1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class       TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 protected:
 163   // Each class of type is also identified by its base.
 164   const TYPES _base;            // Enum of Types type
 165 
 166   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 167   // ~Type();                   // Use fast deallocation
 168   const Type *hashcons();       // Hash-cons the type
 169 
 170 public:
 171 
 172   inline void* operator new( size_t x ) throw() {
 173     Compile* compile = Compile::current();
 174     compile->set_type_last_size(x);
 175     void *temp = compile->type_arena()->Amalloc_D(x);
 176     compile->set_type_hwm(temp);
 177     return temp;
 178   }
 179   inline void operator delete( void* ptr ) {
 180     Compile* compile = Compile::current();
 181     compile->type_arena()->Afree(ptr,compile->type_last_size());
 182   }
 183 
 184   // Initialize the type system for a particular compilation.
 185   static void Initialize(Compile* compile);
 186 
 187   // Initialize the types shared by all compilations.
 188   static void Initialize_shared(Compile* compile);
 189 
 190   TYPES base() const {
 191     assert(_base > Bad && _base < lastype, "sanity");
 192     return _base;
 193   }
 194 
 195   // Create a new hash-consd type
 196   static const Type *make(enum TYPES);
 197   // Test for equivalence of types
 198   static int cmp( const Type *const t1, const Type *const t2 );
 199   // Test for higher or equal in lattice
 200   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
 201 
 202   // MEET operation; lower in lattice.
 203   const Type *meet( const Type *t ) const;
 204   // WIDEN: 'widens' for Ints and other range types
 205   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 206   // NARROW: complement for widen, used by pessimistic phases
 207   virtual const Type *narrow( const Type *old ) const { return this; }
 208 
 209   // DUAL operation: reflect around lattice centerline.  Used instead of
 210   // join to ensure my lattice is symmetric up and down.
 211   const Type *dual() const { return _dual; }
 212 
 213   // Compute meet dependent on base type
 214   virtual const Type *xmeet( const Type *t ) const;
 215   virtual const Type *xdual() const;    // Compute dual right now.
 216 
 217   // JOIN operation; higher in lattice.  Done by finding the dual of the
 218   // meet of the dual of the 2 inputs.
 219   const Type *join( const Type *t ) const {
 220     return dual()->meet(t->dual())->dual(); }
 221 
 222   // Modified version of JOIN adapted to the needs Node::Value.
 223   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 224   // Currently, it also works around limitations involving interface types.
 225   virtual const Type *filter( const Type *kills ) const;
 226 
 227 #ifdef ASSERT
 228   // One type is interface, the other is oop
 229   virtual bool interface_vs_oop(const Type *t) const;
 230 #endif
 231 
 232   // Returns true if this pointer points at memory which contains a
 233   // compressed oop references.
 234   bool is_ptr_to_narrowoop() const;
 235   bool is_ptr_to_narrowklass() const;
 236 
 237   bool is_ptr_to_boxing_obj() const;
 238 
 239 
 240   // Convenience access
 241   float getf() const;
 242   double getd() const;
 243 
 244   const TypeInt    *is_int() const;
 245   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 246   const TypeLong   *is_long() const;
 247   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 248   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 249   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 250   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 251   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 252   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 253   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 254   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 255   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 256   const TypeVect   *is_vect() const;             // Vector
 257   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 258   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 259   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 260   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 261   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 262   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 263   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 264   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 265   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 266   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 267   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 268   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 269   const TypeInstPtr  *is_instptr() const;        // Instance
 270   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 271   const TypeAryPtr   *is_aryptr() const;         // Array oop
 272 
 273   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 274   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 275   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 276   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 277 
 278   virtual bool      is_finite() const;           // Has a finite value
 279   virtual bool      is_nan()    const;           // Is not a number (NaN)
 280 
 281   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 282   const TypePtr* make_ptr() const;
 283 
 284   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 285   // Asserts if the underlying type is not an oopptr or narrowoop.
 286   const TypeOopPtr* make_oopptr() const;
 287 
 288   // Returns this compressed pointer or the equivalent compressed version
 289   // of this pointer type.
 290   const TypeNarrowOop* make_narrowoop() const;
 291 
 292   // Returns this compressed klass pointer or the equivalent
 293   // compressed version of this pointer type.
 294   const TypeNarrowKlass* make_narrowklass() const;
 295 
 296   // Special test for register pressure heuristic
 297   bool is_floatingpoint() const;        // True if Float or Double base type
 298 
 299   // Do you have memory, directly or through a tuple?
 300   bool has_memory( ) const;
 301 
 302   // TRUE if type is a singleton
 303   virtual bool singleton(void) const;
 304 
 305   // TRUE if type is above the lattice centerline, and is therefore vacuous
 306   virtual bool empty(void) const;
 307 
 308   // Return a hash for this type.  The hash function is public so ConNode
 309   // (constants) can hash on their constant, which is represented by a Type.
 310   virtual int hash() const;
 311 
 312   // Map ideal registers (machine types) to ideal types
 313   static const Type *mreg2type[];
 314 
 315   // Printing, statistics
 316 #ifndef PRODUCT
 317   void         dump_on(outputStream *st) const;
 318   void         dump() const {
 319     dump_on(tty);
 320   }
 321   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 322   static  void dump_stats();
 323 #endif
 324   void typerr(const Type *t) const; // Mixing types error
 325 
 326   // Create basic type
 327   static const Type* get_const_basic_type(BasicType type) {
 328     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 329     return _const_basic_type[type];
 330   }
 331 
 332   // Mapping to the array element's basic type.
 333   BasicType array_element_basic_type() const;
 334 
 335   // Create standard type for a ciType:
 336   static const Type* get_const_type(ciType* type);
 337 
 338   // Create standard zero value:
 339   static const Type* get_zero_type(BasicType type) {
 340     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 341     return _zero_type[type];
 342   }
 343 
 344   // Report if this is a zero value (not top).
 345   bool is_zero_type() const {
 346     BasicType type = basic_type();
 347     if (type == T_VOID || type >= T_CONFLICT)
 348       return false;
 349     else
 350       return (this == _zero_type[type]);
 351   }
 352 
 353   // Convenience common pre-built types.
 354   static const Type *ABIO;
 355   static const Type *BOTTOM;
 356   static const Type *CONTROL;
 357   static const Type *DOUBLE;
 358   static const Type *FLOAT;
 359   static const Type *HALF;
 360   static const Type *MEMORY;
 361   static const Type *MULTI;
 362   static const Type *RETURN_ADDRESS;
 363   static const Type *TOP;
 364 
 365   // Mapping from compiler type to VM BasicType
 366   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 367   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 368   const char* msg() const            { return _type_info[_base].msg; }
 369   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 370   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 371 
 372   // Mapping from CI type system to compiler type:
 373   static const Type* get_typeflow_type(ciType* type);
 374 
 375   static const Type* make_from_constant(ciConstant constant,
 376                                         bool require_constant = false,
 377                                         bool is_autobox_cache = false);
 378 
 379 private:
 380   // support arrays
 381   static const BasicType _basic_type[];
 382   static const Type*        _zero_type[T_CONFLICT+1];
 383   static const Type* _const_basic_type[T_CONFLICT+1];
 384 };
 385 
 386 //------------------------------TypeF------------------------------------------
 387 // Class of Float-Constant Types.
 388 class TypeF : public Type {
 389   TypeF( float f ) : Type(FloatCon), _f(f) {};
 390 public:
 391   virtual bool eq( const Type *t ) const;
 392   virtual int  hash() const;             // Type specific hashing
 393   virtual bool singleton(void) const;    // TRUE if type is a singleton
 394   virtual bool empty(void) const;        // TRUE if type is vacuous
 395 public:
 396   const float _f;               // Float constant
 397 
 398   static const TypeF *make(float f);
 399 
 400   virtual bool        is_finite() const;  // Has a finite value
 401   virtual bool        is_nan()    const;  // Is not a number (NaN)
 402 
 403   virtual const Type *xmeet( const Type *t ) const;
 404   virtual const Type *xdual() const;    // Compute dual right now.
 405   // Convenience common pre-built types.
 406   static const TypeF *ZERO; // positive zero only
 407   static const TypeF *ONE;
 408 #ifndef PRODUCT
 409   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 410 #endif
 411 };
 412 
 413 //------------------------------TypeD------------------------------------------
 414 // Class of Double-Constant Types.
 415 class TypeD : public Type {
 416   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 417 public:
 418   virtual bool eq( const Type *t ) const;
 419   virtual int  hash() const;             // Type specific hashing
 420   virtual bool singleton(void) const;    // TRUE if type is a singleton
 421   virtual bool empty(void) const;        // TRUE if type is vacuous
 422 public:
 423   const double _d;              // Double constant
 424 
 425   static const TypeD *make(double d);
 426 
 427   virtual bool        is_finite() const;  // Has a finite value
 428   virtual bool        is_nan()    const;  // Is not a number (NaN)
 429 
 430   virtual const Type *xmeet( const Type *t ) const;
 431   virtual const Type *xdual() const;    // Compute dual right now.
 432   // Convenience common pre-built types.
 433   static const TypeD *ZERO; // positive zero only
 434   static const TypeD *ONE;
 435 #ifndef PRODUCT
 436   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 437 #endif
 438 };
 439 
 440 //------------------------------TypeInt----------------------------------------
 441 // Class of integer ranges, the set of integers between a lower bound and an
 442 // upper bound, inclusive.
 443 class TypeInt : public Type {
 444   TypeInt( jint lo, jint hi, int w );
 445 public:
 446   virtual bool eq( const Type *t ) const;
 447   virtual int  hash() const;             // Type specific hashing
 448   virtual bool singleton(void) const;    // TRUE if type is a singleton
 449   virtual bool empty(void) const;        // TRUE if type is vacuous
 450 public:
 451   const jint _lo, _hi;          // Lower bound, upper bound
 452   const short _widen;           // Limit on times we widen this sucker
 453 
 454   static const TypeInt *make(jint lo);
 455   // must always specify w
 456   static const TypeInt *make(jint lo, jint hi, int w);
 457 
 458   // Check for single integer
 459   int is_con() const { return _lo==_hi; }
 460   bool is_con(int i) const { return is_con() && _lo == i; }
 461   jint get_con() const { assert( is_con(), "" );  return _lo; }
 462 
 463   virtual bool        is_finite() const;  // Has a finite value
 464 
 465   virtual const Type *xmeet( const Type *t ) const;
 466   virtual const Type *xdual() const;    // Compute dual right now.
 467   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 468   virtual const Type *narrow( const Type *t ) const;
 469   // Do not kill _widen bits.
 470   virtual const Type *filter( const Type *kills ) const;
 471   // Convenience common pre-built types.
 472   static const TypeInt *MINUS_1;
 473   static const TypeInt *ZERO;
 474   static const TypeInt *ONE;
 475   static const TypeInt *BOOL;
 476   static const TypeInt *CC;
 477   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 478   static const TypeInt *CC_GT;  // [1]   == ONE
 479   static const TypeInt *CC_EQ;  // [0]   == ZERO
 480   static const TypeInt *CC_LE;  // [-1,0]
 481   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 482   static const TypeInt *BYTE;
 483   static const TypeInt *UBYTE;
 484   static const TypeInt *CHAR;
 485   static const TypeInt *SHORT;
 486   static const TypeInt *POS;
 487   static const TypeInt *POS1;
 488   static const TypeInt *INT;
 489   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 490 #ifndef PRODUCT
 491   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 492 #endif
 493 };
 494 
 495 
 496 //------------------------------TypeLong---------------------------------------
 497 // Class of long integer ranges, the set of integers between a lower bound and
 498 // an upper bound, inclusive.
 499 class TypeLong : public Type {
 500   TypeLong( jlong lo, jlong hi, int w );
 501 public:
 502   virtual bool eq( const Type *t ) const;
 503   virtual int  hash() const;             // Type specific hashing
 504   virtual bool singleton(void) const;    // TRUE if type is a singleton
 505   virtual bool empty(void) const;        // TRUE if type is vacuous
 506 public:
 507   const jlong _lo, _hi;         // Lower bound, upper bound
 508   const short _widen;           // Limit on times we widen this sucker
 509 
 510   static const TypeLong *make(jlong lo);
 511   // must always specify w
 512   static const TypeLong *make(jlong lo, jlong hi, int w);
 513 
 514   // Check for single integer
 515   int is_con() const { return _lo==_hi; }
 516   bool is_con(int i) const { return is_con() && _lo == i; }
 517   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 518 
 519   virtual bool        is_finite() const;  // Has a finite value
 520 
 521   virtual const Type *xmeet( const Type *t ) const;
 522   virtual const Type *xdual() const;    // Compute dual right now.
 523   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 524   virtual const Type *narrow( const Type *t ) const;
 525   // Do not kill _widen bits.
 526   virtual const Type *filter( const Type *kills ) const;
 527   // Convenience common pre-built types.
 528   static const TypeLong *MINUS_1;
 529   static const TypeLong *ZERO;
 530   static const TypeLong *ONE;
 531   static const TypeLong *POS;
 532   static const TypeLong *LONG;
 533   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 534   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 535 #ifndef PRODUCT
 536   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 537 #endif
 538 };
 539 
 540 //------------------------------TypeTuple--------------------------------------
 541 // Class of Tuple Types, essentially type collections for function signatures
 542 // and class layouts.  It happens to also be a fast cache for the HotSpot
 543 // signature types.
 544 class TypeTuple : public Type {
 545   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 546 public:
 547   virtual bool eq( const Type *t ) const;
 548   virtual int  hash() const;             // Type specific hashing
 549   virtual bool singleton(void) const;    // TRUE if type is a singleton
 550   virtual bool empty(void) const;        // TRUE if type is vacuous
 551 
 552 public:
 553   const uint          _cnt;              // Count of fields
 554   const Type ** const _fields;           // Array of field types
 555 
 556   // Accessors:
 557   uint cnt() const { return _cnt; }
 558   const Type* field_at(uint i) const {
 559     assert(i < _cnt, "oob");
 560     return _fields[i];
 561   }
 562   void set_field_at(uint i, const Type* t) {
 563     assert(i < _cnt, "oob");
 564     _fields[i] = t;
 565   }
 566 
 567   static const TypeTuple *make( uint cnt, const Type **fields );
 568   static const TypeTuple *make_range(ciSignature *sig);
 569   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 570 
 571   // Subroutine call type with space allocated for argument types
 572   static const Type **fields( uint arg_cnt );
 573 
 574   virtual const Type *xmeet( const Type *t ) const;
 575   virtual const Type *xdual() const;    // Compute dual right now.
 576   // Convenience common pre-built types.
 577   static const TypeTuple *IFBOTH;
 578   static const TypeTuple *IFFALSE;
 579   static const TypeTuple *IFTRUE;
 580   static const TypeTuple *IFNEITHER;
 581   static const TypeTuple *LOOPBODY;
 582   static const TypeTuple *MEMBAR;
 583   static const TypeTuple *STORECONDITIONAL;
 584   static const TypeTuple *START_I2C;
 585   static const TypeTuple *INT_PAIR;
 586   static const TypeTuple *LONG_PAIR;
 587   static const TypeTuple *INT_CC_PAIR;
 588 #ifndef PRODUCT
 589   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 590 #endif
 591 };
 592 
 593 //------------------------------TypeAry----------------------------------------
 594 // Class of Array Types
 595 class TypeAry : public Type {
 596   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 597       _elem(elem), _size(size), _stable(stable) {}
 598 public:
 599   virtual bool eq( const Type *t ) const;
 600   virtual int  hash() const;             // Type specific hashing
 601   virtual bool singleton(void) const;    // TRUE if type is a singleton
 602   virtual bool empty(void) const;        // TRUE if type is vacuous
 603 
 604 private:
 605   const Type *_elem;            // Element type of array
 606   const TypeInt *_size;         // Elements in array
 607   const bool _stable;           // Are elements @Stable?
 608   friend class TypeAryPtr;
 609 
 610 public:
 611   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 612 
 613   virtual const Type *xmeet( const Type *t ) const;
 614   virtual const Type *xdual() const;    // Compute dual right now.
 615   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 616 #ifdef ASSERT
 617   // One type is interface, the other is oop
 618   virtual bool interface_vs_oop(const Type *t) const;
 619 #endif
 620 #ifndef PRODUCT
 621   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 622 #endif
 623 };
 624 
 625 //------------------------------TypeVect---------------------------------------
 626 // Class of Vector Types
 627 class TypeVect : public Type {
 628   const Type*   _elem;  // Vector's element type
 629   const uint  _length;  // Elements in vector (power of 2)
 630 
 631 protected:
 632   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 633     _elem(elem), _length(length) {}
 634 
 635 public:
 636   const Type* element_type() const { return _elem; }
 637   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 638   uint length() const { return _length; }
 639   uint length_in_bytes() const {
 640    return _length * type2aelembytes(element_basic_type());
 641   }
 642 
 643   virtual bool eq(const Type *t) const;
 644   virtual int  hash() const;             // Type specific hashing
 645   virtual bool singleton(void) const;    // TRUE if type is a singleton
 646   virtual bool empty(void) const;        // TRUE if type is vacuous
 647 
 648   static const TypeVect *make(const BasicType elem_bt, uint length) {
 649     // Use bottom primitive type.
 650     return make(get_const_basic_type(elem_bt), length);
 651   }
 652   // Used directly by Replicate nodes to construct singleton vector.
 653   static const TypeVect *make(const Type* elem, uint length);
 654 
 655   virtual const Type *xmeet( const Type *t) const;
 656   virtual const Type *xdual() const;     // Compute dual right now.
 657 
 658   static const TypeVect *VECTS;
 659   static const TypeVect *VECTD;
 660   static const TypeVect *VECTX;
 661   static const TypeVect *VECTY;
 662 
 663 #ifndef PRODUCT
 664   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 665 #endif
 666 };
 667 
 668 class TypeVectS : public TypeVect {
 669   friend class TypeVect;
 670   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 671 };
 672 
 673 class TypeVectD : public TypeVect {
 674   friend class TypeVect;
 675   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 676 };
 677 
 678 class TypeVectX : public TypeVect {
 679   friend class TypeVect;
 680   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 681 };
 682 
 683 class TypeVectY : public TypeVect {
 684   friend class TypeVect;
 685   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 686 };
 687 
 688 //------------------------------TypePtr----------------------------------------
 689 // Class of machine Pointer Types: raw data, instances or arrays.
 690 // If the _base enum is AnyPtr, then this refers to all of the above.
 691 // Otherwise the _base will indicate which subset of pointers is affected,
 692 // and the class will be inherited from.
 693 class TypePtr : public Type {
 694   friend class TypeNarrowPtr;
 695 public:
 696   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 697 protected:
 698   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 699   virtual bool eq( const Type *t ) const;
 700   virtual int  hash() const;             // Type specific hashing
 701   static const PTR ptr_meet[lastPTR][lastPTR];
 702   static const PTR ptr_dual[lastPTR];
 703   static const char * const ptr_msg[lastPTR];
 704 
 705 public:
 706   const int _offset;            // Offset into oop, with TOP & BOT
 707   const PTR _ptr;               // Pointer equivalence class
 708 
 709   const int offset() const { return _offset; }
 710   const PTR ptr()    const { return _ptr; }
 711 
 712   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 713 
 714   // Return a 'ptr' version of this type
 715   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 716 
 717   virtual intptr_t get_con() const;
 718 
 719   int xadd_offset( intptr_t offset ) const;
 720   virtual const TypePtr *add_offset( intptr_t offset ) const;
 721 
 722   virtual bool singleton(void) const;    // TRUE if type is a singleton
 723   virtual bool empty(void) const;        // TRUE if type is vacuous
 724   virtual const Type *xmeet( const Type *t ) const;
 725   int meet_offset( int offset ) const;
 726   int dual_offset( ) const;
 727   virtual const Type *xdual() const;    // Compute dual right now.
 728 
 729   // meet, dual and join over pointer equivalence sets
 730   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 731   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 732 
 733   // This is textually confusing unless one recalls that
 734   // join(t) == dual()->meet(t->dual())->dual().
 735   PTR join_ptr( const PTR in_ptr ) const {
 736     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 737   }
 738 
 739   // Tests for relation to centerline of type lattice:
 740   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 741   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 742   // Convenience common pre-built types.
 743   static const TypePtr *NULL_PTR;
 744   static const TypePtr *NOTNULL;
 745   static const TypePtr *BOTTOM;
 746 #ifndef PRODUCT
 747   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 748 #endif
 749 };
 750 
 751 //------------------------------TypeRawPtr-------------------------------------
 752 // Class of raw pointers, pointers to things other than Oops.  Examples
 753 // include the stack pointer, top of heap, card-marking area, handles, etc.
 754 class TypeRawPtr : public TypePtr {
 755 protected:
 756   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 757 public:
 758   virtual bool eq( const Type *t ) const;
 759   virtual int  hash() const;     // Type specific hashing
 760 
 761   const address _bits;          // Constant value, if applicable
 762 
 763   static const TypeRawPtr *make( PTR ptr );
 764   static const TypeRawPtr *make( address bits );
 765 
 766   // Return a 'ptr' version of this type
 767   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 768 
 769   virtual intptr_t get_con() const;
 770 
 771   virtual const TypePtr *add_offset( intptr_t offset ) const;
 772 
 773   virtual const Type *xmeet( const Type *t ) const;
 774   virtual const Type *xdual() const;    // Compute dual right now.
 775   // Convenience common pre-built types.
 776   static const TypeRawPtr *BOTTOM;
 777   static const TypeRawPtr *NOTNULL;
 778 #ifndef PRODUCT
 779   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 780 #endif
 781 };
 782 
 783 //------------------------------TypeOopPtr-------------------------------------
 784 // Some kind of oop (Java pointer), either klass or instance or array.
 785 class TypeOopPtr : public TypePtr {
 786 protected:
 787   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 788 public:
 789   virtual bool eq( const Type *t ) const;
 790   virtual int  hash() const;             // Type specific hashing
 791   virtual bool singleton(void) const;    // TRUE if type is a singleton
 792   enum {
 793    InstanceTop = -1,   // undefined instance
 794    InstanceBot = 0     // any possible instance
 795   };
 796 protected:
 797 
 798   // Oop is NULL, unless this is a constant oop.
 799   ciObject*     _const_oop;   // Constant oop
 800   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 801   ciKlass*      _klass;       // Klass object
 802   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 803   bool          _klass_is_exact;
 804   bool          _is_ptr_to_narrowoop;
 805   bool          _is_ptr_to_narrowklass;
 806   bool          _is_ptr_to_boxed_value;
 807 
 808   // If not InstanceTop or InstanceBot, indicates that this is
 809   // a particular instance of this type which is distinct.
 810   // This is the the node index of the allocation node creating this instance.
 811   int           _instance_id;
 812 
 813   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 814 
 815   int dual_instance_id() const;
 816   int meet_instance_id(int uid) const;
 817 
 818 public:
 819   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 820   // Respects UseUniqueSubclasses.
 821   // If the klass is final, the resulting type will be exact.
 822   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 823     return make_from_klass_common(klass, true, false);
 824   }
 825   // Same as before, but will produce an exact type, even if
 826   // the klass is not final, as long as it has exactly one implementation.
 827   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 828     return make_from_klass_common(klass, true, true);
 829   }
 830   // Same as before, but does not respects UseUniqueSubclasses.
 831   // Use this only for creating array element types.
 832   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 833     return make_from_klass_common(klass, false, false);
 834   }
 835   // Creates a singleton type given an object.
 836   // If the object cannot be rendered as a constant,
 837   // may return a non-singleton type.
 838   // If require_constant, produce a NULL if a singleton is not possible.
 839   static const TypeOopPtr* make_from_constant(ciObject* o,
 840                                               bool require_constant = false,
 841                                               bool not_null_elements = false);
 842 
 843   // Make a generic (unclassed) pointer to an oop.
 844   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
 845 
 846   ciObject* const_oop()    const { return _const_oop; }
 847   virtual ciKlass* klass() const { return _klass;     }
 848   bool klass_is_exact()    const { return _klass_is_exact; }
 849 
 850   // Returns true if this pointer points at memory which contains a
 851   // compressed oop references.
 852   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 853   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 854   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
 855   bool is_known_instance()       const { return _instance_id > 0; }
 856   int  instance_id()             const { return _instance_id; }
 857   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 858 
 859   virtual intptr_t get_con() const;
 860 
 861   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 862 
 863   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 864 
 865   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 866 
 867   // corresponding pointer to klass, for a given instance
 868   const TypeKlassPtr* as_klass_type() const;
 869 
 870   virtual const TypePtr *add_offset( intptr_t offset ) const;
 871 
 872   virtual const Type *xmeet( const Type *t ) const;
 873   virtual const Type *xdual() const;    // Compute dual right now.
 874 
 875   // Do not allow interface-vs.-noninterface joins to collapse to top.
 876   virtual const Type *filter( const Type *kills ) const;
 877 
 878   // Convenience common pre-built type.
 879   static const TypeOopPtr *BOTTOM;
 880 #ifndef PRODUCT
 881   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 882 #endif
 883 };
 884 
 885 //------------------------------TypeInstPtr------------------------------------
 886 // Class of Java object pointers, pointing either to non-array Java instances
 887 // or to a Klass* (including array klasses).
 888 class TypeInstPtr : public TypeOopPtr {
 889   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 890   virtual bool eq( const Type *t ) const;
 891   virtual int  hash() const;             // Type specific hashing
 892 
 893   ciSymbol*  _name;        // class name
 894 
 895  public:
 896   ciSymbol* name()         const { return _name; }
 897 
 898   bool  is_loaded() const { return _klass->is_loaded(); }
 899 
 900   // Make a pointer to a constant oop.
 901   static const TypeInstPtr *make(ciObject* o) {
 902     return make(TypePtr::Constant, o->klass(), true, o, 0);
 903   }
 904   // Make a pointer to a constant oop with offset.
 905   static const TypeInstPtr *make(ciObject* o, int offset) {
 906     return make(TypePtr::Constant, o->klass(), true, o, offset);
 907   }
 908 
 909   // Make a pointer to some value of type klass.
 910   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
 911     return make(ptr, klass, false, NULL, 0);
 912   }
 913 
 914   // Make a pointer to some non-polymorphic value of exactly type klass.
 915   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
 916     return make(ptr, klass, true, NULL, 0);
 917   }
 918 
 919   // Make a pointer to some value of type klass with offset.
 920   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
 921     return make(ptr, klass, false, NULL, offset);
 922   }
 923 
 924   // Make a pointer to an oop.
 925   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
 926 
 927   /** Create constant type for a constant boxed value */
 928   const Type* get_const_boxed_value() const;
 929 
 930   // If this is a java.lang.Class constant, return the type for it or NULL.
 931   // Pass to Type::get_const_type to turn it to a type, which will usually
 932   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
 933   ciType* java_mirror_type() const;
 934 
 935   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 936 
 937   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 938 
 939   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 940 
 941   virtual const TypePtr *add_offset( intptr_t offset ) const;
 942 
 943   virtual const Type *xmeet( const Type *t ) const;
 944   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
 945   virtual const Type *xdual() const;    // Compute dual right now.
 946 
 947   // Convenience common pre-built types.
 948   static const TypeInstPtr *NOTNULL;
 949   static const TypeInstPtr *BOTTOM;
 950   static const TypeInstPtr *MIRROR;
 951   static const TypeInstPtr *MARK;
 952   static const TypeInstPtr *KLASS;
 953 #ifndef PRODUCT
 954   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 955 #endif
 956 };
 957 
 958 //------------------------------TypeAryPtr-------------------------------------
 959 // Class of Java array pointers
 960 class TypeAryPtr : public TypeOopPtr {
 961   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
 962               int offset, int instance_id, bool is_autobox_cache )
 963   : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id),
 964     _ary(ary),
 965     _is_autobox_cache(is_autobox_cache)
 966  {
 967 #ifdef ASSERT
 968     if (k != NULL) {
 969       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
 970       ciKlass* ck = compute_klass(true);
 971       if (k != ck) {
 972         this->dump(); tty->cr();
 973         tty->print(" k: ");
 974         k->print(); tty->cr();
 975         tty->print("ck: ");
 976         if (ck != NULL) ck->print();
 977         else tty->print("<NULL>");
 978         tty->cr();
 979         assert(false, "unexpected TypeAryPtr::_klass");
 980       }
 981     }
 982 #endif
 983   }
 984   virtual bool eq( const Type *t ) const;
 985   virtual int hash() const;     // Type specific hashing
 986   const TypeAry *_ary;          // Array we point into
 987   const bool     _is_autobox_cache;
 988 
 989   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
 990 
 991 public:
 992   // Accessors
 993   ciKlass* klass() const;
 994   const TypeAry* ary() const  { return _ary; }
 995   const Type*    elem() const { return _ary->_elem; }
 996   const TypeInt* size() const { return _ary->_size; }
 997   bool      is_stable() const { return _ary->_stable; }
 998 
 999   bool is_autobox_cache() const { return _is_autobox_cache; }
1000 
1001   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
1002   // Constant pointer to array
1003   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, bool is_autobox_cache = false);
1004 
1005   // Return a 'ptr' version of this type
1006   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1007 
1008   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1009 
1010   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1011 
1012   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1013   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1014 
1015   virtual bool empty(void) const;        // TRUE if type is vacuous
1016   virtual const TypePtr *add_offset( intptr_t offset ) const;
1017 
1018   virtual const Type *xmeet( const Type *t ) const;
1019   virtual const Type *xdual() const;    // Compute dual right now.
1020 
1021   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1022   int stable_dimension() const;
1023 
1024   // Convenience common pre-built types.
1025   static const TypeAryPtr *RANGE;
1026   static const TypeAryPtr *OOPS;
1027   static const TypeAryPtr *NARROWOOPS;
1028   static const TypeAryPtr *BYTES;
1029   static const TypeAryPtr *SHORTS;
1030   static const TypeAryPtr *CHARS;
1031   static const TypeAryPtr *INTS;
1032   static const TypeAryPtr *LONGS;
1033   static const TypeAryPtr *FLOATS;
1034   static const TypeAryPtr *DOUBLES;
1035   // selects one of the above:
1036   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1037     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1038     return _array_body_type[elem];
1039   }
1040   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1041   // sharpen the type of an int which is used as an array size
1042 #ifdef ASSERT
1043   // One type is interface, the other is oop
1044   virtual bool interface_vs_oop(const Type *t) const;
1045 #endif
1046 #ifndef PRODUCT
1047   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1048 #endif
1049 };
1050 
1051 //------------------------------TypeMetadataPtr-------------------------------------
1052 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1053 class TypeMetadataPtr : public TypePtr {
1054 protected:
1055   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1056 public:
1057   virtual bool eq( const Type *t ) const;
1058   virtual int  hash() const;             // Type specific hashing
1059   virtual bool singleton(void) const;    // TRUE if type is a singleton
1060 
1061 private:
1062   ciMetadata*   _metadata;
1063 
1064 public:
1065   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1066 
1067   static const TypeMetadataPtr* make(ciMethod* m);
1068   static const TypeMetadataPtr* make(ciMethodData* m);
1069 
1070   ciMetadata* metadata() const { return _metadata; }
1071 
1072   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1073 
1074   virtual const TypePtr *add_offset( intptr_t offset ) const;
1075 
1076   virtual const Type *xmeet( const Type *t ) const;
1077   virtual const Type *xdual() const;    // Compute dual right now.
1078 
1079   virtual intptr_t get_con() const;
1080 
1081   // Do not allow interface-vs.-noninterface joins to collapse to top.
1082   virtual const Type *filter( const Type *kills ) const;
1083 
1084   // Convenience common pre-built types.
1085   static const TypeMetadataPtr *BOTTOM;
1086 
1087 #ifndef PRODUCT
1088   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1089 #endif
1090 };
1091 
1092 //------------------------------TypeKlassPtr-----------------------------------
1093 // Class of Java Klass pointers
1094 class TypeKlassPtr : public TypePtr {
1095   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1096 
1097  public:
1098   virtual bool eq( const Type *t ) const;
1099   virtual int hash() const;             // Type specific hashing
1100   virtual bool singleton(void) const;    // TRUE if type is a singleton
1101  private:
1102 
1103   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1104 
1105   ciKlass* _klass;
1106 
1107   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1108   bool          _klass_is_exact;
1109 
1110 public:
1111   ciSymbol* name()  const { return klass()->name(); }
1112 
1113   ciKlass* klass() const { return  _klass; }
1114   bool klass_is_exact()    const { return _klass_is_exact; }
1115 
1116   bool  is_loaded() const { return klass()->is_loaded(); }
1117 
1118   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1119   // Respects UseUniqueSubclasses.
1120   // If the klass is final, the resulting type will be exact.
1121   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1122     return make_from_klass_common(klass, true, false);
1123   }
1124   // Same as before, but will produce an exact type, even if
1125   // the klass is not final, as long as it has exactly one implementation.
1126   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1127     return make_from_klass_common(klass, true, true);
1128   }
1129   // Same as before, but does not respects UseUniqueSubclasses.
1130   // Use this only for creating array element types.
1131   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1132     return make_from_klass_common(klass, false, false);
1133   }
1134 
1135   // Make a generic (unclassed) pointer to metadata.
1136   static const TypeKlassPtr* make(PTR ptr, int offset);
1137 
1138   // ptr to klass 'k'
1139   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1140   // ptr to klass 'k' with offset
1141   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1142   // ptr to klass 'k' or sub-klass
1143   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1144 
1145   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1146 
1147   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1148 
1149   // corresponding pointer to instance, for a given class
1150   const TypeOopPtr* as_instance_type() const;
1151 
1152   virtual const TypePtr *add_offset( intptr_t offset ) const;
1153   virtual const Type    *xmeet( const Type *t ) const;
1154   virtual const Type    *xdual() const;      // Compute dual right now.
1155 
1156   virtual intptr_t get_con() const;
1157 
1158   // Convenience common pre-built types.
1159   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1160   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1161 #ifndef PRODUCT
1162   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1163 #endif
1164 };
1165 
1166 class TypeNarrowPtr : public Type {
1167 protected:
1168   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1169 
1170   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1171                                                   Type(t) {
1172     assert(ptrtype->offset() == 0 ||
1173            ptrtype->offset() == OffsetBot ||
1174            ptrtype->offset() == OffsetTop, "no real offsets");
1175   }
1176 
1177   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1178   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1179   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1180   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1181 public:
1182   virtual bool eq( const Type *t ) const;
1183   virtual int  hash() const;             // Type specific hashing
1184   virtual bool singleton(void) const;    // TRUE if type is a singleton
1185 
1186   virtual const Type *xmeet( const Type *t ) const;
1187   virtual const Type *xdual() const;    // Compute dual right now.
1188 
1189   virtual intptr_t get_con() const;
1190 
1191   // Do not allow interface-vs.-noninterface joins to collapse to top.
1192   virtual const Type *filter( const Type *kills ) const;
1193 
1194   virtual bool empty(void) const;        // TRUE if type is vacuous
1195 
1196   // returns the equivalent ptr type for this compressed pointer
1197   const TypePtr *get_ptrtype() const {
1198     return _ptrtype;
1199   }
1200 
1201 #ifndef PRODUCT
1202   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1203 #endif
1204 };
1205 
1206 //------------------------------TypeNarrowOop----------------------------------
1207 // A compressed reference to some kind of Oop.  This type wraps around
1208 // a preexisting TypeOopPtr and forwards most of it's operations to
1209 // the underlying type.  It's only real purpose is to track the
1210 // oopness of the compressed oop value when we expose the conversion
1211 // between the normal and the compressed form.
1212 class TypeNarrowOop : public TypeNarrowPtr {
1213 protected:
1214   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1215   }
1216 
1217   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1218     return t->isa_narrowoop();
1219   }
1220 
1221   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1222     return t->is_narrowoop();
1223   }
1224 
1225   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1226     return new TypeNarrowOop(t);
1227   }
1228 
1229   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1230     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1231   }
1232 
1233 public:
1234 
1235   static const TypeNarrowOop *make( const TypePtr* type);
1236 
1237   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1238     return make(TypeOopPtr::make_from_constant(con, require_constant));
1239   }
1240 
1241   static const TypeNarrowOop *BOTTOM;
1242   static const TypeNarrowOop *NULL_PTR;
1243 
1244 #ifndef PRODUCT
1245   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1246 #endif
1247 };
1248 
1249 //------------------------------TypeNarrowKlass----------------------------------
1250 // A compressed reference to klass pointer.  This type wraps around a
1251 // preexisting TypeKlassPtr and forwards most of it's operations to
1252 // the underlying type.
1253 class TypeNarrowKlass : public TypeNarrowPtr {
1254 protected:
1255   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1256   }
1257 
1258   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1259     return t->isa_narrowklass();
1260   }
1261 
1262   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1263     return t->is_narrowklass();
1264   }
1265 
1266   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1267     return new TypeNarrowKlass(t);
1268   }
1269 
1270   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1271     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1272   }
1273 
1274 public:
1275   static const TypeNarrowKlass *make( const TypePtr* type);
1276 
1277   // static const TypeNarrowKlass *BOTTOM;
1278   static const TypeNarrowKlass *NULL_PTR;
1279 
1280 #ifndef PRODUCT
1281   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1282 #endif
1283 };
1284 
1285 //------------------------------TypeFunc---------------------------------------
1286 // Class of Array Types
1287 class TypeFunc : public Type {
1288   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1289   virtual bool eq( const Type *t ) const;
1290   virtual int  hash() const;             // Type specific hashing
1291   virtual bool singleton(void) const;    // TRUE if type is a singleton
1292   virtual bool empty(void) const;        // TRUE if type is vacuous
1293 public:
1294   // Constants are shared among ADLC and VM
1295   enum { Control    = AdlcVMDeps::Control,
1296          I_O        = AdlcVMDeps::I_O,
1297          Memory     = AdlcVMDeps::Memory,
1298          FramePtr   = AdlcVMDeps::FramePtr,
1299          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1300          Parms      = AdlcVMDeps::Parms
1301   };
1302 
1303   const TypeTuple* const _domain;     // Domain of inputs
1304   const TypeTuple* const _range;      // Range of results
1305 
1306   // Accessors:
1307   const TypeTuple* domain() const { return _domain; }
1308   const TypeTuple* range()  const { return _range; }
1309 
1310   static const TypeFunc *make(ciMethod* method);
1311   static const TypeFunc *make(ciSignature signature, const Type* extra);
1312   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1313 
1314   virtual const Type *xmeet( const Type *t ) const;
1315   virtual const Type *xdual() const;    // Compute dual right now.
1316 
1317   BasicType return_type() const;
1318 
1319 #ifndef PRODUCT
1320   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1321 #endif
1322   // Convenience common pre-built types.
1323 };
1324 
1325 //------------------------------accessors--------------------------------------
1326 inline bool Type::is_ptr_to_narrowoop() const {
1327 #ifdef _LP64
1328   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1329 #else
1330   return false;
1331 #endif
1332 }
1333 
1334 inline bool Type::is_ptr_to_narrowklass() const {
1335 #ifdef _LP64
1336   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1337 #else
1338   return false;
1339 #endif
1340 }
1341 
1342 inline float Type::getf() const {
1343   assert( _base == FloatCon, "Not a FloatCon" );
1344   return ((TypeF*)this)->_f;
1345 }
1346 
1347 inline double Type::getd() const {
1348   assert( _base == DoubleCon, "Not a DoubleCon" );
1349   return ((TypeD*)this)->_d;
1350 }
1351 
1352 inline const TypeInt *Type::is_int() const {
1353   assert( _base == Int, "Not an Int" );
1354   return (TypeInt*)this;
1355 }
1356 
1357 inline const TypeInt *Type::isa_int() const {
1358   return ( _base == Int ? (TypeInt*)this : NULL);
1359 }
1360 
1361 inline const TypeLong *Type::is_long() const {
1362   assert( _base == Long, "Not a Long" );
1363   return (TypeLong*)this;
1364 }
1365 
1366 inline const TypeLong *Type::isa_long() const {
1367   return ( _base == Long ? (TypeLong*)this : NULL);
1368 }
1369 
1370 inline const TypeF *Type::isa_float() const {
1371   return ((_base == FloatTop ||
1372            _base == FloatCon ||
1373            _base == FloatBot) ? (TypeF*)this : NULL);
1374 }
1375 
1376 inline const TypeF *Type::is_float_constant() const {
1377   assert( _base == FloatCon, "Not a Float" );
1378   return (TypeF*)this;
1379 }
1380 
1381 inline const TypeF *Type::isa_float_constant() const {
1382   return ( _base == FloatCon ? (TypeF*)this : NULL);
1383 }
1384 
1385 inline const TypeD *Type::isa_double() const {
1386   return ((_base == DoubleTop ||
1387            _base == DoubleCon ||
1388            _base == DoubleBot) ? (TypeD*)this : NULL);
1389 }
1390 
1391 inline const TypeD *Type::is_double_constant() const {
1392   assert( _base == DoubleCon, "Not a Double" );
1393   return (TypeD*)this;
1394 }
1395 
1396 inline const TypeD *Type::isa_double_constant() const {
1397   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1398 }
1399 
1400 inline const TypeTuple *Type::is_tuple() const {
1401   assert( _base == Tuple, "Not a Tuple" );
1402   return (TypeTuple*)this;
1403 }
1404 
1405 inline const TypeAry *Type::is_ary() const {
1406   assert( _base == Array , "Not an Array" );
1407   return (TypeAry*)this;
1408 }
1409 
1410 inline const TypeVect *Type::is_vect() const {
1411   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1412   return (TypeVect*)this;
1413 }
1414 
1415 inline const TypeVect *Type::isa_vect() const {
1416   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1417 }
1418 
1419 inline const TypePtr *Type::is_ptr() const {
1420   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1421   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1422   return (TypePtr*)this;
1423 }
1424 
1425 inline const TypePtr *Type::isa_ptr() const {
1426   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1427   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1428 }
1429 
1430 inline const TypeOopPtr *Type::is_oopptr() const {
1431   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1432   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1433   return (TypeOopPtr*)this;
1434 }
1435 
1436 inline const TypeOopPtr *Type::isa_oopptr() const {
1437   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1438   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1439 }
1440 
1441 inline const TypeRawPtr *Type::isa_rawptr() const {
1442   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1443 }
1444 
1445 inline const TypeRawPtr *Type::is_rawptr() const {
1446   assert( _base == RawPtr, "Not a raw pointer" );
1447   return (TypeRawPtr*)this;
1448 }
1449 
1450 inline const TypeInstPtr *Type::isa_instptr() const {
1451   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1452 }
1453 
1454 inline const TypeInstPtr *Type::is_instptr() const {
1455   assert( _base == InstPtr, "Not an object pointer" );
1456   return (TypeInstPtr*)this;
1457 }
1458 
1459 inline const TypeAryPtr *Type::isa_aryptr() const {
1460   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1461 }
1462 
1463 inline const TypeAryPtr *Type::is_aryptr() const {
1464   assert( _base == AryPtr, "Not an array pointer" );
1465   return (TypeAryPtr*)this;
1466 }
1467 
1468 inline const TypeNarrowOop *Type::is_narrowoop() const {
1469   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1470   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1471   return (TypeNarrowOop*)this;
1472 }
1473 
1474 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1475   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1476   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1477 }
1478 
1479 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1480   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1481   return (TypeNarrowKlass*)this;
1482 }
1483 
1484 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1485   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1486 }
1487 
1488 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1489   // MetadataPtr is the first and CPCachePtr the last
1490   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1491   return (TypeMetadataPtr*)this;
1492 }
1493 
1494 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1495   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1496 }
1497 
1498 inline const TypeKlassPtr *Type::isa_klassptr() const {
1499   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1500 }
1501 
1502 inline const TypeKlassPtr *Type::is_klassptr() const {
1503   assert( _base == KlassPtr, "Not a klass pointer" );
1504   return (TypeKlassPtr*)this;
1505 }
1506 
1507 inline const TypePtr* Type::make_ptr() const {
1508   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1509     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1510      (isa_ptr() ? is_ptr() : NULL));
1511 }
1512 
1513 inline const TypeOopPtr* Type::make_oopptr() const {
1514   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1515 }
1516 
1517 inline const TypeNarrowOop* Type::make_narrowoop() const {
1518   return (_base == NarrowOop) ? is_narrowoop() :
1519                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1520 }
1521 
1522 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1523   return (_base == NarrowKlass) ? is_narrowklass() :
1524                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1525 }
1526 
1527 inline bool Type::is_floatingpoint() const {
1528   if( (_base == FloatCon)  || (_base == FloatBot) ||
1529       (_base == DoubleCon) || (_base == DoubleBot) )
1530     return true;
1531   return false;
1532 }
1533 
1534 inline bool Type::is_ptr_to_boxing_obj() const {
1535   const TypeInstPtr* tp = isa_instptr();
1536   return (tp != NULL) && (tp->offset() == 0) &&
1537          tp->klass()->is_instance_klass()  &&
1538          tp->klass()->as_instance_klass()->is_box_klass();
1539 }
1540 
1541 
1542 // ===============================================================
1543 // Things that need to be 64-bits in the 64-bit build but
1544 // 32-bits in the 32-bit build.  Done this way to get full
1545 // optimization AND strong typing.
1546 #ifdef _LP64
1547 
1548 // For type queries and asserts
1549 #define is_intptr_t  is_long
1550 #define isa_intptr_t isa_long
1551 #define find_intptr_t_type find_long_type
1552 #define find_intptr_t_con  find_long_con
1553 #define TypeX        TypeLong
1554 #define Type_X       Type::Long
1555 #define TypeX_X      TypeLong::LONG
1556 #define TypeX_ZERO   TypeLong::ZERO
1557 // For 'ideal_reg' machine registers
1558 #define Op_RegX      Op_RegL
1559 // For phase->intcon variants
1560 #define MakeConX     longcon
1561 #define ConXNode     ConLNode
1562 // For array index arithmetic
1563 #define MulXNode     MulLNode
1564 #define AndXNode     AndLNode
1565 #define OrXNode      OrLNode
1566 #define CmpXNode     CmpLNode
1567 #define SubXNode     SubLNode
1568 #define LShiftXNode  LShiftLNode
1569 // For object size computation:
1570 #define AddXNode     AddLNode
1571 #define RShiftXNode  RShiftLNode
1572 // For card marks and hashcodes
1573 #define URShiftXNode URShiftLNode
1574 // UseOptoBiasInlining
1575 #define XorXNode     XorLNode
1576 #define StoreXConditionalNode StoreLConditionalNode
1577 // Opcodes
1578 #define Op_LShiftX   Op_LShiftL
1579 #define Op_AndX      Op_AndL
1580 #define Op_AddX      Op_AddL
1581 #define Op_SubX      Op_SubL
1582 #define Op_XorX      Op_XorL
1583 #define Op_URShiftX  Op_URShiftL
1584 // conversions
1585 #define ConvI2X(x)   ConvI2L(x)
1586 #define ConvL2X(x)   (x)
1587 #define ConvX2I(x)   ConvL2I(x)
1588 #define ConvX2L(x)   (x)
1589 
1590 #else
1591 
1592 // For type queries and asserts
1593 #define is_intptr_t  is_int
1594 #define isa_intptr_t isa_int
1595 #define find_intptr_t_type find_int_type
1596 #define find_intptr_t_con  find_int_con
1597 #define TypeX        TypeInt
1598 #define Type_X       Type::Int
1599 #define TypeX_X      TypeInt::INT
1600 #define TypeX_ZERO   TypeInt::ZERO
1601 // For 'ideal_reg' machine registers
1602 #define Op_RegX      Op_RegI
1603 // For phase->intcon variants
1604 #define MakeConX     intcon
1605 #define ConXNode     ConINode
1606 // For array index arithmetic
1607 #define MulXNode     MulINode
1608 #define AndXNode     AndINode
1609 #define OrXNode      OrINode
1610 #define CmpXNode     CmpINode
1611 #define SubXNode     SubINode
1612 #define LShiftXNode  LShiftINode
1613 // For object size computation:
1614 #define AddXNode     AddINode
1615 #define RShiftXNode  RShiftINode
1616 // For card marks and hashcodes
1617 #define URShiftXNode URShiftINode
1618 // UseOptoBiasInlining
1619 #define XorXNode     XorINode
1620 #define StoreXConditionalNode StoreIConditionalNode
1621 // Opcodes
1622 #define Op_LShiftX   Op_LShiftI
1623 #define Op_AndX      Op_AndI
1624 #define Op_AddX      Op_AddI
1625 #define Op_SubX      Op_SubI
1626 #define Op_XorX      Op_XorI
1627 #define Op_URShiftX  Op_URShiftI
1628 // conversions
1629 #define ConvI2X(x)   (x)
1630 #define ConvL2X(x)   ConvL2I(x)
1631 #define ConvX2I(x)   (x)
1632 #define ConvX2L(x)   ConvI2L(x)
1633 
1634 #endif
1635 
1636 #endif // SHARE_VM_OPTO_TYPE_HPP