsigned char)0xDD);
3959   emit_operand32(rax, adr);
3960 }
3961 
3962 void Assembler::fld_s(Address adr) {
3963   InstructionMark im(this);
3964   emit_int8((unsigned char)0xD9);
3965   emit_operand32(rax, adr);
3966 }
3967 
3968 
3969 void Assembler::fld_s(int index) {
3970   emit_farith(0xD9, 0xC0, index);
3971 }
3972 
3973 void Assembler::fld_x(Address adr) {
3974   InstructionMark im(this);
3975   emit_int8((unsigned char)0xDB);
3976   emit_operand32(rbp, adr);
3977 }
3978 
3979 void Assembler::fldcw(Address src) {
3980   InstructionMark im(this);
3981   emit_int8((unsigned char)0xD9);
3982   emit_operand32(rbp, src);
3983 }
3984 
3985 void Assembler::fldenv(Address src) {
3986   InstructionMark im(this);
3987   emit_int8((unsigned char)0xD9);
3988   emit_operand32(rsp, src);
3989 }
3990 
3991 void Assembler::fldlg2() {
3992   emit_int8((unsigned char)0xD9);
3993   emit_int8((unsigned char)0xEC);
3994 }
3995 
3996 void Assembler::fldln2() {
3997   emit_int8((unsigned char)0xD9);
3998   emit_int8((unsigned char)0xED);
3999 }
4000 
4001 void Assembler::fldz() {
4002   emit_int8((unsigned char)0xD9);
4003   emit_int8((unsigned char)0xEE);
4004 }
4005 
4006 void Assembler::flog() {
4007   fldln2();
4008   fxch();
4009   fyl2x();
4010 }
4011 
4012 void Assembler::flog10() {
4013   fldlg2();
4014   fxch();
4015   fyl2x();
4016 }
4017 
4018 void Assembler::fmul(int i) {
4019   emit_farith(0xD8, 0xC8, i);
4020 }
4021 
4022 void Assembler::fmul_d(Address src) {
4023   InstructionMark im(this);
4024   emit_int8((unsigned char)0xDC);
4025   emit_operand32(rcx, src);
4026 }
4027 
4028 void Assembler::fmul_s(Address src) {
4029   InstructionMark im(this);
4030   emit_int8((unsigned char)0xD8);
4031   emit_operand32(rcx, src);
4032 }
4033 
4034 void Assembler::fmula(int i) {
4035   emit_farith(0xDC, 0xC8, i);
4036 }
4037 
4038 void Assembler::fmulp(int i) {
4039   emit_farith(0xDE, 0xC8, i);
4040 }
4041 
4042 void Assembler::fnsave(Address dst) {
4043   InstructionMark im(this);
4044   emit_int8((unsigned char)0xDD);
4045   emit_operand32(rsi, dst);
4046 }
4047 
4048 void Assembler::fnstcw(Address src) {
4049   InstructionMark im(this);
4050   emit_int8((unsigned char)0x9B);
4051   emit_int8((unsigned char)0xD9);
4052   emit_operand32(rdi, src);
4053 }
4054 
4055 void Assembler::fnstsw_ax() {
4056   emit_int8((unsigned char)0xDF);
4057   emit_int8((unsigned char)0xE0);
4058 }
4059 
4060 void Assembler::fprem() {
4061   emit_int8((unsigned char)0xD9);
4062   emit_int8((unsigned char)0xF8);
4063 }
4064 
4065 void Assembler::fprem1() {
4066   emit_int8((unsigned char)0xD9);
4067   emit_int8((unsigned char)0xF5);
4068 }
4069 
4070 void Assembler::frstor(Address src) {
4071   InstructionMark im(this);
4072   emit_int8((unsigned char)0xDD);
4073   emit_operand32(rsp, src);
4074 }
4075 
4076 void Assembler::fsin() {
4077   emit_int8((unsigned char)0xD9);
4078   emit_int8((unsigned char)0xFE);
4079 }
4080 
4081 void Assembler::fsqrt() {
4082   emit_int8((unsigned char)0xD9);
4083   emit_int8((unsigned char)0xFA);
4084 }
4085 
4086 void Assembler::fst_d(Address adr) {
4087   InstructionMark im(this);
4088   emit_int8((unsigned char)0xDD);
4089   emit_operand32(rdx, adr);
4090 }
4091 
4092 void Assembler::fst_s(Address adr) {
4093   InstructionMark im(this);
4094   emit_int8((unsigned char)0xD9);
4095   emit_operand32(rdx, adr);
4096 }
4097 
4098 void Assembler::fstp_d(Address adr) {
4099   InstructionMark im(this);
4100   emit_int8((unsigned char)0xDD);
4101   emit_operand32(rbx, adr);
4102 }
4103 
4104 void Assembler::fstp_d(int index) {
4105   emit_farith(0xDD, 0xD8, index);
4106 }
4107 
4108 void Assembler::fstp_s(Address adr) {
4109   InstructionMark im(this);
4110   emit_int8((unsigned char)0xD9);
4111   emit_operand32(rbx, adr);
4112 }
4113 
4114 void Assembler::fstp_x(Address adr) {
4115   InstructionMark im(this);
4116   emit_int8((unsigned char)0xDB);
4117   emit_operand32(rdi, adr);
4118 }
4119 
4120 void Assembler::fsub(int i) {
4121   emit_farith(0xD8, 0xE0, i);
4122 }
4123 
4124 void Assembler::fsub_d(Address src) {
4125   InstructionMark im(this);
4126   emit_int8((unsigned char)0xDC);
4127   emit_operand32(rsp, src);
4128 }
4129 
4130 void Assembler::fsub_s(Address src) {
4131   InstructionMark im(this);
4132   emit_int8((unsigned char)0xD8);
4133   emit_operand32(rsp, src);
4134 }
4135 
4136 void Assembler::fsuba(int i) {
4137   emit_farith(0xDC, 0xE8, i);
4138 }
4139 
4140 void Assembler::fsubp(int i) {
4141   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
4142 }
4143 
4144 void Assembler::fsubr(int i) {
4145   emit_farith(0xD8, 0xE8, i);
4146 }
4147 
4148 void Assembler::fsubr_d(Address src) {
4149   InstructionMark im(this);
4150   emit_int8((unsigned char)0xDC);
4151   emit_operand32(rbp, src);
4152 }
4153 
4154 void Assembler::fsubr_s(Address src) {
4155   InstructionMark im(this);
4156   emit_int8((unsigned char)0xD8);
4157   emit_operand32(rbp, src);
4158 }
4159 
4160 void Assembler::fsubra(int i) {
4161   emit_farith(0xDC, 0xE0, i);
4162 }
4163 
4164 void Assembler::fsubrp(int i) {
4165   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
4166 }
4167 
4168 void Assembler::ftan() {
4169   emit_int8((unsigned char)0xD9);
4170   emit_int8((unsigned char)0xF2);
4171   emit_int8((unsigned char)0xDD);
4172   emit_int8((unsigned char)0xD8);
4173 }
4174 
4175 void Assembler::ftst() {
4176   emit_int8((unsigned char)0xD9);
4177   emit_int8((unsigned char)0xE4);
4178 }
4179 
4180 void Assembler::fucomi(int i) {
4181   // make sure the instruction is supported (introduced for P6, together with cmov)
4182   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4183   emit_farith(0xDB, 0xE8, i);
4184 }
4185 
4186 void Assembler::fucomip(int i) {
4187   // make sure the instruction is supported (introduced for P6, together with cmov)
4188   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4189   emit_farith(0xDF, 0xE8, i);
4190 }
4191 
4192 void Assembler::fwait() {
4193   emit_int8((unsigned char)0x9B);
4194 }
4195 
4196 void Assembler::fxch(int i) {
4197   emit_farith(0xD9, 0xC8, i);
4198 }
4199 
4200 void Assembler::fyl2x() {
4201   emit_int8((unsigned char)0xD9);
4202   emit_int8((unsigned char)0xF1);
4203 }
4204 
4205 void Assembler::frndint() {
4206   emit_int8((unsigned char)0xD9);
4207   emit_int8((unsigned char)0xFC);
4208 }
4209 
4210 void Assembler::f2xm1() {
4211   emit_int8((unsigned char)0xD9);
4212   emit_int8((unsigned char)0xF0);
4213 }
4214 
4215 void Assembler::fldl2e() {
4216   emit_int8((unsigned char)0xD9);
4217   emit_int8((unsigned char)0xEA);
4218 }
4219 
4220 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
4221 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
4222 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
4223 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
4224 
4225 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
4226 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4227   if (pre > 0) {
4228     emit_int8(simd_pre[pre]);
4229   }
4230   if (rex_w) {
4231     prefixq(adr, xreg);
4232   } else {
4233     prefix(adr, xreg);
4234   }
4235   if (opc > 0) {
4236     emit_int8(0x0F);
4237     int opc2 = simd_opc[opc];
4238     if (opc2 > 0) {
4239       emit_int8(opc2);
4240     }
4241   }
4242 }
4243 
4244 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4245   if (pre > 0) {
4246     emit_int8(simd_pre[pre]);
4247   }
4248   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
4249                           prefix_and_encode(dst_enc, src_enc);
4250   if (opc > 0) {
4251     emit_int8(0x0F);
4252     int opc2 = simd_opc[opc];
4253     if (opc2 > 0) {
4254       emit_int8(opc2);
4255     }
4256   }
4257   return encode;
4258 }
4259 
4260 
4261 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
4262   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
4263     prefix(VEX_3bytes);
4264 
4265     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
4266     byte1 = (~byte1) & 0xE0;
4267     byte1 |= opc;
4268     emit_int8(byte1);
4269 
4270     int byte2 = ((~nds_enc) & 0xf) << 3;
4271     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4272     emit_int8(byte2);
4273   } else {
4274     prefix(VEX_2bytes);
4275 
4276     int byte1 = vex_r ? VEX_R : 0;
4277     byte1 = (~byte1) & 0x80;
4278     byte1 |= ((~nds_enc) & 0xf) << 3;
4279     byte1 |= (vector256 ? 4 : 0) | pre;
4280     emit_int8(byte1);
4281   }
4282 }
4283 
4284 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
4285   bool vex_r = (xreg_enc >= 8);
4286   bool vex_b = adr.base_needs_rex();
4287   bool vex_x = adr.index_needs_rex();
4288   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4289 }
4290 
4291 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
4292   bool vex_r = (dst_enc >= 8);
4293   bool vex_b = (src_enc >= 8);
4294   bool vex_x = false;
4295   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4296   return (((dst_enc & 7) << 3) | (src_enc & 7));
4297 }
4298 
4299 
4300 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4301   if (UseAVX > 0) {
4302     int xreg_enc = xreg->encoding();
4303     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
4304     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
4305   } else {
4306     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
4307     rex_prefix(adr, xreg, pre, opc, rex_w);
4308   }
4309 }
4310 
4311 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4312   int dst_enc = dst->encoding();
4313   int src_enc = src->encoding();
4314   if (UseAVX > 0) {
4315     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4316     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
4317   } else {
4318     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
4319     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
4320   }
4321 }
4322 
4323 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4324   InstructionMark im(this);
4325   simd_prefix(dst, dst, src, pre);
4326   emit_int8(opcode);
4327   emit_operand(dst, src);
4328 }
4329 
4330 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4331   int encode = simd_prefix_and_encode(dst, dst, src, pre);
4332   emit_int8(opcode);
4333   emit_int8((unsigned char)(0xC0 | encode));
4334 }
4335 
4336 // Versions with no second source register (non-destructive source).
4337 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4338   InstructionMark im(this);
4339   simd_prefix(dst, xnoreg, src, pre);
4340   emit_int8(opcode);
4341   emit_operand(dst, src);
4342 }
4343 
4344 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4345   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4346   emit_int8(opcode);
4347   emit_int8((unsigned char)(0xC0 | encode));
4348 }
4349 
4350 // 3-operands AVX instructions
4351 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4352                                Address src, VexSimdPrefix pre, bool vector256) {
4353   InstructionMark im(this);
4354   vex_prefix(dst, nds, src, pre, vector256);
4355   emit_int8(opcode);
4356   emit_operand(dst, src);
4357 }
4358 
4359 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4360                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
4361   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4362   emit_int8(opcode);
4363   emit_int8((unsigned char)(0xC0 | encode));
4364 }
4365 
4366 #ifndef _LP64
4367 
4368 void Assembler::incl(Register dst) {
4369   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4370   emit_int8(0x40 | dst->encoding());
4371 }
4372 
4373 void Assembler::lea(Register dst, Address src) {
4374   leal(dst, src);
4375 }
4376 
4377 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4378   InstructionMark im(this);
4379   emit_int8((unsigned char)0xC7);
4380   emit_operand(rax, dst);
4381   emit_data((int)imm32, rspec, 0);
4382 }
4383 
4384 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4385   InstructionMark im(this);
4386   int encode = prefix_and_encode(dst->encoding());
4387   emit_int8((unsigned char)(0xB8 | encode));
4388   emit_data((int)imm32, rspec, 0);
4389 }
4390 
4391 void Assembler::popa() { // 32bit
4392   emit_int8(0x61);
4393 }
4394 
4395 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
4396   InstructionMark im(this);
4397   emit_int8(0x68);
4398   emit_data(imm32, rspec, 0);
4399 }
4400 
4401 void Assembler::pusha() { // 32bit
4402   emit_int8(0x60);
4403 }
4404 
4405 void Assembler::set_byte_if_not_zero(Register dst) {
4406   emit_int8(0x0F);
4407   emit_int8((unsigned char)0x95);
4408   emit_int8((unsigned char)(0xE0 | dst->encoding()));
4409 }
4410 
4411 void Assembler::shldl(Register dst, Register src) {
4412   emit_int8(0x0F);
4413   emit_int8((unsigned char)0xA5);
4414   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4415 }
4416 
4417 void Assembler::shrdl(Register dst, Register src) {
4418   emit_int8(0x0F);
4419   emit_int8((unsigned char)0xAD);
4420   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4421 }
4422 
4423 #else // LP64
4424 
4425 void Assembler::set_byte_if_not_zero(Register dst) {
4426   int enc = prefix_and_encode(dst->encoding(), true);
4427   emit_int8(0x0F);
4428   emit_int8((unsigned char)0x95);
4429   emit_int8((unsigned char)(0xE0 | enc));
4430 }
4431 
4432 // 64bit only pieces of the assembler
4433 // This should only be used by 64bit instructions that can use rip-relative
4434 // it cannot be used by instructions that want an immediate value.
4435 
4436 bool Assembler::reachable(AddressLiteral adr) {
4437   int64_t disp;
4438   // None will force a 64bit literal to the code stream. Likely a placeholder
4439   // for something that will be patched later and we need to certain it will
4440   // always be reachable.
4441   if (adr.reloc() == relocInfo::none) {
4442     return false;
4443   }
4444   if (adr.reloc() == relocInfo::internal_word_type) {
4445     // This should be rip relative and easily reachable.
4446     return true;
4447   }
4448   if (adr.reloc() == relocInfo::virtual_call_type ||
4449       adr.reloc() == relocInfo::opt_virtual_call_type ||
4450       adr.reloc() == relocInfo::static_call_type ||
4451       adr.reloc() == relocInfo::static_stub_type ) {
4452     // This should be rip relative within the code cache and easily
4453     // reachable until we get huge code caches. (At which point
4454     // ic code is going to have issues).
4455     return true;
4456   }
4457   if (adr.reloc() != relocInfo::external_word_type &&
4458       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
4459       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
4460       adr.reloc() != relocInfo::runtime_call_type ) {
4461     return false;
4462   }
4463 
4464   // Stress the correction code
4465   if (ForceUnreachable) {
4466     // Must be runtimecall reloc, see if it is in the codecache
4467     // Flipping stuff in the codecache to be unreachable causes issues
4468     // with things like inline caches where the additional instructions
4469     // are not handled.
4470     if (CodeCache::find_blob(adr._target) == NULL) {
4471       return false;
4472     }
4473   }
4474   // For external_word_type/runtime_call_type if it is reachable from where we
4475   // are now (possibly a temp buffer) and where we might end up
4476   // anywhere in the codeCache then we are always reachable.
4477   // This would have to change if we ever save/restore shared code
4478   // to be more pessimistic.
4479   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
4480   if (!is_simm32(disp)) return false;
4481   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
4482   if (!is_simm32(disp)) return false;
4483 
4484   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4485 
4486   // Because rip relative is a disp + address_of_next_instruction and we
4487   // don't know the value of address_of_next_instruction we apply a fudge factor
4488   // to make sure we will be ok no matter the size of the instruction we get placed into.
4489   // We don't have to fudge the checks above here because they are already worst case.
4490 
4491   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
4492   // + 4 because better safe than sorry.
4493   const int fudge = 12 + 4;
4494   if (disp < 0) {
4495     disp -= fudge;
4496   } else {
4497     disp += fudge;
4498   }
4499   return is_simm32(disp);
4500 }
4501 
4502 // Check if the polling page is not reachable from the code cache using rip-relative
4503 // addressing.
4504 bool Assembler::is_polling_page_far() {
4505   intptr_t addr = (intptr_t)os::get_polling_page();
4506   return ForceUnreachable ||
4507          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4508          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
4509 }
4510 
4511 void Assembler::emit_data64(jlong data,
4512                             relocInfo::relocType rtype,
4513                             int format) {
4514   if (rtype == relocInfo::none) {
4515     emit_int64(data);
4516   } else {
4517     emit_data64(data, Relocation::spec_simple(rtype), format);
4518   }
4519 }
4520 
4521 void Assembler::emit_data64(jlong data,
4522                             RelocationHolder const& rspec,
4523                             int format) {
4524   assert(imm_operand == 0, "default format must be immediate in this file");
4525   assert(imm_operand == format, "must be immediate");
4526   assert(inst_mark() != NULL, "must be inside InstructionMark");
4527   // Do not use AbstractAssembler::relocate, which is not intended for
4528   // embedded words.  Instead, relocate to the enclosing instruction.
4529   code_section()->relocate(inst_mark(), rspec, format);
4530 #ifdef ASSERT
4531   check_relocation(rspec, format);
4532 #endif
4533   emit_int64(data);
4534 }
4535 
4536 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
4537   if (reg_enc >= 8) {
4538     prefix(REX_B);
4539     reg_enc -= 8;
4540   } else if (byteinst && reg_enc >= 4) {
4541     prefix(REX);
4542   }
4543   return reg_enc;
4544 }
4545 
4546 int Assembler::prefixq_and_encode(int reg_enc) {
4547   if (reg_enc < 8) {
4548     prefix(REX_W);
4549   } else {
4550     prefix(REX_WB);
4551     reg_enc -= 8;
4552   }
4553   return reg_enc;
4554 }
4555 
4556 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
4557   if (dst_enc < 8) {
4558     if (src_enc >= 8) {
4559       prefix(REX_B);
4560       src_enc -= 8;
4561     } else if (byteinst && src_enc >= 4) {
4562       prefix(REX);
4563     }
4564   } else {
4565     if (src_enc < 8) {
4566       prefix(REX_R);
4567     } else {
4568       prefix(REX_RB);
4569       src_enc -= 8;
4570     }
4571     dst_enc -= 8;
4572   }
4573   return dst_enc << 3 | src_enc;
4574 }
4575 
4576 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
4577   if (dst_enc < 8) {
4578     if (src_enc < 8) {
4579       prefix(REX_W);
4580     } else {
4581       prefix(REX_WB);
4582       src_enc -= 8;
4583     }
4584   } else {
4585     if (src_enc < 8) {
4586       prefix(REX_WR);
4587     } else {
4588       prefix(REX_WRB);
4589       src_enc -= 8;
4590     }
4591     dst_enc -= 8;
4592   }
4593   return dst_enc << 3 | src_enc;
4594 }
4595 
4596 void Assembler::prefix(Register reg) {
4597   if (reg->encoding() >= 8) {
4598     prefix(REX_B);
4599   }
4600 }
4601 
4602 void Assembler::prefix(Address adr) {
4603   if (adr.base_needs_rex()) {
4604     if (adr.index_needs_rex()) {
4605       prefix(REX_XB);
4606     } else {
4607       prefix(REX_B);
4608     }
4609   } else {
4610     if (adr.index_needs_rex()) {
4611       prefix(REX_X);
4612     }
4613   }
4614 }
4615 
4616 void Assembler::prefixq(Address adr) {
4617   if (adr.base_needs_rex()) {
4618     if (adr.index_needs_rex()) {
4619       prefix(REX_WXB);
4620     } else {
4621       prefix(REX_WB);
4622     }
4623   } else {
4624     if (adr.index_needs_rex()) {
4625       prefix(REX_WX);
4626     } else {
4627       prefix(REX_W);
4628     }
4629   }
4630 }
4631 
4632 
4633 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
4634   if (reg->encoding() < 8) {
4635     if (adr.base_needs_rex()) {
4636       if (adr.index_needs_rex()) {
4637         prefix(REX_XB);
4638       } else {
4639         prefix(REX_B);
4640       }
4641     } else {
4642       if (adr.index_needs_rex()) {
4643         prefix(REX_X);
4644       } else if (byteinst && reg->encoding() >= 4 ) {
4645         prefix(REX);
4646       }
4647     }
4648   } else {
4649     if (adr.base_needs_rex()) {
4650       if (adr.index_needs_rex()) {
4651         prefix(REX_RXB);
4652       } else {
4653         prefix(REX_RB);
4654       }
4655     } else {
4656       if (adr.index_needs_rex()) {
4657         prefix(REX_RX);
4658       } else {
4659         prefix(REX_R);
4660       }
4661     }
4662   }
4663 }
4664 
4665 void Assembler::prefixq(Address adr, Register src) {
4666   if (src->encoding() < 8) {
4667     if (adr.base_needs_rex()) {
4668       if (adr.index_needs_rex()) {
4669         prefix(REX_WXB);
4670       } else {
4671         prefix(REX_WB);
4672       }
4673     } else {
4674       if (adr.index_needs_rex()) {
4675         prefix(REX_WX);
4676       } else {
4677         prefix(REX_W);
4678       }
4679     }
4680   } else {
4681     if (adr.base_needs_rex()) {
4682       if (adr.index_needs_rex()) {
4683         prefix(REX_WRXB);
4684       } else {
4685         prefix(REX_WRB);
4686       }
4687     } else {
4688       if (adr.index_needs_rex()) {
4689         prefix(REX_WRX);
4690       } else {
4691         prefix(REX_WR);
4692       }
4693     }
4694   }
4695 }
4696 
4697 void Assembler::prefix(Address adr, XMMRegister reg) {
4698   if (reg->encoding() < 8) {
4699     if (adr.base_needs_rex()) {
4700       if (adr.index_needs_rex()) {
4701         prefix(REX_XB);
4702       } else {
4703         prefix(REX_B);
4704       }
4705     } else {
4706       if (adr.index_needs_rex()) {
4707         prefix(REX_X);
4708       }
4709     }
4710   } else {
4711     if (adr.base_needs_rex()) {
4712       if (adr.index_needs_rex()) {
4713         prefix(REX_RXB);
4714       } else {
4715         prefix(REX_RB);
4716       }
4717     } else {
4718       if (adr.index_needs_rex()) {
4719         prefix(REX_RX);
4720       } else {
4721         prefix(REX_R);
4722       }
4723     }
4724   }
4725 }
4726 
4727 void Assembler::prefixq(Address adr, XMMRegister src) {
4728   if (src->encoding() < 8) {
4729     if (adr.base_needs_rex()) {
4730       if (adr.index_needs_rex()) {
4731         prefix(REX_WXB);
4732       } else {
4733         prefix(REX_WB);
4734       }
4735     } else {
4736       if (adr.index_needs_rex()) {
4737         prefix(REX_WX);
4738       } else {
4739         prefix(REX_W);
4740       }
4741     }
4742   } else {
4743     if (adr.base_needs_rex()) {
4744       if (adr.index_needs_rex()) {
4745         prefix(REX_WRXB);
4746       } else {
4747         prefix(REX_WRB);
4748       }
4749     } else {
4750       if (adr.index_needs_rex()) {
4751         prefix(REX_WRX);
4752       } else {
4753         prefix(REX_WR);
4754       }
4755     }
4756   }
4757 }
4758 
4759 void Assembler::adcq(Register dst, int32_t imm32) {
4760   (void) prefixq_and_encode(dst->encoding());
4761   emit_arith(0x81, 0xD0, dst, imm32);
4762 }
4763 
4764 void Assembler::adcq(Register dst, Address src) {
4765   InstructionMark im(this);
4766   prefixq(src, dst);
4767   emit_int8(0x13);
4768   emit_operand(dst, src);
4769 }
4770 
4771 void Assembler::adcq(Register dst, Register src) {
4772   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4773   emit_arith(0x13, 0xC0, dst, src);
4774 }
4775 
4776 void Assembler::addq(Address dst, int32_t imm32) {
4777   InstructionMark im(this);
4778   prefixq(dst);
4779   emit_arith_operand(0x81, rax, dst,imm32);
4780 }
4781 
4782 void Assembler::addq(Address dst, Register src) {
4783   InstructionMark im(this);
4784   prefixq(dst, src);
4785   emit_int8(0x01);
4786   emit_operand(src, dst);
4787 }
4788 
4789 void Assembler::addq(Register dst, int32_t imm32) {
4790   (void) prefixq_and_encode(dst->encoding());
4791   emit_arith(0x81, 0xC0, dst, imm32);
4792 }
4793 
4794 void Assembler::addq(Register dst, Address src) {
4795   InstructionMark im(this);
4796   prefixq(src, dst);
4797   emit_int8(0x03);
4798   emit_operand(dst, src);
4799 }
4800 
4801 void Assembler::addq(Register dst, Register src) {
4802   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4803   emit_arith(0x03, 0xC0, dst, src);
4804 }
4805 
4806 void Assembler::andq(Address dst, int32_t imm32) {
4807   InstructionMark im(this);
4808   prefixq(dst);
4809   emit_int8((unsigned char)0x81);
4810   emit_operand(rsp, dst, 4);
4811   emit_int32(imm32);
4812 }
4813 
4814 void Assembler::andq(Register dst, int32_t imm32) {
4815   (void) prefixq_and_encode(dst->encoding());
4816   emit_arith(0x81, 0xE0, dst, imm32);
4817 }
4818 
4819 void Assembler::andq(Register dst, Address src) {
4820   InstructionMark im(this);
4821   prefixq(src, dst);
4822   emit_int8(0x23);
4823   emit_operand(dst, src);
4824 }
4825 
4826 void Assembler::andq(Register dst, Register src) {
4827   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4828   emit_arith(0x23, 0xC0, dst, src);
4829 }
4830 
4831 void Assembler::bsfq(Register dst, Register src) {
4832   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4833   emit_int8(0x0F);
4834   emit_int8((unsigned char)0xBC);
4835   emit_int8((unsigned char)(0xC0 | encode));
4836 }
4837 
4838 void Assembler::bsrq(Register dst, Register src) {
4839   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
4840   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4841   emit_int8(0x0F);
4842   emit_int8((unsigned char)0xBD);
4843   emit_int8((unsigned char)(0xC0 | encode));
4844 }
4845 
4846 void Assembler::bswapq(Register reg) {
4847   int encode = prefixq_and_encode(reg->encoding());
4848   emit_int8(0x0F);
4849   emit_int8((unsigned char)(0xC8 | encode));
4850 }
4851 
4852 void Assembler::cdqq() {
4853   prefix(REX_W);
4854   emit_int8((unsigned char)0x99);
4855 }
4856 
4857 void Assembler::clflush(Address adr) {
4858   prefix(adr);
4859   emit_int8(0x0F);
4860   emit_int8((unsigned char)0xAE);
4861   emit_operand(rdi, adr);
4862 }
4863 
4864 void Assembler::cmovq(Condition cc, Register dst, Register src) {
4865   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4866   emit_int8(0x0F);
4867   emit_int8(0x40 | cc);
4868   emit_int8((unsigned char)(0xC0 | encode));
4869 }
4870 
4871 void Assembler::cmovq(Condition cc, Register dst, Address src) {
4872   InstructionMark im(this);
4873   prefixq(src, dst);
4874   emit_int8(0x0F);
4875   emit_int8(0x40 | cc);
4876   emit_operand(dst, src);
4877 }
4878 
4879 void Assembler::cmpq(Address dst, int32_t imm32) {
4880   InstructionMark im(this);
4881   prefixq(dst);
4882   emit_int8((unsigned char)0x81);
4883   emit_operand(rdi, dst, 4);
4884   emit_int32(imm32);
4885 }
4886 
4887 void Assembler::cmpq(Register dst, int32_t imm32) {
4888   (void) prefixq_and_encode(dst->encoding());
4889   emit_arith(0x81, 0xF8, dst, imm32);
4890 }
4891 
4892 void Assembler::cmpq(Address dst, Register src) {
4893   InstructionMark im(this);
4894   prefixq(dst, src);
4895   emit_int8(0x3B);
4896   emit_operand(src, dst);
4897 }
4898 
4899 void Assembler::cmpq(Register dst, Register src) {
4900   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4901   emit_arith(0x3B, 0xC0, dst, src);
4902 }
4903 
4904 void Assembler::cmpq(Register dst, Address  src) {
4905   InstructionMark im(this);
4906   prefixq(src, dst);
4907   emit_int8(0x3B);
4908   emit_operand(dst, src);
4909 }
4910 
4911 void Assembler::cmpxchgq(Register reg, Address adr) {
4912   InstructionMark im(this);
4913   prefixq(adr, reg);
4914   emit_int8(0x0F);
4915   emit_int8((unsigned char)0xB1);
4916   emit_operand(reg, adr);
4917 }
4918 
4919 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
4920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4921   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
4922   emit_int8(0x2A);
4923   emit_int8((unsigned char)(0xC0 | encode));
4924 }
4925 
4926 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
4927   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4928   InstructionMark im(this);
4929   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
4930   emit_int8(0x2A);
4931   emit_operand(dst, src);
4932 }
4933 
4934 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
4935   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4936   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
4937   emit_int8(0x2A);
4938   emit_int8((unsigned char)(0xC0 | encode));
4939 }
4940 
4941 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
4942   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4943   InstructionMark im(this);
4944   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
4945   emit_int8(0x2A);
4946   emit_operand(dst, src);
4947 }
4948 
4949 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
4950   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4951   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
4952   emit_int8(0x2C);
4953   emit_int8((unsigned char)(0xC0 | encode));
4954 }
4955 
4956 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
4957   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4958   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
4959   emit_int8(0x2C);
4960   emit_int8((unsigned char)(0xC0 | encode));
4961 }
4962 
4963 void Assembler::decl(Register dst) {
4964   // Don't use it directly. Use MacroAssembler::decrementl() instead.
4965   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
4966   int encode = prefix_and_encode(dst->encoding());
4967   emit_int8((unsigned char)0xFF);
4968   emit_int8((unsigned char)(0xC8 | encode));
4969 }
4970 
4971 void Assembler::decq(Register dst) {
4972   // Don't use it directly. Use MacroAssembler::decrementq() instead.
4973   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
4974   int encode = prefixq_and_encode(dst->encoding());
4975   emit_int8((unsigned char)0xFF);
4976   emit_int8(0xC8 | encode);
4977 }
4978 
4979 void Assembler::decq(Address dst) {
4980   // Don't use it directly. Use MacroAssembler::decrementq() instead.
4981   InstructionMark im(this);
4982   prefixq(dst);
4983   emit_int8((unsigned char)0xFF);
4984   emit_operand(rcx, dst);
4985 }
4986 
4987 void Assembler::fxrstor(Address src) {
4988   prefixq(src);
4989   emit_int8(0x0F);
4990   emit_int8((unsigned char)0xAE);
4991   emit_operand(as_Register(1), src);
4992 }
4993 
4994 void Assembler::fxsave(Address dst) {
4995   prefixq(dst);
4996   emit_int8(0x0F);
4997   emit_int8((unsigned char)0xAE);
4998   emit_operand(as_Register(0), dst);
4999 }
5000 
5001 void Assembler::idivq(Register src) {
5002   int encode = prefixq_and_encode(src->encoding());
5003   emit_int8((unsigned char)0xF7);
5004   emit_int8((unsigned char)(0xF8 | encode));
5005 }
5006 
5007 void Assembler::imulq(Register dst, Register src) {
5008   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5009   emit_int8(0x0F);
5010   emit_int8((unsigned char)0xAF);
5011   emit_int8((unsigned char)(0xC0 | encode));
5012 }
5013 
5014 void Assembler::imulq(Register dst, Register src, int value) {
5015   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5016   if (is8bit(value)) {
5017     emit_int8(0x6B);
5018     emit_int8((unsigned char)(0xC0 | encode));
5019     emit_int8(value & 0xFF);
5020   } else {
5021     emit_int8(0x69);
5022     emit_int8((unsigned char)(0xC0 | encode));
5023     emit_int32(value);
5024   }
5025 }
5026 
5027 void Assembler::incl(Register dst) {
5028   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5029   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5030   int encode = prefix_and_encode(dst->encoding());
5031   emit_int8((unsigned char)0xFF);
5032   emit_int8((unsigned char)(0xC0 | encode));
5033 }
5034 
5035 void Assembler::incq(Register dst) {
5036   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5037   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5038   int encode = prefixq_and_encode(dst->encoding());
5039   emit_int8((unsigned char)0xFF);
5040   emit_int8((unsigned char)(0xC0 | encode));
5041 }
5042 
5043 void Assembler::incq(Address dst) {
5044   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5045   InstructionMark im(this);
5046   prefixq(dst);
5047   emit_int8((unsigned char)0xFF);
5048   emit_operand(rax, dst);
5049 }
5050 
5051 void Assembler::lea(Register dst, Address src) {
5052   leaq(dst, src);
5053 }
5054 
5055 void Assembler::leaq(Register dst, Address src) {
5056   InstructionMark im(this);
5057   prefixq(src, dst);
5058   emit_int8((unsigned char)0x8D);
5059   emit_operand(dst, src);
5060 }
5061 
5062 void Assembler::mov64(Register dst, int64_t imm64) {
5063   InstructionMark im(this);
5064   int encode = prefixq_and_encode(dst->encoding());
5065   emit_int8((unsigned char)(0xB8 | encode));
5066   emit_int64(imm64);
5067 }
5068 
5069 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
5070   InstructionMark im(this);
5071   int encode = prefixq_and_encode(dst->encoding());
5072   emit_int8(0xB8 | encode);
5073   emit_data64(imm64, rspec);
5074 }
5075 
5076 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5077   InstructionMark im(this);
5078   int encode = prefix_and_encode(dst->encoding());
5079   emit_int8((unsigned char)(0xB8 | encode));
5080   emit_data((int)imm32, rspec, narrow_oop_operand);
5081 }
5082 
5083 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5084   InstructionMark im(this);
5085   prefix(dst);
5086   emit_int8((unsigned char)0xC7);
5087   emit_operand(rax, dst, 4);
5088   emit_data((int)imm32, rspec, narrow_oop_operand);
5089 }
5090 
5091 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5092   InstructionMark im(this);
5093   int encode = prefix_and_encode(src1->encoding());
5094   emit_int8((unsigned char)0x81);
5095   emit_int8((unsigned char)(0xF8 | encode));
5096   emit_data((int)imm32, rspec, narrow_oop_operand);
5097 }
5098 
5099 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5100   InstructionMark im(this);
5101   prefix(src1);
5102   emit_int8((unsigned char)0x81);
5103   emit_operand(rax, src1, 4);
5104   emit_data((int)imm32, rspec, narrow_oop_operand);
5105 }
5106 
5107 void Assembler::lzcntq(Register dst, Register src) {
5108   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5109   emit_int8((unsigned char)0xF3);
5110   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5111   emit_int8(0x0F);
5112   emit_int8((unsigned char)0xBD);
5113   emit_int8((unsigned char)(0xC0 | encode));
5114 }
5115 
5116 void Assembler::movdq(XMMRegister dst, Register src) {
5117   // table D-1 says MMX/SSE2
5118   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5119   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5120   emit_int8(0x6E);
5121   emit_int8((unsigned char)(0xC0 | encode));
5122 }
5123 
5124 void Assembler::movdq(Register dst, XMMRegister src) {
5125   // table D-1 says MMX/SSE2
5126   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5127   // swap src/dst to get correct prefix
5128   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5129   emit_int8(0x7E);
5130   emit_int8((unsigned char)(0xC0 | encode));
5131 }
5132 
5133 void Assembler::movq(Register dst, Register src) {
5134   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5135   emit_int8((unsigned char)0x8B);
5136   emit_int8((unsigned char)(0xC0 | encode));
5137 }
5138 
5139 void Assembler::movq(Register dst, Address src) {
5140   InstructionMark im(this);
5141   prefixq(src, dst);
5142   emit_int8((unsigned char)0x8B);
5143   emit_operand(dst, src);
5144 }
5145 
5146 void Assembler::movq(Address dst, Register src) {
5147   InstructionMark im(this);
5148   prefixq(dst, src);
5149   emit_int8((unsigned char)0x89);
5150   emit_operand(src, dst);
5151 }
5152 
5153 void Assembler::movsbq(Register dst, Address src) {
5154   InstructionMark im(this);
5155   prefixq(src, dst);
5156   emit_int8(0x0F);
5157   emit_int8((unsigned char)0xBE);
5158   emit_operand(dst, src);
5159 }
5160 
5161 void Assembler::movsbq(Register dst, Register src) {
5162   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5163   emit_int8(0x0F);
5164   emit_int8((unsigned char)0xBE);
5165   emit_int8((unsigned char)(0xC0 | encode));
5166 }
5167 
5168 void Assembler::movslq(Register dst, int32_t imm32) {
5169   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
5170   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
5171   // as a result we shouldn't use until tested at runtime...
5172   ShouldNotReachHere();
5173   InstructionMark im(this);
5174   int encode = prefixq_and_encode(dst->encoding());
5175   emit_int8((unsigned char)(0xC7 | encode));
5176   emit_int32(imm32);
5177 }
5178 
5179 void Assembler::movslq(Address dst, int32_t imm32) {
5180   assert(is_simm32(imm32), "lost bits");
5181   InstructionMark im(this);
5182   prefixq(dst);
5183   emit_int8((unsigned char)0xC7);
5184   emit_operand(rax, dst, 4);
5185   emit_int32(imm32);
5186 }
5187 
5188 void Assembler::movslq(Register dst, Address src) {
5189   InstructionMark im(this);
5190   prefixq(src, dst);
5191   emit_int8(0x63);
5192   emit_operand(dst, src);
5193 }
5194 
5195 void Assembler::movslq(Register dst, Register src) {
5196   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5197   emit_int8(0x63);
5198   emit_int8((unsigned char)(0xC0 | encode));
5199 }
5200 
5201 void Assembler::movswq(Register dst, Address src) {
5202   InstructionMark im(this);
5203   prefixq(src, dst);
5204   emit_int8(0x0F);
5205   emit_int8((unsigned char)0xBF);
5206   emit_operand(dst, src);
5207 }
5208 
5209 void Assembler::movswq(Register dst, Register src) {
5210   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5211   emit_int8((unsigned char)0x0F);
5212   emit_int8((unsigned char)0xBF);
5213   emit_int8((unsigned char)(0xC0 | encode));
5214 }
5215 
5216 void Assembler::movzbq(Register dst, Address src) {
5217   InstructionMark im(this);
5218   prefixq(src, dst);
5219   emit_int8((unsigned char)0x0F);
5220   emit_int8((unsigned char)0xB6);
5221   emit_operand(dst, src);
5222 }
5223 
5224 void Assembler::movzbq(Register dst, Register src) {
5225   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5226   emit_int8(0x0F);
5227   emit_int8((unsigned char)0xB6);
5228   emit_int8(0xC0 | encode);
5229 }
5230 
5231 void Assembler::movzwq(Register dst, Address src) {
5232   InstructionMark im(this);
5233   prefixq(src, dst);
5234   emit_int8((unsigned char)0x0F);
5235   emit_int8((unsigned char)0xB7);
5236   emit_operand(dst, src);
5237 }
5238 
5239 void Assembler::movzwq(Register dst, Register src) {
5240   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5241   emit_int8((unsigned char)0x0F);
5242   emit_int8((unsigned char)0xB7);
5243   emit_int8((unsigned char)(0xC0 | encode));
5244 }
5245 
5246 void Assembler::negq(Register dst) {
5247   int encode = prefixq_and_encode(dst->encoding());
5248   emit_int8((unsigned char)0xF7);
5249   emit_int8((unsigned char)(0xD8 | encode));
5250 }
5251 
5252 void Assembler::notq(Register dst) {
5253   int encode = prefixq_and_encode(dst->encoding());
5254   emit_int8((unsigned char)0xF7);
5255   emit_int8((unsigned char)(0xD0 | encode));
5256 }
5257 
5258 void Assembler::orq(Address dst, int32_t imm32) {
5259   InstructionMark im(this);
5260   prefixq(dst);
5261   emit_int8((unsigned char)0x81);
5262   emit_operand(rcx, dst, 4);
5263   emit_int32(imm32);
5264 }
5265 
5266 void Assembler::orq(Register dst, int32_t imm32) {
5267   (void) prefixq_and_encode(dst->encoding());
5268   emit_arith(0x81, 0xC8, dst, imm32);
5269 }
5270 
5271 void Assembler::orq(Register dst, Address src) {
5272   InstructionMark im(this);
5273   prefixq(src, dst);
5274   emit_int8(0x0B);
5275   emit_operand(dst, src);
5276 }
5277 
5278 void Assembler::orq(Register dst, Register src) {
5279   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5280   emit_arith(0x0B, 0xC0, dst, src);
5281 }
5282 
5283 void Assembler::popa() { // 64bit
5284   movq(r15, Address(rsp, 0));
5285   movq(r14, Address(rsp, wordSize));
5286   movq(r13, Address(rsp, 2 * wordSize));
5287   movq(r12, Address(rsp, 3 * wordSize));
5288   movq(r11, Address(rsp, 4 * wordSize));
5289   movq(r10, Address(rsp, 5 * wordSize));
5290   movq(r9,  Address(rsp, 6 * wordSize));
5291   movq(r8,  Address(rsp, 7 * wordSize));
5292   movq(rdi, Address(rsp, 8 * wordSize));
5293   movq(rsi, Address(rsp, 9 * wordSize));
5294   movq(rbp, Address(rsp, 10 * wordSize));
5295   // skip rsp
5296   movq(rbx, Address(rsp, 12 * wordSize));
5297   movq(rdx, Address(rsp, 13 * wordSize));
5298   movq(rcx, Address(rsp, 14 * wordSize));
5299   movq(rax, Address(rsp, 15 * wordSize));
5300 
5301   addq(rsp, 16 * wordSize);
5302 }
5303 
5304 void Assembler::popcntq(Register dst, Address src) {
5305   assert(VM_Version::supports_popcnt(), "must support");
5306   InstructionMark im(this);
5307   emit_int8((unsigned char)0xF3);
5308   prefixq(src, dst);
5309   emit_int8((unsigned char)0x0F);
5310   emit_int8((unsigned char)0xB8);
5311   emit_operand(dst, src);
5312 }
5313 
5314 void Assembler::popcntq(Register dst, Register src) {
5315   assert(VM_Version::supports_popcnt(), "must support");
5316   emit_int8((unsigned char)0xF3);
5317   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5318   emit_int8((unsigned char)0x0F);
5319   emit_int8((unsigned char)0xB8);
5320   emit_int8((unsigned char)(0xC0 | encode));
5321 }
5322 
5323 void Assembler::popq(Address dst) {
5324   InstructionMark im(this);
5325   prefixq(dst);
5326   emit_int8((unsigned char)0x8F);
5327   emit_operand(rax, dst);
5328 }
5329 
5330 void Assembler::pusha() { // 64bit
5331   // we have to store original rsp.  ABI says that 128 bytes
5332   // below rsp are local scratch.
5333   movq(Address(rsp, -5 * wordSize), rsp);
5334 
5335   subq(rsp, 16 * wordSize);
5336 
5337   movq(Address(rsp, 15 * wordSize), rax);
5338   movq(Address(rsp, 14 * wordSize), rcx);
5339   movq(Address(rsp, 13 * wordSize), rdx);
5340   movq(Address(rsp, 12 * wordSize), rbx);
5341   // skip rsp
5342   movq(Address(rsp, 10 * wordSize), rbp);
5343   movq(Address(rsp, 9 * wordSize), rsi);
5344   movq(Address(rsp, 8 * wordSize), rdi);
5345   movq(Address(rsp, 7 * wordSize), r8);
5346   movq(Address(rsp, 6 * wordSize), r9);
5347   movq(Address(rsp, 5 * wordSize), r10);
5348   movq(Address(rsp, 4 * wordSize), r11);
5349   movq(Address(rsp, 3 * wordSize), r12);
5350   movq(Address(rsp, 2 * wordSize), r13);
5351   movq(Address(rsp, wordSize), r14);
5352   movq(Address(rsp, 0), r15);
5353 }
5354 
5355 void Assembler::pushq(Address src) {
5356   InstructionMark im(this);
5357   prefixq(src);
5358   emit_int8((unsigned char)0xFF);
5359   emit_operand(rsi, src);
5360 }
5361 
5362 void Assembler::rclq(Register dst, int imm8) {
5363   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5364   int encode = prefixq_and_encode(dst->encoding());
5365   if (imm8 == 1) {
5366     emit_int8((unsigned char)0xD1);
5367     emit_int8((unsigned char)(0xD0 | encode));
5368   } else {
5369     emit_int8((unsigned char)0xC1);
5370     emit_int8((unsigned char)(0xD0 | encode));
5371     emit_int8(imm8);
5372   }
5373 }
5374 void Assembler::sarq(Register dst, int imm8) {
5375   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5376   int encode = prefixq_and_encode(dst->encoding());
5377   if (imm8 == 1) {
5378     emit_int8((unsigned char)0xD1);
5379     emit_int8((unsigned char)(0xF8 | encode));
5380   } else {
5381     emit_int8((unsigned char)0xC1);
5382     emit_int8((unsigned char)(0xF8 | encode));
5383     emit_int8(imm8);
5384   }
5385 }
5386 
5387 void Assembler::sarq(Register dst) {
5388   int encode = prefixq_and_encode(dst->encoding());
5389   emit_int8((unsigned char)0xD3);
5390   emit_int8((unsigned char)(0xF8 | encode));
5391 }
5392 
5393 void Assembler::sbbq(Address dst, int32_t imm32) {
5394   InstructionMark im(this);
5395   prefixq(dst);
5396   emit_arith_operand(0x81, rbx, dst, imm32);
5397 }
5398 
5399 void Assembler::sbbq(Register dst, int32_t imm32) {
5400   (void) prefixq_and_encode(dst->encoding());
5401   emit_arith(0x81, 0xD8, dst, imm32);
5402 }
5403 
5404 void Assembler::sbbq(Register dst, Address src) {
5405   InstructionMark im(this);
5406   prefixq(src, dst);
5407   emit_int8(0x1B);
5408   emit_operand(dst, src);
5409 }
5410 
5411 void Assembler::sbbq(Register dst, Register src) {
5412   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5413   emit_arith(0x1B, 0xC0, dst, src);
5414 }
5415 
5416 void Assembler::shlq(Register dst, int imm8) {
5417   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5418   int encode = prefixq_and_encode(dst->encoding());
5419   if (imm8 == 1) {
5420     emit_int8((unsigned char)0xD1);
5421     emit_int8((unsigned char)(0xE0 | encode));
5422   } else {
5423     emit_int8((unsigned char)0xC1);
5424     emit_int8((unsigned char)(0xE0 | encode));
5425     emit_int8(imm8);
5426   }
5427 }
5428 
5429 void Assembler::shlq(Register dst) {
5430   int encode = prefixq_and_encode(dst->encoding());
5431   emit_int8((unsigned char)0xD3);
5432   emit_int8((unsigned char)(0xE0 | encode));
5433 }
5434 
5435 void Assembler::shrq(Register dst, int imm8) {
5436   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5437   int encode = prefixq_and_encode(dst->encoding());
5438   emit_int8((unsigned char)0xC1);
5439   emit_int8((unsigned char)(0xE8 | encode));
5440   emit_int8(imm8);
5441 }
5442 
5443 void Assembler::shrq(Register dst) {
5444   int encode = prefixq_and_encode(dst->encoding());
5445   emit_int8((unsigned char)0xD3);
5446   emit_int8(0xE8 | encode);
5447 }
5448 
5449 void Assembler::subq(Address dst, int32_t imm32) {
5450   InstructionMark im(this);
5451   prefixq(dst);
5452   emit_arith_operand(0x81, rbp, dst, imm32);
5453 }
5454 
5455 void Assembler::subq(Address dst, Register src) {
5456   InstructionMark im(this);
5457   prefixq(dst, src);
5458   emit_int8(0x29);
5459   emit_operand(src, dst);
5460 }
5461 
5462 void Assembler::subq(Register dst, int32_t imm32) {
5463   (void) prefixq_and_encode(dst->encoding());
5464   emit_arith(0x81, 0xE8, dst, imm32);
5465 }
5466 
5467 // Force generation of a 4 byte immediate value even if it fits into 8bit
5468 void Assembler::subq_imm32(Register dst, int32_t imm32) {
5469   (void) prefixq_and_encode(dst->encoding());
5470   emit_arith_imm32(0x81, 0xE8, dst, imm32);
5471 }
5472 
5473 void Assembler::subq(Register dst, Address src) {
5474   InstructionMark im(this);
5475   prefixq(src, dst);
5476   emit_int8(0x2B);
5477   emit_operand(dst, src);
5478 }
5479 
5480 void Assembler::subq(Register dst, Register src) {
5481   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5482   emit_arith(0x2B, 0xC0, dst, src);
5483 }
5484 
5485 void Assembler::testq(Register dst, int32_t imm32) {
5486   // not using emit_arith because test
5487   // doesn't support sign-extension of
5488   // 8bit operands
5489   int encode = dst->encoding();
5490   if (encode == 0) {
5491     prefix(REX_W);
5492     emit_int8((unsigned char)0xA9);
5493   } else {
5494     encode = prefixq_and_encode(encode);
5495     emit_int8((unsigned char)0xF7);
5496     emit_int8((unsigned char)(0xC0 | encode));
5497   }
5498   emit_int32(imm32);
5499 }
5500 
5501 void Assembler::testq(Register dst, Register src) {
5502   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5503   emit_arith(0x85, 0xC0, dst, src);
5504 }
5505 
5506 void Assembler::xaddq(Address dst, Register src) {
5507   InstructionMark im(this);
5508   prefixq(dst, src);
5509   emit_int8(0x0F);
5510   emit_int8((unsigned char)0xC1);
5511   emit_operand(src, dst);
5512 }
5513 
5514 void Assembler::xchgq(Register dst, Address src) {
5515   InstructionMark im(this);
5516   prefixq(src, dst);
5517   emit_int8((unsigned char)0x87);
5518   emit_operand(dst, src);
5519 }
5520 
5521 void Assembler::xchgq(Register dst, Register src) {
5522   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5523   emit_int8((unsigned char)0x87);
5524   emit_int8((unsigned char)(0xc0 | encode));
5525 }
5526 
5527 void Assembler::xorq(Register dst, Register src) {
5528   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5529   emit_arith(0x33, 0xC0, dst, src);
5530 }
5531 
5532 void Assembler::xorq(Register dst, Address src) {
5533   InstructionMark im(this);
5534   prefixq(src, dst);
5535   emit_int8(0x33);
5536   emit_operand(dst, src);
5537 }
5538 
5539 #endif // !LP64