1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifndef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  69 #else
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #endif // IA32 || AMD64
  75   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  76   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  77   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  78   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  79   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  80   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  81   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  82   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  83   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  84   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  85   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  86   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  87   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  88   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  89   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  90   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  91   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  92   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  93 };
  94 
  95 // Map ideal registers (machine types) to ideal types
  96 const Type *Type::mreg2type[_last_machine_leaf];
  97 
  98 // Map basic types to canonical Type* pointers.
  99 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 100 
 101 // Map basic types to constant-zero Types.
 102 const Type* Type::            _zero_type[T_CONFLICT+1];
 103 
 104 // Map basic types to array-body alias types.
 105 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 106 
 107 //=============================================================================
 108 // Convenience common pre-built types.
 109 const Type *Type::ABIO;         // State-of-machine only
 110 const Type *Type::BOTTOM;       // All values
 111 const Type *Type::CONTROL;      // Control only
 112 const Type *Type::DOUBLE;       // All doubles
 113 const Type *Type::FLOAT;        // All floats
 114 const Type *Type::HALF;         // Placeholder half of doublewide type
 115 const Type *Type::MEMORY;       // Abstract store only
 116 const Type *Type::RETURN_ADDRESS;
 117 const Type *Type::TOP;          // No values in set
 118 
 119 //------------------------------get_const_type---------------------------
 120 const Type* Type::get_const_type(ciType* type) {
 121   if (type == NULL) {
 122     return NULL;
 123   } else if (type->is_primitive_type()) {
 124     return get_const_basic_type(type->basic_type());
 125   } else {
 126     return TypeOopPtr::make_from_klass(type->as_klass());
 127   }
 128 }
 129 
 130 //---------------------------array_element_basic_type---------------------------------
 131 // Mapping to the array element's basic type.
 132 BasicType Type::array_element_basic_type() const {
 133   BasicType bt = basic_type();
 134   if (bt == T_INT) {
 135     if (this == TypeInt::INT)   return T_INT;
 136     if (this == TypeInt::CHAR)  return T_CHAR;
 137     if (this == TypeInt::BYTE)  return T_BYTE;
 138     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 139     if (this == TypeInt::SHORT) return T_SHORT;
 140     return T_VOID;
 141   }
 142   return bt;
 143 }
 144 
 145 //---------------------------get_typeflow_type---------------------------------
 146 // Import a type produced by ciTypeFlow.
 147 const Type* Type::get_typeflow_type(ciType* type) {
 148   switch (type->basic_type()) {
 149 
 150   case ciTypeFlow::StateVector::T_BOTTOM:
 151     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 152     return Type::BOTTOM;
 153 
 154   case ciTypeFlow::StateVector::T_TOP:
 155     assert(type == ciTypeFlow::StateVector::top_type(), "");
 156     return Type::TOP;
 157 
 158   case ciTypeFlow::StateVector::T_NULL:
 159     assert(type == ciTypeFlow::StateVector::null_type(), "");
 160     return TypePtr::NULL_PTR;
 161 
 162   case ciTypeFlow::StateVector::T_LONG2:
 163     // The ciTypeFlow pass pushes a long, then the half.
 164     // We do the same.
 165     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 166     return TypeInt::TOP;
 167 
 168   case ciTypeFlow::StateVector::T_DOUBLE2:
 169     // The ciTypeFlow pass pushes double, then the half.
 170     // Our convention is the same.
 171     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 172     return Type::TOP;
 173 
 174   case T_ADDRESS:
 175     assert(type->is_return_address(), "");
 176     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 177 
 178   default:
 179     // make sure we did not mix up the cases:
 180     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 181     assert(type != ciTypeFlow::StateVector::top_type(), "");
 182     assert(type != ciTypeFlow::StateVector::null_type(), "");
 183     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 184     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 185     assert(!type->is_return_address(), "");
 186 
 187     return Type::get_const_type(type);
 188   }
 189 }
 190 
 191 
 192 //-----------------------make_from_constant------------------------------------
 193 const Type* Type::make_from_constant(ciConstant constant,
 194                                      bool require_constant, bool is_autobox_cache) {
 195   switch (constant.basic_type()) {
 196   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 197   case T_CHAR:     return TypeInt::make(constant.as_char());
 198   case T_BYTE:     return TypeInt::make(constant.as_byte());
 199   case T_SHORT:    return TypeInt::make(constant.as_short());
 200   case T_INT:      return TypeInt::make(constant.as_int());
 201   case T_LONG:     return TypeLong::make(constant.as_long());
 202   case T_FLOAT:    return TypeF::make(constant.as_float());
 203   case T_DOUBLE:   return TypeD::make(constant.as_double());
 204   case T_ARRAY:
 205   case T_OBJECT:
 206     {
 207       // cases:
 208       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 209       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 210       // An oop is not scavengable if it is in the perm gen.
 211       ciObject* oop_constant = constant.as_object();
 212       if (oop_constant->is_null_object()) {
 213         return Type::get_zero_type(T_OBJECT);
 214       } else if (require_constant || oop_constant->should_be_constant()) {
 215         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 216       }
 217     }
 218   }
 219   // Fall through to failure
 220   return NULL;
 221 }
 222 
 223 
 224 //------------------------------make-------------------------------------------
 225 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 226 // and look for an existing copy in the type dictionary.
 227 const Type *Type::make( enum TYPES t ) {
 228   return (new Type(t))->hashcons();
 229 }
 230 
 231 //------------------------------cmp--------------------------------------------
 232 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 233   if( t1->_base != t2->_base )
 234     return 1;                   // Missed badly
 235   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 236   return !t1->eq(t2);           // Return ZERO if equal
 237 }
 238 
 239 //------------------------------hash-------------------------------------------
 240 int Type::uhash( const Type *const t ) {
 241   return t->hash();
 242 }
 243 
 244 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 245 
 246 //--------------------------Initialize_shared----------------------------------
 247 void Type::Initialize_shared(Compile* current) {
 248   // This method does not need to be locked because the first system
 249   // compilations (stub compilations) occur serially.  If they are
 250   // changed to proceed in parallel, then this section will need
 251   // locking.
 252 
 253   Arena* save = current->type_arena();
 254   Arena* shared_type_arena = new (mtCompiler)Arena();
 255 
 256   current->set_type_arena(shared_type_arena);
 257   _shared_type_dict =
 258     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 259                                   shared_type_arena, 128 );
 260   current->set_type_dict(_shared_type_dict);
 261 
 262   // Make shared pre-built types.
 263   CONTROL = make(Control);      // Control only
 264   TOP     = make(Top);          // No values in set
 265   MEMORY  = make(Memory);       // Abstract store only
 266   ABIO    = make(Abio);         // State-of-machine only
 267   RETURN_ADDRESS=make(Return_Address);
 268   FLOAT   = make(FloatBot);     // All floats
 269   DOUBLE  = make(DoubleBot);    // All doubles
 270   BOTTOM  = make(Bottom);       // Everything
 271   HALF    = make(Half);         // Placeholder half of doublewide type
 272 
 273   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 274   TypeF::ONE  = TypeF::make(1.0); // Float 1
 275 
 276   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 277   TypeD::ONE  = TypeD::make(1.0); // Double 1
 278 
 279   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 280   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 281   TypeInt::ONE     = TypeInt::make( 1);  //  1
 282   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 283   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 284   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 285   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 286   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 287   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 288   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 289   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 290   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 291   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 292   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 293   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 294   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 295   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 296   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 297   // CmpL is overloaded both as the bytecode computation returning
 298   // a trinary (-1,0,+1) integer result AND as an efficient long
 299   // compare returning optimizer ideal-type flags.
 300   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 301   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 302   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 303   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 304   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 305 
 306   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 307   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 308   TypeLong::ONE     = TypeLong::make( 1);        //  1
 309   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 310   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 311   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 312   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 313 
 314   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 315   fboth[0] = Type::CONTROL;
 316   fboth[1] = Type::CONTROL;
 317   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 318 
 319   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 320   ffalse[0] = Type::CONTROL;
 321   ffalse[1] = Type::TOP;
 322   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 323 
 324   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 325   fneither[0] = Type::TOP;
 326   fneither[1] = Type::TOP;
 327   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 328 
 329   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 330   ftrue[0] = Type::TOP;
 331   ftrue[1] = Type::CONTROL;
 332   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 333 
 334   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 335   floop[0] = Type::CONTROL;
 336   floop[1] = TypeInt::INT;
 337   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 338 
 339   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 340   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 341   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 342 
 343   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 344   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 345 
 346   const Type **fmembar = TypeTuple::fields(0);
 347   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 348 
 349   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 350   fsc[0] = TypeInt::CC;
 351   fsc[1] = Type::MEMORY;
 352   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 353 
 354   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 355   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 356   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 357   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 358                                            false, 0, oopDesc::mark_offset_in_bytes());
 359   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 360                                            false, 0, oopDesc::klass_offset_in_bytes());
 361   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 362 
 363   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 364 
 365   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 366   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 367 
 368   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 369 
 370   mreg2type[Op_Node] = Type::BOTTOM;
 371   mreg2type[Op_Set ] = 0;
 372   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 373   mreg2type[Op_RegI] = TypeInt::INT;
 374   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 375   mreg2type[Op_RegF] = Type::FLOAT;
 376   mreg2type[Op_RegD] = Type::DOUBLE;
 377   mreg2type[Op_RegL] = TypeLong::LONG;
 378   mreg2type[Op_RegFlags] = TypeInt::CC;
 379 
 380   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 381 
 382   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 383 
 384 #ifdef _LP64
 385   if (UseCompressedOops) {
 386     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 387     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 388   } else
 389 #endif
 390   {
 391     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 392     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 393   }
 394   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 395   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 396   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 397   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 398   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 399   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 400   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 401 
 402   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 403   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 404   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 405   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 406   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 407   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 408   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 409   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 410   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 411   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 412   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 413   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 414 
 415   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 416   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 417 
 418   const Type **fi2c = TypeTuple::fields(2);
 419   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 420   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 421   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 422 
 423   const Type **intpair = TypeTuple::fields(2);
 424   intpair[0] = TypeInt::INT;
 425   intpair[1] = TypeInt::INT;
 426   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 427 
 428   const Type **longpair = TypeTuple::fields(2);
 429   longpair[0] = TypeLong::LONG;
 430   longpair[1] = TypeLong::LONG;
 431   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 432 
 433   const Type **intccpair = TypeTuple::fields(2);
 434   intccpair[0] = TypeInt::INT;
 435   intccpair[1] = TypeInt::CC;
 436   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 437 
 438   const Type **longccpair = TypeTuple::fields(2);
 439   longccpair[0] = TypeLong::LONG;
 440   longccpair[1] = TypeInt::CC;
 441   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 442 
 443   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 444   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 445   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 446   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 447   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 448   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 449   _const_basic_type[T_INT]         = TypeInt::INT;
 450   _const_basic_type[T_LONG]        = TypeLong::LONG;
 451   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 452   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 453   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 454   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 455   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 456   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 457   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 458 
 459   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 460   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 461   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 462   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 463   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 464   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 465   _zero_type[T_INT]         = TypeInt::ZERO;
 466   _zero_type[T_LONG]        = TypeLong::ZERO;
 467   _zero_type[T_FLOAT]       = TypeF::ZERO;
 468   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 469   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 470   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 471   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 472   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 473 
 474   // get_zero_type() should not happen for T_CONFLICT
 475   _zero_type[T_CONFLICT]= NULL;
 476 
 477   // Vector predefined types, it needs initialized _const_basic_type[].
 478   if (Matcher::vector_size_supported(T_BYTE,4)) {
 479     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 480   }
 481   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 482     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 483   }
 484   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 485     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 486   }
 487   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 488     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 489   }
 490   mreg2type[Op_VecS] = TypeVect::VECTS;
 491   mreg2type[Op_VecD] = TypeVect::VECTD;
 492   mreg2type[Op_VecX] = TypeVect::VECTX;
 493   mreg2type[Op_VecY] = TypeVect::VECTY;
 494 
 495   // Restore working type arena.
 496   current->set_type_arena(save);
 497   current->set_type_dict(NULL);
 498 }
 499 
 500 //------------------------------Initialize-------------------------------------
 501 void Type::Initialize(Compile* current) {
 502   assert(current->type_arena() != NULL, "must have created type arena");
 503 
 504   if (_shared_type_dict == NULL) {
 505     Initialize_shared(current);
 506   }
 507 
 508   Arena* type_arena = current->type_arena();
 509 
 510   // Create the hash-cons'ing dictionary with top-level storage allocation
 511   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 512   current->set_type_dict(tdic);
 513 
 514   // Transfer the shared types.
 515   DictI i(_shared_type_dict);
 516   for( ; i.test(); ++i ) {
 517     Type* t = (Type*)i._value;
 518     tdic->Insert(t,t);  // New Type, insert into Type table
 519   }
 520 }
 521 
 522 //------------------------------hashcons---------------------------------------
 523 // Do the hash-cons trick.  If the Type already exists in the type table,
 524 // delete the current Type and return the existing Type.  Otherwise stick the
 525 // current Type in the Type table.
 526 const Type *Type::hashcons(void) {
 527   debug_only(base());           // Check the assertion in Type::base().
 528   // Look up the Type in the Type dictionary
 529   Dict *tdic = type_dict();
 530   Type* old = (Type*)(tdic->Insert(this, this, false));
 531   if( old ) {                   // Pre-existing Type?
 532     if( old != this )           // Yes, this guy is not the pre-existing?
 533       delete this;              // Yes, Nuke this guy
 534     assert( old->_dual, "" );
 535     return old;                 // Return pre-existing
 536   }
 537 
 538   // Every type has a dual (to make my lattice symmetric).
 539   // Since we just discovered a new Type, compute its dual right now.
 540   assert( !_dual, "" );         // No dual yet
 541   _dual = xdual();              // Compute the dual
 542   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 543     _dual = this;
 544     return this;
 545   }
 546   assert( !_dual->_dual, "" );  // No reverse dual yet
 547   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 548   // New Type, insert into Type table
 549   tdic->Insert((void*)_dual,(void*)_dual);
 550   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 551 #ifdef ASSERT
 552   Type *dual_dual = (Type*)_dual->xdual();
 553   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 554   delete dual_dual;
 555 #endif
 556   return this;                  // Return new Type
 557 }
 558 
 559 //------------------------------eq---------------------------------------------
 560 // Structural equality check for Type representations
 561 bool Type::eq( const Type * ) const {
 562   return true;                  // Nothing else can go wrong
 563 }
 564 
 565 //------------------------------hash-------------------------------------------
 566 // Type-specific hashing function.
 567 int Type::hash(void) const {
 568   return _base;
 569 }
 570 
 571 //------------------------------is_finite--------------------------------------
 572 // Has a finite value
 573 bool Type::is_finite() const {
 574   return false;
 575 }
 576 
 577 //------------------------------is_nan-----------------------------------------
 578 // Is not a number (NaN)
 579 bool Type::is_nan()    const {
 580   return false;
 581 }
 582 
 583 //----------------------interface_vs_oop---------------------------------------
 584 #ifdef ASSERT
 585 bool Type::interface_vs_oop(const Type *t) const {
 586   bool result = false;
 587 
 588   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 589   const TypePtr*    t_ptr =    t->make_ptr();
 590   if( this_ptr == NULL || t_ptr == NULL )
 591     return result;
 592 
 593   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 594   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 595   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 596     bool this_interface = this_inst->klass()->is_interface();
 597     bool    t_interface =    t_inst->klass()->is_interface();
 598     result = this_interface ^ t_interface;
 599   }
 600 
 601   return result;
 602 }
 603 #endif
 604 
 605 //------------------------------meet-------------------------------------------
 606 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 607 // commutative and the lattice is symmetric.
 608 const Type *Type::meet( const Type *t ) const {
 609   if (isa_narrowoop() && t->isa_narrowoop()) {
 610     const Type* result = make_ptr()->meet(t->make_ptr());
 611     return result->make_narrowoop();
 612   }
 613   if (isa_narrowklass() && t->isa_narrowklass()) {
 614     const Type* result = make_ptr()->meet(t->make_ptr());
 615     return result->make_narrowklass();
 616   }
 617 
 618   const Type *mt = xmeet(t);
 619   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 620   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 621 #ifdef ASSERT
 622   assert( mt == t->xmeet(this), "meet not commutative" );
 623   const Type* dual_join = mt->_dual;
 624   const Type *t2t    = dual_join->xmeet(t->_dual);
 625   const Type *t2this = dual_join->xmeet(   _dual);
 626 
 627   // Interface meet Oop is Not Symmetric:
 628   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 629   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 630 
 631   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
 632     tty->print_cr("=== Meet Not Symmetric ===");
 633     tty->print("t   =                   ");         t->dump(); tty->cr();
 634     tty->print("this=                   ");            dump(); tty->cr();
 635     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
 636 
 637     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
 638     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
 639     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
 640 
 641     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
 642     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
 643 
 644     fatal("meet not symmetric" );
 645   }
 646 #endif
 647   return mt;
 648 }
 649 
 650 //------------------------------xmeet------------------------------------------
 651 // Compute the MEET of two types.  It returns a new Type object.
 652 const Type *Type::xmeet( const Type *t ) const {
 653   // Perform a fast test for common case; meeting the same types together.
 654   if( this == t ) return this;  // Meeting same type-rep?
 655 
 656   // Meeting TOP with anything?
 657   if( _base == Top ) return t;
 658 
 659   // Meeting BOTTOM with anything?
 660   if( _base == Bottom ) return BOTTOM;
 661 
 662   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 663   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 664   switch (t->base()) {  // Switch on original type
 665 
 666   // Cut in half the number of cases I must handle.  Only need cases for when
 667   // the given enum "t->type" is less than or equal to the local enum "type".
 668   case FloatCon:
 669   case DoubleCon:
 670   case Int:
 671   case Long:
 672     return t->xmeet(this);
 673 
 674   case OopPtr:
 675     return t->xmeet(this);
 676 
 677   case InstPtr:
 678     return t->xmeet(this);
 679 
 680   case MetadataPtr:
 681   case KlassPtr:
 682     return t->xmeet(this);
 683 
 684   case AryPtr:
 685     return t->xmeet(this);
 686 
 687   case NarrowOop:
 688     return t->xmeet(this);
 689 
 690   case NarrowKlass:
 691     return t->xmeet(this);
 692 
 693   case Bad:                     // Type check
 694   default:                      // Bogus type not in lattice
 695     typerr(t);
 696     return Type::BOTTOM;
 697 
 698   case Bottom:                  // Ye Olde Default
 699     return t;
 700 
 701   case FloatTop:
 702     if( _base == FloatTop ) return this;
 703   case FloatBot:                // Float
 704     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 705     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 706     typerr(t);
 707     return Type::BOTTOM;
 708 
 709   case DoubleTop:
 710     if( _base == DoubleTop ) return this;
 711   case DoubleBot:               // Double
 712     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 713     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 714     typerr(t);
 715     return Type::BOTTOM;
 716 
 717   // These next few cases must match exactly or it is a compile-time error.
 718   case Control:                 // Control of code
 719   case Abio:                    // State of world outside of program
 720   case Memory:
 721     if( _base == t->_base )  return this;
 722     typerr(t);
 723     return Type::BOTTOM;
 724 
 725   case Top:                     // Top of the lattice
 726     return this;
 727   }
 728 
 729   // The type is unchanged
 730   return this;
 731 }
 732 
 733 //-----------------------------filter------------------------------------------
 734 const Type *Type::filter( const Type *kills ) const {
 735   const Type* ft = join(kills);
 736   if (ft->empty())
 737     return Type::TOP;           // Canonical empty value
 738   return ft;
 739 }
 740 
 741 //------------------------------xdual------------------------------------------
 742 // Compute dual right now.
 743 const Type::TYPES Type::dual_type[Type::lastype] = {
 744   Bad,          // Bad
 745   Control,      // Control
 746   Bottom,       // Top
 747   Bad,          // Int - handled in v-call
 748   Bad,          // Long - handled in v-call
 749   Half,         // Half
 750   Bad,          // NarrowOop - handled in v-call
 751   Bad,          // NarrowKlass - handled in v-call
 752 
 753   Bad,          // Tuple - handled in v-call
 754   Bad,          // Array - handled in v-call
 755   Bad,          // VectorS - handled in v-call
 756   Bad,          // VectorD - handled in v-call
 757   Bad,          // VectorX - handled in v-call
 758   Bad,          // VectorY - handled in v-call
 759 
 760   Bad,          // AnyPtr - handled in v-call
 761   Bad,          // RawPtr - handled in v-call
 762   Bad,          // OopPtr - handled in v-call
 763   Bad,          // InstPtr - handled in v-call
 764   Bad,          // AryPtr - handled in v-call
 765 
 766   Bad,          //  MetadataPtr - handled in v-call
 767   Bad,          // KlassPtr - handled in v-call
 768 
 769   Bad,          // Function - handled in v-call
 770   Abio,         // Abio
 771   Return_Address,// Return_Address
 772   Memory,       // Memory
 773   FloatBot,     // FloatTop
 774   FloatCon,     // FloatCon
 775   FloatTop,     // FloatBot
 776   DoubleBot,    // DoubleTop
 777   DoubleCon,    // DoubleCon
 778   DoubleTop,    // DoubleBot
 779   Top           // Bottom
 780 };
 781 
 782 const Type *Type::xdual() const {
 783   // Note: the base() accessor asserts the sanity of _base.
 784   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 785   return new Type(_type_info[_base].dual_type);
 786 }
 787 
 788 //------------------------------has_memory-------------------------------------
 789 bool Type::has_memory() const {
 790   Type::TYPES tx = base();
 791   if (tx == Memory) return true;
 792   if (tx == Tuple) {
 793     const TypeTuple *t = is_tuple();
 794     for (uint i=0; i < t->cnt(); i++) {
 795       tx = t->field_at(i)->base();
 796       if (tx == Memory)  return true;
 797     }
 798   }
 799   return false;
 800 }
 801 
 802 #ifndef PRODUCT
 803 //------------------------------dump2------------------------------------------
 804 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 805   st->print(_type_info[_base].msg);
 806 }
 807 
 808 //------------------------------dump-------------------------------------------
 809 void Type::dump_on(outputStream *st) const {
 810   ResourceMark rm;
 811   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 812   dump2(d,1, st);
 813   if (is_ptr_to_narrowoop()) {
 814     st->print(" [narrow]");
 815   } else if (is_ptr_to_narrowklass()) {
 816     st->print(" [narrowklass]");
 817   }
 818 }
 819 #endif
 820 
 821 //------------------------------singleton--------------------------------------
 822 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 823 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 824 bool Type::singleton(void) const {
 825   return _base == Top || _base == Half;
 826 }
 827 
 828 //------------------------------empty------------------------------------------
 829 // TRUE if Type is a type with no values, FALSE otherwise.
 830 bool Type::empty(void) const {
 831   switch (_base) {
 832   case DoubleTop:
 833   case FloatTop:
 834   case Top:
 835     return true;
 836 
 837   case Half:
 838   case Abio:
 839   case Return_Address:
 840   case Memory:
 841   case Bottom:
 842   case FloatBot:
 843   case DoubleBot:
 844     return false;  // never a singleton, therefore never empty
 845   }
 846 
 847   ShouldNotReachHere();
 848   return false;
 849 }
 850 
 851 //------------------------------dump_stats-------------------------------------
 852 // Dump collected statistics to stderr
 853 #ifndef PRODUCT
 854 void Type::dump_stats() {
 855   tty->print("Types made: %d\n", type_dict()->Size());
 856 }
 857 #endif
 858 
 859 //------------------------------typerr-----------------------------------------
 860 void Type::typerr( const Type *t ) const {
 861 #ifndef PRODUCT
 862   tty->print("\nError mixing types: ");
 863   dump();
 864   tty->print(" and ");
 865   t->dump();
 866   tty->print("\n");
 867 #endif
 868   ShouldNotReachHere();
 869 }
 870 
 871 
 872 //=============================================================================
 873 // Convenience common pre-built types.
 874 const TypeF *TypeF::ZERO;       // Floating point zero
 875 const TypeF *TypeF::ONE;        // Floating point one
 876 
 877 //------------------------------make-------------------------------------------
 878 // Create a float constant
 879 const TypeF *TypeF::make(float f) {
 880   return (TypeF*)(new TypeF(f))->hashcons();
 881 }
 882 
 883 //------------------------------meet-------------------------------------------
 884 // Compute the MEET of two types.  It returns a new Type object.
 885 const Type *TypeF::xmeet( const Type *t ) const {
 886   // Perform a fast test for common case; meeting the same types together.
 887   if( this == t ) return this;  // Meeting same type-rep?
 888 
 889   // Current "this->_base" is FloatCon
 890   switch (t->base()) {          // Switch on original type
 891   case AnyPtr:                  // Mixing with oops happens when javac
 892   case RawPtr:                  // reuses local variables
 893   case OopPtr:
 894   case InstPtr:
 895   case AryPtr:
 896   case MetadataPtr:
 897   case KlassPtr:
 898   case NarrowOop:
 899   case NarrowKlass:
 900   case Int:
 901   case Long:
 902   case DoubleTop:
 903   case DoubleCon:
 904   case DoubleBot:
 905   case Bottom:                  // Ye Olde Default
 906     return Type::BOTTOM;
 907 
 908   case FloatBot:
 909     return t;
 910 
 911   default:                      // All else is a mistake
 912     typerr(t);
 913 
 914   case FloatCon:                // Float-constant vs Float-constant?
 915     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 916                                 // must compare bitwise as positive zero, negative zero and NaN have
 917                                 // all the same representation in C++
 918       return FLOAT;             // Return generic float
 919                                 // Equal constants
 920   case Top:
 921   case FloatTop:
 922     break;                      // Return the float constant
 923   }
 924   return this;                  // Return the float constant
 925 }
 926 
 927 //------------------------------xdual------------------------------------------
 928 // Dual: symmetric
 929 const Type *TypeF::xdual() const {
 930   return this;
 931 }
 932 
 933 //------------------------------eq---------------------------------------------
 934 // Structural equality check for Type representations
 935 bool TypeF::eq( const Type *t ) const {
 936   if( g_isnan(_f) ||
 937       g_isnan(t->getf()) ) {
 938     // One or both are NANs.  If both are NANs return true, else false.
 939     return (g_isnan(_f) && g_isnan(t->getf()));
 940   }
 941   if (_f == t->getf()) {
 942     // (NaN is impossible at this point, since it is not equal even to itself)
 943     if (_f == 0.0) {
 944       // difference between positive and negative zero
 945       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 946     }
 947     return true;
 948   }
 949   return false;
 950 }
 951 
 952 //------------------------------hash-------------------------------------------
 953 // Type-specific hashing function.
 954 int TypeF::hash(void) const {
 955   return *(int*)(&_f);
 956 }
 957 
 958 //------------------------------is_finite--------------------------------------
 959 // Has a finite value
 960 bool TypeF::is_finite() const {
 961   return g_isfinite(getf()) != 0;
 962 }
 963 
 964 //------------------------------is_nan-----------------------------------------
 965 // Is not a number (NaN)
 966 bool TypeF::is_nan()    const {
 967   return g_isnan(getf()) != 0;
 968 }
 969 
 970 //------------------------------dump2------------------------------------------
 971 // Dump float constant Type
 972 #ifndef PRODUCT
 973 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
 974   Type::dump2(d,depth, st);
 975   st->print("%f", _f);
 976 }
 977 #endif
 978 
 979 //------------------------------singleton--------------------------------------
 980 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 981 // constants (Ldi nodes).  Singletons are integer, float or double constants
 982 // or a single symbol.
 983 bool TypeF::singleton(void) const {
 984   return true;                  // Always a singleton
 985 }
 986 
 987 bool TypeF::empty(void) const {
 988   return false;                 // always exactly a singleton
 989 }
 990 
 991 //=============================================================================
 992 // Convenience common pre-built types.
 993 const TypeD *TypeD::ZERO;       // Floating point zero
 994 const TypeD *TypeD::ONE;        // Floating point one
 995 
 996 //------------------------------make-------------------------------------------
 997 const TypeD *TypeD::make(double d) {
 998   return (TypeD*)(new TypeD(d))->hashcons();
 999 }
1000 
1001 //------------------------------meet-------------------------------------------
1002 // Compute the MEET of two types.  It returns a new Type object.
1003 const Type *TypeD::xmeet( const Type *t ) const {
1004   // Perform a fast test for common case; meeting the same types together.
1005   if( this == t ) return this;  // Meeting same type-rep?
1006 
1007   // Current "this->_base" is DoubleCon
1008   switch (t->base()) {          // Switch on original type
1009   case AnyPtr:                  // Mixing with oops happens when javac
1010   case RawPtr:                  // reuses local variables
1011   case OopPtr:
1012   case InstPtr:
1013   case AryPtr:
1014   case MetadataPtr:
1015   case KlassPtr:
1016   case NarrowOop:
1017   case NarrowKlass:
1018   case Int:
1019   case Long:
1020   case FloatTop:
1021   case FloatCon:
1022   case FloatBot:
1023   case Bottom:                  // Ye Olde Default
1024     return Type::BOTTOM;
1025 
1026   case DoubleBot:
1027     return t;
1028 
1029   default:                      // All else is a mistake
1030     typerr(t);
1031 
1032   case DoubleCon:               // Double-constant vs Double-constant?
1033     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1034       return DOUBLE;            // Return generic double
1035   case Top:
1036   case DoubleTop:
1037     break;
1038   }
1039   return this;                  // Return the double constant
1040 }
1041 
1042 //------------------------------xdual------------------------------------------
1043 // Dual: symmetric
1044 const Type *TypeD::xdual() const {
1045   return this;
1046 }
1047 
1048 //------------------------------eq---------------------------------------------
1049 // Structural equality check for Type representations
1050 bool TypeD::eq( const Type *t ) const {
1051   if( g_isnan(_d) ||
1052       g_isnan(t->getd()) ) {
1053     // One or both are NANs.  If both are NANs return true, else false.
1054     return (g_isnan(_d) && g_isnan(t->getd()));
1055   }
1056   if (_d == t->getd()) {
1057     // (NaN is impossible at this point, since it is not equal even to itself)
1058     if (_d == 0.0) {
1059       // difference between positive and negative zero
1060       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1061     }
1062     return true;
1063   }
1064   return false;
1065 }
1066 
1067 //------------------------------hash-------------------------------------------
1068 // Type-specific hashing function.
1069 int TypeD::hash(void) const {
1070   return *(int*)(&_d);
1071 }
1072 
1073 //------------------------------is_finite--------------------------------------
1074 // Has a finite value
1075 bool TypeD::is_finite() const {
1076   return g_isfinite(getd()) != 0;
1077 }
1078 
1079 //------------------------------is_nan-----------------------------------------
1080 // Is not a number (NaN)
1081 bool TypeD::is_nan()    const {
1082   return g_isnan(getd()) != 0;
1083 }
1084 
1085 //------------------------------dump2------------------------------------------
1086 // Dump double constant Type
1087 #ifndef PRODUCT
1088 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1089   Type::dump2(d,depth,st);
1090   st->print("%f", _d);
1091 }
1092 #endif
1093 
1094 //------------------------------singleton--------------------------------------
1095 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1096 // constants (Ldi nodes).  Singletons are integer, float or double constants
1097 // or a single symbol.
1098 bool TypeD::singleton(void) const {
1099   return true;                  // Always a singleton
1100 }
1101 
1102 bool TypeD::empty(void) const {
1103   return false;                 // always exactly a singleton
1104 }
1105 
1106 //=============================================================================
1107 // Convience common pre-built types.
1108 const TypeInt *TypeInt::MINUS_1;// -1
1109 const TypeInt *TypeInt::ZERO;   // 0
1110 const TypeInt *TypeInt::ONE;    // 1
1111 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1112 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1113 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1114 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1115 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1116 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1117 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1118 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1119 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1120 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1121 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1122 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1123 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1124 const TypeInt *TypeInt::INT;    // 32-bit integers
1125 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1126 
1127 //------------------------------TypeInt----------------------------------------
1128 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1129 }
1130 
1131 //------------------------------make-------------------------------------------
1132 const TypeInt *TypeInt::make( jint lo ) {
1133   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1134 }
1135 
1136 static int normalize_int_widen( jint lo, jint hi, int w ) {
1137   // Certain normalizations keep us sane when comparing types.
1138   // The 'SMALLINT' covers constants and also CC and its relatives.
1139   if (lo <= hi) {
1140     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1141     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1142   } else {
1143     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1144     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1145   }
1146   return w;
1147 }
1148 
1149 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1150   w = normalize_int_widen(lo, hi, w);
1151   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1152 }
1153 
1154 //------------------------------meet-------------------------------------------
1155 // Compute the MEET of two types.  It returns a new Type representation object
1156 // with reference count equal to the number of Types pointing at it.
1157 // Caller should wrap a Types around it.
1158 const Type *TypeInt::xmeet( const Type *t ) const {
1159   // Perform a fast test for common case; meeting the same types together.
1160   if( this == t ) return this;  // Meeting same type?
1161 
1162   // Currently "this->_base" is a TypeInt
1163   switch (t->base()) {          // Switch on original type
1164   case AnyPtr:                  // Mixing with oops happens when javac
1165   case RawPtr:                  // reuses local variables
1166   case OopPtr:
1167   case InstPtr:
1168   case AryPtr:
1169   case MetadataPtr:
1170   case KlassPtr:
1171   case NarrowOop:
1172   case NarrowKlass:
1173   case Long:
1174   case FloatTop:
1175   case FloatCon:
1176   case FloatBot:
1177   case DoubleTop:
1178   case DoubleCon:
1179   case DoubleBot:
1180   case Bottom:                  // Ye Olde Default
1181     return Type::BOTTOM;
1182   default:                      // All else is a mistake
1183     typerr(t);
1184   case Top:                     // No change
1185     return this;
1186   case Int:                     // Int vs Int?
1187     break;
1188   }
1189 
1190   // Expand covered set
1191   const TypeInt *r = t->is_int();
1192   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1193 }
1194 
1195 //------------------------------xdual------------------------------------------
1196 // Dual: reverse hi & lo; flip widen
1197 const Type *TypeInt::xdual() const {
1198   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1199   return new TypeInt(_hi,_lo,w);
1200 }
1201 
1202 //------------------------------widen------------------------------------------
1203 // Only happens for optimistic top-down optimizations.
1204 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1205   // Coming from TOP or such; no widening
1206   if( old->base() != Int ) return this;
1207   const TypeInt *ot = old->is_int();
1208 
1209   // If new guy is equal to old guy, no widening
1210   if( _lo == ot->_lo && _hi == ot->_hi )
1211     return old;
1212 
1213   // If new guy contains old, then we widened
1214   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1215     // New contains old
1216     // If new guy is already wider than old, no widening
1217     if( _widen > ot->_widen ) return this;
1218     // If old guy was a constant, do not bother
1219     if (ot->_lo == ot->_hi)  return this;
1220     // Now widen new guy.
1221     // Check for widening too far
1222     if (_widen == WidenMax) {
1223       int max = max_jint;
1224       int min = min_jint;
1225       if (limit->isa_int()) {
1226         max = limit->is_int()->_hi;
1227         min = limit->is_int()->_lo;
1228       }
1229       if (min < _lo && _hi < max) {
1230         // If neither endpoint is extremal yet, push out the endpoint
1231         // which is closer to its respective limit.
1232         if (_lo >= 0 ||                 // easy common case
1233             (juint)(_lo - min) >= (juint)(max - _hi)) {
1234           // Try to widen to an unsigned range type of 31 bits:
1235           return make(_lo, max, WidenMax);
1236         } else {
1237           return make(min, _hi, WidenMax);
1238         }
1239       }
1240       return TypeInt::INT;
1241     }
1242     // Returned widened new guy
1243     return make(_lo,_hi,_widen+1);
1244   }
1245 
1246   // If old guy contains new, then we probably widened too far & dropped to
1247   // bottom.  Return the wider fellow.
1248   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1249     return old;
1250 
1251   //fatal("Integer value range is not subset");
1252   //return this;
1253   return TypeInt::INT;
1254 }
1255 
1256 //------------------------------narrow---------------------------------------
1257 // Only happens for pessimistic optimizations.
1258 const Type *TypeInt::narrow( const Type *old ) const {
1259   if (_lo >= _hi)  return this;   // already narrow enough
1260   if (old == NULL)  return this;
1261   const TypeInt* ot = old->isa_int();
1262   if (ot == NULL)  return this;
1263   jint olo = ot->_lo;
1264   jint ohi = ot->_hi;
1265 
1266   // If new guy is equal to old guy, no narrowing
1267   if (_lo == olo && _hi == ohi)  return old;
1268 
1269   // If old guy was maximum range, allow the narrowing
1270   if (olo == min_jint && ohi == max_jint)  return this;
1271 
1272   if (_lo < olo || _hi > ohi)
1273     return this;                // doesn't narrow; pretty wierd
1274 
1275   // The new type narrows the old type, so look for a "death march".
1276   // See comments on PhaseTransform::saturate.
1277   juint nrange = _hi - _lo;
1278   juint orange = ohi - olo;
1279   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1280     // Use the new type only if the range shrinks a lot.
1281     // We do not want the optimizer computing 2^31 point by point.
1282     return old;
1283   }
1284 
1285   return this;
1286 }
1287 
1288 //-----------------------------filter------------------------------------------
1289 const Type *TypeInt::filter( const Type *kills ) const {
1290   const TypeInt* ft = join(kills)->isa_int();
1291   if (ft == NULL || ft->empty())
1292     return Type::TOP;           // Canonical empty value
1293   if (ft->_widen < this->_widen) {
1294     // Do not allow the value of kill->_widen to affect the outcome.
1295     // The widen bits must be allowed to run freely through the graph.
1296     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1297   }
1298   return ft;
1299 }
1300 
1301 //------------------------------eq---------------------------------------------
1302 // Structural equality check for Type representations
1303 bool TypeInt::eq( const Type *t ) const {
1304   const TypeInt *r = t->is_int(); // Handy access
1305   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1306 }
1307 
1308 //------------------------------hash-------------------------------------------
1309 // Type-specific hashing function.
1310 int TypeInt::hash(void) const {
1311   return _lo+_hi+_widen+(int)Type::Int;
1312 }
1313 
1314 //------------------------------is_finite--------------------------------------
1315 // Has a finite value
1316 bool TypeInt::is_finite() const {
1317   return true;
1318 }
1319 
1320 //------------------------------dump2------------------------------------------
1321 // Dump TypeInt
1322 #ifndef PRODUCT
1323 static const char* intname(char* buf, jint n) {
1324   if (n == min_jint)
1325     return "min";
1326   else if (n < min_jint + 10000)
1327     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1328   else if (n == max_jint)
1329     return "max";
1330   else if (n > max_jint - 10000)
1331     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1332   else
1333     sprintf(buf, INT32_FORMAT, n);
1334   return buf;
1335 }
1336 
1337 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1338   char buf[40], buf2[40];
1339   if (_lo == min_jint && _hi == max_jint)
1340     st->print("int");
1341   else if (is_con())
1342     st->print("int:%s", intname(buf, get_con()));
1343   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1344     st->print("bool");
1345   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1346     st->print("byte");
1347   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1348     st->print("char");
1349   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1350     st->print("short");
1351   else if (_hi == max_jint)
1352     st->print("int:>=%s", intname(buf, _lo));
1353   else if (_lo == min_jint)
1354     st->print("int:<=%s", intname(buf, _hi));
1355   else
1356     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1357 
1358   if (_widen != 0 && this != TypeInt::INT)
1359     st->print(":%.*s", _widen, "wwww");
1360 }
1361 #endif
1362 
1363 //------------------------------singleton--------------------------------------
1364 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1365 // constants.
1366 bool TypeInt::singleton(void) const {
1367   return _lo >= _hi;
1368 }
1369 
1370 bool TypeInt::empty(void) const {
1371   return _lo > _hi;
1372 }
1373 
1374 //=============================================================================
1375 // Convenience common pre-built types.
1376 const TypeLong *TypeLong::MINUS_1;// -1
1377 const TypeLong *TypeLong::ZERO; // 0
1378 const TypeLong *TypeLong::ONE;  // 1
1379 const TypeLong *TypeLong::POS;  // >=0
1380 const TypeLong *TypeLong::LONG; // 64-bit integers
1381 const TypeLong *TypeLong::INT;  // 32-bit subrange
1382 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1383 
1384 //------------------------------TypeLong---------------------------------------
1385 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1386 }
1387 
1388 //------------------------------make-------------------------------------------
1389 const TypeLong *TypeLong::make( jlong lo ) {
1390   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1391 }
1392 
1393 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1394   // Certain normalizations keep us sane when comparing types.
1395   // The 'SMALLINT' covers constants.
1396   if (lo <= hi) {
1397     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1398     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1399   } else {
1400     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1401     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1402   }
1403   return w;
1404 }
1405 
1406 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1407   w = normalize_long_widen(lo, hi, w);
1408   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1409 }
1410 
1411 
1412 //------------------------------meet-------------------------------------------
1413 // Compute the MEET of two types.  It returns a new Type representation object
1414 // with reference count equal to the number of Types pointing at it.
1415 // Caller should wrap a Types around it.
1416 const Type *TypeLong::xmeet( const Type *t ) const {
1417   // Perform a fast test for common case; meeting the same types together.
1418   if( this == t ) return this;  // Meeting same type?
1419 
1420   // Currently "this->_base" is a TypeLong
1421   switch (t->base()) {          // Switch on original type
1422   case AnyPtr:                  // Mixing with oops happens when javac
1423   case RawPtr:                  // reuses local variables
1424   case OopPtr:
1425   case InstPtr:
1426   case AryPtr:
1427   case MetadataPtr:
1428   case KlassPtr:
1429   case NarrowOop:
1430   case NarrowKlass:
1431   case Int:
1432   case FloatTop:
1433   case FloatCon:
1434   case FloatBot:
1435   case DoubleTop:
1436   case DoubleCon:
1437   case DoubleBot:
1438   case Bottom:                  // Ye Olde Default
1439     return Type::BOTTOM;
1440   default:                      // All else is a mistake
1441     typerr(t);
1442   case Top:                     // No change
1443     return this;
1444   case Long:                    // Long vs Long?
1445     break;
1446   }
1447 
1448   // Expand covered set
1449   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1450   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1451 }
1452 
1453 //------------------------------xdual------------------------------------------
1454 // Dual: reverse hi & lo; flip widen
1455 const Type *TypeLong::xdual() const {
1456   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1457   return new TypeLong(_hi,_lo,w);
1458 }
1459 
1460 //------------------------------widen------------------------------------------
1461 // Only happens for optimistic top-down optimizations.
1462 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1463   // Coming from TOP or such; no widening
1464   if( old->base() != Long ) return this;
1465   const TypeLong *ot = old->is_long();
1466 
1467   // If new guy is equal to old guy, no widening
1468   if( _lo == ot->_lo && _hi == ot->_hi )
1469     return old;
1470 
1471   // If new guy contains old, then we widened
1472   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1473     // New contains old
1474     // If new guy is already wider than old, no widening
1475     if( _widen > ot->_widen ) return this;
1476     // If old guy was a constant, do not bother
1477     if (ot->_lo == ot->_hi)  return this;
1478     // Now widen new guy.
1479     // Check for widening too far
1480     if (_widen == WidenMax) {
1481       jlong max = max_jlong;
1482       jlong min = min_jlong;
1483       if (limit->isa_long()) {
1484         max = limit->is_long()->_hi;
1485         min = limit->is_long()->_lo;
1486       }
1487       if (min < _lo && _hi < max) {
1488         // If neither endpoint is extremal yet, push out the endpoint
1489         // which is closer to its respective limit.
1490         if (_lo >= 0 ||                 // easy common case
1491             (julong)(_lo - min) >= (julong)(max - _hi)) {
1492           // Try to widen to an unsigned range type of 32/63 bits:
1493           if (max >= max_juint && _hi < max_juint)
1494             return make(_lo, max_juint, WidenMax);
1495           else
1496             return make(_lo, max, WidenMax);
1497         } else {
1498           return make(min, _hi, WidenMax);
1499         }
1500       }
1501       return TypeLong::LONG;
1502     }
1503     // Returned widened new guy
1504     return make(_lo,_hi,_widen+1);
1505   }
1506 
1507   // If old guy contains new, then we probably widened too far & dropped to
1508   // bottom.  Return the wider fellow.
1509   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1510     return old;
1511 
1512   //  fatal("Long value range is not subset");
1513   // return this;
1514   return TypeLong::LONG;
1515 }
1516 
1517 //------------------------------narrow----------------------------------------
1518 // Only happens for pessimistic optimizations.
1519 const Type *TypeLong::narrow( const Type *old ) const {
1520   if (_lo >= _hi)  return this;   // already narrow enough
1521   if (old == NULL)  return this;
1522   const TypeLong* ot = old->isa_long();
1523   if (ot == NULL)  return this;
1524   jlong olo = ot->_lo;
1525   jlong ohi = ot->_hi;
1526 
1527   // If new guy is equal to old guy, no narrowing
1528   if (_lo == olo && _hi == ohi)  return old;
1529 
1530   // If old guy was maximum range, allow the narrowing
1531   if (olo == min_jlong && ohi == max_jlong)  return this;
1532 
1533   if (_lo < olo || _hi > ohi)
1534     return this;                // doesn't narrow; pretty wierd
1535 
1536   // The new type narrows the old type, so look for a "death march".
1537   // See comments on PhaseTransform::saturate.
1538   julong nrange = _hi - _lo;
1539   julong orange = ohi - olo;
1540   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1541     // Use the new type only if the range shrinks a lot.
1542     // We do not want the optimizer computing 2^31 point by point.
1543     return old;
1544   }
1545 
1546   return this;
1547 }
1548 
1549 //-----------------------------filter------------------------------------------
1550 const Type *TypeLong::filter( const Type *kills ) const {
1551   const TypeLong* ft = join(kills)->isa_long();
1552   if (ft == NULL || ft->empty())
1553     return Type::TOP;           // Canonical empty value
1554   if (ft->_widen < this->_widen) {
1555     // Do not allow the value of kill->_widen to affect the outcome.
1556     // The widen bits must be allowed to run freely through the graph.
1557     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1558   }
1559   return ft;
1560 }
1561 
1562 //------------------------------eq---------------------------------------------
1563 // Structural equality check for Type representations
1564 bool TypeLong::eq( const Type *t ) const {
1565   const TypeLong *r = t->is_long(); // Handy access
1566   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1567 }
1568 
1569 //------------------------------hash-------------------------------------------
1570 // Type-specific hashing function.
1571 int TypeLong::hash(void) const {
1572   return (int)(_lo+_hi+_widen+(int)Type::Long);
1573 }
1574 
1575 //------------------------------is_finite--------------------------------------
1576 // Has a finite value
1577 bool TypeLong::is_finite() const {
1578   return true;
1579 }
1580 
1581 //------------------------------dump2------------------------------------------
1582 // Dump TypeLong
1583 #ifndef PRODUCT
1584 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1585   if (n > x) {
1586     if (n >= x + 10000)  return NULL;
1587     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1588   } else if (n < x) {
1589     if (n <= x - 10000)  return NULL;
1590     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1591   } else {
1592     return xname;
1593   }
1594   return buf;
1595 }
1596 
1597 static const char* longname(char* buf, jlong n) {
1598   const char* str;
1599   if (n == min_jlong)
1600     return "min";
1601   else if (n < min_jlong + 10000)
1602     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1603   else if (n == max_jlong)
1604     return "max";
1605   else if (n > max_jlong - 10000)
1606     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1607   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1608     return str;
1609   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1610     return str;
1611   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1612     return str;
1613   else
1614     sprintf(buf, JLONG_FORMAT, n);
1615   return buf;
1616 }
1617 
1618 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1619   char buf[80], buf2[80];
1620   if (_lo == min_jlong && _hi == max_jlong)
1621     st->print("long");
1622   else if (is_con())
1623     st->print("long:%s", longname(buf, get_con()));
1624   else if (_hi == max_jlong)
1625     st->print("long:>=%s", longname(buf, _lo));
1626   else if (_lo == min_jlong)
1627     st->print("long:<=%s", longname(buf, _hi));
1628   else
1629     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1630 
1631   if (_widen != 0 && this != TypeLong::LONG)
1632     st->print(":%.*s", _widen, "wwww");
1633 }
1634 #endif
1635 
1636 //------------------------------singleton--------------------------------------
1637 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1638 // constants
1639 bool TypeLong::singleton(void) const {
1640   return _lo >= _hi;
1641 }
1642 
1643 bool TypeLong::empty(void) const {
1644   return _lo > _hi;
1645 }
1646 
1647 //=============================================================================
1648 // Convenience common pre-built types.
1649 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1650 const TypeTuple *TypeTuple::IFFALSE;
1651 const TypeTuple *TypeTuple::IFTRUE;
1652 const TypeTuple *TypeTuple::IFNEITHER;
1653 const TypeTuple *TypeTuple::LOOPBODY;
1654 const TypeTuple *TypeTuple::MEMBAR;
1655 const TypeTuple *TypeTuple::STORECONDITIONAL;
1656 const TypeTuple *TypeTuple::START_I2C;
1657 const TypeTuple *TypeTuple::INT_PAIR;
1658 const TypeTuple *TypeTuple::LONG_PAIR;
1659 const TypeTuple *TypeTuple::INT_CC_PAIR;
1660 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1661 
1662 
1663 //------------------------------make-------------------------------------------
1664 // Make a TypeTuple from the range of a method signature
1665 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1666   ciType* return_type = sig->return_type();
1667   uint total_fields = TypeFunc::Parms + return_type->size();
1668   const Type **field_array = fields(total_fields);
1669   switch (return_type->basic_type()) {
1670   case T_LONG:
1671     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1672     field_array[TypeFunc::Parms+1] = Type::HALF;
1673     break;
1674   case T_DOUBLE:
1675     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1676     field_array[TypeFunc::Parms+1] = Type::HALF;
1677     break;
1678   case T_OBJECT:
1679   case T_ARRAY:
1680   case T_BOOLEAN:
1681   case T_CHAR:
1682   case T_FLOAT:
1683   case T_BYTE:
1684   case T_SHORT:
1685   case T_INT:
1686     field_array[TypeFunc::Parms] = get_const_type(return_type);
1687     break;
1688   case T_VOID:
1689     break;
1690   default:
1691     ShouldNotReachHere();
1692   }
1693   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1694 }
1695 
1696 // Make a TypeTuple from the domain of a method signature
1697 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1698   uint total_fields = TypeFunc::Parms + sig->size();
1699 
1700   uint pos = TypeFunc::Parms;
1701   const Type **field_array;
1702   if (recv != NULL) {
1703     total_fields++;
1704     field_array = fields(total_fields);
1705     // Use get_const_type here because it respects UseUniqueSubclasses:
1706     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1707   } else {
1708     field_array = fields(total_fields);
1709   }
1710 
1711   int i = 0;
1712   while (pos < total_fields) {
1713     ciType* type = sig->type_at(i);
1714 
1715     switch (type->basic_type()) {
1716     case T_LONG:
1717       field_array[pos++] = TypeLong::LONG;
1718       field_array[pos++] = Type::HALF;
1719       break;
1720     case T_DOUBLE:
1721       field_array[pos++] = Type::DOUBLE;
1722       field_array[pos++] = Type::HALF;
1723       break;
1724     case T_OBJECT:
1725     case T_ARRAY:
1726     case T_BOOLEAN:
1727     case T_CHAR:
1728     case T_FLOAT:
1729     case T_BYTE:
1730     case T_SHORT:
1731     case T_INT:
1732       field_array[pos++] = get_const_type(type);
1733       break;
1734     default:
1735       ShouldNotReachHere();
1736     }
1737     i++;
1738   }
1739   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1740 }
1741 
1742 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1743   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1744 }
1745 
1746 //------------------------------fields-----------------------------------------
1747 // Subroutine call type with space allocated for argument types
1748 const Type **TypeTuple::fields( uint arg_cnt ) {
1749   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1750   flds[TypeFunc::Control  ] = Type::CONTROL;
1751   flds[TypeFunc::I_O      ] = Type::ABIO;
1752   flds[TypeFunc::Memory   ] = Type::MEMORY;
1753   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1754   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1755 
1756   return flds;
1757 }
1758 
1759 //------------------------------meet-------------------------------------------
1760 // Compute the MEET of two types.  It returns a new Type object.
1761 const Type *TypeTuple::xmeet( const Type *t ) const {
1762   // Perform a fast test for common case; meeting the same types together.
1763   if( this == t ) return this;  // Meeting same type-rep?
1764 
1765   // Current "this->_base" is Tuple
1766   switch (t->base()) {          // switch on original type
1767 
1768   case Bottom:                  // Ye Olde Default
1769     return t;
1770 
1771   default:                      // All else is a mistake
1772     typerr(t);
1773 
1774   case Tuple: {                 // Meeting 2 signatures?
1775     const TypeTuple *x = t->is_tuple();
1776     assert( _cnt == x->_cnt, "" );
1777     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1778     for( uint i=0; i<_cnt; i++ )
1779       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1780     return TypeTuple::make(_cnt,fields);
1781   }
1782   case Top:
1783     break;
1784   }
1785   return this;                  // Return the double constant
1786 }
1787 
1788 //------------------------------xdual------------------------------------------
1789 // Dual: compute field-by-field dual
1790 const Type *TypeTuple::xdual() const {
1791   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1792   for( uint i=0; i<_cnt; i++ )
1793     fields[i] = _fields[i]->dual();
1794   return new TypeTuple(_cnt,fields);
1795 }
1796 
1797 //------------------------------eq---------------------------------------------
1798 // Structural equality check for Type representations
1799 bool TypeTuple::eq( const Type *t ) const {
1800   const TypeTuple *s = (const TypeTuple *)t;
1801   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1802   for (uint i = 0; i < _cnt; i++)
1803     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1804       return false;             // Missed
1805   return true;
1806 }
1807 
1808 //------------------------------hash-------------------------------------------
1809 // Type-specific hashing function.
1810 int TypeTuple::hash(void) const {
1811   intptr_t sum = _cnt;
1812   for( uint i=0; i<_cnt; i++ )
1813     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1814   return sum;
1815 }
1816 
1817 //------------------------------dump2------------------------------------------
1818 // Dump signature Type
1819 #ifndef PRODUCT
1820 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1821   st->print("{");
1822   if( !depth || d[this] ) {     // Check for recursive print
1823     st->print("...}");
1824     return;
1825   }
1826   d.Insert((void*)this, (void*)this);   // Stop recursion
1827   if( _cnt ) {
1828     uint i;
1829     for( i=0; i<_cnt-1; i++ ) {
1830       st->print("%d:", i);
1831       _fields[i]->dump2(d, depth-1, st);
1832       st->print(", ");
1833     }
1834     st->print("%d:", i);
1835     _fields[i]->dump2(d, depth-1, st);
1836   }
1837   st->print("}");
1838 }
1839 #endif
1840 
1841 //------------------------------singleton--------------------------------------
1842 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1843 // constants (Ldi nodes).  Singletons are integer, float or double constants
1844 // or a single symbol.
1845 bool TypeTuple::singleton(void) const {
1846   return false;                 // Never a singleton
1847 }
1848 
1849 bool TypeTuple::empty(void) const {
1850   for( uint i=0; i<_cnt; i++ ) {
1851     if (_fields[i]->empty())  return true;
1852   }
1853   return false;
1854 }
1855 
1856 //=============================================================================
1857 // Convenience common pre-built types.
1858 
1859 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1860   // Certain normalizations keep us sane when comparing types.
1861   // We do not want arrayOop variables to differ only by the wideness
1862   // of their index types.  Pick minimum wideness, since that is the
1863   // forced wideness of small ranges anyway.
1864   if (size->_widen != Type::WidenMin)
1865     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1866   else
1867     return size;
1868 }
1869 
1870 //------------------------------make-------------------------------------------
1871 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1872   if (UseCompressedOops && elem->isa_oopptr()) {
1873     elem = elem->make_narrowoop();
1874   }
1875   size = normalize_array_size(size);
1876   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1877 }
1878 
1879 //------------------------------meet-------------------------------------------
1880 // Compute the MEET of two types.  It returns a new Type object.
1881 const Type *TypeAry::xmeet( const Type *t ) const {
1882   // Perform a fast test for common case; meeting the same types together.
1883   if( this == t ) return this;  // Meeting same type-rep?
1884 
1885   // Current "this->_base" is Ary
1886   switch (t->base()) {          // switch on original type
1887 
1888   case Bottom:                  // Ye Olde Default
1889     return t;
1890 
1891   default:                      // All else is a mistake
1892     typerr(t);
1893 
1894   case Array: {                 // Meeting 2 arrays?
1895     const TypeAry *a = t->is_ary();
1896     return TypeAry::make(_elem->meet(a->_elem),
1897                          _size->xmeet(a->_size)->is_int(),
1898                          _stable & a->_stable);
1899   }
1900   case Top:
1901     break;
1902   }
1903   return this;                  // Return the double constant
1904 }
1905 
1906 //------------------------------xdual------------------------------------------
1907 // Dual: compute field-by-field dual
1908 const Type *TypeAry::xdual() const {
1909   const TypeInt* size_dual = _size->dual()->is_int();
1910   size_dual = normalize_array_size(size_dual);
1911   return new TypeAry(_elem->dual(), size_dual, !_stable);
1912 }
1913 
1914 //------------------------------eq---------------------------------------------
1915 // Structural equality check for Type representations
1916 bool TypeAry::eq( const Type *t ) const {
1917   const TypeAry *a = (const TypeAry*)t;
1918   return _elem == a->_elem &&
1919     _stable == a->_stable &&
1920     _size == a->_size;
1921 }
1922 
1923 //------------------------------hash-------------------------------------------
1924 // Type-specific hashing function.
1925 int TypeAry::hash(void) const {
1926   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1927 }
1928 
1929 //----------------------interface_vs_oop---------------------------------------
1930 #ifdef ASSERT
1931 bool TypeAry::interface_vs_oop(const Type *t) const {
1932   const TypeAry* t_ary = t->is_ary();
1933   if (t_ary) {
1934     return _elem->interface_vs_oop(t_ary->_elem);
1935   }
1936   return false;
1937 }
1938 #endif
1939 
1940 //------------------------------dump2------------------------------------------
1941 #ifndef PRODUCT
1942 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1943   if (_stable)  st->print("stable:");
1944   _elem->dump2(d, depth, st);
1945   st->print("[");
1946   _size->dump2(d, depth, st);
1947   st->print("]");
1948 }
1949 #endif
1950 
1951 //------------------------------singleton--------------------------------------
1952 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1953 // constants (Ldi nodes).  Singletons are integer, float or double constants
1954 // or a single symbol.
1955 bool TypeAry::singleton(void) const {
1956   return false;                 // Never a singleton
1957 }
1958 
1959 bool TypeAry::empty(void) const {
1960   return _elem->empty() || _size->empty();
1961 }
1962 
1963 //--------------------------ary_must_be_exact----------------------------------
1964 bool TypeAry::ary_must_be_exact() const {
1965   if (!UseExactTypes)       return false;
1966   // This logic looks at the element type of an array, and returns true
1967   // if the element type is either a primitive or a final instance class.
1968   // In such cases, an array built on this ary must have no subclasses.
1969   if (_elem == BOTTOM)      return false;  // general array not exact
1970   if (_elem == TOP   )      return false;  // inverted general array not exact
1971   const TypeOopPtr*  toop = NULL;
1972   if (UseCompressedOops && _elem->isa_narrowoop()) {
1973     toop = _elem->make_ptr()->isa_oopptr();
1974   } else {
1975     toop = _elem->isa_oopptr();
1976   }
1977   if (!toop)                return true;   // a primitive type, like int
1978   ciKlass* tklass = toop->klass();
1979   if (tklass == NULL)       return false;  // unloaded class
1980   if (!tklass->is_loaded()) return false;  // unloaded class
1981   const TypeInstPtr* tinst;
1982   if (_elem->isa_narrowoop())
1983     tinst = _elem->make_ptr()->isa_instptr();
1984   else
1985     tinst = _elem->isa_instptr();
1986   if (tinst)
1987     return tklass->as_instance_klass()->is_final();
1988   const TypeAryPtr*  tap;
1989   if (_elem->isa_narrowoop())
1990     tap = _elem->make_ptr()->isa_aryptr();
1991   else
1992     tap = _elem->isa_aryptr();
1993   if (tap)
1994     return tap->ary()->ary_must_be_exact();
1995   return false;
1996 }
1997 
1998 //==============================TypeVect=======================================
1999 // Convenience common pre-built types.
2000 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2001 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2002 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2003 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2004 
2005 //------------------------------make-------------------------------------------
2006 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2007   BasicType elem_bt = elem->array_element_basic_type();
2008   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2009   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2010   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2011   int size = length * type2aelembytes(elem_bt);
2012   switch (Matcher::vector_ideal_reg(size)) {
2013   case Op_VecS:
2014     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2015   case Op_VecD:
2016   case Op_RegD:
2017     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2018   case Op_VecX:
2019     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2020   case Op_VecY:
2021     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2022   }
2023  ShouldNotReachHere();
2024   return NULL;
2025 }
2026 
2027 //------------------------------meet-------------------------------------------
2028 // Compute the MEET of two types.  It returns a new Type object.
2029 const Type *TypeVect::xmeet( const Type *t ) const {
2030   // Perform a fast test for common case; meeting the same types together.
2031   if( this == t ) return this;  // Meeting same type-rep?
2032 
2033   // Current "this->_base" is Vector
2034   switch (t->base()) {          // switch on original type
2035 
2036   case Bottom:                  // Ye Olde Default
2037     return t;
2038 
2039   default:                      // All else is a mistake
2040     typerr(t);
2041 
2042   case VectorS:
2043   case VectorD:
2044   case VectorX:
2045   case VectorY: {                // Meeting 2 vectors?
2046     const TypeVect* v = t->is_vect();
2047     assert(  base() == v->base(), "");
2048     assert(length() == v->length(), "");
2049     assert(element_basic_type() == v->element_basic_type(), "");
2050     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2051   }
2052   case Top:
2053     break;
2054   }
2055   return this;
2056 }
2057 
2058 //------------------------------xdual------------------------------------------
2059 // Dual: compute field-by-field dual
2060 const Type *TypeVect::xdual() const {
2061   return new TypeVect(base(), _elem->dual(), _length);
2062 }
2063 
2064 //------------------------------eq---------------------------------------------
2065 // Structural equality check for Type representations
2066 bool TypeVect::eq(const Type *t) const {
2067   const TypeVect *v = t->is_vect();
2068   return (_elem == v->_elem) && (_length == v->_length);
2069 }
2070 
2071 //------------------------------hash-------------------------------------------
2072 // Type-specific hashing function.
2073 int TypeVect::hash(void) const {
2074   return (intptr_t)_elem + (intptr_t)_length;
2075 }
2076 
2077 //------------------------------singleton--------------------------------------
2078 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2079 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2080 // constant value (when vector is created with Replicate code).
2081 bool TypeVect::singleton(void) const {
2082 // There is no Con node for vectors yet.
2083 //  return _elem->singleton();
2084   return false;
2085 }
2086 
2087 bool TypeVect::empty(void) const {
2088   return _elem->empty();
2089 }
2090 
2091 //------------------------------dump2------------------------------------------
2092 #ifndef PRODUCT
2093 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2094   switch (base()) {
2095   case VectorS:
2096     st->print("vectors["); break;
2097   case VectorD:
2098     st->print("vectord["); break;
2099   case VectorX:
2100     st->print("vectorx["); break;
2101   case VectorY:
2102     st->print("vectory["); break;
2103   default:
2104     ShouldNotReachHere();
2105   }
2106   st->print("%d]:{", _length);
2107   _elem->dump2(d, depth, st);
2108   st->print("}");
2109 }
2110 #endif
2111 
2112 
2113 //=============================================================================
2114 // Convenience common pre-built types.
2115 const TypePtr *TypePtr::NULL_PTR;
2116 const TypePtr *TypePtr::NOTNULL;
2117 const TypePtr *TypePtr::BOTTOM;
2118 
2119 //------------------------------meet-------------------------------------------
2120 // Meet over the PTR enum
2121 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2122   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2123   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2124   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2125   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2126   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2127   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2128   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2129 };
2130 
2131 //------------------------------make-------------------------------------------
2132 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2133   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2134 }
2135 
2136 //------------------------------cast_to_ptr_type-------------------------------
2137 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2138   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2139   if( ptr == _ptr ) return this;
2140   return make(_base, ptr, _offset);
2141 }
2142 
2143 //------------------------------get_con----------------------------------------
2144 intptr_t TypePtr::get_con() const {
2145   assert( _ptr == Null, "" );
2146   return _offset;
2147 }
2148 
2149 //------------------------------meet-------------------------------------------
2150 // Compute the MEET of two types.  It returns a new Type object.
2151 const Type *TypePtr::xmeet( const Type *t ) const {
2152   // Perform a fast test for common case; meeting the same types together.
2153   if( this == t ) return this;  // Meeting same type-rep?
2154 
2155   // Current "this->_base" is AnyPtr
2156   switch (t->base()) {          // switch on original type
2157   case Int:                     // Mixing ints & oops happens when javac
2158   case Long:                    // reuses local variables
2159   case FloatTop:
2160   case FloatCon:
2161   case FloatBot:
2162   case DoubleTop:
2163   case DoubleCon:
2164   case DoubleBot:
2165   case NarrowOop:
2166   case NarrowKlass:
2167   case Bottom:                  // Ye Olde Default
2168     return Type::BOTTOM;
2169   case Top:
2170     return this;
2171 
2172   case AnyPtr: {                // Meeting to AnyPtrs
2173     const TypePtr *tp = t->is_ptr();
2174     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2175   }
2176   case RawPtr:                  // For these, flip the call around to cut down
2177   case OopPtr:
2178   case InstPtr:                 // on the cases I have to handle.
2179   case AryPtr:
2180   case MetadataPtr:
2181   case KlassPtr:
2182     return t->xmeet(this);      // Call in reverse direction
2183   default:                      // All else is a mistake
2184     typerr(t);
2185 
2186   }
2187   return this;
2188 }
2189 
2190 //------------------------------meet_offset------------------------------------
2191 int TypePtr::meet_offset( int offset ) const {
2192   // Either is 'TOP' offset?  Return the other offset!
2193   if( _offset == OffsetTop ) return offset;
2194   if( offset == OffsetTop ) return _offset;
2195   // If either is different, return 'BOTTOM' offset
2196   if( _offset != offset ) return OffsetBot;
2197   return _offset;
2198 }
2199 
2200 //------------------------------dual_offset------------------------------------
2201 int TypePtr::dual_offset( ) const {
2202   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2203   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2204   return _offset;               // Map everything else into self
2205 }
2206 
2207 //------------------------------xdual------------------------------------------
2208 // Dual: compute field-by-field dual
2209 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2210   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2211 };
2212 const Type *TypePtr::xdual() const {
2213   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2214 }
2215 
2216 //------------------------------xadd_offset------------------------------------
2217 int TypePtr::xadd_offset( intptr_t offset ) const {
2218   // Adding to 'TOP' offset?  Return 'TOP'!
2219   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2220   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2221   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2222   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2223   offset += (intptr_t)_offset;
2224   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2225 
2226   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2227   // It is possible to construct a negative offset during PhaseCCP
2228 
2229   return (int)offset;        // Sum valid offsets
2230 }
2231 
2232 //------------------------------add_offset-------------------------------------
2233 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2234   return make( AnyPtr, _ptr, xadd_offset(offset) );
2235 }
2236 
2237 //------------------------------eq---------------------------------------------
2238 // Structural equality check for Type representations
2239 bool TypePtr::eq( const Type *t ) const {
2240   const TypePtr *a = (const TypePtr*)t;
2241   return _ptr == a->ptr() && _offset == a->offset();
2242 }
2243 
2244 //------------------------------hash-------------------------------------------
2245 // Type-specific hashing function.
2246 int TypePtr::hash(void) const {
2247   return _ptr + _offset;
2248 }
2249 
2250 //------------------------------dump2------------------------------------------
2251 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2252   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2253 };
2254 
2255 #ifndef PRODUCT
2256 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2257   if( _ptr == Null ) st->print("NULL");
2258   else st->print("%s *", ptr_msg[_ptr]);
2259   if( _offset == OffsetTop ) st->print("+top");
2260   else if( _offset == OffsetBot ) st->print("+bot");
2261   else if( _offset ) st->print("+%d", _offset);
2262 }
2263 #endif
2264 
2265 //------------------------------singleton--------------------------------------
2266 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2267 // constants
2268 bool TypePtr::singleton(void) const {
2269   // TopPTR, Null, AnyNull, Constant are all singletons
2270   return (_offset != OffsetBot) && !below_centerline(_ptr);
2271 }
2272 
2273 bool TypePtr::empty(void) const {
2274   return (_offset == OffsetTop) || above_centerline(_ptr);
2275 }
2276 
2277 //=============================================================================
2278 // Convenience common pre-built types.
2279 const TypeRawPtr *TypeRawPtr::BOTTOM;
2280 const TypeRawPtr *TypeRawPtr::NOTNULL;
2281 
2282 //------------------------------make-------------------------------------------
2283 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2284   assert( ptr != Constant, "what is the constant?" );
2285   assert( ptr != Null, "Use TypePtr for NULL" );
2286   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2287 }
2288 
2289 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2290   assert( bits, "Use TypePtr for NULL" );
2291   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2292 }
2293 
2294 //------------------------------cast_to_ptr_type-------------------------------
2295 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2296   assert( ptr != Constant, "what is the constant?" );
2297   assert( ptr != Null, "Use TypePtr for NULL" );
2298   assert( _bits==0, "Why cast a constant address?");
2299   if( ptr == _ptr ) return this;
2300   return make(ptr);
2301 }
2302 
2303 //------------------------------get_con----------------------------------------
2304 intptr_t TypeRawPtr::get_con() const {
2305   assert( _ptr == Null || _ptr == Constant, "" );
2306   return (intptr_t)_bits;
2307 }
2308 
2309 //------------------------------meet-------------------------------------------
2310 // Compute the MEET of two types.  It returns a new Type object.
2311 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2312   // Perform a fast test for common case; meeting the same types together.
2313   if( this == t ) return this;  // Meeting same type-rep?
2314 
2315   // Current "this->_base" is RawPtr
2316   switch( t->base() ) {         // switch on original type
2317   case Bottom:                  // Ye Olde Default
2318     return t;
2319   case Top:
2320     return this;
2321   case AnyPtr:                  // Meeting to AnyPtrs
2322     break;
2323   case RawPtr: {                // might be top, bot, any/not or constant
2324     enum PTR tptr = t->is_ptr()->ptr();
2325     enum PTR ptr = meet_ptr( tptr );
2326     if( ptr == Constant ) {     // Cannot be equal constants, so...
2327       if( tptr == Constant && _ptr != Constant)  return t;
2328       if( _ptr == Constant && tptr != Constant)  return this;
2329       ptr = NotNull;            // Fall down in lattice
2330     }
2331     return make( ptr );
2332   }
2333 
2334   case OopPtr:
2335   case InstPtr:
2336   case AryPtr:
2337   case MetadataPtr:
2338   case KlassPtr:
2339     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2340   default:                      // All else is a mistake
2341     typerr(t);
2342   }
2343 
2344   // Found an AnyPtr type vs self-RawPtr type
2345   const TypePtr *tp = t->is_ptr();
2346   switch (tp->ptr()) {
2347   case TypePtr::TopPTR:  return this;
2348   case TypePtr::BotPTR:  return t;
2349   case TypePtr::Null:
2350     if( _ptr == TypePtr::TopPTR ) return t;
2351     return TypeRawPtr::BOTTOM;
2352   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2353   case TypePtr::AnyNull:
2354     if( _ptr == TypePtr::Constant) return this;
2355     return make( meet_ptr(TypePtr::AnyNull) );
2356   default: ShouldNotReachHere();
2357   }
2358   return this;
2359 }
2360 
2361 //------------------------------xdual------------------------------------------
2362 // Dual: compute field-by-field dual
2363 const Type *TypeRawPtr::xdual() const {
2364   return new TypeRawPtr( dual_ptr(), _bits );
2365 }
2366 
2367 //------------------------------add_offset-------------------------------------
2368 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2369   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2370   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2371   if( offset == 0 ) return this; // No change
2372   switch (_ptr) {
2373   case TypePtr::TopPTR:
2374   case TypePtr::BotPTR:
2375   case TypePtr::NotNull:
2376     return this;
2377   case TypePtr::Null:
2378   case TypePtr::Constant: {
2379     address bits = _bits+offset;
2380     if ( bits == 0 ) return TypePtr::NULL_PTR;
2381     return make( bits );
2382   }
2383   default:  ShouldNotReachHere();
2384   }
2385   return NULL;                  // Lint noise
2386 }
2387 
2388 //------------------------------eq---------------------------------------------
2389 // Structural equality check for Type representations
2390 bool TypeRawPtr::eq( const Type *t ) const {
2391   const TypeRawPtr *a = (const TypeRawPtr*)t;
2392   return _bits == a->_bits && TypePtr::eq(t);
2393 }
2394 
2395 //------------------------------hash-------------------------------------------
2396 // Type-specific hashing function.
2397 int TypeRawPtr::hash(void) const {
2398   return (intptr_t)_bits + TypePtr::hash();
2399 }
2400 
2401 //------------------------------dump2------------------------------------------
2402 #ifndef PRODUCT
2403 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2404   if( _ptr == Constant )
2405     st->print(INTPTR_FORMAT, _bits);
2406   else
2407     st->print("rawptr:%s", ptr_msg[_ptr]);
2408 }
2409 #endif
2410 
2411 //=============================================================================
2412 // Convenience common pre-built type.
2413 const TypeOopPtr *TypeOopPtr::BOTTOM;
2414 
2415 //------------------------------TypeOopPtr-------------------------------------
2416 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2417   : TypePtr(t, ptr, offset),
2418     _const_oop(o), _klass(k),
2419     _klass_is_exact(xk),
2420     _is_ptr_to_narrowoop(false),
2421     _is_ptr_to_narrowklass(false),
2422     _is_ptr_to_boxed_value(false),
2423     _instance_id(instance_id) {
2424   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2425       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2426     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2427   }
2428 #ifdef _LP64
2429   if (_offset != 0) {
2430     if (_offset == oopDesc::klass_offset_in_bytes()) {
2431       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2432     } else if (klass() == NULL) {
2433       // Array with unknown body type
2434       assert(this->isa_aryptr(), "only arrays without klass");
2435       _is_ptr_to_narrowoop = UseCompressedOops;
2436     } else if (this->isa_aryptr()) {
2437       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2438                              _offset != arrayOopDesc::length_offset_in_bytes());
2439     } else if (klass()->is_instance_klass()) {
2440       ciInstanceKlass* ik = klass()->as_instance_klass();
2441       ciField* field = NULL;
2442       if (this->isa_klassptr()) {
2443         // Perm objects don't use compressed references
2444       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2445         // unsafe access
2446         _is_ptr_to_narrowoop = UseCompressedOops;
2447       } else { // exclude unsafe ops
2448         assert(this->isa_instptr(), "must be an instance ptr.");
2449 
2450         if (klass() == ciEnv::current()->Class_klass() &&
2451             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2452              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2453           // Special hidden fields from the Class.
2454           assert(this->isa_instptr(), "must be an instance ptr.");
2455           _is_ptr_to_narrowoop = false;
2456         } else if (klass() == ciEnv::current()->Class_klass() &&
2457                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2458           // Static fields
2459           assert(o != NULL, "must be constant");
2460           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2461           ciField* field = k->get_field_by_offset(_offset, true);
2462           assert(field != NULL, "missing field");
2463           BasicType basic_elem_type = field->layout_type();
2464           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2465                                                        basic_elem_type == T_ARRAY);
2466         } else {
2467           // Instance fields which contains a compressed oop references.
2468           field = ik->get_field_by_offset(_offset, false);
2469           if (field != NULL) {
2470             BasicType basic_elem_type = field->layout_type();
2471             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2472                                                          basic_elem_type == T_ARRAY);
2473           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2474             // Compile::find_alias_type() cast exactness on all types to verify
2475             // that it does not affect alias type.
2476             _is_ptr_to_narrowoop = UseCompressedOops;
2477           } else {
2478             // Type for the copy start in LibraryCallKit::inline_native_clone().
2479             _is_ptr_to_narrowoop = UseCompressedOops;
2480           }
2481         }
2482       }
2483     }
2484   }
2485 #endif
2486 }
2487 
2488 //------------------------------make-------------------------------------------
2489 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2490                                    int offset, int instance_id) {
2491   assert(ptr != Constant, "no constant generic pointers");
2492   ciKlass*  k = Compile::current()->env()->Object_klass();
2493   bool      xk = false;
2494   ciObject* o = NULL;
2495   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2496 }
2497 
2498 
2499 //------------------------------cast_to_ptr_type-------------------------------
2500 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2501   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2502   if( ptr == _ptr ) return this;
2503   return make(ptr, _offset, _instance_id);
2504 }
2505 
2506 //-----------------------------cast_to_instance_id----------------------------
2507 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2508   // There are no instances of a general oop.
2509   // Return self unchanged.
2510   return this;
2511 }
2512 
2513 //-----------------------------cast_to_exactness-------------------------------
2514 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2515   // There is no such thing as an exact general oop.
2516   // Return self unchanged.
2517   return this;
2518 }
2519 
2520 
2521 //------------------------------as_klass_type----------------------------------
2522 // Return the klass type corresponding to this instance or array type.
2523 // It is the type that is loaded from an object of this type.
2524 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2525   ciKlass* k = klass();
2526   bool    xk = klass_is_exact();
2527   if (k == NULL)
2528     return TypeKlassPtr::OBJECT;
2529   else
2530     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2531 }
2532 
2533 
2534 //------------------------------meet-------------------------------------------
2535 // Compute the MEET of two types.  It returns a new Type object.
2536 const Type *TypeOopPtr::xmeet( const Type *t ) const {
2537   // Perform a fast test for common case; meeting the same types together.
2538   if( this == t ) return this;  // Meeting same type-rep?
2539 
2540   // Current "this->_base" is OopPtr
2541   switch (t->base()) {          // switch on original type
2542 
2543   case Int:                     // Mixing ints & oops happens when javac
2544   case Long:                    // reuses local variables
2545   case FloatTop:
2546   case FloatCon:
2547   case FloatBot:
2548   case DoubleTop:
2549   case DoubleCon:
2550   case DoubleBot:
2551   case NarrowOop:
2552   case NarrowKlass:
2553   case Bottom:                  // Ye Olde Default
2554     return Type::BOTTOM;
2555   case Top:
2556     return this;
2557 
2558   default:                      // All else is a mistake
2559     typerr(t);
2560 
2561   case RawPtr:
2562   case MetadataPtr:
2563   case KlassPtr:
2564     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2565 
2566   case AnyPtr: {
2567     // Found an AnyPtr type vs self-OopPtr type
2568     const TypePtr *tp = t->is_ptr();
2569     int offset = meet_offset(tp->offset());
2570     PTR ptr = meet_ptr(tp->ptr());
2571     switch (tp->ptr()) {
2572     case Null:
2573       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2574       // else fall through:
2575     case TopPTR:
2576     case AnyNull: {
2577       int instance_id = meet_instance_id(InstanceTop);
2578       return make(ptr, offset, instance_id);
2579     }
2580     case BotPTR:
2581     case NotNull:
2582       return TypePtr::make(AnyPtr, ptr, offset);
2583     default: typerr(t);
2584     }
2585   }
2586 
2587   case OopPtr: {                 // Meeting to other OopPtrs
2588     const TypeOopPtr *tp = t->is_oopptr();
2589     int instance_id = meet_instance_id(tp->instance_id());
2590     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2591   }
2592 
2593   case InstPtr:                  // For these, flip the call around to cut down
2594   case AryPtr:
2595     return t->xmeet(this);      // Call in reverse direction
2596 
2597   } // End of switch
2598   return this;                  // Return the double constant
2599 }
2600 
2601 
2602 //------------------------------xdual------------------------------------------
2603 // Dual of a pure heap pointer.  No relevant klass or oop information.
2604 const Type *TypeOopPtr::xdual() const {
2605   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2606   assert(const_oop() == NULL,             "no constants here");
2607   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2608 }
2609 
2610 //--------------------------make_from_klass_common-----------------------------
2611 // Computes the element-type given a klass.
2612 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2613   if (klass->is_instance_klass()) {
2614     Compile* C = Compile::current();
2615     Dependencies* deps = C->dependencies();
2616     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2617     // Element is an instance
2618     bool klass_is_exact = false;
2619     if (klass->is_loaded()) {
2620       // Try to set klass_is_exact.
2621       ciInstanceKlass* ik = klass->as_instance_klass();
2622       klass_is_exact = ik->is_final();
2623       if (!klass_is_exact && klass_change
2624           && deps != NULL && UseUniqueSubclasses) {
2625         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2626         if (sub != NULL) {
2627           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2628           klass = ik = sub;
2629           klass_is_exact = sub->is_final();
2630         }
2631       }
2632       if (!klass_is_exact && try_for_exact
2633           && deps != NULL && UseExactTypes) {
2634         if (!ik->is_interface() && !ik->has_subklass()) {
2635           // Add a dependence; if concrete subclass added we need to recompile
2636           deps->assert_leaf_type(ik);
2637           klass_is_exact = true;
2638         }
2639       }
2640     }
2641     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2642   } else if (klass->is_obj_array_klass()) {
2643     // Element is an object array. Recursively call ourself.
2644     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2645     bool xk = etype->klass_is_exact();
2646     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2647     // We used to pass NotNull in here, asserting that the sub-arrays
2648     // are all not-null.  This is not true in generally, as code can
2649     // slam NULLs down in the subarrays.
2650     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2651     return arr;
2652   } else if (klass->is_type_array_klass()) {
2653     // Element is an typeArray
2654     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2655     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2656     // We used to pass NotNull in here, asserting that the array pointer
2657     // is not-null. That was not true in general.
2658     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2659     return arr;
2660   } else {
2661     ShouldNotReachHere();
2662     return NULL;
2663   }
2664 }
2665 
2666 //------------------------------make_from_constant-----------------------------
2667 // Make a java pointer from an oop constant
2668 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2669                                                  bool require_constant,
2670                                                  bool is_autobox_cache) {
2671   assert(!o->is_null_object(), "null object not yet handled here.");
2672   ciKlass* klass = o->klass();
2673   if (klass->is_instance_klass()) {
2674     // Element is an instance
2675     if (require_constant) {
2676       if (!o->can_be_constant())  return NULL;
2677     } else if (!o->should_be_constant()) {
2678       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2679     }
2680     return TypeInstPtr::make(o);
2681   } else if (klass->is_obj_array_klass()) {
2682     // Element is an object array. Recursively call ourself.
2683     const TypeOopPtr *etype =
2684       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2685     if (is_autobox_cache) {
2686       // The pointers in the autobox arrays are always non-null.
2687       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2688     }
2689     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2690     // We used to pass NotNull in here, asserting that the sub-arrays
2691     // are all not-null.  This is not true in generally, as code can
2692     // slam NULLs down in the subarrays.
2693     if (require_constant) {
2694       if (!o->can_be_constant())  return NULL;
2695     } else if (!o->should_be_constant()) {
2696       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2697     }
2698     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, is_autobox_cache);
2699     return arr;
2700   } else if (klass->is_type_array_klass()) {
2701     // Element is an typeArray
2702     const Type* etype =
2703       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2704     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2705     // We used to pass NotNull in here, asserting that the array pointer
2706     // is not-null. That was not true in general.
2707     if (require_constant) {
2708       if (!o->can_be_constant())  return NULL;
2709     } else if (!o->should_be_constant()) {
2710       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2711     }
2712     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2713     return arr;
2714   }
2715 
2716   fatal("unhandled object type");
2717   return NULL;
2718 }
2719 
2720 //------------------------------get_con----------------------------------------
2721 intptr_t TypeOopPtr::get_con() const {
2722   assert( _ptr == Null || _ptr == Constant, "" );
2723   assert( _offset >= 0, "" );
2724 
2725   if (_offset != 0) {
2726     // After being ported to the compiler interface, the compiler no longer
2727     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2728     // to a handle at compile time.  This handle is embedded in the generated
2729     // code and dereferenced at the time the nmethod is made.  Until that time,
2730     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2731     // have access to the addresses!).  This does not seem to currently happen,
2732     // but this assertion here is to help prevent its occurence.
2733     tty->print_cr("Found oop constant with non-zero offset");
2734     ShouldNotReachHere();
2735   }
2736 
2737   return (intptr_t)const_oop()->constant_encoding();
2738 }
2739 
2740 
2741 //-----------------------------filter------------------------------------------
2742 // Do not allow interface-vs.-noninterface joins to collapse to top.
2743 const Type *TypeOopPtr::filter( const Type *kills ) const {
2744 
2745   const Type* ft = join(kills);
2746   const TypeInstPtr* ftip = ft->isa_instptr();
2747   const TypeInstPtr* ktip = kills->isa_instptr();
2748   const TypeKlassPtr* ftkp = ft->isa_klassptr();
2749   const TypeKlassPtr* ktkp = kills->isa_klassptr();
2750 
2751   if (ft->empty()) {
2752     // Check for evil case of 'this' being a class and 'kills' expecting an
2753     // interface.  This can happen because the bytecodes do not contain
2754     // enough type info to distinguish a Java-level interface variable
2755     // from a Java-level object variable.  If we meet 2 classes which
2756     // both implement interface I, but their meet is at 'j/l/O' which
2757     // doesn't implement I, we have no way to tell if the result should
2758     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2759     // into a Phi which "knows" it's an Interface type we'll have to
2760     // uplift the type.
2761     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2762       return kills;             // Uplift to interface
2763     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2764       return kills;             // Uplift to interface
2765 
2766     return Type::TOP;           // Canonical empty value
2767   }
2768 
2769   // If we have an interface-typed Phi or cast and we narrow to a class type,
2770   // the join should report back the class.  However, if we have a J/L/Object
2771   // class-typed Phi and an interface flows in, it's possible that the meet &
2772   // join report an interface back out.  This isn't possible but happens
2773   // because the type system doesn't interact well with interfaces.
2774   if (ftip != NULL && ktip != NULL &&
2775       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2776       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2777     // Happens in a CTW of rt.jar, 320-341, no extra flags
2778     assert(!ftip->klass_is_exact(), "interface could not be exact");
2779     return ktip->cast_to_ptr_type(ftip->ptr());
2780   }
2781   // Interface klass type could be exact in opposite to interface type,
2782   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
2783   if (ftkp != NULL && ktkp != NULL &&
2784       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2785       !ftkp->klass_is_exact() && // Keep exact interface klass
2786       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2787     return ktkp->cast_to_ptr_type(ftkp->ptr());
2788   }
2789 
2790   return ft;
2791 }
2792 
2793 //------------------------------eq---------------------------------------------
2794 // Structural equality check for Type representations
2795 bool TypeOopPtr::eq( const Type *t ) const {
2796   const TypeOopPtr *a = (const TypeOopPtr*)t;
2797   if (_klass_is_exact != a->_klass_is_exact ||
2798       _instance_id != a->_instance_id)  return false;
2799   ciObject* one = const_oop();
2800   ciObject* two = a->const_oop();
2801   if (one == NULL || two == NULL) {
2802     return (one == two) && TypePtr::eq(t);
2803   } else {
2804     return one->equals(two) && TypePtr::eq(t);
2805   }
2806 }
2807 
2808 //------------------------------hash-------------------------------------------
2809 // Type-specific hashing function.
2810 int TypeOopPtr::hash(void) const {
2811   return
2812     (const_oop() ? const_oop()->hash() : 0) +
2813     _klass_is_exact +
2814     _instance_id +
2815     TypePtr::hash();
2816 }
2817 
2818 //------------------------------dump2------------------------------------------
2819 #ifndef PRODUCT
2820 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2821   st->print("oopptr:%s", ptr_msg[_ptr]);
2822   if( _klass_is_exact ) st->print(":exact");
2823   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2824   switch( _offset ) {
2825   case OffsetTop: st->print("+top"); break;
2826   case OffsetBot: st->print("+any"); break;
2827   case         0: break;
2828   default:        st->print("+%d",_offset); break;
2829   }
2830   if (_instance_id == InstanceTop)
2831     st->print(",iid=top");
2832   else if (_instance_id != InstanceBot)
2833     st->print(",iid=%d",_instance_id);
2834 }
2835 #endif
2836 
2837 //------------------------------singleton--------------------------------------
2838 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2839 // constants
2840 bool TypeOopPtr::singleton(void) const {
2841   // detune optimizer to not generate constant oop + constant offset as a constant!
2842   // TopPTR, Null, AnyNull, Constant are all singletons
2843   return (_offset == 0) && !below_centerline(_ptr);
2844 }
2845 
2846 //------------------------------add_offset-------------------------------------
2847 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2848   return make( _ptr, xadd_offset(offset), _instance_id);
2849 }
2850 
2851 //------------------------------meet_instance_id--------------------------------
2852 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2853   // Either is 'TOP' instance?  Return the other instance!
2854   if( _instance_id == InstanceTop ) return  instance_id;
2855   if(  instance_id == InstanceTop ) return _instance_id;
2856   // If either is different, return 'BOTTOM' instance
2857   if( _instance_id != instance_id ) return InstanceBot;
2858   return _instance_id;
2859 }
2860 
2861 //------------------------------dual_instance_id--------------------------------
2862 int TypeOopPtr::dual_instance_id( ) const {
2863   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2864   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2865   return _instance_id;              // Map everything else into self
2866 }
2867 
2868 
2869 //=============================================================================
2870 // Convenience common pre-built types.
2871 const TypeInstPtr *TypeInstPtr::NOTNULL;
2872 const TypeInstPtr *TypeInstPtr::BOTTOM;
2873 const TypeInstPtr *TypeInstPtr::MIRROR;
2874 const TypeInstPtr *TypeInstPtr::MARK;
2875 const TypeInstPtr *TypeInstPtr::KLASS;
2876 
2877 //------------------------------TypeInstPtr-------------------------------------
2878 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2879  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2880    assert(k != NULL &&
2881           (k->is_loaded() || o == NULL),
2882           "cannot have constants with non-loaded klass");
2883 };
2884 
2885 //------------------------------make-------------------------------------------
2886 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2887                                      ciKlass* k,
2888                                      bool xk,
2889                                      ciObject* o,
2890                                      int offset,
2891                                      int instance_id) {
2892   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
2893   // Either const_oop() is NULL or else ptr is Constant
2894   assert( (!o && ptr != Constant) || (o && ptr == Constant),
2895           "constant pointers must have a value supplied" );
2896   // Ptr is never Null
2897   assert( ptr != Null, "NULL pointers are not typed" );
2898 
2899   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2900   if (!UseExactTypes)  xk = false;
2901   if (ptr == Constant) {
2902     // Note:  This case includes meta-object constants, such as methods.
2903     xk = true;
2904   } else if (k->is_loaded()) {
2905     ciInstanceKlass* ik = k->as_instance_klass();
2906     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2907     if (xk && ik->is_interface())  xk = false;  // no exact interface
2908   }
2909 
2910   // Now hash this baby
2911   TypeInstPtr *result =
2912     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2913 
2914   return result;
2915 }
2916 
2917 /**
2918  *  Create constant type for a constant boxed value
2919  */
2920 const Type* TypeInstPtr::get_const_boxed_value() const {
2921   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
2922   assert((const_oop() != NULL), "should be called only for constant object");
2923   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
2924   BasicType bt = constant.basic_type();
2925   switch (bt) {
2926     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
2927     case T_INT:      return TypeInt::make(constant.as_int());
2928     case T_CHAR:     return TypeInt::make(constant.as_char());
2929     case T_BYTE:     return TypeInt::make(constant.as_byte());
2930     case T_SHORT:    return TypeInt::make(constant.as_short());
2931     case T_FLOAT:    return TypeF::make(constant.as_float());
2932     case T_DOUBLE:   return TypeD::make(constant.as_double());
2933     case T_LONG:     return TypeLong::make(constant.as_long());
2934     default:         break;
2935   }
2936   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
2937   return NULL;
2938 }
2939 
2940 //------------------------------cast_to_ptr_type-------------------------------
2941 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2942   if( ptr == _ptr ) return this;
2943   // Reconstruct _sig info here since not a problem with later lazy
2944   // construction, _sig will show up on demand.
2945   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2946 }
2947 
2948 
2949 //-----------------------------cast_to_exactness-------------------------------
2950 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2951   if( klass_is_exact == _klass_is_exact ) return this;
2952   if (!UseExactTypes)  return this;
2953   if (!_klass->is_loaded())  return this;
2954   ciInstanceKlass* ik = _klass->as_instance_klass();
2955   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2956   if( ik->is_interface() )              return this;  // cannot set xk
2957   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2958 }
2959 
2960 //-----------------------------cast_to_instance_id----------------------------
2961 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2962   if( instance_id == _instance_id ) return this;
2963   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2964 }
2965 
2966 //------------------------------xmeet_unloaded---------------------------------
2967 // Compute the MEET of two InstPtrs when at least one is unloaded.
2968 // Assume classes are different since called after check for same name/class-loader
2969 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2970     int off = meet_offset(tinst->offset());
2971     PTR ptr = meet_ptr(tinst->ptr());
2972     int instance_id = meet_instance_id(tinst->instance_id());
2973 
2974     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2975     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2976     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2977       //
2978       // Meet unloaded class with java/lang/Object
2979       //
2980       // Meet
2981       //          |                     Unloaded Class
2982       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2983       //  ===================================================================
2984       //   TOP    | ..........................Unloaded......................|
2985       //  AnyNull |  U-AN    |................Unloaded......................|
2986       // Constant | ... O-NN .................................. |   O-BOT   |
2987       //  NotNull | ... O-NN .................................. |   O-BOT   |
2988       //  BOTTOM  | ........................Object-BOTTOM ..................|
2989       //
2990       assert(loaded->ptr() != TypePtr::Null, "insanity check");
2991       //
2992       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2993       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2994       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2995       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2996         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2997         else                                      { return TypeInstPtr::NOTNULL; }
2998       }
2999       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3000 
3001       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3002     }
3003 
3004     // Both are unloaded, not the same class, not Object
3005     // Or meet unloaded with a different loaded class, not java/lang/Object
3006     if( ptr != TypePtr::BotPTR ) {
3007       return TypeInstPtr::NOTNULL;
3008     }
3009     return TypeInstPtr::BOTTOM;
3010 }
3011 
3012 
3013 //------------------------------meet-------------------------------------------
3014 // Compute the MEET of two types.  It returns a new Type object.
3015 const Type *TypeInstPtr::xmeet( const Type *t ) const {
3016   // Perform a fast test for common case; meeting the same types together.
3017   if( this == t ) return this;  // Meeting same type-rep?
3018 
3019   // Current "this->_base" is Pointer
3020   switch (t->base()) {          // switch on original type
3021 
3022   case Int:                     // Mixing ints & oops happens when javac
3023   case Long:                    // reuses local variables
3024   case FloatTop:
3025   case FloatCon:
3026   case FloatBot:
3027   case DoubleTop:
3028   case DoubleCon:
3029   case DoubleBot:
3030   case NarrowOop:
3031   case NarrowKlass:
3032   case Bottom:                  // Ye Olde Default
3033     return Type::BOTTOM;
3034   case Top:
3035     return this;
3036 
3037   default:                      // All else is a mistake
3038     typerr(t);
3039 
3040   case MetadataPtr:
3041   case KlassPtr:
3042   case RawPtr: return TypePtr::BOTTOM;
3043 
3044   case AryPtr: {                // All arrays inherit from Object class
3045     const TypeAryPtr *tp = t->is_aryptr();
3046     int offset = meet_offset(tp->offset());
3047     PTR ptr = meet_ptr(tp->ptr());
3048     int instance_id = meet_instance_id(tp->instance_id());
3049     switch (ptr) {
3050     case TopPTR:
3051     case AnyNull:                // Fall 'down' to dual of object klass
3052       if (klass()->equals(ciEnv::current()->Object_klass())) {
3053         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
3054       } else {
3055         // cannot subclass, so the meet has to fall badly below the centerline
3056         ptr = NotNull;
3057         instance_id = InstanceBot;
3058         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
3059       }
3060     case Constant:
3061     case NotNull:
3062     case BotPTR:                // Fall down to object klass
3063       // LCA is object_klass, but if we subclass from the top we can do better
3064       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3065         // If 'this' (InstPtr) is above the centerline and it is Object class
3066         // then we can subclass in the Java class hierarchy.
3067         if (klass()->equals(ciEnv::current()->Object_klass())) {
3068           // that is, tp's array type is a subtype of my klass
3069           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3070                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
3071         }
3072       }
3073       // The other case cannot happen, since I cannot be a subtype of an array.
3074       // The meet falls down to Object class below centerline.
3075       if( ptr == Constant )
3076          ptr = NotNull;
3077       instance_id = InstanceBot;
3078       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
3079     default: typerr(t);
3080     }
3081   }
3082 
3083   case OopPtr: {                // Meeting to OopPtrs
3084     // Found a OopPtr type vs self-InstPtr type
3085     const TypeOopPtr *tp = t->is_oopptr();
3086     int offset = meet_offset(tp->offset());
3087     PTR ptr = meet_ptr(tp->ptr());
3088     switch (tp->ptr()) {
3089     case TopPTR:
3090     case AnyNull: {
3091       int instance_id = meet_instance_id(InstanceTop);
3092       return make(ptr, klass(), klass_is_exact(),
3093                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3094     }
3095     case NotNull:
3096     case BotPTR: {
3097       int instance_id = meet_instance_id(tp->instance_id());
3098       return TypeOopPtr::make(ptr, offset, instance_id);
3099     }
3100     default: typerr(t);
3101     }
3102   }
3103 
3104   case AnyPtr: {                // Meeting to AnyPtrs
3105     // Found an AnyPtr type vs self-InstPtr type
3106     const TypePtr *tp = t->is_ptr();
3107     int offset = meet_offset(tp->offset());
3108     PTR ptr = meet_ptr(tp->ptr());
3109     switch (tp->ptr()) {
3110     case Null:
3111       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3112       // else fall through to AnyNull
3113     case TopPTR:
3114     case AnyNull: {
3115       int instance_id = meet_instance_id(InstanceTop);
3116       return make( ptr, klass(), klass_is_exact(),
3117                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3118     }
3119     case NotNull:
3120     case BotPTR:
3121       return TypePtr::make( AnyPtr, ptr, offset );
3122     default: typerr(t);
3123     }
3124   }
3125 
3126   /*
3127                  A-top         }
3128                /   |   \       }  Tops
3129            B-top A-any C-top   }
3130               | /  |  \ |      }  Any-nulls
3131            B-any   |   C-any   }
3132               |    |    |
3133            B-con A-con C-con   } constants; not comparable across classes
3134               |    |    |
3135            B-not   |   C-not   }
3136               | \  |  / |      }  not-nulls
3137            B-bot A-not C-bot   }
3138                \   |   /       }  Bottoms
3139                  A-bot         }
3140   */
3141 
3142   case InstPtr: {                // Meeting 2 Oops?
3143     // Found an InstPtr sub-type vs self-InstPtr type
3144     const TypeInstPtr *tinst = t->is_instptr();
3145     int off = meet_offset( tinst->offset() );
3146     PTR ptr = meet_ptr( tinst->ptr() );
3147     int instance_id = meet_instance_id(tinst->instance_id());
3148 
3149     // Check for easy case; klasses are equal (and perhaps not loaded!)
3150     // If we have constants, then we created oops so classes are loaded
3151     // and we can handle the constants further down.  This case handles
3152     // both-not-loaded or both-loaded classes
3153     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3154       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
3155     }
3156 
3157     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3158     ciKlass* tinst_klass = tinst->klass();
3159     ciKlass* this_klass  = this->klass();
3160     bool tinst_xk = tinst->klass_is_exact();
3161     bool this_xk  = this->klass_is_exact();
3162     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3163       // One of these classes has not been loaded
3164       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3165 #ifndef PRODUCT
3166       if( PrintOpto && Verbose ) {
3167         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3168         tty->print("  this == "); this->dump(); tty->cr();
3169         tty->print(" tinst == "); tinst->dump(); tty->cr();
3170       }
3171 #endif
3172       return unloaded_meet;
3173     }
3174 
3175     // Handle mixing oops and interfaces first.
3176     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
3177       ciKlass *tmp = tinst_klass; // Swap interface around
3178       tinst_klass = this_klass;
3179       this_klass = tmp;
3180       bool tmp2 = tinst_xk;
3181       tinst_xk = this_xk;
3182       this_xk = tmp2;
3183     }
3184     if (tinst_klass->is_interface() &&
3185         !(this_klass->is_interface() ||
3186           // Treat java/lang/Object as an honorary interface,
3187           // because we need a bottom for the interface hierarchy.
3188           this_klass == ciEnv::current()->Object_klass())) {
3189       // Oop meets interface!
3190 
3191       // See if the oop subtypes (implements) interface.
3192       ciKlass *k;
3193       bool xk;
3194       if( this_klass->is_subtype_of( tinst_klass ) ) {
3195         // Oop indeed subtypes.  Now keep oop or interface depending
3196         // on whether we are both above the centerline or either is
3197         // below the centerline.  If we are on the centerline
3198         // (e.g., Constant vs. AnyNull interface), use the constant.
3199         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3200         // If we are keeping this_klass, keep its exactness too.
3201         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3202       } else {                  // Does not implement, fall to Object
3203         // Oop does not implement interface, so mixing falls to Object
3204         // just like the verifier does (if both are above the
3205         // centerline fall to interface)
3206         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3207         xk = above_centerline(ptr) ? tinst_xk : false;
3208         // Watch out for Constant vs. AnyNull interface.
3209         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3210         instance_id = InstanceBot;
3211       }
3212       ciObject* o = NULL;  // the Constant value, if any
3213       if (ptr == Constant) {
3214         // Find out which constant.
3215         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3216       }
3217       return make( ptr, k, xk, o, off, instance_id );
3218     }
3219 
3220     // Either oop vs oop or interface vs interface or interface vs Object
3221 
3222     // !!! Here's how the symmetry requirement breaks down into invariants:
3223     // If we split one up & one down AND they subtype, take the down man.
3224     // If we split one up & one down AND they do NOT subtype, "fall hard".
3225     // If both are up and they subtype, take the subtype class.
3226     // If both are up and they do NOT subtype, "fall hard".
3227     // If both are down and they subtype, take the supertype class.
3228     // If both are down and they do NOT subtype, "fall hard".
3229     // Constants treated as down.
3230 
3231     // Now, reorder the above list; observe that both-down+subtype is also
3232     // "fall hard"; "fall hard" becomes the default case:
3233     // If we split one up & one down AND they subtype, take the down man.
3234     // If both are up and they subtype, take the subtype class.
3235 
3236     // If both are down and they subtype, "fall hard".
3237     // If both are down and they do NOT subtype, "fall hard".
3238     // If both are up and they do NOT subtype, "fall hard".
3239     // If we split one up & one down AND they do NOT subtype, "fall hard".
3240 
3241     // If a proper subtype is exact, and we return it, we return it exactly.
3242     // If a proper supertype is exact, there can be no subtyping relationship!
3243     // If both types are equal to the subtype, exactness is and-ed below the
3244     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3245 
3246     // Check for subtyping:
3247     ciKlass *subtype = NULL;
3248     bool subtype_exact = false;
3249     if( tinst_klass->equals(this_klass) ) {
3250       subtype = this_klass;
3251       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3252     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3253       subtype = this_klass;     // Pick subtyping class
3254       subtype_exact = this_xk;
3255     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3256       subtype = tinst_klass;    // Pick subtyping class
3257       subtype_exact = tinst_xk;
3258     }
3259 
3260     if( subtype ) {
3261       if( above_centerline(ptr) ) { // both are up?
3262         this_klass = tinst_klass = subtype;
3263         this_xk = tinst_xk = subtype_exact;
3264       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3265         this_klass = tinst_klass; // tinst is down; keep down man
3266         this_xk = tinst_xk;
3267       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3268         tinst_klass = this_klass; // this is down; keep down man
3269         tinst_xk = this_xk;
3270       } else {
3271         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3272       }
3273     }
3274 
3275     // Check for classes now being equal
3276     if (tinst_klass->equals(this_klass)) {
3277       // If the klasses are equal, the constants may still differ.  Fall to
3278       // NotNull if they do (neither constant is NULL; that is a special case
3279       // handled elsewhere).
3280       ciObject* o = NULL;             // Assume not constant when done
3281       ciObject* this_oop  = const_oop();
3282       ciObject* tinst_oop = tinst->const_oop();
3283       if( ptr == Constant ) {
3284         if (this_oop != NULL && tinst_oop != NULL &&
3285             this_oop->equals(tinst_oop) )
3286           o = this_oop;
3287         else if (above_centerline(this ->_ptr))
3288           o = tinst_oop;
3289         else if (above_centerline(tinst ->_ptr))
3290           o = this_oop;
3291         else
3292           ptr = NotNull;
3293       }
3294       return make( ptr, this_klass, this_xk, o, off, instance_id );
3295     } // Else classes are not equal
3296 
3297     // Since klasses are different, we require a LCA in the Java
3298     // class hierarchy - which means we have to fall to at least NotNull.
3299     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3300       ptr = NotNull;
3301     instance_id = InstanceBot;
3302 
3303     // Now we find the LCA of Java classes
3304     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3305     return make( ptr, k, false, NULL, off, instance_id );
3306   } // End of case InstPtr
3307 
3308   } // End of switch
3309   return this;                  // Return the double constant
3310 }
3311 
3312 
3313 //------------------------java_mirror_type--------------------------------------
3314 ciType* TypeInstPtr::java_mirror_type() const {
3315   // must be a singleton type
3316   if( const_oop() == NULL )  return NULL;
3317 
3318   // must be of type java.lang.Class
3319   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3320 
3321   return const_oop()->as_instance()->java_mirror_type();
3322 }
3323 
3324 
3325 //------------------------------xdual------------------------------------------
3326 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3327 // inheritance mechanism.
3328 const Type *TypeInstPtr::xdual() const {
3329   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3330 }
3331 
3332 //------------------------------eq---------------------------------------------
3333 // Structural equality check for Type representations
3334 bool TypeInstPtr::eq( const Type *t ) const {
3335   const TypeInstPtr *p = t->is_instptr();
3336   return
3337     klass()->equals(p->klass()) &&
3338     TypeOopPtr::eq(p);          // Check sub-type stuff
3339 }
3340 
3341 //------------------------------hash-------------------------------------------
3342 // Type-specific hashing function.
3343 int TypeInstPtr::hash(void) const {
3344   int hash = klass()->hash() + TypeOopPtr::hash();
3345   return hash;
3346 }
3347 
3348 //------------------------------dump2------------------------------------------
3349 // Dump oop Type
3350 #ifndef PRODUCT
3351 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3352   // Print the name of the klass.
3353   klass()->print_name_on(st);
3354 
3355   switch( _ptr ) {
3356   case Constant:
3357     // TO DO: Make CI print the hex address of the underlying oop.
3358     if (WizardMode || Verbose) {
3359       const_oop()->print_oop(st);
3360     }
3361   case BotPTR:
3362     if (!WizardMode && !Verbose) {
3363       if( _klass_is_exact ) st->print(":exact");
3364       break;
3365     }
3366   case TopPTR:
3367   case AnyNull:
3368   case NotNull:
3369     st->print(":%s", ptr_msg[_ptr]);
3370     if( _klass_is_exact ) st->print(":exact");
3371     break;
3372   }
3373 
3374   if( _offset ) {               // Dump offset, if any
3375     if( _offset == OffsetBot )      st->print("+any");
3376     else if( _offset == OffsetTop ) st->print("+unknown");
3377     else st->print("+%d", _offset);
3378   }
3379 
3380   st->print(" *");
3381   if (_instance_id == InstanceTop)
3382     st->print(",iid=top");
3383   else if (_instance_id != InstanceBot)
3384     st->print(",iid=%d",_instance_id);
3385 }
3386 #endif
3387 
3388 //------------------------------add_offset-------------------------------------
3389 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3390   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3391 }
3392 
3393 //=============================================================================
3394 // Convenience common pre-built types.
3395 const TypeAryPtr *TypeAryPtr::RANGE;
3396 const TypeAryPtr *TypeAryPtr::OOPS;
3397 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3398 const TypeAryPtr *TypeAryPtr::BYTES;
3399 const TypeAryPtr *TypeAryPtr::SHORTS;
3400 const TypeAryPtr *TypeAryPtr::CHARS;
3401 const TypeAryPtr *TypeAryPtr::INTS;
3402 const TypeAryPtr *TypeAryPtr::LONGS;
3403 const TypeAryPtr *TypeAryPtr::FLOATS;
3404 const TypeAryPtr *TypeAryPtr::DOUBLES;
3405 
3406 //------------------------------make-------------------------------------------
3407 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3408   assert(!(k == NULL && ary->_elem->isa_int()),
3409          "integral arrays must be pre-equipped with a class");
3410   if (!xk)  xk = ary->ary_must_be_exact();
3411   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3412   if (!UseExactTypes)  xk = (ptr == Constant);
3413   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false))->hashcons();
3414 }
3415 
3416 //------------------------------make-------------------------------------------
3417 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, bool is_autobox_cache) {
3418   assert(!(k == NULL && ary->_elem->isa_int()),
3419          "integral arrays must be pre-equipped with a class");
3420   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3421   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3422   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3423   if (!UseExactTypes)  xk = (ptr == Constant);
3424   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache))->hashcons();
3425 }
3426 
3427 //------------------------------cast_to_ptr_type-------------------------------
3428 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3429   if( ptr == _ptr ) return this;
3430   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3431 }
3432 
3433 
3434 //-----------------------------cast_to_exactness-------------------------------
3435 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3436   if( klass_is_exact == _klass_is_exact ) return this;
3437   if (!UseExactTypes)  return this;
3438   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3439   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3440 }
3441 
3442 //-----------------------------cast_to_instance_id----------------------------
3443 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3444   if( instance_id == _instance_id ) return this;
3445   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3446 }
3447 
3448 //-----------------------------narrow_size_type-------------------------------
3449 // Local cache for arrayOopDesc::max_array_length(etype),
3450 // which is kind of slow (and cached elsewhere by other users).
3451 static jint max_array_length_cache[T_CONFLICT+1];
3452 static jint max_array_length(BasicType etype) {
3453   jint& cache = max_array_length_cache[etype];
3454   jint res = cache;
3455   if (res == 0) {
3456     switch (etype) {
3457     case T_NARROWOOP:
3458       etype = T_OBJECT;
3459       break;
3460     case T_NARROWKLASS:
3461     case T_CONFLICT:
3462     case T_ILLEGAL:
3463     case T_VOID:
3464       etype = T_BYTE;           // will produce conservatively high value
3465     }
3466     cache = res = arrayOopDesc::max_array_length(etype);
3467   }
3468   return res;
3469 }
3470 
3471 // Narrow the given size type to the index range for the given array base type.
3472 // Return NULL if the resulting int type becomes empty.
3473 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3474   jint hi = size->_hi;
3475   jint lo = size->_lo;
3476   jint min_lo = 0;
3477   jint max_hi = max_array_length(elem()->basic_type());
3478   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3479   bool chg = false;
3480   if (lo < min_lo) {
3481     lo = min_lo;
3482     if (size->is_con()) {
3483       hi = lo;
3484     }
3485     chg = true;
3486   }
3487   if (hi > max_hi) {
3488     hi = max_hi;
3489     if (size->is_con()) {
3490       lo = hi;
3491     }
3492     chg = true;
3493   }
3494   // Negative length arrays will produce weird intermediate dead fast-path code
3495   if (lo > hi)
3496     return TypeInt::ZERO;
3497   if (!chg)
3498     return size;
3499   return TypeInt::make(lo, hi, Type::WidenMin);
3500 }
3501 
3502 //-------------------------------cast_to_size----------------------------------
3503 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3504   assert(new_size != NULL, "");
3505   new_size = narrow_size_type(new_size);
3506   if (new_size == size())  return this;
3507   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3508   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3509 }
3510 
3511 
3512 //------------------------------cast_to_stable---------------------------------
3513 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3514   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3515     return this;
3516 
3517   const Type* elem = this->elem();
3518   const TypePtr* elem_ptr = elem->make_ptr();
3519 
3520   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3521     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3522     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3523   }
3524 
3525   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3526 
3527   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3528 }
3529 
3530 //-----------------------------stable_dimension--------------------------------
3531 int TypeAryPtr::stable_dimension() const {
3532   if (!is_stable())  return 0;
3533   int dim = 1;
3534   const TypePtr* elem_ptr = elem()->make_ptr();
3535   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3536     dim += elem_ptr->is_aryptr()->stable_dimension();
3537   return dim;
3538 }
3539 
3540 //------------------------------eq---------------------------------------------
3541 // Structural equality check for Type representations
3542 bool TypeAryPtr::eq( const Type *t ) const {
3543   const TypeAryPtr *p = t->is_aryptr();
3544   return
3545     _ary == p->_ary &&  // Check array
3546     TypeOopPtr::eq(p);  // Check sub-parts
3547 }
3548 
3549 //------------------------------hash-------------------------------------------
3550 // Type-specific hashing function.
3551 int TypeAryPtr::hash(void) const {
3552   return (intptr_t)_ary + TypeOopPtr::hash();
3553 }
3554 
3555 //------------------------------meet-------------------------------------------
3556 // Compute the MEET of two types.  It returns a new Type object.
3557 const Type *TypeAryPtr::xmeet( const Type *t ) const {
3558   // Perform a fast test for common case; meeting the same types together.
3559   if( this == t ) return this;  // Meeting same type-rep?
3560   // Current "this->_base" is Pointer
3561   switch (t->base()) {          // switch on original type
3562 
3563   // Mixing ints & oops happens when javac reuses local variables
3564   case Int:
3565   case Long:
3566   case FloatTop:
3567   case FloatCon:
3568   case FloatBot:
3569   case DoubleTop:
3570   case DoubleCon:
3571   case DoubleBot:
3572   case NarrowOop:
3573   case NarrowKlass:
3574   case Bottom:                  // Ye Olde Default
3575     return Type::BOTTOM;
3576   case Top:
3577     return this;
3578 
3579   default:                      // All else is a mistake
3580     typerr(t);
3581 
3582   case OopPtr: {                // Meeting to OopPtrs
3583     // Found a OopPtr type vs self-AryPtr type
3584     const TypeOopPtr *tp = t->is_oopptr();
3585     int offset = meet_offset(tp->offset());
3586     PTR ptr = meet_ptr(tp->ptr());
3587     switch (tp->ptr()) {
3588     case TopPTR:
3589     case AnyNull: {
3590       int instance_id = meet_instance_id(InstanceTop);
3591       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3592                   _ary, _klass, _klass_is_exact, offset, instance_id);
3593     }
3594     case BotPTR:
3595     case NotNull: {
3596       int instance_id = meet_instance_id(tp->instance_id());
3597       return TypeOopPtr::make(ptr, offset, instance_id);
3598     }
3599     default: ShouldNotReachHere();
3600     }
3601   }
3602 
3603   case AnyPtr: {                // Meeting two AnyPtrs
3604     // Found an AnyPtr type vs self-AryPtr type
3605     const TypePtr *tp = t->is_ptr();
3606     int offset = meet_offset(tp->offset());
3607     PTR ptr = meet_ptr(tp->ptr());
3608     switch (tp->ptr()) {
3609     case TopPTR:
3610       return this;
3611     case BotPTR:
3612     case NotNull:
3613       return TypePtr::make(AnyPtr, ptr, offset);
3614     case Null:
3615       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3616       // else fall through to AnyNull
3617     case AnyNull: {
3618       int instance_id = meet_instance_id(InstanceTop);
3619       return make( ptr, (ptr == Constant ? const_oop() : NULL),
3620                   _ary, _klass, _klass_is_exact, offset, instance_id);
3621     }
3622     default: ShouldNotReachHere();
3623     }
3624   }
3625 
3626   case MetadataPtr:
3627   case KlassPtr:
3628   case RawPtr: return TypePtr::BOTTOM;
3629 
3630   case AryPtr: {                // Meeting 2 references?
3631     const TypeAryPtr *tap = t->is_aryptr();
3632     int off = meet_offset(tap->offset());
3633     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3634     PTR ptr = meet_ptr(tap->ptr());
3635     int instance_id = meet_instance_id(tap->instance_id());
3636     ciKlass* lazy_klass = NULL;
3637     if (tary->_elem->isa_int()) {
3638       // Integral array element types have irrelevant lattice relations.
3639       // It is the klass that determines array layout, not the element type.
3640       if (_klass == NULL)
3641         lazy_klass = tap->_klass;
3642       else if (tap->_klass == NULL || tap->_klass == _klass) {
3643         lazy_klass = _klass;
3644       } else {
3645         // Something like byte[int+] meets char[int+].
3646         // This must fall to bottom, not (int[-128..65535])[int+].
3647         instance_id = InstanceBot;
3648         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3649       }
3650     } else // Non integral arrays.
3651     // Must fall to bottom if exact klasses in upper lattice
3652     // are not equal or super klass is exact.
3653     if ( above_centerline(ptr) && klass() != tap->klass() &&
3654          // meet with top[] and bottom[] are processed further down:
3655          tap ->_klass != NULL  && this->_klass != NULL   &&
3656          // both are exact and not equal:
3657         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
3658          // 'tap'  is exact and super or unrelated:
3659          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3660          // 'this' is exact and super or unrelated:
3661          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3662       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3663       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
3664     }
3665 
3666     bool xk = false;
3667     switch (tap->ptr()) {
3668     case AnyNull:
3669     case TopPTR:
3670       // Compute new klass on demand, do not use tap->_klass
3671       xk = (tap->_klass_is_exact | this->_klass_is_exact);
3672       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3673     case Constant: {
3674       ciObject* o = const_oop();
3675       if( _ptr == Constant ) {
3676         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3677           xk = (klass() == tap->klass());
3678           ptr = NotNull;
3679           o = NULL;
3680           instance_id = InstanceBot;
3681         } else {
3682           xk = true;
3683         }
3684       } else if( above_centerline(_ptr) ) {
3685         o = tap->const_oop();
3686         xk = true;
3687       } else {
3688         // Only precise for identical arrays
3689         xk = this->_klass_is_exact && (klass() == tap->klass());
3690       }
3691       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
3692     }
3693     case NotNull:
3694     case BotPTR:
3695       // Compute new klass on demand, do not use tap->_klass
3696       if (above_centerline(this->_ptr))
3697             xk = tap->_klass_is_exact;
3698       else if (above_centerline(tap->_ptr))
3699             xk = this->_klass_is_exact;
3700       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3701               (klass() == tap->klass()); // Only precise for identical arrays
3702       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3703     default: ShouldNotReachHere();
3704     }
3705   }
3706 
3707   // All arrays inherit from Object class
3708   case InstPtr: {
3709     const TypeInstPtr *tp = t->is_instptr();
3710     int offset = meet_offset(tp->offset());
3711     PTR ptr = meet_ptr(tp->ptr());
3712     int instance_id = meet_instance_id(tp->instance_id());
3713     switch (ptr) {
3714     case TopPTR:
3715     case AnyNull:                // Fall 'down' to dual of object klass
3716       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3717         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3718       } else {
3719         // cannot subclass, so the meet has to fall badly below the centerline
3720         ptr = NotNull;
3721         instance_id = InstanceBot;
3722         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3723       }
3724     case Constant:
3725     case NotNull:
3726     case BotPTR:                // Fall down to object klass
3727       // LCA is object_klass, but if we subclass from the top we can do better
3728       if (above_centerline(tp->ptr())) {
3729         // If 'tp'  is above the centerline and it is Object class
3730         // then we can subclass in the Java class hierarchy.
3731         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3732           // that is, my array type is a subtype of 'tp' klass
3733           return make( ptr, (ptr == Constant ? const_oop() : NULL),
3734                        _ary, _klass, _klass_is_exact, offset, instance_id );
3735         }
3736       }
3737       // The other case cannot happen, since t cannot be a subtype of an array.
3738       // The meet falls down to Object class below centerline.
3739       if( ptr == Constant )
3740          ptr = NotNull;
3741       instance_id = InstanceBot;
3742       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3743     default: typerr(t);
3744     }
3745   }
3746   }
3747   return this;                  // Lint noise
3748 }
3749 
3750 //------------------------------xdual------------------------------------------
3751 // Dual: compute field-by-field dual
3752 const Type *TypeAryPtr::xdual() const {
3753   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache() );
3754 }
3755 
3756 //----------------------interface_vs_oop---------------------------------------
3757 #ifdef ASSERT
3758 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3759   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3760   if (t_aryptr) {
3761     return _ary->interface_vs_oop(t_aryptr->_ary);
3762   }
3763   return false;
3764 }
3765 #endif
3766 
3767 //------------------------------dump2------------------------------------------
3768 #ifndef PRODUCT
3769 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3770   _ary->dump2(d,depth,st);
3771   switch( _ptr ) {
3772   case Constant:
3773     const_oop()->print(st);
3774     break;
3775   case BotPTR:
3776     if (!WizardMode && !Verbose) {
3777       if( _klass_is_exact ) st->print(":exact");
3778       break;
3779     }
3780   case TopPTR:
3781   case AnyNull:
3782   case NotNull:
3783     st->print(":%s", ptr_msg[_ptr]);
3784     if( _klass_is_exact ) st->print(":exact");
3785     break;
3786   }
3787 
3788   if( _offset != 0 ) {
3789     int header_size = objArrayOopDesc::header_size() * wordSize;
3790     if( _offset == OffsetTop )       st->print("+undefined");
3791     else if( _offset == OffsetBot )  st->print("+any");
3792     else if( _offset < header_size ) st->print("+%d", _offset);
3793     else {
3794       BasicType basic_elem_type = elem()->basic_type();
3795       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3796       int elem_size = type2aelembytes(basic_elem_type);
3797       st->print("[%d]", (_offset - array_base)/elem_size);
3798     }
3799   }
3800   st->print(" *");
3801   if (_instance_id == InstanceTop)
3802     st->print(",iid=top");
3803   else if (_instance_id != InstanceBot)
3804     st->print(",iid=%d",_instance_id);
3805 }
3806 #endif
3807 
3808 bool TypeAryPtr::empty(void) const {
3809   if (_ary->empty())       return true;
3810   return TypeOopPtr::empty();
3811 }
3812 
3813 //------------------------------add_offset-------------------------------------
3814 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3815   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3816 }
3817 
3818 
3819 //=============================================================================
3820 
3821 //------------------------------hash-------------------------------------------
3822 // Type-specific hashing function.
3823 int TypeNarrowPtr::hash(void) const {
3824   return _ptrtype->hash() + 7;
3825 }
3826 
3827 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
3828   return _ptrtype->singleton();
3829 }
3830 
3831 bool TypeNarrowPtr::empty(void) const {
3832   return _ptrtype->empty();
3833 }
3834 
3835 intptr_t TypeNarrowPtr::get_con() const {
3836   return _ptrtype->get_con();
3837 }
3838 
3839 bool TypeNarrowPtr::eq( const Type *t ) const {
3840   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
3841   if (tc != NULL) {
3842     if (_ptrtype->base() != tc->_ptrtype->base()) {
3843       return false;
3844     }
3845     return tc->_ptrtype->eq(_ptrtype);
3846   }
3847   return false;
3848 }
3849 
3850 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
3851   const TypePtr* odual = _ptrtype->dual()->is_ptr();
3852   return make_same_narrowptr(odual);
3853 }
3854 
3855 
3856 const Type *TypeNarrowPtr::filter( const Type *kills ) const {
3857   if (isa_same_narrowptr(kills)) {
3858     const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
3859     if (ft->empty())
3860       return Type::TOP;           // Canonical empty value
3861     if (ft->isa_ptr()) {
3862       return make_hash_same_narrowptr(ft->isa_ptr());
3863     }
3864     return ft;
3865   } else if (kills->isa_ptr()) {
3866     const Type* ft = _ptrtype->join(kills);
3867     if (ft->empty())
3868       return Type::TOP;           // Canonical empty value
3869     return ft;
3870   } else {
3871     return Type::TOP;
3872   }
3873 }
3874 
3875 //------------------------------xmeet------------------------------------------
3876 // Compute the MEET of two types.  It returns a new Type object.
3877 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
3878   // Perform a fast test for common case; meeting the same types together.
3879   if( this == t ) return this;  // Meeting same type-rep?
3880 
3881   if (t->base() == base()) {
3882     const Type* result = _ptrtype->xmeet(t->make_ptr());
3883     if (result->isa_ptr()) {
3884       return make_hash_same_narrowptr(result->is_ptr());
3885     }
3886     return result;
3887   }
3888 
3889   // Current "this->_base" is NarrowKlass or NarrowOop
3890   switch (t->base()) {          // switch on original type
3891 
3892   case Int:                     // Mixing ints & oops happens when javac
3893   case Long:                    // reuses local variables
3894   case FloatTop:
3895   case FloatCon:
3896   case FloatBot:
3897   case DoubleTop:
3898   case DoubleCon:
3899   case DoubleBot:
3900   case AnyPtr:
3901   case RawPtr:
3902   case OopPtr:
3903   case InstPtr:
3904   case AryPtr:
3905   case MetadataPtr:
3906   case KlassPtr:
3907   case NarrowOop:
3908   case NarrowKlass:
3909 
3910   case Bottom:                  // Ye Olde Default
3911     return Type::BOTTOM;
3912   case Top:
3913     return this;
3914 
3915   default:                      // All else is a mistake
3916     typerr(t);
3917 
3918   } // End of switch
3919 
3920   return this;
3921 }
3922 
3923 #ifndef PRODUCT
3924 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
3925   _ptrtype->dump2(d, depth, st);
3926 }
3927 #endif
3928 
3929 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3930 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3931 
3932 
3933 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3934   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3935 }
3936 
3937 
3938 #ifndef PRODUCT
3939 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3940   st->print("narrowoop: ");
3941   TypeNarrowPtr::dump2(d, depth, st);
3942 }
3943 #endif
3944 
3945 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
3946 
3947 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
3948   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
3949 }
3950 
3951 #ifndef PRODUCT
3952 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
3953   st->print("narrowklass: ");
3954   TypeNarrowPtr::dump2(d, depth, st);
3955 }
3956 #endif
3957 
3958 
3959 //------------------------------eq---------------------------------------------
3960 // Structural equality check for Type representations
3961 bool TypeMetadataPtr::eq( const Type *t ) const {
3962   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
3963   ciMetadata* one = metadata();
3964   ciMetadata* two = a->metadata();
3965   if (one == NULL || two == NULL) {
3966     return (one == two) && TypePtr::eq(t);
3967   } else {
3968     return one->equals(two) && TypePtr::eq(t);
3969   }
3970 }
3971 
3972 //------------------------------hash-------------------------------------------
3973 // Type-specific hashing function.
3974 int TypeMetadataPtr::hash(void) const {
3975   return
3976     (metadata() ? metadata()->hash() : 0) +
3977     TypePtr::hash();
3978 }
3979 
3980 //------------------------------singleton--------------------------------------
3981 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3982 // constants
3983 bool TypeMetadataPtr::singleton(void) const {
3984   // detune optimizer to not generate constant metadta + constant offset as a constant!
3985   // TopPTR, Null, AnyNull, Constant are all singletons
3986   return (_offset == 0) && !below_centerline(_ptr);
3987 }
3988 
3989 //------------------------------add_offset-------------------------------------
3990 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
3991   return make( _ptr, _metadata, xadd_offset(offset));
3992 }
3993 
3994 //-----------------------------filter------------------------------------------
3995 // Do not allow interface-vs.-noninterface joins to collapse to top.
3996 const Type *TypeMetadataPtr::filter( const Type *kills ) const {
3997   const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
3998   if (ft == NULL || ft->empty())
3999     return Type::TOP;           // Canonical empty value
4000   return ft;
4001 }
4002 
4003  //------------------------------get_con----------------------------------------
4004 intptr_t TypeMetadataPtr::get_con() const {
4005   assert( _ptr == Null || _ptr == Constant, "" );
4006   assert( _offset >= 0, "" );
4007 
4008   if (_offset != 0) {
4009     // After being ported to the compiler interface, the compiler no longer
4010     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4011     // to a handle at compile time.  This handle is embedded in the generated
4012     // code and dereferenced at the time the nmethod is made.  Until that time,
4013     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4014     // have access to the addresses!).  This does not seem to currently happen,
4015     // but this assertion here is to help prevent its occurence.
4016     tty->print_cr("Found oop constant with non-zero offset");
4017     ShouldNotReachHere();
4018   }
4019 
4020   return (intptr_t)metadata()->constant_encoding();
4021 }
4022 
4023 //------------------------------cast_to_ptr_type-------------------------------
4024 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4025   if( ptr == _ptr ) return this;
4026   return make(ptr, metadata(), _offset);
4027 }
4028 
4029 //------------------------------meet-------------------------------------------
4030 // Compute the MEET of two types.  It returns a new Type object.
4031 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4032   // Perform a fast test for common case; meeting the same types together.
4033   if( this == t ) return this;  // Meeting same type-rep?
4034 
4035   // Current "this->_base" is OopPtr
4036   switch (t->base()) {          // switch on original type
4037 
4038   case Int:                     // Mixing ints & oops happens when javac
4039   case Long:                    // reuses local variables
4040   case FloatTop:
4041   case FloatCon:
4042   case FloatBot:
4043   case DoubleTop:
4044   case DoubleCon:
4045   case DoubleBot:
4046   case NarrowOop:
4047   case NarrowKlass:
4048   case Bottom:                  // Ye Olde Default
4049     return Type::BOTTOM;
4050   case Top:
4051     return this;
4052 
4053   default:                      // All else is a mistake
4054     typerr(t);
4055 
4056   case AnyPtr: {
4057     // Found an AnyPtr type vs self-OopPtr type
4058     const TypePtr *tp = t->is_ptr();
4059     int offset = meet_offset(tp->offset());
4060     PTR ptr = meet_ptr(tp->ptr());
4061     switch (tp->ptr()) {
4062     case Null:
4063       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4064       // else fall through:
4065     case TopPTR:
4066     case AnyNull: {
4067       return make(ptr, NULL, offset);
4068     }
4069     case BotPTR:
4070     case NotNull:
4071       return TypePtr::make(AnyPtr, ptr, offset);
4072     default: typerr(t);
4073     }
4074   }
4075 
4076   case RawPtr:
4077   case KlassPtr:
4078   case OopPtr:
4079   case InstPtr:
4080   case AryPtr:
4081     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4082 
4083   case MetadataPtr: {
4084     const TypeMetadataPtr *tp = t->is_metadataptr();
4085     int offset = meet_offset(tp->offset());
4086     PTR tptr = tp->ptr();
4087     PTR ptr = meet_ptr(tptr);
4088     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4089     if (tptr == TopPTR || _ptr == TopPTR ||
4090         metadata()->equals(tp->metadata())) {
4091       return make(ptr, md, offset);
4092     }
4093     // metadata is different
4094     if( ptr == Constant ) {  // Cannot be equal constants, so...
4095       if( tptr == Constant && _ptr != Constant)  return t;
4096       if( _ptr == Constant && tptr != Constant)  return this;
4097       ptr = NotNull;            // Fall down in lattice
4098     }
4099     return make(ptr, NULL, offset);
4100     break;
4101   }
4102   } // End of switch
4103   return this;                  // Return the double constant
4104 }
4105 
4106 
4107 //------------------------------xdual------------------------------------------
4108 // Dual of a pure metadata pointer.
4109 const Type *TypeMetadataPtr::xdual() const {
4110   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4111 }
4112 
4113 //------------------------------dump2------------------------------------------
4114 #ifndef PRODUCT
4115 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4116   st->print("metadataptr:%s", ptr_msg[_ptr]);
4117   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4118   switch( _offset ) {
4119   case OffsetTop: st->print("+top"); break;
4120   case OffsetBot: st->print("+any"); break;
4121   case         0: break;
4122   default:        st->print("+%d",_offset); break;
4123   }
4124 }
4125 #endif
4126 
4127 
4128 //=============================================================================
4129 // Convenience common pre-built type.
4130 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4131 
4132 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4133   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4134 }
4135 
4136 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4137   return make(Constant, m, 0);
4138 }
4139 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4140   return make(Constant, m, 0);
4141 }
4142 
4143 //------------------------------make-------------------------------------------
4144 // Create a meta data constant
4145 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4146   assert(m == NULL || !m->is_klass(), "wrong type");
4147   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4148 }
4149 
4150 
4151 //=============================================================================
4152 // Convenience common pre-built types.
4153 
4154 // Not-null object klass or below
4155 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4156 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4157 
4158 //------------------------------TypeKlassPtr-----------------------------------
4159 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4160   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4161 }
4162 
4163 //------------------------------make-------------------------------------------
4164 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4165 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4166   assert( k != NULL, "Expect a non-NULL klass");
4167   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4168   TypeKlassPtr *r =
4169     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4170 
4171   return r;
4172 }
4173 
4174 //------------------------------eq---------------------------------------------
4175 // Structural equality check for Type representations
4176 bool TypeKlassPtr::eq( const Type *t ) const {
4177   const TypeKlassPtr *p = t->is_klassptr();
4178   return
4179     klass()->equals(p->klass()) &&
4180     TypePtr::eq(p);
4181 }
4182 
4183 //------------------------------hash-------------------------------------------
4184 // Type-specific hashing function.
4185 int TypeKlassPtr::hash(void) const {
4186   return klass()->hash() + TypePtr::hash();
4187 }
4188 
4189 //------------------------------singleton--------------------------------------
4190 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4191 // constants
4192 bool TypeKlassPtr::singleton(void) const {
4193   // detune optimizer to not generate constant klass + constant offset as a constant!
4194   // TopPTR, Null, AnyNull, Constant are all singletons
4195   return (_offset == 0) && !below_centerline(_ptr);
4196 }
4197 
4198 //----------------------compute_klass------------------------------------------
4199 // Compute the defining klass for this class
4200 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4201   // Compute _klass based on element type.
4202   ciKlass* k_ary = NULL;
4203   const TypeInstPtr *tinst;
4204   const TypeAryPtr *tary;
4205   const Type* el = elem();
4206   if (el->isa_narrowoop()) {
4207     el = el->make_ptr();
4208   }
4209 
4210   // Get element klass
4211   if ((tinst = el->isa_instptr()) != NULL) {
4212     // Compute array klass from element klass
4213     k_ary = ciObjArrayKlass::make(tinst->klass());
4214   } else if ((tary = el->isa_aryptr()) != NULL) {
4215     // Compute array klass from element klass
4216     ciKlass* k_elem = tary->klass();
4217     // If element type is something like bottom[], k_elem will be null.
4218     if (k_elem != NULL)
4219       k_ary = ciObjArrayKlass::make(k_elem);
4220   } else if ((el->base() == Type::Top) ||
4221              (el->base() == Type::Bottom)) {
4222     // element type of Bottom occurs from meet of basic type
4223     // and object; Top occurs when doing join on Bottom.
4224     // Leave k_ary at NULL.
4225   } else {
4226     // Cannot compute array klass directly from basic type,
4227     // since subtypes of TypeInt all have basic type T_INT.
4228 #ifdef ASSERT
4229     if (verify && el->isa_int()) {
4230       // Check simple cases when verifying klass.
4231       BasicType bt = T_ILLEGAL;
4232       if (el == TypeInt::BYTE) {
4233         bt = T_BYTE;
4234       } else if (el == TypeInt::SHORT) {
4235         bt = T_SHORT;
4236       } else if (el == TypeInt::CHAR) {
4237         bt = T_CHAR;
4238       } else if (el == TypeInt::INT) {
4239         bt = T_INT;
4240       } else {
4241         return _klass; // just return specified klass
4242       }
4243       return ciTypeArrayKlass::make(bt);
4244     }
4245 #endif
4246     assert(!el->isa_int(),
4247            "integral arrays must be pre-equipped with a class");
4248     // Compute array klass directly from basic type
4249     k_ary = ciTypeArrayKlass::make(el->basic_type());
4250   }
4251   return k_ary;
4252 }
4253 
4254 //------------------------------klass------------------------------------------
4255 // Return the defining klass for this class
4256 ciKlass* TypeAryPtr::klass() const {
4257   if( _klass ) return _klass;   // Return cached value, if possible
4258 
4259   // Oops, need to compute _klass and cache it
4260   ciKlass* k_ary = compute_klass();
4261 
4262   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4263     // The _klass field acts as a cache of the underlying
4264     // ciKlass for this array type.  In order to set the field,
4265     // we need to cast away const-ness.
4266     //
4267     // IMPORTANT NOTE: we *never* set the _klass field for the
4268     // type TypeAryPtr::OOPS.  This Type is shared between all
4269     // active compilations.  However, the ciKlass which represents
4270     // this Type is *not* shared between compilations, so caching
4271     // this value would result in fetching a dangling pointer.
4272     //
4273     // Recomputing the underlying ciKlass for each request is
4274     // a bit less efficient than caching, but calls to
4275     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4276     ((TypeAryPtr*)this)->_klass = k_ary;
4277     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4278         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4279       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4280     }
4281   }
4282   return k_ary;
4283 }
4284 
4285 
4286 //------------------------------add_offset-------------------------------------
4287 // Access internals of klass object
4288 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4289   return make( _ptr, klass(), xadd_offset(offset) );
4290 }
4291 
4292 //------------------------------cast_to_ptr_type-------------------------------
4293 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4294   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4295   if( ptr == _ptr ) return this;
4296   return make(ptr, _klass, _offset);
4297 }
4298 
4299 
4300 //-----------------------------cast_to_exactness-------------------------------
4301 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4302   if( klass_is_exact == _klass_is_exact ) return this;
4303   if (!UseExactTypes)  return this;
4304   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4305 }
4306 
4307 
4308 //-----------------------------as_instance_type--------------------------------
4309 // Corresponding type for an instance of the given class.
4310 // It will be NotNull, and exact if and only if the klass type is exact.
4311 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4312   ciKlass* k = klass();
4313   bool    xk = klass_is_exact();
4314   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4315   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4316   guarantee(toop != NULL, "need type for given klass");
4317   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4318   return toop->cast_to_exactness(xk)->is_oopptr();
4319 }
4320 
4321 
4322 //------------------------------xmeet------------------------------------------
4323 // Compute the MEET of two types, return a new Type object.
4324 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4325   // Perform a fast test for common case; meeting the same types together.
4326   if( this == t ) return this;  // Meeting same type-rep?
4327 
4328   // Current "this->_base" is Pointer
4329   switch (t->base()) {          // switch on original type
4330 
4331   case Int:                     // Mixing ints & oops happens when javac
4332   case Long:                    // reuses local variables
4333   case FloatTop:
4334   case FloatCon:
4335   case FloatBot:
4336   case DoubleTop:
4337   case DoubleCon:
4338   case DoubleBot:
4339   case NarrowOop:
4340   case NarrowKlass:
4341   case Bottom:                  // Ye Olde Default
4342     return Type::BOTTOM;
4343   case Top:
4344     return this;
4345 
4346   default:                      // All else is a mistake
4347     typerr(t);
4348 
4349   case AnyPtr: {                // Meeting to AnyPtrs
4350     // Found an AnyPtr type vs self-KlassPtr type
4351     const TypePtr *tp = t->is_ptr();
4352     int offset = meet_offset(tp->offset());
4353     PTR ptr = meet_ptr(tp->ptr());
4354     switch (tp->ptr()) {
4355     case TopPTR:
4356       return this;
4357     case Null:
4358       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4359     case AnyNull:
4360       return make( ptr, klass(), offset );
4361     case BotPTR:
4362     case NotNull:
4363       return TypePtr::make(AnyPtr, ptr, offset);
4364     default: typerr(t);
4365     }
4366   }
4367 
4368   case RawPtr:
4369   case MetadataPtr:
4370   case OopPtr:
4371   case AryPtr:                  // Meet with AryPtr
4372   case InstPtr:                 // Meet with InstPtr
4373     return TypePtr::BOTTOM;
4374 
4375   //
4376   //             A-top         }
4377   //           /   |   \       }  Tops
4378   //       B-top A-any C-top   }
4379   //          | /  |  \ |      }  Any-nulls
4380   //       B-any   |   C-any   }
4381   //          |    |    |
4382   //       B-con A-con C-con   } constants; not comparable across classes
4383   //          |    |    |
4384   //       B-not   |   C-not   }
4385   //          | \  |  / |      }  not-nulls
4386   //       B-bot A-not C-bot   }
4387   //           \   |   /       }  Bottoms
4388   //             A-bot         }
4389   //
4390 
4391   case KlassPtr: {  // Meet two KlassPtr types
4392     const TypeKlassPtr *tkls = t->is_klassptr();
4393     int  off     = meet_offset(tkls->offset());
4394     PTR  ptr     = meet_ptr(tkls->ptr());
4395 
4396     // Check for easy case; klasses are equal (and perhaps not loaded!)
4397     // If we have constants, then we created oops so classes are loaded
4398     // and we can handle the constants further down.  This case handles
4399     // not-loaded classes
4400     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4401       return make( ptr, klass(), off );
4402     }
4403 
4404     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4405     ciKlass* tkls_klass = tkls->klass();
4406     ciKlass* this_klass = this->klass();
4407     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4408     assert( this_klass->is_loaded(), "This class should have been loaded.");
4409 
4410     // If 'this' type is above the centerline and is a superclass of the
4411     // other, we can treat 'this' as having the same type as the other.
4412     if ((above_centerline(this->ptr())) &&
4413         tkls_klass->is_subtype_of(this_klass)) {
4414       this_klass = tkls_klass;
4415     }
4416     // If 'tinst' type is above the centerline and is a superclass of the
4417     // other, we can treat 'tinst' as having the same type as the other.
4418     if ((above_centerline(tkls->ptr())) &&
4419         this_klass->is_subtype_of(tkls_klass)) {
4420       tkls_klass = this_klass;
4421     }
4422 
4423     // Check for classes now being equal
4424     if (tkls_klass->equals(this_klass)) {
4425       // If the klasses are equal, the constants may still differ.  Fall to
4426       // NotNull if they do (neither constant is NULL; that is a special case
4427       // handled elsewhere).
4428       if( ptr == Constant ) {
4429         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4430             this->klass()->equals(tkls->klass()));
4431         else if (above_centerline(this->ptr()));
4432         else if (above_centerline(tkls->ptr()));
4433         else
4434           ptr = NotNull;
4435       }
4436       return make( ptr, this_klass, off );
4437     } // Else classes are not equal
4438 
4439     // Since klasses are different, we require the LCA in the Java
4440     // class hierarchy - which means we have to fall to at least NotNull.
4441     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4442       ptr = NotNull;
4443     // Now we find the LCA of Java classes
4444     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4445     return   make( ptr, k, off );
4446   } // End of case KlassPtr
4447 
4448   } // End of switch
4449   return this;                  // Return the double constant
4450 }
4451 
4452 //------------------------------xdual------------------------------------------
4453 // Dual: compute field-by-field dual
4454 const Type    *TypeKlassPtr::xdual() const {
4455   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4456 }
4457 
4458 //------------------------------get_con----------------------------------------
4459 intptr_t TypeKlassPtr::get_con() const {
4460   assert( _ptr == Null || _ptr == Constant, "" );
4461   assert( _offset >= 0, "" );
4462 
4463   if (_offset != 0) {
4464     // After being ported to the compiler interface, the compiler no longer
4465     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4466     // to a handle at compile time.  This handle is embedded in the generated
4467     // code and dereferenced at the time the nmethod is made.  Until that time,
4468     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4469     // have access to the addresses!).  This does not seem to currently happen,
4470     // but this assertion here is to help prevent its occurence.
4471     tty->print_cr("Found oop constant with non-zero offset");
4472     ShouldNotReachHere();
4473   }
4474 
4475   return (intptr_t)klass()->constant_encoding();
4476 }
4477 //------------------------------dump2------------------------------------------
4478 // Dump Klass Type
4479 #ifndef PRODUCT
4480 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4481   switch( _ptr ) {
4482   case Constant:
4483     st->print("precise ");
4484   case NotNull:
4485     {
4486       const char *name = klass()->name()->as_utf8();
4487       if( name ) {
4488         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4489       } else {
4490         ShouldNotReachHere();
4491       }
4492     }
4493   case BotPTR:
4494     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4495   case TopPTR:
4496   case AnyNull:
4497     st->print(":%s", ptr_msg[_ptr]);
4498     if( _klass_is_exact ) st->print(":exact");
4499     break;
4500   }
4501 
4502   if( _offset ) {               // Dump offset, if any
4503     if( _offset == OffsetBot )      { st->print("+any"); }
4504     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4505     else                            { st->print("+%d", _offset); }
4506   }
4507 
4508   st->print(" *");
4509 }
4510 #endif
4511 
4512 
4513 
4514 //=============================================================================
4515 // Convenience common pre-built types.
4516 
4517 //------------------------------make-------------------------------------------
4518 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4519   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4520 }
4521 
4522 //------------------------------make-------------------------------------------
4523 const TypeFunc *TypeFunc::make(ciMethod* method) {
4524   Compile* C = Compile::current();
4525   const TypeFunc* tf = C->last_tf(method); // check cache
4526   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4527   const TypeTuple *domain;
4528   if (method->is_static()) {
4529     domain = TypeTuple::make_domain(NULL, method->signature());
4530   } else {
4531     domain = TypeTuple::make_domain(method->holder(), method->signature());
4532   }
4533   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4534   tf = TypeFunc::make(domain, range);
4535   C->set_last_tf(method, tf);  // fill cache
4536   return tf;
4537 }
4538 
4539 //------------------------------meet-------------------------------------------
4540 // Compute the MEET of two types.  It returns a new Type object.
4541 const Type *TypeFunc::xmeet( const Type *t ) const {
4542   // Perform a fast test for common case; meeting the same types together.
4543   if( this == t ) return this;  // Meeting same type-rep?
4544 
4545   // Current "this->_base" is Func
4546   switch (t->base()) {          // switch on original type
4547 
4548   case Bottom:                  // Ye Olde Default
4549     return t;
4550 
4551   default:                      // All else is a mistake
4552     typerr(t);
4553 
4554   case Top:
4555     break;
4556   }
4557   return this;                  // Return the double constant
4558 }
4559 
4560 //------------------------------xdual------------------------------------------
4561 // Dual: compute field-by-field dual
4562 const Type *TypeFunc::xdual() const {
4563   return this;
4564 }
4565 
4566 //------------------------------eq---------------------------------------------
4567 // Structural equality check for Type representations
4568 bool TypeFunc::eq( const Type *t ) const {
4569   const TypeFunc *a = (const TypeFunc*)t;
4570   return _domain == a->_domain &&
4571     _range == a->_range;
4572 }
4573 
4574 //------------------------------hash-------------------------------------------
4575 // Type-specific hashing function.
4576 int TypeFunc::hash(void) const {
4577   return (intptr_t)_domain + (intptr_t)_range;
4578 }
4579 
4580 //------------------------------dump2------------------------------------------
4581 // Dump Function Type
4582 #ifndef PRODUCT
4583 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4584   if( _range->_cnt <= Parms )
4585     st->print("void");
4586   else {
4587     uint i;
4588     for (i = Parms; i < _range->_cnt-1; i++) {
4589       _range->field_at(i)->dump2(d,depth,st);
4590       st->print("/");
4591     }
4592     _range->field_at(i)->dump2(d,depth,st);
4593   }
4594   st->print(" ");
4595   st->print("( ");
4596   if( !depth || d[this] ) {     // Check for recursive dump
4597     st->print("...)");
4598     return;
4599   }
4600   d.Insert((void*)this,(void*)this);    // Stop recursion
4601   if (Parms < _domain->_cnt)
4602     _domain->field_at(Parms)->dump2(d,depth-1,st);
4603   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4604     st->print(", ");
4605     _domain->field_at(i)->dump2(d,depth-1,st);
4606   }
4607   st->print(" )");
4608 }
4609 #endif
4610 
4611 //------------------------------singleton--------------------------------------
4612 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4613 // constants (Ldi nodes).  Singletons are integer, float or double constants
4614 // or a single symbol.
4615 bool TypeFunc::singleton(void) const {
4616   return false;                 // Never a singleton
4617 }
4618 
4619 bool TypeFunc::empty(void) const {
4620   return false;                 // Never empty
4621 }
4622 
4623 
4624 BasicType TypeFunc::return_type() const{
4625   if (range()->cnt() == TypeFunc::Parms) {
4626     return T_VOID;
4627   }
4628   return range()->field_at(TypeFunc::Parms)->basic_type();
4629 }