1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class       TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 protected:
 163   // Each class of type is also identified by its base.
 164   const TYPES _base;            // Enum of Types type
 165 
 166   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 167   // ~Type();                   // Use fast deallocation
 168   const Type *hashcons();       // Hash-cons the type
 169 
 170 public:
 171 
 172   inline void* operator new( size_t x ) throw() {
 173     Compile* compile = Compile::current();
 174     compile->set_type_last_size(x);
 175     void *temp = compile->type_arena()->Amalloc_D(x);
 176     compile->set_type_hwm(temp);
 177     return temp;
 178   }
 179   inline void operator delete( void* ptr ) {
 180     Compile* compile = Compile::current();
 181     compile->type_arena()->Afree(ptr,compile->type_last_size());
 182   }
 183 
 184   // Initialize the type system for a particular compilation.
 185   static void Initialize(Compile* compile);
 186 
 187   // Initialize the types shared by all compilations.
 188   static void Initialize_shared(Compile* compile);
 189 
 190   TYPES base() const {
 191     assert(_base > Bad && _base < lastype, "sanity");
 192     return _base;
 193   }
 194 
 195   // Create a new hash-consd type
 196   static const Type *make(enum TYPES);
 197   // Test for equivalence of types
 198   static int cmp( const Type *const t1, const Type *const t2 );
 199   // Test for higher or equal in lattice
 200   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
 201 
 202   // MEET operation; lower in lattice.
 203   const Type *meet( const Type *t ) const;
 204   // WIDEN: 'widens' for Ints and other range types
 205   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 206   // NARROW: complement for widen, used by pessimistic phases
 207   virtual const Type *narrow( const Type *old ) const { return this; }
 208 
 209   // DUAL operation: reflect around lattice centerline.  Used instead of
 210   // join to ensure my lattice is symmetric up and down.
 211   const Type *dual() const { return _dual; }
 212 
 213   // Compute meet dependent on base type
 214   virtual const Type *xmeet( const Type *t ) const;
 215   virtual const Type *xdual() const;    // Compute dual right now.
 216 
 217   // JOIN operation; higher in lattice.  Done by finding the dual of the
 218   // meet of the dual of the 2 inputs.
 219   const Type *join( const Type *t ) const {
 220     return dual()->meet(t->dual())->dual(); }
 221 
 222   // Modified version of JOIN adapted to the needs Node::Value.
 223   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 224   // Currently, it also works around limitations involving interface types.
 225   virtual const Type *filter( const Type *kills ) const;
 226 
 227 #ifdef ASSERT
 228   // One type is interface, the other is oop
 229   virtual bool interface_vs_oop(const Type *t) const;
 230 #endif
 231 
 232   // Returns true if this pointer points at memory which contains a
 233   // compressed oop references.
 234   bool is_ptr_to_narrowoop() const;
 235   bool is_ptr_to_narrowklass() const;
 236 
 237   bool is_ptr_to_boxing_obj() const;
 238 
 239 
 240   // Convenience access
 241   float getf() const;
 242   double getd() const;
 243 
 244   const TypeInt    *is_int() const;
 245   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 246   const TypeLong   *is_long() const;
 247   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 248   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 249   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 250   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 251   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 252   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 253   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 254   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 255   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 256   const TypeVect   *is_vect() const;             // Vector
 257   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 258   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 259   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 260   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 261   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 262   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 263   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 264   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 265   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 266   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 267   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 268   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 269   const TypeInstPtr  *is_instptr() const;        // Instance
 270   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 271   const TypeAryPtr   *is_aryptr() const;         // Array oop
 272 
 273   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 274   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 275   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 276   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 277 
 278   virtual bool      is_finite() const;           // Has a finite value
 279   virtual bool      is_nan()    const;           // Is not a number (NaN)
 280 
 281   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 282   const TypePtr* make_ptr() const;
 283 
 284   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 285   // Asserts if the underlying type is not an oopptr or narrowoop.
 286   const TypeOopPtr* make_oopptr() const;
 287 
 288   // Returns this compressed pointer or the equivalent compressed version
 289   // of this pointer type.
 290   const TypeNarrowOop* make_narrowoop() const;
 291 
 292   // Returns this compressed klass pointer or the equivalent
 293   // compressed version of this pointer type.
 294   const TypeNarrowKlass* make_narrowklass() const;
 295 
 296   // Special test for register pressure heuristic
 297   bool is_floatingpoint() const;        // True if Float or Double base type
 298 
 299   // Do you have memory, directly or through a tuple?
 300   bool has_memory( ) const;
 301 
 302   // TRUE if type is a singleton
 303   virtual bool singleton(void) const;
 304 
 305   // TRUE if type is above the lattice centerline, and is therefore vacuous
 306   virtual bool empty(void) const;
 307 
 308   // Return a hash for this type.  The hash function is public so ConNode
 309   // (constants) can hash on their constant, which is represented by a Type.
 310   virtual int hash() const;
 311 
 312   // Map ideal registers (machine types) to ideal types
 313   static const Type *mreg2type[];
 314 
 315   // Printing, statistics
 316 #ifndef PRODUCT
 317   void         dump_on(outputStream *st) const;
 318   void         dump() const {
 319     dump_on(tty);
 320   }
 321   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 322   static  void dump_stats();
 323 #endif
 324   void typerr(const Type *t) const; // Mixing types error
 325 
 326   // Create basic type
 327   static const Type* get_const_basic_type(BasicType type) {
 328     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 329     return _const_basic_type[type];
 330   }
 331 
 332   // Mapping to the array element's basic type.
 333   BasicType array_element_basic_type() const;
 334 
 335   // Create standard type for a ciType:
 336   static const Type* get_const_type(ciType* type);
 337 
 338   // Create standard zero value:
 339   static const Type* get_zero_type(BasicType type) {
 340     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 341     return _zero_type[type];
 342   }
 343 
 344   // Report if this is a zero value (not top).
 345   bool is_zero_type() const {
 346     BasicType type = basic_type();
 347     if (type == T_VOID || type >= T_CONFLICT)
 348       return false;
 349     else
 350       return (this == _zero_type[type]);
 351   }
 352 
 353   // Convenience common pre-built types.
 354   static const Type *ABIO;
 355   static const Type *BOTTOM;
 356   static const Type *CONTROL;
 357   static const Type *DOUBLE;
 358   static const Type *FLOAT;
 359   static const Type *HALF;
 360   static const Type *MEMORY;
 361   static const Type *MULTI;
 362   static const Type *RETURN_ADDRESS;
 363   static const Type *TOP;
 364 
 365   // Mapping from compiler type to VM BasicType
 366   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 367   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 368   const char* msg() const            { return _type_info[_base].msg; }
 369   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 370   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 371 
 372   // Mapping from CI type system to compiler type:
 373   static const Type* get_typeflow_type(ciType* type);
 374 
 375   static const Type* make_from_constant(ciConstant constant,
 376                                         bool require_constant = false,
 377                                         bool is_autobox_cache = false);
 378 
 379 private:
 380   // support arrays
 381   static const BasicType _basic_type[];
 382   static const Type*        _zero_type[T_CONFLICT+1];
 383   static const Type* _const_basic_type[T_CONFLICT+1];
 384 };
 385 
 386 //------------------------------TypeF------------------------------------------
 387 // Class of Float-Constant Types.
 388 class TypeF : public Type {
 389   TypeF( float f ) : Type(FloatCon), _f(f) {};
 390 public:
 391   virtual bool eq( const Type *t ) const;
 392   virtual int  hash() const;             // Type specific hashing
 393   virtual bool singleton(void) const;    // TRUE if type is a singleton
 394   virtual bool empty(void) const;        // TRUE if type is vacuous
 395 public:
 396   const float _f;               // Float constant
 397 
 398   static const TypeF *make(float f);
 399 
 400   virtual bool        is_finite() const;  // Has a finite value
 401   virtual bool        is_nan()    const;  // Is not a number (NaN)
 402 
 403   virtual const Type *xmeet( const Type *t ) const;
 404   virtual const Type *xdual() const;    // Compute dual right now.
 405   // Convenience common pre-built types.
 406   static const TypeF *ZERO; // positive zero only
 407   static const TypeF *ONE;
 408 #ifndef PRODUCT
 409   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 410 #endif
 411 };
 412 
 413 //------------------------------TypeD------------------------------------------
 414 // Class of Double-Constant Types.
 415 class TypeD : public Type {
 416   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 417 public:
 418   virtual bool eq( const Type *t ) const;
 419   virtual int  hash() const;             // Type specific hashing
 420   virtual bool singleton(void) const;    // TRUE if type is a singleton
 421   virtual bool empty(void) const;        // TRUE if type is vacuous
 422 public:
 423   const double _d;              // Double constant
 424 
 425   static const TypeD *make(double d);
 426 
 427   virtual bool        is_finite() const;  // Has a finite value
 428   virtual bool        is_nan()    const;  // Is not a number (NaN)
 429 
 430   virtual const Type *xmeet( const Type *t ) const;
 431   virtual const Type *xdual() const;    // Compute dual right now.
 432   // Convenience common pre-built types.
 433   static const TypeD *ZERO; // positive zero only
 434   static const TypeD *ONE;
 435 #ifndef PRODUCT
 436   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 437 #endif
 438 };
 439 
 440 //------------------------------TypeInt----------------------------------------
 441 // Class of integer ranges, the set of integers between a lower bound and an
 442 // upper bound, inclusive.
 443 class TypeInt : public Type {
 444   TypeInt( jint lo, jint hi, int w );
 445 public:
 446   virtual bool eq( const Type *t ) const;
 447   virtual int  hash() const;             // Type specific hashing
 448   virtual bool singleton(void) const;    // TRUE if type is a singleton
 449   virtual bool empty(void) const;        // TRUE if type is vacuous
 450 public:
 451   const jint _lo, _hi;          // Lower bound, upper bound
 452   const short _widen;           // Limit on times we widen this sucker
 453 
 454   static const TypeInt *make(jint lo);
 455   // must always specify w
 456   static const TypeInt *make(jint lo, jint hi, int w);
 457 
 458   // Check for single integer
 459   int is_con() const { return _lo==_hi; }
 460   bool is_con(int i) const { return is_con() && _lo == i; }
 461   jint get_con() const { assert( is_con(), "" );  return _lo; }
 462 
 463   virtual bool        is_finite() const;  // Has a finite value
 464 
 465   virtual const Type *xmeet( const Type *t ) const;
 466   virtual const Type *xdual() const;    // Compute dual right now.
 467   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 468   virtual const Type *narrow( const Type *t ) const;
 469   // Do not kill _widen bits.
 470   virtual const Type *filter( const Type *kills ) const;
 471   // Convenience common pre-built types.
 472   static const TypeInt *MINUS_1;
 473   static const TypeInt *ZERO;
 474   static const TypeInt *ONE;
 475   static const TypeInt *BOOL;
 476   static const TypeInt *CC;
 477   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 478   static const TypeInt *CC_GT;  // [1]   == ONE
 479   static const TypeInt *CC_EQ;  // [0]   == ZERO
 480   static const TypeInt *CC_LE;  // [-1,0]
 481   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 482   static const TypeInt *BYTE;
 483   static const TypeInt *UBYTE;
 484   static const TypeInt *CHAR;
 485   static const TypeInt *SHORT;
 486   static const TypeInt *POS;
 487   static const TypeInt *POS1;
 488   static const TypeInt *INT;
 489   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 490 #ifndef PRODUCT
 491   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 492 #endif
 493 };
 494 
 495 
 496 //------------------------------TypeLong---------------------------------------
 497 // Class of long integer ranges, the set of integers between a lower bound and
 498 // an upper bound, inclusive.
 499 class TypeLong : public Type {
 500   TypeLong( jlong lo, jlong hi, int w );
 501 public:
 502   virtual bool eq( const Type *t ) const;
 503   virtual int  hash() const;             // Type specific hashing
 504   virtual bool singleton(void) const;    // TRUE if type is a singleton
 505   virtual bool empty(void) const;        // TRUE if type is vacuous
 506 public:
 507   const jlong _lo, _hi;         // Lower bound, upper bound
 508   const short _widen;           // Limit on times we widen this sucker
 509 
 510   static const TypeLong *make(jlong lo);
 511   // must always specify w
 512   static const TypeLong *make(jlong lo, jlong hi, int w);
 513 
 514   // Check for single integer
 515   int is_con() const { return _lo==_hi; }
 516   bool is_con(int i) const { return is_con() && _lo == i; }
 517   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 518 
 519   virtual bool        is_finite() const;  // Has a finite value
 520 
 521   virtual const Type *xmeet( const Type *t ) const;
 522   virtual const Type *xdual() const;    // Compute dual right now.
 523   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 524   virtual const Type *narrow( const Type *t ) const;
 525   // Do not kill _widen bits.
 526   virtual const Type *filter( const Type *kills ) const;
 527   // Convenience common pre-built types.
 528   static const TypeLong *MINUS_1;
 529   static const TypeLong *ZERO;
 530   static const TypeLong *ONE;
 531   static const TypeLong *POS;
 532   static const TypeLong *LONG;
 533   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 534   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 535 #ifndef PRODUCT
 536   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 537 #endif
 538 };
 539 
 540 //------------------------------TypeTuple--------------------------------------
 541 // Class of Tuple Types, essentially type collections for function signatures
 542 // and class layouts.  It happens to also be a fast cache for the HotSpot
 543 // signature types.
 544 class TypeTuple : public Type {
 545   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 546 public:
 547   virtual bool eq( const Type *t ) const;
 548   virtual int  hash() const;             // Type specific hashing
 549   virtual bool singleton(void) const;    // TRUE if type is a singleton
 550   virtual bool empty(void) const;        // TRUE if type is vacuous
 551 
 552 public:
 553   const uint          _cnt;              // Count of fields
 554   const Type ** const _fields;           // Array of field types
 555 
 556   // Accessors:
 557   uint cnt() const { return _cnt; }
 558   const Type* field_at(uint i) const {
 559     assert(i < _cnt, "oob");
 560     return _fields[i];
 561   }
 562   void set_field_at(uint i, const Type* t) {
 563     assert(i < _cnt, "oob");
 564     _fields[i] = t;
 565   }
 566 
 567   static const TypeTuple *make( uint cnt, const Type **fields );
 568   static const TypeTuple *make_range(ciSignature *sig);
 569   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 570 
 571   // Subroutine call type with space allocated for argument types
 572   static const Type **fields( uint arg_cnt );
 573 
 574   virtual const Type *xmeet( const Type *t ) const;
 575   virtual const Type *xdual() const;    // Compute dual right now.
 576   // Convenience common pre-built types.
 577   static const TypeTuple *IFBOTH;
 578   static const TypeTuple *IFFALSE;
 579   static const TypeTuple *IFTRUE;
 580   static const TypeTuple *IFNEITHER;
 581   static const TypeTuple *LOOPBODY;
 582   static const TypeTuple *MEMBAR;
 583   static const TypeTuple *STORECONDITIONAL;
 584   static const TypeTuple *START_I2C;
 585   static const TypeTuple *INT_PAIR;
 586   static const TypeTuple *LONG_PAIR;
 587   static const TypeTuple *INT_CC_PAIR;
 588   static const TypeTuple *LONG_CC_PAIR;
 589 #ifndef PRODUCT
 590   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 591 #endif
 592 };
 593 
 594 //------------------------------TypeAry----------------------------------------
 595 // Class of Array Types
 596 class TypeAry : public Type {
 597   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 598       _elem(elem), _size(size), _stable(stable) {}
 599 public:
 600   virtual bool eq( const Type *t ) const;
 601   virtual int  hash() const;             // Type specific hashing
 602   virtual bool singleton(void) const;    // TRUE if type is a singleton
 603   virtual bool empty(void) const;        // TRUE if type is vacuous
 604 
 605 private:
 606   const Type *_elem;            // Element type of array
 607   const TypeInt *_size;         // Elements in array
 608   const bool _stable;           // Are elements @Stable?
 609   friend class TypeAryPtr;
 610 
 611 public:
 612   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 613 
 614   virtual const Type *xmeet( const Type *t ) const;
 615   virtual const Type *xdual() const;    // Compute dual right now.
 616   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 617 #ifdef ASSERT
 618   // One type is interface, the other is oop
 619   virtual bool interface_vs_oop(const Type *t) const;
 620 #endif
 621 #ifndef PRODUCT
 622   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 623 #endif
 624 };
 625 
 626 //------------------------------TypeVect---------------------------------------
 627 // Class of Vector Types
 628 class TypeVect : public Type {
 629   const Type*   _elem;  // Vector's element type
 630   const uint  _length;  // Elements in vector (power of 2)
 631 
 632 protected:
 633   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 634     _elem(elem), _length(length) {}
 635 
 636 public:
 637   const Type* element_type() const { return _elem; }
 638   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 639   uint length() const { return _length; }
 640   uint length_in_bytes() const {
 641    return _length * type2aelembytes(element_basic_type());
 642   }
 643 
 644   virtual bool eq(const Type *t) const;
 645   virtual int  hash() const;             // Type specific hashing
 646   virtual bool singleton(void) const;    // TRUE if type is a singleton
 647   virtual bool empty(void) const;        // TRUE if type is vacuous
 648 
 649   static const TypeVect *make(const BasicType elem_bt, uint length) {
 650     // Use bottom primitive type.
 651     return make(get_const_basic_type(elem_bt), length);
 652   }
 653   // Used directly by Replicate nodes to construct singleton vector.
 654   static const TypeVect *make(const Type* elem, uint length);
 655 
 656   virtual const Type *xmeet( const Type *t) const;
 657   virtual const Type *xdual() const;     // Compute dual right now.
 658 
 659   static const TypeVect *VECTS;
 660   static const TypeVect *VECTD;
 661   static const TypeVect *VECTX;
 662   static const TypeVect *VECTY;
 663 
 664 #ifndef PRODUCT
 665   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 666 #endif
 667 };
 668 
 669 class TypeVectS : public TypeVect {
 670   friend class TypeVect;
 671   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 672 };
 673 
 674 class TypeVectD : public TypeVect {
 675   friend class TypeVect;
 676   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 677 };
 678 
 679 class TypeVectX : public TypeVect {
 680   friend class TypeVect;
 681   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 682 };
 683 
 684 class TypeVectY : public TypeVect {
 685   friend class TypeVect;
 686   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 687 };
 688 
 689 //------------------------------TypePtr----------------------------------------
 690 // Class of machine Pointer Types: raw data, instances or arrays.
 691 // If the _base enum is AnyPtr, then this refers to all of the above.
 692 // Otherwise the _base will indicate which subset of pointers is affected,
 693 // and the class will be inherited from.
 694 class TypePtr : public Type {
 695   friend class TypeNarrowPtr;
 696 public:
 697   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 698 protected:
 699   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 700   virtual bool eq( const Type *t ) const;
 701   virtual int  hash() const;             // Type specific hashing
 702   static const PTR ptr_meet[lastPTR][lastPTR];
 703   static const PTR ptr_dual[lastPTR];
 704   static const char * const ptr_msg[lastPTR];
 705 
 706 public:
 707   const int _offset;            // Offset into oop, with TOP & BOT
 708   const PTR _ptr;               // Pointer equivalence class
 709 
 710   const int offset() const { return _offset; }
 711   const PTR ptr()    const { return _ptr; }
 712 
 713   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 714 
 715   // Return a 'ptr' version of this type
 716   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 717 
 718   virtual intptr_t get_con() const;
 719 
 720   int xadd_offset( intptr_t offset ) const;
 721   virtual const TypePtr *add_offset( intptr_t offset ) const;
 722 
 723   virtual bool singleton(void) const;    // TRUE if type is a singleton
 724   virtual bool empty(void) const;        // TRUE if type is vacuous
 725   virtual const Type *xmeet( const Type *t ) const;
 726   int meet_offset( int offset ) const;
 727   int dual_offset( ) const;
 728   virtual const Type *xdual() const;    // Compute dual right now.
 729 
 730   // meet, dual and join over pointer equivalence sets
 731   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 732   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 733 
 734   // This is textually confusing unless one recalls that
 735   // join(t) == dual()->meet(t->dual())->dual().
 736   PTR join_ptr( const PTR in_ptr ) const {
 737     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 738   }
 739 
 740   // Tests for relation to centerline of type lattice:
 741   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 742   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 743   // Convenience common pre-built types.
 744   static const TypePtr *NULL_PTR;
 745   static const TypePtr *NOTNULL;
 746   static const TypePtr *BOTTOM;
 747 #ifndef PRODUCT
 748   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 749 #endif
 750 };
 751 
 752 //------------------------------TypeRawPtr-------------------------------------
 753 // Class of raw pointers, pointers to things other than Oops.  Examples
 754 // include the stack pointer, top of heap, card-marking area, handles, etc.
 755 class TypeRawPtr : public TypePtr {
 756 protected:
 757   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 758 public:
 759   virtual bool eq( const Type *t ) const;
 760   virtual int  hash() const;     // Type specific hashing
 761 
 762   const address _bits;          // Constant value, if applicable
 763 
 764   static const TypeRawPtr *make( PTR ptr );
 765   static const TypeRawPtr *make( address bits );
 766 
 767   // Return a 'ptr' version of this type
 768   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 769 
 770   virtual intptr_t get_con() const;
 771 
 772   virtual const TypePtr *add_offset( intptr_t offset ) const;
 773 
 774   virtual const Type *xmeet( const Type *t ) const;
 775   virtual const Type *xdual() const;    // Compute dual right now.
 776   // Convenience common pre-built types.
 777   static const TypeRawPtr *BOTTOM;
 778   static const TypeRawPtr *NOTNULL;
 779 #ifndef PRODUCT
 780   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 781 #endif
 782 };
 783 
 784 //------------------------------TypeOopPtr-------------------------------------
 785 // Some kind of oop (Java pointer), either klass or instance or array.
 786 class TypeOopPtr : public TypePtr {
 787 protected:
 788   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 789 public:
 790   virtual bool eq( const Type *t ) const;
 791   virtual int  hash() const;             // Type specific hashing
 792   virtual bool singleton(void) const;    // TRUE if type is a singleton
 793   enum {
 794    InstanceTop = -1,   // undefined instance
 795    InstanceBot = 0     // any possible instance
 796   };
 797 protected:
 798 
 799   // Oop is NULL, unless this is a constant oop.
 800   ciObject*     _const_oop;   // Constant oop
 801   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 802   ciKlass*      _klass;       // Klass object
 803   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 804   bool          _klass_is_exact;
 805   bool          _is_ptr_to_narrowoop;
 806   bool          _is_ptr_to_narrowklass;
 807   bool          _is_ptr_to_boxed_value;
 808 
 809   // If not InstanceTop or InstanceBot, indicates that this is
 810   // a particular instance of this type which is distinct.
 811   // This is the the node index of the allocation node creating this instance.
 812   int           _instance_id;
 813 
 814   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 815 
 816   int dual_instance_id() const;
 817   int meet_instance_id(int uid) const;
 818 
 819 public:
 820   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 821   // Respects UseUniqueSubclasses.
 822   // If the klass is final, the resulting type will be exact.
 823   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 824     return make_from_klass_common(klass, true, false);
 825   }
 826   // Same as before, but will produce an exact type, even if
 827   // the klass is not final, as long as it has exactly one implementation.
 828   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 829     return make_from_klass_common(klass, true, true);
 830   }
 831   // Same as before, but does not respects UseUniqueSubclasses.
 832   // Use this only for creating array element types.
 833   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 834     return make_from_klass_common(klass, false, false);
 835   }
 836   // Creates a singleton type given an object.
 837   // If the object cannot be rendered as a constant,
 838   // may return a non-singleton type.
 839   // If require_constant, produce a NULL if a singleton is not possible.
 840   static const TypeOopPtr* make_from_constant(ciObject* o,
 841                                               bool require_constant = false,
 842                                               bool not_null_elements = false);
 843 
 844   // Make a generic (unclassed) pointer to an oop.
 845   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
 846 
 847   ciObject* const_oop()    const { return _const_oop; }
 848   virtual ciKlass* klass() const { return _klass;     }
 849   bool klass_is_exact()    const { return _klass_is_exact; }
 850 
 851   // Returns true if this pointer points at memory which contains a
 852   // compressed oop references.
 853   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 854   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 855   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
 856   bool is_known_instance()       const { return _instance_id > 0; }
 857   int  instance_id()             const { return _instance_id; }
 858   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 859 
 860   virtual intptr_t get_con() const;
 861 
 862   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 863 
 864   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 865 
 866   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 867 
 868   // corresponding pointer to klass, for a given instance
 869   const TypeKlassPtr* as_klass_type() const;
 870 
 871   virtual const TypePtr *add_offset( intptr_t offset ) const;
 872 
 873   virtual const Type *xmeet( const Type *t ) const;
 874   virtual const Type *xdual() const;    // Compute dual right now.
 875 
 876   // Do not allow interface-vs.-noninterface joins to collapse to top.
 877   virtual const Type *filter( const Type *kills ) const;
 878 
 879   // Convenience common pre-built type.
 880   static const TypeOopPtr *BOTTOM;
 881 #ifndef PRODUCT
 882   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 883 #endif
 884 };
 885 
 886 //------------------------------TypeInstPtr------------------------------------
 887 // Class of Java object pointers, pointing either to non-array Java instances
 888 // or to a Klass* (including array klasses).
 889 class TypeInstPtr : public TypeOopPtr {
 890   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 891   virtual bool eq( const Type *t ) const;
 892   virtual int  hash() const;             // Type specific hashing
 893 
 894   ciSymbol*  _name;        // class name
 895 
 896  public:
 897   ciSymbol* name()         const { return _name; }
 898 
 899   bool  is_loaded() const { return _klass->is_loaded(); }
 900 
 901   // Make a pointer to a constant oop.
 902   static const TypeInstPtr *make(ciObject* o) {
 903     return make(TypePtr::Constant, o->klass(), true, o, 0);
 904   }
 905   // Make a pointer to a constant oop with offset.
 906   static const TypeInstPtr *make(ciObject* o, int offset) {
 907     return make(TypePtr::Constant, o->klass(), true, o, offset);
 908   }
 909 
 910   // Make a pointer to some value of type klass.
 911   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
 912     return make(ptr, klass, false, NULL, 0);
 913   }
 914 
 915   // Make a pointer to some non-polymorphic value of exactly type klass.
 916   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
 917     return make(ptr, klass, true, NULL, 0);
 918   }
 919 
 920   // Make a pointer to some value of type klass with offset.
 921   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
 922     return make(ptr, klass, false, NULL, offset);
 923   }
 924 
 925   // Make a pointer to an oop.
 926   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
 927 
 928   /** Create constant type for a constant boxed value */
 929   const Type* get_const_boxed_value() const;
 930 
 931   // If this is a java.lang.Class constant, return the type for it or NULL.
 932   // Pass to Type::get_const_type to turn it to a type, which will usually
 933   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
 934   ciType* java_mirror_type() const;
 935 
 936   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 937 
 938   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 939 
 940   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 941 
 942   virtual const TypePtr *add_offset( intptr_t offset ) const;
 943 
 944   virtual const Type *xmeet( const Type *t ) const;
 945   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
 946   virtual const Type *xdual() const;    // Compute dual right now.
 947 
 948   // Convenience common pre-built types.
 949   static const TypeInstPtr *NOTNULL;
 950   static const TypeInstPtr *BOTTOM;
 951   static const TypeInstPtr *MIRROR;
 952   static const TypeInstPtr *MARK;
 953   static const TypeInstPtr *KLASS;
 954 #ifndef PRODUCT
 955   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 956 #endif
 957 };
 958 
 959 //------------------------------TypeAryPtr-------------------------------------
 960 // Class of Java array pointers
 961 class TypeAryPtr : public TypeOopPtr {
 962   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
 963               int offset, int instance_id, bool is_autobox_cache )
 964   : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id),
 965     _ary(ary),
 966     _is_autobox_cache(is_autobox_cache)
 967  {
 968 #ifdef ASSERT
 969     if (k != NULL) {
 970       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
 971       ciKlass* ck = compute_klass(true);
 972       if (k != ck) {
 973         this->dump(); tty->cr();
 974         tty->print(" k: ");
 975         k->print(); tty->cr();
 976         tty->print("ck: ");
 977         if (ck != NULL) ck->print();
 978         else tty->print("<NULL>");
 979         tty->cr();
 980         assert(false, "unexpected TypeAryPtr::_klass");
 981       }
 982     }
 983 #endif
 984   }
 985   virtual bool eq( const Type *t ) const;
 986   virtual int hash() const;     // Type specific hashing
 987   const TypeAry *_ary;          // Array we point into
 988   const bool     _is_autobox_cache;
 989 
 990   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
 991 
 992 public:
 993   // Accessors
 994   ciKlass* klass() const;
 995   const TypeAry* ary() const  { return _ary; }
 996   const Type*    elem() const { return _ary->_elem; }
 997   const TypeInt* size() const { return _ary->_size; }
 998   bool      is_stable() const { return _ary->_stable; }
 999 
1000   bool is_autobox_cache() const { return _is_autobox_cache; }
1001 
1002   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
1003   // Constant pointer to array
1004   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, bool is_autobox_cache = false);
1005 
1006   // Return a 'ptr' version of this type
1007   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1008 
1009   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1010 
1011   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1012 
1013   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1014   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1015 
1016   virtual bool empty(void) const;        // TRUE if type is vacuous
1017   virtual const TypePtr *add_offset( intptr_t offset ) const;
1018 
1019   virtual const Type *xmeet( const Type *t ) const;
1020   virtual const Type *xdual() const;    // Compute dual right now.
1021 
1022   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1023   int stable_dimension() const;
1024 
1025   // Convenience common pre-built types.
1026   static const TypeAryPtr *RANGE;
1027   static const TypeAryPtr *OOPS;
1028   static const TypeAryPtr *NARROWOOPS;
1029   static const TypeAryPtr *BYTES;
1030   static const TypeAryPtr *SHORTS;
1031   static const TypeAryPtr *CHARS;
1032   static const TypeAryPtr *INTS;
1033   static const TypeAryPtr *LONGS;
1034   static const TypeAryPtr *FLOATS;
1035   static const TypeAryPtr *DOUBLES;
1036   // selects one of the above:
1037   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1038     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1039     return _array_body_type[elem];
1040   }
1041   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1042   // sharpen the type of an int which is used as an array size
1043 #ifdef ASSERT
1044   // One type is interface, the other is oop
1045   virtual bool interface_vs_oop(const Type *t) const;
1046 #endif
1047 #ifndef PRODUCT
1048   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1049 #endif
1050 };
1051 
1052 //------------------------------TypeMetadataPtr-------------------------------------
1053 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1054 class TypeMetadataPtr : public TypePtr {
1055 protected:
1056   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1057 public:
1058   virtual bool eq( const Type *t ) const;
1059   virtual int  hash() const;             // Type specific hashing
1060   virtual bool singleton(void) const;    // TRUE if type is a singleton
1061 
1062 private:
1063   ciMetadata*   _metadata;
1064 
1065 public:
1066   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1067 
1068   static const TypeMetadataPtr* make(ciMethod* m);
1069   static const TypeMetadataPtr* make(ciMethodData* m);
1070 
1071   ciMetadata* metadata() const { return _metadata; }
1072 
1073   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1074 
1075   virtual const TypePtr *add_offset( intptr_t offset ) const;
1076 
1077   virtual const Type *xmeet( const Type *t ) const;
1078   virtual const Type *xdual() const;    // Compute dual right now.
1079 
1080   virtual intptr_t get_con() const;
1081 
1082   // Do not allow interface-vs.-noninterface joins to collapse to top.
1083   virtual const Type *filter( const Type *kills ) const;
1084 
1085   // Convenience common pre-built types.
1086   static const TypeMetadataPtr *BOTTOM;
1087 
1088 #ifndef PRODUCT
1089   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1090 #endif
1091 };
1092 
1093 //------------------------------TypeKlassPtr-----------------------------------
1094 // Class of Java Klass pointers
1095 class TypeKlassPtr : public TypePtr {
1096   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1097 
1098  public:
1099   virtual bool eq( const Type *t ) const;
1100   virtual int hash() const;             // Type specific hashing
1101   virtual bool singleton(void) const;    // TRUE if type is a singleton
1102  private:
1103 
1104   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1105 
1106   ciKlass* _klass;
1107 
1108   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1109   bool          _klass_is_exact;
1110 
1111 public:
1112   ciSymbol* name()  const { return klass()->name(); }
1113 
1114   ciKlass* klass() const { return  _klass; }
1115   bool klass_is_exact()    const { return _klass_is_exact; }
1116 
1117   bool  is_loaded() const { return klass()->is_loaded(); }
1118 
1119   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1120   // Respects UseUniqueSubclasses.
1121   // If the klass is final, the resulting type will be exact.
1122   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1123     return make_from_klass_common(klass, true, false);
1124   }
1125   // Same as before, but will produce an exact type, even if
1126   // the klass is not final, as long as it has exactly one implementation.
1127   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1128     return make_from_klass_common(klass, true, true);
1129   }
1130   // Same as before, but does not respects UseUniqueSubclasses.
1131   // Use this only for creating array element types.
1132   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1133     return make_from_klass_common(klass, false, false);
1134   }
1135 
1136   // Make a generic (unclassed) pointer to metadata.
1137   static const TypeKlassPtr* make(PTR ptr, int offset);
1138 
1139   // ptr to klass 'k'
1140   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1141   // ptr to klass 'k' with offset
1142   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1143   // ptr to klass 'k' or sub-klass
1144   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1145 
1146   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1147 
1148   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1149 
1150   // corresponding pointer to instance, for a given class
1151   const TypeOopPtr* as_instance_type() const;
1152 
1153   virtual const TypePtr *add_offset( intptr_t offset ) const;
1154   virtual const Type    *xmeet( const Type *t ) const;
1155   virtual const Type    *xdual() const;      // Compute dual right now.
1156 
1157   virtual intptr_t get_con() const;
1158 
1159   // Convenience common pre-built types.
1160   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1161   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1162 #ifndef PRODUCT
1163   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1164 #endif
1165 };
1166 
1167 class TypeNarrowPtr : public Type {
1168 protected:
1169   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1170 
1171   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1172                                                   Type(t) {
1173     assert(ptrtype->offset() == 0 ||
1174            ptrtype->offset() == OffsetBot ||
1175            ptrtype->offset() == OffsetTop, "no real offsets");
1176   }
1177 
1178   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1179   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1180   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1181   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1182 public:
1183   virtual bool eq( const Type *t ) const;
1184   virtual int  hash() const;             // Type specific hashing
1185   virtual bool singleton(void) const;    // TRUE if type is a singleton
1186 
1187   virtual const Type *xmeet( const Type *t ) const;
1188   virtual const Type *xdual() const;    // Compute dual right now.
1189 
1190   virtual intptr_t get_con() const;
1191 
1192   // Do not allow interface-vs.-noninterface joins to collapse to top.
1193   virtual const Type *filter( const Type *kills ) const;
1194 
1195   virtual bool empty(void) const;        // TRUE if type is vacuous
1196 
1197   // returns the equivalent ptr type for this compressed pointer
1198   const TypePtr *get_ptrtype() const {
1199     return _ptrtype;
1200   }
1201 
1202 #ifndef PRODUCT
1203   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1204 #endif
1205 };
1206 
1207 //------------------------------TypeNarrowOop----------------------------------
1208 // A compressed reference to some kind of Oop.  This type wraps around
1209 // a preexisting TypeOopPtr and forwards most of it's operations to
1210 // the underlying type.  It's only real purpose is to track the
1211 // oopness of the compressed oop value when we expose the conversion
1212 // between the normal and the compressed form.
1213 class TypeNarrowOop : public TypeNarrowPtr {
1214 protected:
1215   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1216   }
1217 
1218   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1219     return t->isa_narrowoop();
1220   }
1221 
1222   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1223     return t->is_narrowoop();
1224   }
1225 
1226   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1227     return new TypeNarrowOop(t);
1228   }
1229 
1230   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1231     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1232   }
1233 
1234 public:
1235 
1236   static const TypeNarrowOop *make( const TypePtr* type);
1237 
1238   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1239     return make(TypeOopPtr::make_from_constant(con, require_constant));
1240   }
1241 
1242   static const TypeNarrowOop *BOTTOM;
1243   static const TypeNarrowOop *NULL_PTR;
1244 
1245 #ifndef PRODUCT
1246   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1247 #endif
1248 };
1249 
1250 //------------------------------TypeNarrowKlass----------------------------------
1251 // A compressed reference to klass pointer.  This type wraps around a
1252 // preexisting TypeKlassPtr and forwards most of it's operations to
1253 // the underlying type.
1254 class TypeNarrowKlass : public TypeNarrowPtr {
1255 protected:
1256   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1257   }
1258 
1259   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1260     return t->isa_narrowklass();
1261   }
1262 
1263   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1264     return t->is_narrowklass();
1265   }
1266 
1267   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1268     return new TypeNarrowKlass(t);
1269   }
1270 
1271   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1272     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1273   }
1274 
1275 public:
1276   static const TypeNarrowKlass *make( const TypePtr* type);
1277 
1278   // static const TypeNarrowKlass *BOTTOM;
1279   static const TypeNarrowKlass *NULL_PTR;
1280 
1281 #ifndef PRODUCT
1282   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1283 #endif
1284 };
1285 
1286 //------------------------------TypeFunc---------------------------------------
1287 // Class of Array Types
1288 class TypeFunc : public Type {
1289   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1290   virtual bool eq( const Type *t ) const;
1291   virtual int  hash() const;             // Type specific hashing
1292   virtual bool singleton(void) const;    // TRUE if type is a singleton
1293   virtual bool empty(void) const;        // TRUE if type is vacuous
1294 public:
1295   // Constants are shared among ADLC and VM
1296   enum { Control    = AdlcVMDeps::Control,
1297          I_O        = AdlcVMDeps::I_O,
1298          Memory     = AdlcVMDeps::Memory,
1299          FramePtr   = AdlcVMDeps::FramePtr,
1300          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1301          Parms      = AdlcVMDeps::Parms
1302   };
1303 
1304   const TypeTuple* const _domain;     // Domain of inputs
1305   const TypeTuple* const _range;      // Range of results
1306 
1307   // Accessors:
1308   const TypeTuple* domain() const { return _domain; }
1309   const TypeTuple* range()  const { return _range; }
1310 
1311   static const TypeFunc *make(ciMethod* method);
1312   static const TypeFunc *make(ciSignature signature, const Type* extra);
1313   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1314 
1315   virtual const Type *xmeet( const Type *t ) const;
1316   virtual const Type *xdual() const;    // Compute dual right now.
1317 
1318   BasicType return_type() const;
1319 
1320 #ifndef PRODUCT
1321   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1322 #endif
1323   // Convenience common pre-built types.
1324 };
1325 
1326 //------------------------------accessors--------------------------------------
1327 inline bool Type::is_ptr_to_narrowoop() const {
1328 #ifdef _LP64
1329   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1330 #else
1331   return false;
1332 #endif
1333 }
1334 
1335 inline bool Type::is_ptr_to_narrowklass() const {
1336 #ifdef _LP64
1337   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1338 #else
1339   return false;
1340 #endif
1341 }
1342 
1343 inline float Type::getf() const {
1344   assert( _base == FloatCon, "Not a FloatCon" );
1345   return ((TypeF*)this)->_f;
1346 }
1347 
1348 inline double Type::getd() const {
1349   assert( _base == DoubleCon, "Not a DoubleCon" );
1350   return ((TypeD*)this)->_d;
1351 }
1352 
1353 inline const TypeInt *Type::is_int() const {
1354   assert( _base == Int, "Not an Int" );
1355   return (TypeInt*)this;
1356 }
1357 
1358 inline const TypeInt *Type::isa_int() const {
1359   return ( _base == Int ? (TypeInt*)this : NULL);
1360 }
1361 
1362 inline const TypeLong *Type::is_long() const {
1363   assert( _base == Long, "Not a Long" );
1364   return (TypeLong*)this;
1365 }
1366 
1367 inline const TypeLong *Type::isa_long() const {
1368   return ( _base == Long ? (TypeLong*)this : NULL);
1369 }
1370 
1371 inline const TypeF *Type::isa_float() const {
1372   return ((_base == FloatTop ||
1373            _base == FloatCon ||
1374            _base == FloatBot) ? (TypeF*)this : NULL);
1375 }
1376 
1377 inline const TypeF *Type::is_float_constant() const {
1378   assert( _base == FloatCon, "Not a Float" );
1379   return (TypeF*)this;
1380 }
1381 
1382 inline const TypeF *Type::isa_float_constant() const {
1383   return ( _base == FloatCon ? (TypeF*)this : NULL);
1384 }
1385 
1386 inline const TypeD *Type::isa_double() const {
1387   return ((_base == DoubleTop ||
1388            _base == DoubleCon ||
1389            _base == DoubleBot) ? (TypeD*)this : NULL);
1390 }
1391 
1392 inline const TypeD *Type::is_double_constant() const {
1393   assert( _base == DoubleCon, "Not a Double" );
1394   return (TypeD*)this;
1395 }
1396 
1397 inline const TypeD *Type::isa_double_constant() const {
1398   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1399 }
1400 
1401 inline const TypeTuple *Type::is_tuple() const {
1402   assert( _base == Tuple, "Not a Tuple" );
1403   return (TypeTuple*)this;
1404 }
1405 
1406 inline const TypeAry *Type::is_ary() const {
1407   assert( _base == Array , "Not an Array" );
1408   return (TypeAry*)this;
1409 }
1410 
1411 inline const TypeVect *Type::is_vect() const {
1412   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1413   return (TypeVect*)this;
1414 }
1415 
1416 inline const TypeVect *Type::isa_vect() const {
1417   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1418 }
1419 
1420 inline const TypePtr *Type::is_ptr() const {
1421   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1422   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1423   return (TypePtr*)this;
1424 }
1425 
1426 inline const TypePtr *Type::isa_ptr() const {
1427   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1428   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1429 }
1430 
1431 inline const TypeOopPtr *Type::is_oopptr() const {
1432   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1433   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1434   return (TypeOopPtr*)this;
1435 }
1436 
1437 inline const TypeOopPtr *Type::isa_oopptr() const {
1438   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1439   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1440 }
1441 
1442 inline const TypeRawPtr *Type::isa_rawptr() const {
1443   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1444 }
1445 
1446 inline const TypeRawPtr *Type::is_rawptr() const {
1447   assert( _base == RawPtr, "Not a raw pointer" );
1448   return (TypeRawPtr*)this;
1449 }
1450 
1451 inline const TypeInstPtr *Type::isa_instptr() const {
1452   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1453 }
1454 
1455 inline const TypeInstPtr *Type::is_instptr() const {
1456   assert( _base == InstPtr, "Not an object pointer" );
1457   return (TypeInstPtr*)this;
1458 }
1459 
1460 inline const TypeAryPtr *Type::isa_aryptr() const {
1461   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1462 }
1463 
1464 inline const TypeAryPtr *Type::is_aryptr() const {
1465   assert( _base == AryPtr, "Not an array pointer" );
1466   return (TypeAryPtr*)this;
1467 }
1468 
1469 inline const TypeNarrowOop *Type::is_narrowoop() const {
1470   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1471   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1472   return (TypeNarrowOop*)this;
1473 }
1474 
1475 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1476   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1477   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1478 }
1479 
1480 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1481   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1482   return (TypeNarrowKlass*)this;
1483 }
1484 
1485 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1486   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1487 }
1488 
1489 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1490   // MetadataPtr is the first and CPCachePtr the last
1491   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1492   return (TypeMetadataPtr*)this;
1493 }
1494 
1495 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1496   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1497 }
1498 
1499 inline const TypeKlassPtr *Type::isa_klassptr() const {
1500   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1501 }
1502 
1503 inline const TypeKlassPtr *Type::is_klassptr() const {
1504   assert( _base == KlassPtr, "Not a klass pointer" );
1505   return (TypeKlassPtr*)this;
1506 }
1507 
1508 inline const TypePtr* Type::make_ptr() const {
1509   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1510     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1511      (isa_ptr() ? is_ptr() : NULL));
1512 }
1513 
1514 inline const TypeOopPtr* Type::make_oopptr() const {
1515   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1516 }
1517 
1518 inline const TypeNarrowOop* Type::make_narrowoop() const {
1519   return (_base == NarrowOop) ? is_narrowoop() :
1520                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1521 }
1522 
1523 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1524   return (_base == NarrowKlass) ? is_narrowklass() :
1525                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1526 }
1527 
1528 inline bool Type::is_floatingpoint() const {
1529   if( (_base == FloatCon)  || (_base == FloatBot) ||
1530       (_base == DoubleCon) || (_base == DoubleBot) )
1531     return true;
1532   return false;
1533 }
1534 
1535 inline bool Type::is_ptr_to_boxing_obj() const {
1536   const TypeInstPtr* tp = isa_instptr();
1537   return (tp != NULL) && (tp->offset() == 0) &&
1538          tp->klass()->is_instance_klass()  &&
1539          tp->klass()->as_instance_klass()->is_box_klass();
1540 }
1541 
1542 
1543 // ===============================================================
1544 // Things that need to be 64-bits in the 64-bit build but
1545 // 32-bits in the 32-bit build.  Done this way to get full
1546 // optimization AND strong typing.
1547 #ifdef _LP64
1548 
1549 // For type queries and asserts
1550 #define is_intptr_t  is_long
1551 #define isa_intptr_t isa_long
1552 #define find_intptr_t_type find_long_type
1553 #define find_intptr_t_con  find_long_con
1554 #define TypeX        TypeLong
1555 #define Type_X       Type::Long
1556 #define TypeX_X      TypeLong::LONG
1557 #define TypeX_ZERO   TypeLong::ZERO
1558 // For 'ideal_reg' machine registers
1559 #define Op_RegX      Op_RegL
1560 // For phase->intcon variants
1561 #define MakeConX     longcon
1562 #define ConXNode     ConLNode
1563 // For array index arithmetic
1564 #define MulXNode     MulLNode
1565 #define AndXNode     AndLNode
1566 #define OrXNode      OrLNode
1567 #define CmpXNode     CmpLNode
1568 #define SubXNode     SubLNode
1569 #define LShiftXNode  LShiftLNode
1570 // For object size computation:
1571 #define AddXNode     AddLNode
1572 #define RShiftXNode  RShiftLNode
1573 // For card marks and hashcodes
1574 #define URShiftXNode URShiftLNode
1575 // UseOptoBiasInlining
1576 #define XorXNode     XorLNode
1577 #define StoreXConditionalNode StoreLConditionalNode
1578 // Opcodes
1579 #define Op_LShiftX   Op_LShiftL
1580 #define Op_AndX      Op_AndL
1581 #define Op_AddX      Op_AddL
1582 #define Op_SubX      Op_SubL
1583 #define Op_XorX      Op_XorL
1584 #define Op_URShiftX  Op_URShiftL
1585 // conversions
1586 #define ConvI2X(x)   ConvI2L(x)
1587 #define ConvL2X(x)   (x)
1588 #define ConvX2I(x)   ConvL2I(x)
1589 #define ConvX2L(x)   (x)
1590 
1591 #else
1592 
1593 // For type queries and asserts
1594 #define is_intptr_t  is_int
1595 #define isa_intptr_t isa_int
1596 #define find_intptr_t_type find_int_type
1597 #define find_intptr_t_con  find_int_con
1598 #define TypeX        TypeInt
1599 #define Type_X       Type::Int
1600 #define TypeX_X      TypeInt::INT
1601 #define TypeX_ZERO   TypeInt::ZERO
1602 // For 'ideal_reg' machine registers
1603 #define Op_RegX      Op_RegI
1604 // For phase->intcon variants
1605 #define MakeConX     intcon
1606 #define ConXNode     ConINode
1607 // For array index arithmetic
1608 #define MulXNode     MulINode
1609 #define AndXNode     AndINode
1610 #define OrXNode      OrINode
1611 #define CmpXNode     CmpINode
1612 #define SubXNode     SubINode
1613 #define LShiftXNode  LShiftINode
1614 // For object size computation:
1615 #define AddXNode     AddINode
1616 #define RShiftXNode  RShiftINode
1617 // For card marks and hashcodes
1618 #define URShiftXNode URShiftINode
1619 // UseOptoBiasInlining
1620 #define XorXNode     XorINode
1621 #define StoreXConditionalNode StoreIConditionalNode
1622 // Opcodes
1623 #define Op_LShiftX   Op_LShiftI
1624 #define Op_AndX      Op_AndI
1625 #define Op_AddX      Op_AddI
1626 #define Op_SubX      Op_SubI
1627 #define Op_XorX      Op_XorI
1628 #define Op_URShiftX  Op_URShiftI
1629 // conversions
1630 #define ConvI2X(x)   (x)
1631 #define ConvL2X(x)   ConvL2I(x)
1632 #define ConvX2I(x)   (x)
1633 #define ConvX2L(x)   ConvI2L(x)
1634 
1635 #endif
1636 
1637 #endif // SHARE_VM_OPTO_TYPE_HPP