1 //
   2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedClassPointers) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 563     } else {
 564       klass_load_size = 1*BytesPerInstWord;
 565     }
 566     if (Assembler::is_simm13(v_off)) {
 567       return klass_load_size +
 568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 569              NativeCall::instruction_size);  // call; delay slot
 570     } else {
 571       return klass_load_size +
 572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 573              NativeCall::instruction_size);  // call; delay slot
 574     }
 575   }
 576 }
 577 
 578 int MachCallRuntimeNode::ret_addr_offset() {
 579 #ifdef _LP64
 580   if (MacroAssembler::is_far_target(entry_point())) {
 581     return NativeFarCall::instruction_size;
 582   } else {
 583     return NativeCall::instruction_size;
 584   }
 585 #else
 586   return NativeCall::instruction_size;  // call; delay slot
 587 #endif
 588 }
 589 
 590 // Indicate if the safepoint node needs the polling page as an input.
 591 // Since Sparc does not have absolute addressing, it does.
 592 bool SafePointNode::needs_polling_address_input() {
 593   return true;
 594 }
 595 
 596 // emit an interrupt that is caught by the debugger (for debugging compiler)
 597 void emit_break(CodeBuffer &cbuf) {
 598   MacroAssembler _masm(&cbuf);
 599   __ breakpoint_trap();
 600 }
 601 
 602 #ifndef PRODUCT
 603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 604   st->print("TA");
 605 }
 606 #endif
 607 
 608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 609   emit_break(cbuf);
 610 }
 611 
 612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 613   return MachNode::size(ra_);
 614 }
 615 
 616 // Traceable jump
 617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 618   MacroAssembler _masm(&cbuf);
 619   Register rdest = reg_to_register_object(jump_target);
 620   __ JMP(rdest, 0);
 621   __ delayed()->nop();
 622 }
 623 
 624 // Traceable jump and set exception pc
 625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 626   MacroAssembler _masm(&cbuf);
 627   Register rdest = reg_to_register_object(jump_target);
 628   __ JMP(rdest, 0);
 629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 630 }
 631 
 632 void emit_nop(CodeBuffer &cbuf) {
 633   MacroAssembler _masm(&cbuf);
 634   __ nop();
 635 }
 636 
 637 void emit_illtrap(CodeBuffer &cbuf) {
 638   MacroAssembler _masm(&cbuf);
 639   __ illtrap(0);
 640 }
 641 
 642 
 643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 644   assert(n->rule() != loadUB_rule, "");
 645 
 646   intptr_t offset = 0;
 647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 648   const Node* addr = n->get_base_and_disp(offset, adr_type);
 649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   atype = atype->add_offset(offset);
 653   assert(disp32 == offset, "wrong disp32");
 654   return atype->_offset;
 655 }
 656 
 657 
 658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 659   assert(n->rule() != loadUB_rule, "");
 660 
 661   intptr_t offset = 0;
 662   Node* addr = n->in(2);
 663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 665     Node* a = addr->in(2/*AddPNode::Address*/);
 666     Node* o = addr->in(3/*AddPNode::Offset*/);
 667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 669     assert(atype->isa_oop_ptr(), "still an oop");
 670   }
 671   offset = atype->is_ptr()->_offset;
 672   if (offset != Type::OffsetBot)  offset += disp32;
 673   return offset;
 674 }
 675 
 676 static inline jdouble replicate_immI(int con, int count, int width) {
 677   // Load a constant replicated "count" times with width "width"
 678   assert(count*width == 8 && width <= 4, "sanity");
 679   int bit_width = width * 8;
 680   jlong val = con;
 681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 682   for (int i = 0; i < count - 1; i++) {
 683     val |= (val << bit_width);
 684   }
 685   jdouble dval = *((jdouble*) &val);  // coerce to double type
 686   return dval;
 687 }
 688 
 689 static inline jdouble replicate_immF(float con) {
 690   // Replicate float con 2 times and pack into vector.
 691   int val = *((int*)&con);
 692   jlong lval = val;
 693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 695   return dval;
 696 }
 697 
 698 // Standard Sparc opcode form2 field breakdown
 699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 701   int op = (f30 << 30) |
 702            (f29 << 29) |
 703            (f25 << 25) |
 704            (f22 << 22) |
 705            (f20 << 20) |
 706            (f19 << 19) |
 707            (f0  <<  0);
 708   cbuf.insts()->emit_int32(op);
 709 }
 710 
 711 // Standard Sparc opcode form2 field breakdown
 712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 713   f0 >>= 10;           // Drop 10 bits
 714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 715   int op = (f30 << 30) |
 716            (f25 << 25) |
 717            (f22 << 22) |
 718            (f0  <<  0);
 719   cbuf.insts()->emit_int32(op);
 720 }
 721 
 722 // Standard Sparc opcode form3 field breakdown
 723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 724   int op = (f30 << 30) |
 725            (f25 << 25) |
 726            (f19 << 19) |
 727            (f14 << 14) |
 728            (f5  <<  5) |
 729            (f0  <<  0);
 730   cbuf.insts()->emit_int32(op);
 731 }
 732 
 733 // Standard Sparc opcode form3 field breakdown
 734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 735   simm13 &= (1<<13)-1; // Mask to 13 bits
 736   int op = (f30 << 30) |
 737            (f25 << 25) |
 738            (f19 << 19) |
 739            (f14 << 14) |
 740            (1   << 13) | // bit to indicate immediate-mode
 741            (simm13<<0);
 742   cbuf.insts()->emit_int32(op);
 743 }
 744 
 745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 746   simm10 &= (1<<10)-1; // Mask to 10 bits
 747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 748 }
 749 
 750 #ifdef ASSERT
 751 // Helper function for VerifyOops in emit_form3_mem_reg
 752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 753   warning("VerifyOops encountered unexpected instruction:");
 754   n->dump(2);
 755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 756 }
 757 #endif
 758 
 759 
 760 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 762 
 763 #ifdef ASSERT
 764   // The following code implements the +VerifyOops feature.
 765   // It verifies oop values which are loaded into or stored out of
 766   // the current method activation.  +VerifyOops complements techniques
 767   // like ScavengeALot, because it eagerly inspects oops in transit,
 768   // as they enter or leave the stack, as opposed to ScavengeALot,
 769   // which inspects oops "at rest", in the stack or heap, at safepoints.
 770   // For this reason, +VerifyOops can sometimes detect bugs very close
 771   // to their point of creation.  It can also serve as a cross-check
 772   // on the validity of oop maps, when used toegether with ScavengeALot.
 773 
 774   // It would be good to verify oops at other points, especially
 775   // when an oop is used as a base pointer for a load or store.
 776   // This is presently difficult, because it is hard to know when
 777   // a base address is biased or not.  (If we had such information,
 778   // it would be easy and useful to make a two-argument version of
 779   // verify_oop which unbiases the base, and performs verification.)
 780 
 781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 782   bool is_verified_oop_base  = false;
 783   bool is_verified_oop_load  = false;
 784   bool is_verified_oop_store = false;
 785   int tmp_enc = -1;
 786   if (VerifyOops && src1_enc != R_SP_enc) {
 787     // classify the op, mainly for an assert check
 788     int st_op = 0, ld_op = 0;
 789     switch (primary) {
 790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 794     case Assembler::std_op3:  st_op = Op_StoreL; break;
 795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 797 
 798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 809 
 810     default: ShouldNotReachHere();
 811     }
 812     if (tertiary == REGP_OP) {
 813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 815       else                          ShouldNotReachHere();
 816       if (st_op) {
 817         // a store
 818         // inputs are (0:control, 1:memory, 2:address, 3:value)
 819         Node* n2 = n->in(3);
 820         if (n2 != NULL) {
 821           const Type* t = n2->bottom_type();
 822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 823         }
 824       } else {
 825         // a load
 826         const Type* t = n->bottom_type();
 827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 828       }
 829     }
 830 
 831     if (ld_op) {
 832       // a Load
 833       // inputs are (0:control, 1:memory, 2:address)
 834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 849           !(n->rule() == loadUB_rule)) {
 850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 851       }
 852     } else if (st_op) {
 853       // a Store
 854       // inputs are (0:control, 1:memory, 2:address, 3:value)
 855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 863       }
 864     }
 865 
 866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 867       Node* addr = n->in(2);
 868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 870         if (atype != NULL) {
 871           intptr_t offset = get_offset_from_base(n, atype, disp32);
 872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 873           if (offset != offset_2) {
 874             get_offset_from_base(n, atype, disp32);
 875             get_offset_from_base_2(n, atype, disp32);
 876           }
 877           assert(offset == offset_2, "different offsets");
 878           if (offset == disp32) {
 879             // we now know that src1 is a true oop pointer
 880             is_verified_oop_base = true;
 881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 882               if( primary == Assembler::ldd_op3 ) {
 883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 884               } else {
 885                 tmp_enc = dst_enc;
 886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 887                 assert(src1_enc != dst_enc, "");
 888               }
 889             }
 890           }
 891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 892                        || offset == oopDesc::mark_offset_in_bytes())) {
 893                       // loading the mark should not be allowed either, but
 894                       // we don't check this since it conflicts with InlineObjectHash
 895                       // usage of LoadINode to get the mark. We could keep the
 896                       // check if we create a new LoadMarkNode
 897             // but do not verify the object before its header is initialized
 898             ShouldNotReachHere();
 899           }
 900         }
 901       }
 902     }
 903   }
 904 #endif
 905 
 906   uint instr;
 907   instr = (Assembler::ldst_op << 30)
 908         | (dst_enc        << 25)
 909         | (primary        << 19)
 910         | (src1_enc       << 14);
 911 
 912   uint index = src2_enc;
 913   int disp = disp32;
 914 
 915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 916     disp += STACK_BIAS;
 917 
 918   // We should have a compiler bailout here rather than a guarantee.
 919   // Better yet would be some mechanism to handle variable-size matches correctly.
 920   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 921 
 922   if( disp == 0 ) {
 923     // use reg-reg form
 924     // bit 13 is already zero
 925     instr |= index;
 926   } else {
 927     // use reg-imm form
 928     instr |= 0x00002000;          // set bit 13 to one
 929     instr |= disp & 0x1FFF;
 930   }
 931 
 932   cbuf.insts()->emit_int32(instr);
 933 
 934 #ifdef ASSERT
 935   {
 936     MacroAssembler _masm(&cbuf);
 937     if (is_verified_oop_base) {
 938       __ verify_oop(reg_to_register_object(src1_enc));
 939     }
 940     if (is_verified_oop_store) {
 941       __ verify_oop(reg_to_register_object(dst_enc));
 942     }
 943     if (tmp_enc != -1) {
 944       __ mov(O7, reg_to_register_object(tmp_enc));
 945     }
 946     if (is_verified_oop_load) {
 947       __ verify_oop(reg_to_register_object(dst_enc));
 948     }
 949   }
 950 #endif
 951 }
 952 
 953 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 954   // The method which records debug information at every safepoint
 955   // expects the call to be the first instruction in the snippet as
 956   // it creates a PcDesc structure which tracks the offset of a call
 957   // from the start of the codeBlob. This offset is computed as
 958   // code_end() - code_begin() of the code which has been emitted
 959   // so far.
 960   // In this particular case we have skirted around the problem by
 961   // putting the "mov" instruction in the delay slot but the problem
 962   // may bite us again at some other point and a cleaner/generic
 963   // solution using relocations would be needed.
 964   MacroAssembler _masm(&cbuf);
 965   __ set_inst_mark();
 966 
 967   // We flush the current window just so that there is a valid stack copy
 968   // the fact that the current window becomes active again instantly is
 969   // not a problem there is nothing live in it.
 970 
 971 #ifdef ASSERT
 972   int startpos = __ offset();
 973 #endif /* ASSERT */
 974 
 975   __ call((address)entry_point, rtype);
 976 
 977   if (preserve_g2)   __ delayed()->mov(G2, L7);
 978   else __ delayed()->nop();
 979 
 980   if (preserve_g2)   __ mov(L7, G2);
 981 
 982 #ifdef ASSERT
 983   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 984 #ifdef _LP64
 985     // Trash argument dump slots.
 986     __ set(0xb0b8ac0db0b8ac0d, G1);
 987     __ mov(G1, G5);
 988     __ stx(G1, SP, STACK_BIAS + 0x80);
 989     __ stx(G1, SP, STACK_BIAS + 0x88);
 990     __ stx(G1, SP, STACK_BIAS + 0x90);
 991     __ stx(G1, SP, STACK_BIAS + 0x98);
 992     __ stx(G1, SP, STACK_BIAS + 0xA0);
 993     __ stx(G1, SP, STACK_BIAS + 0xA8);
 994 #else // _LP64
 995     // this is also a native call, so smash the first 7 stack locations,
 996     // and the various registers
 997 
 998     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
 999     // while [SP+0x44..0x58] are the argument dump slots.
1000     __ set((intptr_t)0xbaadf00d, G1);
1001     __ mov(G1, G5);
1002     __ sllx(G1, 32, G1);
1003     __ or3(G1, G5, G1);
1004     __ mov(G1, G5);
1005     __ stx(G1, SP, 0x40);
1006     __ stx(G1, SP, 0x48);
1007     __ stx(G1, SP, 0x50);
1008     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1009 #endif // _LP64
1010   }
1011 #endif /*ASSERT*/
1012 }
1013 
1014 //=============================================================================
1015 // REQUIRED FUNCTIONALITY for encoding
1016 void emit_lo(CodeBuffer &cbuf, int val) {  }
1017 void emit_hi(CodeBuffer &cbuf, int val) {  }
1018 
1019 
1020 //=============================================================================
1021 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1022 
1023 int Compile::ConstantTable::calculate_table_base_offset() const {
1024   if (UseRDPCForConstantTableBase) {
1025     // The table base offset might be less but then it fits into
1026     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1027     return Assembler::min_simm13();
1028   } else {
1029     int offset = -(size() / 2);
1030     if (!Assembler::is_simm13(offset)) {
1031       offset = Assembler::min_simm13();
1032     }
1033     return offset;
1034   }
1035 }
1036 
1037 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1038   Compile* C = ra_->C;
1039   Compile::ConstantTable& constant_table = C->constant_table();
1040   MacroAssembler _masm(&cbuf);
1041 
1042   Register r = as_Register(ra_->get_encode(this));
1043   CodeSection* consts_section = __ code()->consts();
1044   int consts_size = consts_section->align_at_start(consts_section->size());
1045   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1046 
1047   if (UseRDPCForConstantTableBase) {
1048     // For the following RDPC logic to work correctly the consts
1049     // section must be allocated right before the insts section.  This
1050     // assert checks for that.  The layout and the SECT_* constants
1051     // are defined in src/share/vm/asm/codeBuffer.hpp.
1052     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1053     int insts_offset = __ offset();
1054 
1055     // Layout:
1056     //
1057     // |----------- consts section ------------|----------- insts section -----------...
1058     // |------ constant table -----|- padding -|------------------x----
1059     //                                                            \ current PC (RDPC instruction)
1060     // |<------------- consts_size ----------->|<- insts_offset ->|
1061     //                                                            \ table base
1062     // The table base offset is later added to the load displacement
1063     // so it has to be negative.
1064     int table_base_offset = -(consts_size + insts_offset);
1065     int disp;
1066 
1067     // If the displacement from the current PC to the constant table
1068     // base fits into simm13 we set the constant table base to the
1069     // current PC.
1070     if (Assembler::is_simm13(table_base_offset)) {
1071       constant_table.set_table_base_offset(table_base_offset);
1072       disp = 0;
1073     } else {
1074       // Otherwise we set the constant table base offset to the
1075       // maximum negative displacement of load instructions to keep
1076       // the disp as small as possible:
1077       //
1078       // |<------------- consts_size ----------->|<- insts_offset ->|
1079       // |<--------- min_simm13 --------->|<-------- disp --------->|
1080       //                                  \ table base
1081       table_base_offset = Assembler::min_simm13();
1082       constant_table.set_table_base_offset(table_base_offset);
1083       disp = (consts_size + insts_offset) + table_base_offset;
1084     }
1085 
1086     __ rdpc(r);
1087 
1088     if (disp != 0) {
1089       assert(r != O7, "need temporary");
1090       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1091     }
1092   }
1093   else {
1094     // Materialize the constant table base.
1095     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1096     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1097     AddressLiteral base(baseaddr, rspec);
1098     __ set(base, r);
1099   }
1100 }
1101 
1102 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1103   if (UseRDPCForConstantTableBase) {
1104     // This is really the worst case but generally it's only 1 instruction.
1105     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1106   } else {
1107     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1108   }
1109 }
1110 
1111 #ifndef PRODUCT
1112 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1113   char reg[128];
1114   ra_->dump_register(this, reg);
1115   if (UseRDPCForConstantTableBase) {
1116     st->print("RDPC   %s\t! constant table base", reg);
1117   } else {
1118     st->print("SET    &constanttable,%s\t! constant table base", reg);
1119   }
1120 }
1121 #endif
1122 
1123 
1124 //=============================================================================
1125 
1126 #ifndef PRODUCT
1127 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1128   Compile* C = ra_->C;
1129 
1130   for (int i = 0; i < OptoPrologueNops; i++) {
1131     st->print_cr("NOP"); st->print("\t");
1132   }
1133 
1134   if( VerifyThread ) {
1135     st->print_cr("Verify_Thread"); st->print("\t");
1136   }
1137 
1138   size_t framesize = C->frame_slots() << LogBytesPerInt;
1139 
1140   // Calls to C2R adapters often do not accept exceptional returns.
1141   // We require that their callers must bang for them.  But be careful, because
1142   // some VM calls (such as call site linkage) can use several kilobytes of
1143   // stack.  But the stack safety zone should account for that.
1144   // See bugs 4446381, 4468289, 4497237.
1145   if (C->need_stack_bang(framesize)) {
1146     st->print_cr("! stack bang"); st->print("\t");
1147   }
1148 
1149   if (Assembler::is_simm13(-framesize)) {
1150     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1151   } else {
1152     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1153     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1154     st->print   ("SAVE   R_SP,R_G3,R_SP");
1155   }
1156 
1157 }
1158 #endif
1159 
1160 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1161   Compile* C = ra_->C;
1162   MacroAssembler _masm(&cbuf);
1163 
1164   for (int i = 0; i < OptoPrologueNops; i++) {
1165     __ nop();
1166   }
1167 
1168   __ verify_thread();
1169 
1170   size_t framesize = C->frame_slots() << LogBytesPerInt;
1171   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1172   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1173 
1174   // Calls to C2R adapters often do not accept exceptional returns.
1175   // We require that their callers must bang for them.  But be careful, because
1176   // some VM calls (such as call site linkage) can use several kilobytes of
1177   // stack.  But the stack safety zone should account for that.
1178   // See bugs 4446381, 4468289, 4497237.
1179   if (C->need_stack_bang(framesize)) {
1180     __ generate_stack_overflow_check(framesize);
1181   }
1182 
1183   if (Assembler::is_simm13(-framesize)) {
1184     __ save(SP, -framesize, SP);
1185   } else {
1186     __ sethi(-framesize & ~0x3ff, G3);
1187     __ add(G3, -framesize & 0x3ff, G3);
1188     __ save(SP, G3, SP);
1189   }
1190   C->set_frame_complete( __ offset() );
1191 
1192   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1193     // NOTE: We set the table base offset here because users might be
1194     // emitted before MachConstantBaseNode.
1195     Compile::ConstantTable& constant_table = C->constant_table();
1196     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1197   }
1198 }
1199 
1200 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1201   return MachNode::size(ra_);
1202 }
1203 
1204 int MachPrologNode::reloc() const {
1205   return 10; // a large enough number
1206 }
1207 
1208 //=============================================================================
1209 #ifndef PRODUCT
1210 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1211   Compile* C = ra_->C;
1212 
1213   if( do_polling() && ra_->C->is_method_compilation() ) {
1214     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1215 #ifdef _LP64
1216     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1217 #else
1218     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1219 #endif
1220   }
1221 
1222   if( do_polling() )
1223     st->print("RET\n\t");
1224 
1225   st->print("RESTORE");
1226 }
1227 #endif
1228 
1229 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1230   MacroAssembler _masm(&cbuf);
1231   Compile* C = ra_->C;
1232 
1233   __ verify_thread();
1234 
1235   // If this does safepoint polling, then do it here
1236   if( do_polling() && ra_->C->is_method_compilation() ) {
1237     AddressLiteral polling_page(os::get_polling_page());
1238     __ sethi(polling_page, L0);
1239     __ relocate(relocInfo::poll_return_type);
1240     __ ld_ptr( L0, 0, G0 );
1241   }
1242 
1243   // If this is a return, then stuff the restore in the delay slot
1244   if( do_polling() ) {
1245     __ ret();
1246     __ delayed()->restore();
1247   } else {
1248     __ restore();
1249   }
1250 }
1251 
1252 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1253   return MachNode::size(ra_);
1254 }
1255 
1256 int MachEpilogNode::reloc() const {
1257   return 16; // a large enough number
1258 }
1259 
1260 const Pipeline * MachEpilogNode::pipeline() const {
1261   return MachNode::pipeline_class();
1262 }
1263 
1264 int MachEpilogNode::safepoint_offset() const {
1265   assert( do_polling(), "no return for this epilog node");
1266   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1267 }
1268 
1269 //=============================================================================
1270 
1271 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1272 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1273 static enum RC rc_class( OptoReg::Name reg ) {
1274   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1275   if (OptoReg::is_stack(reg)) return rc_stack;
1276   VMReg r = OptoReg::as_VMReg(reg);
1277   if (r->is_Register()) return rc_int;
1278   assert(r->is_FloatRegister(), "must be");
1279   return rc_float;
1280 }
1281 
1282 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1283   if( cbuf ) {
1284     // Better yet would be some mechanism to handle variable-size matches correctly
1285     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1286       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1287     } else {
1288       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1289     }
1290   }
1291 #ifndef PRODUCT
1292   else if( !do_size ) {
1293     if( size != 0 ) st->print("\n\t");
1294     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1295     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1296   }
1297 #endif
1298   return size+4;
1299 }
1300 
1301 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1302   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1303 #ifndef PRODUCT
1304   else if( !do_size ) {
1305     if( size != 0 ) st->print("\n\t");
1306     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1307   }
1308 #endif
1309   return size+4;
1310 }
1311 
1312 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1313                                         PhaseRegAlloc *ra_,
1314                                         bool do_size,
1315                                         outputStream* st ) const {
1316   // Get registers to move
1317   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1318   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1319   OptoReg::Name dst_second = ra_->get_reg_second(this );
1320   OptoReg::Name dst_first = ra_->get_reg_first(this );
1321 
1322   enum RC src_second_rc = rc_class(src_second);
1323   enum RC src_first_rc = rc_class(src_first);
1324   enum RC dst_second_rc = rc_class(dst_second);
1325   enum RC dst_first_rc = rc_class(dst_first);
1326 
1327   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1328 
1329   // Generate spill code!
1330   int size = 0;
1331 
1332   if( src_first == dst_first && src_second == dst_second )
1333     return size;            // Self copy, no move
1334 
1335   // --------------------------------------
1336   // Check for mem-mem move.  Load into unused float registers and fall into
1337   // the float-store case.
1338   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1339     int offset = ra_->reg2offset(src_first);
1340     // Further check for aligned-adjacent pair, so we can use a double load
1341     if( (src_first&1)==0 && src_first+1 == src_second ) {
1342       src_second    = OptoReg::Name(R_F31_num);
1343       src_second_rc = rc_float;
1344       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1345     } else {
1346       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1347     }
1348     src_first    = OptoReg::Name(R_F30_num);
1349     src_first_rc = rc_float;
1350   }
1351 
1352   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1353     int offset = ra_->reg2offset(src_second);
1354     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1355     src_second    = OptoReg::Name(R_F31_num);
1356     src_second_rc = rc_float;
1357   }
1358 
1359   // --------------------------------------
1360   // Check for float->int copy; requires a trip through memory
1361   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1362     int offset = frame::register_save_words*wordSize;
1363     if (cbuf) {
1364       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1365       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1366       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1368     }
1369 #ifndef PRODUCT
1370     else if (!do_size) {
1371       if (size != 0) st->print("\n\t");
1372       st->print(  "SUB    R_SP,16,R_SP\n");
1373       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1374       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1375       st->print("\tADD    R_SP,16,R_SP\n");
1376     }
1377 #endif
1378     size += 16;
1379   }
1380 
1381   // Check for float->int copy on T4
1382   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1383     // Further check for aligned-adjacent pair, so we can use a double move
1384     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1385       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1386     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1387   }
1388   // Check for int->float copy on T4
1389   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1390     // Further check for aligned-adjacent pair, so we can use a double move
1391     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1392       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1393     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1394   }
1395 
1396   // --------------------------------------
1397   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1398   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1399   // hardware does the flop for me.  Doubles are always aligned, so no problem
1400   // there.  Misaligned sources only come from native-long-returns (handled
1401   // special below).
1402 #ifndef _LP64
1403   if( src_first_rc == rc_int &&     // source is already big-endian
1404       src_second_rc != rc_bad &&    // 64-bit move
1405       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1406     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1407     // Do the big-endian flop.
1408     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1409     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1410   }
1411 #endif
1412 
1413   // --------------------------------------
1414   // Check for integer reg-reg copy
1415   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1416 #ifndef _LP64
1417     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1418       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1419       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1420       //       operand contains the least significant word of the 64-bit value and vice versa.
1421       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1422       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1423       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1424       if( cbuf ) {
1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1427         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1428 #ifndef PRODUCT
1429       } else if( !do_size ) {
1430         if( size != 0 ) st->print("\n\t");
1431         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1432         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1433         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1434 #endif
1435       }
1436       return size+12;
1437     }
1438     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1439       // returning a long value in I0/I1
1440       // a SpillCopy must be able to target a return instruction's reg_class
1441       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1442       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1443       //       operand contains the least significant word of the 64-bit value and vice versa.
1444       OptoReg::Name tdest = dst_first;
1445 
1446       if (src_first == dst_first) {
1447         tdest = OptoReg::Name(R_O7_num);
1448         size += 4;
1449       }
1450 
1451       if( cbuf ) {
1452         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1453         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1454         // ShrL_reg_imm6
1455         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1456         // ShrR_reg_imm6  src, 0, dst
1457         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1458         if (tdest != dst_first) {
1459           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1460         }
1461       }
1462 #ifndef PRODUCT
1463       else if( !do_size ) {
1464         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1465         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1466         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1467         if (tdest != dst_first) {
1468           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1469         }
1470       }
1471 #endif // PRODUCT
1472       return size+8;
1473     }
1474 #endif // !_LP64
1475     // Else normal reg-reg copy
1476     assert( src_second != dst_first, "smashed second before evacuating it" );
1477     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1478     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1479     // This moves an aligned adjacent pair.
1480     // See if we are done.
1481     if( src_first+1 == src_second && dst_first+1 == dst_second )
1482       return size;
1483   }
1484 
1485   // Check for integer store
1486   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1487     int offset = ra_->reg2offset(dst_first);
1488     // Further check for aligned-adjacent pair, so we can use a double store
1489     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1490       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1491     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1492   }
1493 
1494   // Check for integer load
1495   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1496     int offset = ra_->reg2offset(src_first);
1497     // Further check for aligned-adjacent pair, so we can use a double load
1498     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1499       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1500     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1501   }
1502 
1503   // Check for float reg-reg copy
1504   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1505     // Further check for aligned-adjacent pair, so we can use a double move
1506     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1507       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1508     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1509   }
1510 
1511   // Check for float store
1512   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1513     int offset = ra_->reg2offset(dst_first);
1514     // Further check for aligned-adjacent pair, so we can use a double store
1515     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1516       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1517     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1518   }
1519 
1520   // Check for float load
1521   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1522     int offset = ra_->reg2offset(src_first);
1523     // Further check for aligned-adjacent pair, so we can use a double load
1524     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1525       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1526     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1527   }
1528 
1529   // --------------------------------------------------------------------
1530   // Check for hi bits still needing moving.  Only happens for misaligned
1531   // arguments to native calls.
1532   if( src_second == dst_second )
1533     return size;               // Self copy; no move
1534   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1535 
1536 #ifndef _LP64
1537   // In the LP64 build, all registers can be moved as aligned/adjacent
1538   // pairs, so there's never any need to move the high bits separately.
1539   // The 32-bit builds have to deal with the 32-bit ABI which can force
1540   // all sorts of silly alignment problems.
1541 
1542   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1543   // 32-bits of a 64-bit register, but are needed in low bits of another
1544   // register (else it's a hi-bits-to-hi-bits copy which should have
1545   // happened already as part of a 64-bit move)
1546   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1547     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1548     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1549     // Shift src_second down to dst_second's low bits.
1550     if( cbuf ) {
1551       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1552 #ifndef PRODUCT
1553     } else if( !do_size ) {
1554       if( size != 0 ) st->print("\n\t");
1555       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1556 #endif
1557     }
1558     return size+4;
1559   }
1560 
1561   // Check for high word integer store.  Must down-shift the hi bits
1562   // into a temp register, then fall into the case of storing int bits.
1563   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1564     // Shift src_second down to dst_second's low bits.
1565     if( cbuf ) {
1566       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1567 #ifndef PRODUCT
1568     } else if( !do_size ) {
1569       if( size != 0 ) st->print("\n\t");
1570       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1571 #endif
1572     }
1573     size+=4;
1574     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1575   }
1576 
1577   // Check for high word integer load
1578   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1579     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1580 
1581   // Check for high word integer store
1582   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1583     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1584 
1585   // Check for high word float store
1586   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1587     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1588 
1589 #endif // !_LP64
1590 
1591   Unimplemented();
1592 }
1593 
1594 #ifndef PRODUCT
1595 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1596   implementation( NULL, ra_, false, st );
1597 }
1598 #endif
1599 
1600 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1601   implementation( &cbuf, ra_, false, NULL );
1602 }
1603 
1604 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1605   return implementation( NULL, ra_, true, NULL );
1606 }
1607 
1608 //=============================================================================
1609 #ifndef PRODUCT
1610 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1611   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1612 }
1613 #endif
1614 
1615 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1616   MacroAssembler _masm(&cbuf);
1617   for(int i = 0; i < _count; i += 1) {
1618     __ nop();
1619   }
1620 }
1621 
1622 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1623   return 4 * _count;
1624 }
1625 
1626 
1627 //=============================================================================
1628 #ifndef PRODUCT
1629 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1630   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1631   int reg = ra_->get_reg_first(this);
1632   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1633 }
1634 #endif
1635 
1636 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1637   MacroAssembler _masm(&cbuf);
1638   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1639   int reg = ra_->get_encode(this);
1640 
1641   if (Assembler::is_simm13(offset)) {
1642      __ add(SP, offset, reg_to_register_object(reg));
1643   } else {
1644      __ set(offset, O7);
1645      __ add(SP, O7, reg_to_register_object(reg));
1646   }
1647 }
1648 
1649 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1650   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1651   assert(ra_ == ra_->C->regalloc(), "sanity");
1652   return ra_->C->scratch_emit_size(this);
1653 }
1654 
1655 //=============================================================================
1656 #ifndef PRODUCT
1657 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1658   st->print_cr("\nUEP:");
1659 #ifdef    _LP64
1660   if (UseCompressedClassPointers) {
1661     assert(Universe::heap() != NULL, "java heap should be initialized");
1662     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1663     st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1664     if (Universe::narrow_klass_shift() != 0) {
1665       st->print_cr("\tSLL    R_G5,3,R_G5");
1666     }
1667     st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1668     st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1669   } else {
1670     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1671   }
1672   st->print_cr("\tCMP    R_G5,R_G3" );
1673   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1674 #else  // _LP64
1675   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1676   st->print_cr("\tCMP    R_G5,R_G3" );
1677   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1678 #endif // _LP64
1679 }
1680 #endif
1681 
1682 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1683   MacroAssembler _masm(&cbuf);
1684   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1685   Register temp_reg   = G3;
1686   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1687 
1688   // Load klass from receiver
1689   __ load_klass(O0, temp_reg);
1690   // Compare against expected klass
1691   __ cmp(temp_reg, G5_ic_reg);
1692   // Branch to miss code, checks xcc or icc depending
1693   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1694 }
1695 
1696 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1697   return MachNode::size(ra_);
1698 }
1699 
1700 
1701 //=============================================================================
1702 
1703 uint size_exception_handler() {
1704   if (TraceJumps) {
1705     return (400); // just a guess
1706   }
1707   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1708 }
1709 
1710 uint size_deopt_handler() {
1711   if (TraceJumps) {
1712     return (400); // just a guess
1713   }
1714   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1715 }
1716 
1717 // Emit exception handler code.
1718 int emit_exception_handler(CodeBuffer& cbuf) {
1719   Register temp_reg = G3;
1720   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1721   MacroAssembler _masm(&cbuf);
1722 
1723   address base =
1724   __ start_a_stub(size_exception_handler());
1725   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1726 
1727   int offset = __ offset();
1728 
1729   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1730   __ delayed()->nop();
1731 
1732   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1733 
1734   __ end_a_stub();
1735 
1736   return offset;
1737 }
1738 
1739 int emit_deopt_handler(CodeBuffer& cbuf) {
1740   // Can't use any of the current frame's registers as we may have deopted
1741   // at a poll and everything (including G3) can be live.
1742   Register temp_reg = L0;
1743   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1744   MacroAssembler _masm(&cbuf);
1745 
1746   address base =
1747   __ start_a_stub(size_deopt_handler());
1748   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1749 
1750   int offset = __ offset();
1751   __ save_frame(0);
1752   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1753   __ delayed()->restore();
1754 
1755   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1756 
1757   __ end_a_stub();
1758   return offset;
1759 
1760 }
1761 
1762 // Given a register encoding, produce a Integer Register object
1763 static Register reg_to_register_object(int register_encoding) {
1764   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1765   return as_Register(register_encoding);
1766 }
1767 
1768 // Given a register encoding, produce a single-precision Float Register object
1769 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1770   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1771   return as_SingleFloatRegister(register_encoding);
1772 }
1773 
1774 // Given a register encoding, produce a double-precision Float Register object
1775 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1776   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1777   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1778   return as_DoubleFloatRegister(register_encoding);
1779 }
1780 
1781 const bool Matcher::match_rule_supported(int opcode) {
1782   if (!has_match_rule(opcode))
1783     return false;
1784 
1785   switch (opcode) {
1786   case Op_CountLeadingZerosI:
1787   case Op_CountLeadingZerosL:
1788   case Op_CountTrailingZerosI:
1789   case Op_CountTrailingZerosL:
1790   case Op_PopCountI:
1791   case Op_PopCountL:
1792     if (!UsePopCountInstruction)
1793       return false;
1794   case Op_CompareAndSwapL:
1795 #ifdef _LP64
1796   case Op_CompareAndSwapP:
1797 #endif
1798     if (!VM_Version::supports_cx8())
1799       return false;
1800     break;
1801   }
1802 
1803   return true;  // Per default match rules are supported.
1804 }
1805 
1806 int Matcher::regnum_to_fpu_offset(int regnum) {
1807   return regnum - 32; // The FP registers are in the second chunk
1808 }
1809 
1810 #ifdef ASSERT
1811 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1812 #endif
1813 
1814 // Vector width in bytes
1815 const int Matcher::vector_width_in_bytes(BasicType bt) {
1816   assert(MaxVectorSize == 8, "");
1817   return 8;
1818 }
1819 
1820 // Vector ideal reg
1821 const int Matcher::vector_ideal_reg(int size) {
1822   assert(MaxVectorSize == 8, "");
1823   return Op_RegD;
1824 }
1825 
1826 const int Matcher::vector_shift_count_ideal_reg(int size) {
1827   fatal("vector shift is not supported");
1828   return Node::NotAMachineReg;
1829 }
1830 
1831 // Limits on vector size (number of elements) loaded into vector.
1832 const int Matcher::max_vector_size(const BasicType bt) {
1833   assert(is_java_primitive(bt), "only primitive type vectors");
1834   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1835 }
1836 
1837 const int Matcher::min_vector_size(const BasicType bt) {
1838   return max_vector_size(bt); // Same as max.
1839 }
1840 
1841 // SPARC doesn't support misaligned vectors store/load.
1842 const bool Matcher::misaligned_vectors_ok() {
1843   return false;
1844 }
1845 
1846 // USII supports fxtof through the whole range of number, USIII doesn't
1847 const bool Matcher::convL2FSupported(void) {
1848   return VM_Version::has_fast_fxtof();
1849 }
1850 
1851 // Is this branch offset short enough that a short branch can be used?
1852 //
1853 // NOTE: If the platform does not provide any short branch variants, then
1854 //       this method should return false for offset 0.
1855 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1856   // The passed offset is relative to address of the branch.
1857   // Don't need to adjust the offset.
1858   return UseCBCond && Assembler::is_simm12(offset);
1859 }
1860 
1861 const bool Matcher::isSimpleConstant64(jlong value) {
1862   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1863   // Depends on optimizations in MacroAssembler::setx.
1864   int hi = (int)(value >> 32);
1865   int lo = (int)(value & ~0);
1866   return (hi == 0) || (hi == -1) || (lo == 0);
1867 }
1868 
1869 // No scaling for the parameter the ClearArray node.
1870 const bool Matcher::init_array_count_is_in_bytes = true;
1871 
1872 // Threshold size for cleararray.
1873 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1874 
1875 // No additional cost for CMOVL.
1876 const int Matcher::long_cmove_cost() { return 0; }
1877 
1878 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1879 const int Matcher::float_cmove_cost() {
1880   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1881 }
1882 
1883 // Should the Matcher clone shifts on addressing modes, expecting them to
1884 // be subsumed into complex addressing expressions or compute them into
1885 // registers?  True for Intel but false for most RISCs
1886 const bool Matcher::clone_shift_expressions = false;
1887 
1888 // Do we need to mask the count passed to shift instructions or does
1889 // the cpu only look at the lower 5/6 bits anyway?
1890 const bool Matcher::need_masked_shift_count = false;
1891 
1892 bool Matcher::narrow_oop_use_complex_address() {
1893   NOT_LP64(ShouldNotCallThis());
1894   assert(UseCompressedOops, "only for compressed oops code");
1895   return false;
1896 }
1897 
1898 bool Matcher::narrow_klass_use_complex_address() {
1899   NOT_LP64(ShouldNotCallThis());
1900   assert(UseCompressedClassPointers, "only for compressed klass code");
1901   return false;
1902 }
1903 
1904 // Is it better to copy float constants, or load them directly from memory?
1905 // Intel can load a float constant from a direct address, requiring no
1906 // extra registers.  Most RISCs will have to materialize an address into a
1907 // register first, so they would do better to copy the constant from stack.
1908 const bool Matcher::rematerialize_float_constants = false;
1909 
1910 // If CPU can load and store mis-aligned doubles directly then no fixup is
1911 // needed.  Else we split the double into 2 integer pieces and move it
1912 // piece-by-piece.  Only happens when passing doubles into C code as the
1913 // Java calling convention forces doubles to be aligned.
1914 #ifdef _LP64
1915 const bool Matcher::misaligned_doubles_ok = true;
1916 #else
1917 const bool Matcher::misaligned_doubles_ok = false;
1918 #endif
1919 
1920 // No-op on SPARC.
1921 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1922 }
1923 
1924 // Advertise here if the CPU requires explicit rounding operations
1925 // to implement the UseStrictFP mode.
1926 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1927 
1928 // Are floats conerted to double when stored to stack during deoptimization?
1929 // Sparc does not handle callee-save floats.
1930 bool Matcher::float_in_double() { return false; }
1931 
1932 // Do ints take an entire long register or just half?
1933 // Note that we if-def off of _LP64.
1934 // The relevant question is how the int is callee-saved.  In _LP64
1935 // the whole long is written but de-opt'ing will have to extract
1936 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1937 #ifdef _LP64
1938 const bool Matcher::int_in_long = true;
1939 #else
1940 const bool Matcher::int_in_long = false;
1941 #endif
1942 
1943 // Return whether or not this register is ever used as an argument.  This
1944 // function is used on startup to build the trampoline stubs in generateOptoStub.
1945 // Registers not mentioned will be killed by the VM call in the trampoline, and
1946 // arguments in those registers not be available to the callee.
1947 bool Matcher::can_be_java_arg( int reg ) {
1948   // Standard sparc 6 args in registers
1949   if( reg == R_I0_num ||
1950       reg == R_I1_num ||
1951       reg == R_I2_num ||
1952       reg == R_I3_num ||
1953       reg == R_I4_num ||
1954       reg == R_I5_num ) return true;
1955 #ifdef _LP64
1956   // 64-bit builds can pass 64-bit pointers and longs in
1957   // the high I registers
1958   if( reg == R_I0H_num ||
1959       reg == R_I1H_num ||
1960       reg == R_I2H_num ||
1961       reg == R_I3H_num ||
1962       reg == R_I4H_num ||
1963       reg == R_I5H_num ) return true;
1964 
1965   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1966     return true;
1967   }
1968 
1969 #else
1970   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1971   // Longs cannot be passed in O regs, because O regs become I regs
1972   // after a 'save' and I regs get their high bits chopped off on
1973   // interrupt.
1974   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1975   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1976 #endif
1977   // A few float args in registers
1978   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1979 
1980   return false;
1981 }
1982 
1983 bool Matcher::is_spillable_arg( int reg ) {
1984   return can_be_java_arg(reg);
1985 }
1986 
1987 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1988   // Use hardware SDIVX instruction when it is
1989   // faster than a code which use multiply.
1990   return VM_Version::has_fast_idiv();
1991 }
1992 
1993 // Register for DIVI projection of divmodI
1994 RegMask Matcher::divI_proj_mask() {
1995   ShouldNotReachHere();
1996   return RegMask();
1997 }
1998 
1999 // Register for MODI projection of divmodI
2000 RegMask Matcher::modI_proj_mask() {
2001   ShouldNotReachHere();
2002   return RegMask();
2003 }
2004 
2005 // Register for DIVL projection of divmodL
2006 RegMask Matcher::divL_proj_mask() {
2007   ShouldNotReachHere();
2008   return RegMask();
2009 }
2010 
2011 // Register for MODL projection of divmodL
2012 RegMask Matcher::modL_proj_mask() {
2013   ShouldNotReachHere();
2014   return RegMask();
2015 }
2016 
2017 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2018   return L7_REGP_mask();
2019 }
2020 
2021 const RegMask Matcher::mathExactI_result_proj_mask() {
2022   return G1_REGI_mask();
2023 }
2024 
2025 const RegMask Matcher::mathExactL_result_proj_mask() {
2026   return G1_REGL_mask();
2027 }
2028 
2029 const RegMask Matcher::mathExactI_flags_proj_mask() {
2030   return INT_FLAGS_mask();
2031 }
2032 
2033 
2034 %}
2035 
2036 
2037 // The intptr_t operand types, defined by textual substitution.
2038 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2039 #ifdef _LP64
2040 #define immX      immL
2041 #define immX13    immL13
2042 #define immX13m7  immL13m7
2043 #define iRegX     iRegL
2044 #define g1RegX    g1RegL
2045 #else
2046 #define immX      immI
2047 #define immX13    immI13
2048 #define immX13m7  immI13m7
2049 #define iRegX     iRegI
2050 #define g1RegX    g1RegI
2051 #endif
2052 
2053 //----------ENCODING BLOCK-----------------------------------------------------
2054 // This block specifies the encoding classes used by the compiler to output
2055 // byte streams.  Encoding classes are parameterized macros used by
2056 // Machine Instruction Nodes in order to generate the bit encoding of the
2057 // instruction.  Operands specify their base encoding interface with the
2058 // interface keyword.  There are currently supported four interfaces,
2059 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2060 // operand to generate a function which returns its register number when
2061 // queried.   CONST_INTER causes an operand to generate a function which
2062 // returns the value of the constant when queried.  MEMORY_INTER causes an
2063 // operand to generate four functions which return the Base Register, the
2064 // Index Register, the Scale Value, and the Offset Value of the operand when
2065 // queried.  COND_INTER causes an operand to generate six functions which
2066 // return the encoding code (ie - encoding bits for the instruction)
2067 // associated with each basic boolean condition for a conditional instruction.
2068 //
2069 // Instructions specify two basic values for encoding.  Again, a function
2070 // is available to check if the constant displacement is an oop. They use the
2071 // ins_encode keyword to specify their encoding classes (which must be
2072 // a sequence of enc_class names, and their parameters, specified in
2073 // the encoding block), and they use the
2074 // opcode keyword to specify, in order, their primary, secondary, and
2075 // tertiary opcode.  Only the opcode sections which a particular instruction
2076 // needs for encoding need to be specified.
2077 encode %{
2078   enc_class enc_untested %{
2079 #ifdef ASSERT
2080     MacroAssembler _masm(&cbuf);
2081     __ untested("encoding");
2082 #endif
2083   %}
2084 
2085   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2086     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2087                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2088   %}
2089 
2090   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2091     emit_form3_mem_reg(cbuf, this, $primary, -1,
2092                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2093   %}
2094 
2095   enc_class form3_mem_prefetch_read( memory mem ) %{
2096     emit_form3_mem_reg(cbuf, this, $primary, -1,
2097                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2098   %}
2099 
2100   enc_class form3_mem_prefetch_write( memory mem ) %{
2101     emit_form3_mem_reg(cbuf, this, $primary, -1,
2102                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2103   %}
2104 
2105   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2106     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2107     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2108     guarantee($mem$$index == R_G0_enc, "double index?");
2109     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2110     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2111     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2112     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2113   %}
2114 
2115   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2116     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2117     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2118     guarantee($mem$$index == R_G0_enc, "double index?");
2119     // Load long with 2 instructions
2120     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2121     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2122   %}
2123 
2124   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2125   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2126     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2127     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2128   %}
2129 
2130   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2131     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2132     if( $rs2$$reg != $rd$$reg )
2133       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2134   %}
2135 
2136   // Target lo half of long
2137   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2138     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2139     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2140       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2141   %}
2142 
2143   // Source lo half of long
2144   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2145     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2146     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2147       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2148   %}
2149 
2150   // Target hi half of long
2151   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2152     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2153   %}
2154 
2155   // Source lo half of long, and leave it sign extended.
2156   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2157     // Sign extend low half
2158     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2159   %}
2160 
2161   // Source hi half of long, and leave it sign extended.
2162   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2163     // Shift high half to low half
2164     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2165   %}
2166 
2167   // Source hi half of long
2168   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2169     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2170     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2171       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2172   %}
2173 
2174   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2175     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2176   %}
2177 
2178   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2179     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2180     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2181   %}
2182 
2183   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2184     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2185     // clear if nothing else is happening
2186     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2187     // blt,a,pn done
2188     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2189     // mov dst,-1 in delay slot
2190     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2191   %}
2192 
2193   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2194     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2195   %}
2196 
2197   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2198     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2199   %}
2200 
2201   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2202     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2203   %}
2204 
2205   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2206     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2207   %}
2208 
2209   enc_class move_return_pc_to_o1() %{
2210     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2211   %}
2212 
2213 #ifdef _LP64
2214   /* %%% merge with enc_to_bool */
2215   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2216     MacroAssembler _masm(&cbuf);
2217 
2218     Register   src_reg = reg_to_register_object($src$$reg);
2219     Register   dst_reg = reg_to_register_object($dst$$reg);
2220     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2221   %}
2222 #endif
2223 
2224   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2225     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2226     MacroAssembler _masm(&cbuf);
2227 
2228     Register   p_reg = reg_to_register_object($p$$reg);
2229     Register   q_reg = reg_to_register_object($q$$reg);
2230     Register   y_reg = reg_to_register_object($y$$reg);
2231     Register tmp_reg = reg_to_register_object($tmp$$reg);
2232 
2233     __ subcc( p_reg, q_reg,   p_reg );
2234     __ add  ( p_reg, y_reg, tmp_reg );
2235     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2236   %}
2237 
2238   enc_class form_d2i_helper(regD src, regF dst) %{
2239     // fcmp %fcc0,$src,$src
2240     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2241     // branch %fcc0 not-nan, predict taken
2242     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2243     // fdtoi $src,$dst
2244     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2245     // fitos $dst,$dst (if nan)
2246     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2247     // clear $dst (if nan)
2248     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2249     // carry on here...
2250   %}
2251 
2252   enc_class form_d2l_helper(regD src, regD dst) %{
2253     // fcmp %fcc0,$src,$src  check for NAN
2254     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2255     // branch %fcc0 not-nan, predict taken
2256     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2257     // fdtox $src,$dst   convert in delay slot
2258     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2259     // fxtod $dst,$dst  (if nan)
2260     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2261     // clear $dst (if nan)
2262     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2263     // carry on here...
2264   %}
2265 
2266   enc_class form_f2i_helper(regF src, regF dst) %{
2267     // fcmps %fcc0,$src,$src
2268     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2269     // branch %fcc0 not-nan, predict taken
2270     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2271     // fstoi $src,$dst
2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2273     // fitos $dst,$dst (if nan)
2274     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2275     // clear $dst (if nan)
2276     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2277     // carry on here...
2278   %}
2279 
2280   enc_class form_f2l_helper(regF src, regD dst) %{
2281     // fcmps %fcc0,$src,$src
2282     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2283     // branch %fcc0 not-nan, predict taken
2284     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2285     // fstox $src,$dst
2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2287     // fxtod $dst,$dst (if nan)
2288     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2289     // clear $dst (if nan)
2290     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2291     // carry on here...
2292   %}
2293 
2294   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2295   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2296   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2297   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2298 
2299   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2300 
2301   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2302   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2303 
2304   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2305     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2306   %}
2307 
2308   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2309     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2310   %}
2311 
2312   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2313     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2314   %}
2315 
2316   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2317     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2318   %}
2319 
2320   enc_class form3_convI2F(regF rs2, regF rd) %{
2321     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2322   %}
2323 
2324   // Encloding class for traceable jumps
2325   enc_class form_jmpl(g3RegP dest) %{
2326     emit_jmpl(cbuf, $dest$$reg);
2327   %}
2328 
2329   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2330     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2331   %}
2332 
2333   enc_class form2_nop() %{
2334     emit_nop(cbuf);
2335   %}
2336 
2337   enc_class form2_illtrap() %{
2338     emit_illtrap(cbuf);
2339   %}
2340 
2341 
2342   // Compare longs and convert into -1, 0, 1.
2343   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2344     // CMP $src1,$src2
2345     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2346     // blt,a,pn done
2347     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2348     // mov dst,-1 in delay slot
2349     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2350     // bgt,a,pn done
2351     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2352     // mov dst,1 in delay slot
2353     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2354     // CLR    $dst
2355     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2356   %}
2357 
2358   enc_class enc_PartialSubtypeCheck() %{
2359     MacroAssembler _masm(&cbuf);
2360     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2361     __ delayed()->nop();
2362   %}
2363 
2364   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2365     MacroAssembler _masm(&cbuf);
2366     Label* L = $labl$$label;
2367     Assembler::Predict predict_taken =
2368       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2369 
2370     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2371     __ delayed()->nop();
2372   %}
2373 
2374   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2375     MacroAssembler _masm(&cbuf);
2376     Label* L = $labl$$label;
2377     Assembler::Predict predict_taken =
2378       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2379 
2380     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2381     __ delayed()->nop();
2382   %}
2383 
2384   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2385     int op = (Assembler::arith_op << 30) |
2386              ($dst$$reg << 25) |
2387              (Assembler::movcc_op3 << 19) |
2388              (1 << 18) |                    // cc2 bit for 'icc'
2389              ($cmp$$cmpcode << 14) |
2390              (0 << 13) |                    // select register move
2391              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2392              ($src$$reg << 0);
2393     cbuf.insts()->emit_int32(op);
2394   %}
2395 
2396   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2397     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2398     int op = (Assembler::arith_op << 30) |
2399              ($dst$$reg << 25) |
2400              (Assembler::movcc_op3 << 19) |
2401              (1 << 18) |                    // cc2 bit for 'icc'
2402              ($cmp$$cmpcode << 14) |
2403              (1 << 13) |                    // select immediate move
2404              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2405              (simm11 << 0);
2406     cbuf.insts()->emit_int32(op);
2407   %}
2408 
2409   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2410     int op = (Assembler::arith_op << 30) |
2411              ($dst$$reg << 25) |
2412              (Assembler::movcc_op3 << 19) |
2413              (0 << 18) |                    // cc2 bit for 'fccX'
2414              ($cmp$$cmpcode << 14) |
2415              (0 << 13) |                    // select register move
2416              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2417              ($src$$reg << 0);
2418     cbuf.insts()->emit_int32(op);
2419   %}
2420 
2421   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2422     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2423     int op = (Assembler::arith_op << 30) |
2424              ($dst$$reg << 25) |
2425              (Assembler::movcc_op3 << 19) |
2426              (0 << 18) |                    // cc2 bit for 'fccX'
2427              ($cmp$$cmpcode << 14) |
2428              (1 << 13) |                    // select immediate move
2429              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2430              (simm11 << 0);
2431     cbuf.insts()->emit_int32(op);
2432   %}
2433 
2434   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2435     int op = (Assembler::arith_op << 30) |
2436              ($dst$$reg << 25) |
2437              (Assembler::fpop2_op3 << 19) |
2438              (0 << 18) |
2439              ($cmp$$cmpcode << 14) |
2440              (1 << 13) |                    // select register move
2441              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2442              ($primary << 5) |              // select single, double or quad
2443              ($src$$reg << 0);
2444     cbuf.insts()->emit_int32(op);
2445   %}
2446 
2447   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2448     int op = (Assembler::arith_op << 30) |
2449              ($dst$$reg << 25) |
2450              (Assembler::fpop2_op3 << 19) |
2451              (0 << 18) |
2452              ($cmp$$cmpcode << 14) |
2453              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2454              ($primary << 5) |              // select single, double or quad
2455              ($src$$reg << 0);
2456     cbuf.insts()->emit_int32(op);
2457   %}
2458 
2459   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2460   // the condition comes from opcode-field instead of an argument.
2461   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2462     int op = (Assembler::arith_op << 30) |
2463              ($dst$$reg << 25) |
2464              (Assembler::movcc_op3 << 19) |
2465              (1 << 18) |                    // cc2 bit for 'icc'
2466              ($primary << 14) |
2467              (0 << 13) |                    // select register move
2468              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2469              ($src$$reg << 0);
2470     cbuf.insts()->emit_int32(op);
2471   %}
2472 
2473   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2474     int op = (Assembler::arith_op << 30) |
2475              ($dst$$reg << 25) |
2476              (Assembler::movcc_op3 << 19) |
2477              (6 << 16) |                    // cc2 bit for 'xcc'
2478              ($primary << 14) |
2479              (0 << 13) |                    // select register move
2480              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2481              ($src$$reg << 0);
2482     cbuf.insts()->emit_int32(op);
2483   %}
2484 
2485   enc_class Set13( immI13 src, iRegI rd ) %{
2486     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2487   %}
2488 
2489   enc_class SetHi22( immI src, iRegI rd ) %{
2490     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2491   %}
2492 
2493   enc_class Set32( immI src, iRegI rd ) %{
2494     MacroAssembler _masm(&cbuf);
2495     __ set($src$$constant, reg_to_register_object($rd$$reg));
2496   %}
2497 
2498   enc_class call_epilog %{
2499     if( VerifyStackAtCalls ) {
2500       MacroAssembler _masm(&cbuf);
2501       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2502       Register temp_reg = G3;
2503       __ add(SP, framesize, temp_reg);
2504       __ cmp(temp_reg, FP);
2505       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2506     }
2507   %}
2508 
2509   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2510   // to G1 so the register allocator will not have to deal with the misaligned register
2511   // pair.
2512   enc_class adjust_long_from_native_call %{
2513 #ifndef _LP64
2514     if (returns_long()) {
2515       //    sllx  O0,32,O0
2516       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2517       //    srl   O1,0,O1
2518       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2519       //    or    O0,O1,G1
2520       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2521     }
2522 #endif
2523   %}
2524 
2525   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2526     // CALL directly to the runtime
2527     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2528     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2529                     /*preserve_g2=*/true);
2530   %}
2531 
2532   enc_class preserve_SP %{
2533     MacroAssembler _masm(&cbuf);
2534     __ mov(SP, L7_mh_SP_save);
2535   %}
2536 
2537   enc_class restore_SP %{
2538     MacroAssembler _masm(&cbuf);
2539     __ mov(L7_mh_SP_save, SP);
2540   %}
2541 
2542   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2543     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2544     // who we intended to call.
2545     if (!_method) {
2546       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2547     } else if (_optimized_virtual) {
2548       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2549     } else {
2550       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2551     }
2552     if (_method) {  // Emit stub for static call.
2553       CompiledStaticCall::emit_to_interp_stub(cbuf);
2554     }
2555   %}
2556 
2557   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2558     MacroAssembler _masm(&cbuf);
2559     __ set_inst_mark();
2560     int vtable_index = this->_vtable_index;
2561     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2562     if (vtable_index < 0) {
2563       // must be invalid_vtable_index, not nonvirtual_vtable_index
2564       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2565       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2566       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2567       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2568       __ ic_call((address)$meth$$method);
2569     } else {
2570       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2571       // Just go thru the vtable
2572       // get receiver klass (receiver already checked for non-null)
2573       // If we end up going thru a c2i adapter interpreter expects method in G5
2574       int off = __ offset();
2575       __ load_klass(O0, G3_scratch);
2576       int klass_load_size;
2577       if (UseCompressedClassPointers) {
2578         assert(Universe::heap() != NULL, "java heap should be initialized");
2579         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2580       } else {
2581         klass_load_size = 1*BytesPerInstWord;
2582       }
2583       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2584       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2585       if (Assembler::is_simm13(v_off)) {
2586         __ ld_ptr(G3, v_off, G5_method);
2587       } else {
2588         // Generate 2 instructions
2589         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2590         __ or3(G5_method, v_off & 0x3ff, G5_method);
2591         // ld_ptr, set_hi, set
2592         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2593                "Unexpected instruction size(s)");
2594         __ ld_ptr(G3, G5_method, G5_method);
2595       }
2596       // NOTE: for vtable dispatches, the vtable entry will never be null.
2597       // However it may very well end up in handle_wrong_method if the
2598       // method is abstract for the particular class.
2599       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2600       // jump to target (either compiled code or c2iadapter)
2601       __ jmpl(G3_scratch, G0, O7);
2602       __ delayed()->nop();
2603     }
2604   %}
2605 
2606   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2607     MacroAssembler _masm(&cbuf);
2608 
2609     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2610     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2611                               // we might be calling a C2I adapter which needs it.
2612 
2613     assert(temp_reg != G5_ic_reg, "conflicting registers");
2614     // Load nmethod
2615     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2616 
2617     // CALL to compiled java, indirect the contents of G3
2618     __ set_inst_mark();
2619     __ callr(temp_reg, G0);
2620     __ delayed()->nop();
2621   %}
2622 
2623 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2624     MacroAssembler _masm(&cbuf);
2625     Register Rdividend = reg_to_register_object($src1$$reg);
2626     Register Rdivisor = reg_to_register_object($src2$$reg);
2627     Register Rresult = reg_to_register_object($dst$$reg);
2628 
2629     __ sra(Rdivisor, 0, Rdivisor);
2630     __ sra(Rdividend, 0, Rdividend);
2631     __ sdivx(Rdividend, Rdivisor, Rresult);
2632 %}
2633 
2634 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2635     MacroAssembler _masm(&cbuf);
2636 
2637     Register Rdividend = reg_to_register_object($src1$$reg);
2638     int divisor = $imm$$constant;
2639     Register Rresult = reg_to_register_object($dst$$reg);
2640 
2641     __ sra(Rdividend, 0, Rdividend);
2642     __ sdivx(Rdividend, divisor, Rresult);
2643 %}
2644 
2645 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2646     MacroAssembler _masm(&cbuf);
2647     Register Rsrc1 = reg_to_register_object($src1$$reg);
2648     Register Rsrc2 = reg_to_register_object($src2$$reg);
2649     Register Rdst  = reg_to_register_object($dst$$reg);
2650 
2651     __ sra( Rsrc1, 0, Rsrc1 );
2652     __ sra( Rsrc2, 0, Rsrc2 );
2653     __ mulx( Rsrc1, Rsrc2, Rdst );
2654     __ srlx( Rdst, 32, Rdst );
2655 %}
2656 
2657 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2658     MacroAssembler _masm(&cbuf);
2659     Register Rdividend = reg_to_register_object($src1$$reg);
2660     Register Rdivisor = reg_to_register_object($src2$$reg);
2661     Register Rresult = reg_to_register_object($dst$$reg);
2662     Register Rscratch = reg_to_register_object($scratch$$reg);
2663 
2664     assert(Rdividend != Rscratch, "");
2665     assert(Rdivisor  != Rscratch, "");
2666 
2667     __ sra(Rdividend, 0, Rdividend);
2668     __ sra(Rdivisor, 0, Rdivisor);
2669     __ sdivx(Rdividend, Rdivisor, Rscratch);
2670     __ mulx(Rscratch, Rdivisor, Rscratch);
2671     __ sub(Rdividend, Rscratch, Rresult);
2672 %}
2673 
2674 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2675     MacroAssembler _masm(&cbuf);
2676 
2677     Register Rdividend = reg_to_register_object($src1$$reg);
2678     int divisor = $imm$$constant;
2679     Register Rresult = reg_to_register_object($dst$$reg);
2680     Register Rscratch = reg_to_register_object($scratch$$reg);
2681 
2682     assert(Rdividend != Rscratch, "");
2683 
2684     __ sra(Rdividend, 0, Rdividend);
2685     __ sdivx(Rdividend, divisor, Rscratch);
2686     __ mulx(Rscratch, divisor, Rscratch);
2687     __ sub(Rdividend, Rscratch, Rresult);
2688 %}
2689 
2690 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2691     MacroAssembler _masm(&cbuf);
2692 
2693     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2694     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2695 
2696     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2697 %}
2698 
2699 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2700     MacroAssembler _masm(&cbuf);
2701 
2702     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2703     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2704 
2705     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2706 %}
2707 
2708 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2709     MacroAssembler _masm(&cbuf);
2710 
2711     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2712     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2713 
2714     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2715 %}
2716 
2717 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2718     MacroAssembler _masm(&cbuf);
2719 
2720     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2721     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2722 
2723     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2724 %}
2725 
2726 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2727     MacroAssembler _masm(&cbuf);
2728 
2729     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2730     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2731 
2732     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2733 %}
2734 
2735 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2736     MacroAssembler _masm(&cbuf);
2737 
2738     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2739     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2740 
2741     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2742 %}
2743 
2744 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2745     MacroAssembler _masm(&cbuf);
2746 
2747     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2748     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2749 
2750     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2751 %}
2752 
2753 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2754     MacroAssembler _masm(&cbuf);
2755 
2756     Register Roop  = reg_to_register_object($oop$$reg);
2757     Register Rbox  = reg_to_register_object($box$$reg);
2758     Register Rscratch = reg_to_register_object($scratch$$reg);
2759     Register Rmark =    reg_to_register_object($scratch2$$reg);
2760 
2761     assert(Roop  != Rscratch, "");
2762     assert(Roop  != Rmark, "");
2763     assert(Rbox  != Rscratch, "");
2764     assert(Rbox  != Rmark, "");
2765 
2766     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2767 %}
2768 
2769 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2770     MacroAssembler _masm(&cbuf);
2771 
2772     Register Roop  = reg_to_register_object($oop$$reg);
2773     Register Rbox  = reg_to_register_object($box$$reg);
2774     Register Rscratch = reg_to_register_object($scratch$$reg);
2775     Register Rmark =    reg_to_register_object($scratch2$$reg);
2776 
2777     assert(Roop  != Rscratch, "");
2778     assert(Roop  != Rmark, "");
2779     assert(Rbox  != Rscratch, "");
2780     assert(Rbox  != Rmark, "");
2781 
2782     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2783   %}
2784 
2785   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2786     MacroAssembler _masm(&cbuf);
2787     Register Rmem = reg_to_register_object($mem$$reg);
2788     Register Rold = reg_to_register_object($old$$reg);
2789     Register Rnew = reg_to_register_object($new$$reg);
2790 
2791     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2792     __ cmp( Rold, Rnew );
2793   %}
2794 
2795   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2796     Register Rmem = reg_to_register_object($mem$$reg);
2797     Register Rold = reg_to_register_object($old$$reg);
2798     Register Rnew = reg_to_register_object($new$$reg);
2799 
2800     MacroAssembler _masm(&cbuf);
2801     __ mov(Rnew, O7);
2802     __ casx(Rmem, Rold, O7);
2803     __ cmp( Rold, O7 );
2804   %}
2805 
2806   // raw int cas, used for compareAndSwap
2807   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2808     Register Rmem = reg_to_register_object($mem$$reg);
2809     Register Rold = reg_to_register_object($old$$reg);
2810     Register Rnew = reg_to_register_object($new$$reg);
2811 
2812     MacroAssembler _masm(&cbuf);
2813     __ mov(Rnew, O7);
2814     __ cas(Rmem, Rold, O7);
2815     __ cmp( Rold, O7 );
2816   %}
2817 
2818   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2819     Register Rres = reg_to_register_object($res$$reg);
2820 
2821     MacroAssembler _masm(&cbuf);
2822     __ mov(1, Rres);
2823     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2824   %}
2825 
2826   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2827     Register Rres = reg_to_register_object($res$$reg);
2828 
2829     MacroAssembler _masm(&cbuf);
2830     __ mov(1, Rres);
2831     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2832   %}
2833 
2834   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2835     MacroAssembler _masm(&cbuf);
2836     Register Rdst = reg_to_register_object($dst$$reg);
2837     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2838                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2839     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2840                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2841 
2842     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2843     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2844   %}
2845 
2846 
2847   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2848     Label Ldone, Lloop;
2849     MacroAssembler _masm(&cbuf);
2850 
2851     Register   str1_reg = reg_to_register_object($str1$$reg);
2852     Register   str2_reg = reg_to_register_object($str2$$reg);
2853     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2854     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2855     Register result_reg = reg_to_register_object($result$$reg);
2856 
2857     assert(result_reg != str1_reg &&
2858            result_reg != str2_reg &&
2859            result_reg != cnt1_reg &&
2860            result_reg != cnt2_reg ,
2861            "need different registers");
2862 
2863     // Compute the minimum of the string lengths(str1_reg) and the
2864     // difference of the string lengths (stack)
2865 
2866     // See if the lengths are different, and calculate min in str1_reg.
2867     // Stash diff in O7 in case we need it for a tie-breaker.
2868     Label Lskip;
2869     __ subcc(cnt1_reg, cnt2_reg, O7);
2870     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2871     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2872     // cnt2 is shorter, so use its count:
2873     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2874     __ bind(Lskip);
2875 
2876     // reallocate cnt1_reg, cnt2_reg, result_reg
2877     // Note:  limit_reg holds the string length pre-scaled by 2
2878     Register limit_reg =   cnt1_reg;
2879     Register  chr2_reg =   cnt2_reg;
2880     Register  chr1_reg = result_reg;
2881     // str{12} are the base pointers
2882 
2883     // Is the minimum length zero?
2884     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2885     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2886     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2887 
2888     // Load first characters
2889     __ lduh(str1_reg, 0, chr1_reg);
2890     __ lduh(str2_reg, 0, chr2_reg);
2891 
2892     // Compare first characters
2893     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2894     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2895     assert(chr1_reg == result_reg, "result must be pre-placed");
2896     __ delayed()->nop();
2897 
2898     {
2899       // Check after comparing first character to see if strings are equivalent
2900       Label LSkip2;
2901       // Check if the strings start at same location
2902       __ cmp(str1_reg, str2_reg);
2903       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2904       __ delayed()->nop();
2905 
2906       // Check if the length difference is zero (in O7)
2907       __ cmp(G0, O7);
2908       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2909       __ delayed()->mov(G0, result_reg);  // result is zero
2910 
2911       // Strings might not be equal
2912       __ bind(LSkip2);
2913     }
2914 
2915     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2916     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2917     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2918 
2919     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2920     __ add(str1_reg, limit_reg, str1_reg);
2921     __ add(str2_reg, limit_reg, str2_reg);
2922     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2923 
2924     // Compare the rest of the characters
2925     __ lduh(str1_reg, limit_reg, chr1_reg);
2926     __ bind(Lloop);
2927     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2928     __ lduh(str2_reg, limit_reg, chr2_reg);
2929     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2930     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2931     assert(chr1_reg == result_reg, "result must be pre-placed");
2932     __ delayed()->inccc(limit_reg, sizeof(jchar));
2933     // annul LDUH if branch is not taken to prevent access past end of string
2934     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2935     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2936 
2937     // If strings are equal up to min length, return the length difference.
2938     __ mov(O7, result_reg);
2939 
2940     // Otherwise, return the difference between the first mismatched chars.
2941     __ bind(Ldone);
2942   %}
2943 
2944 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2945     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2946     MacroAssembler _masm(&cbuf);
2947 
2948     Register   str1_reg = reg_to_register_object($str1$$reg);
2949     Register   str2_reg = reg_to_register_object($str2$$reg);
2950     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2951     Register   tmp1_reg = O7;
2952     Register result_reg = reg_to_register_object($result$$reg);
2953 
2954     assert(result_reg != str1_reg &&
2955            result_reg != str2_reg &&
2956            result_reg !=  cnt_reg &&
2957            result_reg != tmp1_reg ,
2958            "need different registers");
2959 
2960     __ cmp(str1_reg, str2_reg); //same char[] ?
2961     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2962     __ delayed()->add(G0, 1, result_reg);
2963 
2964     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2965     __ delayed()->add(G0, 1, result_reg); // count == 0
2966 
2967     //rename registers
2968     Register limit_reg =    cnt_reg;
2969     Register  chr1_reg = result_reg;
2970     Register  chr2_reg =   tmp1_reg;
2971 
2972     //check for alignment and position the pointers to the ends
2973     __ or3(str1_reg, str2_reg, chr1_reg);
2974     __ andcc(chr1_reg, 0x3, chr1_reg);
2975     // notZero means at least one not 4-byte aligned.
2976     // We could optimize the case when both arrays are not aligned
2977     // but it is not frequent case and it requires additional checks.
2978     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2979     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2980 
2981     // Compare char[] arrays aligned to 4 bytes.
2982     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2983                           chr1_reg, chr2_reg, Ldone);
2984     __ ba(Ldone);
2985     __ delayed()->add(G0, 1, result_reg);
2986 
2987     // char by char compare
2988     __ bind(Lchar);
2989     __ add(str1_reg, limit_reg, str1_reg);
2990     __ add(str2_reg, limit_reg, str2_reg);
2991     __ neg(limit_reg); //negate count
2992 
2993     __ lduh(str1_reg, limit_reg, chr1_reg);
2994     // Lchar_loop
2995     __ bind(Lchar_loop);
2996     __ lduh(str2_reg, limit_reg, chr2_reg);
2997     __ cmp(chr1_reg, chr2_reg);
2998     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2999     __ delayed()->mov(G0, result_reg); //not equal
3000     __ inccc(limit_reg, sizeof(jchar));
3001     // annul LDUH if branch is not taken to prevent access past end of string
3002     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3003     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3004 
3005     __ add(G0, 1, result_reg);  //equal
3006 
3007     __ bind(Ldone);
3008   %}
3009 
3010 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3011     Label Lvector, Ldone, Lloop;
3012     MacroAssembler _masm(&cbuf);
3013 
3014     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3015     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3016     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3017     Register   tmp2_reg = O7;
3018     Register result_reg = reg_to_register_object($result$$reg);
3019 
3020     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3021     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3022 
3023     // return true if the same array
3024     __ cmp(ary1_reg, ary2_reg);
3025     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3026     __ delayed()->add(G0, 1, result_reg); // equal
3027 
3028     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3029     __ delayed()->mov(G0, result_reg);    // not equal
3030 
3031     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3032     __ delayed()->mov(G0, result_reg);    // not equal
3033 
3034     //load the lengths of arrays
3035     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3036     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3037 
3038     // return false if the two arrays are not equal length
3039     __ cmp(tmp1_reg, tmp2_reg);
3040     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3041     __ delayed()->mov(G0, result_reg);     // not equal
3042 
3043     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3044     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3045 
3046     // load array addresses
3047     __ add(ary1_reg, base_offset, ary1_reg);
3048     __ add(ary2_reg, base_offset, ary2_reg);
3049 
3050     // renaming registers
3051     Register chr1_reg  =  result_reg; // for characters in ary1
3052     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3053     Register limit_reg =  tmp1_reg;   // length
3054 
3055     // set byte count
3056     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3057 
3058     // Compare char[] arrays aligned to 4 bytes.
3059     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3060                           chr1_reg, chr2_reg, Ldone);
3061     __ add(G0, 1, result_reg); // equals
3062 
3063     __ bind(Ldone);
3064   %}
3065 
3066   enc_class enc_rethrow() %{
3067     cbuf.set_insts_mark();
3068     Register temp_reg = G3;
3069     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3070     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3071     MacroAssembler _masm(&cbuf);
3072 #ifdef ASSERT
3073     __ save_frame(0);
3074     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3075     __ sethi(last_rethrow_addrlit, L1);
3076     Address addr(L1, last_rethrow_addrlit.low10());
3077     __ rdpc(L2);
3078     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3079     __ st_ptr(L2, addr);
3080     __ restore();
3081 #endif
3082     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3083     __ delayed()->nop();
3084   %}
3085 
3086   enc_class emit_mem_nop() %{
3087     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3088     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3089   %}
3090 
3091   enc_class emit_fadd_nop() %{
3092     // Generates the instruction FMOVS f31,f31
3093     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3094   %}
3095 
3096   enc_class emit_br_nop() %{
3097     // Generates the instruction BPN,PN .
3098     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3099   %}
3100 
3101   enc_class enc_membar_acquire %{
3102     MacroAssembler _masm(&cbuf);
3103     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3104   %}
3105 
3106   enc_class enc_membar_release %{
3107     MacroAssembler _masm(&cbuf);
3108     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3109   %}
3110 
3111   enc_class enc_membar_volatile %{
3112     MacroAssembler _masm(&cbuf);
3113     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3114   %}
3115 
3116 %}
3117 
3118 //----------FRAME--------------------------------------------------------------
3119 // Definition of frame structure and management information.
3120 //
3121 //  S T A C K   L A Y O U T    Allocators stack-slot number
3122 //                             |   (to get allocators register number
3123 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3124 //  r   CALLER     |        |
3125 //  o     |        +--------+      pad to even-align allocators stack-slot
3126 //  w     V        |  pad0  |        numbers; owned by CALLER
3127 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3128 //  h     ^        |   in   |  5
3129 //        |        |  args  |  4   Holes in incoming args owned by SELF
3130 //  |     |        |        |  3
3131 //  |     |        +--------+
3132 //  V     |        | old out|      Empty on Intel, window on Sparc
3133 //        |    old |preserve|      Must be even aligned.
3134 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3135 //        |        |   in   |  3   area for Intel ret address
3136 //     Owned by    |preserve|      Empty on Sparc.
3137 //       SELF      +--------+
3138 //        |        |  pad2  |  2   pad to align old SP
3139 //        |        +--------+  1
3140 //        |        | locks  |  0
3141 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3142 //        |        |  pad1  | 11   pad to align new SP
3143 //        |        +--------+
3144 //        |        |        | 10
3145 //        |        | spills |  9   spills
3146 //        V        |        |  8   (pad0 slot for callee)
3147 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3148 //        ^        |  out   |  7
3149 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3150 //     Owned by    +--------+
3151 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3152 //        |    new |preserve|      Must be even-aligned.
3153 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3154 //        |        |        |
3155 //
3156 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3157 //         known from SELF's arguments and the Java calling convention.
3158 //         Region 6-7 is determined per call site.
3159 // Note 2: If the calling convention leaves holes in the incoming argument
3160 //         area, those holes are owned by SELF.  Holes in the outgoing area
3161 //         are owned by the CALLEE.  Holes should not be nessecary in the
3162 //         incoming area, as the Java calling convention is completely under
3163 //         the control of the AD file.  Doubles can be sorted and packed to
3164 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3165 //         varargs C calling conventions.
3166 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3167 //         even aligned with pad0 as needed.
3168 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3169 //         region 6-11 is even aligned; it may be padded out more so that
3170 //         the region from SP to FP meets the minimum stack alignment.
3171 
3172 frame %{
3173   // What direction does stack grow in (assumed to be same for native & Java)
3174   stack_direction(TOWARDS_LOW);
3175 
3176   // These two registers define part of the calling convention
3177   // between compiled code and the interpreter.
3178   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3179   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3180 
3181   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3182   cisc_spilling_operand_name(indOffset);
3183 
3184   // Number of stack slots consumed by a Monitor enter
3185 #ifdef _LP64
3186   sync_stack_slots(2);
3187 #else
3188   sync_stack_slots(1);
3189 #endif
3190 
3191   // Compiled code's Frame Pointer
3192   frame_pointer(R_SP);
3193 
3194   // Stack alignment requirement
3195   stack_alignment(StackAlignmentInBytes);
3196   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3197   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3198 
3199   // Number of stack slots between incoming argument block and the start of
3200   // a new frame.  The PROLOG must add this many slots to the stack.  The
3201   // EPILOG must remove this many slots.
3202   in_preserve_stack_slots(0);
3203 
3204   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3205   // for calls to C.  Supports the var-args backing area for register parms.
3206   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3207 #ifdef _LP64
3208   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3209   varargs_C_out_slots_killed(12);
3210 #else
3211   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3212   varargs_C_out_slots_killed( 7);
3213 #endif
3214 
3215   // The after-PROLOG location of the return address.  Location of
3216   // return address specifies a type (REG or STACK) and a number
3217   // representing the register number (i.e. - use a register name) or
3218   // stack slot.
3219   return_addr(REG R_I7);          // Ret Addr is in register I7
3220 
3221   // Body of function which returns an OptoRegs array locating
3222   // arguments either in registers or in stack slots for calling
3223   // java
3224   calling_convention %{
3225     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3226 
3227   %}
3228 
3229   // Body of function which returns an OptoRegs array locating
3230   // arguments either in registers or in stack slots for callin
3231   // C.
3232   c_calling_convention %{
3233     // This is obviously always outgoing
3234     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3235   %}
3236 
3237   // Location of native (C/C++) and interpreter return values.  This is specified to
3238   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3239   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3240   // to and from the register pairs is done by the appropriate call and epilog
3241   // opcodes.  This simplifies the register allocator.
3242   c_return_value %{
3243     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3244 #ifdef     _LP64
3245     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3246     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3247     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3248     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3249 #else  // !_LP64
3250     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3251     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3252     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3253     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3254 #endif
3255     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3256                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3257   %}
3258 
3259   // Location of compiled Java return values.  Same as C
3260   return_value %{
3261     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3262 #ifdef     _LP64
3263     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3264     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3265     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3266     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3267 #else  // !_LP64
3268     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3269     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3270     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3271     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3272 #endif
3273     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3274                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3275   %}
3276 
3277 %}
3278 
3279 
3280 //----------ATTRIBUTES---------------------------------------------------------
3281 //----------Operand Attributes-------------------------------------------------
3282 op_attrib op_cost(1);          // Required cost attribute
3283 
3284 //----------Instruction Attributes---------------------------------------------
3285 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3286 ins_attrib ins_size(32);           // Required size attribute (in bits)
3287 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3288 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3289                                    // non-matching short branch variant of some
3290                                                             // long branch?
3291 
3292 //----------OPERANDS-----------------------------------------------------------
3293 // Operand definitions must precede instruction definitions for correct parsing
3294 // in the ADLC because operands constitute user defined types which are used in
3295 // instruction definitions.
3296 
3297 //----------Simple Operands----------------------------------------------------
3298 // Immediate Operands
3299 // Integer Immediate: 32-bit
3300 operand immI() %{
3301   match(ConI);
3302 
3303   op_cost(0);
3304   // formats are generated automatically for constants and base registers
3305   format %{ %}
3306   interface(CONST_INTER);
3307 %}
3308 
3309 // Integer Immediate: 8-bit
3310 operand immI8() %{
3311   predicate(Assembler::is_simm8(n->get_int()));
3312   match(ConI);
3313   op_cost(0);
3314   format %{ %}
3315   interface(CONST_INTER);
3316 %}
3317 
3318 // Integer Immediate: 13-bit
3319 operand immI13() %{
3320   predicate(Assembler::is_simm13(n->get_int()));
3321   match(ConI);
3322   op_cost(0);
3323 
3324   format %{ %}
3325   interface(CONST_INTER);
3326 %}
3327 
3328 // Integer Immediate: 13-bit minus 7
3329 operand immI13m7() %{
3330   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3331   match(ConI);
3332   op_cost(0);
3333 
3334   format %{ %}
3335   interface(CONST_INTER);
3336 %}
3337 
3338 // Integer Immediate: 16-bit
3339 operand immI16() %{
3340   predicate(Assembler::is_simm16(n->get_int()));
3341   match(ConI);
3342   op_cost(0);
3343   format %{ %}
3344   interface(CONST_INTER);
3345 %}
3346 
3347 // Unsigned (positive) Integer Immediate: 13-bit
3348 operand immU13() %{
3349   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3350   match(ConI);
3351   op_cost(0);
3352 
3353   format %{ %}
3354   interface(CONST_INTER);
3355 %}
3356 
3357 // Integer Immediate: 6-bit
3358 operand immU6() %{
3359   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3360   match(ConI);
3361   op_cost(0);
3362   format %{ %}
3363   interface(CONST_INTER);
3364 %}
3365 
3366 // Integer Immediate: 11-bit
3367 operand immI11() %{
3368   predicate(Assembler::is_simm11(n->get_int()));
3369   match(ConI);
3370   op_cost(0);
3371   format %{ %}
3372   interface(CONST_INTER);
3373 %}
3374 
3375 // Integer Immediate: 5-bit
3376 operand immI5() %{
3377   predicate(Assembler::is_simm5(n->get_int()));
3378   match(ConI);
3379   op_cost(0);
3380   format %{ %}
3381   interface(CONST_INTER);
3382 %}
3383 
3384 // Integer Immediate: 0-bit
3385 operand immI0() %{
3386   predicate(n->get_int() == 0);
3387   match(ConI);
3388   op_cost(0);
3389 
3390   format %{ %}
3391   interface(CONST_INTER);
3392 %}
3393 
3394 // Integer Immediate: the value 10
3395 operand immI10() %{
3396   predicate(n->get_int() == 10);
3397   match(ConI);
3398   op_cost(0);
3399 
3400   format %{ %}
3401   interface(CONST_INTER);
3402 %}
3403 
3404 // Integer Immediate: the values 0-31
3405 operand immU5() %{
3406   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3407   match(ConI);
3408   op_cost(0);
3409 
3410   format %{ %}
3411   interface(CONST_INTER);
3412 %}
3413 
3414 // Integer Immediate: the values 1-31
3415 operand immI_1_31() %{
3416   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3417   match(ConI);
3418   op_cost(0);
3419 
3420   format %{ %}
3421   interface(CONST_INTER);
3422 %}
3423 
3424 // Integer Immediate: the values 32-63
3425 operand immI_32_63() %{
3426   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3427   match(ConI);
3428   op_cost(0);
3429 
3430   format %{ %}
3431   interface(CONST_INTER);
3432 %}
3433 
3434 // Immediates for special shifts (sign extend)
3435 
3436 // Integer Immediate: the value 16
3437 operand immI_16() %{
3438   predicate(n->get_int() == 16);
3439   match(ConI);
3440   op_cost(0);
3441 
3442   format %{ %}
3443   interface(CONST_INTER);
3444 %}
3445 
3446 // Integer Immediate: the value 24
3447 operand immI_24() %{
3448   predicate(n->get_int() == 24);
3449   match(ConI);
3450   op_cost(0);
3451 
3452   format %{ %}
3453   interface(CONST_INTER);
3454 %}
3455 
3456 // Integer Immediate: the value 255
3457 operand immI_255() %{
3458   predicate( n->get_int() == 255 );
3459   match(ConI);
3460   op_cost(0);
3461 
3462   format %{ %}
3463   interface(CONST_INTER);
3464 %}
3465 
3466 // Integer Immediate: the value 65535
3467 operand immI_65535() %{
3468   predicate(n->get_int() == 65535);
3469   match(ConI);
3470   op_cost(0);
3471 
3472   format %{ %}
3473   interface(CONST_INTER);
3474 %}
3475 
3476 // Long Immediate: the value FF
3477 operand immL_FF() %{
3478   predicate( n->get_long() == 0xFFL );
3479   match(ConL);
3480   op_cost(0);
3481 
3482   format %{ %}
3483   interface(CONST_INTER);
3484 %}
3485 
3486 // Long Immediate: the value FFFF
3487 operand immL_FFFF() %{
3488   predicate( n->get_long() == 0xFFFFL );
3489   match(ConL);
3490   op_cost(0);
3491 
3492   format %{ %}
3493   interface(CONST_INTER);
3494 %}
3495 
3496 // Pointer Immediate: 32 or 64-bit
3497 operand immP() %{
3498   match(ConP);
3499 
3500   op_cost(5);
3501   // formats are generated automatically for constants and base registers
3502   format %{ %}
3503   interface(CONST_INTER);
3504 %}
3505 
3506 #ifdef _LP64
3507 // Pointer Immediate: 64-bit
3508 operand immP_set() %{
3509   predicate(!VM_Version::is_niagara_plus());
3510   match(ConP);
3511 
3512   op_cost(5);
3513   // formats are generated automatically for constants and base registers
3514   format %{ %}
3515   interface(CONST_INTER);
3516 %}
3517 
3518 // Pointer Immediate: 64-bit
3519 // From Niagara2 processors on a load should be better than materializing.
3520 operand immP_load() %{
3521   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3522   match(ConP);
3523 
3524   op_cost(5);
3525   // formats are generated automatically for constants and base registers
3526   format %{ %}
3527   interface(CONST_INTER);
3528 %}
3529 
3530 // Pointer Immediate: 64-bit
3531 operand immP_no_oop_cheap() %{
3532   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3533   match(ConP);
3534 
3535   op_cost(5);
3536   // formats are generated automatically for constants and base registers
3537   format %{ %}
3538   interface(CONST_INTER);
3539 %}
3540 #endif
3541 
3542 operand immP13() %{
3543   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3544   match(ConP);
3545   op_cost(0);
3546 
3547   format %{ %}
3548   interface(CONST_INTER);
3549 %}
3550 
3551 operand immP0() %{
3552   predicate(n->get_ptr() == 0);
3553   match(ConP);
3554   op_cost(0);
3555 
3556   format %{ %}
3557   interface(CONST_INTER);
3558 %}
3559 
3560 operand immP_poll() %{
3561   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3562   match(ConP);
3563 
3564   // formats are generated automatically for constants and base registers
3565   format %{ %}
3566   interface(CONST_INTER);
3567 %}
3568 
3569 // Pointer Immediate
3570 operand immN()
3571 %{
3572   match(ConN);
3573 
3574   op_cost(10);
3575   format %{ %}
3576   interface(CONST_INTER);
3577 %}
3578 
3579 operand immNKlass()
3580 %{
3581   match(ConNKlass);
3582 
3583   op_cost(10);
3584   format %{ %}
3585   interface(CONST_INTER);
3586 %}
3587 
3588 // NULL Pointer Immediate
3589 operand immN0()
3590 %{
3591   predicate(n->get_narrowcon() == 0);
3592   match(ConN);
3593 
3594   op_cost(0);
3595   format %{ %}
3596   interface(CONST_INTER);
3597 %}
3598 
3599 operand immL() %{
3600   match(ConL);
3601   op_cost(40);
3602   // formats are generated automatically for constants and base registers
3603   format %{ %}
3604   interface(CONST_INTER);
3605 %}
3606 
3607 operand immL0() %{
3608   predicate(n->get_long() == 0L);
3609   match(ConL);
3610   op_cost(0);
3611   // formats are generated automatically for constants and base registers
3612   format %{ %}
3613   interface(CONST_INTER);
3614 %}
3615 
3616 // Integer Immediate: 5-bit
3617 operand immL5() %{
3618   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3619   match(ConL);
3620   op_cost(0);
3621   format %{ %}
3622   interface(CONST_INTER);
3623 %}
3624 
3625 // Long Immediate: 13-bit
3626 operand immL13() %{
3627   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3628   match(ConL);
3629   op_cost(0);
3630 
3631   format %{ %}
3632   interface(CONST_INTER);
3633 %}
3634 
3635 // Long Immediate: 13-bit minus 7
3636 operand immL13m7() %{
3637   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3638   match(ConL);
3639   op_cost(0);
3640 
3641   format %{ %}
3642   interface(CONST_INTER);
3643 %}
3644 
3645 // Long Immediate: low 32-bit mask
3646 operand immL_32bits() %{
3647   predicate(n->get_long() == 0xFFFFFFFFL);
3648   match(ConL);
3649   op_cost(0);
3650 
3651   format %{ %}
3652   interface(CONST_INTER);
3653 %}
3654 
3655 // Long Immediate: cheap (materialize in <= 3 instructions)
3656 operand immL_cheap() %{
3657   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3658   match(ConL);
3659   op_cost(0);
3660 
3661   format %{ %}
3662   interface(CONST_INTER);
3663 %}
3664 
3665 // Long Immediate: expensive (materialize in > 3 instructions)
3666 operand immL_expensive() %{
3667   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3668   match(ConL);
3669   op_cost(0);
3670 
3671   format %{ %}
3672   interface(CONST_INTER);
3673 %}
3674 
3675 // Double Immediate
3676 operand immD() %{
3677   match(ConD);
3678 
3679   op_cost(40);
3680   format %{ %}
3681   interface(CONST_INTER);
3682 %}
3683 
3684 operand immD0() %{
3685 #ifdef _LP64
3686   // on 64-bit architectures this comparision is faster
3687   predicate(jlong_cast(n->getd()) == 0);
3688 #else
3689   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3690 #endif
3691   match(ConD);
3692 
3693   op_cost(0);
3694   format %{ %}
3695   interface(CONST_INTER);
3696 %}
3697 
3698 // Float Immediate
3699 operand immF() %{
3700   match(ConF);
3701 
3702   op_cost(20);
3703   format %{ %}
3704   interface(CONST_INTER);
3705 %}
3706 
3707 // Float Immediate: 0
3708 operand immF0() %{
3709   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3710   match(ConF);
3711 
3712   op_cost(0);
3713   format %{ %}
3714   interface(CONST_INTER);
3715 %}
3716 
3717 // Integer Register Operands
3718 // Integer Register
3719 operand iRegI() %{
3720   constraint(ALLOC_IN_RC(int_reg));
3721   match(RegI);
3722 
3723   match(notemp_iRegI);
3724   match(g1RegI);
3725   match(o0RegI);
3726   match(iRegIsafe);
3727 
3728   format %{ %}
3729   interface(REG_INTER);
3730 %}
3731 
3732 operand notemp_iRegI() %{
3733   constraint(ALLOC_IN_RC(notemp_int_reg));
3734   match(RegI);
3735 
3736   match(o0RegI);
3737 
3738   format %{ %}
3739   interface(REG_INTER);
3740 %}
3741 
3742 operand o0RegI() %{
3743   constraint(ALLOC_IN_RC(o0_regI));
3744   match(iRegI);
3745 
3746   format %{ %}
3747   interface(REG_INTER);
3748 %}
3749 
3750 // Pointer Register
3751 operand iRegP() %{
3752   constraint(ALLOC_IN_RC(ptr_reg));
3753   match(RegP);
3754 
3755   match(lock_ptr_RegP);
3756   match(g1RegP);
3757   match(g2RegP);
3758   match(g3RegP);
3759   match(g4RegP);
3760   match(i0RegP);
3761   match(o0RegP);
3762   match(o1RegP);
3763   match(l7RegP);
3764 
3765   format %{ %}
3766   interface(REG_INTER);
3767 %}
3768 
3769 operand sp_ptr_RegP() %{
3770   constraint(ALLOC_IN_RC(sp_ptr_reg));
3771   match(RegP);
3772   match(iRegP);
3773 
3774   format %{ %}
3775   interface(REG_INTER);
3776 %}
3777 
3778 operand lock_ptr_RegP() %{
3779   constraint(ALLOC_IN_RC(lock_ptr_reg));
3780   match(RegP);
3781   match(i0RegP);
3782   match(o0RegP);
3783   match(o1RegP);
3784   match(l7RegP);
3785 
3786   format %{ %}
3787   interface(REG_INTER);
3788 %}
3789 
3790 operand g1RegP() %{
3791   constraint(ALLOC_IN_RC(g1_regP));
3792   match(iRegP);
3793 
3794   format %{ %}
3795   interface(REG_INTER);
3796 %}
3797 
3798 operand g2RegP() %{
3799   constraint(ALLOC_IN_RC(g2_regP));
3800   match(iRegP);
3801 
3802   format %{ %}
3803   interface(REG_INTER);
3804 %}
3805 
3806 operand g3RegP() %{
3807   constraint(ALLOC_IN_RC(g3_regP));
3808   match(iRegP);
3809 
3810   format %{ %}
3811   interface(REG_INTER);
3812 %}
3813 
3814 operand g1RegI() %{
3815   constraint(ALLOC_IN_RC(g1_regI));
3816   match(iRegI);
3817 
3818   format %{ %}
3819   interface(REG_INTER);
3820 %}
3821 
3822 operand g3RegI() %{
3823   constraint(ALLOC_IN_RC(g3_regI));
3824   match(iRegI);
3825 
3826   format %{ %}
3827   interface(REG_INTER);
3828 %}
3829 
3830 operand g4RegI() %{
3831   constraint(ALLOC_IN_RC(g4_regI));
3832   match(iRegI);
3833 
3834   format %{ %}
3835   interface(REG_INTER);
3836 %}
3837 
3838 operand g4RegP() %{
3839   constraint(ALLOC_IN_RC(g4_regP));
3840   match(iRegP);
3841 
3842   format %{ %}
3843   interface(REG_INTER);
3844 %}
3845 
3846 operand i0RegP() %{
3847   constraint(ALLOC_IN_RC(i0_regP));
3848   match(iRegP);
3849 
3850   format %{ %}
3851   interface(REG_INTER);
3852 %}
3853 
3854 operand o0RegP() %{
3855   constraint(ALLOC_IN_RC(o0_regP));
3856   match(iRegP);
3857 
3858   format %{ %}
3859   interface(REG_INTER);
3860 %}
3861 
3862 operand o1RegP() %{
3863   constraint(ALLOC_IN_RC(o1_regP));
3864   match(iRegP);
3865 
3866   format %{ %}
3867   interface(REG_INTER);
3868 %}
3869 
3870 operand o2RegP() %{
3871   constraint(ALLOC_IN_RC(o2_regP));
3872   match(iRegP);
3873 
3874   format %{ %}
3875   interface(REG_INTER);
3876 %}
3877 
3878 operand o7RegP() %{
3879   constraint(ALLOC_IN_RC(o7_regP));
3880   match(iRegP);
3881 
3882   format %{ %}
3883   interface(REG_INTER);
3884 %}
3885 
3886 operand l7RegP() %{
3887   constraint(ALLOC_IN_RC(l7_regP));
3888   match(iRegP);
3889 
3890   format %{ %}
3891   interface(REG_INTER);
3892 %}
3893 
3894 operand o7RegI() %{
3895   constraint(ALLOC_IN_RC(o7_regI));
3896   match(iRegI);
3897 
3898   format %{ %}
3899   interface(REG_INTER);
3900 %}
3901 
3902 operand iRegN() %{
3903   constraint(ALLOC_IN_RC(int_reg));
3904   match(RegN);
3905 
3906   format %{ %}
3907   interface(REG_INTER);
3908 %}
3909 
3910 // Long Register
3911 operand iRegL() %{
3912   constraint(ALLOC_IN_RC(long_reg));
3913   match(RegL);
3914 
3915   format %{ %}
3916   interface(REG_INTER);
3917 %}
3918 
3919 operand o2RegL() %{
3920   constraint(ALLOC_IN_RC(o2_regL));
3921   match(iRegL);
3922 
3923   format %{ %}
3924   interface(REG_INTER);
3925 %}
3926 
3927 operand o7RegL() %{
3928   constraint(ALLOC_IN_RC(o7_regL));
3929   match(iRegL);
3930 
3931   format %{ %}
3932   interface(REG_INTER);
3933 %}
3934 
3935 operand g1RegL() %{
3936   constraint(ALLOC_IN_RC(g1_regL));
3937   match(iRegL);
3938 
3939   format %{ %}
3940   interface(REG_INTER);
3941 %}
3942 
3943 operand g3RegL() %{
3944   constraint(ALLOC_IN_RC(g3_regL));
3945   match(iRegL);
3946 
3947   format %{ %}
3948   interface(REG_INTER);
3949 %}
3950 
3951 // Int Register safe
3952 // This is 64bit safe
3953 operand iRegIsafe() %{
3954   constraint(ALLOC_IN_RC(long_reg));
3955 
3956   match(iRegI);
3957 
3958   format %{ %}
3959   interface(REG_INTER);
3960 %}
3961 
3962 // Condition Code Flag Register
3963 operand flagsReg() %{
3964   constraint(ALLOC_IN_RC(int_flags));
3965   match(RegFlags);
3966 
3967   format %{ "ccr" %} // both ICC and XCC
3968   interface(REG_INTER);
3969 %}
3970 
3971 // Condition Code Register, unsigned comparisons.
3972 operand flagsRegU() %{
3973   constraint(ALLOC_IN_RC(int_flags));
3974   match(RegFlags);
3975 
3976   format %{ "icc_U" %}
3977   interface(REG_INTER);
3978 %}
3979 
3980 // Condition Code Register, pointer comparisons.
3981 operand flagsRegP() %{
3982   constraint(ALLOC_IN_RC(int_flags));
3983   match(RegFlags);
3984 
3985 #ifdef _LP64
3986   format %{ "xcc_P" %}
3987 #else
3988   format %{ "icc_P" %}
3989 #endif
3990   interface(REG_INTER);
3991 %}
3992 
3993 // Condition Code Register, long comparisons.
3994 operand flagsRegL() %{
3995   constraint(ALLOC_IN_RC(int_flags));
3996   match(RegFlags);
3997 
3998   format %{ "xcc_L" %}
3999   interface(REG_INTER);
4000 %}
4001 
4002 // Condition Code Register, floating comparisons, unordered same as "less".
4003 operand flagsRegF() %{
4004   constraint(ALLOC_IN_RC(float_flags));
4005   match(RegFlags);
4006   match(flagsRegF0);
4007 
4008   format %{ %}
4009   interface(REG_INTER);
4010 %}
4011 
4012 operand flagsRegF0() %{
4013   constraint(ALLOC_IN_RC(float_flag0));
4014   match(RegFlags);
4015 
4016   format %{ %}
4017   interface(REG_INTER);
4018 %}
4019 
4020 
4021 // Condition Code Flag Register used by long compare
4022 operand flagsReg_long_LTGE() %{
4023   constraint(ALLOC_IN_RC(int_flags));
4024   match(RegFlags);
4025   format %{ "icc_LTGE" %}
4026   interface(REG_INTER);
4027 %}
4028 operand flagsReg_long_EQNE() %{
4029   constraint(ALLOC_IN_RC(int_flags));
4030   match(RegFlags);
4031   format %{ "icc_EQNE" %}
4032   interface(REG_INTER);
4033 %}
4034 operand flagsReg_long_LEGT() %{
4035   constraint(ALLOC_IN_RC(int_flags));
4036   match(RegFlags);
4037   format %{ "icc_LEGT" %}
4038   interface(REG_INTER);
4039 %}
4040 
4041 
4042 operand regD() %{
4043   constraint(ALLOC_IN_RC(dflt_reg));
4044   match(RegD);
4045 
4046   match(regD_low);
4047 
4048   format %{ %}
4049   interface(REG_INTER);
4050 %}
4051 
4052 operand regF() %{
4053   constraint(ALLOC_IN_RC(sflt_reg));
4054   match(RegF);
4055 
4056   format %{ %}
4057   interface(REG_INTER);
4058 %}
4059 
4060 operand regD_low() %{
4061   constraint(ALLOC_IN_RC(dflt_low_reg));
4062   match(regD);
4063 
4064   format %{ %}
4065   interface(REG_INTER);
4066 %}
4067 
4068 // Special Registers
4069 
4070 // Method Register
4071 operand inline_cache_regP(iRegP reg) %{
4072   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4073   match(reg);
4074   format %{ %}
4075   interface(REG_INTER);
4076 %}
4077 
4078 operand interpreter_method_oop_regP(iRegP reg) %{
4079   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4080   match(reg);
4081   format %{ %}
4082   interface(REG_INTER);
4083 %}
4084 
4085 
4086 //----------Complex Operands---------------------------------------------------
4087 // Indirect Memory Reference
4088 operand indirect(sp_ptr_RegP reg) %{
4089   constraint(ALLOC_IN_RC(sp_ptr_reg));
4090   match(reg);
4091 
4092   op_cost(100);
4093   format %{ "[$reg]" %}
4094   interface(MEMORY_INTER) %{
4095     base($reg);
4096     index(0x0);
4097     scale(0x0);
4098     disp(0x0);
4099   %}
4100 %}
4101 
4102 // Indirect with simm13 Offset
4103 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4104   constraint(ALLOC_IN_RC(sp_ptr_reg));
4105   match(AddP reg offset);
4106 
4107   op_cost(100);
4108   format %{ "[$reg + $offset]" %}
4109   interface(MEMORY_INTER) %{
4110     base($reg);
4111     index(0x0);
4112     scale(0x0);
4113     disp($offset);
4114   %}
4115 %}
4116 
4117 // Indirect with simm13 Offset minus 7
4118 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4119   constraint(ALLOC_IN_RC(sp_ptr_reg));
4120   match(AddP reg offset);
4121 
4122   op_cost(100);
4123   format %{ "[$reg + $offset]" %}
4124   interface(MEMORY_INTER) %{
4125     base($reg);
4126     index(0x0);
4127     scale(0x0);
4128     disp($offset);
4129   %}
4130 %}
4131 
4132 // Note:  Intel has a swapped version also, like this:
4133 //operand indOffsetX(iRegI reg, immP offset) %{
4134 //  constraint(ALLOC_IN_RC(int_reg));
4135 //  match(AddP offset reg);
4136 //
4137 //  op_cost(100);
4138 //  format %{ "[$reg + $offset]" %}
4139 //  interface(MEMORY_INTER) %{
4140 //    base($reg);
4141 //    index(0x0);
4142 //    scale(0x0);
4143 //    disp($offset);
4144 //  %}
4145 //%}
4146 //// However, it doesn't make sense for SPARC, since
4147 // we have no particularly good way to embed oops in
4148 // single instructions.
4149 
4150 // Indirect with Register Index
4151 operand indIndex(iRegP addr, iRegX index) %{
4152   constraint(ALLOC_IN_RC(ptr_reg));
4153   match(AddP addr index);
4154 
4155   op_cost(100);
4156   format %{ "[$addr + $index]" %}
4157   interface(MEMORY_INTER) %{
4158     base($addr);
4159     index($index);
4160     scale(0x0);
4161     disp(0x0);
4162   %}
4163 %}
4164 
4165 //----------Special Memory Operands--------------------------------------------
4166 // Stack Slot Operand - This operand is used for loading and storing temporary
4167 //                      values on the stack where a match requires a value to
4168 //                      flow through memory.
4169 operand stackSlotI(sRegI reg) %{
4170   constraint(ALLOC_IN_RC(stack_slots));
4171   op_cost(100);
4172   //match(RegI);
4173   format %{ "[$reg]" %}
4174   interface(MEMORY_INTER) %{
4175     base(0xE);   // R_SP
4176     index(0x0);
4177     scale(0x0);
4178     disp($reg);  // Stack Offset
4179   %}
4180 %}
4181 
4182 operand stackSlotP(sRegP reg) %{
4183   constraint(ALLOC_IN_RC(stack_slots));
4184   op_cost(100);
4185   //match(RegP);
4186   format %{ "[$reg]" %}
4187   interface(MEMORY_INTER) %{
4188     base(0xE);   // R_SP
4189     index(0x0);
4190     scale(0x0);
4191     disp($reg);  // Stack Offset
4192   %}
4193 %}
4194 
4195 operand stackSlotF(sRegF reg) %{
4196   constraint(ALLOC_IN_RC(stack_slots));
4197   op_cost(100);
4198   //match(RegF);
4199   format %{ "[$reg]" %}
4200   interface(MEMORY_INTER) %{
4201     base(0xE);   // R_SP
4202     index(0x0);
4203     scale(0x0);
4204     disp($reg);  // Stack Offset
4205   %}
4206 %}
4207 operand stackSlotD(sRegD reg) %{
4208   constraint(ALLOC_IN_RC(stack_slots));
4209   op_cost(100);
4210   //match(RegD);
4211   format %{ "[$reg]" %}
4212   interface(MEMORY_INTER) %{
4213     base(0xE);   // R_SP
4214     index(0x0);
4215     scale(0x0);
4216     disp($reg);  // Stack Offset
4217   %}
4218 %}
4219 operand stackSlotL(sRegL reg) %{
4220   constraint(ALLOC_IN_RC(stack_slots));
4221   op_cost(100);
4222   //match(RegL);
4223   format %{ "[$reg]" %}
4224   interface(MEMORY_INTER) %{
4225     base(0xE);   // R_SP
4226     index(0x0);
4227     scale(0x0);
4228     disp($reg);  // Stack Offset
4229   %}
4230 %}
4231 
4232 // Operands for expressing Control Flow
4233 // NOTE:  Label is a predefined operand which should not be redefined in
4234 //        the AD file.  It is generically handled within the ADLC.
4235 
4236 //----------Conditional Branch Operands----------------------------------------
4237 // Comparison Op  - This is the operation of the comparison, and is limited to
4238 //                  the following set of codes:
4239 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4240 //
4241 // Other attributes of the comparison, such as unsignedness, are specified
4242 // by the comparison instruction that sets a condition code flags register.
4243 // That result is represented by a flags operand whose subtype is appropriate
4244 // to the unsignedness (etc.) of the comparison.
4245 //
4246 // Later, the instruction which matches both the Comparison Op (a Bool) and
4247 // the flags (produced by the Cmp) specifies the coding of the comparison op
4248 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4249 
4250 operand cmpOp() %{
4251   match(Bool);
4252 
4253   format %{ "" %}
4254   interface(COND_INTER) %{
4255     equal(0x1);
4256     not_equal(0x9);
4257     less(0x3);
4258     greater_equal(0xB);
4259     less_equal(0x2);
4260     greater(0xA);
4261     overflow(0x7);
4262     no_overflow(0xF);
4263   %}
4264 %}
4265 
4266 // Comparison Op, unsigned
4267 operand cmpOpU() %{
4268   match(Bool);
4269   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4270             n->as_Bool()->_test._test != BoolTest::no_overflow);
4271 
4272   format %{ "u" %}
4273   interface(COND_INTER) %{
4274     equal(0x1);
4275     not_equal(0x9);
4276     less(0x5);
4277     greater_equal(0xD);
4278     less_equal(0x4);
4279     greater(0xC);
4280     overflow(0x7);
4281     no_overflow(0xF);
4282   %}
4283 %}
4284 
4285 // Comparison Op, pointer (same as unsigned)
4286 operand cmpOpP() %{
4287   match(Bool);
4288   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4289             n->as_Bool()->_test._test != BoolTest::no_overflow);
4290 
4291   format %{ "p" %}
4292   interface(COND_INTER) %{
4293     equal(0x1);
4294     not_equal(0x9);
4295     less(0x5);
4296     greater_equal(0xD);
4297     less_equal(0x4);
4298     greater(0xC);
4299     overflow(0x7);
4300     no_overflow(0xF);
4301   %}
4302 %}
4303 
4304 // Comparison Op, branch-register encoding
4305 operand cmpOp_reg() %{
4306   match(Bool);
4307   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4308             n->as_Bool()->_test._test != BoolTest::no_overflow);
4309 
4310   format %{ "" %}
4311   interface(COND_INTER) %{
4312     equal        (0x1);
4313     not_equal    (0x5);
4314     less         (0x3);
4315     greater_equal(0x7);
4316     less_equal   (0x2);
4317     greater      (0x6);
4318     overflow(0x7); // not supported
4319     no_overflow(0xF); // not supported
4320   %}
4321 %}
4322 
4323 // Comparison Code, floating, unordered same as less
4324 operand cmpOpF() %{
4325   match(Bool);
4326   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4327             n->as_Bool()->_test._test != BoolTest::no_overflow);
4328 
4329   format %{ "fl" %}
4330   interface(COND_INTER) %{
4331     equal(0x9);
4332     not_equal(0x1);
4333     less(0x3);
4334     greater_equal(0xB);
4335     less_equal(0xE);
4336     greater(0x6);
4337 
4338     overflow(0x7); // not supported
4339     no_overflow(0xF); // not supported
4340   %}
4341 %}
4342 
4343 // Used by long compare
4344 operand cmpOp_commute() %{
4345   match(Bool);
4346   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4347             n->as_Bool()->_test._test != BoolTest::no_overflow);
4348 
4349   format %{ "" %}
4350   interface(COND_INTER) %{
4351     equal(0x1);
4352     not_equal(0x9);
4353     less(0xA);
4354     greater_equal(0x2);
4355     less_equal(0xB);
4356     greater(0x3);
4357     overflow(0x7);
4358     no_overflow(0xF);
4359   %}
4360 %}
4361 
4362 //----------OPERAND CLASSES----------------------------------------------------
4363 // Operand Classes are groups of operands that are used to simplify
4364 // instruction definitions by not requiring the AD writer to specify separate
4365 // instructions for every form of operand when the instruction accepts
4366 // multiple operand types with the same basic encoding and format.  The classic
4367 // case of this is memory operands.
4368 opclass memory( indirect, indOffset13, indIndex );
4369 opclass indIndexMemory( indIndex );
4370 
4371 //----------PIPELINE-----------------------------------------------------------
4372 pipeline %{
4373 
4374 //----------ATTRIBUTES---------------------------------------------------------
4375 attributes %{
4376   fixed_size_instructions;           // Fixed size instructions
4377   branch_has_delay_slot;             // Branch has delay slot following
4378   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4379   instruction_unit_size = 4;         // An instruction is 4 bytes long
4380   instruction_fetch_unit_size = 16;  // The processor fetches one line
4381   instruction_fetch_units = 1;       // of 16 bytes
4382 
4383   // List of nop instructions
4384   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4385 %}
4386 
4387 //----------RESOURCES----------------------------------------------------------
4388 // Resources are the functional units available to the machine
4389 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4390 
4391 //----------PIPELINE DESCRIPTION-----------------------------------------------
4392 // Pipeline Description specifies the stages in the machine's pipeline
4393 
4394 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4395 
4396 //----------PIPELINE CLASSES---------------------------------------------------
4397 // Pipeline Classes describe the stages in which input and output are
4398 // referenced by the hardware pipeline.
4399 
4400 // Integer ALU reg-reg operation
4401 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4402     single_instruction;
4403     dst   : E(write);
4404     src1  : R(read);
4405     src2  : R(read);
4406     IALU  : R;
4407 %}
4408 
4409 // Integer ALU reg-reg long operation
4410 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4411     instruction_count(2);
4412     dst   : E(write);
4413     src1  : R(read);
4414     src2  : R(read);
4415     IALU  : R;
4416     IALU  : R;
4417 %}
4418 
4419 // Integer ALU reg-reg long dependent operation
4420 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4421     instruction_count(1); multiple_bundles;
4422     dst   : E(write);
4423     src1  : R(read);
4424     src2  : R(read);
4425     cr    : E(write);
4426     IALU  : R(2);
4427 %}
4428 
4429 // Integer ALU reg-imm operaion
4430 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4431     single_instruction;
4432     dst   : E(write);
4433     src1  : R(read);
4434     IALU  : R;
4435 %}
4436 
4437 // Integer ALU reg-reg operation with condition code
4438 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4439     single_instruction;
4440     dst   : E(write);
4441     cr    : E(write);
4442     src1  : R(read);
4443     src2  : R(read);
4444     IALU  : R;
4445 %}
4446 
4447 // Integer ALU reg-imm operation with condition code
4448 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4449     single_instruction;
4450     dst   : E(write);
4451     cr    : E(write);
4452     src1  : R(read);
4453     IALU  : R;
4454 %}
4455 
4456 // Integer ALU zero-reg operation
4457 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4458     single_instruction;
4459     dst   : E(write);
4460     src2  : R(read);
4461     IALU  : R;
4462 %}
4463 
4464 // Integer ALU zero-reg operation with condition code only
4465 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4466     single_instruction;
4467     cr    : E(write);
4468     src   : R(read);
4469     IALU  : R;
4470 %}
4471 
4472 // Integer ALU reg-reg operation with condition code only
4473 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4474     single_instruction;
4475     cr    : E(write);
4476     src1  : R(read);
4477     src2  : R(read);
4478     IALU  : R;
4479 %}
4480 
4481 // Integer ALU reg-imm operation with condition code only
4482 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4483     single_instruction;
4484     cr    : E(write);
4485     src1  : R(read);
4486     IALU  : R;
4487 %}
4488 
4489 // Integer ALU reg-reg-zero operation with condition code only
4490 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4491     single_instruction;
4492     cr    : E(write);
4493     src1  : R(read);
4494     src2  : R(read);
4495     IALU  : R;
4496 %}
4497 
4498 // Integer ALU reg-imm-zero operation with condition code only
4499 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4500     single_instruction;
4501     cr    : E(write);
4502     src1  : R(read);
4503     IALU  : R;
4504 %}
4505 
4506 // Integer ALU reg-reg operation with condition code, src1 modified
4507 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4508     single_instruction;
4509     cr    : E(write);
4510     src1  : E(write);
4511     src1  : R(read);
4512     src2  : R(read);
4513     IALU  : R;
4514 %}
4515 
4516 // Integer ALU reg-imm operation with condition code, src1 modified
4517 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4518     single_instruction;
4519     cr    : E(write);
4520     src1  : E(write);
4521     src1  : R(read);
4522     IALU  : R;
4523 %}
4524 
4525 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4526     multiple_bundles;
4527     dst   : E(write)+4;
4528     cr    : E(write);
4529     src1  : R(read);
4530     src2  : R(read);
4531     IALU  : R(3);
4532     BR    : R(2);
4533 %}
4534 
4535 // Integer ALU operation
4536 pipe_class ialu_none(iRegI dst) %{
4537     single_instruction;
4538     dst   : E(write);
4539     IALU  : R;
4540 %}
4541 
4542 // Integer ALU reg operation
4543 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4544     single_instruction; may_have_no_code;
4545     dst   : E(write);
4546     src   : R(read);
4547     IALU  : R;
4548 %}
4549 
4550 // Integer ALU reg conditional operation
4551 // This instruction has a 1 cycle stall, and cannot execute
4552 // in the same cycle as the instruction setting the condition
4553 // code. We kludge this by pretending to read the condition code
4554 // 1 cycle earlier, and by marking the functional units as busy
4555 // for 2 cycles with the result available 1 cycle later than
4556 // is really the case.
4557 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4558     single_instruction;
4559     op2_out : C(write);
4560     op1     : R(read);
4561     cr      : R(read);       // This is really E, with a 1 cycle stall
4562     BR      : R(2);
4563     MS      : R(2);
4564 %}
4565 
4566 #ifdef _LP64
4567 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4568     instruction_count(1); multiple_bundles;
4569     dst     : C(write)+1;
4570     src     : R(read)+1;
4571     IALU    : R(1);
4572     BR      : E(2);
4573     MS      : E(2);
4574 %}
4575 #endif
4576 
4577 // Integer ALU reg operation
4578 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4579     single_instruction; may_have_no_code;
4580     dst   : E(write);
4581     src   : R(read);
4582     IALU  : R;
4583 %}
4584 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4585     single_instruction; may_have_no_code;
4586     dst   : E(write);
4587     src   : R(read);
4588     IALU  : R;
4589 %}
4590 
4591 // Two integer ALU reg operations
4592 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4593     instruction_count(2);
4594     dst   : E(write);
4595     src   : R(read);
4596     A0    : R;
4597     A1    : R;
4598 %}
4599 
4600 // Two integer ALU reg operations
4601 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4602     instruction_count(2); may_have_no_code;
4603     dst   : E(write);
4604     src   : R(read);
4605     A0    : R;
4606     A1    : R;
4607 %}
4608 
4609 // Integer ALU imm operation
4610 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4611     single_instruction;
4612     dst   : E(write);
4613     IALU  : R;
4614 %}
4615 
4616 // Integer ALU reg-reg with carry operation
4617 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4618     single_instruction;
4619     dst   : E(write);
4620     src1  : R(read);
4621     src2  : R(read);
4622     IALU  : R;
4623 %}
4624 
4625 // Integer ALU cc operation
4626 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4627     single_instruction;
4628     dst   : E(write);
4629     cc    : R(read);
4630     IALU  : R;
4631 %}
4632 
4633 // Integer ALU cc / second IALU operation
4634 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4635     instruction_count(1); multiple_bundles;
4636     dst   : E(write)+1;
4637     src   : R(read);
4638     IALU  : R;
4639 %}
4640 
4641 // Integer ALU cc / second IALU operation
4642 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4643     instruction_count(1); multiple_bundles;
4644     dst   : E(write)+1;
4645     p     : R(read);
4646     q     : R(read);
4647     IALU  : R;
4648 %}
4649 
4650 // Integer ALU hi-lo-reg operation
4651 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4652     instruction_count(1); multiple_bundles;
4653     dst   : E(write)+1;
4654     IALU  : R(2);
4655 %}
4656 
4657 // Float ALU hi-lo-reg operation (with temp)
4658 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4659     instruction_count(1); multiple_bundles;
4660     dst   : E(write)+1;
4661     IALU  : R(2);
4662 %}
4663 
4664 // Long Constant
4665 pipe_class loadConL( iRegL dst, immL src ) %{
4666     instruction_count(2); multiple_bundles;
4667     dst   : E(write)+1;
4668     IALU  : R(2);
4669     IALU  : R(2);
4670 %}
4671 
4672 // Pointer Constant
4673 pipe_class loadConP( iRegP dst, immP src ) %{
4674     instruction_count(0); multiple_bundles;
4675     fixed_latency(6);
4676 %}
4677 
4678 // Polling Address
4679 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4680 #ifdef _LP64
4681     instruction_count(0); multiple_bundles;
4682     fixed_latency(6);
4683 #else
4684     dst   : E(write);
4685     IALU  : R;
4686 #endif
4687 %}
4688 
4689 // Long Constant small
4690 pipe_class loadConLlo( iRegL dst, immL src ) %{
4691     instruction_count(2);
4692     dst   : E(write);
4693     IALU  : R;
4694     IALU  : R;
4695 %}
4696 
4697 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4698 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4699     instruction_count(1); multiple_bundles;
4700     src   : R(read);
4701     dst   : M(write)+1;
4702     IALU  : R;
4703     MS    : E;
4704 %}
4705 
4706 // Integer ALU nop operation
4707 pipe_class ialu_nop() %{
4708     single_instruction;
4709     IALU  : R;
4710 %}
4711 
4712 // Integer ALU nop operation
4713 pipe_class ialu_nop_A0() %{
4714     single_instruction;
4715     A0    : R;
4716 %}
4717 
4718 // Integer ALU nop operation
4719 pipe_class ialu_nop_A1() %{
4720     single_instruction;
4721     A1    : R;
4722 %}
4723 
4724 // Integer Multiply reg-reg operation
4725 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4726     single_instruction;
4727     dst   : E(write);
4728     src1  : R(read);
4729     src2  : R(read);
4730     MS    : R(5);
4731 %}
4732 
4733 // Integer Multiply reg-imm operation
4734 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4735     single_instruction;
4736     dst   : E(write);
4737     src1  : R(read);
4738     MS    : R(5);
4739 %}
4740 
4741 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4742     single_instruction;
4743     dst   : E(write)+4;
4744     src1  : R(read);
4745     src2  : R(read);
4746     MS    : R(6);
4747 %}
4748 
4749 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4750     single_instruction;
4751     dst   : E(write)+4;
4752     src1  : R(read);
4753     MS    : R(6);
4754 %}
4755 
4756 // Integer Divide reg-reg
4757 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4758     instruction_count(1); multiple_bundles;
4759     dst   : E(write);
4760     temp  : E(write);
4761     src1  : R(read);
4762     src2  : R(read);
4763     temp  : R(read);
4764     MS    : R(38);
4765 %}
4766 
4767 // Integer Divide reg-imm
4768 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4769     instruction_count(1); multiple_bundles;
4770     dst   : E(write);
4771     temp  : E(write);
4772     src1  : R(read);
4773     temp  : R(read);
4774     MS    : R(38);
4775 %}
4776 
4777 // Long Divide
4778 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4779     dst  : E(write)+71;
4780     src1 : R(read);
4781     src2 : R(read)+1;
4782     MS   : R(70);
4783 %}
4784 
4785 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4786     dst  : E(write)+71;
4787     src1 : R(read);
4788     MS   : R(70);
4789 %}
4790 
4791 // Floating Point Add Float
4792 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4793     single_instruction;
4794     dst   : X(write);
4795     src1  : E(read);
4796     src2  : E(read);
4797     FA    : R;
4798 %}
4799 
4800 // Floating Point Add Double
4801 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4802     single_instruction;
4803     dst   : X(write);
4804     src1  : E(read);
4805     src2  : E(read);
4806     FA    : R;
4807 %}
4808 
4809 // Floating Point Conditional Move based on integer flags
4810 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4811     single_instruction;
4812     dst   : X(write);
4813     src   : E(read);
4814     cr    : R(read);
4815     FA    : R(2);
4816     BR    : R(2);
4817 %}
4818 
4819 // Floating Point Conditional Move based on integer flags
4820 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4821     single_instruction;
4822     dst   : X(write);
4823     src   : E(read);
4824     cr    : R(read);
4825     FA    : R(2);
4826     BR    : R(2);
4827 %}
4828 
4829 // Floating Point Multiply Float
4830 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4831     single_instruction;
4832     dst   : X(write);
4833     src1  : E(read);
4834     src2  : E(read);
4835     FM    : R;
4836 %}
4837 
4838 // Floating Point Multiply Double
4839 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4840     single_instruction;
4841     dst   : X(write);
4842     src1  : E(read);
4843     src2  : E(read);
4844     FM    : R;
4845 %}
4846 
4847 // Floating Point Divide Float
4848 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4849     single_instruction;
4850     dst   : X(write);
4851     src1  : E(read);
4852     src2  : E(read);
4853     FM    : R;
4854     FDIV  : C(14);
4855 %}
4856 
4857 // Floating Point Divide Double
4858 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4859     single_instruction;
4860     dst   : X(write);
4861     src1  : E(read);
4862     src2  : E(read);
4863     FM    : R;
4864     FDIV  : C(17);
4865 %}
4866 
4867 // Floating Point Move/Negate/Abs Float
4868 pipe_class faddF_reg(regF dst, regF src) %{
4869     single_instruction;
4870     dst   : W(write);
4871     src   : E(read);
4872     FA    : R(1);
4873 %}
4874 
4875 // Floating Point Move/Negate/Abs Double
4876 pipe_class faddD_reg(regD dst, regD src) %{
4877     single_instruction;
4878     dst   : W(write);
4879     src   : E(read);
4880     FA    : R;
4881 %}
4882 
4883 // Floating Point Convert F->D
4884 pipe_class fcvtF2D(regD dst, regF src) %{
4885     single_instruction;
4886     dst   : X(write);
4887     src   : E(read);
4888     FA    : R;
4889 %}
4890 
4891 // Floating Point Convert I->D
4892 pipe_class fcvtI2D(regD dst, regF src) %{
4893     single_instruction;
4894     dst   : X(write);
4895     src   : E(read);
4896     FA    : R;
4897 %}
4898 
4899 // Floating Point Convert LHi->D
4900 pipe_class fcvtLHi2D(regD dst, regD src) %{
4901     single_instruction;
4902     dst   : X(write);
4903     src   : E(read);
4904     FA    : R;
4905 %}
4906 
4907 // Floating Point Convert L->D
4908 pipe_class fcvtL2D(regD dst, regF src) %{
4909     single_instruction;
4910     dst   : X(write);
4911     src   : E(read);
4912     FA    : R;
4913 %}
4914 
4915 // Floating Point Convert L->F
4916 pipe_class fcvtL2F(regD dst, regF src) %{
4917     single_instruction;
4918     dst   : X(write);
4919     src   : E(read);
4920     FA    : R;
4921 %}
4922 
4923 // Floating Point Convert D->F
4924 pipe_class fcvtD2F(regD dst, regF src) %{
4925     single_instruction;
4926     dst   : X(write);
4927     src   : E(read);
4928     FA    : R;
4929 %}
4930 
4931 // Floating Point Convert I->L
4932 pipe_class fcvtI2L(regD dst, regF src) %{
4933     single_instruction;
4934     dst   : X(write);
4935     src   : E(read);
4936     FA    : R;
4937 %}
4938 
4939 // Floating Point Convert D->F
4940 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4941     instruction_count(1); multiple_bundles;
4942     dst   : X(write)+6;
4943     src   : E(read);
4944     FA    : R;
4945 %}
4946 
4947 // Floating Point Convert D->L
4948 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4949     instruction_count(1); multiple_bundles;
4950     dst   : X(write)+6;
4951     src   : E(read);
4952     FA    : R;
4953 %}
4954 
4955 // Floating Point Convert F->I
4956 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4957     instruction_count(1); multiple_bundles;
4958     dst   : X(write)+6;
4959     src   : E(read);
4960     FA    : R;
4961 %}
4962 
4963 // Floating Point Convert F->L
4964 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4965     instruction_count(1); multiple_bundles;
4966     dst   : X(write)+6;
4967     src   : E(read);
4968     FA    : R;
4969 %}
4970 
4971 // Floating Point Convert I->F
4972 pipe_class fcvtI2F(regF dst, regF src) %{
4973     single_instruction;
4974     dst   : X(write);
4975     src   : E(read);
4976     FA    : R;
4977 %}
4978 
4979 // Floating Point Compare
4980 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4981     single_instruction;
4982     cr    : X(write);
4983     src1  : E(read);
4984     src2  : E(read);
4985     FA    : R;
4986 %}
4987 
4988 // Floating Point Compare
4989 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4990     single_instruction;
4991     cr    : X(write);
4992     src1  : E(read);
4993     src2  : E(read);
4994     FA    : R;
4995 %}
4996 
4997 // Floating Add Nop
4998 pipe_class fadd_nop() %{
4999     single_instruction;
5000     FA  : R;
5001 %}
5002 
5003 // Integer Store to Memory
5004 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5005     single_instruction;
5006     mem   : R(read);
5007     src   : C(read);
5008     MS    : R;
5009 %}
5010 
5011 // Integer Store to Memory
5012 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5013     single_instruction;
5014     mem   : R(read);
5015     src   : C(read);
5016     MS    : R;
5017 %}
5018 
5019 // Integer Store Zero to Memory
5020 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5021     single_instruction;
5022     mem   : R(read);
5023     MS    : R;
5024 %}
5025 
5026 // Special Stack Slot Store
5027 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5028     single_instruction;
5029     stkSlot : R(read);
5030     src     : C(read);
5031     MS      : R;
5032 %}
5033 
5034 // Special Stack Slot Store
5035 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5036     instruction_count(2); multiple_bundles;
5037     stkSlot : R(read);
5038     src     : C(read);
5039     MS      : R(2);
5040 %}
5041 
5042 // Float Store
5043 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5044     single_instruction;
5045     mem : R(read);
5046     src : C(read);
5047     MS  : R;
5048 %}
5049 
5050 // Float Store
5051 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5052     single_instruction;
5053     mem : R(read);
5054     MS  : R;
5055 %}
5056 
5057 // Double Store
5058 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5059     instruction_count(1);
5060     mem : R(read);
5061     src : C(read);
5062     MS  : R;
5063 %}
5064 
5065 // Double Store
5066 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5067     single_instruction;
5068     mem : R(read);
5069     MS  : R;
5070 %}
5071 
5072 // Special Stack Slot Float Store
5073 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5074     single_instruction;
5075     stkSlot : R(read);
5076     src     : C(read);
5077     MS      : R;
5078 %}
5079 
5080 // Special Stack Slot Double Store
5081 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5082     single_instruction;
5083     stkSlot : R(read);
5084     src     : C(read);
5085     MS      : R;
5086 %}
5087 
5088 // Integer Load (when sign bit propagation not needed)
5089 pipe_class iload_mem(iRegI dst, memory mem) %{
5090     single_instruction;
5091     mem : R(read);
5092     dst : C(write);
5093     MS  : R;
5094 %}
5095 
5096 // Integer Load from stack operand
5097 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5098     single_instruction;
5099     mem : R(read);
5100     dst : C(write);
5101     MS  : R;
5102 %}
5103 
5104 // Integer Load (when sign bit propagation or masking is needed)
5105 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5106     single_instruction;
5107     mem : R(read);
5108     dst : M(write);
5109     MS  : R;
5110 %}
5111 
5112 // Float Load
5113 pipe_class floadF_mem(regF dst, memory mem) %{
5114     single_instruction;
5115     mem : R(read);
5116     dst : M(write);
5117     MS  : R;
5118 %}
5119 
5120 // Float Load
5121 pipe_class floadD_mem(regD dst, memory mem) %{
5122     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5123     mem : R(read);
5124     dst : M(write);
5125     MS  : R;
5126 %}
5127 
5128 // Float Load
5129 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5130     single_instruction;
5131     stkSlot : R(read);
5132     dst : M(write);
5133     MS  : R;
5134 %}
5135 
5136 // Float Load
5137 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5138     single_instruction;
5139     stkSlot : R(read);
5140     dst : M(write);
5141     MS  : R;
5142 %}
5143 
5144 // Memory Nop
5145 pipe_class mem_nop() %{
5146     single_instruction;
5147     MS  : R;
5148 %}
5149 
5150 pipe_class sethi(iRegP dst, immI src) %{
5151     single_instruction;
5152     dst  : E(write);
5153     IALU : R;
5154 %}
5155 
5156 pipe_class loadPollP(iRegP poll) %{
5157     single_instruction;
5158     poll : R(read);
5159     MS   : R;
5160 %}
5161 
5162 pipe_class br(Universe br, label labl) %{
5163     single_instruction_with_delay_slot;
5164     BR  : R;
5165 %}
5166 
5167 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5168     single_instruction_with_delay_slot;
5169     cr    : E(read);
5170     BR    : R;
5171 %}
5172 
5173 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5174     single_instruction_with_delay_slot;
5175     op1 : E(read);
5176     BR  : R;
5177     MS  : R;
5178 %}
5179 
5180 // Compare and branch
5181 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5182     instruction_count(2); has_delay_slot;
5183     cr    : E(write);
5184     src1  : R(read);
5185     src2  : R(read);
5186     IALU  : R;
5187     BR    : R;
5188 %}
5189 
5190 // Compare and branch
5191 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5192     instruction_count(2); has_delay_slot;
5193     cr    : E(write);
5194     src1  : R(read);
5195     IALU  : R;
5196     BR    : R;
5197 %}
5198 
5199 // Compare and branch using cbcond
5200 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5201     single_instruction;
5202     src1  : E(read);
5203     src2  : E(read);
5204     IALU  : R;
5205     BR    : R;
5206 %}
5207 
5208 // Compare and branch using cbcond
5209 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5210     single_instruction;
5211     src1  : E(read);
5212     IALU  : R;
5213     BR    : R;
5214 %}
5215 
5216 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5217     single_instruction_with_delay_slot;
5218     cr    : E(read);
5219     BR    : R;
5220 %}
5221 
5222 pipe_class br_nop() %{
5223     single_instruction;
5224     BR  : R;
5225 %}
5226 
5227 pipe_class simple_call(method meth) %{
5228     instruction_count(2); multiple_bundles; force_serialization;
5229     fixed_latency(100);
5230     BR  : R(1);
5231     MS  : R(1);
5232     A0  : R(1);
5233 %}
5234 
5235 pipe_class compiled_call(method meth) %{
5236     instruction_count(1); multiple_bundles; force_serialization;
5237     fixed_latency(100);
5238     MS  : R(1);
5239 %}
5240 
5241 pipe_class call(method meth) %{
5242     instruction_count(0); multiple_bundles; force_serialization;
5243     fixed_latency(100);
5244 %}
5245 
5246 pipe_class tail_call(Universe ignore, label labl) %{
5247     single_instruction; has_delay_slot;
5248     fixed_latency(100);
5249     BR  : R(1);
5250     MS  : R(1);
5251 %}
5252 
5253 pipe_class ret(Universe ignore) %{
5254     single_instruction; has_delay_slot;
5255     BR  : R(1);
5256     MS  : R(1);
5257 %}
5258 
5259 pipe_class ret_poll(g3RegP poll) %{
5260     instruction_count(3); has_delay_slot;
5261     poll : E(read);
5262     MS   : R;
5263 %}
5264 
5265 // The real do-nothing guy
5266 pipe_class empty( ) %{
5267     instruction_count(0);
5268 %}
5269 
5270 pipe_class long_memory_op() %{
5271     instruction_count(0); multiple_bundles; force_serialization;
5272     fixed_latency(25);
5273     MS  : R(1);
5274 %}
5275 
5276 // Check-cast
5277 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5278     array : R(read);
5279     match  : R(read);
5280     IALU   : R(2);
5281     BR     : R(2);
5282     MS     : R;
5283 %}
5284 
5285 // Convert FPU flags into +1,0,-1
5286 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5287     src1  : E(read);
5288     src2  : E(read);
5289     dst   : E(write);
5290     FA    : R;
5291     MS    : R(2);
5292     BR    : R(2);
5293 %}
5294 
5295 // Compare for p < q, and conditionally add y
5296 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5297     p     : E(read);
5298     q     : E(read);
5299     y     : E(read);
5300     IALU  : R(3)
5301 %}
5302 
5303 // Perform a compare, then move conditionally in a branch delay slot.
5304 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5305     src2   : E(read);
5306     srcdst : E(read);
5307     IALU   : R;
5308     BR     : R;
5309 %}
5310 
5311 // Define the class for the Nop node
5312 define %{
5313    MachNop = ialu_nop;
5314 %}
5315 
5316 %}
5317 
5318 //----------INSTRUCTIONS-------------------------------------------------------
5319 
5320 //------------Special Stack Slot instructions - no match rules-----------------
5321 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5322   // No match rule to avoid chain rule match.
5323   effect(DEF dst, USE src);
5324   ins_cost(MEMORY_REF_COST);
5325   size(4);
5326   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5327   opcode(Assembler::ldf_op3);
5328   ins_encode(simple_form3_mem_reg(src, dst));
5329   ins_pipe(floadF_stk);
5330 %}
5331 
5332 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5333   // No match rule to avoid chain rule match.
5334   effect(DEF dst, USE src);
5335   ins_cost(MEMORY_REF_COST);
5336   size(4);
5337   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5338   opcode(Assembler::lddf_op3);
5339   ins_encode(simple_form3_mem_reg(src, dst));
5340   ins_pipe(floadD_stk);
5341 %}
5342 
5343 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5344   // No match rule to avoid chain rule match.
5345   effect(DEF dst, USE src);
5346   ins_cost(MEMORY_REF_COST);
5347   size(4);
5348   format %{ "STF    $src,$dst\t! regF to stkI" %}
5349   opcode(Assembler::stf_op3);
5350   ins_encode(simple_form3_mem_reg(dst, src));
5351   ins_pipe(fstoreF_stk_reg);
5352 %}
5353 
5354 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5355   // No match rule to avoid chain rule match.
5356   effect(DEF dst, USE src);
5357   ins_cost(MEMORY_REF_COST);
5358   size(4);
5359   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5360   opcode(Assembler::stdf_op3);
5361   ins_encode(simple_form3_mem_reg(dst, src));
5362   ins_pipe(fstoreD_stk_reg);
5363 %}
5364 
5365 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5366   effect(DEF dst, USE src);
5367   ins_cost(MEMORY_REF_COST*2);
5368   size(8);
5369   format %{ "STW    $src,$dst.hi\t! long\n\t"
5370             "STW    R_G0,$dst.lo" %}
5371   opcode(Assembler::stw_op3);
5372   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5373   ins_pipe(lstoreI_stk_reg);
5374 %}
5375 
5376 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5377   // No match rule to avoid chain rule match.
5378   effect(DEF dst, USE src);
5379   ins_cost(MEMORY_REF_COST);
5380   size(4);
5381   format %{ "STX    $src,$dst\t! regL to stkD" %}
5382   opcode(Assembler::stx_op3);
5383   ins_encode(simple_form3_mem_reg( dst, src ) );
5384   ins_pipe(istore_stk_reg);
5385 %}
5386 
5387 //---------- Chain stack slots between similar types --------
5388 
5389 // Load integer from stack slot
5390 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5391   match(Set dst src);
5392   ins_cost(MEMORY_REF_COST);
5393 
5394   size(4);
5395   format %{ "LDUW   $src,$dst\t!stk" %}
5396   opcode(Assembler::lduw_op3);
5397   ins_encode(simple_form3_mem_reg( src, dst ) );
5398   ins_pipe(iload_mem);
5399 %}
5400 
5401 // Store integer to stack slot
5402 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5403   match(Set dst src);
5404   ins_cost(MEMORY_REF_COST);
5405 
5406   size(4);
5407   format %{ "STW    $src,$dst\t!stk" %}
5408   opcode(Assembler::stw_op3);
5409   ins_encode(simple_form3_mem_reg( dst, src ) );
5410   ins_pipe(istore_mem_reg);
5411 %}
5412 
5413 // Load long from stack slot
5414 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5415   match(Set dst src);
5416 
5417   ins_cost(MEMORY_REF_COST);
5418   size(4);
5419   format %{ "LDX    $src,$dst\t! long" %}
5420   opcode(Assembler::ldx_op3);
5421   ins_encode(simple_form3_mem_reg( src, dst ) );
5422   ins_pipe(iload_mem);
5423 %}
5424 
5425 // Store long to stack slot
5426 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5427   match(Set dst src);
5428 
5429   ins_cost(MEMORY_REF_COST);
5430   size(4);
5431   format %{ "STX    $src,$dst\t! long" %}
5432   opcode(Assembler::stx_op3);
5433   ins_encode(simple_form3_mem_reg( dst, src ) );
5434   ins_pipe(istore_mem_reg);
5435 %}
5436 
5437 #ifdef _LP64
5438 // Load pointer from stack slot, 64-bit encoding
5439 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5440   match(Set dst src);
5441   ins_cost(MEMORY_REF_COST);
5442   size(4);
5443   format %{ "LDX    $src,$dst\t!ptr" %}
5444   opcode(Assembler::ldx_op3);
5445   ins_encode(simple_form3_mem_reg( src, dst ) );
5446   ins_pipe(iload_mem);
5447 %}
5448 
5449 // Store pointer to stack slot
5450 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5451   match(Set dst src);
5452   ins_cost(MEMORY_REF_COST);
5453   size(4);
5454   format %{ "STX    $src,$dst\t!ptr" %}
5455   opcode(Assembler::stx_op3);
5456   ins_encode(simple_form3_mem_reg( dst, src ) );
5457   ins_pipe(istore_mem_reg);
5458 %}
5459 #else // _LP64
5460 // Load pointer from stack slot, 32-bit encoding
5461 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5462   match(Set dst src);
5463   ins_cost(MEMORY_REF_COST);
5464   format %{ "LDUW   $src,$dst\t!ptr" %}
5465   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5466   ins_encode(simple_form3_mem_reg( src, dst ) );
5467   ins_pipe(iload_mem);
5468 %}
5469 
5470 // Store pointer to stack slot
5471 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5472   match(Set dst src);
5473   ins_cost(MEMORY_REF_COST);
5474   format %{ "STW    $src,$dst\t!ptr" %}
5475   opcode(Assembler::stw_op3, Assembler::ldst_op);
5476   ins_encode(simple_form3_mem_reg( dst, src ) );
5477   ins_pipe(istore_mem_reg);
5478 %}
5479 #endif // _LP64
5480 
5481 //------------Special Nop instructions for bundling - no match rules-----------
5482 // Nop using the A0 functional unit
5483 instruct Nop_A0() %{
5484   ins_cost(0);
5485 
5486   format %{ "NOP    ! Alu Pipeline" %}
5487   opcode(Assembler::or_op3, Assembler::arith_op);
5488   ins_encode( form2_nop() );
5489   ins_pipe(ialu_nop_A0);
5490 %}
5491 
5492 // Nop using the A1 functional unit
5493 instruct Nop_A1( ) %{
5494   ins_cost(0);
5495 
5496   format %{ "NOP    ! Alu Pipeline" %}
5497   opcode(Assembler::or_op3, Assembler::arith_op);
5498   ins_encode( form2_nop() );
5499   ins_pipe(ialu_nop_A1);
5500 %}
5501 
5502 // Nop using the memory functional unit
5503 instruct Nop_MS( ) %{
5504   ins_cost(0);
5505 
5506   format %{ "NOP    ! Memory Pipeline" %}
5507   ins_encode( emit_mem_nop );
5508   ins_pipe(mem_nop);
5509 %}
5510 
5511 // Nop using the floating add functional unit
5512 instruct Nop_FA( ) %{
5513   ins_cost(0);
5514 
5515   format %{ "NOP    ! Floating Add Pipeline" %}
5516   ins_encode( emit_fadd_nop );
5517   ins_pipe(fadd_nop);
5518 %}
5519 
5520 // Nop using the branch functional unit
5521 instruct Nop_BR( ) %{
5522   ins_cost(0);
5523 
5524   format %{ "NOP    ! Branch Pipeline" %}
5525   ins_encode( emit_br_nop );
5526   ins_pipe(br_nop);
5527 %}
5528 
5529 //----------Load/Store/Move Instructions---------------------------------------
5530 //----------Load Instructions--------------------------------------------------
5531 // Load Byte (8bit signed)
5532 instruct loadB(iRegI dst, memory mem) %{
5533   match(Set dst (LoadB mem));
5534   ins_cost(MEMORY_REF_COST);
5535 
5536   size(4);
5537   format %{ "LDSB   $mem,$dst\t! byte" %}
5538   ins_encode %{
5539     __ ldsb($mem$$Address, $dst$$Register);
5540   %}
5541   ins_pipe(iload_mask_mem);
5542 %}
5543 
5544 // Load Byte (8bit signed) into a Long Register
5545 instruct loadB2L(iRegL dst, memory mem) %{
5546   match(Set dst (ConvI2L (LoadB mem)));
5547   ins_cost(MEMORY_REF_COST);
5548 
5549   size(4);
5550   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5551   ins_encode %{
5552     __ ldsb($mem$$Address, $dst$$Register);
5553   %}
5554   ins_pipe(iload_mask_mem);
5555 %}
5556 
5557 // Load Unsigned Byte (8bit UNsigned) into an int reg
5558 instruct loadUB(iRegI dst, memory mem) %{
5559   match(Set dst (LoadUB mem));
5560   ins_cost(MEMORY_REF_COST);
5561 
5562   size(4);
5563   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5564   ins_encode %{
5565     __ ldub($mem$$Address, $dst$$Register);
5566   %}
5567   ins_pipe(iload_mem);
5568 %}
5569 
5570 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5571 instruct loadUB2L(iRegL dst, memory mem) %{
5572   match(Set dst (ConvI2L (LoadUB mem)));
5573   ins_cost(MEMORY_REF_COST);
5574 
5575   size(4);
5576   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5577   ins_encode %{
5578     __ ldub($mem$$Address, $dst$$Register);
5579   %}
5580   ins_pipe(iload_mem);
5581 %}
5582 
5583 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5584 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5585   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5586   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5587 
5588   size(2*4);
5589   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5590             "AND    $dst,$mask,$dst" %}
5591   ins_encode %{
5592     __ ldub($mem$$Address, $dst$$Register);
5593     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5594   %}
5595   ins_pipe(iload_mem);
5596 %}
5597 
5598 // Load Short (16bit signed)
5599 instruct loadS(iRegI dst, memory mem) %{
5600   match(Set dst (LoadS mem));
5601   ins_cost(MEMORY_REF_COST);
5602 
5603   size(4);
5604   format %{ "LDSH   $mem,$dst\t! short" %}
5605   ins_encode %{
5606     __ ldsh($mem$$Address, $dst$$Register);
5607   %}
5608   ins_pipe(iload_mask_mem);
5609 %}
5610 
5611 // Load Short (16 bit signed) to Byte (8 bit signed)
5612 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5613   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5614   ins_cost(MEMORY_REF_COST);
5615 
5616   size(4);
5617 
5618   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5619   ins_encode %{
5620     __ ldsb($mem$$Address, $dst$$Register, 1);
5621   %}
5622   ins_pipe(iload_mask_mem);
5623 %}
5624 
5625 // Load Short (16bit signed) into a Long Register
5626 instruct loadS2L(iRegL dst, memory mem) %{
5627   match(Set dst (ConvI2L (LoadS mem)));
5628   ins_cost(MEMORY_REF_COST);
5629 
5630   size(4);
5631   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5632   ins_encode %{
5633     __ ldsh($mem$$Address, $dst$$Register);
5634   %}
5635   ins_pipe(iload_mask_mem);
5636 %}
5637 
5638 // Load Unsigned Short/Char (16bit UNsigned)
5639 instruct loadUS(iRegI dst, memory mem) %{
5640   match(Set dst (LoadUS mem));
5641   ins_cost(MEMORY_REF_COST);
5642 
5643   size(4);
5644   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5645   ins_encode %{
5646     __ lduh($mem$$Address, $dst$$Register);
5647   %}
5648   ins_pipe(iload_mem);
5649 %}
5650 
5651 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5652 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5653   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5654   ins_cost(MEMORY_REF_COST);
5655 
5656   size(4);
5657   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5658   ins_encode %{
5659     __ ldsb($mem$$Address, $dst$$Register, 1);
5660   %}
5661   ins_pipe(iload_mask_mem);
5662 %}
5663 
5664 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5665 instruct loadUS2L(iRegL dst, memory mem) %{
5666   match(Set dst (ConvI2L (LoadUS mem)));
5667   ins_cost(MEMORY_REF_COST);
5668 
5669   size(4);
5670   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5671   ins_encode %{
5672     __ lduh($mem$$Address, $dst$$Register);
5673   %}
5674   ins_pipe(iload_mem);
5675 %}
5676 
5677 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5678 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5679   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5680   ins_cost(MEMORY_REF_COST);
5681 
5682   size(4);
5683   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5684   ins_encode %{
5685     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5686   %}
5687   ins_pipe(iload_mem);
5688 %}
5689 
5690 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5691 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5692   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5693   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5694 
5695   size(2*4);
5696   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5697             "AND    $dst,$mask,$dst" %}
5698   ins_encode %{
5699     Register Rdst = $dst$$Register;
5700     __ lduh($mem$$Address, Rdst);
5701     __ and3(Rdst, $mask$$constant, Rdst);
5702   %}
5703   ins_pipe(iload_mem);
5704 %}
5705 
5706 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5707 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5708   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5709   effect(TEMP dst, TEMP tmp);
5710   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5711 
5712   size((3+1)*4);  // set may use two instructions.
5713   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5714             "SET    $mask,$tmp\n\t"
5715             "AND    $dst,$tmp,$dst" %}
5716   ins_encode %{
5717     Register Rdst = $dst$$Register;
5718     Register Rtmp = $tmp$$Register;
5719     __ lduh($mem$$Address, Rdst);
5720     __ set($mask$$constant, Rtmp);
5721     __ and3(Rdst, Rtmp, Rdst);
5722   %}
5723   ins_pipe(iload_mem);
5724 %}
5725 
5726 // Load Integer
5727 instruct loadI(iRegI dst, memory mem) %{
5728   match(Set dst (LoadI mem));
5729   ins_cost(MEMORY_REF_COST);
5730 
5731   size(4);
5732   format %{ "LDUW   $mem,$dst\t! int" %}
5733   ins_encode %{
5734     __ lduw($mem$$Address, $dst$$Register);
5735   %}
5736   ins_pipe(iload_mem);
5737 %}
5738 
5739 // Load Integer to Byte (8 bit signed)
5740 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5741   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5742   ins_cost(MEMORY_REF_COST);
5743 
5744   size(4);
5745 
5746   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5747   ins_encode %{
5748     __ ldsb($mem$$Address, $dst$$Register, 3);
5749   %}
5750   ins_pipe(iload_mask_mem);
5751 %}
5752 
5753 // Load Integer to Unsigned Byte (8 bit UNsigned)
5754 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5755   match(Set dst (AndI (LoadI mem) mask));
5756   ins_cost(MEMORY_REF_COST);
5757 
5758   size(4);
5759 
5760   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5761   ins_encode %{
5762     __ ldub($mem$$Address, $dst$$Register, 3);
5763   %}
5764   ins_pipe(iload_mask_mem);
5765 %}
5766 
5767 // Load Integer to Short (16 bit signed)
5768 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5769   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5770   ins_cost(MEMORY_REF_COST);
5771 
5772   size(4);
5773 
5774   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5775   ins_encode %{
5776     __ ldsh($mem$$Address, $dst$$Register, 2);
5777   %}
5778   ins_pipe(iload_mask_mem);
5779 %}
5780 
5781 // Load Integer to Unsigned Short (16 bit UNsigned)
5782 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5783   match(Set dst (AndI (LoadI mem) mask));
5784   ins_cost(MEMORY_REF_COST);
5785 
5786   size(4);
5787 
5788   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5789   ins_encode %{
5790     __ lduh($mem$$Address, $dst$$Register, 2);
5791   %}
5792   ins_pipe(iload_mask_mem);
5793 %}
5794 
5795 // Load Integer into a Long Register
5796 instruct loadI2L(iRegL dst, memory mem) %{
5797   match(Set dst (ConvI2L (LoadI mem)));
5798   ins_cost(MEMORY_REF_COST);
5799 
5800   size(4);
5801   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5802   ins_encode %{
5803     __ ldsw($mem$$Address, $dst$$Register);
5804   %}
5805   ins_pipe(iload_mask_mem);
5806 %}
5807 
5808 // Load Integer with mask 0xFF into a Long Register
5809 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5810   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5811   ins_cost(MEMORY_REF_COST);
5812 
5813   size(4);
5814   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5815   ins_encode %{
5816     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5817   %}
5818   ins_pipe(iload_mem);
5819 %}
5820 
5821 // Load Integer with mask 0xFFFF into a Long Register
5822 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5823   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5824   ins_cost(MEMORY_REF_COST);
5825 
5826   size(4);
5827   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5828   ins_encode %{
5829     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5830   %}
5831   ins_pipe(iload_mem);
5832 %}
5833 
5834 // Load Integer with a 13-bit mask into a Long Register
5835 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5836   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5837   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5838 
5839   size(2*4);
5840   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5841             "AND    $dst,$mask,$dst" %}
5842   ins_encode %{
5843     Register Rdst = $dst$$Register;
5844     __ lduw($mem$$Address, Rdst);
5845     __ and3(Rdst, $mask$$constant, Rdst);
5846   %}
5847   ins_pipe(iload_mem);
5848 %}
5849 
5850 // Load Integer with a 32-bit mask into a Long Register
5851 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5852   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5853   effect(TEMP dst, TEMP tmp);
5854   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5855 
5856   size((3+1)*4);  // set may use two instructions.
5857   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5858             "SET    $mask,$tmp\n\t"
5859             "AND    $dst,$tmp,$dst" %}
5860   ins_encode %{
5861     Register Rdst = $dst$$Register;
5862     Register Rtmp = $tmp$$Register;
5863     __ lduw($mem$$Address, Rdst);
5864     __ set($mask$$constant, Rtmp);
5865     __ and3(Rdst, Rtmp, Rdst);
5866   %}
5867   ins_pipe(iload_mem);
5868 %}
5869 
5870 // Load Unsigned Integer into a Long Register
5871 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5872   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5873   ins_cost(MEMORY_REF_COST);
5874 
5875   size(4);
5876   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5877   ins_encode %{
5878     __ lduw($mem$$Address, $dst$$Register);
5879   %}
5880   ins_pipe(iload_mem);
5881 %}
5882 
5883 // Load Long - aligned
5884 instruct loadL(iRegL dst, memory mem ) %{
5885   match(Set dst (LoadL mem));
5886   ins_cost(MEMORY_REF_COST);
5887 
5888   size(4);
5889   format %{ "LDX    $mem,$dst\t! long" %}
5890   ins_encode %{
5891     __ ldx($mem$$Address, $dst$$Register);
5892   %}
5893   ins_pipe(iload_mem);
5894 %}
5895 
5896 // Load Long - UNaligned
5897 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5898   match(Set dst (LoadL_unaligned mem));
5899   effect(KILL tmp);
5900   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5901   size(16);
5902   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5903           "\tLDUW   $mem  ,$dst\n"
5904           "\tSLLX   #32, $dst, $dst\n"
5905           "\tOR     $dst, R_O7, $dst" %}
5906   opcode(Assembler::lduw_op3);
5907   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5908   ins_pipe(iload_mem);
5909 %}
5910 
5911 // Load Range
5912 instruct loadRange(iRegI dst, memory mem) %{
5913   match(Set dst (LoadRange mem));
5914   ins_cost(MEMORY_REF_COST);
5915 
5916   size(4);
5917   format %{ "LDUW   $mem,$dst\t! range" %}
5918   opcode(Assembler::lduw_op3);
5919   ins_encode(simple_form3_mem_reg( mem, dst ) );
5920   ins_pipe(iload_mem);
5921 %}
5922 
5923 // Load Integer into %f register (for fitos/fitod)
5924 instruct loadI_freg(regF dst, memory mem) %{
5925   match(Set dst (LoadI mem));
5926   ins_cost(MEMORY_REF_COST);
5927   size(4);
5928 
5929   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5930   opcode(Assembler::ldf_op3);
5931   ins_encode(simple_form3_mem_reg( mem, dst ) );
5932   ins_pipe(floadF_mem);
5933 %}
5934 
5935 // Load Pointer
5936 instruct loadP(iRegP dst, memory mem) %{
5937   match(Set dst (LoadP mem));
5938   ins_cost(MEMORY_REF_COST);
5939   size(4);
5940 
5941 #ifndef _LP64
5942   format %{ "LDUW   $mem,$dst\t! ptr" %}
5943   ins_encode %{
5944     __ lduw($mem$$Address, $dst$$Register);
5945   %}
5946 #else
5947   format %{ "LDX    $mem,$dst\t! ptr" %}
5948   ins_encode %{
5949     __ ldx($mem$$Address, $dst$$Register);
5950   %}
5951 #endif
5952   ins_pipe(iload_mem);
5953 %}
5954 
5955 // Load Compressed Pointer
5956 instruct loadN(iRegN dst, memory mem) %{
5957   match(Set dst (LoadN mem));
5958   ins_cost(MEMORY_REF_COST);
5959   size(4);
5960 
5961   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5962   ins_encode %{
5963     __ lduw($mem$$Address, $dst$$Register);
5964   %}
5965   ins_pipe(iload_mem);
5966 %}
5967 
5968 // Load Klass Pointer
5969 instruct loadKlass(iRegP dst, memory mem) %{
5970   match(Set dst (LoadKlass mem));
5971   ins_cost(MEMORY_REF_COST);
5972   size(4);
5973 
5974 #ifndef _LP64
5975   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5976   ins_encode %{
5977     __ lduw($mem$$Address, $dst$$Register);
5978   %}
5979 #else
5980   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5981   ins_encode %{
5982     __ ldx($mem$$Address, $dst$$Register);
5983   %}
5984 #endif
5985   ins_pipe(iload_mem);
5986 %}
5987 
5988 // Load narrow Klass Pointer
5989 instruct loadNKlass(iRegN dst, memory mem) %{
5990   match(Set dst (LoadNKlass mem));
5991   ins_cost(MEMORY_REF_COST);
5992   size(4);
5993 
5994   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5995   ins_encode %{
5996     __ lduw($mem$$Address, $dst$$Register);
5997   %}
5998   ins_pipe(iload_mem);
5999 %}
6000 
6001 // Load Double
6002 instruct loadD(regD dst, memory mem) %{
6003   match(Set dst (LoadD mem));
6004   ins_cost(MEMORY_REF_COST);
6005 
6006   size(4);
6007   format %{ "LDDF   $mem,$dst" %}
6008   opcode(Assembler::lddf_op3);
6009   ins_encode(simple_form3_mem_reg( mem, dst ) );
6010   ins_pipe(floadD_mem);
6011 %}
6012 
6013 // Load Double - UNaligned
6014 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6015   match(Set dst (LoadD_unaligned mem));
6016   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6017   size(8);
6018   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6019           "\tLDF    $mem+4,$dst.lo\t!" %}
6020   opcode(Assembler::ldf_op3);
6021   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6022   ins_pipe(iload_mem);
6023 %}
6024 
6025 // Load Float
6026 instruct loadF(regF dst, memory mem) %{
6027   match(Set dst (LoadF mem));
6028   ins_cost(MEMORY_REF_COST);
6029 
6030   size(4);
6031   format %{ "LDF    $mem,$dst" %}
6032   opcode(Assembler::ldf_op3);
6033   ins_encode(simple_form3_mem_reg( mem, dst ) );
6034   ins_pipe(floadF_mem);
6035 %}
6036 
6037 // Load Constant
6038 instruct loadConI( iRegI dst, immI src ) %{
6039   match(Set dst src);
6040   ins_cost(DEFAULT_COST * 3/2);
6041   format %{ "SET    $src,$dst" %}
6042   ins_encode( Set32(src, dst) );
6043   ins_pipe(ialu_hi_lo_reg);
6044 %}
6045 
6046 instruct loadConI13( iRegI dst, immI13 src ) %{
6047   match(Set dst src);
6048 
6049   size(4);
6050   format %{ "MOV    $src,$dst" %}
6051   ins_encode( Set13( src, dst ) );
6052   ins_pipe(ialu_imm);
6053 %}
6054 
6055 #ifndef _LP64
6056 instruct loadConP(iRegP dst, immP con) %{
6057   match(Set dst con);
6058   ins_cost(DEFAULT_COST * 3/2);
6059   format %{ "SET    $con,$dst\t!ptr" %}
6060   ins_encode %{
6061     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6062       intptr_t val = $con$$constant;
6063     if (constant_reloc == relocInfo::oop_type) {
6064       __ set_oop_constant((jobject) val, $dst$$Register);
6065     } else if (constant_reloc == relocInfo::metadata_type) {
6066       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6067     } else {          // non-oop pointers, e.g. card mark base, heap top
6068       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6069       __ set(val, $dst$$Register);
6070     }
6071   %}
6072   ins_pipe(loadConP);
6073 %}
6074 #else
6075 instruct loadConP_set(iRegP dst, immP_set con) %{
6076   match(Set dst con);
6077   ins_cost(DEFAULT_COST * 3/2);
6078   format %{ "SET    $con,$dst\t! ptr" %}
6079   ins_encode %{
6080     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6081       intptr_t val = $con$$constant;
6082     if (constant_reloc == relocInfo::oop_type) {
6083       __ set_oop_constant((jobject) val, $dst$$Register);
6084     } else if (constant_reloc == relocInfo::metadata_type) {
6085       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6086     } else {          // non-oop pointers, e.g. card mark base, heap top
6087       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6088       __ set(val, $dst$$Register);
6089     }
6090   %}
6091   ins_pipe(loadConP);
6092 %}
6093 
6094 instruct loadConP_load(iRegP dst, immP_load con) %{
6095   match(Set dst con);
6096   ins_cost(MEMORY_REF_COST);
6097   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6098   ins_encode %{
6099     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6100     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6101   %}
6102   ins_pipe(loadConP);
6103 %}
6104 
6105 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6106   match(Set dst con);
6107   ins_cost(DEFAULT_COST * 3/2);
6108   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6109   ins_encode %{
6110     __ set($con$$constant, $dst$$Register);
6111   %}
6112   ins_pipe(loadConP);
6113 %}
6114 #endif // _LP64
6115 
6116 instruct loadConP0(iRegP dst, immP0 src) %{
6117   match(Set dst src);
6118 
6119   size(4);
6120   format %{ "CLR    $dst\t!ptr" %}
6121   ins_encode %{
6122     __ clr($dst$$Register);
6123   %}
6124   ins_pipe(ialu_imm);
6125 %}
6126 
6127 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6128   match(Set dst src);
6129   ins_cost(DEFAULT_COST);
6130   format %{ "SET    $src,$dst\t!ptr" %}
6131   ins_encode %{
6132     AddressLiteral polling_page(os::get_polling_page());
6133     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6134   %}
6135   ins_pipe(loadConP_poll);
6136 %}
6137 
6138 instruct loadConN0(iRegN dst, immN0 src) %{
6139   match(Set dst src);
6140 
6141   size(4);
6142   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6143   ins_encode %{
6144     __ clr($dst$$Register);
6145   %}
6146   ins_pipe(ialu_imm);
6147 %}
6148 
6149 instruct loadConN(iRegN dst, immN src) %{
6150   match(Set dst src);
6151   ins_cost(DEFAULT_COST * 3/2);
6152   format %{ "SET    $src,$dst\t! compressed ptr" %}
6153   ins_encode %{
6154     Register dst = $dst$$Register;
6155     __ set_narrow_oop((jobject)$src$$constant, dst);
6156   %}
6157   ins_pipe(ialu_hi_lo_reg);
6158 %}
6159 
6160 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6161   match(Set dst src);
6162   ins_cost(DEFAULT_COST * 3/2);
6163   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6164   ins_encode %{
6165     Register dst = $dst$$Register;
6166     __ set_narrow_klass((Klass*)$src$$constant, dst);
6167   %}
6168   ins_pipe(ialu_hi_lo_reg);
6169 %}
6170 
6171 // Materialize long value (predicated by immL_cheap).
6172 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6173   match(Set dst con);
6174   effect(KILL tmp);
6175   ins_cost(DEFAULT_COST * 3);
6176   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6177   ins_encode %{
6178     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6179   %}
6180   ins_pipe(loadConL);
6181 %}
6182 
6183 // Load long value from constant table (predicated by immL_expensive).
6184 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6185   match(Set dst con);
6186   ins_cost(MEMORY_REF_COST);
6187   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6188   ins_encode %{
6189       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6190     __ ldx($constanttablebase, con_offset, $dst$$Register);
6191   %}
6192   ins_pipe(loadConL);
6193 %}
6194 
6195 instruct loadConL0( iRegL dst, immL0 src ) %{
6196   match(Set dst src);
6197   ins_cost(DEFAULT_COST);
6198   size(4);
6199   format %{ "CLR    $dst\t! long" %}
6200   ins_encode( Set13( src, dst ) );
6201   ins_pipe(ialu_imm);
6202 %}
6203 
6204 instruct loadConL13( iRegL dst, immL13 src ) %{
6205   match(Set dst src);
6206   ins_cost(DEFAULT_COST * 2);
6207 
6208   size(4);
6209   format %{ "MOV    $src,$dst\t! long" %}
6210   ins_encode( Set13( src, dst ) );
6211   ins_pipe(ialu_imm);
6212 %}
6213 
6214 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6215   match(Set dst con);
6216   effect(KILL tmp);
6217   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6218   ins_encode %{
6219       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6220     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6221   %}
6222   ins_pipe(loadConFD);
6223 %}
6224 
6225 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6226   match(Set dst con);
6227   effect(KILL tmp);
6228   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6229   ins_encode %{
6230     // XXX This is a quick fix for 6833573.
6231     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6232     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6233     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6234   %}
6235   ins_pipe(loadConFD);
6236 %}
6237 
6238 // Prefetch instructions.
6239 // Must be safe to execute with invalid address (cannot fault).
6240 
6241 instruct prefetchr( memory mem ) %{
6242   match( PrefetchRead mem );
6243   ins_cost(MEMORY_REF_COST);
6244   size(4);
6245 
6246   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6247   opcode(Assembler::prefetch_op3);
6248   ins_encode( form3_mem_prefetch_read( mem ) );
6249   ins_pipe(iload_mem);
6250 %}
6251 
6252 instruct prefetchw( memory mem ) %{
6253   match( PrefetchWrite mem );
6254   ins_cost(MEMORY_REF_COST);
6255   size(4);
6256 
6257   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6258   opcode(Assembler::prefetch_op3);
6259   ins_encode( form3_mem_prefetch_write( mem ) );
6260   ins_pipe(iload_mem);
6261 %}
6262 
6263 // Prefetch instructions for allocation.
6264 
6265 instruct prefetchAlloc( memory mem ) %{
6266   predicate(AllocatePrefetchInstr == 0);
6267   match( PrefetchAllocation mem );
6268   ins_cost(MEMORY_REF_COST);
6269   size(4);
6270 
6271   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6272   opcode(Assembler::prefetch_op3);
6273   ins_encode( form3_mem_prefetch_write( mem ) );
6274   ins_pipe(iload_mem);
6275 %}
6276 
6277 // Use BIS instruction to prefetch for allocation.
6278 // Could fault, need space at the end of TLAB.
6279 instruct prefetchAlloc_bis( iRegP dst ) %{
6280   predicate(AllocatePrefetchInstr == 1);
6281   match( PrefetchAllocation dst );
6282   ins_cost(MEMORY_REF_COST);
6283   size(4);
6284 
6285   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6286   ins_encode %{
6287     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6288   %}
6289   ins_pipe(istore_mem_reg);
6290 %}
6291 
6292 // Next code is used for finding next cache line address to prefetch.
6293 #ifndef _LP64
6294 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6295   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6296   ins_cost(DEFAULT_COST);
6297   size(4);
6298 
6299   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6300   ins_encode %{
6301     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6302   %}
6303   ins_pipe(ialu_reg_imm);
6304 %}
6305 #else
6306 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6307   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6308   ins_cost(DEFAULT_COST);
6309   size(4);
6310 
6311   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6312   ins_encode %{
6313     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6314   %}
6315   ins_pipe(ialu_reg_imm);
6316 %}
6317 #endif
6318 
6319 //----------Store Instructions-------------------------------------------------
6320 // Store Byte
6321 instruct storeB(memory mem, iRegI src) %{
6322   match(Set mem (StoreB mem src));
6323   ins_cost(MEMORY_REF_COST);
6324 
6325   size(4);
6326   format %{ "STB    $src,$mem\t! byte" %}
6327   opcode(Assembler::stb_op3);
6328   ins_encode(simple_form3_mem_reg( mem, src ) );
6329   ins_pipe(istore_mem_reg);
6330 %}
6331 
6332 instruct storeB0(memory mem, immI0 src) %{
6333   match(Set mem (StoreB mem src));
6334   ins_cost(MEMORY_REF_COST);
6335 
6336   size(4);
6337   format %{ "STB    $src,$mem\t! byte" %}
6338   opcode(Assembler::stb_op3);
6339   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6340   ins_pipe(istore_mem_zero);
6341 %}
6342 
6343 instruct storeCM0(memory mem, immI0 src) %{
6344   match(Set mem (StoreCM mem src));
6345   ins_cost(MEMORY_REF_COST);
6346 
6347   size(4);
6348   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6349   opcode(Assembler::stb_op3);
6350   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6351   ins_pipe(istore_mem_zero);
6352 %}
6353 
6354 // Store Char/Short
6355 instruct storeC(memory mem, iRegI src) %{
6356   match(Set mem (StoreC mem src));
6357   ins_cost(MEMORY_REF_COST);
6358 
6359   size(4);
6360   format %{ "STH    $src,$mem\t! short" %}
6361   opcode(Assembler::sth_op3);
6362   ins_encode(simple_form3_mem_reg( mem, src ) );
6363   ins_pipe(istore_mem_reg);
6364 %}
6365 
6366 instruct storeC0(memory mem, immI0 src) %{
6367   match(Set mem (StoreC mem src));
6368   ins_cost(MEMORY_REF_COST);
6369 
6370   size(4);
6371   format %{ "STH    $src,$mem\t! short" %}
6372   opcode(Assembler::sth_op3);
6373   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6374   ins_pipe(istore_mem_zero);
6375 %}
6376 
6377 // Store Integer
6378 instruct storeI(memory mem, iRegI src) %{
6379   match(Set mem (StoreI mem src));
6380   ins_cost(MEMORY_REF_COST);
6381 
6382   size(4);
6383   format %{ "STW    $src,$mem" %}
6384   opcode(Assembler::stw_op3);
6385   ins_encode(simple_form3_mem_reg( mem, src ) );
6386   ins_pipe(istore_mem_reg);
6387 %}
6388 
6389 // Store Long
6390 instruct storeL(memory mem, iRegL src) %{
6391   match(Set mem (StoreL mem src));
6392   ins_cost(MEMORY_REF_COST);
6393   size(4);
6394   format %{ "STX    $src,$mem\t! long" %}
6395   opcode(Assembler::stx_op3);
6396   ins_encode(simple_form3_mem_reg( mem, src ) );
6397   ins_pipe(istore_mem_reg);
6398 %}
6399 
6400 instruct storeI0(memory mem, immI0 src) %{
6401   match(Set mem (StoreI mem src));
6402   ins_cost(MEMORY_REF_COST);
6403 
6404   size(4);
6405   format %{ "STW    $src,$mem" %}
6406   opcode(Assembler::stw_op3);
6407   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6408   ins_pipe(istore_mem_zero);
6409 %}
6410 
6411 instruct storeL0(memory mem, immL0 src) %{
6412   match(Set mem (StoreL mem src));
6413   ins_cost(MEMORY_REF_COST);
6414 
6415   size(4);
6416   format %{ "STX    $src,$mem" %}
6417   opcode(Assembler::stx_op3);
6418   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6419   ins_pipe(istore_mem_zero);
6420 %}
6421 
6422 // Store Integer from float register (used after fstoi)
6423 instruct storeI_Freg(memory mem, regF src) %{
6424   match(Set mem (StoreI mem src));
6425   ins_cost(MEMORY_REF_COST);
6426 
6427   size(4);
6428   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6429   opcode(Assembler::stf_op3);
6430   ins_encode(simple_form3_mem_reg( mem, src ) );
6431   ins_pipe(fstoreF_mem_reg);
6432 %}
6433 
6434 // Store Pointer
6435 instruct storeP(memory dst, sp_ptr_RegP src) %{
6436   match(Set dst (StoreP dst src));
6437   ins_cost(MEMORY_REF_COST);
6438   size(4);
6439 
6440 #ifndef _LP64
6441   format %{ "STW    $src,$dst\t! ptr" %}
6442   opcode(Assembler::stw_op3, 0, REGP_OP);
6443 #else
6444   format %{ "STX    $src,$dst\t! ptr" %}
6445   opcode(Assembler::stx_op3, 0, REGP_OP);
6446 #endif
6447   ins_encode( form3_mem_reg( dst, src ) );
6448   ins_pipe(istore_mem_spORreg);
6449 %}
6450 
6451 instruct storeP0(memory dst, immP0 src) %{
6452   match(Set dst (StoreP dst src));
6453   ins_cost(MEMORY_REF_COST);
6454   size(4);
6455 
6456 #ifndef _LP64
6457   format %{ "STW    $src,$dst\t! ptr" %}
6458   opcode(Assembler::stw_op3, 0, REGP_OP);
6459 #else
6460   format %{ "STX    $src,$dst\t! ptr" %}
6461   opcode(Assembler::stx_op3, 0, REGP_OP);
6462 #endif
6463   ins_encode( form3_mem_reg( dst, R_G0 ) );
6464   ins_pipe(istore_mem_zero);
6465 %}
6466 
6467 // Store Compressed Pointer
6468 instruct storeN(memory dst, iRegN src) %{
6469    match(Set dst (StoreN dst src));
6470    ins_cost(MEMORY_REF_COST);
6471    size(4);
6472 
6473    format %{ "STW    $src,$dst\t! compressed ptr" %}
6474    ins_encode %{
6475      Register base = as_Register($dst$$base);
6476      Register index = as_Register($dst$$index);
6477      Register src = $src$$Register;
6478      if (index != G0) {
6479        __ stw(src, base, index);
6480      } else {
6481        __ stw(src, base, $dst$$disp);
6482      }
6483    %}
6484    ins_pipe(istore_mem_spORreg);
6485 %}
6486 
6487 instruct storeNKlass(memory dst, iRegN src) %{
6488    match(Set dst (StoreNKlass dst src));
6489    ins_cost(MEMORY_REF_COST);
6490    size(4);
6491 
6492    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6493    ins_encode %{
6494      Register base = as_Register($dst$$base);
6495      Register index = as_Register($dst$$index);
6496      Register src = $src$$Register;
6497      if (index != G0) {
6498        __ stw(src, base, index);
6499      } else {
6500        __ stw(src, base, $dst$$disp);
6501      }
6502    %}
6503    ins_pipe(istore_mem_spORreg);
6504 %}
6505 
6506 instruct storeN0(memory dst, immN0 src) %{
6507    match(Set dst (StoreN dst src));
6508    ins_cost(MEMORY_REF_COST);
6509    size(4);
6510 
6511    format %{ "STW    $src,$dst\t! compressed ptr" %}
6512    ins_encode %{
6513      Register base = as_Register($dst$$base);
6514      Register index = as_Register($dst$$index);
6515      if (index != G0) {
6516        __ stw(0, base, index);
6517      } else {
6518        __ stw(0, base, $dst$$disp);
6519      }
6520    %}
6521    ins_pipe(istore_mem_zero);
6522 %}
6523 
6524 // Store Double
6525 instruct storeD( memory mem, regD src) %{
6526   match(Set mem (StoreD mem src));
6527   ins_cost(MEMORY_REF_COST);
6528 
6529   size(4);
6530   format %{ "STDF   $src,$mem" %}
6531   opcode(Assembler::stdf_op3);
6532   ins_encode(simple_form3_mem_reg( mem, src ) );
6533   ins_pipe(fstoreD_mem_reg);
6534 %}
6535 
6536 instruct storeD0( memory mem, immD0 src) %{
6537   match(Set mem (StoreD mem src));
6538   ins_cost(MEMORY_REF_COST);
6539 
6540   size(4);
6541   format %{ "STX    $src,$mem" %}
6542   opcode(Assembler::stx_op3);
6543   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6544   ins_pipe(fstoreD_mem_zero);
6545 %}
6546 
6547 // Store Float
6548 instruct storeF( memory mem, regF src) %{
6549   match(Set mem (StoreF mem src));
6550   ins_cost(MEMORY_REF_COST);
6551 
6552   size(4);
6553   format %{ "STF    $src,$mem" %}
6554   opcode(Assembler::stf_op3);
6555   ins_encode(simple_form3_mem_reg( mem, src ) );
6556   ins_pipe(fstoreF_mem_reg);
6557 %}
6558 
6559 instruct storeF0( memory mem, immF0 src) %{
6560   match(Set mem (StoreF mem src));
6561   ins_cost(MEMORY_REF_COST);
6562 
6563   size(4);
6564   format %{ "STW    $src,$mem\t! storeF0" %}
6565   opcode(Assembler::stw_op3);
6566   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6567   ins_pipe(fstoreF_mem_zero);
6568 %}
6569 
6570 // Convert oop pointer into compressed form
6571 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6572   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6573   match(Set dst (EncodeP src));
6574   format %{ "encode_heap_oop $src, $dst" %}
6575   ins_encode %{
6576     __ encode_heap_oop($src$$Register, $dst$$Register);
6577   %}
6578   ins_pipe(ialu_reg);
6579 %}
6580 
6581 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6582   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6583   match(Set dst (EncodeP src));
6584   format %{ "encode_heap_oop_not_null $src, $dst" %}
6585   ins_encode %{
6586     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6587   %}
6588   ins_pipe(ialu_reg);
6589 %}
6590 
6591 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6592   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6593             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6594   match(Set dst (DecodeN src));
6595   format %{ "decode_heap_oop $src, $dst" %}
6596   ins_encode %{
6597     __ decode_heap_oop($src$$Register, $dst$$Register);
6598   %}
6599   ins_pipe(ialu_reg);
6600 %}
6601 
6602 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6603   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6604             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6605   match(Set dst (DecodeN src));
6606   format %{ "decode_heap_oop_not_null $src, $dst" %}
6607   ins_encode %{
6608     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6609   %}
6610   ins_pipe(ialu_reg);
6611 %}
6612 
6613 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6614   match(Set dst (EncodePKlass src));
6615   format %{ "encode_klass_not_null $src, $dst" %}
6616   ins_encode %{
6617     __ encode_klass_not_null($src$$Register, $dst$$Register);
6618   %}
6619   ins_pipe(ialu_reg);
6620 %}
6621 
6622 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6623   match(Set dst (DecodeNKlass src));
6624   format %{ "decode_klass_not_null $src, $dst" %}
6625   ins_encode %{
6626     __ decode_klass_not_null($src$$Register, $dst$$Register);
6627   %}
6628   ins_pipe(ialu_reg);
6629 %}
6630 
6631 //----------MemBar Instructions-----------------------------------------------
6632 // Memory barrier flavors
6633 
6634 instruct membar_acquire() %{
6635   match(MemBarAcquire);
6636   ins_cost(4*MEMORY_REF_COST);
6637 
6638   size(0);
6639   format %{ "MEMBAR-acquire" %}
6640   ins_encode( enc_membar_acquire );
6641   ins_pipe(long_memory_op);
6642 %}
6643 
6644 instruct membar_acquire_lock() %{
6645   match(MemBarAcquireLock);
6646   ins_cost(0);
6647 
6648   size(0);
6649   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6650   ins_encode( );
6651   ins_pipe(empty);
6652 %}
6653 
6654 instruct membar_release() %{
6655   match(MemBarRelease);
6656   ins_cost(4*MEMORY_REF_COST);
6657 
6658   size(0);
6659   format %{ "MEMBAR-release" %}
6660   ins_encode( enc_membar_release );
6661   ins_pipe(long_memory_op);
6662 %}
6663 
6664 instruct membar_release_lock() %{
6665   match(MemBarReleaseLock);
6666   ins_cost(0);
6667 
6668   size(0);
6669   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6670   ins_encode( );
6671   ins_pipe(empty);
6672 %}
6673 
6674 instruct membar_volatile() %{
6675   match(MemBarVolatile);
6676   ins_cost(4*MEMORY_REF_COST);
6677 
6678   size(4);
6679   format %{ "MEMBAR-volatile" %}
6680   ins_encode( enc_membar_volatile );
6681   ins_pipe(long_memory_op);
6682 %}
6683 
6684 instruct unnecessary_membar_volatile() %{
6685   match(MemBarVolatile);
6686   predicate(Matcher::post_store_load_barrier(n));
6687   ins_cost(0);
6688 
6689   size(0);
6690   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6691   ins_encode( );
6692   ins_pipe(empty);
6693 %}
6694 
6695 instruct membar_storestore() %{
6696   match(MemBarStoreStore);
6697   ins_cost(0);
6698 
6699   size(0);
6700   format %{ "!MEMBAR-storestore (empty encoding)" %}
6701   ins_encode( );
6702   ins_pipe(empty);
6703 %}
6704 
6705 //----------Register Move Instructions-----------------------------------------
6706 instruct roundDouble_nop(regD dst) %{
6707   match(Set dst (RoundDouble dst));
6708   ins_cost(0);
6709   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6710   ins_encode( );
6711   ins_pipe(empty);
6712 %}
6713 
6714 
6715 instruct roundFloat_nop(regF dst) %{
6716   match(Set dst (RoundFloat dst));
6717   ins_cost(0);
6718   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6719   ins_encode( );
6720   ins_pipe(empty);
6721 %}
6722 
6723 
6724 // Cast Index to Pointer for unsafe natives
6725 instruct castX2P(iRegX src, iRegP dst) %{
6726   match(Set dst (CastX2P src));
6727 
6728   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6729   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6730   ins_pipe(ialu_reg);
6731 %}
6732 
6733 // Cast Pointer to Index for unsafe natives
6734 instruct castP2X(iRegP src, iRegX dst) %{
6735   match(Set dst (CastP2X src));
6736 
6737   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6738   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6739   ins_pipe(ialu_reg);
6740 %}
6741 
6742 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6743   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6744   match(Set stkSlot src);   // chain rule
6745   ins_cost(MEMORY_REF_COST);
6746   format %{ "STDF   $src,$stkSlot\t!stk" %}
6747   opcode(Assembler::stdf_op3);
6748   ins_encode(simple_form3_mem_reg(stkSlot, src));
6749   ins_pipe(fstoreD_stk_reg);
6750 %}
6751 
6752 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6753   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6754   match(Set dst stkSlot);   // chain rule
6755   ins_cost(MEMORY_REF_COST);
6756   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6757   opcode(Assembler::lddf_op3);
6758   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6759   ins_pipe(floadD_stk);
6760 %}
6761 
6762 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6763   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6764   match(Set stkSlot src);   // chain rule
6765   ins_cost(MEMORY_REF_COST);
6766   format %{ "STF   $src,$stkSlot\t!stk" %}
6767   opcode(Assembler::stf_op3);
6768   ins_encode(simple_form3_mem_reg(stkSlot, src));
6769   ins_pipe(fstoreF_stk_reg);
6770 %}
6771 
6772 //----------Conditional Move---------------------------------------------------
6773 // Conditional move
6774 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6775   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6776   ins_cost(150);
6777   format %{ "MOV$cmp $pcc,$src,$dst" %}
6778   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6779   ins_pipe(ialu_reg);
6780 %}
6781 
6782 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6783   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6784   ins_cost(140);
6785   format %{ "MOV$cmp $pcc,$src,$dst" %}
6786   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6787   ins_pipe(ialu_imm);
6788 %}
6789 
6790 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6791   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6792   ins_cost(150);
6793   size(4);
6794   format %{ "MOV$cmp  $icc,$src,$dst" %}
6795   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6796   ins_pipe(ialu_reg);
6797 %}
6798 
6799 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6800   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6801   ins_cost(140);
6802   size(4);
6803   format %{ "MOV$cmp  $icc,$src,$dst" %}
6804   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6805   ins_pipe(ialu_imm);
6806 %}
6807 
6808 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6809   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6810   ins_cost(150);
6811   size(4);
6812   format %{ "MOV$cmp  $icc,$src,$dst" %}
6813   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6814   ins_pipe(ialu_reg);
6815 %}
6816 
6817 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6818   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6819   ins_cost(140);
6820   size(4);
6821   format %{ "MOV$cmp  $icc,$src,$dst" %}
6822   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6823   ins_pipe(ialu_imm);
6824 %}
6825 
6826 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6827   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6828   ins_cost(150);
6829   size(4);
6830   format %{ "MOV$cmp $fcc,$src,$dst" %}
6831   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6832   ins_pipe(ialu_reg);
6833 %}
6834 
6835 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6836   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6837   ins_cost(140);
6838   size(4);
6839   format %{ "MOV$cmp $fcc,$src,$dst" %}
6840   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6841   ins_pipe(ialu_imm);
6842 %}
6843 
6844 // Conditional move for RegN. Only cmov(reg,reg).
6845 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6846   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6847   ins_cost(150);
6848   format %{ "MOV$cmp $pcc,$src,$dst" %}
6849   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6850   ins_pipe(ialu_reg);
6851 %}
6852 
6853 // This instruction also works with CmpN so we don't need cmovNN_reg.
6854 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6855   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6856   ins_cost(150);
6857   size(4);
6858   format %{ "MOV$cmp  $icc,$src,$dst" %}
6859   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6860   ins_pipe(ialu_reg);
6861 %}
6862 
6863 // This instruction also works with CmpN so we don't need cmovNN_reg.
6864 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6865   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6866   ins_cost(150);
6867   size(4);
6868   format %{ "MOV$cmp  $icc,$src,$dst" %}
6869   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6870   ins_pipe(ialu_reg);
6871 %}
6872 
6873 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6874   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6875   ins_cost(150);
6876   size(4);
6877   format %{ "MOV$cmp $fcc,$src,$dst" %}
6878   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6879   ins_pipe(ialu_reg);
6880 %}
6881 
6882 // Conditional move
6883 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6884   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6885   ins_cost(150);
6886   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6887   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6888   ins_pipe(ialu_reg);
6889 %}
6890 
6891 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6892   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6893   ins_cost(140);
6894   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6895   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6896   ins_pipe(ialu_imm);
6897 %}
6898 
6899 // This instruction also works with CmpN so we don't need cmovPN_reg.
6900 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6901   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6902   ins_cost(150);
6903 
6904   size(4);
6905   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6906   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6907   ins_pipe(ialu_reg);
6908 %}
6909 
6910 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6911   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6912   ins_cost(150);
6913 
6914   size(4);
6915   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6916   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6917   ins_pipe(ialu_reg);
6918 %}
6919 
6920 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6921   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6922   ins_cost(140);
6923 
6924   size(4);
6925   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6926   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6927   ins_pipe(ialu_imm);
6928 %}
6929 
6930 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6931   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6932   ins_cost(140);
6933 
6934   size(4);
6935   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6936   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6937   ins_pipe(ialu_imm);
6938 %}
6939 
6940 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6941   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6942   ins_cost(150);
6943   size(4);
6944   format %{ "MOV$cmp $fcc,$src,$dst" %}
6945   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6946   ins_pipe(ialu_imm);
6947 %}
6948 
6949 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6950   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6951   ins_cost(140);
6952   size(4);
6953   format %{ "MOV$cmp $fcc,$src,$dst" %}
6954   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6955   ins_pipe(ialu_imm);
6956 %}
6957 
6958 // Conditional move
6959 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6960   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6961   ins_cost(150);
6962   opcode(0x101);
6963   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6964   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6965   ins_pipe(int_conditional_float_move);
6966 %}
6967 
6968 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6969   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6970   ins_cost(150);
6971 
6972   size(4);
6973   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6974   opcode(0x101);
6975   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6976   ins_pipe(int_conditional_float_move);
6977 %}
6978 
6979 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6980   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6981   ins_cost(150);
6982 
6983   size(4);
6984   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6985   opcode(0x101);
6986   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6987   ins_pipe(int_conditional_float_move);
6988 %}
6989 
6990 // Conditional move,
6991 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6992   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6993   ins_cost(150);
6994   size(4);
6995   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6996   opcode(0x1);
6997   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6998   ins_pipe(int_conditional_double_move);
6999 %}
7000 
7001 // Conditional move
7002 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7003   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7004   ins_cost(150);
7005   size(4);
7006   opcode(0x102);
7007   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7008   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7009   ins_pipe(int_conditional_double_move);
7010 %}
7011 
7012 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7013   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7014   ins_cost(150);
7015 
7016   size(4);
7017   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7018   opcode(0x102);
7019   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7020   ins_pipe(int_conditional_double_move);
7021 %}
7022 
7023 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7024   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7025   ins_cost(150);
7026 
7027   size(4);
7028   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7029   opcode(0x102);
7030   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7031   ins_pipe(int_conditional_double_move);
7032 %}
7033 
7034 // Conditional move,
7035 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7036   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7037   ins_cost(150);
7038   size(4);
7039   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7040   opcode(0x2);
7041   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7042   ins_pipe(int_conditional_double_move);
7043 %}
7044 
7045 // Conditional move
7046 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7047   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7048   ins_cost(150);
7049   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7050   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7051   ins_pipe(ialu_reg);
7052 %}
7053 
7054 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7055   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7056   ins_cost(140);
7057   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7058   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7059   ins_pipe(ialu_imm);
7060 %}
7061 
7062 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7063   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7064   ins_cost(150);
7065 
7066   size(4);
7067   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7068   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7069   ins_pipe(ialu_reg);
7070 %}
7071 
7072 
7073 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7074   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7075   ins_cost(150);
7076 
7077   size(4);
7078   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7079   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7080   ins_pipe(ialu_reg);
7081 %}
7082 
7083 
7084 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7085   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7086   ins_cost(150);
7087 
7088   size(4);
7089   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7090   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7091   ins_pipe(ialu_reg);
7092 %}
7093 
7094 
7095 
7096 //----------OS and Locking Instructions----------------------------------------
7097 
7098 // This name is KNOWN by the ADLC and cannot be changed.
7099 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7100 // for this guy.
7101 instruct tlsLoadP(g2RegP dst) %{
7102   match(Set dst (ThreadLocal));
7103 
7104   size(0);
7105   ins_cost(0);
7106   format %{ "# TLS is in G2" %}
7107   ins_encode( /*empty encoding*/ );
7108   ins_pipe(ialu_none);
7109 %}
7110 
7111 instruct checkCastPP( iRegP dst ) %{
7112   match(Set dst (CheckCastPP dst));
7113 
7114   size(0);
7115   format %{ "# checkcastPP of $dst" %}
7116   ins_encode( /*empty encoding*/ );
7117   ins_pipe(empty);
7118 %}
7119 
7120 
7121 instruct castPP( iRegP dst ) %{
7122   match(Set dst (CastPP dst));
7123   format %{ "# castPP of $dst" %}
7124   ins_encode( /*empty encoding*/ );
7125   ins_pipe(empty);
7126 %}
7127 
7128 instruct castII( iRegI dst ) %{
7129   match(Set dst (CastII dst));
7130   format %{ "# castII of $dst" %}
7131   ins_encode( /*empty encoding*/ );
7132   ins_cost(0);
7133   ins_pipe(empty);
7134 %}
7135 
7136 //----------Arithmetic Instructions--------------------------------------------
7137 // Addition Instructions
7138 // Register Addition
7139 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7140   match(Set dst (AddI src1 src2));
7141 
7142   size(4);
7143   format %{ "ADD    $src1,$src2,$dst" %}
7144   ins_encode %{
7145     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7146   %}
7147   ins_pipe(ialu_reg_reg);
7148 %}
7149 
7150 // Immediate Addition
7151 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7152   match(Set dst (AddI src1 src2));
7153 
7154   size(4);
7155   format %{ "ADD    $src1,$src2,$dst" %}
7156   opcode(Assembler::add_op3, Assembler::arith_op);
7157   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7158   ins_pipe(ialu_reg_imm);
7159 %}
7160 
7161 // Pointer Register Addition
7162 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7163   match(Set dst (AddP src1 src2));
7164 
7165   size(4);
7166   format %{ "ADD    $src1,$src2,$dst" %}
7167   opcode(Assembler::add_op3, Assembler::arith_op);
7168   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7169   ins_pipe(ialu_reg_reg);
7170 %}
7171 
7172 // Pointer Immediate Addition
7173 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7174   match(Set dst (AddP src1 src2));
7175 
7176   size(4);
7177   format %{ "ADD    $src1,$src2,$dst" %}
7178   opcode(Assembler::add_op3, Assembler::arith_op);
7179   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7180   ins_pipe(ialu_reg_imm);
7181 %}
7182 
7183 // Long Addition
7184 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7185   match(Set dst (AddL src1 src2));
7186 
7187   size(4);
7188   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7189   opcode(Assembler::add_op3, Assembler::arith_op);
7190   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7191   ins_pipe(ialu_reg_reg);
7192 %}
7193 
7194 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7195   match(Set dst (AddL src1 con));
7196 
7197   size(4);
7198   format %{ "ADD    $src1,$con,$dst" %}
7199   opcode(Assembler::add_op3, Assembler::arith_op);
7200   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7201   ins_pipe(ialu_reg_imm);
7202 %}
7203 
7204 //----------Conditional_store--------------------------------------------------
7205 // Conditional-store of the updated heap-top.
7206 // Used during allocation of the shared heap.
7207 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7208 
7209 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7210 instruct loadPLocked(iRegP dst, memory mem) %{
7211   match(Set dst (LoadPLocked mem));
7212   ins_cost(MEMORY_REF_COST);
7213 
7214 #ifndef _LP64
7215   size(4);
7216   format %{ "LDUW   $mem,$dst\t! ptr" %}
7217   opcode(Assembler::lduw_op3, 0, REGP_OP);
7218 #else
7219   format %{ "LDX    $mem,$dst\t! ptr" %}
7220   opcode(Assembler::ldx_op3, 0, REGP_OP);
7221 #endif
7222   ins_encode( form3_mem_reg( mem, dst ) );
7223   ins_pipe(iload_mem);
7224 %}
7225 
7226 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7227   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7228   effect( KILL newval );
7229   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7230             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7231   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7232   ins_pipe( long_memory_op );
7233 %}
7234 
7235 // Conditional-store of an int value.
7236 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7237   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7238   effect( KILL newval );
7239   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7240             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7241   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7242   ins_pipe( long_memory_op );
7243 %}
7244 
7245 // Conditional-store of a long value.
7246 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7247   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7248   effect( KILL newval );
7249   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7250             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7251   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7252   ins_pipe( long_memory_op );
7253 %}
7254 
7255 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7256 
7257 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7258   predicate(VM_Version::supports_cx8());
7259   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7260   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7261   format %{
7262             "MOV    $newval,O7\n\t"
7263             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7264             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7265             "MOV    1,$res\n\t"
7266             "MOVne  xcc,R_G0,$res"
7267   %}
7268   ins_encode( enc_casx(mem_ptr, oldval, newval),
7269               enc_lflags_ne_to_boolean(res) );
7270   ins_pipe( long_memory_op );
7271 %}
7272 
7273 
7274 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7275   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7276   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7277   format %{
7278             "MOV    $newval,O7\n\t"
7279             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7280             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7281             "MOV    1,$res\n\t"
7282             "MOVne  icc,R_G0,$res"
7283   %}
7284   ins_encode( enc_casi(mem_ptr, oldval, newval),
7285               enc_iflags_ne_to_boolean(res) );
7286   ins_pipe( long_memory_op );
7287 %}
7288 
7289 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7290 #ifdef _LP64
7291   predicate(VM_Version::supports_cx8());
7292 #endif
7293   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7294   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7295   format %{
7296             "MOV    $newval,O7\n\t"
7297             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7298             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7299             "MOV    1,$res\n\t"
7300             "MOVne  xcc,R_G0,$res"
7301   %}
7302 #ifdef _LP64
7303   ins_encode( enc_casx(mem_ptr, oldval, newval),
7304               enc_lflags_ne_to_boolean(res) );
7305 #else
7306   ins_encode( enc_casi(mem_ptr, oldval, newval),
7307               enc_iflags_ne_to_boolean(res) );
7308 #endif
7309   ins_pipe( long_memory_op );
7310 %}
7311 
7312 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7313   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7314   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7315   format %{
7316             "MOV    $newval,O7\n\t"
7317             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7318             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7319             "MOV    1,$res\n\t"
7320             "MOVne  icc,R_G0,$res"
7321   %}
7322   ins_encode( enc_casi(mem_ptr, oldval, newval),
7323               enc_iflags_ne_to_boolean(res) );
7324   ins_pipe( long_memory_op );
7325 %}
7326 
7327 instruct xchgI( memory mem, iRegI newval) %{
7328   match(Set newval (GetAndSetI mem newval));
7329   format %{ "SWAP  [$mem],$newval" %}
7330   size(4);
7331   ins_encode %{
7332     __ swap($mem$$Address, $newval$$Register);
7333   %}
7334   ins_pipe( long_memory_op );
7335 %}
7336 
7337 #ifndef _LP64
7338 instruct xchgP( memory mem, iRegP newval) %{
7339   match(Set newval (GetAndSetP mem newval));
7340   format %{ "SWAP  [$mem],$newval" %}
7341   size(4);
7342   ins_encode %{
7343     __ swap($mem$$Address, $newval$$Register);
7344   %}
7345   ins_pipe( long_memory_op );
7346 %}
7347 #endif
7348 
7349 instruct xchgN( memory mem, iRegN newval) %{
7350   match(Set newval (GetAndSetN mem newval));
7351   format %{ "SWAP  [$mem],$newval" %}
7352   size(4);
7353   ins_encode %{
7354     __ swap($mem$$Address, $newval$$Register);
7355   %}
7356   ins_pipe( long_memory_op );
7357 %}
7358 
7359 //---------------------
7360 // Subtraction Instructions
7361 // Register Subtraction
7362 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7363   match(Set dst (SubI src1 src2));
7364 
7365   size(4);
7366   format %{ "SUB    $src1,$src2,$dst" %}
7367   opcode(Assembler::sub_op3, Assembler::arith_op);
7368   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7369   ins_pipe(ialu_reg_reg);
7370 %}
7371 
7372 // Immediate Subtraction
7373 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7374   match(Set dst (SubI src1 src2));
7375 
7376   size(4);
7377   format %{ "SUB    $src1,$src2,$dst" %}
7378   opcode(Assembler::sub_op3, Assembler::arith_op);
7379   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7380   ins_pipe(ialu_reg_imm);
7381 %}
7382 
7383 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7384   match(Set dst (SubI zero src2));
7385 
7386   size(4);
7387   format %{ "NEG    $src2,$dst" %}
7388   opcode(Assembler::sub_op3, Assembler::arith_op);
7389   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7390   ins_pipe(ialu_zero_reg);
7391 %}
7392 
7393 // Long subtraction
7394 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7395   match(Set dst (SubL src1 src2));
7396 
7397   size(4);
7398   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7399   opcode(Assembler::sub_op3, Assembler::arith_op);
7400   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7401   ins_pipe(ialu_reg_reg);
7402 %}
7403 
7404 // Immediate Subtraction
7405 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7406   match(Set dst (SubL src1 con));
7407 
7408   size(4);
7409   format %{ "SUB    $src1,$con,$dst\t! long" %}
7410   opcode(Assembler::sub_op3, Assembler::arith_op);
7411   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7412   ins_pipe(ialu_reg_imm);
7413 %}
7414 
7415 // Long negation
7416 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7417   match(Set dst (SubL zero src2));
7418 
7419   size(4);
7420   format %{ "NEG    $src2,$dst\t! long" %}
7421   opcode(Assembler::sub_op3, Assembler::arith_op);
7422   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7423   ins_pipe(ialu_zero_reg);
7424 %}
7425 
7426 // Multiplication Instructions
7427 // Integer Multiplication
7428 // Register Multiplication
7429 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7430   match(Set dst (MulI src1 src2));
7431 
7432   size(4);
7433   format %{ "MULX   $src1,$src2,$dst" %}
7434   opcode(Assembler::mulx_op3, Assembler::arith_op);
7435   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7436   ins_pipe(imul_reg_reg);
7437 %}
7438 
7439 // Immediate Multiplication
7440 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7441   match(Set dst (MulI src1 src2));
7442 
7443   size(4);
7444   format %{ "MULX   $src1,$src2,$dst" %}
7445   opcode(Assembler::mulx_op3, Assembler::arith_op);
7446   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7447   ins_pipe(imul_reg_imm);
7448 %}
7449 
7450 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7451   match(Set dst (MulL src1 src2));
7452   ins_cost(DEFAULT_COST * 5);
7453   size(4);
7454   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7455   opcode(Assembler::mulx_op3, Assembler::arith_op);
7456   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7457   ins_pipe(mulL_reg_reg);
7458 %}
7459 
7460 // Immediate Multiplication
7461 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7462   match(Set dst (MulL src1 src2));
7463   ins_cost(DEFAULT_COST * 5);
7464   size(4);
7465   format %{ "MULX   $src1,$src2,$dst" %}
7466   opcode(Assembler::mulx_op3, Assembler::arith_op);
7467   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7468   ins_pipe(mulL_reg_imm);
7469 %}
7470 
7471 // Integer Division
7472 // Register Division
7473 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7474   match(Set dst (DivI src1 src2));
7475   ins_cost((2+71)*DEFAULT_COST);
7476 
7477   format %{ "SRA     $src2,0,$src2\n\t"
7478             "SRA     $src1,0,$src1\n\t"
7479             "SDIVX   $src1,$src2,$dst" %}
7480   ins_encode( idiv_reg( src1, src2, dst ) );
7481   ins_pipe(sdiv_reg_reg);
7482 %}
7483 
7484 // Immediate Division
7485 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7486   match(Set dst (DivI src1 src2));
7487   ins_cost((2+71)*DEFAULT_COST);
7488 
7489   format %{ "SRA     $src1,0,$src1\n\t"
7490             "SDIVX   $src1,$src2,$dst" %}
7491   ins_encode( idiv_imm( src1, src2, dst ) );
7492   ins_pipe(sdiv_reg_imm);
7493 %}
7494 
7495 //----------Div-By-10-Expansion------------------------------------------------
7496 // Extract hi bits of a 32x32->64 bit multiply.
7497 // Expand rule only, not matched
7498 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7499   effect( DEF dst, USE src1, USE src2 );
7500   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7501             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7502   ins_encode( enc_mul_hi(dst,src1,src2));
7503   ins_pipe(sdiv_reg_reg);
7504 %}
7505 
7506 // Magic constant, reciprocal of 10
7507 instruct loadConI_x66666667(iRegIsafe dst) %{
7508   effect( DEF dst );
7509 
7510   size(8);
7511   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7512   ins_encode( Set32(0x66666667, dst) );
7513   ins_pipe(ialu_hi_lo_reg);
7514 %}
7515 
7516 // Register Shift Right Arithmetic Long by 32-63
7517 instruct sra_31( iRegI dst, iRegI src ) %{
7518   effect( DEF dst, USE src );
7519   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7520   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7521   ins_pipe(ialu_reg_reg);
7522 %}
7523 
7524 // Arithmetic Shift Right by 8-bit immediate
7525 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7526   effect( DEF dst, USE src );
7527   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7528   opcode(Assembler::sra_op3, Assembler::arith_op);
7529   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7530   ins_pipe(ialu_reg_imm);
7531 %}
7532 
7533 // Integer DIV with 10
7534 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7535   match(Set dst (DivI src div));
7536   ins_cost((6+6)*DEFAULT_COST);
7537   expand %{
7538     iRegIsafe tmp1;               // Killed temps;
7539     iRegIsafe tmp2;               // Killed temps;
7540     iRegI tmp3;                   // Killed temps;
7541     iRegI tmp4;                   // Killed temps;
7542     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7543     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7544     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7545     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7546     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7547   %}
7548 %}
7549 
7550 // Register Long Division
7551 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7552   match(Set dst (DivL src1 src2));
7553   ins_cost(DEFAULT_COST*71);
7554   size(4);
7555   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7556   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7557   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7558   ins_pipe(divL_reg_reg);
7559 %}
7560 
7561 // Register Long Division
7562 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7563   match(Set dst (DivL src1 src2));
7564   ins_cost(DEFAULT_COST*71);
7565   size(4);
7566   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7567   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7568   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7569   ins_pipe(divL_reg_imm);
7570 %}
7571 
7572 // Integer Remainder
7573 // Register Remainder
7574 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7575   match(Set dst (ModI src1 src2));
7576   effect( KILL ccr, KILL temp);
7577 
7578   format %{ "SREM   $src1,$src2,$dst" %}
7579   ins_encode( irem_reg(src1, src2, dst, temp) );
7580   ins_pipe(sdiv_reg_reg);
7581 %}
7582 
7583 // Immediate Remainder
7584 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7585   match(Set dst (ModI src1 src2));
7586   effect( KILL ccr, KILL temp);
7587 
7588   format %{ "SREM   $src1,$src2,$dst" %}
7589   ins_encode( irem_imm(src1, src2, dst, temp) );
7590   ins_pipe(sdiv_reg_imm);
7591 %}
7592 
7593 // Register Long Remainder
7594 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7595   effect(DEF dst, USE src1, USE src2);
7596   size(4);
7597   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7598   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7599   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7600   ins_pipe(divL_reg_reg);
7601 %}
7602 
7603 // Register Long Division
7604 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7605   effect(DEF dst, USE src1, USE src2);
7606   size(4);
7607   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7608   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7609   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7610   ins_pipe(divL_reg_imm);
7611 %}
7612 
7613 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7614   effect(DEF dst, USE src1, USE src2);
7615   size(4);
7616   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7617   opcode(Assembler::mulx_op3, Assembler::arith_op);
7618   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7619   ins_pipe(mulL_reg_reg);
7620 %}
7621 
7622 // Immediate Multiplication
7623 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7624   effect(DEF dst, USE src1, USE src2);
7625   size(4);
7626   format %{ "MULX   $src1,$src2,$dst" %}
7627   opcode(Assembler::mulx_op3, Assembler::arith_op);
7628   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7629   ins_pipe(mulL_reg_imm);
7630 %}
7631 
7632 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7633   effect(DEF dst, USE src1, USE src2);
7634   size(4);
7635   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7636   opcode(Assembler::sub_op3, Assembler::arith_op);
7637   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7638   ins_pipe(ialu_reg_reg);
7639 %}
7640 
7641 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7642   effect(DEF dst, USE src1, USE src2);
7643   size(4);
7644   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7645   opcode(Assembler::sub_op3, Assembler::arith_op);
7646   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7647   ins_pipe(ialu_reg_reg);
7648 %}
7649 
7650 // Register Long Remainder
7651 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7652   match(Set dst (ModL src1 src2));
7653   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7654   expand %{
7655     iRegL tmp1;
7656     iRegL tmp2;
7657     divL_reg_reg_1(tmp1, src1, src2);
7658     mulL_reg_reg_1(tmp2, tmp1, src2);
7659     subL_reg_reg_1(dst,  src1, tmp2);
7660   %}
7661 %}
7662 
7663 // Register Long Remainder
7664 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7665   match(Set dst (ModL src1 src2));
7666   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7667   expand %{
7668     iRegL tmp1;
7669     iRegL tmp2;
7670     divL_reg_imm13_1(tmp1, src1, src2);
7671     mulL_reg_imm13_1(tmp2, tmp1, src2);
7672     subL_reg_reg_2  (dst,  src1, tmp2);
7673   %}
7674 %}
7675 
7676 // Integer Shift Instructions
7677 // Register Shift Left
7678 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7679   match(Set dst (LShiftI src1 src2));
7680 
7681   size(4);
7682   format %{ "SLL    $src1,$src2,$dst" %}
7683   opcode(Assembler::sll_op3, Assembler::arith_op);
7684   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7685   ins_pipe(ialu_reg_reg);
7686 %}
7687 
7688 // Register Shift Left Immediate
7689 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7690   match(Set dst (LShiftI src1 src2));
7691 
7692   size(4);
7693   format %{ "SLL    $src1,$src2,$dst" %}
7694   opcode(Assembler::sll_op3, Assembler::arith_op);
7695   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7696   ins_pipe(ialu_reg_imm);
7697 %}
7698 
7699 // Register Shift Left
7700 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7701   match(Set dst (LShiftL src1 src2));
7702 
7703   size(4);
7704   format %{ "SLLX   $src1,$src2,$dst" %}
7705   opcode(Assembler::sllx_op3, Assembler::arith_op);
7706   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7707   ins_pipe(ialu_reg_reg);
7708 %}
7709 
7710 // Register Shift Left Immediate
7711 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7712   match(Set dst (LShiftL src1 src2));
7713 
7714   size(4);
7715   format %{ "SLLX   $src1,$src2,$dst" %}
7716   opcode(Assembler::sllx_op3, Assembler::arith_op);
7717   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7718   ins_pipe(ialu_reg_imm);
7719 %}
7720 
7721 // Register Arithmetic Shift Right
7722 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7723   match(Set dst (RShiftI src1 src2));
7724   size(4);
7725   format %{ "SRA    $src1,$src2,$dst" %}
7726   opcode(Assembler::sra_op3, Assembler::arith_op);
7727   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7728   ins_pipe(ialu_reg_reg);
7729 %}
7730 
7731 // Register Arithmetic Shift Right Immediate
7732 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7733   match(Set dst (RShiftI src1 src2));
7734 
7735   size(4);
7736   format %{ "SRA    $src1,$src2,$dst" %}
7737   opcode(Assembler::sra_op3, Assembler::arith_op);
7738   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7739   ins_pipe(ialu_reg_imm);
7740 %}
7741 
7742 // Register Shift Right Arithmatic Long
7743 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7744   match(Set dst (RShiftL src1 src2));
7745 
7746   size(4);
7747   format %{ "SRAX   $src1,$src2,$dst" %}
7748   opcode(Assembler::srax_op3, Assembler::arith_op);
7749   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7750   ins_pipe(ialu_reg_reg);
7751 %}
7752 
7753 // Register Shift Left Immediate
7754 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7755   match(Set dst (RShiftL src1 src2));
7756 
7757   size(4);
7758   format %{ "SRAX   $src1,$src2,$dst" %}
7759   opcode(Assembler::srax_op3, Assembler::arith_op);
7760   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7761   ins_pipe(ialu_reg_imm);
7762 %}
7763 
7764 // Register Shift Right
7765 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7766   match(Set dst (URShiftI src1 src2));
7767 
7768   size(4);
7769   format %{ "SRL    $src1,$src2,$dst" %}
7770   opcode(Assembler::srl_op3, Assembler::arith_op);
7771   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7772   ins_pipe(ialu_reg_reg);
7773 %}
7774 
7775 // Register Shift Right Immediate
7776 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7777   match(Set dst (URShiftI src1 src2));
7778 
7779   size(4);
7780   format %{ "SRL    $src1,$src2,$dst" %}
7781   opcode(Assembler::srl_op3, Assembler::arith_op);
7782   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7783   ins_pipe(ialu_reg_imm);
7784 %}
7785 
7786 // Register Shift Right
7787 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7788   match(Set dst (URShiftL src1 src2));
7789 
7790   size(4);
7791   format %{ "SRLX   $src1,$src2,$dst" %}
7792   opcode(Assembler::srlx_op3, Assembler::arith_op);
7793   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7794   ins_pipe(ialu_reg_reg);
7795 %}
7796 
7797 // Register Shift Right Immediate
7798 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7799   match(Set dst (URShiftL src1 src2));
7800 
7801   size(4);
7802   format %{ "SRLX   $src1,$src2,$dst" %}
7803   opcode(Assembler::srlx_op3, Assembler::arith_op);
7804   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7805   ins_pipe(ialu_reg_imm);
7806 %}
7807 
7808 // Register Shift Right Immediate with a CastP2X
7809 #ifdef _LP64
7810 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7811   match(Set dst (URShiftL (CastP2X src1) src2));
7812   size(4);
7813   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7814   opcode(Assembler::srlx_op3, Assembler::arith_op);
7815   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7816   ins_pipe(ialu_reg_imm);
7817 %}
7818 #else
7819 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7820   match(Set dst (URShiftI (CastP2X src1) src2));
7821   size(4);
7822   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7823   opcode(Assembler::srl_op3, Assembler::arith_op);
7824   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7825   ins_pipe(ialu_reg_imm);
7826 %}
7827 #endif
7828 
7829 
7830 //----------Floating Point Arithmetic Instructions-----------------------------
7831 
7832 //  Add float single precision
7833 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7834   match(Set dst (AddF src1 src2));
7835 
7836   size(4);
7837   format %{ "FADDS  $src1,$src2,$dst" %}
7838   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7839   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7840   ins_pipe(faddF_reg_reg);
7841 %}
7842 
7843 //  Add float double precision
7844 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7845   match(Set dst (AddD src1 src2));
7846 
7847   size(4);
7848   format %{ "FADDD  $src1,$src2,$dst" %}
7849   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7850   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7851   ins_pipe(faddD_reg_reg);
7852 %}
7853 
7854 //  Sub float single precision
7855 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7856   match(Set dst (SubF src1 src2));
7857 
7858   size(4);
7859   format %{ "FSUBS  $src1,$src2,$dst" %}
7860   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7861   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7862   ins_pipe(faddF_reg_reg);
7863 %}
7864 
7865 //  Sub float double precision
7866 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7867   match(Set dst (SubD src1 src2));
7868 
7869   size(4);
7870   format %{ "FSUBD  $src1,$src2,$dst" %}
7871   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7872   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7873   ins_pipe(faddD_reg_reg);
7874 %}
7875 
7876 //  Mul float single precision
7877 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7878   match(Set dst (MulF src1 src2));
7879 
7880   size(4);
7881   format %{ "FMULS  $src1,$src2,$dst" %}
7882   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7883   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7884   ins_pipe(fmulF_reg_reg);
7885 %}
7886 
7887 //  Mul float double precision
7888 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7889   match(Set dst (MulD src1 src2));
7890 
7891   size(4);
7892   format %{ "FMULD  $src1,$src2,$dst" %}
7893   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7894   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7895   ins_pipe(fmulD_reg_reg);
7896 %}
7897 
7898 //  Div float single precision
7899 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7900   match(Set dst (DivF src1 src2));
7901 
7902   size(4);
7903   format %{ "FDIVS  $src1,$src2,$dst" %}
7904   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7905   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7906   ins_pipe(fdivF_reg_reg);
7907 %}
7908 
7909 //  Div float double precision
7910 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7911   match(Set dst (DivD src1 src2));
7912 
7913   size(4);
7914   format %{ "FDIVD  $src1,$src2,$dst" %}
7915   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7916   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7917   ins_pipe(fdivD_reg_reg);
7918 %}
7919 
7920 //  Absolute float double precision
7921 instruct absD_reg(regD dst, regD src) %{
7922   match(Set dst (AbsD src));
7923 
7924   format %{ "FABSd  $src,$dst" %}
7925   ins_encode(fabsd(dst, src));
7926   ins_pipe(faddD_reg);
7927 %}
7928 
7929 //  Absolute float single precision
7930 instruct absF_reg(regF dst, regF src) %{
7931   match(Set dst (AbsF src));
7932 
7933   format %{ "FABSs  $src,$dst" %}
7934   ins_encode(fabss(dst, src));
7935   ins_pipe(faddF_reg);
7936 %}
7937 
7938 instruct negF_reg(regF dst, regF src) %{
7939   match(Set dst (NegF src));
7940 
7941   size(4);
7942   format %{ "FNEGs  $src,$dst" %}
7943   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7944   ins_encode(form3_opf_rs2F_rdF(src, dst));
7945   ins_pipe(faddF_reg);
7946 %}
7947 
7948 instruct negD_reg(regD dst, regD src) %{
7949   match(Set dst (NegD src));
7950 
7951   format %{ "FNEGd  $src,$dst" %}
7952   ins_encode(fnegd(dst, src));
7953   ins_pipe(faddD_reg);
7954 %}
7955 
7956 //  Sqrt float double precision
7957 instruct sqrtF_reg_reg(regF dst, regF src) %{
7958   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7959 
7960   size(4);
7961   format %{ "FSQRTS $src,$dst" %}
7962   ins_encode(fsqrts(dst, src));
7963   ins_pipe(fdivF_reg_reg);
7964 %}
7965 
7966 //  Sqrt float double precision
7967 instruct sqrtD_reg_reg(regD dst, regD src) %{
7968   match(Set dst (SqrtD src));
7969 
7970   size(4);
7971   format %{ "FSQRTD $src,$dst" %}
7972   ins_encode(fsqrtd(dst, src));
7973   ins_pipe(fdivD_reg_reg);
7974 %}
7975 
7976 //----------Logical Instructions-----------------------------------------------
7977 // And Instructions
7978 // Register And
7979 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7980   match(Set dst (AndI src1 src2));
7981 
7982   size(4);
7983   format %{ "AND    $src1,$src2,$dst" %}
7984   opcode(Assembler::and_op3, Assembler::arith_op);
7985   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7986   ins_pipe(ialu_reg_reg);
7987 %}
7988 
7989 // Immediate And
7990 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7991   match(Set dst (AndI src1 src2));
7992 
7993   size(4);
7994   format %{ "AND    $src1,$src2,$dst" %}
7995   opcode(Assembler::and_op3, Assembler::arith_op);
7996   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7997   ins_pipe(ialu_reg_imm);
7998 %}
7999 
8000 // Register And Long
8001 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8002   match(Set dst (AndL src1 src2));
8003 
8004   ins_cost(DEFAULT_COST);
8005   size(4);
8006   format %{ "AND    $src1,$src2,$dst\t! long" %}
8007   opcode(Assembler::and_op3, Assembler::arith_op);
8008   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8009   ins_pipe(ialu_reg_reg);
8010 %}
8011 
8012 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8013   match(Set dst (AndL src1 con));
8014 
8015   ins_cost(DEFAULT_COST);
8016   size(4);
8017   format %{ "AND    $src1,$con,$dst\t! long" %}
8018   opcode(Assembler::and_op3, Assembler::arith_op);
8019   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8020   ins_pipe(ialu_reg_imm);
8021 %}
8022 
8023 // Or Instructions
8024 // Register Or
8025 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8026   match(Set dst (OrI src1 src2));
8027 
8028   size(4);
8029   format %{ "OR     $src1,$src2,$dst" %}
8030   opcode(Assembler::or_op3, Assembler::arith_op);
8031   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8032   ins_pipe(ialu_reg_reg);
8033 %}
8034 
8035 // Immediate Or
8036 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8037   match(Set dst (OrI src1 src2));
8038 
8039   size(4);
8040   format %{ "OR     $src1,$src2,$dst" %}
8041   opcode(Assembler::or_op3, Assembler::arith_op);
8042   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8043   ins_pipe(ialu_reg_imm);
8044 %}
8045 
8046 // Register Or Long
8047 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8048   match(Set dst (OrL src1 src2));
8049 
8050   ins_cost(DEFAULT_COST);
8051   size(4);
8052   format %{ "OR     $src1,$src2,$dst\t! long" %}
8053   opcode(Assembler::or_op3, Assembler::arith_op);
8054   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8055   ins_pipe(ialu_reg_reg);
8056 %}
8057 
8058 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8059   match(Set dst (OrL src1 con));
8060   ins_cost(DEFAULT_COST*2);
8061 
8062   ins_cost(DEFAULT_COST);
8063   size(4);
8064   format %{ "OR     $src1,$con,$dst\t! long" %}
8065   opcode(Assembler::or_op3, Assembler::arith_op);
8066   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8067   ins_pipe(ialu_reg_imm);
8068 %}
8069 
8070 #ifndef _LP64
8071 
8072 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8073 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8074   match(Set dst (OrI src1 (CastP2X src2)));
8075 
8076   size(4);
8077   format %{ "OR     $src1,$src2,$dst" %}
8078   opcode(Assembler::or_op3, Assembler::arith_op);
8079   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8080   ins_pipe(ialu_reg_reg);
8081 %}
8082 
8083 #else
8084 
8085 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8086   match(Set dst (OrL src1 (CastP2X src2)));
8087 
8088   ins_cost(DEFAULT_COST);
8089   size(4);
8090   format %{ "OR     $src1,$src2,$dst\t! long" %}
8091   opcode(Assembler::or_op3, Assembler::arith_op);
8092   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8093   ins_pipe(ialu_reg_reg);
8094 %}
8095 
8096 #endif
8097 
8098 // Xor Instructions
8099 // Register Xor
8100 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8101   match(Set dst (XorI src1 src2));
8102 
8103   size(4);
8104   format %{ "XOR    $src1,$src2,$dst" %}
8105   opcode(Assembler::xor_op3, Assembler::arith_op);
8106   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8107   ins_pipe(ialu_reg_reg);
8108 %}
8109 
8110 // Immediate Xor
8111 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8112   match(Set dst (XorI src1 src2));
8113 
8114   size(4);
8115   format %{ "XOR    $src1,$src2,$dst" %}
8116   opcode(Assembler::xor_op3, Assembler::arith_op);
8117   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8118   ins_pipe(ialu_reg_imm);
8119 %}
8120 
8121 // Register Xor Long
8122 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8123   match(Set dst (XorL src1 src2));
8124 
8125   ins_cost(DEFAULT_COST);
8126   size(4);
8127   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8128   opcode(Assembler::xor_op3, Assembler::arith_op);
8129   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8130   ins_pipe(ialu_reg_reg);
8131 %}
8132 
8133 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8134   match(Set dst (XorL src1 con));
8135 
8136   ins_cost(DEFAULT_COST);
8137   size(4);
8138   format %{ "XOR    $src1,$con,$dst\t! long" %}
8139   opcode(Assembler::xor_op3, Assembler::arith_op);
8140   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8141   ins_pipe(ialu_reg_imm);
8142 %}
8143 
8144 //----------Convert to Boolean-------------------------------------------------
8145 // Nice hack for 32-bit tests but doesn't work for
8146 // 64-bit pointers.
8147 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8148   match(Set dst (Conv2B src));
8149   effect( KILL ccr );
8150   ins_cost(DEFAULT_COST*2);
8151   format %{ "CMP    R_G0,$src\n\t"
8152             "ADDX   R_G0,0,$dst" %}
8153   ins_encode( enc_to_bool( src, dst ) );
8154   ins_pipe(ialu_reg_ialu);
8155 %}
8156 
8157 #ifndef _LP64
8158 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8159   match(Set dst (Conv2B src));
8160   effect( KILL ccr );
8161   ins_cost(DEFAULT_COST*2);
8162   format %{ "CMP    R_G0,$src\n\t"
8163             "ADDX   R_G0,0,$dst" %}
8164   ins_encode( enc_to_bool( src, dst ) );
8165   ins_pipe(ialu_reg_ialu);
8166 %}
8167 #else
8168 instruct convP2B( iRegI dst, iRegP src ) %{
8169   match(Set dst (Conv2B src));
8170   ins_cost(DEFAULT_COST*2);
8171   format %{ "MOV    $src,$dst\n\t"
8172             "MOVRNZ $src,1,$dst" %}
8173   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8174   ins_pipe(ialu_clr_and_mover);
8175 %}
8176 #endif
8177 
8178 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8179   match(Set dst (CmpLTMask src zero));
8180   effect(KILL ccr);
8181   size(4);
8182   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8183   ins_encode %{
8184     __ sra($src$$Register, 31, $dst$$Register);
8185   %}
8186   ins_pipe(ialu_reg_imm);
8187 %}
8188 
8189 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8190   match(Set dst (CmpLTMask p q));
8191   effect( KILL ccr );
8192   ins_cost(DEFAULT_COST*4);
8193   format %{ "CMP    $p,$q\n\t"
8194             "MOV    #0,$dst\n\t"
8195             "BLT,a  .+8\n\t"
8196             "MOV    #-1,$dst" %}
8197   ins_encode( enc_ltmask(p,q,dst) );
8198   ins_pipe(ialu_reg_reg_ialu);
8199 %}
8200 
8201 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8202   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8203   effect(KILL ccr, TEMP tmp);
8204   ins_cost(DEFAULT_COST*3);
8205 
8206   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8207             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8208             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8209   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8210   ins_pipe(cadd_cmpltmask);
8211 %}
8212 
8213 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8214   match(Set p (AndI (CmpLTMask p q) y));
8215   effect(KILL ccr);
8216   ins_cost(DEFAULT_COST*3);
8217 
8218   format %{ "CMP  $p,$q\n\t"
8219             "MOV  $y,$p\n\t"
8220             "MOVge G0,$p" %}
8221   ins_encode %{
8222     __ cmp($p$$Register, $q$$Register);
8223     __ mov($y$$Register, $p$$Register);
8224     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8225   %}
8226   ins_pipe(ialu_reg_reg_ialu);
8227 %}
8228 
8229 //-----------------------------------------------------------------
8230 // Direct raw moves between float and general registers using VIS3.
8231 
8232 //  ins_pipe(faddF_reg);
8233 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8234   predicate(UseVIS >= 3);
8235   match(Set dst (MoveF2I src));
8236 
8237   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8238   ins_encode %{
8239     __ movstouw($src$$FloatRegister, $dst$$Register);
8240   %}
8241   ins_pipe(ialu_reg_reg);
8242 %}
8243 
8244 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8245   predicate(UseVIS >= 3);
8246   match(Set dst (MoveI2F src));
8247 
8248   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8249   ins_encode %{
8250     __ movwtos($src$$Register, $dst$$FloatRegister);
8251   %}
8252   ins_pipe(ialu_reg_reg);
8253 %}
8254 
8255 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8256   predicate(UseVIS >= 3);
8257   match(Set dst (MoveD2L src));
8258 
8259   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8260   ins_encode %{
8261     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8262   %}
8263   ins_pipe(ialu_reg_reg);
8264 %}
8265 
8266 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8267   predicate(UseVIS >= 3);
8268   match(Set dst (MoveL2D src));
8269 
8270   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8271   ins_encode %{
8272     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8273   %}
8274   ins_pipe(ialu_reg_reg);
8275 %}
8276 
8277 
8278 // Raw moves between float and general registers using stack.
8279 
8280 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8281   match(Set dst (MoveF2I src));
8282   effect(DEF dst, USE src);
8283   ins_cost(MEMORY_REF_COST);
8284 
8285   size(4);
8286   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8287   opcode(Assembler::lduw_op3);
8288   ins_encode(simple_form3_mem_reg( src, dst ) );
8289   ins_pipe(iload_mem);
8290 %}
8291 
8292 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8293   match(Set dst (MoveI2F src));
8294   effect(DEF dst, USE src);
8295   ins_cost(MEMORY_REF_COST);
8296 
8297   size(4);
8298   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8299   opcode(Assembler::ldf_op3);
8300   ins_encode(simple_form3_mem_reg(src, dst));
8301   ins_pipe(floadF_stk);
8302 %}
8303 
8304 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8305   match(Set dst (MoveD2L src));
8306   effect(DEF dst, USE src);
8307   ins_cost(MEMORY_REF_COST);
8308 
8309   size(4);
8310   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8311   opcode(Assembler::ldx_op3);
8312   ins_encode(simple_form3_mem_reg( src, dst ) );
8313   ins_pipe(iload_mem);
8314 %}
8315 
8316 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8317   match(Set dst (MoveL2D src));
8318   effect(DEF dst, USE src);
8319   ins_cost(MEMORY_REF_COST);
8320 
8321   size(4);
8322   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8323   opcode(Assembler::lddf_op3);
8324   ins_encode(simple_form3_mem_reg(src, dst));
8325   ins_pipe(floadD_stk);
8326 %}
8327 
8328 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8329   match(Set dst (MoveF2I src));
8330   effect(DEF dst, USE src);
8331   ins_cost(MEMORY_REF_COST);
8332 
8333   size(4);
8334   format %{ "STF   $src,$dst\t! MoveF2I" %}
8335   opcode(Assembler::stf_op3);
8336   ins_encode(simple_form3_mem_reg(dst, src));
8337   ins_pipe(fstoreF_stk_reg);
8338 %}
8339 
8340 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8341   match(Set dst (MoveI2F src));
8342   effect(DEF dst, USE src);
8343   ins_cost(MEMORY_REF_COST);
8344 
8345   size(4);
8346   format %{ "STW    $src,$dst\t! MoveI2F" %}
8347   opcode(Assembler::stw_op3);
8348   ins_encode(simple_form3_mem_reg( dst, src ) );
8349   ins_pipe(istore_mem_reg);
8350 %}
8351 
8352 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8353   match(Set dst (MoveD2L src));
8354   effect(DEF dst, USE src);
8355   ins_cost(MEMORY_REF_COST);
8356 
8357   size(4);
8358   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8359   opcode(Assembler::stdf_op3);
8360   ins_encode(simple_form3_mem_reg(dst, src));
8361   ins_pipe(fstoreD_stk_reg);
8362 %}
8363 
8364 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8365   match(Set dst (MoveL2D src));
8366   effect(DEF dst, USE src);
8367   ins_cost(MEMORY_REF_COST);
8368 
8369   size(4);
8370   format %{ "STX    $src,$dst\t! MoveL2D" %}
8371   opcode(Assembler::stx_op3);
8372   ins_encode(simple_form3_mem_reg( dst, src ) );
8373   ins_pipe(istore_mem_reg);
8374 %}
8375 
8376 
8377 //----------Arithmetic Conversion Instructions---------------------------------
8378 // The conversions operations are all Alpha sorted.  Please keep it that way!
8379 
8380 instruct convD2F_reg(regF dst, regD src) %{
8381   match(Set dst (ConvD2F src));
8382   size(4);
8383   format %{ "FDTOS  $src,$dst" %}
8384   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8385   ins_encode(form3_opf_rs2D_rdF(src, dst));
8386   ins_pipe(fcvtD2F);
8387 %}
8388 
8389 
8390 // Convert a double to an int in a float register.
8391 // If the double is a NAN, stuff a zero in instead.
8392 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8393   effect(DEF dst, USE src, KILL fcc0);
8394   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8395             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8396             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8397             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8398             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8399       "skip:" %}
8400   ins_encode(form_d2i_helper(src,dst));
8401   ins_pipe(fcvtD2I);
8402 %}
8403 
8404 instruct convD2I_stk(stackSlotI dst, regD src) %{
8405   match(Set dst (ConvD2I src));
8406   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8407   expand %{
8408     regF tmp;
8409     convD2I_helper(tmp, src);
8410     regF_to_stkI(dst, tmp);
8411   %}
8412 %}
8413 
8414 instruct convD2I_reg(iRegI dst, regD src) %{
8415   predicate(UseVIS >= 3);
8416   match(Set dst (ConvD2I src));
8417   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8418   expand %{
8419     regF tmp;
8420     convD2I_helper(tmp, src);
8421     MoveF2I_reg_reg(dst, tmp);
8422   %}
8423 %}
8424 
8425 
8426 // Convert a double to a long in a double register.
8427 // If the double is a NAN, stuff a zero in instead.
8428 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8429   effect(DEF dst, USE src, KILL fcc0);
8430   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8431             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8432             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8433             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8434             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8435       "skip:" %}
8436   ins_encode(form_d2l_helper(src,dst));
8437   ins_pipe(fcvtD2L);
8438 %}
8439 
8440 instruct convD2L_stk(stackSlotL dst, regD src) %{
8441   match(Set dst (ConvD2L src));
8442   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8443   expand %{
8444     regD tmp;
8445     convD2L_helper(tmp, src);
8446     regD_to_stkL(dst, tmp);
8447   %}
8448 %}
8449 
8450 instruct convD2L_reg(iRegL dst, regD src) %{
8451   predicate(UseVIS >= 3);
8452   match(Set dst (ConvD2L src));
8453   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8454   expand %{
8455     regD tmp;
8456     convD2L_helper(tmp, src);
8457     MoveD2L_reg_reg(dst, tmp);
8458   %}
8459 %}
8460 
8461 
8462 instruct convF2D_reg(regD dst, regF src) %{
8463   match(Set dst (ConvF2D src));
8464   format %{ "FSTOD  $src,$dst" %}
8465   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8466   ins_encode(form3_opf_rs2F_rdD(src, dst));
8467   ins_pipe(fcvtF2D);
8468 %}
8469 
8470 
8471 // Convert a float to an int in a float register.
8472 // If the float is a NAN, stuff a zero in instead.
8473 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8474   effect(DEF dst, USE src, KILL fcc0);
8475   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8476             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8477             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8478             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8479             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8480       "skip:" %}
8481   ins_encode(form_f2i_helper(src,dst));
8482   ins_pipe(fcvtF2I);
8483 %}
8484 
8485 instruct convF2I_stk(stackSlotI dst, regF src) %{
8486   match(Set dst (ConvF2I src));
8487   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8488   expand %{
8489     regF tmp;
8490     convF2I_helper(tmp, src);
8491     regF_to_stkI(dst, tmp);
8492   %}
8493 %}
8494 
8495 instruct convF2I_reg(iRegI dst, regF src) %{
8496   predicate(UseVIS >= 3);
8497   match(Set dst (ConvF2I src));
8498   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8499   expand %{
8500     regF tmp;
8501     convF2I_helper(tmp, src);
8502     MoveF2I_reg_reg(dst, tmp);
8503   %}
8504 %}
8505 
8506 
8507 // Convert a float to a long in a float register.
8508 // If the float is a NAN, stuff a zero in instead.
8509 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8510   effect(DEF dst, USE src, KILL fcc0);
8511   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8512             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8513             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8514             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8515             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8516       "skip:" %}
8517   ins_encode(form_f2l_helper(src,dst));
8518   ins_pipe(fcvtF2L);
8519 %}
8520 
8521 instruct convF2L_stk(stackSlotL dst, regF src) %{
8522   match(Set dst (ConvF2L src));
8523   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8524   expand %{
8525     regD tmp;
8526     convF2L_helper(tmp, src);
8527     regD_to_stkL(dst, tmp);
8528   %}
8529 %}
8530 
8531 instruct convF2L_reg(iRegL dst, regF src) %{
8532   predicate(UseVIS >= 3);
8533   match(Set dst (ConvF2L src));
8534   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8535   expand %{
8536     regD tmp;
8537     convF2L_helper(tmp, src);
8538     MoveD2L_reg_reg(dst, tmp);
8539   %}
8540 %}
8541 
8542 
8543 instruct convI2D_helper(regD dst, regF tmp) %{
8544   effect(USE tmp, DEF dst);
8545   format %{ "FITOD  $tmp,$dst" %}
8546   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8547   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8548   ins_pipe(fcvtI2D);
8549 %}
8550 
8551 instruct convI2D_stk(stackSlotI src, regD dst) %{
8552   match(Set dst (ConvI2D src));
8553   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8554   expand %{
8555     regF tmp;
8556     stkI_to_regF(tmp, src);
8557     convI2D_helper(dst, tmp);
8558   %}
8559 %}
8560 
8561 instruct convI2D_reg(regD_low dst, iRegI src) %{
8562   predicate(UseVIS >= 3);
8563   match(Set dst (ConvI2D src));
8564   expand %{
8565     regF tmp;
8566     MoveI2F_reg_reg(tmp, src);
8567     convI2D_helper(dst, tmp);
8568   %}
8569 %}
8570 
8571 instruct convI2D_mem(regD_low dst, memory mem) %{
8572   match(Set dst (ConvI2D (LoadI mem)));
8573   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8574   size(8);
8575   format %{ "LDF    $mem,$dst\n\t"
8576             "FITOD  $dst,$dst" %}
8577   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8578   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8579   ins_pipe(floadF_mem);
8580 %}
8581 
8582 
8583 instruct convI2F_helper(regF dst, regF tmp) %{
8584   effect(DEF dst, USE tmp);
8585   format %{ "FITOS  $tmp,$dst" %}
8586   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8587   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8588   ins_pipe(fcvtI2F);
8589 %}
8590 
8591 instruct convI2F_stk(regF dst, stackSlotI src) %{
8592   match(Set dst (ConvI2F src));
8593   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8594   expand %{
8595     regF tmp;
8596     stkI_to_regF(tmp,src);
8597     convI2F_helper(dst, tmp);
8598   %}
8599 %}
8600 
8601 instruct convI2F_reg(regF dst, iRegI src) %{
8602   predicate(UseVIS >= 3);
8603   match(Set dst (ConvI2F src));
8604   ins_cost(DEFAULT_COST);
8605   expand %{
8606     regF tmp;
8607     MoveI2F_reg_reg(tmp, src);
8608     convI2F_helper(dst, tmp);
8609   %}
8610 %}
8611 
8612 instruct convI2F_mem( regF dst, memory mem ) %{
8613   match(Set dst (ConvI2F (LoadI mem)));
8614   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8615   size(8);
8616   format %{ "LDF    $mem,$dst\n\t"
8617             "FITOS  $dst,$dst" %}
8618   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8619   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8620   ins_pipe(floadF_mem);
8621 %}
8622 
8623 
8624 instruct convI2L_reg(iRegL dst, iRegI src) %{
8625   match(Set dst (ConvI2L src));
8626   size(4);
8627   format %{ "SRA    $src,0,$dst\t! int->long" %}
8628   opcode(Assembler::sra_op3, Assembler::arith_op);
8629   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8630   ins_pipe(ialu_reg_reg);
8631 %}
8632 
8633 // Zero-extend convert int to long
8634 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8635   match(Set dst (AndL (ConvI2L src) mask) );
8636   size(4);
8637   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8638   opcode(Assembler::srl_op3, Assembler::arith_op);
8639   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8640   ins_pipe(ialu_reg_reg);
8641 %}
8642 
8643 // Zero-extend long
8644 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8645   match(Set dst (AndL src mask) );
8646   size(4);
8647   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8648   opcode(Assembler::srl_op3, Assembler::arith_op);
8649   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8650   ins_pipe(ialu_reg_reg);
8651 %}
8652 
8653 
8654 //-----------
8655 // Long to Double conversion using V8 opcodes.
8656 // Still useful because cheetah traps and becomes
8657 // amazingly slow for some common numbers.
8658 
8659 // Magic constant, 0x43300000
8660 instruct loadConI_x43300000(iRegI dst) %{
8661   effect(DEF dst);
8662   size(4);
8663   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8664   ins_encode(SetHi22(0x43300000, dst));
8665   ins_pipe(ialu_none);
8666 %}
8667 
8668 // Magic constant, 0x41f00000
8669 instruct loadConI_x41f00000(iRegI dst) %{
8670   effect(DEF dst);
8671   size(4);
8672   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8673   ins_encode(SetHi22(0x41f00000, dst));
8674   ins_pipe(ialu_none);
8675 %}
8676 
8677 // Construct a double from two float halves
8678 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8679   effect(DEF dst, USE src1, USE src2);
8680   size(8);
8681   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8682             "FMOVS  $src2.lo,$dst.lo" %}
8683   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8684   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8685   ins_pipe(faddD_reg_reg);
8686 %}
8687 
8688 // Convert integer in high half of a double register (in the lower half of
8689 // the double register file) to double
8690 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8691   effect(DEF dst, USE src);
8692   size(4);
8693   format %{ "FITOD  $src,$dst" %}
8694   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8695   ins_encode(form3_opf_rs2D_rdD(src, dst));
8696   ins_pipe(fcvtLHi2D);
8697 %}
8698 
8699 // Add float double precision
8700 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8701   effect(DEF dst, USE src1, USE src2);
8702   size(4);
8703   format %{ "FADDD  $src1,$src2,$dst" %}
8704   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8705   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8706   ins_pipe(faddD_reg_reg);
8707 %}
8708 
8709 // Sub float double precision
8710 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8711   effect(DEF dst, USE src1, USE src2);
8712   size(4);
8713   format %{ "FSUBD  $src1,$src2,$dst" %}
8714   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8715   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8716   ins_pipe(faddD_reg_reg);
8717 %}
8718 
8719 // Mul float double precision
8720 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8721   effect(DEF dst, USE src1, USE src2);
8722   size(4);
8723   format %{ "FMULD  $src1,$src2,$dst" %}
8724   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8725   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8726   ins_pipe(fmulD_reg_reg);
8727 %}
8728 
8729 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8730   match(Set dst (ConvL2D src));
8731   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8732 
8733   expand %{
8734     regD_low   tmpsrc;
8735     iRegI      ix43300000;
8736     iRegI      ix41f00000;
8737     stackSlotL lx43300000;
8738     stackSlotL lx41f00000;
8739     regD_low   dx43300000;
8740     regD       dx41f00000;
8741     regD       tmp1;
8742     regD_low   tmp2;
8743     regD       tmp3;
8744     regD       tmp4;
8745 
8746     stkL_to_regD(tmpsrc, src);
8747 
8748     loadConI_x43300000(ix43300000);
8749     loadConI_x41f00000(ix41f00000);
8750     regI_to_stkLHi(lx43300000, ix43300000);
8751     regI_to_stkLHi(lx41f00000, ix41f00000);
8752     stkL_to_regD(dx43300000, lx43300000);
8753     stkL_to_regD(dx41f00000, lx41f00000);
8754 
8755     convI2D_regDHi_regD(tmp1, tmpsrc);
8756     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8757     subD_regD_regD(tmp3, tmp2, dx43300000);
8758     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8759     addD_regD_regD(dst, tmp3, tmp4);
8760   %}
8761 %}
8762 
8763 // Long to Double conversion using fast fxtof
8764 instruct convL2D_helper(regD dst, regD tmp) %{
8765   effect(DEF dst, USE tmp);
8766   size(4);
8767   format %{ "FXTOD  $tmp,$dst" %}
8768   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8769   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8770   ins_pipe(fcvtL2D);
8771 %}
8772 
8773 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8774   predicate(VM_Version::has_fast_fxtof());
8775   match(Set dst (ConvL2D src));
8776   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8777   expand %{
8778     regD tmp;
8779     stkL_to_regD(tmp, src);
8780     convL2D_helper(dst, tmp);
8781   %}
8782 %}
8783 
8784 instruct convL2D_reg(regD dst, iRegL src) %{
8785   predicate(UseVIS >= 3);
8786   match(Set dst (ConvL2D src));
8787   expand %{
8788     regD tmp;
8789     MoveL2D_reg_reg(tmp, src);
8790     convL2D_helper(dst, tmp);
8791   %}
8792 %}
8793 
8794 // Long to Float conversion using fast fxtof
8795 instruct convL2F_helper(regF dst, regD tmp) %{
8796   effect(DEF dst, USE tmp);
8797   size(4);
8798   format %{ "FXTOS  $tmp,$dst" %}
8799   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8800   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8801   ins_pipe(fcvtL2F);
8802 %}
8803 
8804 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8805   match(Set dst (ConvL2F src));
8806   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8807   expand %{
8808     regD tmp;
8809     stkL_to_regD(tmp, src);
8810     convL2F_helper(dst, tmp);
8811   %}
8812 %}
8813 
8814 instruct convL2F_reg(regF dst, iRegL src) %{
8815   predicate(UseVIS >= 3);
8816   match(Set dst (ConvL2F src));
8817   ins_cost(DEFAULT_COST);
8818   expand %{
8819     regD tmp;
8820     MoveL2D_reg_reg(tmp, src);
8821     convL2F_helper(dst, tmp);
8822   %}
8823 %}
8824 
8825 //-----------
8826 
8827 instruct convL2I_reg(iRegI dst, iRegL src) %{
8828   match(Set dst (ConvL2I src));
8829 #ifndef _LP64
8830   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8831   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8832   ins_pipe(ialu_move_reg_I_to_L);
8833 #else
8834   size(4);
8835   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8836   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8837   ins_pipe(ialu_reg);
8838 #endif
8839 %}
8840 
8841 // Register Shift Right Immediate
8842 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8843   match(Set dst (ConvL2I (RShiftL src cnt)));
8844 
8845   size(4);
8846   format %{ "SRAX   $src,$cnt,$dst" %}
8847   opcode(Assembler::srax_op3, Assembler::arith_op);
8848   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8849   ins_pipe(ialu_reg_imm);
8850 %}
8851 
8852 //----------Control Flow Instructions------------------------------------------
8853 // Compare Instructions
8854 // Compare Integers
8855 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8856   match(Set icc (CmpI op1 op2));
8857   effect( DEF icc, USE op1, USE op2 );
8858 
8859   size(4);
8860   format %{ "CMP    $op1,$op2" %}
8861   opcode(Assembler::subcc_op3, Assembler::arith_op);
8862   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8863   ins_pipe(ialu_cconly_reg_reg);
8864 %}
8865 
8866 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8867   match(Set icc (CmpU op1 op2));
8868 
8869   size(4);
8870   format %{ "CMP    $op1,$op2\t! unsigned" %}
8871   opcode(Assembler::subcc_op3, Assembler::arith_op);
8872   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8873   ins_pipe(ialu_cconly_reg_reg);
8874 %}
8875 
8876 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8877   match(Set icc (CmpI op1 op2));
8878   effect( DEF icc, USE op1 );
8879 
8880   size(4);
8881   format %{ "CMP    $op1,$op2" %}
8882   opcode(Assembler::subcc_op3, Assembler::arith_op);
8883   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8884   ins_pipe(ialu_cconly_reg_imm);
8885 %}
8886 
8887 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8888   match(Set icc (CmpI (AndI op1 op2) zero));
8889 
8890   size(4);
8891   format %{ "BTST   $op2,$op1" %}
8892   opcode(Assembler::andcc_op3, Assembler::arith_op);
8893   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8894   ins_pipe(ialu_cconly_reg_reg_zero);
8895 %}
8896 
8897 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8898   match(Set icc (CmpI (AndI op1 op2) zero));
8899 
8900   size(4);
8901   format %{ "BTST   $op2,$op1" %}
8902   opcode(Assembler::andcc_op3, Assembler::arith_op);
8903   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8904   ins_pipe(ialu_cconly_reg_imm_zero);
8905 %}
8906 
8907 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8908   match(Set xcc (CmpL op1 op2));
8909   effect( DEF xcc, USE op1, USE op2 );
8910 
8911   size(4);
8912   format %{ "CMP    $op1,$op2\t\t! long" %}
8913   opcode(Assembler::subcc_op3, Assembler::arith_op);
8914   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8915   ins_pipe(ialu_cconly_reg_reg);
8916 %}
8917 
8918 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8919   match(Set xcc (CmpL op1 con));
8920   effect( DEF xcc, USE op1, USE con );
8921 
8922   size(4);
8923   format %{ "CMP    $op1,$con\t\t! long" %}
8924   opcode(Assembler::subcc_op3, Assembler::arith_op);
8925   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8926   ins_pipe(ialu_cconly_reg_reg);
8927 %}
8928 
8929 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8930   match(Set xcc (CmpL (AndL op1 op2) zero));
8931   effect( DEF xcc, USE op1, USE op2 );
8932 
8933   size(4);
8934   format %{ "BTST   $op1,$op2\t\t! long" %}
8935   opcode(Assembler::andcc_op3, Assembler::arith_op);
8936   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8937   ins_pipe(ialu_cconly_reg_reg);
8938 %}
8939 
8940 // useful for checking the alignment of a pointer:
8941 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8942   match(Set xcc (CmpL (AndL op1 con) zero));
8943   effect( DEF xcc, USE op1, USE con );
8944 
8945   size(4);
8946   format %{ "BTST   $op1,$con\t\t! long" %}
8947   opcode(Assembler::andcc_op3, Assembler::arith_op);
8948   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8949   ins_pipe(ialu_cconly_reg_reg);
8950 %}
8951 
8952 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8953   match(Set icc (CmpU op1 op2));
8954 
8955   size(4);
8956   format %{ "CMP    $op1,$op2\t! unsigned" %}
8957   opcode(Assembler::subcc_op3, Assembler::arith_op);
8958   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8959   ins_pipe(ialu_cconly_reg_imm);
8960 %}
8961 
8962 // Compare Pointers
8963 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8964   match(Set pcc (CmpP op1 op2));
8965 
8966   size(4);
8967   format %{ "CMP    $op1,$op2\t! ptr" %}
8968   opcode(Assembler::subcc_op3, Assembler::arith_op);
8969   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8970   ins_pipe(ialu_cconly_reg_reg);
8971 %}
8972 
8973 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8974   match(Set pcc (CmpP op1 op2));
8975 
8976   size(4);
8977   format %{ "CMP    $op1,$op2\t! ptr" %}
8978   opcode(Assembler::subcc_op3, Assembler::arith_op);
8979   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8980   ins_pipe(ialu_cconly_reg_imm);
8981 %}
8982 
8983 // Compare Narrow oops
8984 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8985   match(Set icc (CmpN op1 op2));
8986 
8987   size(4);
8988   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8989   opcode(Assembler::subcc_op3, Assembler::arith_op);
8990   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8991   ins_pipe(ialu_cconly_reg_reg);
8992 %}
8993 
8994 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8995   match(Set icc (CmpN op1 op2));
8996 
8997   size(4);
8998   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8999   opcode(Assembler::subcc_op3, Assembler::arith_op);
9000   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9001   ins_pipe(ialu_cconly_reg_imm);
9002 %}
9003 
9004 //----------Max and Min--------------------------------------------------------
9005 // Min Instructions
9006 // Conditional move for min
9007 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9008   effect( USE_DEF op2, USE op1, USE icc );
9009 
9010   size(4);
9011   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9012   opcode(Assembler::less);
9013   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9014   ins_pipe(ialu_reg_flags);
9015 %}
9016 
9017 // Min Register with Register.
9018 instruct minI_eReg(iRegI op1, iRegI op2) %{
9019   match(Set op2 (MinI op1 op2));
9020   ins_cost(DEFAULT_COST*2);
9021   expand %{
9022     flagsReg icc;
9023     compI_iReg(icc,op1,op2);
9024     cmovI_reg_lt(op2,op1,icc);
9025   %}
9026 %}
9027 
9028 // Max Instructions
9029 // Conditional move for max
9030 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9031   effect( USE_DEF op2, USE op1, USE icc );
9032   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9033   opcode(Assembler::greater);
9034   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9035   ins_pipe(ialu_reg_flags);
9036 %}
9037 
9038 // Max Register with Register
9039 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9040   match(Set op2 (MaxI op1 op2));
9041   ins_cost(DEFAULT_COST*2);
9042   expand %{
9043     flagsReg icc;
9044     compI_iReg(icc,op1,op2);
9045     cmovI_reg_gt(op2,op1,icc);
9046   %}
9047 %}
9048 
9049 
9050 //----------Float Compares----------------------------------------------------
9051 // Compare floating, generate condition code
9052 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9053   match(Set fcc (CmpF src1 src2));
9054 
9055   size(4);
9056   format %{ "FCMPs  $fcc,$src1,$src2" %}
9057   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9058   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9059   ins_pipe(faddF_fcc_reg_reg_zero);
9060 %}
9061 
9062 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9063   match(Set fcc (CmpD src1 src2));
9064 
9065   size(4);
9066   format %{ "FCMPd  $fcc,$src1,$src2" %}
9067   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9068   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9069   ins_pipe(faddD_fcc_reg_reg_zero);
9070 %}
9071 
9072 
9073 // Compare floating, generate -1,0,1
9074 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9075   match(Set dst (CmpF3 src1 src2));
9076   effect(KILL fcc0);
9077   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9078   format %{ "fcmpl  $dst,$src1,$src2" %}
9079   // Primary = float
9080   opcode( true );
9081   ins_encode( floating_cmp( dst, src1, src2 ) );
9082   ins_pipe( floating_cmp );
9083 %}
9084 
9085 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9086   match(Set dst (CmpD3 src1 src2));
9087   effect(KILL fcc0);
9088   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9089   format %{ "dcmpl  $dst,$src1,$src2" %}
9090   // Primary = double (not float)
9091   opcode( false );
9092   ins_encode( floating_cmp( dst, src1, src2 ) );
9093   ins_pipe( floating_cmp );
9094 %}
9095 
9096 //----------Branches---------------------------------------------------------
9097 // Jump
9098 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9099 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9100   match(Jump switch_val);
9101   effect(TEMP table);
9102 
9103   ins_cost(350);
9104 
9105   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9106              "LD     [O7 + $switch_val], O7\n\t"
9107              "JUMP   O7" %}
9108   ins_encode %{
9109     // Calculate table address into a register.
9110     Register table_reg;
9111     Register label_reg = O7;
9112     // If we are calculating the size of this instruction don't trust
9113     // zero offsets because they might change when
9114     // MachConstantBaseNode decides to optimize the constant table
9115     // base.
9116     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9117       table_reg = $constanttablebase;
9118     } else {
9119       table_reg = O7;
9120       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9121       __ add($constanttablebase, con_offset, table_reg);
9122     }
9123 
9124     // Jump to base address + switch value
9125     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9126     __ jmp(label_reg, G0);
9127     __ delayed()->nop();
9128   %}
9129   ins_pipe(ialu_reg_reg);
9130 %}
9131 
9132 // Direct Branch.  Use V8 version with longer range.
9133 instruct branch(label labl) %{
9134   match(Goto);
9135   effect(USE labl);
9136 
9137   size(8);
9138   ins_cost(BRANCH_COST);
9139   format %{ "BA     $labl" %}
9140   ins_encode %{
9141     Label* L = $labl$$label;
9142     __ ba(*L);
9143     __ delayed()->nop();
9144   %}
9145   ins_pipe(br);
9146 %}
9147 
9148 // Direct Branch, short with no delay slot
9149 instruct branch_short(label labl) %{
9150   match(Goto);
9151   predicate(UseCBCond);
9152   effect(USE labl);
9153 
9154   size(4);
9155   ins_cost(BRANCH_COST);
9156   format %{ "BA     $labl\t! short branch" %}
9157   ins_encode %{ 
9158     Label* L = $labl$$label;
9159     assert(__ use_cbcond(*L), "back to back cbcond");
9160     __ ba_short(*L);
9161   %}
9162   ins_short_branch(1);
9163   ins_avoid_back_to_back(1);
9164   ins_pipe(cbcond_reg_imm);
9165 %}
9166 
9167 // Conditional Direct Branch
9168 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9169   match(If cmp icc);
9170   effect(USE labl);
9171 
9172   size(8);
9173   ins_cost(BRANCH_COST);
9174   format %{ "BP$cmp   $icc,$labl" %}
9175   // Prim = bits 24-22, Secnd = bits 31-30
9176   ins_encode( enc_bp( labl, cmp, icc ) );
9177   ins_pipe(br_cc);
9178 %}
9179 
9180 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9181   match(If cmp icc);
9182   effect(USE labl);
9183 
9184   ins_cost(BRANCH_COST);
9185   format %{ "BP$cmp  $icc,$labl" %}
9186   // Prim = bits 24-22, Secnd = bits 31-30
9187   ins_encode( enc_bp( labl, cmp, icc ) );
9188   ins_pipe(br_cc);
9189 %}
9190 
9191 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9192   match(If cmp pcc);
9193   effect(USE labl);
9194 
9195   size(8);
9196   ins_cost(BRANCH_COST);
9197   format %{ "BP$cmp  $pcc,$labl" %}
9198   ins_encode %{
9199     Label* L = $labl$$label;
9200     Assembler::Predict predict_taken =
9201       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9202 
9203     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9204     __ delayed()->nop();
9205   %}
9206   ins_pipe(br_cc);
9207 %}
9208 
9209 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9210   match(If cmp fcc);
9211   effect(USE labl);
9212 
9213   size(8);
9214   ins_cost(BRANCH_COST);
9215   format %{ "FBP$cmp $fcc,$labl" %}
9216   ins_encode %{
9217     Label* L = $labl$$label;
9218     Assembler::Predict predict_taken =
9219       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9220 
9221     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9222     __ delayed()->nop();
9223   %}
9224   ins_pipe(br_fcc);
9225 %}
9226 
9227 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9228   match(CountedLoopEnd cmp icc);
9229   effect(USE labl);
9230 
9231   size(8);
9232   ins_cost(BRANCH_COST);
9233   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9234   // Prim = bits 24-22, Secnd = bits 31-30
9235   ins_encode( enc_bp( labl, cmp, icc ) );
9236   ins_pipe(br_cc);
9237 %}
9238 
9239 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9240   match(CountedLoopEnd cmp icc);
9241   effect(USE labl);
9242 
9243   size(8);
9244   ins_cost(BRANCH_COST);
9245   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9246   // Prim = bits 24-22, Secnd = bits 31-30
9247   ins_encode( enc_bp( labl, cmp, icc ) );
9248   ins_pipe(br_cc);
9249 %}
9250 
9251 // Compare and branch instructions
9252 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9253   match(If cmp (CmpI op1 op2));
9254   effect(USE labl, KILL icc);
9255 
9256   size(12);
9257   ins_cost(BRANCH_COST);
9258   format %{ "CMP    $op1,$op2\t! int\n\t"
9259             "BP$cmp   $labl" %}
9260   ins_encode %{
9261     Label* L = $labl$$label;
9262     Assembler::Predict predict_taken =
9263       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9264     __ cmp($op1$$Register, $op2$$Register);
9265     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9266     __ delayed()->nop();
9267   %}
9268   ins_pipe(cmp_br_reg_reg);
9269 %}
9270 
9271 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9272   match(If cmp (CmpI op1 op2));
9273   effect(USE labl, KILL icc);
9274 
9275   size(12);
9276   ins_cost(BRANCH_COST);
9277   format %{ "CMP    $op1,$op2\t! int\n\t"
9278             "BP$cmp   $labl" %}
9279   ins_encode %{
9280     Label* L = $labl$$label;
9281     Assembler::Predict predict_taken =
9282       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9283     __ cmp($op1$$Register, $op2$$constant);
9284     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9285     __ delayed()->nop();
9286   %}
9287   ins_pipe(cmp_br_reg_imm);
9288 %}
9289 
9290 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9291   match(If cmp (CmpU op1 op2));
9292   effect(USE labl, KILL icc);
9293 
9294   size(12);
9295   ins_cost(BRANCH_COST);
9296   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9297             "BP$cmp  $labl" %}
9298   ins_encode %{
9299     Label* L = $labl$$label;
9300     Assembler::Predict predict_taken =
9301       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9302     __ cmp($op1$$Register, $op2$$Register);
9303     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9304     __ delayed()->nop();
9305   %}
9306   ins_pipe(cmp_br_reg_reg);
9307 %}
9308 
9309 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9310   match(If cmp (CmpU op1 op2));
9311   effect(USE labl, KILL icc);
9312 
9313   size(12);
9314   ins_cost(BRANCH_COST);
9315   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9316             "BP$cmp  $labl" %}
9317   ins_encode %{
9318     Label* L = $labl$$label;
9319     Assembler::Predict predict_taken =
9320       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9321     __ cmp($op1$$Register, $op2$$constant);
9322     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9323     __ delayed()->nop();
9324   %}
9325   ins_pipe(cmp_br_reg_imm);
9326 %}
9327 
9328 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9329   match(If cmp (CmpL op1 op2));
9330   effect(USE labl, KILL xcc);
9331 
9332   size(12);
9333   ins_cost(BRANCH_COST);
9334   format %{ "CMP    $op1,$op2\t! long\n\t"
9335             "BP$cmp   $labl" %}
9336   ins_encode %{
9337     Label* L = $labl$$label;
9338     Assembler::Predict predict_taken =
9339       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9340     __ cmp($op1$$Register, $op2$$Register);
9341     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9342     __ delayed()->nop();
9343   %}
9344   ins_pipe(cmp_br_reg_reg);
9345 %}
9346 
9347 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9348   match(If cmp (CmpL op1 op2));
9349   effect(USE labl, KILL xcc);
9350 
9351   size(12);
9352   ins_cost(BRANCH_COST);
9353   format %{ "CMP    $op1,$op2\t! long\n\t"
9354             "BP$cmp   $labl" %}
9355   ins_encode %{
9356     Label* L = $labl$$label;
9357     Assembler::Predict predict_taken =
9358       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9359     __ cmp($op1$$Register, $op2$$constant);
9360     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9361     __ delayed()->nop();
9362   %}
9363   ins_pipe(cmp_br_reg_imm);
9364 %}
9365 
9366 // Compare Pointers and branch
9367 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9368   match(If cmp (CmpP op1 op2));
9369   effect(USE labl, KILL pcc);
9370 
9371   size(12);
9372   ins_cost(BRANCH_COST);
9373   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9374             "B$cmp   $labl" %}
9375   ins_encode %{
9376     Label* L = $labl$$label;
9377     Assembler::Predict predict_taken =
9378       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9379     __ cmp($op1$$Register, $op2$$Register);
9380     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9381     __ delayed()->nop();
9382   %}
9383   ins_pipe(cmp_br_reg_reg);
9384 %}
9385 
9386 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9387   match(If cmp (CmpP op1 null));
9388   effect(USE labl, KILL pcc);
9389 
9390   size(12);
9391   ins_cost(BRANCH_COST);
9392   format %{ "CMP    $op1,0\t! ptr\n\t"
9393             "B$cmp   $labl" %}
9394   ins_encode %{
9395     Label* L = $labl$$label;
9396     Assembler::Predict predict_taken =
9397       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9398     __ cmp($op1$$Register, G0);
9399     // bpr() is not used here since it has shorter distance.
9400     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9401     __ delayed()->nop();
9402   %}
9403   ins_pipe(cmp_br_reg_reg);
9404 %}
9405 
9406 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9407   match(If cmp (CmpN op1 op2));
9408   effect(USE labl, KILL icc);
9409 
9410   size(12);
9411   ins_cost(BRANCH_COST);
9412   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9413             "BP$cmp   $labl" %}
9414   ins_encode %{
9415     Label* L = $labl$$label;
9416     Assembler::Predict predict_taken =
9417       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9418     __ cmp($op1$$Register, $op2$$Register);
9419     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9420     __ delayed()->nop();
9421   %}
9422   ins_pipe(cmp_br_reg_reg);
9423 %}
9424 
9425 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9426   match(If cmp (CmpN op1 null));
9427   effect(USE labl, KILL icc);
9428 
9429   size(12);
9430   ins_cost(BRANCH_COST);
9431   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9432             "BP$cmp   $labl" %}
9433   ins_encode %{
9434     Label* L = $labl$$label;
9435     Assembler::Predict predict_taken =
9436       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9437     __ cmp($op1$$Register, G0);
9438     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9439     __ delayed()->nop();
9440   %}
9441   ins_pipe(cmp_br_reg_reg);
9442 %}
9443 
9444 // Loop back branch
9445 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9446   match(CountedLoopEnd cmp (CmpI op1 op2));
9447   effect(USE labl, KILL icc);
9448 
9449   size(12);
9450   ins_cost(BRANCH_COST);
9451   format %{ "CMP    $op1,$op2\t! int\n\t"
9452             "BP$cmp   $labl\t! Loop end" %}
9453   ins_encode %{
9454     Label* L = $labl$$label;
9455     Assembler::Predict predict_taken =
9456       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9457     __ cmp($op1$$Register, $op2$$Register);
9458     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9459     __ delayed()->nop();
9460   %}
9461   ins_pipe(cmp_br_reg_reg);
9462 %}
9463 
9464 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9465   match(CountedLoopEnd cmp (CmpI op1 op2));
9466   effect(USE labl, KILL icc);
9467 
9468   size(12);
9469   ins_cost(BRANCH_COST);
9470   format %{ "CMP    $op1,$op2\t! int\n\t"
9471             "BP$cmp   $labl\t! Loop end" %}
9472   ins_encode %{
9473     Label* L = $labl$$label;
9474     Assembler::Predict predict_taken =
9475       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9476     __ cmp($op1$$Register, $op2$$constant);
9477     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9478     __ delayed()->nop();
9479   %}
9480   ins_pipe(cmp_br_reg_imm);
9481 %}
9482 
9483 // Short compare and branch instructions
9484 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9485   match(If cmp (CmpI op1 op2));
9486   predicate(UseCBCond);
9487   effect(USE labl, KILL icc);
9488 
9489   size(4);
9490   ins_cost(BRANCH_COST);
9491   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9492   ins_encode %{
9493     Label* L = $labl$$label;
9494     assert(__ use_cbcond(*L), "back to back cbcond");
9495     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9496   %}
9497   ins_short_branch(1);
9498   ins_avoid_back_to_back(1);
9499   ins_pipe(cbcond_reg_reg);
9500 %}
9501 
9502 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9503   match(If cmp (CmpI op1 op2));
9504   predicate(UseCBCond);
9505   effect(USE labl, KILL icc);
9506 
9507   size(4);
9508   ins_cost(BRANCH_COST);
9509   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9510   ins_encode %{
9511     Label* L = $labl$$label;
9512     assert(__ use_cbcond(*L), "back to back cbcond");
9513     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9514   %}
9515   ins_short_branch(1);
9516   ins_avoid_back_to_back(1);
9517   ins_pipe(cbcond_reg_imm);
9518 %}
9519 
9520 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9521   match(If cmp (CmpU op1 op2));
9522   predicate(UseCBCond);
9523   effect(USE labl, KILL icc);
9524 
9525   size(4);
9526   ins_cost(BRANCH_COST);
9527   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9528   ins_encode %{
9529     Label* L = $labl$$label;
9530     assert(__ use_cbcond(*L), "back to back cbcond");
9531     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9532   %}
9533   ins_short_branch(1);
9534   ins_avoid_back_to_back(1);
9535   ins_pipe(cbcond_reg_reg);
9536 %}
9537 
9538 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9539   match(If cmp (CmpU op1 op2));
9540   predicate(UseCBCond);
9541   effect(USE labl, KILL icc);
9542 
9543   size(4);
9544   ins_cost(BRANCH_COST);
9545   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9546   ins_encode %{
9547     Label* L = $labl$$label;
9548     assert(__ use_cbcond(*L), "back to back cbcond");
9549     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9550   %}
9551   ins_short_branch(1);
9552   ins_avoid_back_to_back(1);
9553   ins_pipe(cbcond_reg_imm);
9554 %}
9555 
9556 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9557   match(If cmp (CmpL op1 op2));
9558   predicate(UseCBCond);
9559   effect(USE labl, KILL xcc);
9560 
9561   size(4);
9562   ins_cost(BRANCH_COST);
9563   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9564   ins_encode %{
9565     Label* L = $labl$$label;
9566     assert(__ use_cbcond(*L), "back to back cbcond");
9567     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9568   %}
9569   ins_short_branch(1);
9570   ins_avoid_back_to_back(1);
9571   ins_pipe(cbcond_reg_reg);
9572 %}
9573 
9574 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9575   match(If cmp (CmpL op1 op2));
9576   predicate(UseCBCond);
9577   effect(USE labl, KILL xcc);
9578 
9579   size(4);
9580   ins_cost(BRANCH_COST);
9581   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9582   ins_encode %{
9583     Label* L = $labl$$label;
9584     assert(__ use_cbcond(*L), "back to back cbcond");
9585     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9586   %}
9587   ins_short_branch(1);
9588   ins_avoid_back_to_back(1);
9589   ins_pipe(cbcond_reg_imm);
9590 %}
9591 
9592 // Compare Pointers and branch
9593 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9594   match(If cmp (CmpP op1 op2));
9595   predicate(UseCBCond);
9596   effect(USE labl, KILL pcc);
9597 
9598   size(4);
9599   ins_cost(BRANCH_COST);
9600 #ifdef _LP64
9601   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9602 #else
9603   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9604 #endif
9605   ins_encode %{
9606     Label* L = $labl$$label;
9607     assert(__ use_cbcond(*L), "back to back cbcond");
9608     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9609   %}
9610   ins_short_branch(1);
9611   ins_avoid_back_to_back(1);
9612   ins_pipe(cbcond_reg_reg);
9613 %}
9614 
9615 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9616   match(If cmp (CmpP op1 null));
9617   predicate(UseCBCond);
9618   effect(USE labl, KILL pcc);
9619 
9620   size(4);
9621   ins_cost(BRANCH_COST);
9622 #ifdef _LP64
9623   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9624 #else
9625   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9626 #endif
9627   ins_encode %{
9628     Label* L = $labl$$label;
9629     assert(__ use_cbcond(*L), "back to back cbcond");
9630     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9631   %}
9632   ins_short_branch(1);
9633   ins_avoid_back_to_back(1);
9634   ins_pipe(cbcond_reg_reg);
9635 %}
9636 
9637 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9638   match(If cmp (CmpN op1 op2));
9639   predicate(UseCBCond);
9640   effect(USE labl, KILL icc);
9641 
9642   size(4);
9643   ins_cost(BRANCH_COST);
9644   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9645   ins_encode %{
9646     Label* L = $labl$$label;
9647     assert(__ use_cbcond(*L), "back to back cbcond");
9648     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9649   %}
9650   ins_short_branch(1);
9651   ins_avoid_back_to_back(1);
9652   ins_pipe(cbcond_reg_reg);
9653 %}
9654 
9655 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9656   match(If cmp (CmpN op1 null));
9657   predicate(UseCBCond);
9658   effect(USE labl, KILL icc);
9659 
9660   size(4);
9661   ins_cost(BRANCH_COST);
9662   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9663   ins_encode %{
9664     Label* L = $labl$$label;
9665     assert(__ use_cbcond(*L), "back to back cbcond");
9666     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9667   %}
9668   ins_short_branch(1);
9669   ins_avoid_back_to_back(1);
9670   ins_pipe(cbcond_reg_reg);
9671 %}
9672 
9673 // Loop back branch
9674 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9675   match(CountedLoopEnd cmp (CmpI op1 op2));
9676   predicate(UseCBCond);
9677   effect(USE labl, KILL icc);
9678 
9679   size(4);
9680   ins_cost(BRANCH_COST);
9681   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9682   ins_encode %{
9683     Label* L = $labl$$label;
9684     assert(__ use_cbcond(*L), "back to back cbcond");
9685     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9686   %}
9687   ins_short_branch(1);
9688   ins_avoid_back_to_back(1);
9689   ins_pipe(cbcond_reg_reg);
9690 %}
9691 
9692 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9693   match(CountedLoopEnd cmp (CmpI op1 op2));
9694   predicate(UseCBCond);
9695   effect(USE labl, KILL icc);
9696 
9697   size(4);
9698   ins_cost(BRANCH_COST);
9699   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9700   ins_encode %{
9701     Label* L = $labl$$label;
9702     assert(__ use_cbcond(*L), "back to back cbcond");
9703     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9704   %}
9705   ins_short_branch(1);
9706   ins_avoid_back_to_back(1);
9707   ins_pipe(cbcond_reg_imm);
9708 %}
9709 
9710 // Branch-on-register tests all 64 bits.  We assume that values
9711 // in 64-bit registers always remains zero or sign extended
9712 // unless our code munges the high bits.  Interrupts can chop
9713 // the high order bits to zero or sign at any time.
9714 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9715   match(If cmp (CmpI op1 zero));
9716   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9717   effect(USE labl);
9718 
9719   size(8);
9720   ins_cost(BRANCH_COST);
9721   format %{ "BR$cmp   $op1,$labl" %}
9722   ins_encode( enc_bpr( labl, cmp, op1 ) );
9723   ins_pipe(br_reg);
9724 %}
9725 
9726 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9727   match(If cmp (CmpP op1 null));
9728   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9729   effect(USE labl);
9730 
9731   size(8);
9732   ins_cost(BRANCH_COST);
9733   format %{ "BR$cmp   $op1,$labl" %}
9734   ins_encode( enc_bpr( labl, cmp, op1 ) );
9735   ins_pipe(br_reg);
9736 %}
9737 
9738 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9739   match(If cmp (CmpL op1 zero));
9740   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9741   effect(USE labl);
9742 
9743   size(8);
9744   ins_cost(BRANCH_COST);
9745   format %{ "BR$cmp   $op1,$labl" %}
9746   ins_encode( enc_bpr( labl, cmp, op1 ) );
9747   ins_pipe(br_reg);
9748 %}
9749 
9750 
9751 // ============================================================================
9752 // Long Compare
9753 //
9754 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9755 // is tricky.  The flavor of compare used depends on whether we are testing
9756 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9757 // The GE test is the negated LT test.  The LE test can be had by commuting
9758 // the operands (yielding a GE test) and then negating; negate again for the
9759 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9760 // NE test is negated from that.
9761 
9762 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9763 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9764 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9765 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9766 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9767 // foo match ends up with the wrong leaf.  One fix is to not match both
9768 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9769 // both forms beat the trinary form of long-compare and both are very useful
9770 // on Intel which has so few registers.
9771 
9772 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9773   match(If cmp xcc);
9774   effect(USE labl);
9775 
9776   size(8);
9777   ins_cost(BRANCH_COST);
9778   format %{ "BP$cmp   $xcc,$labl" %}
9779   ins_encode %{
9780     Label* L = $labl$$label;
9781     Assembler::Predict predict_taken =
9782       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9783 
9784     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9785     __ delayed()->nop();
9786   %}
9787   ins_pipe(br_cc);
9788 %}
9789 
9790 // Manifest a CmpL3 result in an integer register.  Very painful.
9791 // This is the test to avoid.
9792 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9793   match(Set dst (CmpL3 src1 src2) );
9794   effect( KILL ccr );
9795   ins_cost(6*DEFAULT_COST);
9796   size(24);
9797   format %{ "CMP    $src1,$src2\t\t! long\n"
9798           "\tBLT,a,pn done\n"
9799           "\tMOV    -1,$dst\t! delay slot\n"
9800           "\tBGT,a,pn done\n"
9801           "\tMOV    1,$dst\t! delay slot\n"
9802           "\tCLR    $dst\n"
9803     "done:"     %}
9804   ins_encode( cmpl_flag(src1,src2,dst) );
9805   ins_pipe(cmpL_reg);
9806 %}
9807 
9808 // Conditional move
9809 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9810   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9811   ins_cost(150);
9812   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9813   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9814   ins_pipe(ialu_reg);
9815 %}
9816 
9817 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9818   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9819   ins_cost(140);
9820   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9821   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9822   ins_pipe(ialu_imm);
9823 %}
9824 
9825 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9826   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9827   ins_cost(150);
9828   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9829   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9830   ins_pipe(ialu_reg);
9831 %}
9832 
9833 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9834   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9835   ins_cost(140);
9836   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9837   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9838   ins_pipe(ialu_imm);
9839 %}
9840 
9841 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9842   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9843   ins_cost(150);
9844   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9845   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9846   ins_pipe(ialu_reg);
9847 %}
9848 
9849 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9850   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9851   ins_cost(150);
9852   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9853   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9854   ins_pipe(ialu_reg);
9855 %}
9856 
9857 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9858   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9859   ins_cost(140);
9860   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9861   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9862   ins_pipe(ialu_imm);
9863 %}
9864 
9865 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9866   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9867   ins_cost(150);
9868   opcode(0x101);
9869   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9870   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9871   ins_pipe(int_conditional_float_move);
9872 %}
9873 
9874 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9875   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9876   ins_cost(150);
9877   opcode(0x102);
9878   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9879   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9880   ins_pipe(int_conditional_float_move);
9881 %}
9882 
9883 // ============================================================================
9884 // Safepoint Instruction
9885 instruct safePoint_poll(iRegP poll) %{
9886   match(SafePoint poll);
9887   effect(USE poll);
9888 
9889   size(4);
9890 #ifdef _LP64
9891   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9892 #else
9893   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9894 #endif
9895   ins_encode %{
9896     __ relocate(relocInfo::poll_type);
9897     __ ld_ptr($poll$$Register, 0, G0);
9898   %}
9899   ins_pipe(loadPollP);
9900 %}
9901 
9902 // ============================================================================
9903 // Call Instructions
9904 // Call Java Static Instruction
9905 instruct CallStaticJavaDirect( method meth ) %{
9906   match(CallStaticJava);
9907   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9908   effect(USE meth);
9909 
9910   size(8);
9911   ins_cost(CALL_COST);
9912   format %{ "CALL,static  ; NOP ==> " %}
9913   ins_encode( Java_Static_Call( meth ), call_epilog );
9914   ins_pipe(simple_call);
9915 %}
9916 
9917 // Call Java Static Instruction (method handle version)
9918 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9919   match(CallStaticJava);
9920   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9921   effect(USE meth, KILL l7_mh_SP_save);
9922 
9923   size(16);
9924   ins_cost(CALL_COST);
9925   format %{ "CALL,static/MethodHandle" %}
9926   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9927   ins_pipe(simple_call);
9928 %}
9929 
9930 // Call Java Dynamic Instruction
9931 instruct CallDynamicJavaDirect( method meth ) %{
9932   match(CallDynamicJava);
9933   effect(USE meth);
9934 
9935   ins_cost(CALL_COST);
9936   format %{ "SET    (empty),R_G5\n\t"
9937             "CALL,dynamic  ; NOP ==> " %}
9938   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9939   ins_pipe(call);
9940 %}
9941 
9942 // Call Runtime Instruction
9943 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9944   match(CallRuntime);
9945   effect(USE meth, KILL l7);
9946   ins_cost(CALL_COST);
9947   format %{ "CALL,runtime" %}
9948   ins_encode( Java_To_Runtime( meth ),
9949               call_epilog, adjust_long_from_native_call );
9950   ins_pipe(simple_call);
9951 %}
9952 
9953 // Call runtime without safepoint - same as CallRuntime
9954 instruct CallLeafDirect(method meth, l7RegP l7) %{
9955   match(CallLeaf);
9956   effect(USE meth, KILL l7);
9957   ins_cost(CALL_COST);
9958   format %{ "CALL,runtime leaf" %}
9959   ins_encode( Java_To_Runtime( meth ),
9960               call_epilog,
9961               adjust_long_from_native_call );
9962   ins_pipe(simple_call);
9963 %}
9964 
9965 // Call runtime without safepoint - same as CallLeaf
9966 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9967   match(CallLeafNoFP);
9968   effect(USE meth, KILL l7);
9969   ins_cost(CALL_COST);
9970   format %{ "CALL,runtime leaf nofp" %}
9971   ins_encode( Java_To_Runtime( meth ),
9972               call_epilog,
9973               adjust_long_from_native_call );
9974   ins_pipe(simple_call);
9975 %}
9976 
9977 // Tail Call; Jump from runtime stub to Java code.
9978 // Also known as an 'interprocedural jump'.
9979 // Target of jump will eventually return to caller.
9980 // TailJump below removes the return address.
9981 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9982   match(TailCall jump_target method_oop );
9983 
9984   ins_cost(CALL_COST);
9985   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9986   ins_encode(form_jmpl(jump_target));
9987   ins_pipe(tail_call);
9988 %}
9989 
9990 
9991 // Return Instruction
9992 instruct Ret() %{
9993   match(Return);
9994 
9995   // The epilogue node did the ret already.
9996   size(0);
9997   format %{ "! return" %}
9998   ins_encode();
9999   ins_pipe(empty);
10000 %}
10001 
10002 
10003 // Tail Jump; remove the return address; jump to target.
10004 // TailCall above leaves the return address around.
10005 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10006 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10007 // "restore" before this instruction (in Epilogue), we need to materialize it
10008 // in %i0.
10009 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10010   match( TailJump jump_target ex_oop );
10011   ins_cost(CALL_COST);
10012   format %{ "! discard R_O7\n\t"
10013             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10014   ins_encode(form_jmpl_set_exception_pc(jump_target));
10015   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10016   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10017   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10018   ins_pipe(tail_call);
10019 %}
10020 
10021 // Create exception oop: created by stack-crawling runtime code.
10022 // Created exception is now available to this handler, and is setup
10023 // just prior to jumping to this handler.  No code emitted.
10024 instruct CreateException( o0RegP ex_oop )
10025 %{
10026   match(Set ex_oop (CreateEx));
10027   ins_cost(0);
10028 
10029   size(0);
10030   // use the following format syntax
10031   format %{ "! exception oop is in R_O0; no code emitted" %}
10032   ins_encode();
10033   ins_pipe(empty);
10034 %}
10035 
10036 
10037 // Rethrow exception:
10038 // The exception oop will come in the first argument position.
10039 // Then JUMP (not call) to the rethrow stub code.
10040 instruct RethrowException()
10041 %{
10042   match(Rethrow);
10043   ins_cost(CALL_COST);
10044 
10045   // use the following format syntax
10046   format %{ "Jmp    rethrow_stub" %}
10047   ins_encode(enc_rethrow);
10048   ins_pipe(tail_call);
10049 %}
10050 
10051 
10052 // Die now
10053 instruct ShouldNotReachHere( )
10054 %{
10055   match(Halt);
10056   ins_cost(CALL_COST);
10057 
10058   size(4);
10059   // Use the following format syntax
10060   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10061   ins_encode( form2_illtrap() );
10062   ins_pipe(tail_call);
10063 %}
10064 
10065 // ============================================================================
10066 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10067 // array for an instance of the superklass.  Set a hidden internal cache on a
10068 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10069 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10070 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10071   match(Set index (PartialSubtypeCheck sub super));
10072   effect( KILL pcc, KILL o7 );
10073   ins_cost(DEFAULT_COST*10);
10074   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10075   ins_encode( enc_PartialSubtypeCheck() );
10076   ins_pipe(partial_subtype_check_pipe);
10077 %}
10078 
10079 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10080   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10081   effect( KILL idx, KILL o7 );
10082   ins_cost(DEFAULT_COST*10);
10083   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10084   ins_encode( enc_PartialSubtypeCheck() );
10085   ins_pipe(partial_subtype_check_pipe);
10086 %}
10087 
10088 
10089 // ============================================================================
10090 // inlined locking and unlocking
10091 
10092 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10093   match(Set pcc (FastLock object box));
10094 
10095   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10096   ins_cost(100);
10097 
10098   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10099   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10100   ins_pipe(long_memory_op);
10101 %}
10102 
10103 
10104 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10105   match(Set pcc (FastUnlock object box));
10106   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10107   ins_cost(100);
10108 
10109   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10110   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10111   ins_pipe(long_memory_op);
10112 %}
10113 
10114 // The encodings are generic.
10115 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10116   predicate(!use_block_zeroing(n->in(2)) );
10117   match(Set dummy (ClearArray cnt base));
10118   effect(TEMP temp, KILL ccr);
10119   ins_cost(300);
10120   format %{ "MOV    $cnt,$temp\n"
10121     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10122     "        BRge   loop\t\t! Clearing loop\n"
10123     "        STX    G0,[$base+$temp]\t! delay slot" %}
10124 
10125   ins_encode %{
10126     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10127     Register nof_bytes_arg    = $cnt$$Register;
10128     Register nof_bytes_tmp    = $temp$$Register;
10129     Register base_pointer_arg = $base$$Register;
10130 
10131     Label loop;
10132     __ mov(nof_bytes_arg, nof_bytes_tmp);
10133 
10134     // Loop and clear, walking backwards through the array.
10135     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10136     __ bind(loop);
10137     __ deccc(nof_bytes_tmp, 8);
10138     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10139     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10140     // %%%% this mini-loop must not cross a cache boundary!
10141   %}
10142   ins_pipe(long_memory_op);
10143 %}
10144 
10145 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10146   predicate(use_block_zeroing(n->in(2)));
10147   match(Set dummy (ClearArray cnt base));
10148   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10149   ins_cost(300);
10150   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10151 
10152   ins_encode %{
10153 
10154     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10155     Register to    = $base$$Register;
10156     Register count = $cnt$$Register;
10157 
10158     Label Ldone;
10159     __ nop(); // Separate short branches
10160     // Use BIS for zeroing (temp is not used).
10161     __ bis_zeroing(to, count, G0, Ldone);
10162     __ bind(Ldone);
10163 
10164   %}
10165   ins_pipe(long_memory_op);
10166 %}
10167 
10168 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10169   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10170   match(Set dummy (ClearArray cnt base));
10171   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10172   ins_cost(300);
10173   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10174 
10175   ins_encode %{
10176 
10177     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10178     Register to    = $base$$Register;
10179     Register count = $cnt$$Register;
10180     Register temp  = $tmp$$Register;
10181 
10182     Label Ldone;
10183     __ nop(); // Separate short branches
10184     // Use BIS for zeroing
10185     __ bis_zeroing(to, count, temp, Ldone);
10186     __ bind(Ldone);
10187 
10188   %}
10189   ins_pipe(long_memory_op);
10190 %}
10191 
10192 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10193                         o7RegI tmp, flagsReg ccr) %{
10194   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10195   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10196   ins_cost(300);
10197   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10198   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10199   ins_pipe(long_memory_op);
10200 %}
10201 
10202 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10203                        o7RegI tmp, flagsReg ccr) %{
10204   match(Set result (StrEquals (Binary str1 str2) cnt));
10205   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10206   ins_cost(300);
10207   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10208   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10209   ins_pipe(long_memory_op);
10210 %}
10211 
10212 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10213                       o7RegI tmp2, flagsReg ccr) %{
10214   match(Set result (AryEq ary1 ary2));
10215   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10216   ins_cost(300);
10217   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10218   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10219   ins_pipe(long_memory_op);
10220 %}
10221 
10222 
10223 //---------- Zeros Count Instructions ------------------------------------------
10224 
10225 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10226   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10227   match(Set dst (CountLeadingZerosI src));
10228   effect(TEMP dst, TEMP tmp, KILL cr);
10229 
10230   // x |= (x >> 1);
10231   // x |= (x >> 2);
10232   // x |= (x >> 4);
10233   // x |= (x >> 8);
10234   // x |= (x >> 16);
10235   // return (WORDBITS - popc(x));
10236   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10237             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10238             "OR      $dst,$tmp,$dst\n\t"
10239             "SRL     $dst,2,$tmp\n\t"
10240             "OR      $dst,$tmp,$dst\n\t"
10241             "SRL     $dst,4,$tmp\n\t"
10242             "OR      $dst,$tmp,$dst\n\t"
10243             "SRL     $dst,8,$tmp\n\t"
10244             "OR      $dst,$tmp,$dst\n\t"
10245             "SRL     $dst,16,$tmp\n\t"
10246             "OR      $dst,$tmp,$dst\n\t"
10247             "POPC    $dst,$dst\n\t"
10248             "MOV     32,$tmp\n\t"
10249             "SUB     $tmp,$dst,$dst" %}
10250   ins_encode %{
10251     Register Rdst = $dst$$Register;
10252     Register Rsrc = $src$$Register;
10253     Register Rtmp = $tmp$$Register;
10254     __ srl(Rsrc, 1,    Rtmp);
10255     __ srl(Rsrc, 0,    Rdst);
10256     __ or3(Rdst, Rtmp, Rdst);
10257     __ srl(Rdst, 2,    Rtmp);
10258     __ or3(Rdst, Rtmp, Rdst);
10259     __ srl(Rdst, 4,    Rtmp);
10260     __ or3(Rdst, Rtmp, Rdst);
10261     __ srl(Rdst, 8,    Rtmp);
10262     __ or3(Rdst, Rtmp, Rdst);
10263     __ srl(Rdst, 16,   Rtmp);
10264     __ or3(Rdst, Rtmp, Rdst);
10265     __ popc(Rdst, Rdst);
10266     __ mov(BitsPerInt, Rtmp);
10267     __ sub(Rtmp, Rdst, Rdst);
10268   %}
10269   ins_pipe(ialu_reg);
10270 %}
10271 
10272 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10273   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10274   match(Set dst (CountLeadingZerosL src));
10275   effect(TEMP dst, TEMP tmp, KILL cr);
10276 
10277   // x |= (x >> 1);
10278   // x |= (x >> 2);
10279   // x |= (x >> 4);
10280   // x |= (x >> 8);
10281   // x |= (x >> 16);
10282   // x |= (x >> 32);
10283   // return (WORDBITS - popc(x));
10284   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10285             "OR      $src,$tmp,$dst\n\t"
10286             "SRLX    $dst,2,$tmp\n\t"
10287             "OR      $dst,$tmp,$dst\n\t"
10288             "SRLX    $dst,4,$tmp\n\t"
10289             "OR      $dst,$tmp,$dst\n\t"
10290             "SRLX    $dst,8,$tmp\n\t"
10291             "OR      $dst,$tmp,$dst\n\t"
10292             "SRLX    $dst,16,$tmp\n\t"
10293             "OR      $dst,$tmp,$dst\n\t"
10294             "SRLX    $dst,32,$tmp\n\t"
10295             "OR      $dst,$tmp,$dst\n\t"
10296             "POPC    $dst,$dst\n\t"
10297             "MOV     64,$tmp\n\t"
10298             "SUB     $tmp,$dst,$dst" %}
10299   ins_encode %{
10300     Register Rdst = $dst$$Register;
10301     Register Rsrc = $src$$Register;
10302     Register Rtmp = $tmp$$Register;
10303     __ srlx(Rsrc, 1,    Rtmp);
10304     __ or3( Rsrc, Rtmp, Rdst);
10305     __ srlx(Rdst, 2,    Rtmp);
10306     __ or3( Rdst, Rtmp, Rdst);
10307     __ srlx(Rdst, 4,    Rtmp);
10308     __ or3( Rdst, Rtmp, Rdst);
10309     __ srlx(Rdst, 8,    Rtmp);
10310     __ or3( Rdst, Rtmp, Rdst);
10311     __ srlx(Rdst, 16,   Rtmp);
10312     __ or3( Rdst, Rtmp, Rdst);
10313     __ srlx(Rdst, 32,   Rtmp);
10314     __ or3( Rdst, Rtmp, Rdst);
10315     __ popc(Rdst, Rdst);
10316     __ mov(BitsPerLong, Rtmp);
10317     __ sub(Rtmp, Rdst, Rdst);
10318   %}
10319   ins_pipe(ialu_reg);
10320 %}
10321 
10322 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10323   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10324   match(Set dst (CountTrailingZerosI src));
10325   effect(TEMP dst, KILL cr);
10326 
10327   // return popc(~x & (x - 1));
10328   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10329             "ANDN    $dst,$src,$dst\n\t"
10330             "SRL     $dst,R_G0,$dst\n\t"
10331             "POPC    $dst,$dst" %}
10332   ins_encode %{
10333     Register Rdst = $dst$$Register;
10334     Register Rsrc = $src$$Register;
10335     __ sub(Rsrc, 1, Rdst);
10336     __ andn(Rdst, Rsrc, Rdst);
10337     __ srl(Rdst, G0, Rdst);
10338     __ popc(Rdst, Rdst);
10339   %}
10340   ins_pipe(ialu_reg);
10341 %}
10342 
10343 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10344   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10345   match(Set dst (CountTrailingZerosL src));
10346   effect(TEMP dst, KILL cr);
10347 
10348   // return popc(~x & (x - 1));
10349   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10350             "ANDN    $dst,$src,$dst\n\t"
10351             "POPC    $dst,$dst" %}
10352   ins_encode %{
10353     Register Rdst = $dst$$Register;
10354     Register Rsrc = $src$$Register;
10355     __ sub(Rsrc, 1, Rdst);
10356     __ andn(Rdst, Rsrc, Rdst);
10357     __ popc(Rdst, Rdst);
10358   %}
10359   ins_pipe(ialu_reg);
10360 %}
10361 
10362 
10363 //---------- Population Count Instructions -------------------------------------
10364 
10365 instruct popCountI(iRegIsafe dst, iRegI src) %{
10366   predicate(UsePopCountInstruction);
10367   match(Set dst (PopCountI src));
10368 
10369   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10370             "POPC   $dst, $dst" %}
10371   ins_encode %{
10372     __ srl($src$$Register, G0, $dst$$Register);
10373     __ popc($dst$$Register, $dst$$Register);
10374   %}
10375   ins_pipe(ialu_reg);
10376 %}
10377 
10378 // Note: Long.bitCount(long) returns an int.
10379 instruct popCountL(iRegIsafe dst, iRegL src) %{
10380   predicate(UsePopCountInstruction);
10381   match(Set dst (PopCountL src));
10382 
10383   format %{ "POPC   $src, $dst" %}
10384   ins_encode %{
10385     __ popc($src$$Register, $dst$$Register);
10386   %}
10387   ins_pipe(ialu_reg);
10388 %}
10389 
10390 
10391 // ============================================================================
10392 //------------Bytes reverse--------------------------------------------------
10393 
10394 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10395   match(Set dst (ReverseBytesI src));
10396 
10397   // Op cost is artificially doubled to make sure that load or store
10398   // instructions are preferred over this one which requires a spill
10399   // onto a stack slot.
10400   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10401   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10402 
10403   ins_encode %{
10404     __ set($src$$disp + STACK_BIAS, O7);
10405     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10406   %}
10407   ins_pipe( iload_mem );
10408 %}
10409 
10410 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10411   match(Set dst (ReverseBytesL src));
10412 
10413   // Op cost is artificially doubled to make sure that load or store
10414   // instructions are preferred over this one which requires a spill
10415   // onto a stack slot.
10416   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10417   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10418 
10419   ins_encode %{
10420     __ set($src$$disp + STACK_BIAS, O7);
10421     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10422   %}
10423   ins_pipe( iload_mem );
10424 %}
10425 
10426 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10427   match(Set dst (ReverseBytesUS src));
10428 
10429   // Op cost is artificially doubled to make sure that load or store
10430   // instructions are preferred over this one which requires a spill
10431   // onto a stack slot.
10432   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10433   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10434 
10435   ins_encode %{
10436     // the value was spilled as an int so bias the load
10437     __ set($src$$disp + STACK_BIAS + 2, O7);
10438     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10439   %}
10440   ins_pipe( iload_mem );
10441 %}
10442 
10443 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10444   match(Set dst (ReverseBytesS src));
10445 
10446   // Op cost is artificially doubled to make sure that load or store
10447   // instructions are preferred over this one which requires a spill
10448   // onto a stack slot.
10449   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10450   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10451 
10452   ins_encode %{
10453     // the value was spilled as an int so bias the load
10454     __ set($src$$disp + STACK_BIAS + 2, O7);
10455     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10456   %}
10457   ins_pipe( iload_mem );
10458 %}
10459 
10460 // Load Integer reversed byte order
10461 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10462   match(Set dst (ReverseBytesI (LoadI src)));
10463 
10464   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10465   size(4);
10466   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10467 
10468   ins_encode %{
10469     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10470   %}
10471   ins_pipe(iload_mem);
10472 %}
10473 
10474 // Load Long - aligned and reversed
10475 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10476   match(Set dst (ReverseBytesL (LoadL src)));
10477 
10478   ins_cost(MEMORY_REF_COST);
10479   size(4);
10480   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10481 
10482   ins_encode %{
10483     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10484   %}
10485   ins_pipe(iload_mem);
10486 %}
10487 
10488 // Load unsigned short / char reversed byte order
10489 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10490   match(Set dst (ReverseBytesUS (LoadUS src)));
10491 
10492   ins_cost(MEMORY_REF_COST);
10493   size(4);
10494   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10495 
10496   ins_encode %{
10497     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10498   %}
10499   ins_pipe(iload_mem);
10500 %}
10501 
10502 // Load short reversed byte order
10503 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10504   match(Set dst (ReverseBytesS (LoadS src)));
10505 
10506   ins_cost(MEMORY_REF_COST);
10507   size(4);
10508   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10509 
10510   ins_encode %{
10511     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10512   %}
10513   ins_pipe(iload_mem);
10514 %}
10515 
10516 // Store Integer reversed byte order
10517 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10518   match(Set dst (StoreI dst (ReverseBytesI src)));
10519 
10520   ins_cost(MEMORY_REF_COST);
10521   size(4);
10522   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10523 
10524   ins_encode %{
10525     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10526   %}
10527   ins_pipe(istore_mem_reg);
10528 %}
10529 
10530 // Store Long reversed byte order
10531 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10532   match(Set dst (StoreL dst (ReverseBytesL src)));
10533 
10534   ins_cost(MEMORY_REF_COST);
10535   size(4);
10536   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10537 
10538   ins_encode %{
10539     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10540   %}
10541   ins_pipe(istore_mem_reg);
10542 %}
10543 
10544 // Store unsighed short/char reversed byte order
10545 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10546   match(Set dst (StoreC dst (ReverseBytesUS src)));
10547 
10548   ins_cost(MEMORY_REF_COST);
10549   size(4);
10550   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10551 
10552   ins_encode %{
10553     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10554   %}
10555   ins_pipe(istore_mem_reg);
10556 %}
10557 
10558 // Store short reversed byte order
10559 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10560   match(Set dst (StoreC dst (ReverseBytesS src)));
10561 
10562   ins_cost(MEMORY_REF_COST);
10563   size(4);
10564   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10565 
10566   ins_encode %{
10567     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10568   %}
10569   ins_pipe(istore_mem_reg);
10570 %}
10571 
10572 // ====================VECTOR INSTRUCTIONS=====================================
10573 
10574 // Load Aligned Packed values into a Double Register
10575 instruct loadV8(regD dst, memory mem) %{
10576   predicate(n->as_LoadVector()->memory_size() == 8);
10577   match(Set dst (LoadVector mem));
10578   ins_cost(MEMORY_REF_COST);
10579   size(4);
10580   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10581   ins_encode %{
10582     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10583   %}
10584   ins_pipe(floadD_mem);
10585 %}
10586 
10587 // Store Vector in Double register to memory
10588 instruct storeV8(memory mem, regD src) %{
10589   predicate(n->as_StoreVector()->memory_size() == 8);
10590   match(Set mem (StoreVector mem src));
10591   ins_cost(MEMORY_REF_COST);
10592   size(4);
10593   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10594   ins_encode %{
10595     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10596   %}
10597   ins_pipe(fstoreD_mem_reg);
10598 %}
10599 
10600 // Store Zero into vector in memory
10601 instruct storeV8B_zero(memory mem, immI0 zero) %{
10602   predicate(n->as_StoreVector()->memory_size() == 8);
10603   match(Set mem (StoreVector mem (ReplicateB zero)));
10604   ins_cost(MEMORY_REF_COST);
10605   size(4);
10606   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10607   ins_encode %{
10608     __ stx(G0, $mem$$Address);
10609   %}
10610   ins_pipe(fstoreD_mem_zero);
10611 %}
10612 
10613 instruct storeV4S_zero(memory mem, immI0 zero) %{
10614   predicate(n->as_StoreVector()->memory_size() == 8);
10615   match(Set mem (StoreVector mem (ReplicateS zero)));
10616   ins_cost(MEMORY_REF_COST);
10617   size(4);
10618   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10619   ins_encode %{
10620     __ stx(G0, $mem$$Address);
10621   %}
10622   ins_pipe(fstoreD_mem_zero);
10623 %}
10624 
10625 instruct storeV2I_zero(memory mem, immI0 zero) %{
10626   predicate(n->as_StoreVector()->memory_size() == 8);
10627   match(Set mem (StoreVector mem (ReplicateI zero)));
10628   ins_cost(MEMORY_REF_COST);
10629   size(4);
10630   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10631   ins_encode %{
10632     __ stx(G0, $mem$$Address);
10633   %}
10634   ins_pipe(fstoreD_mem_zero);
10635 %}
10636 
10637 instruct storeV2F_zero(memory mem, immF0 zero) %{
10638   predicate(n->as_StoreVector()->memory_size() == 8);
10639   match(Set mem (StoreVector mem (ReplicateF zero)));
10640   ins_cost(MEMORY_REF_COST);
10641   size(4);
10642   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10643   ins_encode %{
10644     __ stx(G0, $mem$$Address);
10645   %}
10646   ins_pipe(fstoreD_mem_zero);
10647 %}
10648 
10649 // Replicate scalar to packed byte values into Double register
10650 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10651   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10652   match(Set dst (ReplicateB src));
10653   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10654   format %{ "SLLX  $src,56,$tmp\n\t"
10655             "SRLX  $tmp, 8,$tmp2\n\t"
10656             "OR    $tmp,$tmp2,$tmp\n\t"
10657             "SRLX  $tmp,16,$tmp2\n\t"
10658             "OR    $tmp,$tmp2,$tmp\n\t"
10659             "SRLX  $tmp,32,$tmp2\n\t"
10660             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10661             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10662   ins_encode %{
10663     Register Rsrc = $src$$Register;
10664     Register Rtmp = $tmp$$Register;
10665     Register Rtmp2 = $tmp2$$Register;
10666     __ sllx(Rsrc,    56, Rtmp);
10667     __ srlx(Rtmp,     8, Rtmp2);
10668     __ or3 (Rtmp, Rtmp2, Rtmp);
10669     __ srlx(Rtmp,    16, Rtmp2);
10670     __ or3 (Rtmp, Rtmp2, Rtmp);
10671     __ srlx(Rtmp,    32, Rtmp2);
10672     __ or3 (Rtmp, Rtmp2, Rtmp);
10673     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10674   %}
10675   ins_pipe(ialu_reg);
10676 %}
10677 
10678 // Replicate scalar to packed byte values into Double stack
10679 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10680   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10681   match(Set dst (ReplicateB src));
10682   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10683   format %{ "SLLX  $src,56,$tmp\n\t"
10684             "SRLX  $tmp, 8,$tmp2\n\t"
10685             "OR    $tmp,$tmp2,$tmp\n\t"
10686             "SRLX  $tmp,16,$tmp2\n\t"
10687             "OR    $tmp,$tmp2,$tmp\n\t"
10688             "SRLX  $tmp,32,$tmp2\n\t"
10689             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10690             "STX   $tmp,$dst\t! regL to stkD" %}
10691   ins_encode %{
10692     Register Rsrc = $src$$Register;
10693     Register Rtmp = $tmp$$Register;
10694     Register Rtmp2 = $tmp2$$Register;
10695     __ sllx(Rsrc,    56, Rtmp);
10696     __ srlx(Rtmp,     8, Rtmp2);
10697     __ or3 (Rtmp, Rtmp2, Rtmp);
10698     __ srlx(Rtmp,    16, Rtmp2);
10699     __ or3 (Rtmp, Rtmp2, Rtmp);
10700     __ srlx(Rtmp,    32, Rtmp2);
10701     __ or3 (Rtmp, Rtmp2, Rtmp);
10702     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10703     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10704   %}
10705   ins_pipe(ialu_reg);
10706 %}
10707 
10708 // Replicate scalar constant to packed byte values in Double register
10709 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10710   predicate(n->as_Vector()->length() == 8);
10711   match(Set dst (ReplicateB con));
10712   effect(KILL tmp);
10713   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10714   ins_encode %{
10715     // XXX This is a quick fix for 6833573.
10716     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10717     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10718     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10719   %}
10720   ins_pipe(loadConFD);
10721 %}
10722 
10723 // Replicate scalar to packed char/short values into Double register
10724 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10725   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10726   match(Set dst (ReplicateS src));
10727   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10728   format %{ "SLLX  $src,48,$tmp\n\t"
10729             "SRLX  $tmp,16,$tmp2\n\t"
10730             "OR    $tmp,$tmp2,$tmp\n\t"
10731             "SRLX  $tmp,32,$tmp2\n\t"
10732             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10733             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10734   ins_encode %{
10735     Register Rsrc = $src$$Register;
10736     Register Rtmp = $tmp$$Register;
10737     Register Rtmp2 = $tmp2$$Register;
10738     __ sllx(Rsrc,    48, Rtmp);
10739     __ srlx(Rtmp,    16, Rtmp2);
10740     __ or3 (Rtmp, Rtmp2, Rtmp);
10741     __ srlx(Rtmp,    32, Rtmp2);
10742     __ or3 (Rtmp, Rtmp2, Rtmp);
10743     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10744   %}
10745   ins_pipe(ialu_reg);
10746 %}
10747 
10748 // Replicate scalar to packed char/short values into Double stack
10749 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10750   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10751   match(Set dst (ReplicateS src));
10752   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10753   format %{ "SLLX  $src,48,$tmp\n\t"
10754             "SRLX  $tmp,16,$tmp2\n\t"
10755             "OR    $tmp,$tmp2,$tmp\n\t"
10756             "SRLX  $tmp,32,$tmp2\n\t"
10757             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10758             "STX   $tmp,$dst\t! regL to stkD" %}
10759   ins_encode %{
10760     Register Rsrc = $src$$Register;
10761     Register Rtmp = $tmp$$Register;
10762     Register Rtmp2 = $tmp2$$Register;
10763     __ sllx(Rsrc,    48, Rtmp);
10764     __ srlx(Rtmp,    16, Rtmp2);
10765     __ or3 (Rtmp, Rtmp2, Rtmp);
10766     __ srlx(Rtmp,    32, Rtmp2);
10767     __ or3 (Rtmp, Rtmp2, Rtmp);
10768     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10769     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10770   %}
10771   ins_pipe(ialu_reg);
10772 %}
10773 
10774 // Replicate scalar constant to packed char/short values in Double register
10775 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10776   predicate(n->as_Vector()->length() == 4);
10777   match(Set dst (ReplicateS con));
10778   effect(KILL tmp);
10779   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10780   ins_encode %{
10781     // XXX This is a quick fix for 6833573.
10782     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10783     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10784     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10785   %}
10786   ins_pipe(loadConFD);
10787 %}
10788 
10789 // Replicate scalar to packed int values into Double register
10790 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10791   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10792   match(Set dst (ReplicateI src));
10793   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10794   format %{ "SLLX  $src,32,$tmp\n\t"
10795             "SRLX  $tmp,32,$tmp2\n\t"
10796             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10797             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10798   ins_encode %{
10799     Register Rsrc = $src$$Register;
10800     Register Rtmp = $tmp$$Register;
10801     Register Rtmp2 = $tmp2$$Register;
10802     __ sllx(Rsrc,    32, Rtmp);
10803     __ srlx(Rtmp,    32, Rtmp2);
10804     __ or3 (Rtmp, Rtmp2, Rtmp);
10805     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10806   %}
10807   ins_pipe(ialu_reg);
10808 %}
10809 
10810 // Replicate scalar to packed int values into Double stack
10811 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10812   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10813   match(Set dst (ReplicateI src));
10814   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10815   format %{ "SLLX  $src,32,$tmp\n\t"
10816             "SRLX  $tmp,32,$tmp2\n\t"
10817             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10818             "STX   $tmp,$dst\t! regL to stkD" %}
10819   ins_encode %{
10820     Register Rsrc = $src$$Register;
10821     Register Rtmp = $tmp$$Register;
10822     Register Rtmp2 = $tmp2$$Register;
10823     __ sllx(Rsrc,    32, Rtmp);
10824     __ srlx(Rtmp,    32, Rtmp2);
10825     __ or3 (Rtmp, Rtmp2, Rtmp);
10826     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10827     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10828   %}
10829   ins_pipe(ialu_reg);
10830 %}
10831 
10832 // Replicate scalar zero constant to packed int values in Double register
10833 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10834   predicate(n->as_Vector()->length() == 2);
10835   match(Set dst (ReplicateI con));
10836   effect(KILL tmp);
10837   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10838   ins_encode %{
10839     // XXX This is a quick fix for 6833573.
10840     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10841     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10842     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10843   %}
10844   ins_pipe(loadConFD);
10845 %}
10846 
10847 // Replicate scalar to packed float values into Double stack
10848 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10849   predicate(n->as_Vector()->length() == 2);
10850   match(Set dst (ReplicateF src));
10851   ins_cost(MEMORY_REF_COST*2);
10852   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10853             "STF    $src,$dst.lo" %}
10854   opcode(Assembler::stf_op3);
10855   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10856   ins_pipe(fstoreF_stk_reg);
10857 %}
10858 
10859 // Replicate scalar zero constant to packed float values in Double register
10860 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10861   predicate(n->as_Vector()->length() == 2);
10862   match(Set dst (ReplicateF con));
10863   effect(KILL tmp);
10864   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10865   ins_encode %{
10866     // XXX This is a quick fix for 6833573.
10867     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10868     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10869     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10870   %}
10871   ins_pipe(loadConFD);
10872 %}
10873 
10874 //----------PEEPHOLE RULES-----------------------------------------------------
10875 // These must follow all instruction definitions as they use the names
10876 // defined in the instructions definitions.
10877 //
10878 // peepmatch ( root_instr_name [preceding_instruction]* );
10879 //
10880 // peepconstraint %{
10881 // (instruction_number.operand_name relational_op instruction_number.operand_name
10882 //  [, ...] );
10883 // // instruction numbers are zero-based using left to right order in peepmatch
10884 //
10885 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10886 // // provide an instruction_number.operand_name for each operand that appears
10887 // // in the replacement instruction's match rule
10888 //
10889 // ---------VM FLAGS---------------------------------------------------------
10890 //
10891 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10892 //
10893 // Each peephole rule is given an identifying number starting with zero and
10894 // increasing by one in the order seen by the parser.  An individual peephole
10895 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10896 // on the command-line.
10897 //
10898 // ---------CURRENT LIMITATIONS----------------------------------------------
10899 //
10900 // Only match adjacent instructions in same basic block
10901 // Only equality constraints
10902 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10903 // Only one replacement instruction
10904 //
10905 // ---------EXAMPLE----------------------------------------------------------
10906 //
10907 // // pertinent parts of existing instructions in architecture description
10908 // instruct movI(eRegI dst, eRegI src) %{
10909 //   match(Set dst (CopyI src));
10910 // %}
10911 //
10912 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10913 //   match(Set dst (AddI dst src));
10914 //   effect(KILL cr);
10915 // %}
10916 //
10917 // // Change (inc mov) to lea
10918 // peephole %{
10919 //   // increment preceeded by register-register move
10920 //   peepmatch ( incI_eReg movI );
10921 //   // require that the destination register of the increment
10922 //   // match the destination register of the move
10923 //   peepconstraint ( 0.dst == 1.dst );
10924 //   // construct a replacement instruction that sets
10925 //   // the destination to ( move's source register + one )
10926 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10927 // %}
10928 //
10929 
10930 // // Change load of spilled value to only a spill
10931 // instruct storeI(memory mem, eRegI src) %{
10932 //   match(Set mem (StoreI mem src));
10933 // %}
10934 //
10935 // instruct loadI(eRegI dst, memory mem) %{
10936 //   match(Set dst (LoadI mem));
10937 // %}
10938 //
10939 // peephole %{
10940 //   peepmatch ( loadI storeI );
10941 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10942 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10943 // %}
10944 
10945 //----------SMARTSPILL RULES---------------------------------------------------
10946 // These must follow all instruction definitions as they use the names
10947 // defined in the instructions definitions.
10948 //
10949 // SPARC will probably not have any of these rules due to RISC instruction set.
10950 
10951 //----------PIPELINE-----------------------------------------------------------
10952 // Rules which define the behavior of the target architectures pipeline.