1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _is_predicted;
  50   bool             _does_virtual_dispatch;
  51   vmIntrinsics::ID _intrinsic_id;
  52 
  53  public:
  54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  55     : InlineCallGenerator(m),
  56       _is_virtual(is_virtual),
  57       _is_predicted(is_predicted),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _intrinsic_id(id)
  60   {
  61   }
  62   virtual bool is_intrinsic() const { return true; }
  63   virtual bool is_virtual()   const { return _is_virtual; }
  64   virtual bool is_predicted()   const { return _is_predicted; }
  65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  67   virtual Node* generate_predicate(JVMState* jvms);
  68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  69 };
  70 
  71 
  72 // Local helper class for LibraryIntrinsic:
  73 class LibraryCallKit : public GraphKit {
  74  private:
  75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  76   Node*             _result;        // the result node, if any
  77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  78 
  79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  80 
  81  public:
  82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  83     : GraphKit(jvms),
  84       _intrinsic(intrinsic),
  85       _result(NULL)
  86   {
  87     // Check if this is a root compile.  In that case we don't have a caller.
  88     if (!jvms->has_method()) {
  89       _reexecute_sp = sp();
  90     } else {
  91       // Find out how many arguments the interpreter needs when deoptimizing
  92       // and save the stack pointer value so it can used by uncommon_trap.
  93       // We find the argument count by looking at the declared signature.
  94       bool ignored_will_link;
  95       ciSignature* declared_signature = NULL;
  96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  99     }
 100   }
 101 
 102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 103 
 104   ciMethod*         caller()    const    { return jvms()->method(); }
 105   int               bci()       const    { return jvms()->bci(); }
 106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 108   ciMethod*         callee()    const    { return _intrinsic->method(); }
 109 
 110   bool try_to_inline();
 111   Node* try_to_predicate();
 112 
 113   void push_result() {
 114     // Push the result onto the stack.
 115     if (!stopped() && result() != NULL) {
 116       BasicType bt = result()->bottom_type()->basic_type();
 117       push_node(bt, result());
 118     }
 119   }
 120 
 121  private:
 122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 124   }
 125 
 126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 127   void  set_result(RegionNode* region, PhiNode* value);
 128   Node*     result() { return _result; }
 129 
 130   virtual int reexecute_sp() { return _reexecute_sp; }
 131 
 132   // Helper functions to inline natives
 133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 134   Node* generate_slow_guard(Node* test, RegionNode* region);
 135   Node* generate_fair_guard(Node* test, RegionNode* region);
 136   Node* generate_negative_guard(Node* index, RegionNode* region,
 137                                 // resulting CastII of index:
 138                                 Node* *pos_index = NULL);
 139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 140                                    // resulting CastII of index:
 141                                    Node* *pos_index = NULL);
 142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 143                              Node* array_length,
 144                              RegionNode* region);
 145   Node* generate_current_thread(Node* &tls_output);
 146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 148   Node* load_mirror_from_klass(Node* klass);
 149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 150                                       RegionNode* region, int null_path,
 151                                       int offset);
 152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 153                                RegionNode* region, int null_path) {
 154     int offset = java_lang_Class::klass_offset_in_bytes();
 155     return load_klass_from_mirror_common(mirror, never_see_null,
 156                                          region, null_path,
 157                                          offset);
 158   }
 159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                      RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::array_klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* generate_access_flags_guard(Node* kls,
 167                                     int modifier_mask, int modifier_bits,
 168                                     RegionNode* region);
 169   Node* generate_interface_guard(Node* kls, RegionNode* region);
 170   Node* generate_array_guard(Node* kls, RegionNode* region) {
 171     return generate_array_guard_common(kls, region, false, false);
 172   }
 173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, true);
 175   }
 176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, true, false);
 178   }
 179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, true);
 181   }
 182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 183                                     bool obj_array, bool not_array);
 184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 186                                      bool is_virtual = false, bool is_static = false);
 187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 188     return generate_method_call(method_id, false, true);
 189   }
 190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, true, false);
 192   }
 193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 194 
 195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 197   bool inline_string_compareTo();
 198   bool inline_string_indexOf();
 199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 200   bool inline_string_equals();
 201   Node* round_double_node(Node* n);
 202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 203   bool inline_math_native(vmIntrinsics::ID id);
 204   bool inline_trig(vmIntrinsics::ID id);
 205   bool inline_math(vmIntrinsics::ID id);
 206   void inline_math_mathExact(Node* math);
 207   bool inline_math_addExactI(bool is_increment);
 208   bool inline_math_addExactL(bool is_increment);
 209   bool inline_math_multiplyExactI();
 210   bool inline_math_multiplyExactL();
 211   bool inline_math_negateExactI();
 212   bool inline_math_negateExactL();
 213   bool inline_math_subtractExactI(bool is_decrement);
 214   bool inline_math_subtractExactL(bool is_decrement);
 215   bool inline_exp();
 216   bool inline_pow();
 217   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 218   bool inline_min_max(vmIntrinsics::ID id);
 219   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 220   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 221   int classify_unsafe_addr(Node* &base, Node* &offset);
 222   Node* make_unsafe_address(Node* base, Node* offset);
 223   // Helper for inline_unsafe_access.
 224   // Generates the guards that check whether the result of
 225   // Unsafe.getObject should be recorded in an SATB log buffer.
 226   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 227   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 228   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 229   static bool klass_needs_init_guard(Node* kls);
 230   bool inline_unsafe_allocate();
 231   bool inline_unsafe_copyMemory();
 232   bool inline_native_currentThread();
 233 #ifdef TRACE_HAVE_INTRINSICS
 234   bool inline_native_classID();
 235   bool inline_native_threadID();
 236 #endif
 237   bool inline_native_time_funcs(address method, const char* funcName);
 238   bool inline_native_isInterrupted();
 239   bool inline_native_Class_query(vmIntrinsics::ID id);
 240   bool inline_native_subtype_check();
 241 
 242   bool inline_native_newArray();
 243   bool inline_native_getLength();
 244   bool inline_array_copyOf(bool is_copyOfRange);
 245   bool inline_array_equals();
 246   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 247   bool inline_native_clone(bool is_virtual);
 248   bool inline_native_Reflection_getCallerClass();
 249   // Helper function for inlining native object hash method
 250   bool inline_native_hashcode(bool is_virtual, bool is_static);
 251   bool inline_native_getClass();
 252 
 253   // Helper functions for inlining arraycopy
 254   bool inline_arraycopy();
 255   void generate_arraycopy(const TypePtr* adr_type,
 256                           BasicType basic_elem_type,
 257                           Node* src,  Node* src_offset,
 258                           Node* dest, Node* dest_offset,
 259                           Node* copy_length,
 260                           bool disjoint_bases = false,
 261                           bool length_never_negative = false,
 262                           RegionNode* slow_region = NULL);
 263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 264                                                 RegionNode* slow_region);
 265   void generate_clear_array(const TypePtr* adr_type,
 266                             Node* dest,
 267                             BasicType basic_elem_type,
 268                             Node* slice_off,
 269                             Node* slice_len,
 270                             Node* slice_end);
 271   bool generate_block_arraycopy(const TypePtr* adr_type,
 272                                 BasicType basic_elem_type,
 273                                 AllocateNode* alloc,
 274                                 Node* src,  Node* src_offset,
 275                                 Node* dest, Node* dest_offset,
 276                                 Node* dest_size, bool dest_uninitialized);
 277   void generate_slow_arraycopy(const TypePtr* adr_type,
 278                                Node* src,  Node* src_offset,
 279                                Node* dest, Node* dest_offset,
 280                                Node* copy_length, bool dest_uninitialized);
 281   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 282                                      Node* dest_elem_klass,
 283                                      Node* src,  Node* src_offset,
 284                                      Node* dest, Node* dest_offset,
 285                                      Node* copy_length, bool dest_uninitialized);
 286   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 287                                    Node* src,  Node* src_offset,
 288                                    Node* dest, Node* dest_offset,
 289                                    Node* copy_length, bool dest_uninitialized);
 290   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 291                                     BasicType basic_elem_type,
 292                                     bool disjoint_bases,
 293                                     Node* src,  Node* src_offset,
 294                                     Node* dest, Node* dest_offset,
 295                                     Node* copy_length, bool dest_uninitialized);
 296   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 297   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 298   bool inline_unsafe_ordered_store(BasicType type);
 299   bool inline_unsafe_fence(vmIntrinsics::ID id);
 300   bool inline_fp_conversions(vmIntrinsics::ID id);
 301   bool inline_number_methods(vmIntrinsics::ID id);
 302   bool inline_reference_get();
 303   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 304   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 305   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 306   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 307   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 308   bool inline_encodeISOArray();
 309   bool inline_updateCRC32();
 310   bool inline_updateBytesCRC32();
 311   bool inline_updateByteBufferCRC32();
 312 };
 313 
 314 
 315 //---------------------------make_vm_intrinsic----------------------------
 316 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 317   vmIntrinsics::ID id = m->intrinsic_id();
 318   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 319 
 320   if (DisableIntrinsic[0] != '\0'
 321       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 322     // disabled by a user request on the command line:
 323     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 324     return NULL;
 325   }
 326 
 327   if (!m->is_loaded()) {
 328     // do not attempt to inline unloaded methods
 329     return NULL;
 330   }
 331 
 332   // Only a few intrinsics implement a virtual dispatch.
 333   // They are expensive calls which are also frequently overridden.
 334   if (is_virtual) {
 335     switch (id) {
 336     case vmIntrinsics::_hashCode:
 337     case vmIntrinsics::_clone:
 338       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 339       break;
 340     default:
 341       return NULL;
 342     }
 343   }
 344 
 345   // -XX:-InlineNatives disables nearly all intrinsics:
 346   if (!InlineNatives) {
 347     switch (id) {
 348     case vmIntrinsics::_indexOf:
 349     case vmIntrinsics::_compareTo:
 350     case vmIntrinsics::_equals:
 351     case vmIntrinsics::_equalsC:
 352     case vmIntrinsics::_getAndAddInt:
 353     case vmIntrinsics::_getAndAddLong:
 354     case vmIntrinsics::_getAndSetInt:
 355     case vmIntrinsics::_getAndSetLong:
 356     case vmIntrinsics::_getAndSetObject:
 357     case vmIntrinsics::_loadFence:
 358     case vmIntrinsics::_storeFence:
 359     case vmIntrinsics::_fullFence:
 360       break;  // InlineNatives does not control String.compareTo
 361     case vmIntrinsics::_Reference_get:
 362       break;  // InlineNatives does not control Reference.get
 363     default:
 364       return NULL;
 365     }
 366   }
 367 
 368   bool is_predicted = false;
 369   bool does_virtual_dispatch = false;
 370 
 371   switch (id) {
 372   case vmIntrinsics::_compareTo:
 373     if (!SpecialStringCompareTo)  return NULL;
 374     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 375     break;
 376   case vmIntrinsics::_indexOf:
 377     if (!SpecialStringIndexOf)  return NULL;
 378     break;
 379   case vmIntrinsics::_equals:
 380     if (!SpecialStringEquals)  return NULL;
 381     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 382     break;
 383   case vmIntrinsics::_equalsC:
 384     if (!SpecialArraysEquals)  return NULL;
 385     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 386     break;
 387   case vmIntrinsics::_arraycopy:
 388     if (!InlineArrayCopy)  return NULL;
 389     break;
 390   case vmIntrinsics::_copyMemory:
 391     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 392     if (!InlineArrayCopy)  return NULL;
 393     break;
 394   case vmIntrinsics::_hashCode:
 395     if (!InlineObjectHash)  return NULL;
 396     does_virtual_dispatch = true;
 397     break;
 398   case vmIntrinsics::_clone:
 399     does_virtual_dispatch = true;
 400   case vmIntrinsics::_copyOf:
 401   case vmIntrinsics::_copyOfRange:
 402     if (!InlineObjectCopy)  return NULL;
 403     // These also use the arraycopy intrinsic mechanism:
 404     if (!InlineArrayCopy)  return NULL;
 405     break;
 406   case vmIntrinsics::_encodeISOArray:
 407     if (!SpecialEncodeISOArray)  return NULL;
 408     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 409     break;
 410   case vmIntrinsics::_checkIndex:
 411     // We do not intrinsify this.  The optimizer does fine with it.
 412     return NULL;
 413 
 414   case vmIntrinsics::_getCallerClass:
 415     if (!UseNewReflection)  return NULL;
 416     if (!InlineReflectionGetCallerClass)  return NULL;
 417     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 418     break;
 419 
 420   case vmIntrinsics::_bitCount_i:
 421     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_bitCount_l:
 425     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_numberOfLeadingZeros_i:
 429     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_numberOfLeadingZeros_l:
 433     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_numberOfTrailingZeros_i:
 437     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_numberOfTrailingZeros_l:
 441     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 442     break;
 443 
 444   case vmIntrinsics::_reverseBytes_c:
 445     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 446     break;
 447   case vmIntrinsics::_reverseBytes_s:
 448     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 449     break;
 450   case vmIntrinsics::_reverseBytes_i:
 451     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 452     break;
 453   case vmIntrinsics::_reverseBytes_l:
 454     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_Reference_get:
 458     // Use the intrinsic version of Reference.get() so that the value in
 459     // the referent field can be registered by the G1 pre-barrier code.
 460     // Also add memory barrier to prevent commoning reads from this field
 461     // across safepoint since GC can change it value.
 462     break;
 463 
 464   case vmIntrinsics::_compareAndSwapObject:
 465 #ifdef _LP64
 466     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 467 #endif
 468     break;
 469 
 470   case vmIntrinsics::_compareAndSwapLong:
 471     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_getAndAddInt:
 475     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_getAndAddLong:
 479     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndSetInt:
 483     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_getAndSetLong:
 487     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 488     break;
 489 
 490   case vmIntrinsics::_getAndSetObject:
 491 #ifdef _LP64
 492     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 493     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 494     break;
 495 #else
 496     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 497     break;
 498 #endif
 499 
 500   case vmIntrinsics::_aescrypt_encryptBlock:
 501   case vmIntrinsics::_aescrypt_decryptBlock:
 502     if (!UseAESIntrinsics) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 506   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 507     if (!UseAESIntrinsics) return NULL;
 508     // these two require the predicated logic
 509     is_predicted = true;
 510     break;
 511 
 512   case vmIntrinsics::_updateCRC32:
 513   case vmIntrinsics::_updateBytesCRC32:
 514   case vmIntrinsics::_updateByteBufferCRC32:
 515     if (!UseCRC32Intrinsics) return NULL;
 516     break;
 517 
 518   case vmIntrinsics::_incrementExactI:
 519   case vmIntrinsics::_addExactI:
 520     if (!Matcher::match_rule_supported(Op_AddExactI) || !UseMathExactIntrinsics) return NULL;
 521     break;
 522   case vmIntrinsics::_incrementExactL:
 523   case vmIntrinsics::_addExactL:
 524     if (!Matcher::match_rule_supported(Op_AddExactL) || !UseMathExactIntrinsics) return NULL;
 525     break;
 526   case vmIntrinsics::_decrementExactI:
 527   case vmIntrinsics::_subtractExactI:
 528     if (!Matcher::match_rule_supported(Op_SubExactI) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_decrementExactL:
 531   case vmIntrinsics::_subtractExactL:
 532     if (!Matcher::match_rule_supported(Op_SubExactL) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_negateExactI:
 535     if (!Matcher::match_rule_supported(Op_NegExactI) || !UseMathExactIntrinsics) return NULL;
 536     break;
 537   case vmIntrinsics::_negateExactL:
 538     if (!Matcher::match_rule_supported(Op_NegExactL) || !UseMathExactIntrinsics) return NULL;
 539     break;
 540   case vmIntrinsics::_multiplyExactI:
 541     if (!Matcher::match_rule_supported(Op_MulExactI) || !UseMathExactIntrinsics) return NULL;
 542     break;
 543   case vmIntrinsics::_multiplyExactL:
 544     if (!Matcher::match_rule_supported(Op_MulExactL) || !UseMathExactIntrinsics) return NULL;
 545     break;
 546 
 547  default:
 548     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 549     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 550     break;
 551   }
 552 
 553   // -XX:-InlineClassNatives disables natives from the Class class.
 554   // The flag applies to all reflective calls, notably Array.newArray
 555   // (visible to Java programmers as Array.newInstance).
 556   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 557       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 558     if (!InlineClassNatives)  return NULL;
 559   }
 560 
 561   // -XX:-InlineThreadNatives disables natives from the Thread class.
 562   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 563     if (!InlineThreadNatives)  return NULL;
 564   }
 565 
 566   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 567   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 568       m->holder()->name() == ciSymbol::java_lang_Float() ||
 569       m->holder()->name() == ciSymbol::java_lang_Double()) {
 570     if (!InlineMathNatives)  return NULL;
 571   }
 572 
 573   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 574   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 575     if (!InlineUnsafeOps)  return NULL;
 576   }
 577 
 578   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 579 }
 580 
 581 //----------------------register_library_intrinsics-----------------------
 582 // Initialize this file's data structures, for each Compile instance.
 583 void Compile::register_library_intrinsics() {
 584   // Nothing to do here.
 585 }
 586 
 587 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 588   LibraryCallKit kit(jvms, this);
 589   Compile* C = kit.C;
 590   int nodes = C->unique();
 591 #ifndef PRODUCT
 592   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 593     char buf[1000];
 594     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 595     tty->print_cr("Intrinsic %s", str);
 596   }
 597 #endif
 598   ciMethod* callee = kit.callee();
 599   const int bci    = kit.bci();
 600 
 601   // Try to inline the intrinsic.
 602   if (kit.try_to_inline()) {
 603     if (C->print_intrinsics() || C->print_inlining()) {
 604       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 605     }
 606     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 607     if (C->log()) {
 608       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 609                      vmIntrinsics::name_at(intrinsic_id()),
 610                      (is_virtual() ? " virtual='1'" : ""),
 611                      C->unique() - nodes);
 612     }
 613     // Push the result from the inlined method onto the stack.
 614     kit.push_result();
 615     return kit.transfer_exceptions_into_jvms();
 616   }
 617 
 618   // The intrinsic bailed out
 619   if (C->print_intrinsics() || C->print_inlining()) {
 620     if (jvms->has_method()) {
 621       // Not a root compile.
 622       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 623       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 624     } else {
 625       // Root compile
 626       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 627                vmIntrinsics::name_at(intrinsic_id()),
 628                (is_virtual() ? " (virtual)" : ""), bci);
 629     }
 630   }
 631   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 632   return NULL;
 633 }
 634 
 635 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 636   LibraryCallKit kit(jvms, this);
 637   Compile* C = kit.C;
 638   int nodes = C->unique();
 639 #ifndef PRODUCT
 640   assert(is_predicted(), "sanity");
 641   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 642     char buf[1000];
 643     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 644     tty->print_cr("Predicate for intrinsic %s", str);
 645   }
 646 #endif
 647   ciMethod* callee = kit.callee();
 648   const int bci    = kit.bci();
 649 
 650   Node* slow_ctl = kit.try_to_predicate();
 651   if (!kit.failing()) {
 652     if (C->print_intrinsics() || C->print_inlining()) {
 653       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 654     }
 655     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 656     if (C->log()) {
 657       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 658                      vmIntrinsics::name_at(intrinsic_id()),
 659                      (is_virtual() ? " virtual='1'" : ""),
 660                      C->unique() - nodes);
 661     }
 662     return slow_ctl; // Could be NULL if the check folds.
 663   }
 664 
 665   // The intrinsic bailed out
 666   if (C->print_intrinsics() || C->print_inlining()) {
 667     if (jvms->has_method()) {
 668       // Not a root compile.
 669       const char* msg = "failed to generate predicate for intrinsic";
 670       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 671     } else {
 672       // Root compile
 673       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 674                                         vmIntrinsics::name_at(intrinsic_id()),
 675                                         (is_virtual() ? " (virtual)" : ""), bci);
 676     }
 677   }
 678   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 679   return NULL;
 680 }
 681 
 682 bool LibraryCallKit::try_to_inline() {
 683   // Handle symbolic names for otherwise undistinguished boolean switches:
 684   const bool is_store       = true;
 685   const bool is_native_ptr  = true;
 686   const bool is_static      = true;
 687   const bool is_volatile    = true;
 688 
 689   if (!jvms()->has_method()) {
 690     // Root JVMState has a null method.
 691     assert(map()->memory()->Opcode() == Op_Parm, "");
 692     // Insert the memory aliasing node
 693     set_all_memory(reset_memory());
 694   }
 695   assert(merged_memory(), "");
 696 
 697 
 698   switch (intrinsic_id()) {
 699   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 700   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 701   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 702 
 703   case vmIntrinsics::_dsin:
 704   case vmIntrinsics::_dcos:
 705   case vmIntrinsics::_dtan:
 706   case vmIntrinsics::_dabs:
 707   case vmIntrinsics::_datan2:
 708   case vmIntrinsics::_dsqrt:
 709   case vmIntrinsics::_dexp:
 710   case vmIntrinsics::_dlog:
 711   case vmIntrinsics::_dlog10:
 712   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 713 
 714   case vmIntrinsics::_min:
 715   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 716 
 717   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 718   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 719   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 720   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 721   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 722   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 723   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 724   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 725   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 726   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 727   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 728   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 729 
 730   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 731 
 732   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 733   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 734   case vmIntrinsics::_equals:                   return inline_string_equals();
 735 
 736   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 737   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 738   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 739   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 740   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 741   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 742   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 743   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 744   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 745 
 746   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 747   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 748   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 749   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 750   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 751   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 752   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 753   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 754   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 755 
 756   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 757   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 758   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 759   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 760   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 761   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 762   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 763   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 764 
 765   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 766   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 767   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 768   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 769   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 770   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 771   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 772   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 773 
 774   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 775   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 776   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 777   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 778   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 779   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 780   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 781   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 782   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 783 
 784   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 785   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 786   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 787   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 788   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 789   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 790   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 791   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 792   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 793 
 794   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 795   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 796   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 797   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 798 
 799   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 800   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 801   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 802 
 803   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 804   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 805   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 806 
 807   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 808   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 809   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 810   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 811   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 812 
 813   case vmIntrinsics::_loadFence:
 814   case vmIntrinsics::_storeFence:
 815   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 816 
 817   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 818   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 819 
 820 #ifdef TRACE_HAVE_INTRINSICS
 821   case vmIntrinsics::_classID:                  return inline_native_classID();
 822   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 823   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 824 #endif
 825   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 826   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 827   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 828   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 829   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 830   case vmIntrinsics::_getLength:                return inline_native_getLength();
 831   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 832   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 833   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 834   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 835 
 836   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 837 
 838   case vmIntrinsics::_isInstance:
 839   case vmIntrinsics::_getModifiers:
 840   case vmIntrinsics::_isInterface:
 841   case vmIntrinsics::_isArray:
 842   case vmIntrinsics::_isPrimitive:
 843   case vmIntrinsics::_getSuperclass:
 844   case vmIntrinsics::_getComponentType:
 845   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 846 
 847   case vmIntrinsics::_floatToRawIntBits:
 848   case vmIntrinsics::_floatToIntBits:
 849   case vmIntrinsics::_intBitsToFloat:
 850   case vmIntrinsics::_doubleToRawLongBits:
 851   case vmIntrinsics::_doubleToLongBits:
 852   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 853 
 854   case vmIntrinsics::_numberOfLeadingZeros_i:
 855   case vmIntrinsics::_numberOfLeadingZeros_l:
 856   case vmIntrinsics::_numberOfTrailingZeros_i:
 857   case vmIntrinsics::_numberOfTrailingZeros_l:
 858   case vmIntrinsics::_bitCount_i:
 859   case vmIntrinsics::_bitCount_l:
 860   case vmIntrinsics::_reverseBytes_i:
 861   case vmIntrinsics::_reverseBytes_l:
 862   case vmIntrinsics::_reverseBytes_s:
 863   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 864 
 865   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 866 
 867   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 868 
 869   case vmIntrinsics::_aescrypt_encryptBlock:
 870   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 871 
 872   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 873   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 874     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 875 
 876   case vmIntrinsics::_encodeISOArray:
 877     return inline_encodeISOArray();
 878 
 879   case vmIntrinsics::_updateCRC32:
 880     return inline_updateCRC32();
 881   case vmIntrinsics::_updateBytesCRC32:
 882     return inline_updateBytesCRC32();
 883   case vmIntrinsics::_updateByteBufferCRC32:
 884     return inline_updateByteBufferCRC32();
 885 
 886   default:
 887     // If you get here, it may be that someone has added a new intrinsic
 888     // to the list in vmSymbols.hpp without implementing it here.
 889 #ifndef PRODUCT
 890     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 891       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 892                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 893     }
 894 #endif
 895     return false;
 896   }
 897 }
 898 
 899 Node* LibraryCallKit::try_to_predicate() {
 900   if (!jvms()->has_method()) {
 901     // Root JVMState has a null method.
 902     assert(map()->memory()->Opcode() == Op_Parm, "");
 903     // Insert the memory aliasing node
 904     set_all_memory(reset_memory());
 905   }
 906   assert(merged_memory(), "");
 907 
 908   switch (intrinsic_id()) {
 909   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 910     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 911   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 912     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 913 
 914   default:
 915     // If you get here, it may be that someone has added a new intrinsic
 916     // to the list in vmSymbols.hpp without implementing it here.
 917 #ifndef PRODUCT
 918     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 919       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 920                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 921     }
 922 #endif
 923     Node* slow_ctl = control();
 924     set_control(top()); // No fast path instrinsic
 925     return slow_ctl;
 926   }
 927 }
 928 
 929 //------------------------------set_result-------------------------------
 930 // Helper function for finishing intrinsics.
 931 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 932   record_for_igvn(region);
 933   set_control(_gvn.transform(region));
 934   set_result( _gvn.transform(value));
 935   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 936 }
 937 
 938 //------------------------------generate_guard---------------------------
 939 // Helper function for generating guarded fast-slow graph structures.
 940 // The given 'test', if true, guards a slow path.  If the test fails
 941 // then a fast path can be taken.  (We generally hope it fails.)
 942 // In all cases, GraphKit::control() is updated to the fast path.
 943 // The returned value represents the control for the slow path.
 944 // The return value is never 'top'; it is either a valid control
 945 // or NULL if it is obvious that the slow path can never be taken.
 946 // Also, if region and the slow control are not NULL, the slow edge
 947 // is appended to the region.
 948 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 949   if (stopped()) {
 950     // Already short circuited.
 951     return NULL;
 952   }
 953 
 954   // Build an if node and its projections.
 955   // If test is true we take the slow path, which we assume is uncommon.
 956   if (_gvn.type(test) == TypeInt::ZERO) {
 957     // The slow branch is never taken.  No need to build this guard.
 958     return NULL;
 959   }
 960 
 961   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 962 
 963   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 964   if (if_slow == top()) {
 965     // The slow branch is never taken.  No need to build this guard.
 966     return NULL;
 967   }
 968 
 969   if (region != NULL)
 970     region->add_req(if_slow);
 971 
 972   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 973   set_control(if_fast);
 974 
 975   return if_slow;
 976 }
 977 
 978 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 979   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 980 }
 981 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 982   return generate_guard(test, region, PROB_FAIR);
 983 }
 984 
 985 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 986                                                      Node* *pos_index) {
 987   if (stopped())
 988     return NULL;                // already stopped
 989   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 990     return NULL;                // index is already adequately typed
 991   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 992   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 993   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 994   if (is_neg != NULL && pos_index != NULL) {
 995     // Emulate effect of Parse::adjust_map_after_if.
 996     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 997     ccast->set_req(0, control());
 998     (*pos_index) = _gvn.transform(ccast);
 999   }
1000   return is_neg;
1001 }
1002 
1003 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1004                                                         Node* *pos_index) {
1005   if (stopped())
1006     return NULL;                // already stopped
1007   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1008     return NULL;                // index is already adequately typed
1009   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1010   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1011   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1012   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1013   if (is_notp != NULL && pos_index != NULL) {
1014     // Emulate effect of Parse::adjust_map_after_if.
1015     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1016     ccast->set_req(0, control());
1017     (*pos_index) = _gvn.transform(ccast);
1018   }
1019   return is_notp;
1020 }
1021 
1022 // Make sure that 'position' is a valid limit index, in [0..length].
1023 // There are two equivalent plans for checking this:
1024 //   A. (offset + copyLength)  unsigned<=  arrayLength
1025 //   B. offset  <=  (arrayLength - copyLength)
1026 // We require that all of the values above, except for the sum and
1027 // difference, are already known to be non-negative.
1028 // Plan A is robust in the face of overflow, if offset and copyLength
1029 // are both hugely positive.
1030 //
1031 // Plan B is less direct and intuitive, but it does not overflow at
1032 // all, since the difference of two non-negatives is always
1033 // representable.  Whenever Java methods must perform the equivalent
1034 // check they generally use Plan B instead of Plan A.
1035 // For the moment we use Plan A.
1036 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1037                                                   Node* subseq_length,
1038                                                   Node* array_length,
1039                                                   RegionNode* region) {
1040   if (stopped())
1041     return NULL;                // already stopped
1042   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1043   if (zero_offset && subseq_length->eqv_uncast(array_length))
1044     return NULL;                // common case of whole-array copy
1045   Node* last = subseq_length;
1046   if (!zero_offset)             // last += offset
1047     last = _gvn.transform(new (C) AddINode(last, offset));
1048   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1049   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1050   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1051   return is_over;
1052 }
1053 
1054 
1055 //--------------------------generate_current_thread--------------------
1056 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1057   ciKlass*    thread_klass = env()->Thread_klass();
1058   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1059   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1060   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1061   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1062   tls_output = thread;
1063   return threadObj;
1064 }
1065 
1066 
1067 //------------------------------make_string_method_node------------------------
1068 // Helper method for String intrinsic functions. This version is called
1069 // with str1 and str2 pointing to String object nodes.
1070 //
1071 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1072   Node* no_ctrl = NULL;
1073 
1074   // Get start addr of string
1075   Node* str1_value   = load_String_value(no_ctrl, str1);
1076   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1077   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1078 
1079   // Get length of string 1
1080   Node* str1_len  = load_String_length(no_ctrl, str1);
1081 
1082   Node* str2_value   = load_String_value(no_ctrl, str2);
1083   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1084   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1085 
1086   Node* str2_len = NULL;
1087   Node* result = NULL;
1088 
1089   switch (opcode) {
1090   case Op_StrIndexOf:
1091     // Get length of string 2
1092     str2_len = load_String_length(no_ctrl, str2);
1093 
1094     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1095                                  str1_start, str1_len, str2_start, str2_len);
1096     break;
1097   case Op_StrComp:
1098     // Get length of string 2
1099     str2_len = load_String_length(no_ctrl, str2);
1100 
1101     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1102                                  str1_start, str1_len, str2_start, str2_len);
1103     break;
1104   case Op_StrEquals:
1105     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1106                                str1_start, str2_start, str1_len);
1107     break;
1108   default:
1109     ShouldNotReachHere();
1110     return NULL;
1111   }
1112 
1113   // All these intrinsics have checks.
1114   C->set_has_split_ifs(true); // Has chance for split-if optimization
1115 
1116   return _gvn.transform(result);
1117 }
1118 
1119 // Helper method for String intrinsic functions. This version is called
1120 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1121 // to Int nodes containing the lenghts of str1 and str2.
1122 //
1123 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1124   Node* result = NULL;
1125   switch (opcode) {
1126   case Op_StrIndexOf:
1127     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1128                                  str1_start, cnt1, str2_start, cnt2);
1129     break;
1130   case Op_StrComp:
1131     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1132                                  str1_start, cnt1, str2_start, cnt2);
1133     break;
1134   case Op_StrEquals:
1135     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1136                                  str1_start, str2_start, cnt1);
1137     break;
1138   default:
1139     ShouldNotReachHere();
1140     return NULL;
1141   }
1142 
1143   // All these intrinsics have checks.
1144   C->set_has_split_ifs(true); // Has chance for split-if optimization
1145 
1146   return _gvn.transform(result);
1147 }
1148 
1149 //------------------------------inline_string_compareTo------------------------
1150 // public int java.lang.String.compareTo(String anotherString);
1151 bool LibraryCallKit::inline_string_compareTo() {
1152   Node* receiver = null_check(argument(0));
1153   Node* arg      = null_check(argument(1));
1154   if (stopped()) {
1155     return true;
1156   }
1157   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1158   return true;
1159 }
1160 
1161 //------------------------------inline_string_equals------------------------
1162 bool LibraryCallKit::inline_string_equals() {
1163   Node* receiver = null_check_receiver();
1164   // NOTE: Do not null check argument for String.equals() because spec
1165   // allows to specify NULL as argument.
1166   Node* argument = this->argument(1);
1167   if (stopped()) {
1168     return true;
1169   }
1170 
1171   // paths (plus control) merge
1172   RegionNode* region = new (C) RegionNode(5);
1173   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1174 
1175   // does source == target string?
1176   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1177   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1178 
1179   Node* if_eq = generate_slow_guard(bol, NULL);
1180   if (if_eq != NULL) {
1181     // receiver == argument
1182     phi->init_req(2, intcon(1));
1183     region->init_req(2, if_eq);
1184   }
1185 
1186   // get String klass for instanceOf
1187   ciInstanceKlass* klass = env()->String_klass();
1188 
1189   if (!stopped()) {
1190     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1191     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1192     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1193 
1194     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1195     //instanceOf == true, fallthrough
1196 
1197     if (inst_false != NULL) {
1198       phi->init_req(3, intcon(0));
1199       region->init_req(3, inst_false);
1200     }
1201   }
1202 
1203   if (!stopped()) {
1204     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1205 
1206     // Properly cast the argument to String
1207     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1208     // This path is taken only when argument's type is String:NotNull.
1209     argument = cast_not_null(argument, false);
1210 
1211     Node* no_ctrl = NULL;
1212 
1213     // Get start addr of receiver
1214     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1215     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1216     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1217 
1218     // Get length of receiver
1219     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1220 
1221     // Get start addr of argument
1222     Node* argument_val    = load_String_value(no_ctrl, argument);
1223     Node* argument_offset = load_String_offset(no_ctrl, argument);
1224     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1225 
1226     // Get length of argument
1227     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1228 
1229     // Check for receiver count != argument count
1230     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1231     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1232     Node* if_ne = generate_slow_guard(bol, NULL);
1233     if (if_ne != NULL) {
1234       phi->init_req(4, intcon(0));
1235       region->init_req(4, if_ne);
1236     }
1237 
1238     // Check for count == 0 is done by assembler code for StrEquals.
1239 
1240     if (!stopped()) {
1241       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1242       phi->init_req(1, equals);
1243       region->init_req(1, control());
1244     }
1245   }
1246 
1247   // post merge
1248   set_control(_gvn.transform(region));
1249   record_for_igvn(region);
1250 
1251   set_result(_gvn.transform(phi));
1252   return true;
1253 }
1254 
1255 //------------------------------inline_array_equals----------------------------
1256 bool LibraryCallKit::inline_array_equals() {
1257   Node* arg1 = argument(0);
1258   Node* arg2 = argument(1);
1259   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1260   return true;
1261 }
1262 
1263 // Java version of String.indexOf(constant string)
1264 // class StringDecl {
1265 //   StringDecl(char[] ca) {
1266 //     offset = 0;
1267 //     count = ca.length;
1268 //     value = ca;
1269 //   }
1270 //   int offset;
1271 //   int count;
1272 //   char[] value;
1273 // }
1274 //
1275 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1276 //                             int targetOffset, int cache_i, int md2) {
1277 //   int cache = cache_i;
1278 //   int sourceOffset = string_object.offset;
1279 //   int sourceCount = string_object.count;
1280 //   int targetCount = target_object.length;
1281 //
1282 //   int targetCountLess1 = targetCount - 1;
1283 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1284 //
1285 //   char[] source = string_object.value;
1286 //   char[] target = target_object;
1287 //   int lastChar = target[targetCountLess1];
1288 //
1289 //  outer_loop:
1290 //   for (int i = sourceOffset; i < sourceEnd; ) {
1291 //     int src = source[i + targetCountLess1];
1292 //     if (src == lastChar) {
1293 //       // With random strings and a 4-character alphabet,
1294 //       // reverse matching at this point sets up 0.8% fewer
1295 //       // frames, but (paradoxically) makes 0.3% more probes.
1296 //       // Since those probes are nearer the lastChar probe,
1297 //       // there is may be a net D$ win with reverse matching.
1298 //       // But, reversing loop inhibits unroll of inner loop
1299 //       // for unknown reason.  So, does running outer loop from
1300 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1301 //       for (int j = 0; j < targetCountLess1; j++) {
1302 //         if (target[targetOffset + j] != source[i+j]) {
1303 //           if ((cache & (1 << source[i+j])) == 0) {
1304 //             if (md2 < j+1) {
1305 //               i += j+1;
1306 //               continue outer_loop;
1307 //             }
1308 //           }
1309 //           i += md2;
1310 //           continue outer_loop;
1311 //         }
1312 //       }
1313 //       return i - sourceOffset;
1314 //     }
1315 //     if ((cache & (1 << src)) == 0) {
1316 //       i += targetCountLess1;
1317 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1318 //     i++;
1319 //   }
1320 //   return -1;
1321 // }
1322 
1323 //------------------------------string_indexOf------------------------
1324 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1325                                      jint cache_i, jint md2_i) {
1326 
1327   Node* no_ctrl  = NULL;
1328   float likely   = PROB_LIKELY(0.9);
1329   float unlikely = PROB_UNLIKELY(0.9);
1330 
1331   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1332 
1333   Node* source        = load_String_value(no_ctrl, string_object);
1334   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1335   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1336 
1337   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1338   jint target_length = target_array->length();
1339   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1340   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1341 
1342   // String.value field is known to be @Stable.
1343   if (UseImplicitStableValues) {
1344     target = cast_array_to_stable(target, target_type);
1345   }
1346 
1347   IdealKit kit(this, false, true);
1348 #define __ kit.
1349   Node* zero             = __ ConI(0);
1350   Node* one              = __ ConI(1);
1351   Node* cache            = __ ConI(cache_i);
1352   Node* md2              = __ ConI(md2_i);
1353   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1354   Node* targetCount      = __ ConI(target_length);
1355   Node* targetCountLess1 = __ ConI(target_length - 1);
1356   Node* targetOffset     = __ ConI(targetOffset_i);
1357   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1358 
1359   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1360   Node* outer_loop = __ make_label(2 /* goto */);
1361   Node* return_    = __ make_label(1);
1362 
1363   __ set(rtn,__ ConI(-1));
1364   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1365        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1366        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1367        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1368        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1369          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1370               Node* tpj = __ AddI(targetOffset, __ value(j));
1371               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1372               Node* ipj  = __ AddI(__ value(i), __ value(j));
1373               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1374               __ if_then(targ, BoolTest::ne, src2); {
1375                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1376                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1377                     __ increment(i, __ AddI(__ value(j), one));
1378                     __ goto_(outer_loop);
1379                   } __ end_if(); __ dead(j);
1380                 }__ end_if(); __ dead(j);
1381                 __ increment(i, md2);
1382                 __ goto_(outer_loop);
1383               }__ end_if();
1384               __ increment(j, one);
1385          }__ end_loop(); __ dead(j);
1386          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1387          __ goto_(return_);
1388        }__ end_if();
1389        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1390          __ increment(i, targetCountLess1);
1391        }__ end_if();
1392        __ increment(i, one);
1393        __ bind(outer_loop);
1394   }__ end_loop(); __ dead(i);
1395   __ bind(return_);
1396 
1397   // Final sync IdealKit and GraphKit.
1398   final_sync(kit);
1399   Node* result = __ value(rtn);
1400 #undef __
1401   C->set_has_loops(true);
1402   return result;
1403 }
1404 
1405 //------------------------------inline_string_indexOf------------------------
1406 bool LibraryCallKit::inline_string_indexOf() {
1407   Node* receiver = argument(0);
1408   Node* arg      = argument(1);
1409 
1410   Node* result;
1411   // Disable the use of pcmpestri until it can be guaranteed that
1412   // the load doesn't cross into the uncommited space.
1413   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1414       UseSSE42Intrinsics) {
1415     // Generate SSE4.2 version of indexOf
1416     // We currently only have match rules that use SSE4.2
1417 
1418     receiver = null_check(receiver);
1419     arg      = null_check(arg);
1420     if (stopped()) {
1421       return true;
1422     }
1423 
1424     ciInstanceKlass* str_klass = env()->String_klass();
1425     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1426 
1427     // Make the merge point
1428     RegionNode* result_rgn = new (C) RegionNode(4);
1429     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1430     Node* no_ctrl  = NULL;
1431 
1432     // Get start addr of source string
1433     Node* source = load_String_value(no_ctrl, receiver);
1434     Node* source_offset = load_String_offset(no_ctrl, receiver);
1435     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1436 
1437     // Get length of source string
1438     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1439 
1440     // Get start addr of substring
1441     Node* substr = load_String_value(no_ctrl, arg);
1442     Node* substr_offset = load_String_offset(no_ctrl, arg);
1443     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1444 
1445     // Get length of source string
1446     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1447 
1448     // Check for substr count > string count
1449     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1450     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1451     Node* if_gt = generate_slow_guard(bol, NULL);
1452     if (if_gt != NULL) {
1453       result_phi->init_req(2, intcon(-1));
1454       result_rgn->init_req(2, if_gt);
1455     }
1456 
1457     if (!stopped()) {
1458       // Check for substr count == 0
1459       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1460       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1461       Node* if_zero = generate_slow_guard(bol, NULL);
1462       if (if_zero != NULL) {
1463         result_phi->init_req(3, intcon(0));
1464         result_rgn->init_req(3, if_zero);
1465       }
1466     }
1467 
1468     if (!stopped()) {
1469       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1470       result_phi->init_req(1, result);
1471       result_rgn->init_req(1, control());
1472     }
1473     set_control(_gvn.transform(result_rgn));
1474     record_for_igvn(result_rgn);
1475     result = _gvn.transform(result_phi);
1476 
1477   } else { // Use LibraryCallKit::string_indexOf
1478     // don't intrinsify if argument isn't a constant string.
1479     if (!arg->is_Con()) {
1480      return false;
1481     }
1482     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1483     if (str_type == NULL) {
1484       return false;
1485     }
1486     ciInstanceKlass* klass = env()->String_klass();
1487     ciObject* str_const = str_type->const_oop();
1488     if (str_const == NULL || str_const->klass() != klass) {
1489       return false;
1490     }
1491     ciInstance* str = str_const->as_instance();
1492     assert(str != NULL, "must be instance");
1493 
1494     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1495     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1496 
1497     int o;
1498     int c;
1499     if (java_lang_String::has_offset_field()) {
1500       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1501       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1502     } else {
1503       o = 0;
1504       c = pat->length();
1505     }
1506 
1507     // constant strings have no offset and count == length which
1508     // simplifies the resulting code somewhat so lets optimize for that.
1509     if (o != 0 || c != pat->length()) {
1510      return false;
1511     }
1512 
1513     receiver = null_check(receiver, T_OBJECT);
1514     // NOTE: No null check on the argument is needed since it's a constant String oop.
1515     if (stopped()) {
1516       return true;
1517     }
1518 
1519     // The null string as a pattern always returns 0 (match at beginning of string)
1520     if (c == 0) {
1521       set_result(intcon(0));
1522       return true;
1523     }
1524 
1525     // Generate default indexOf
1526     jchar lastChar = pat->char_at(o + (c - 1));
1527     int cache = 0;
1528     int i;
1529     for (i = 0; i < c - 1; i++) {
1530       assert(i < pat->length(), "out of range");
1531       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1532     }
1533 
1534     int md2 = c;
1535     for (i = 0; i < c - 1; i++) {
1536       assert(i < pat->length(), "out of range");
1537       if (pat->char_at(o + i) == lastChar) {
1538         md2 = (c - 1) - i;
1539       }
1540     }
1541 
1542     result = string_indexOf(receiver, pat, o, cache, md2);
1543   }
1544   set_result(result);
1545   return true;
1546 }
1547 
1548 //--------------------------round_double_node--------------------------------
1549 // Round a double node if necessary.
1550 Node* LibraryCallKit::round_double_node(Node* n) {
1551   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1552     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1553   return n;
1554 }
1555 
1556 //------------------------------inline_math-----------------------------------
1557 // public static double Math.abs(double)
1558 // public static double Math.sqrt(double)
1559 // public static double Math.log(double)
1560 // public static double Math.log10(double)
1561 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1562   Node* arg = round_double_node(argument(0));
1563   Node* n;
1564   switch (id) {
1565   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1566   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1567   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1568   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1569   default:  fatal_unexpected_iid(id);  break;
1570   }
1571   set_result(_gvn.transform(n));
1572   return true;
1573 }
1574 
1575 //------------------------------inline_trig----------------------------------
1576 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1577 // argument reduction which will turn into a fast/slow diamond.
1578 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1579   Node* arg = round_double_node(argument(0));
1580   Node* n = NULL;
1581 
1582   switch (id) {
1583   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1584   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1585   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1586   default:  fatal_unexpected_iid(id);  break;
1587   }
1588   n = _gvn.transform(n);
1589 
1590   // Rounding required?  Check for argument reduction!
1591   if (Matcher::strict_fp_requires_explicit_rounding) {
1592     static const double     pi_4 =  0.7853981633974483;
1593     static const double neg_pi_4 = -0.7853981633974483;
1594     // pi/2 in 80-bit extended precision
1595     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1596     // -pi/2 in 80-bit extended precision
1597     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1598     // Cutoff value for using this argument reduction technique
1599     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1600     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1601 
1602     // Pseudocode for sin:
1603     // if (x <= Math.PI / 4.0) {
1604     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1605     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1606     // } else {
1607     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1608     // }
1609     // return StrictMath.sin(x);
1610 
1611     // Pseudocode for cos:
1612     // if (x <= Math.PI / 4.0) {
1613     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1614     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1615     // } else {
1616     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1617     // }
1618     // return StrictMath.cos(x);
1619 
1620     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1621     // requires a special machine instruction to load it.  Instead we'll try
1622     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1623     // probably do the math inside the SIN encoding.
1624 
1625     // Make the merge point
1626     RegionNode* r = new (C) RegionNode(3);
1627     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1628 
1629     // Flatten arg so we need only 1 test
1630     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1631     // Node for PI/4 constant
1632     Node *pi4 = makecon(TypeD::make(pi_4));
1633     // Check PI/4 : abs(arg)
1634     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1635     // Check: If PI/4 < abs(arg) then go slow
1636     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1637     // Branch either way
1638     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1639     set_control(opt_iff(r,iff));
1640 
1641     // Set fast path result
1642     phi->init_req(2, n);
1643 
1644     // Slow path - non-blocking leaf call
1645     Node* call = NULL;
1646     switch (id) {
1647     case vmIntrinsics::_dsin:
1648       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1649                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1650                                "Sin", NULL, arg, top());
1651       break;
1652     case vmIntrinsics::_dcos:
1653       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1654                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1655                                "Cos", NULL, arg, top());
1656       break;
1657     case vmIntrinsics::_dtan:
1658       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1659                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1660                                "Tan", NULL, arg, top());
1661       break;
1662     }
1663     assert(control()->in(0) == call, "");
1664     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1665     r->init_req(1, control());
1666     phi->init_req(1, slow_result);
1667 
1668     // Post-merge
1669     set_control(_gvn.transform(r));
1670     record_for_igvn(r);
1671     n = _gvn.transform(phi);
1672 
1673     C->set_has_split_ifs(true); // Has chance for split-if optimization
1674   }
1675   set_result(n);
1676   return true;
1677 }
1678 
1679 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1680   //-------------------
1681   //result=(result.isNaN())? funcAddr():result;
1682   // Check: If isNaN() by checking result!=result? then either trap
1683   // or go to runtime
1684   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1685   // Build the boolean node
1686   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1687 
1688   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1689     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1690       // The pow or exp intrinsic returned a NaN, which requires a call
1691       // to the runtime.  Recompile with the runtime call.
1692       uncommon_trap(Deoptimization::Reason_intrinsic,
1693                     Deoptimization::Action_make_not_entrant);
1694     }
1695     set_result(result);
1696   } else {
1697     // If this inlining ever returned NaN in the past, we compile a call
1698     // to the runtime to properly handle corner cases
1699 
1700     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1701     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1702     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1703 
1704     if (!if_slow->is_top()) {
1705       RegionNode* result_region = new (C) RegionNode(3);
1706       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1707 
1708       result_region->init_req(1, if_fast);
1709       result_val->init_req(1, result);
1710 
1711       set_control(if_slow);
1712 
1713       const TypePtr* no_memory_effects = NULL;
1714       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1715                                    no_memory_effects,
1716                                    x, top(), y, y ? top() : NULL);
1717       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1718 #ifdef ASSERT
1719       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1720       assert(value_top == top(), "second value must be top");
1721 #endif
1722 
1723       result_region->init_req(2, control());
1724       result_val->init_req(2, value);
1725       set_result(result_region, result_val);
1726     } else {
1727       set_result(result);
1728     }
1729   }
1730 }
1731 
1732 //------------------------------inline_exp-------------------------------------
1733 // Inline exp instructions, if possible.  The Intel hardware only misses
1734 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1735 bool LibraryCallKit::inline_exp() {
1736   Node* arg = round_double_node(argument(0));
1737   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1738 
1739   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1740 
1741   C->set_has_split_ifs(true); // Has chance for split-if optimization
1742   return true;
1743 }
1744 
1745 //------------------------------inline_pow-------------------------------------
1746 // Inline power instructions, if possible.
1747 bool LibraryCallKit::inline_pow() {
1748   // Pseudocode for pow
1749   // if (x <= 0.0) {
1750   //   long longy = (long)y;
1751   //   if ((double)longy == y) { // if y is long
1752   //     if (y + 1 == y) longy = 0; // huge number: even
1753   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1754   //   } else {
1755   //     result = NaN;
1756   //   }
1757   // } else {
1758   //   result = DPow(x,y);
1759   // }
1760   // if (result != result)?  {
1761   //   result = uncommon_trap() or runtime_call();
1762   // }
1763   // return result;
1764 
1765   Node* x = round_double_node(argument(0));
1766   Node* y = round_double_node(argument(2));
1767 
1768   Node* result = NULL;
1769 
1770   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1771     // Short form: skip the fancy tests and just check for NaN result.
1772     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1773   } else {
1774     // If this inlining ever returned NaN in the past, include all
1775     // checks + call to the runtime.
1776 
1777     // Set the merge point for If node with condition of (x <= 0.0)
1778     // There are four possible paths to region node and phi node
1779     RegionNode *r = new (C) RegionNode(4);
1780     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1781 
1782     // Build the first if node: if (x <= 0.0)
1783     // Node for 0 constant
1784     Node *zeronode = makecon(TypeD::ZERO);
1785     // Check x:0
1786     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1787     // Check: If (x<=0) then go complex path
1788     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1789     // Branch either way
1790     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1791     // Fast path taken; set region slot 3
1792     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1793     r->init_req(3,fast_taken); // Capture fast-control
1794 
1795     // Fast path not-taken, i.e. slow path
1796     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1797 
1798     // Set fast path result
1799     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1800     phi->init_req(3, fast_result);
1801 
1802     // Complex path
1803     // Build the second if node (if y is long)
1804     // Node for (long)y
1805     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1806     // Node for (double)((long) y)
1807     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1808     // Check (double)((long) y) : y
1809     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1810     // Check if (y isn't long) then go to slow path
1811 
1812     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1813     // Branch either way
1814     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1815     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1816 
1817     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1818 
1819     // Calculate DPow(abs(x), y)*(1 & (long)y)
1820     // Node for constant 1
1821     Node *conone = longcon(1);
1822     // 1& (long)y
1823     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1824 
1825     // A huge number is always even. Detect a huge number by checking
1826     // if y + 1 == y and set integer to be tested for parity to 0.
1827     // Required for corner case:
1828     // (long)9.223372036854776E18 = max_jlong
1829     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1830     // max_jlong is odd but 9.223372036854776E18 is even
1831     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1832     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1833     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1834     Node* correctedsign = NULL;
1835     if (ConditionalMoveLimit != 0) {
1836       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1837     } else {
1838       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1839       RegionNode *r = new (C) RegionNode(3);
1840       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1841       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1842       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1843       phi->init_req(1, signnode);
1844       phi->init_req(2, longcon(0));
1845       correctedsign = _gvn.transform(phi);
1846       ylong_path = _gvn.transform(r);
1847       record_for_igvn(r);
1848     }
1849 
1850     // zero node
1851     Node *conzero = longcon(0);
1852     // Check (1&(long)y)==0?
1853     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1854     // Check if (1&(long)y)!=0?, if so the result is negative
1855     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1856     // abs(x)
1857     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1858     // abs(x)^y
1859     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1860     // -abs(x)^y
1861     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1862     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1863     Node *signresult = NULL;
1864     if (ConditionalMoveLimit != 0) {
1865       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1866     } else {
1867       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1868       RegionNode *r = new (C) RegionNode(3);
1869       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1870       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1871       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1872       phi->init_req(1, absxpowy);
1873       phi->init_req(2, negabsxpowy);
1874       signresult = _gvn.transform(phi);
1875       ylong_path = _gvn.transform(r);
1876       record_for_igvn(r);
1877     }
1878     // Set complex path fast result
1879     r->init_req(2, ylong_path);
1880     phi->init_req(2, signresult);
1881 
1882     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1883     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1884     r->init_req(1,slow_path);
1885     phi->init_req(1,slow_result);
1886 
1887     // Post merge
1888     set_control(_gvn.transform(r));
1889     record_for_igvn(r);
1890     result = _gvn.transform(phi);
1891   }
1892 
1893   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1894 
1895   C->set_has_split_ifs(true); // Has chance for split-if optimization
1896   return true;
1897 }
1898 
1899 //------------------------------runtime_math-----------------------------
1900 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1901   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1902          "must be (DD)D or (D)D type");
1903 
1904   // Inputs
1905   Node* a = round_double_node(argument(0));
1906   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1907 
1908   const TypePtr* no_memory_effects = NULL;
1909   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1910                                  no_memory_effects,
1911                                  a, top(), b, b ? top() : NULL);
1912   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1913 #ifdef ASSERT
1914   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1915   assert(value_top == top(), "second value must be top");
1916 #endif
1917 
1918   set_result(value);
1919   return true;
1920 }
1921 
1922 //------------------------------inline_math_native-----------------------------
1923 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1924 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1925   switch (id) {
1926     // These intrinsics are not properly supported on all hardware
1927   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1928     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1929   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1930     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1931   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1932     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1933 
1934   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1935     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1936   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1937     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1938 
1939     // These intrinsics are supported on all hardware
1940   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1941   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1942 
1943   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1944     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1945   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1946     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1947 #undef FN_PTR
1948 
1949    // These intrinsics are not yet correctly implemented
1950   case vmIntrinsics::_datan2:
1951     return false;
1952 
1953   default:
1954     fatal_unexpected_iid(id);
1955     return false;
1956   }
1957 }
1958 
1959 static bool is_simple_name(Node* n) {
1960   return (n->req() == 1         // constant
1961           || (n->is_Type() && n->as_Type()->type()->singleton())
1962           || n->is_Proj()       // parameter or return value
1963           || n->is_Phi()        // local of some sort
1964           );
1965 }
1966 
1967 //----------------------------inline_min_max-----------------------------------
1968 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1969   set_result(generate_min_max(id, argument(0), argument(1)));
1970   return true;
1971 }
1972 
1973 void LibraryCallKit::inline_math_mathExact(Node* math) {
1974   // If we didn't get the expected opcode it means we have optimized
1975   // the node to something else and don't need the exception edge.
1976   if (!math->is_MathExact()) {
1977     set_result(math);
1978     return;
1979   }
1980 
1981   Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
1982   Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
1983 
1984   Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
1985   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1986   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1987   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1988 
1989   {
1990     PreserveJVMState pjvms(this);
1991     PreserveReexecuteState preexecs(this);
1992     jvms()->set_should_reexecute(true);
1993 
1994     set_control(slow_path);
1995     set_i_o(i_o());
1996 
1997     uncommon_trap(Deoptimization::Reason_intrinsic,
1998                   Deoptimization::Action_none);
1999   }
2000 
2001   set_control(fast_path);
2002   set_result(result);
2003 }
2004 
2005 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2006   Node* arg1 = argument(0);
2007   Node* arg2 = NULL;
2008 
2009   if (is_increment) {
2010     arg2 = intcon(1);
2011   } else {
2012     arg2 = argument(1);
2013   }
2014 
2015   Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
2016   inline_math_mathExact(add);
2017   return true;
2018 }
2019 
2020 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2021   Node* arg1 = argument(0); // type long
2022   // argument(1) == TOP
2023   Node* arg2 = NULL;
2024 
2025   if (is_increment) {
2026     arg2 = longcon(1);
2027   } else {
2028     arg2 = argument(2); // type long
2029     // argument(3) == TOP
2030   }
2031 
2032   Node* add = _gvn.transform(new(C) AddExactLNode(NULL, arg1, arg2));
2033   inline_math_mathExact(add);
2034   return true;
2035 }
2036 
2037 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2038   Node* arg1 = argument(0);
2039   Node* arg2 = NULL;
2040 
2041   if (is_decrement) {
2042     arg2 = intcon(1);
2043   } else {
2044     arg2 = argument(1);
2045   }
2046 
2047   Node* sub = _gvn.transform(new(C) SubExactINode(NULL, arg1, arg2));
2048   inline_math_mathExact(sub);
2049   return true;
2050 }
2051 
2052 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2053   Node* arg1 = argument(0); // type long
2054   // argument(1) == TOP
2055   Node* arg2 = NULL;
2056 
2057   if (is_decrement) {
2058     arg2 = longcon(1);
2059   } else {
2060     arg2 = argument(2); // type long
2061     // argument(3) == TOP
2062   }
2063 
2064   Node* sub = _gvn.transform(new(C) SubExactLNode(NULL, arg1, arg2));
2065   inline_math_mathExact(sub);
2066   return true;
2067 }
2068 
2069 bool LibraryCallKit::inline_math_negateExactI() {
2070   Node* arg1 = argument(0);
2071 
2072   Node* neg = _gvn.transform(new(C) NegExactINode(NULL, arg1));
2073   inline_math_mathExact(neg);
2074   return true;
2075 }
2076 
2077 bool LibraryCallKit::inline_math_negateExactL() {
2078   Node* arg1 = argument(0);
2079   // argument(1) == TOP
2080 
2081   Node* neg = _gvn.transform(new(C) NegExactLNode(NULL, arg1));
2082   inline_math_mathExact(neg);
2083   return true;
2084 }
2085 
2086 bool LibraryCallKit::inline_math_multiplyExactI() {
2087   Node* arg1 = argument(0);
2088   Node* arg2 = argument(1);
2089 
2090   Node* mul = _gvn.transform(new(C) MulExactINode(NULL, arg1, arg2));
2091   inline_math_mathExact(mul);
2092   return true;
2093 }
2094 
2095 bool LibraryCallKit::inline_math_multiplyExactL() {
2096   Node* arg1 = argument(0);
2097   // argument(1) == TOP
2098   Node* arg2 = argument(2);
2099   // argument(3) == TOP
2100 
2101   Node* mul = _gvn.transform(new(C) MulExactLNode(NULL, arg1, arg2));
2102   inline_math_mathExact(mul);
2103   return true;
2104 }
2105 
2106 Node*
2107 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2108   // These are the candidate return value:
2109   Node* xvalue = x0;
2110   Node* yvalue = y0;
2111 
2112   if (xvalue == yvalue) {
2113     return xvalue;
2114   }
2115 
2116   bool want_max = (id == vmIntrinsics::_max);
2117 
2118   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2119   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2120   if (txvalue == NULL || tyvalue == NULL)  return top();
2121   // This is not really necessary, but it is consistent with a
2122   // hypothetical MaxINode::Value method:
2123   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2124 
2125   // %%% This folding logic should (ideally) be in a different place.
2126   // Some should be inside IfNode, and there to be a more reliable
2127   // transformation of ?: style patterns into cmoves.  We also want
2128   // more powerful optimizations around cmove and min/max.
2129 
2130   // Try to find a dominating comparison of these guys.
2131   // It can simplify the index computation for Arrays.copyOf
2132   // and similar uses of System.arraycopy.
2133   // First, compute the normalized version of CmpI(x, y).
2134   int   cmp_op = Op_CmpI;
2135   Node* xkey = xvalue;
2136   Node* ykey = yvalue;
2137   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2138   if (ideal_cmpxy->is_Cmp()) {
2139     // E.g., if we have CmpI(length - offset, count),
2140     // it might idealize to CmpI(length, count + offset)
2141     cmp_op = ideal_cmpxy->Opcode();
2142     xkey = ideal_cmpxy->in(1);
2143     ykey = ideal_cmpxy->in(2);
2144   }
2145 
2146   // Start by locating any relevant comparisons.
2147   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2148   Node* cmpxy = NULL;
2149   Node* cmpyx = NULL;
2150   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2151     Node* cmp = start_from->fast_out(k);
2152     if (cmp->outcnt() > 0 &&            // must have prior uses
2153         cmp->in(0) == NULL &&           // must be context-independent
2154         cmp->Opcode() == cmp_op) {      // right kind of compare
2155       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2156       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2157     }
2158   }
2159 
2160   const int NCMPS = 2;
2161   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2162   int cmpn;
2163   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2164     if (cmps[cmpn] != NULL)  break;     // find a result
2165   }
2166   if (cmpn < NCMPS) {
2167     // Look for a dominating test that tells us the min and max.
2168     int depth = 0;                // Limit search depth for speed
2169     Node* dom = control();
2170     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2171       if (++depth >= 100)  break;
2172       Node* ifproj = dom;
2173       if (!ifproj->is_Proj())  continue;
2174       Node* iff = ifproj->in(0);
2175       if (!iff->is_If())  continue;
2176       Node* bol = iff->in(1);
2177       if (!bol->is_Bool())  continue;
2178       Node* cmp = bol->in(1);
2179       if (cmp == NULL)  continue;
2180       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2181         if (cmps[cmpn] == cmp)  break;
2182       if (cmpn == NCMPS)  continue;
2183       BoolTest::mask btest = bol->as_Bool()->_test._test;
2184       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2185       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2186       // At this point, we know that 'x btest y' is true.
2187       switch (btest) {
2188       case BoolTest::eq:
2189         // They are proven equal, so we can collapse the min/max.
2190         // Either value is the answer.  Choose the simpler.
2191         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2192           return yvalue;
2193         return xvalue;
2194       case BoolTest::lt:          // x < y
2195       case BoolTest::le:          // x <= y
2196         return (want_max ? yvalue : xvalue);
2197       case BoolTest::gt:          // x > y
2198       case BoolTest::ge:          // x >= y
2199         return (want_max ? xvalue : yvalue);
2200       }
2201     }
2202   }
2203 
2204   // We failed to find a dominating test.
2205   // Let's pick a test that might GVN with prior tests.
2206   Node*          best_bol   = NULL;
2207   BoolTest::mask best_btest = BoolTest::illegal;
2208   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2209     Node* cmp = cmps[cmpn];
2210     if (cmp == NULL)  continue;
2211     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2212       Node* bol = cmp->fast_out(j);
2213       if (!bol->is_Bool())  continue;
2214       BoolTest::mask btest = bol->as_Bool()->_test._test;
2215       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2216       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2217       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2218         best_bol   = bol->as_Bool();
2219         best_btest = btest;
2220       }
2221     }
2222   }
2223 
2224   Node* answer_if_true  = NULL;
2225   Node* answer_if_false = NULL;
2226   switch (best_btest) {
2227   default:
2228     if (cmpxy == NULL)
2229       cmpxy = ideal_cmpxy;
2230     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2231     // and fall through:
2232   case BoolTest::lt:          // x < y
2233   case BoolTest::le:          // x <= y
2234     answer_if_true  = (want_max ? yvalue : xvalue);
2235     answer_if_false = (want_max ? xvalue : yvalue);
2236     break;
2237   case BoolTest::gt:          // x > y
2238   case BoolTest::ge:          // x >= y
2239     answer_if_true  = (want_max ? xvalue : yvalue);
2240     answer_if_false = (want_max ? yvalue : xvalue);
2241     break;
2242   }
2243 
2244   jint hi, lo;
2245   if (want_max) {
2246     // We can sharpen the minimum.
2247     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2248     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2249   } else {
2250     // We can sharpen the maximum.
2251     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2252     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2253   }
2254 
2255   // Use a flow-free graph structure, to avoid creating excess control edges
2256   // which could hinder other optimizations.
2257   // Since Math.min/max is often used with arraycopy, we want
2258   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2259   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2260                                answer_if_false, answer_if_true,
2261                                TypeInt::make(lo, hi, widen));
2262 
2263   return _gvn.transform(cmov);
2264 
2265   /*
2266   // This is not as desirable as it may seem, since Min and Max
2267   // nodes do not have a full set of optimizations.
2268   // And they would interfere, anyway, with 'if' optimizations
2269   // and with CMoveI canonical forms.
2270   switch (id) {
2271   case vmIntrinsics::_min:
2272     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2273   case vmIntrinsics::_max:
2274     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2275   default:
2276     ShouldNotReachHere();
2277   }
2278   */
2279 }
2280 
2281 inline int
2282 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2283   const TypePtr* base_type = TypePtr::NULL_PTR;
2284   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2285   if (base_type == NULL) {
2286     // Unknown type.
2287     return Type::AnyPtr;
2288   } else if (base_type == TypePtr::NULL_PTR) {
2289     // Since this is a NULL+long form, we have to switch to a rawptr.
2290     base   = _gvn.transform(new (C) CastX2PNode(offset));
2291     offset = MakeConX(0);
2292     return Type::RawPtr;
2293   } else if (base_type->base() == Type::RawPtr) {
2294     return Type::RawPtr;
2295   } else if (base_type->isa_oopptr()) {
2296     // Base is never null => always a heap address.
2297     if (base_type->ptr() == TypePtr::NotNull) {
2298       return Type::OopPtr;
2299     }
2300     // Offset is small => always a heap address.
2301     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2302     if (offset_type != NULL &&
2303         base_type->offset() == 0 &&     // (should always be?)
2304         offset_type->_lo >= 0 &&
2305         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2306       return Type::OopPtr;
2307     }
2308     // Otherwise, it might either be oop+off or NULL+addr.
2309     return Type::AnyPtr;
2310   } else {
2311     // No information:
2312     return Type::AnyPtr;
2313   }
2314 }
2315 
2316 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2317   int kind = classify_unsafe_addr(base, offset);
2318   if (kind == Type::RawPtr) {
2319     return basic_plus_adr(top(), base, offset);
2320   } else {
2321     return basic_plus_adr(base, offset);
2322   }
2323 }
2324 
2325 //--------------------------inline_number_methods-----------------------------
2326 // inline int     Integer.numberOfLeadingZeros(int)
2327 // inline int        Long.numberOfLeadingZeros(long)
2328 //
2329 // inline int     Integer.numberOfTrailingZeros(int)
2330 // inline int        Long.numberOfTrailingZeros(long)
2331 //
2332 // inline int     Integer.bitCount(int)
2333 // inline int        Long.bitCount(long)
2334 //
2335 // inline char  Character.reverseBytes(char)
2336 // inline short     Short.reverseBytes(short)
2337 // inline int     Integer.reverseBytes(int)
2338 // inline long       Long.reverseBytes(long)
2339 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2340   Node* arg = argument(0);
2341   Node* n;
2342   switch (id) {
2343   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2344   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2345   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2346   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2347   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2348   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2349   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2350   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2351   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2352   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2353   default:  fatal_unexpected_iid(id);  break;
2354   }
2355   set_result(_gvn.transform(n));
2356   return true;
2357 }
2358 
2359 //----------------------------inline_unsafe_access----------------------------
2360 
2361 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2362 
2363 // Helper that guards and inserts a pre-barrier.
2364 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2365                                         Node* pre_val, bool need_mem_bar) {
2366   // We could be accessing the referent field of a reference object. If so, when G1
2367   // is enabled, we need to log the value in the referent field in an SATB buffer.
2368   // This routine performs some compile time filters and generates suitable
2369   // runtime filters that guard the pre-barrier code.
2370   // Also add memory barrier for non volatile load from the referent field
2371   // to prevent commoning of loads across safepoint.
2372   if (!UseG1GC && !need_mem_bar)
2373     return;
2374 
2375   // Some compile time checks.
2376 
2377   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2378   const TypeX* otype = offset->find_intptr_t_type();
2379   if (otype != NULL && otype->is_con() &&
2380       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2381     // Constant offset but not the reference_offset so just return
2382     return;
2383   }
2384 
2385   // We only need to generate the runtime guards for instances.
2386   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2387   if (btype != NULL) {
2388     if (btype->isa_aryptr()) {
2389       // Array type so nothing to do
2390       return;
2391     }
2392 
2393     const TypeInstPtr* itype = btype->isa_instptr();
2394     if (itype != NULL) {
2395       // Can the klass of base_oop be statically determined to be
2396       // _not_ a sub-class of Reference and _not_ Object?
2397       ciKlass* klass = itype->klass();
2398       if ( klass->is_loaded() &&
2399           !klass->is_subtype_of(env()->Reference_klass()) &&
2400           !env()->Object_klass()->is_subtype_of(klass)) {
2401         return;
2402       }
2403     }
2404   }
2405 
2406   // The compile time filters did not reject base_oop/offset so
2407   // we need to generate the following runtime filters
2408   //
2409   // if (offset == java_lang_ref_Reference::_reference_offset) {
2410   //   if (instance_of(base, java.lang.ref.Reference)) {
2411   //     pre_barrier(_, pre_val, ...);
2412   //   }
2413   // }
2414 
2415   float likely   = PROB_LIKELY(  0.999);
2416   float unlikely = PROB_UNLIKELY(0.999);
2417 
2418   IdealKit ideal(this);
2419 #define __ ideal.
2420 
2421   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2422 
2423   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2424       // Update graphKit memory and control from IdealKit.
2425       sync_kit(ideal);
2426 
2427       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2428       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2429 
2430       // Update IdealKit memory and control from graphKit.
2431       __ sync_kit(this);
2432 
2433       Node* one = __ ConI(1);
2434       // is_instof == 0 if base_oop == NULL
2435       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2436 
2437         // Update graphKit from IdeakKit.
2438         sync_kit(ideal);
2439 
2440         // Use the pre-barrier to record the value in the referent field
2441         pre_barrier(false /* do_load */,
2442                     __ ctrl(),
2443                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2444                     pre_val /* pre_val */,
2445                     T_OBJECT);
2446         if (need_mem_bar) {
2447           // Add memory barrier to prevent commoning reads from this field
2448           // across safepoint since GC can change its value.
2449           insert_mem_bar(Op_MemBarCPUOrder);
2450         }
2451         // Update IdealKit from graphKit.
2452         __ sync_kit(this);
2453 
2454       } __ end_if(); // _ref_type != ref_none
2455   } __ end_if(); // offset == referent_offset
2456 
2457   // Final sync IdealKit and GraphKit.
2458   final_sync(ideal);
2459 #undef __
2460 }
2461 
2462 
2463 // Interpret Unsafe.fieldOffset cookies correctly:
2464 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2465 
2466 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2467   // Attempt to infer a sharper value type from the offset and base type.
2468   ciKlass* sharpened_klass = NULL;
2469 
2470   // See if it is an instance field, with an object type.
2471   if (alias_type->field() != NULL) {
2472     assert(!is_native_ptr, "native pointer op cannot use a java address");
2473     if (alias_type->field()->type()->is_klass()) {
2474       sharpened_klass = alias_type->field()->type()->as_klass();
2475     }
2476   }
2477 
2478   // See if it is a narrow oop array.
2479   if (adr_type->isa_aryptr()) {
2480     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2481       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2482       if (elem_type != NULL) {
2483         sharpened_klass = elem_type->klass();
2484       }
2485     }
2486   }
2487 
2488   // The sharpened class might be unloaded if there is no class loader
2489   // contraint in place.
2490   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2491     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2492 
2493 #ifndef PRODUCT
2494     if (C->print_intrinsics() || C->print_inlining()) {
2495       tty->print("  from base type: ");  adr_type->dump();
2496       tty->print("  sharpened value: ");  tjp->dump();
2497     }
2498 #endif
2499     // Sharpen the value type.
2500     return tjp;
2501   }
2502   return NULL;
2503 }
2504 
2505 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2506   if (callee()->is_static())  return false;  // caller must have the capability!
2507 
2508 #ifndef PRODUCT
2509   {
2510     ResourceMark rm;
2511     // Check the signatures.
2512     ciSignature* sig = callee()->signature();
2513 #ifdef ASSERT
2514     if (!is_store) {
2515       // Object getObject(Object base, int/long offset), etc.
2516       BasicType rtype = sig->return_type()->basic_type();
2517       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2518           rtype = T_ADDRESS;  // it is really a C void*
2519       assert(rtype == type, "getter must return the expected value");
2520       if (!is_native_ptr) {
2521         assert(sig->count() == 2, "oop getter has 2 arguments");
2522         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2523         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2524       } else {
2525         assert(sig->count() == 1, "native getter has 1 argument");
2526         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2527       }
2528     } else {
2529       // void putObject(Object base, int/long offset, Object x), etc.
2530       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2531       if (!is_native_ptr) {
2532         assert(sig->count() == 3, "oop putter has 3 arguments");
2533         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2534         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2535       } else {
2536         assert(sig->count() == 2, "native putter has 2 arguments");
2537         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2538       }
2539       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2540       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2541         vtype = T_ADDRESS;  // it is really a C void*
2542       assert(vtype == type, "putter must accept the expected value");
2543     }
2544 #endif // ASSERT
2545  }
2546 #endif //PRODUCT
2547 
2548   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2549 
2550   Node* receiver = argument(0);  // type: oop
2551 
2552   // Build address expression.  See the code in inline_unsafe_prefetch.
2553   Node* adr;
2554   Node* heap_base_oop = top();
2555   Node* offset = top();
2556   Node* val;
2557 
2558   if (!is_native_ptr) {
2559     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2560     Node* base = argument(1);  // type: oop
2561     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2562     offset = argument(2);  // type: long
2563     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2564     // to be plain byte offsets, which are also the same as those accepted
2565     // by oopDesc::field_base.
2566     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2567            "fieldOffset must be byte-scaled");
2568     // 32-bit machines ignore the high half!
2569     offset = ConvL2X(offset);
2570     adr = make_unsafe_address(base, offset);
2571     heap_base_oop = base;
2572     val = is_store ? argument(4) : NULL;
2573   } else {
2574     Node* ptr = argument(1);  // type: long
2575     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2576     adr = make_unsafe_address(NULL, ptr);
2577     val = is_store ? argument(3) : NULL;
2578   }
2579 
2580   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2581 
2582   // First guess at the value type.
2583   const Type *value_type = Type::get_const_basic_type(type);
2584 
2585   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2586   // there was not enough information to nail it down.
2587   Compile::AliasType* alias_type = C->alias_type(adr_type);
2588   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2589 
2590   // We will need memory barriers unless we can determine a unique
2591   // alias category for this reference.  (Note:  If for some reason
2592   // the barriers get omitted and the unsafe reference begins to "pollute"
2593   // the alias analysis of the rest of the graph, either Compile::can_alias
2594   // or Compile::must_alias will throw a diagnostic assert.)
2595   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2596 
2597   // If we are reading the value of the referent field of a Reference
2598   // object (either by using Unsafe directly or through reflection)
2599   // then, if G1 is enabled, we need to record the referent in an
2600   // SATB log buffer using the pre-barrier mechanism.
2601   // Also we need to add memory barrier to prevent commoning reads
2602   // from this field across safepoint since GC can change its value.
2603   bool need_read_barrier = !is_native_ptr && !is_store &&
2604                            offset != top() && heap_base_oop != top();
2605 
2606   if (!is_store && type == T_OBJECT) {
2607     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2608     if (tjp != NULL) {
2609       value_type = tjp;
2610     }
2611   }
2612 
2613   receiver = null_check(receiver);
2614   if (stopped()) {
2615     return true;
2616   }
2617   // Heap pointers get a null-check from the interpreter,
2618   // as a courtesy.  However, this is not guaranteed by Unsafe,
2619   // and it is not possible to fully distinguish unintended nulls
2620   // from intended ones in this API.
2621 
2622   if (is_volatile) {
2623     // We need to emit leading and trailing CPU membars (see below) in
2624     // addition to memory membars when is_volatile. This is a little
2625     // too strong, but avoids the need to insert per-alias-type
2626     // volatile membars (for stores; compare Parse::do_put_xxx), which
2627     // we cannot do effectively here because we probably only have a
2628     // rough approximation of type.
2629     need_mem_bar = true;
2630     // For Stores, place a memory ordering barrier now.
2631     if (is_store) {
2632       insert_mem_bar(Op_MemBarRelease);
2633     } else {
2634       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2635         insert_mem_bar(Op_MemBarVolatile);
2636       }
2637     }
2638   }
2639 
2640   // Memory barrier to prevent normal and 'unsafe' accesses from
2641   // bypassing each other.  Happens after null checks, so the
2642   // exception paths do not take memory state from the memory barrier,
2643   // so there's no problems making a strong assert about mixing users
2644   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2645   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2646   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2647 
2648   if (!is_store) {
2649     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2650     // load value
2651     switch (type) {
2652     case T_BOOLEAN:
2653     case T_CHAR:
2654     case T_BYTE:
2655     case T_SHORT:
2656     case T_INT:
2657     case T_LONG:
2658     case T_FLOAT:
2659     case T_DOUBLE:
2660       break;
2661     case T_OBJECT:
2662       if (need_read_barrier) {
2663         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2664       }
2665       break;
2666     case T_ADDRESS:
2667       // Cast to an int type.
2668       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2669       p = ConvX2L(p);
2670       break;
2671     default:
2672       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2673       break;
2674     }
2675     // The load node has the control of the preceding MemBarCPUOrder.  All
2676     // following nodes will have the control of the MemBarCPUOrder inserted at
2677     // the end of this method.  So, pushing the load onto the stack at a later
2678     // point is fine.
2679     set_result(p);
2680   } else {
2681     // place effect of store into memory
2682     switch (type) {
2683     case T_DOUBLE:
2684       val = dstore_rounding(val);
2685       break;
2686     case T_ADDRESS:
2687       // Repackage the long as a pointer.
2688       val = ConvL2X(val);
2689       val = _gvn.transform(new (C) CastX2PNode(val));
2690       break;
2691     }
2692 
2693     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2694     if (type != T_OBJECT ) {
2695       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2696     } else {
2697       // Possibly an oop being stored to Java heap or native memory
2698       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2699         // oop to Java heap.
2700         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2701       } else {
2702         // We can't tell at compile time if we are storing in the Java heap or outside
2703         // of it. So we need to emit code to conditionally do the proper type of
2704         // store.
2705 
2706         IdealKit ideal(this);
2707 #define __ ideal.
2708         // QQQ who knows what probability is here??
2709         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2710           // Sync IdealKit and graphKit.
2711           sync_kit(ideal);
2712           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2713           // Update IdealKit memory.
2714           __ sync_kit(this);
2715         } __ else_(); {
2716           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2717         } __ end_if();
2718         // Final sync IdealKit and GraphKit.
2719         final_sync(ideal);
2720 #undef __
2721       }
2722     }
2723   }
2724 
2725   if (is_volatile) {
2726     if (!is_store) {
2727       insert_mem_bar(Op_MemBarAcquire);
2728     } else {
2729       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2730         insert_mem_bar(Op_MemBarVolatile);
2731       }
2732     }
2733   }
2734 
2735   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2736 
2737   return true;
2738 }
2739 
2740 //----------------------------inline_unsafe_prefetch----------------------------
2741 
2742 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2743 #ifndef PRODUCT
2744   {
2745     ResourceMark rm;
2746     // Check the signatures.
2747     ciSignature* sig = callee()->signature();
2748 #ifdef ASSERT
2749     // Object getObject(Object base, int/long offset), etc.
2750     BasicType rtype = sig->return_type()->basic_type();
2751     if (!is_native_ptr) {
2752       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2753       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2754       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2755     } else {
2756       assert(sig->count() == 1, "native prefetch has 1 argument");
2757       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2758     }
2759 #endif // ASSERT
2760   }
2761 #endif // !PRODUCT
2762 
2763   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2764 
2765   const int idx = is_static ? 0 : 1;
2766   if (!is_static) {
2767     null_check_receiver();
2768     if (stopped()) {
2769       return true;
2770     }
2771   }
2772 
2773   // Build address expression.  See the code in inline_unsafe_access.
2774   Node *adr;
2775   if (!is_native_ptr) {
2776     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2777     Node* base   = argument(idx + 0);  // type: oop
2778     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2779     Node* offset = argument(idx + 1);  // type: long
2780     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2781     // to be plain byte offsets, which are also the same as those accepted
2782     // by oopDesc::field_base.
2783     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2784            "fieldOffset must be byte-scaled");
2785     // 32-bit machines ignore the high half!
2786     offset = ConvL2X(offset);
2787     adr = make_unsafe_address(base, offset);
2788   } else {
2789     Node* ptr = argument(idx + 0);  // type: long
2790     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2791     adr = make_unsafe_address(NULL, ptr);
2792   }
2793 
2794   // Generate the read or write prefetch
2795   Node *prefetch;
2796   if (is_store) {
2797     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2798   } else {
2799     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2800   }
2801   prefetch->init_req(0, control());
2802   set_i_o(_gvn.transform(prefetch));
2803 
2804   return true;
2805 }
2806 
2807 //----------------------------inline_unsafe_load_store----------------------------
2808 // This method serves a couple of different customers (depending on LoadStoreKind):
2809 //
2810 // LS_cmpxchg:
2811 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2812 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2813 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2814 //
2815 // LS_xadd:
2816 //   public int  getAndAddInt( Object o, long offset, int  delta)
2817 //   public long getAndAddLong(Object o, long offset, long delta)
2818 //
2819 // LS_xchg:
2820 //   int    getAndSet(Object o, long offset, int    newValue)
2821 //   long   getAndSet(Object o, long offset, long   newValue)
2822 //   Object getAndSet(Object o, long offset, Object newValue)
2823 //
2824 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2825   // This basic scheme here is the same as inline_unsafe_access, but
2826   // differs in enough details that combining them would make the code
2827   // overly confusing.  (This is a true fact! I originally combined
2828   // them, but even I was confused by it!) As much code/comments as
2829   // possible are retained from inline_unsafe_access though to make
2830   // the correspondences clearer. - dl
2831 
2832   if (callee()->is_static())  return false;  // caller must have the capability!
2833 
2834 #ifndef PRODUCT
2835   BasicType rtype;
2836   {
2837     ResourceMark rm;
2838     // Check the signatures.
2839     ciSignature* sig = callee()->signature();
2840     rtype = sig->return_type()->basic_type();
2841     if (kind == LS_xadd || kind == LS_xchg) {
2842       // Check the signatures.
2843 #ifdef ASSERT
2844       assert(rtype == type, "get and set must return the expected type");
2845       assert(sig->count() == 3, "get and set has 3 arguments");
2846       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2847       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2848       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2849 #endif // ASSERT
2850     } else if (kind == LS_cmpxchg) {
2851       // Check the signatures.
2852 #ifdef ASSERT
2853       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2854       assert(sig->count() == 4, "CAS has 4 arguments");
2855       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2856       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2857 #endif // ASSERT
2858     } else {
2859       ShouldNotReachHere();
2860     }
2861   }
2862 #endif //PRODUCT
2863 
2864   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2865 
2866   // Get arguments:
2867   Node* receiver = NULL;
2868   Node* base     = NULL;
2869   Node* offset   = NULL;
2870   Node* oldval   = NULL;
2871   Node* newval   = NULL;
2872   if (kind == LS_cmpxchg) {
2873     const bool two_slot_type = type2size[type] == 2;
2874     receiver = argument(0);  // type: oop
2875     base     = argument(1);  // type: oop
2876     offset   = argument(2);  // type: long
2877     oldval   = argument(4);  // type: oop, int, or long
2878     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2879   } else if (kind == LS_xadd || kind == LS_xchg){
2880     receiver = argument(0);  // type: oop
2881     base     = argument(1);  // type: oop
2882     offset   = argument(2);  // type: long
2883     oldval   = NULL;
2884     newval   = argument(4);  // type: oop, int, or long
2885   }
2886 
2887   // Null check receiver.
2888   receiver = null_check(receiver);
2889   if (stopped()) {
2890     return true;
2891   }
2892 
2893   // Build field offset expression.
2894   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2895   // to be plain byte offsets, which are also the same as those accepted
2896   // by oopDesc::field_base.
2897   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2898   // 32-bit machines ignore the high half of long offsets
2899   offset = ConvL2X(offset);
2900   Node* adr = make_unsafe_address(base, offset);
2901   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2902 
2903   // For CAS, unlike inline_unsafe_access, there seems no point in
2904   // trying to refine types. Just use the coarse types here.
2905   const Type *value_type = Type::get_const_basic_type(type);
2906   Compile::AliasType* alias_type = C->alias_type(adr_type);
2907   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2908 
2909   if (kind == LS_xchg && type == T_OBJECT) {
2910     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2911     if (tjp != NULL) {
2912       value_type = tjp;
2913     }
2914   }
2915 
2916   int alias_idx = C->get_alias_index(adr_type);
2917 
2918   // Memory-model-wise, a LoadStore acts like a little synchronized
2919   // block, so needs barriers on each side.  These don't translate
2920   // into actual barriers on most machines, but we still need rest of
2921   // compiler to respect ordering.
2922 
2923   insert_mem_bar(Op_MemBarRelease);
2924   insert_mem_bar(Op_MemBarCPUOrder);
2925 
2926   // 4984716: MemBars must be inserted before this
2927   //          memory node in order to avoid a false
2928   //          dependency which will confuse the scheduler.
2929   Node *mem = memory(alias_idx);
2930 
2931   // For now, we handle only those cases that actually exist: ints,
2932   // longs, and Object. Adding others should be straightforward.
2933   Node* load_store;
2934   switch(type) {
2935   case T_INT:
2936     if (kind == LS_xadd) {
2937       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2938     } else if (kind == LS_xchg) {
2939       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2940     } else if (kind == LS_cmpxchg) {
2941       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2942     } else {
2943       ShouldNotReachHere();
2944     }
2945     break;
2946   case T_LONG:
2947     if (kind == LS_xadd) {
2948       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2949     } else if (kind == LS_xchg) {
2950       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2951     } else if (kind == LS_cmpxchg) {
2952       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2953     } else {
2954       ShouldNotReachHere();
2955     }
2956     break;
2957   case T_OBJECT:
2958     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2959     // could be delayed during Parse (for example, in adjust_map_after_if()).
2960     // Execute transformation here to avoid barrier generation in such case.
2961     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2962       newval = _gvn.makecon(TypePtr::NULL_PTR);
2963 
2964     // Reference stores need a store barrier.
2965     if (kind == LS_xchg) {
2966       // If pre-barrier must execute before the oop store, old value will require do_load here.
2967       if (!can_move_pre_barrier()) {
2968         pre_barrier(true /* do_load*/,
2969                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2970                     NULL /* pre_val*/,
2971                     T_OBJECT);
2972       } // Else move pre_barrier to use load_store value, see below.
2973     } else if (kind == LS_cmpxchg) {
2974       // Same as for newval above:
2975       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2976         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2977       }
2978       // The only known value which might get overwritten is oldval.
2979       pre_barrier(false /* do_load */,
2980                   control(), NULL, NULL, max_juint, NULL, NULL,
2981                   oldval /* pre_val */,
2982                   T_OBJECT);
2983     } else {
2984       ShouldNotReachHere();
2985     }
2986 
2987 #ifdef _LP64
2988     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2989       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2990       if (kind == LS_xchg) {
2991         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2992                                                            newval_enc, adr_type, value_type->make_narrowoop()));
2993       } else {
2994         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2995         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2996         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2997                                                                 newval_enc, oldval_enc));
2998       }
2999     } else
3000 #endif
3001     {
3002       if (kind == LS_xchg) {
3003         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3004       } else {
3005         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3006         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3007       }
3008     }
3009     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3010     break;
3011   default:
3012     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3013     break;
3014   }
3015 
3016   // SCMemProjNodes represent the memory state of a LoadStore. Their
3017   // main role is to prevent LoadStore nodes from being optimized away
3018   // when their results aren't used.
3019   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3020   set_memory(proj, alias_idx);
3021 
3022   if (type == T_OBJECT && kind == LS_xchg) {
3023 #ifdef _LP64
3024     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3025       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3026     }
3027 #endif
3028     if (can_move_pre_barrier()) {
3029       // Don't need to load pre_val. The old value is returned by load_store.
3030       // The pre_barrier can execute after the xchg as long as no safepoint
3031       // gets inserted between them.
3032       pre_barrier(false /* do_load */,
3033                   control(), NULL, NULL, max_juint, NULL, NULL,
3034                   load_store /* pre_val */,
3035                   T_OBJECT);
3036     }
3037   }
3038 
3039   // Add the trailing membar surrounding the access
3040   insert_mem_bar(Op_MemBarCPUOrder);
3041   insert_mem_bar(Op_MemBarAcquire);
3042 
3043   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3044   set_result(load_store);
3045   return true;
3046 }
3047 
3048 //----------------------------inline_unsafe_ordered_store----------------------
3049 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3050 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3051 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3052 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3053   // This is another variant of inline_unsafe_access, differing in
3054   // that it always issues store-store ("release") barrier and ensures
3055   // store-atomicity (which only matters for "long").
3056 
3057   if (callee()->is_static())  return false;  // caller must have the capability!
3058 
3059 #ifndef PRODUCT
3060   {
3061     ResourceMark rm;
3062     // Check the signatures.
3063     ciSignature* sig = callee()->signature();
3064 #ifdef ASSERT
3065     BasicType rtype = sig->return_type()->basic_type();
3066     assert(rtype == T_VOID, "must return void");
3067     assert(sig->count() == 3, "has 3 arguments");
3068     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3069     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3070 #endif // ASSERT
3071   }
3072 #endif //PRODUCT
3073 
3074   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3075 
3076   // Get arguments:
3077   Node* receiver = argument(0);  // type: oop
3078   Node* base     = argument(1);  // type: oop
3079   Node* offset   = argument(2);  // type: long
3080   Node* val      = argument(4);  // type: oop, int, or long
3081 
3082   // Null check receiver.
3083   receiver = null_check(receiver);
3084   if (stopped()) {
3085     return true;
3086   }
3087 
3088   // Build field offset expression.
3089   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3090   // 32-bit machines ignore the high half of long offsets
3091   offset = ConvL2X(offset);
3092   Node* adr = make_unsafe_address(base, offset);
3093   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3094   const Type *value_type = Type::get_const_basic_type(type);
3095   Compile::AliasType* alias_type = C->alias_type(adr_type);
3096 
3097   insert_mem_bar(Op_MemBarRelease);
3098   insert_mem_bar(Op_MemBarCPUOrder);
3099   // Ensure that the store is atomic for longs:
3100   const bool require_atomic_access = true;
3101   Node* store;
3102   if (type == T_OBJECT) // reference stores need a store barrier.
3103     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3104   else {
3105     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3106   }
3107   insert_mem_bar(Op_MemBarCPUOrder);
3108   return true;
3109 }
3110 
3111 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3112   // Regardless of form, don't allow previous ld/st to move down,
3113   // then issue acquire, release, or volatile mem_bar.
3114   insert_mem_bar(Op_MemBarCPUOrder);
3115   switch(id) {
3116     case vmIntrinsics::_loadFence:
3117       insert_mem_bar(Op_LoadFence);
3118       return true;
3119     case vmIntrinsics::_storeFence:
3120       insert_mem_bar(Op_StoreFence);
3121       return true;
3122     case vmIntrinsics::_fullFence:
3123       insert_mem_bar(Op_MemBarVolatile);
3124       return true;
3125     default:
3126       fatal_unexpected_iid(id);
3127       return false;
3128   }
3129 }
3130 
3131 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3132   if (!kls->is_Con()) {
3133     return true;
3134   }
3135   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3136   if (klsptr == NULL) {
3137     return true;
3138   }
3139   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3140   // don't need a guard for a klass that is already initialized
3141   return !ik->is_initialized();
3142 }
3143 
3144 //----------------------------inline_unsafe_allocate---------------------------
3145 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3146 bool LibraryCallKit::inline_unsafe_allocate() {
3147   if (callee()->is_static())  return false;  // caller must have the capability!
3148 
3149   null_check_receiver();  // null-check, then ignore
3150   Node* cls = null_check(argument(1));
3151   if (stopped())  return true;
3152 
3153   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3154   kls = null_check(kls);
3155   if (stopped())  return true;  // argument was like int.class
3156 
3157   Node* test = NULL;
3158   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3159     // Note:  The argument might still be an illegal value like
3160     // Serializable.class or Object[].class.   The runtime will handle it.
3161     // But we must make an explicit check for initialization.
3162     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3163     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3164     // can generate code to load it as unsigned byte.
3165     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3166     Node* bits = intcon(InstanceKlass::fully_initialized);
3167     test = _gvn.transform(new (C) SubINode(inst, bits));
3168     // The 'test' is non-zero if we need to take a slow path.
3169   }
3170 
3171   Node* obj = new_instance(kls, test);
3172   set_result(obj);
3173   return true;
3174 }
3175 
3176 #ifdef TRACE_HAVE_INTRINSICS
3177 /*
3178  * oop -> myklass
3179  * myklass->trace_id |= USED
3180  * return myklass->trace_id & ~0x3
3181  */
3182 bool LibraryCallKit::inline_native_classID() {
3183   null_check_receiver();  // null-check, then ignore
3184   Node* cls = null_check(argument(1), T_OBJECT);
3185   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3186   kls = null_check(kls, T_OBJECT);
3187   ByteSize offset = TRACE_ID_OFFSET;
3188   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3189   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3190   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3191   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3192   Node* clsused = longcon(0x01l); // set the class bit
3193   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3194 
3195   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3196   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3197   set_result(andl);
3198   return true;
3199 }
3200 
3201 bool LibraryCallKit::inline_native_threadID() {
3202   Node* tls_ptr = NULL;
3203   Node* cur_thr = generate_current_thread(tls_ptr);
3204   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3205   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3206   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3207 
3208   Node* threadid = NULL;
3209   size_t thread_id_size = OSThread::thread_id_size();
3210   if (thread_id_size == (size_t) BytesPerLong) {
3211     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3212   } else if (thread_id_size == (size_t) BytesPerInt) {
3213     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3214   } else {
3215     ShouldNotReachHere();
3216   }
3217   set_result(threadid);
3218   return true;
3219 }
3220 #endif
3221 
3222 //------------------------inline_native_time_funcs--------------
3223 // inline code for System.currentTimeMillis() and System.nanoTime()
3224 // these have the same type and signature
3225 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3226   const TypeFunc* tf = OptoRuntime::void_long_Type();
3227   const TypePtr* no_memory_effects = NULL;
3228   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3229   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3230 #ifdef ASSERT
3231   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3232   assert(value_top == top(), "second value must be top");
3233 #endif
3234   set_result(value);
3235   return true;
3236 }
3237 
3238 //------------------------inline_native_currentThread------------------
3239 bool LibraryCallKit::inline_native_currentThread() {
3240   Node* junk = NULL;
3241   set_result(generate_current_thread(junk));
3242   return true;
3243 }
3244 
3245 //------------------------inline_native_isInterrupted------------------
3246 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3247 bool LibraryCallKit::inline_native_isInterrupted() {
3248   // Add a fast path to t.isInterrupted(clear_int):
3249   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3250   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3251   // So, in the common case that the interrupt bit is false,
3252   // we avoid making a call into the VM.  Even if the interrupt bit
3253   // is true, if the clear_int argument is false, we avoid the VM call.
3254   // However, if the receiver is not currentThread, we must call the VM,
3255   // because there must be some locking done around the operation.
3256 
3257   // We only go to the fast case code if we pass two guards.
3258   // Paths which do not pass are accumulated in the slow_region.
3259 
3260   enum {
3261     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3262     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3263     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3264     PATH_LIMIT
3265   };
3266 
3267   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3268   // out of the function.
3269   insert_mem_bar(Op_MemBarCPUOrder);
3270 
3271   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3272   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3273 
3274   RegionNode* slow_region = new (C) RegionNode(1);
3275   record_for_igvn(slow_region);
3276 
3277   // (a) Receiving thread must be the current thread.
3278   Node* rec_thr = argument(0);
3279   Node* tls_ptr = NULL;
3280   Node* cur_thr = generate_current_thread(tls_ptr);
3281   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3282   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3283 
3284   generate_slow_guard(bol_thr, slow_region);
3285 
3286   // (b) Interrupt bit on TLS must be false.
3287   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3288   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3289   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3290 
3291   // Set the control input on the field _interrupted read to prevent it floating up.
3292   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3293   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3294   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3295 
3296   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3297 
3298   // First fast path:  if (!TLS._interrupted) return false;
3299   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3300   result_rgn->init_req(no_int_result_path, false_bit);
3301   result_val->init_req(no_int_result_path, intcon(0));
3302 
3303   // drop through to next case
3304   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3305 
3306   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3307   Node* clr_arg = argument(1);
3308   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3309   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3310   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3311 
3312   // Second fast path:  ... else if (!clear_int) return true;
3313   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3314   result_rgn->init_req(no_clear_result_path, false_arg);
3315   result_val->init_req(no_clear_result_path, intcon(1));
3316 
3317   // drop through to next case
3318   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3319 
3320   // (d) Otherwise, go to the slow path.
3321   slow_region->add_req(control());
3322   set_control( _gvn.transform(slow_region));
3323 
3324   if (stopped()) {
3325     // There is no slow path.
3326     result_rgn->init_req(slow_result_path, top());
3327     result_val->init_req(slow_result_path, top());
3328   } else {
3329     // non-virtual because it is a private non-static
3330     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3331 
3332     Node* slow_val = set_results_for_java_call(slow_call);
3333     // this->control() comes from set_results_for_java_call
3334 
3335     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3336     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3337 
3338     // These two phis are pre-filled with copies of of the fast IO and Memory
3339     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3340     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3341 
3342     result_rgn->init_req(slow_result_path, control());
3343     result_io ->init_req(slow_result_path, i_o());
3344     result_mem->init_req(slow_result_path, reset_memory());
3345     result_val->init_req(slow_result_path, slow_val);
3346 
3347     set_all_memory(_gvn.transform(result_mem));
3348     set_i_o(       _gvn.transform(result_io));
3349   }
3350 
3351   C->set_has_split_ifs(true); // Has chance for split-if optimization
3352   set_result(result_rgn, result_val);
3353   return true;
3354 }
3355 
3356 //---------------------------load_mirror_from_klass----------------------------
3357 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3358 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3359   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3360   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3361 }
3362 
3363 //-----------------------load_klass_from_mirror_common-------------------------
3364 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3365 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3366 // and branch to the given path on the region.
3367 // If never_see_null, take an uncommon trap on null, so we can optimistically
3368 // compile for the non-null case.
3369 // If the region is NULL, force never_see_null = true.
3370 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3371                                                     bool never_see_null,
3372                                                     RegionNode* region,
3373                                                     int null_path,
3374                                                     int offset) {
3375   if (region == NULL)  never_see_null = true;
3376   Node* p = basic_plus_adr(mirror, offset);
3377   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3378   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3379   Node* null_ctl = top();
3380   kls = null_check_oop(kls, &null_ctl, never_see_null);
3381   if (region != NULL) {
3382     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3383     region->init_req(null_path, null_ctl);
3384   } else {
3385     assert(null_ctl == top(), "no loose ends");
3386   }
3387   return kls;
3388 }
3389 
3390 //--------------------(inline_native_Class_query helpers)---------------------
3391 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3392 // Fall through if (mods & mask) == bits, take the guard otherwise.
3393 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3394   // Branch around if the given klass has the given modifier bit set.
3395   // Like generate_guard, adds a new path onto the region.
3396   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3397   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3398   Node* mask = intcon(modifier_mask);
3399   Node* bits = intcon(modifier_bits);
3400   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3401   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3402   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3403   return generate_fair_guard(bol, region);
3404 }
3405 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3406   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3407 }
3408 
3409 //-------------------------inline_native_Class_query-------------------
3410 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3411   const Type* return_type = TypeInt::BOOL;
3412   Node* prim_return_value = top();  // what happens if it's a primitive class?
3413   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3414   bool expect_prim = false;     // most of these guys expect to work on refs
3415 
3416   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3417 
3418   Node* mirror = argument(0);
3419   Node* obj    = top();
3420 
3421   switch (id) {
3422   case vmIntrinsics::_isInstance:
3423     // nothing is an instance of a primitive type
3424     prim_return_value = intcon(0);
3425     obj = argument(1);
3426     break;
3427   case vmIntrinsics::_getModifiers:
3428     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3429     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3430     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3431     break;
3432   case vmIntrinsics::_isInterface:
3433     prim_return_value = intcon(0);
3434     break;
3435   case vmIntrinsics::_isArray:
3436     prim_return_value = intcon(0);
3437     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3438     break;
3439   case vmIntrinsics::_isPrimitive:
3440     prim_return_value = intcon(1);
3441     expect_prim = true;  // obviously
3442     break;
3443   case vmIntrinsics::_getSuperclass:
3444     prim_return_value = null();
3445     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3446     break;
3447   case vmIntrinsics::_getComponentType:
3448     prim_return_value = null();
3449     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3450     break;
3451   case vmIntrinsics::_getClassAccessFlags:
3452     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3453     return_type = TypeInt::INT;  // not bool!  6297094
3454     break;
3455   default:
3456     fatal_unexpected_iid(id);
3457     break;
3458   }
3459 
3460   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3461   if (mirror_con == NULL)  return false;  // cannot happen?
3462 
3463 #ifndef PRODUCT
3464   if (C->print_intrinsics() || C->print_inlining()) {
3465     ciType* k = mirror_con->java_mirror_type();
3466     if (k) {
3467       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3468       k->print_name();
3469       tty->cr();
3470     }
3471   }
3472 #endif
3473 
3474   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3475   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3476   record_for_igvn(region);
3477   PhiNode* phi = new (C) PhiNode(region, return_type);
3478 
3479   // The mirror will never be null of Reflection.getClassAccessFlags, however
3480   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3481   // if it is. See bug 4774291.
3482 
3483   // For Reflection.getClassAccessFlags(), the null check occurs in
3484   // the wrong place; see inline_unsafe_access(), above, for a similar
3485   // situation.
3486   mirror = null_check(mirror);
3487   // If mirror or obj is dead, only null-path is taken.
3488   if (stopped())  return true;
3489 
3490   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3491 
3492   // Now load the mirror's klass metaobject, and null-check it.
3493   // Side-effects region with the control path if the klass is null.
3494   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3495   // If kls is null, we have a primitive mirror.
3496   phi->init_req(_prim_path, prim_return_value);
3497   if (stopped()) { set_result(region, phi); return true; }
3498   bool safe_for_replace = (region->in(_prim_path) == top());
3499 
3500   Node* p;  // handy temp
3501   Node* null_ctl;
3502 
3503   // Now that we have the non-null klass, we can perform the real query.
3504   // For constant classes, the query will constant-fold in LoadNode::Value.
3505   Node* query_value = top();
3506   switch (id) {
3507   case vmIntrinsics::_isInstance:
3508     // nothing is an instance of a primitive type
3509     query_value = gen_instanceof(obj, kls, safe_for_replace);
3510     break;
3511 
3512   case vmIntrinsics::_getModifiers:
3513     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3514     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3515     break;
3516 
3517   case vmIntrinsics::_isInterface:
3518     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3519     if (generate_interface_guard(kls, region) != NULL)
3520       // A guard was added.  If the guard is taken, it was an interface.
3521       phi->add_req(intcon(1));
3522     // If we fall through, it's a plain class.
3523     query_value = intcon(0);
3524     break;
3525 
3526   case vmIntrinsics::_isArray:
3527     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3528     if (generate_array_guard(kls, region) != NULL)
3529       // A guard was added.  If the guard is taken, it was an array.
3530       phi->add_req(intcon(1));
3531     // If we fall through, it's a plain class.
3532     query_value = intcon(0);
3533     break;
3534 
3535   case vmIntrinsics::_isPrimitive:
3536     query_value = intcon(0); // "normal" path produces false
3537     break;
3538 
3539   case vmIntrinsics::_getSuperclass:
3540     // The rules here are somewhat unfortunate, but we can still do better
3541     // with random logic than with a JNI call.
3542     // Interfaces store null or Object as _super, but must report null.
3543     // Arrays store an intermediate super as _super, but must report Object.
3544     // Other types can report the actual _super.
3545     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3546     if (generate_interface_guard(kls, region) != NULL)
3547       // A guard was added.  If the guard is taken, it was an interface.
3548       phi->add_req(null());
3549     if (generate_array_guard(kls, region) != NULL)
3550       // A guard was added.  If the guard is taken, it was an array.
3551       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3552     // If we fall through, it's a plain class.  Get its _super.
3553     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3554     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3555     null_ctl = top();
3556     kls = null_check_oop(kls, &null_ctl);
3557     if (null_ctl != top()) {
3558       // If the guard is taken, Object.superClass is null (both klass and mirror).
3559       region->add_req(null_ctl);
3560       phi   ->add_req(null());
3561     }
3562     if (!stopped()) {
3563       query_value = load_mirror_from_klass(kls);
3564     }
3565     break;
3566 
3567   case vmIntrinsics::_getComponentType:
3568     if (generate_array_guard(kls, region) != NULL) {
3569       // Be sure to pin the oop load to the guard edge just created:
3570       Node* is_array_ctrl = region->in(region->req()-1);
3571       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3572       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3573       phi->add_req(cmo);
3574     }
3575     query_value = null();  // non-array case is null
3576     break;
3577 
3578   case vmIntrinsics::_getClassAccessFlags:
3579     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3580     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3581     break;
3582 
3583   default:
3584     fatal_unexpected_iid(id);
3585     break;
3586   }
3587 
3588   // Fall-through is the normal case of a query to a real class.
3589   phi->init_req(1, query_value);
3590   region->init_req(1, control());
3591 
3592   C->set_has_split_ifs(true); // Has chance for split-if optimization
3593   set_result(region, phi);
3594   return true;
3595 }
3596 
3597 //--------------------------inline_native_subtype_check------------------------
3598 // This intrinsic takes the JNI calls out of the heart of
3599 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3600 bool LibraryCallKit::inline_native_subtype_check() {
3601   // Pull both arguments off the stack.
3602   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3603   args[0] = argument(0);
3604   args[1] = argument(1);
3605   Node* klasses[2];             // corresponding Klasses: superk, subk
3606   klasses[0] = klasses[1] = top();
3607 
3608   enum {
3609     // A full decision tree on {superc is prim, subc is prim}:
3610     _prim_0_path = 1,           // {P,N} => false
3611                                 // {P,P} & superc!=subc => false
3612     _prim_same_path,            // {P,P} & superc==subc => true
3613     _prim_1_path,               // {N,P} => false
3614     _ref_subtype_path,          // {N,N} & subtype check wins => true
3615     _both_ref_path,             // {N,N} & subtype check loses => false
3616     PATH_LIMIT
3617   };
3618 
3619   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3620   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3621   record_for_igvn(region);
3622 
3623   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3624   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3625   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3626 
3627   // First null-check both mirrors and load each mirror's klass metaobject.
3628   int which_arg;
3629   for (which_arg = 0; which_arg <= 1; which_arg++) {
3630     Node* arg = args[which_arg];
3631     arg = null_check(arg);
3632     if (stopped())  break;
3633     args[which_arg] = arg;
3634 
3635     Node* p = basic_plus_adr(arg, class_klass_offset);
3636     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3637     klasses[which_arg] = _gvn.transform(kls);
3638   }
3639 
3640   // Having loaded both klasses, test each for null.
3641   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3642   for (which_arg = 0; which_arg <= 1; which_arg++) {
3643     Node* kls = klasses[which_arg];
3644     Node* null_ctl = top();
3645     kls = null_check_oop(kls, &null_ctl, never_see_null);
3646     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3647     region->init_req(prim_path, null_ctl);
3648     if (stopped())  break;
3649     klasses[which_arg] = kls;
3650   }
3651 
3652   if (!stopped()) {
3653     // now we have two reference types, in klasses[0..1]
3654     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3655     Node* superk = klasses[0];  // the receiver
3656     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3657     // now we have a successful reference subtype check
3658     region->set_req(_ref_subtype_path, control());
3659   }
3660 
3661   // If both operands are primitive (both klasses null), then
3662   // we must return true when they are identical primitives.
3663   // It is convenient to test this after the first null klass check.
3664   set_control(region->in(_prim_0_path)); // go back to first null check
3665   if (!stopped()) {
3666     // Since superc is primitive, make a guard for the superc==subc case.
3667     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3668     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3669     generate_guard(bol_eq, region, PROB_FAIR);
3670     if (region->req() == PATH_LIMIT+1) {
3671       // A guard was added.  If the added guard is taken, superc==subc.
3672       region->swap_edges(PATH_LIMIT, _prim_same_path);
3673       region->del_req(PATH_LIMIT);
3674     }
3675     region->set_req(_prim_0_path, control()); // Not equal after all.
3676   }
3677 
3678   // these are the only paths that produce 'true':
3679   phi->set_req(_prim_same_path,   intcon(1));
3680   phi->set_req(_ref_subtype_path, intcon(1));
3681 
3682   // pull together the cases:
3683   assert(region->req() == PATH_LIMIT, "sane region");
3684   for (uint i = 1; i < region->req(); i++) {
3685     Node* ctl = region->in(i);
3686     if (ctl == NULL || ctl == top()) {
3687       region->set_req(i, top());
3688       phi   ->set_req(i, top());
3689     } else if (phi->in(i) == NULL) {
3690       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3691     }
3692   }
3693 
3694   set_control(_gvn.transform(region));
3695   set_result(_gvn.transform(phi));
3696   return true;
3697 }
3698 
3699 //---------------------generate_array_guard_common------------------------
3700 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3701                                                   bool obj_array, bool not_array) {
3702   // If obj_array/non_array==false/false:
3703   // Branch around if the given klass is in fact an array (either obj or prim).
3704   // If obj_array/non_array==false/true:
3705   // Branch around if the given klass is not an array klass of any kind.
3706   // If obj_array/non_array==true/true:
3707   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3708   // If obj_array/non_array==true/false:
3709   // Branch around if the kls is an oop array (Object[] or subtype)
3710   //
3711   // Like generate_guard, adds a new path onto the region.
3712   jint  layout_con = 0;
3713   Node* layout_val = get_layout_helper(kls, layout_con);
3714   if (layout_val == NULL) {
3715     bool query = (obj_array
3716                   ? Klass::layout_helper_is_objArray(layout_con)
3717                   : Klass::layout_helper_is_array(layout_con));
3718     if (query == not_array) {
3719       return NULL;                       // never a branch
3720     } else {                             // always a branch
3721       Node* always_branch = control();
3722       if (region != NULL)
3723         region->add_req(always_branch);
3724       set_control(top());
3725       return always_branch;
3726     }
3727   }
3728   // Now test the correct condition.
3729   jint  nval = (obj_array
3730                 ? ((jint)Klass::_lh_array_tag_type_value
3731                    <<    Klass::_lh_array_tag_shift)
3732                 : Klass::_lh_neutral_value);
3733   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3734   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3735   // invert the test if we are looking for a non-array
3736   if (not_array)  btest = BoolTest(btest).negate();
3737   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3738   return generate_fair_guard(bol, region);
3739 }
3740 
3741 
3742 //-----------------------inline_native_newArray--------------------------
3743 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3744 bool LibraryCallKit::inline_native_newArray() {
3745   Node* mirror    = argument(0);
3746   Node* count_val = argument(1);
3747 
3748   mirror = null_check(mirror);
3749   // If mirror or obj is dead, only null-path is taken.
3750   if (stopped())  return true;
3751 
3752   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3753   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3754   PhiNode*    result_val = new(C) PhiNode(result_reg,
3755                                           TypeInstPtr::NOTNULL);
3756   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3757   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3758                                           TypePtr::BOTTOM);
3759 
3760   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3761   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3762                                                   result_reg, _slow_path);
3763   Node* normal_ctl   = control();
3764   Node* no_array_ctl = result_reg->in(_slow_path);
3765 
3766   // Generate code for the slow case.  We make a call to newArray().
3767   set_control(no_array_ctl);
3768   if (!stopped()) {
3769     // Either the input type is void.class, or else the
3770     // array klass has not yet been cached.  Either the
3771     // ensuing call will throw an exception, or else it
3772     // will cache the array klass for next time.
3773     PreserveJVMState pjvms(this);
3774     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3775     Node* slow_result = set_results_for_java_call(slow_call);
3776     // this->control() comes from set_results_for_java_call
3777     result_reg->set_req(_slow_path, control());
3778     result_val->set_req(_slow_path, slow_result);
3779     result_io ->set_req(_slow_path, i_o());
3780     result_mem->set_req(_slow_path, reset_memory());
3781   }
3782 
3783   set_control(normal_ctl);
3784   if (!stopped()) {
3785     // Normal case:  The array type has been cached in the java.lang.Class.
3786     // The following call works fine even if the array type is polymorphic.
3787     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3788     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3789     result_reg->init_req(_normal_path, control());
3790     result_val->init_req(_normal_path, obj);
3791     result_io ->init_req(_normal_path, i_o());
3792     result_mem->init_req(_normal_path, reset_memory());
3793   }
3794 
3795   // Return the combined state.
3796   set_i_o(        _gvn.transform(result_io)  );
3797   set_all_memory( _gvn.transform(result_mem));
3798 
3799   C->set_has_split_ifs(true); // Has chance for split-if optimization
3800   set_result(result_reg, result_val);
3801   return true;
3802 }
3803 
3804 //----------------------inline_native_getLength--------------------------
3805 // public static native int java.lang.reflect.Array.getLength(Object array);
3806 bool LibraryCallKit::inline_native_getLength() {
3807   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3808 
3809   Node* array = null_check(argument(0));
3810   // If array is dead, only null-path is taken.
3811   if (stopped())  return true;
3812 
3813   // Deoptimize if it is a non-array.
3814   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3815 
3816   if (non_array != NULL) {
3817     PreserveJVMState pjvms(this);
3818     set_control(non_array);
3819     uncommon_trap(Deoptimization::Reason_intrinsic,
3820                   Deoptimization::Action_maybe_recompile);
3821   }
3822 
3823   // If control is dead, only non-array-path is taken.
3824   if (stopped())  return true;
3825 
3826   // The works fine even if the array type is polymorphic.
3827   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3828   Node* result = load_array_length(array);
3829 
3830   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3831   set_result(result);
3832   return true;
3833 }
3834 
3835 //------------------------inline_array_copyOf----------------------------
3836 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3837 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3838 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3839   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3840 
3841   // Get the arguments.
3842   Node* original          = argument(0);
3843   Node* start             = is_copyOfRange? argument(1): intcon(0);
3844   Node* end               = is_copyOfRange? argument(2): argument(1);
3845   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3846 
3847   Node* newcopy;
3848 
3849   // Set the original stack and the reexecute bit for the interpreter to reexecute
3850   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3851   { PreserveReexecuteState preexecs(this);
3852     jvms()->set_should_reexecute(true);
3853 
3854     array_type_mirror = null_check(array_type_mirror);
3855     original          = null_check(original);
3856 
3857     // Check if a null path was taken unconditionally.
3858     if (stopped())  return true;
3859 
3860     Node* orig_length = load_array_length(original);
3861 
3862     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3863     klass_node = null_check(klass_node);
3864 
3865     RegionNode* bailout = new (C) RegionNode(1);
3866     record_for_igvn(bailout);
3867 
3868     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3869     // Bail out if that is so.
3870     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3871     if (not_objArray != NULL) {
3872       // Improve the klass node's type from the new optimistic assumption:
3873       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3874       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3875       Node* cast = new (C) CastPPNode(klass_node, akls);
3876       cast->init_req(0, control());
3877       klass_node = _gvn.transform(cast);
3878     }
3879 
3880     // Bail out if either start or end is negative.
3881     generate_negative_guard(start, bailout, &start);
3882     generate_negative_guard(end,   bailout, &end);
3883 
3884     Node* length = end;
3885     if (_gvn.type(start) != TypeInt::ZERO) {
3886       length = _gvn.transform(new (C) SubINode(end, start));
3887     }
3888 
3889     // Bail out if length is negative.
3890     // Without this the new_array would throw
3891     // NegativeArraySizeException but IllegalArgumentException is what
3892     // should be thrown
3893     generate_negative_guard(length, bailout, &length);
3894 
3895     if (bailout->req() > 1) {
3896       PreserveJVMState pjvms(this);
3897       set_control(_gvn.transform(bailout));
3898       uncommon_trap(Deoptimization::Reason_intrinsic,
3899                     Deoptimization::Action_maybe_recompile);
3900     }
3901 
3902     if (!stopped()) {
3903       // How many elements will we copy from the original?
3904       // The answer is MinI(orig_length - start, length).
3905       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3906       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3907 
3908       newcopy = new_array(klass_node, length, 0);  // no argments to push
3909 
3910       // Generate a direct call to the right arraycopy function(s).
3911       // We know the copy is disjoint but we might not know if the
3912       // oop stores need checking.
3913       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3914       // This will fail a store-check if x contains any non-nulls.
3915       bool disjoint_bases = true;
3916       // if start > orig_length then the length of the copy may be
3917       // negative.
3918       bool length_never_negative = !is_copyOfRange;
3919       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3920                          original, start, newcopy, intcon(0), moved,
3921                          disjoint_bases, length_never_negative);
3922     }
3923   } // original reexecute is set back here
3924 
3925   C->set_has_split_ifs(true); // Has chance for split-if optimization
3926   if (!stopped()) {
3927     set_result(newcopy);
3928   }
3929   return true;
3930 }
3931 
3932 
3933 //----------------------generate_virtual_guard---------------------------
3934 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3935 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3936                                              RegionNode* slow_region) {
3937   ciMethod* method = callee();
3938   int vtable_index = method->vtable_index();
3939   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3940          err_msg_res("bad index %d", vtable_index));
3941   // Get the Method* out of the appropriate vtable entry.
3942   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3943                      vtable_index*vtableEntry::size()) * wordSize +
3944                      vtableEntry::method_offset_in_bytes();
3945   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3946   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3947 
3948   // Compare the target method with the expected method (e.g., Object.hashCode).
3949   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3950 
3951   Node* native_call = makecon(native_call_addr);
3952   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3953   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3954 
3955   return generate_slow_guard(test_native, slow_region);
3956 }
3957 
3958 //-----------------------generate_method_call----------------------------
3959 // Use generate_method_call to make a slow-call to the real
3960 // method if the fast path fails.  An alternative would be to
3961 // use a stub like OptoRuntime::slow_arraycopy_Java.
3962 // This only works for expanding the current library call,
3963 // not another intrinsic.  (E.g., don't use this for making an
3964 // arraycopy call inside of the copyOf intrinsic.)
3965 CallJavaNode*
3966 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3967   // When compiling the intrinsic method itself, do not use this technique.
3968   guarantee(callee() != C->method(), "cannot make slow-call to self");
3969 
3970   ciMethod* method = callee();
3971   // ensure the JVMS we have will be correct for this call
3972   guarantee(method_id == method->intrinsic_id(), "must match");
3973 
3974   const TypeFunc* tf = TypeFunc::make(method);
3975   CallJavaNode* slow_call;
3976   if (is_static) {
3977     assert(!is_virtual, "");
3978     slow_call = new(C) CallStaticJavaNode(C, tf,
3979                            SharedRuntime::get_resolve_static_call_stub(),
3980                            method, bci());
3981   } else if (is_virtual) {
3982     null_check_receiver();
3983     int vtable_index = Method::invalid_vtable_index;
3984     if (UseInlineCaches) {
3985       // Suppress the vtable call
3986     } else {
3987       // hashCode and clone are not a miranda methods,
3988       // so the vtable index is fixed.
3989       // No need to use the linkResolver to get it.
3990        vtable_index = method->vtable_index();
3991        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3992               err_msg_res("bad index %d", vtable_index));
3993     }
3994     slow_call = new(C) CallDynamicJavaNode(tf,
3995                           SharedRuntime::get_resolve_virtual_call_stub(),
3996                           method, vtable_index, bci());
3997   } else {  // neither virtual nor static:  opt_virtual
3998     null_check_receiver();
3999     slow_call = new(C) CallStaticJavaNode(C, tf,
4000                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4001                                 method, bci());
4002     slow_call->set_optimized_virtual(true);
4003   }
4004   set_arguments_for_java_call(slow_call);
4005   set_edges_for_java_call(slow_call);
4006   return slow_call;
4007 }
4008 
4009 
4010 //------------------------------inline_native_hashcode--------------------
4011 // Build special case code for calls to hashCode on an object.
4012 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4013   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4014   assert(!(is_virtual && is_static), "either virtual, special, or static");
4015 
4016   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4017 
4018   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4019   PhiNode*    result_val = new(C) PhiNode(result_reg,
4020                                           TypeInt::INT);
4021   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4022   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4023                                           TypePtr::BOTTOM);
4024   Node* obj = NULL;
4025   if (!is_static) {
4026     // Check for hashing null object
4027     obj = null_check_receiver();
4028     if (stopped())  return true;        // unconditionally null
4029     result_reg->init_req(_null_path, top());
4030     result_val->init_req(_null_path, top());
4031   } else {
4032     // Do a null check, and return zero if null.
4033     // System.identityHashCode(null) == 0
4034     obj = argument(0);
4035     Node* null_ctl = top();
4036     obj = null_check_oop(obj, &null_ctl);
4037     result_reg->init_req(_null_path, null_ctl);
4038     result_val->init_req(_null_path, _gvn.intcon(0));
4039   }
4040 
4041   // Unconditionally null?  Then return right away.
4042   if (stopped()) {
4043     set_control( result_reg->in(_null_path));
4044     if (!stopped())
4045       set_result(result_val->in(_null_path));
4046     return true;
4047   }
4048 
4049   // After null check, get the object's klass.
4050   Node* obj_klass = load_object_klass(obj);
4051 
4052   // This call may be virtual (invokevirtual) or bound (invokespecial).
4053   // For each case we generate slightly different code.
4054 
4055   // We only go to the fast case code if we pass a number of guards.  The
4056   // paths which do not pass are accumulated in the slow_region.
4057   RegionNode* slow_region = new (C) RegionNode(1);
4058   record_for_igvn(slow_region);
4059 
4060   // If this is a virtual call, we generate a funny guard.  We pull out
4061   // the vtable entry corresponding to hashCode() from the target object.
4062   // If the target method which we are calling happens to be the native
4063   // Object hashCode() method, we pass the guard.  We do not need this
4064   // guard for non-virtual calls -- the caller is known to be the native
4065   // Object hashCode().
4066   if (is_virtual) {
4067     generate_virtual_guard(obj_klass, slow_region);
4068   }
4069 
4070   // Get the header out of the object, use LoadMarkNode when available
4071   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4072   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4073 
4074   // Test the header to see if it is unlocked.
4075   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4076   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4077   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4078   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4079   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4080 
4081   generate_slow_guard(test_unlocked, slow_region);
4082 
4083   // Get the hash value and check to see that it has been properly assigned.
4084   // We depend on hash_mask being at most 32 bits and avoid the use of
4085   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4086   // vm: see markOop.hpp.
4087   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4088   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4089   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4090   // This hack lets the hash bits live anywhere in the mark object now, as long
4091   // as the shift drops the relevant bits into the low 32 bits.  Note that
4092   // Java spec says that HashCode is an int so there's no point in capturing
4093   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4094   hshifted_header      = ConvX2I(hshifted_header);
4095   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4096 
4097   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4098   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4099   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4100 
4101   generate_slow_guard(test_assigned, slow_region);
4102 
4103   Node* init_mem = reset_memory();
4104   // fill in the rest of the null path:
4105   result_io ->init_req(_null_path, i_o());
4106   result_mem->init_req(_null_path, init_mem);
4107 
4108   result_val->init_req(_fast_path, hash_val);
4109   result_reg->init_req(_fast_path, control());
4110   result_io ->init_req(_fast_path, i_o());
4111   result_mem->init_req(_fast_path, init_mem);
4112 
4113   // Generate code for the slow case.  We make a call to hashCode().
4114   set_control(_gvn.transform(slow_region));
4115   if (!stopped()) {
4116     // No need for PreserveJVMState, because we're using up the present state.
4117     set_all_memory(init_mem);
4118     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4119     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4120     Node* slow_result = set_results_for_java_call(slow_call);
4121     // this->control() comes from set_results_for_java_call
4122     result_reg->init_req(_slow_path, control());
4123     result_val->init_req(_slow_path, slow_result);
4124     result_io  ->set_req(_slow_path, i_o());
4125     result_mem ->set_req(_slow_path, reset_memory());
4126   }
4127 
4128   // Return the combined state.
4129   set_i_o(        _gvn.transform(result_io)  );
4130   set_all_memory( _gvn.transform(result_mem));
4131 
4132   set_result(result_reg, result_val);
4133   return true;
4134 }
4135 
4136 //---------------------------inline_native_getClass----------------------------
4137 // public final native Class<?> java.lang.Object.getClass();
4138 //
4139 // Build special case code for calls to getClass on an object.
4140 bool LibraryCallKit::inline_native_getClass() {
4141   Node* obj = null_check_receiver();
4142   if (stopped())  return true;
4143   set_result(load_mirror_from_klass(load_object_klass(obj)));
4144   return true;
4145 }
4146 
4147 //-----------------inline_native_Reflection_getCallerClass---------------------
4148 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4149 //
4150 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4151 //
4152 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4153 // in that it must skip particular security frames and checks for
4154 // caller sensitive methods.
4155 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4156 #ifndef PRODUCT
4157   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4158     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4159   }
4160 #endif
4161 
4162   if (!jvms()->has_method()) {
4163 #ifndef PRODUCT
4164     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4165       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4166     }
4167 #endif
4168     return false;
4169   }
4170 
4171   // Walk back up the JVM state to find the caller at the required
4172   // depth.
4173   JVMState* caller_jvms = jvms();
4174 
4175   // Cf. JVM_GetCallerClass
4176   // NOTE: Start the loop at depth 1 because the current JVM state does
4177   // not include the Reflection.getCallerClass() frame.
4178   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4179     ciMethod* m = caller_jvms->method();
4180     switch (n) {
4181     case 0:
4182       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4183       break;
4184     case 1:
4185       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4186       if (!m->caller_sensitive()) {
4187 #ifndef PRODUCT
4188         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4189           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4190         }
4191 #endif
4192         return false;  // bail-out; let JVM_GetCallerClass do the work
4193       }
4194       break;
4195     default:
4196       if (!m->is_ignored_by_security_stack_walk()) {
4197         // We have reached the desired frame; return the holder class.
4198         // Acquire method holder as java.lang.Class and push as constant.
4199         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4200         ciInstance* caller_mirror = caller_klass->java_mirror();
4201         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4202 
4203 #ifndef PRODUCT
4204         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4205           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4206           tty->print_cr("  JVM state at this point:");
4207           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4208             ciMethod* m = jvms()->of_depth(i)->method();
4209             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4210           }
4211         }
4212 #endif
4213         return true;
4214       }
4215       break;
4216     }
4217   }
4218 
4219 #ifndef PRODUCT
4220   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4221     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4222     tty->print_cr("  JVM state at this point:");
4223     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4224       ciMethod* m = jvms()->of_depth(i)->method();
4225       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4226     }
4227   }
4228 #endif
4229 
4230   return false;  // bail-out; let JVM_GetCallerClass do the work
4231 }
4232 
4233 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4234   Node* arg = argument(0);
4235   Node* result;
4236 
4237   switch (id) {
4238   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4239   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4240   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4241   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4242 
4243   case vmIntrinsics::_doubleToLongBits: {
4244     // two paths (plus control) merge in a wood
4245     RegionNode *r = new (C) RegionNode(3);
4246     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4247 
4248     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4249     // Build the boolean node
4250     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4251 
4252     // Branch either way.
4253     // NaN case is less traveled, which makes all the difference.
4254     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4255     Node *opt_isnan = _gvn.transform(ifisnan);
4256     assert( opt_isnan->is_If(), "Expect an IfNode");
4257     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4258     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4259 
4260     set_control(iftrue);
4261 
4262     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4263     Node *slow_result = longcon(nan_bits); // return NaN
4264     phi->init_req(1, _gvn.transform( slow_result ));
4265     r->init_req(1, iftrue);
4266 
4267     // Else fall through
4268     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4269     set_control(iffalse);
4270 
4271     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4272     r->init_req(2, iffalse);
4273 
4274     // Post merge
4275     set_control(_gvn.transform(r));
4276     record_for_igvn(r);
4277 
4278     C->set_has_split_ifs(true); // Has chance for split-if optimization
4279     result = phi;
4280     assert(result->bottom_type()->isa_long(), "must be");
4281     break;
4282   }
4283 
4284   case vmIntrinsics::_floatToIntBits: {
4285     // two paths (plus control) merge in a wood
4286     RegionNode *r = new (C) RegionNode(3);
4287     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4288 
4289     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4290     // Build the boolean node
4291     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4292 
4293     // Branch either way.
4294     // NaN case is less traveled, which makes all the difference.
4295     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4296     Node *opt_isnan = _gvn.transform(ifisnan);
4297     assert( opt_isnan->is_If(), "Expect an IfNode");
4298     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4299     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4300 
4301     set_control(iftrue);
4302 
4303     static const jint nan_bits = 0x7fc00000;
4304     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4305     phi->init_req(1, _gvn.transform( slow_result ));
4306     r->init_req(1, iftrue);
4307 
4308     // Else fall through
4309     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4310     set_control(iffalse);
4311 
4312     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4313     r->init_req(2, iffalse);
4314 
4315     // Post merge
4316     set_control(_gvn.transform(r));
4317     record_for_igvn(r);
4318 
4319     C->set_has_split_ifs(true); // Has chance for split-if optimization
4320     result = phi;
4321     assert(result->bottom_type()->isa_int(), "must be");
4322     break;
4323   }
4324 
4325   default:
4326     fatal_unexpected_iid(id);
4327     break;
4328   }
4329   set_result(_gvn.transform(result));
4330   return true;
4331 }
4332 
4333 #ifdef _LP64
4334 #define XTOP ,top() /*additional argument*/
4335 #else  //_LP64
4336 #define XTOP        /*no additional argument*/
4337 #endif //_LP64
4338 
4339 //----------------------inline_unsafe_copyMemory-------------------------
4340 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4341 bool LibraryCallKit::inline_unsafe_copyMemory() {
4342   if (callee()->is_static())  return false;  // caller must have the capability!
4343   null_check_receiver();  // null-check receiver
4344   if (stopped())  return true;
4345 
4346   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4347 
4348   Node* src_ptr =         argument(1);   // type: oop
4349   Node* src_off = ConvL2X(argument(2));  // type: long
4350   Node* dst_ptr =         argument(4);   // type: oop
4351   Node* dst_off = ConvL2X(argument(5));  // type: long
4352   Node* size    = ConvL2X(argument(7));  // type: long
4353 
4354   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4355          "fieldOffset must be byte-scaled");
4356 
4357   Node* src = make_unsafe_address(src_ptr, src_off);
4358   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4359 
4360   // Conservatively insert a memory barrier on all memory slices.
4361   // Do not let writes of the copy source or destination float below the copy.
4362   insert_mem_bar(Op_MemBarCPUOrder);
4363 
4364   // Call it.  Note that the length argument is not scaled.
4365   make_runtime_call(RC_LEAF|RC_NO_FP,
4366                     OptoRuntime::fast_arraycopy_Type(),
4367                     StubRoutines::unsafe_arraycopy(),
4368                     "unsafe_arraycopy",
4369                     TypeRawPtr::BOTTOM,
4370                     src, dst, size XTOP);
4371 
4372   // Do not let reads of the copy destination float above the copy.
4373   insert_mem_bar(Op_MemBarCPUOrder);
4374 
4375   return true;
4376 }
4377 
4378 //------------------------clone_coping-----------------------------------
4379 // Helper function for inline_native_clone.
4380 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4381   assert(obj_size != NULL, "");
4382   Node* raw_obj = alloc_obj->in(1);
4383   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4384 
4385   AllocateNode* alloc = NULL;
4386   if (ReduceBulkZeroing) {
4387     // We will be completely responsible for initializing this object -
4388     // mark Initialize node as complete.
4389     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4390     // The object was just allocated - there should be no any stores!
4391     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4392     // Mark as complete_with_arraycopy so that on AllocateNode
4393     // expansion, we know this AllocateNode is initialized by an array
4394     // copy and a StoreStore barrier exists after the array copy.
4395     alloc->initialization()->set_complete_with_arraycopy();
4396   }
4397 
4398   // Copy the fastest available way.
4399   // TODO: generate fields copies for small objects instead.
4400   Node* src  = obj;
4401   Node* dest = alloc_obj;
4402   Node* size = _gvn.transform(obj_size);
4403 
4404   // Exclude the header but include array length to copy by 8 bytes words.
4405   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4406   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4407                             instanceOopDesc::base_offset_in_bytes();
4408   // base_off:
4409   // 8  - 32-bit VM
4410   // 12 - 64-bit VM, compressed klass
4411   // 16 - 64-bit VM, normal klass
4412   if (base_off % BytesPerLong != 0) {
4413     assert(UseCompressedClassPointers, "");
4414     if (is_array) {
4415       // Exclude length to copy by 8 bytes words.
4416       base_off += sizeof(int);
4417     } else {
4418       // Include klass to copy by 8 bytes words.
4419       base_off = instanceOopDesc::klass_offset_in_bytes();
4420     }
4421     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4422   }
4423   src  = basic_plus_adr(src,  base_off);
4424   dest = basic_plus_adr(dest, base_off);
4425 
4426   // Compute the length also, if needed:
4427   Node* countx = size;
4428   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4429   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4430 
4431   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4432   bool disjoint_bases = true;
4433   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4434                                src, NULL, dest, NULL, countx,
4435                                /*dest_uninitialized*/true);
4436 
4437   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4438   if (card_mark) {
4439     assert(!is_array, "");
4440     // Put in store barrier for any and all oops we are sticking
4441     // into this object.  (We could avoid this if we could prove
4442     // that the object type contains no oop fields at all.)
4443     Node* no_particular_value = NULL;
4444     Node* no_particular_field = NULL;
4445     int raw_adr_idx = Compile::AliasIdxRaw;
4446     post_barrier(control(),
4447                  memory(raw_adr_type),
4448                  alloc_obj,
4449                  no_particular_field,
4450                  raw_adr_idx,
4451                  no_particular_value,
4452                  T_OBJECT,
4453                  false);
4454   }
4455 
4456   // Do not let reads from the cloned object float above the arraycopy.
4457   if (alloc != NULL) {
4458     // Do not let stores that initialize this object be reordered with
4459     // a subsequent store that would make this object accessible by
4460     // other threads.
4461     // Record what AllocateNode this StoreStore protects so that
4462     // escape analysis can go from the MemBarStoreStoreNode to the
4463     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4464     // based on the escape status of the AllocateNode.
4465     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4466   } else {
4467     insert_mem_bar(Op_MemBarCPUOrder);
4468   }
4469 }
4470 
4471 //------------------------inline_native_clone----------------------------
4472 // protected native Object java.lang.Object.clone();
4473 //
4474 // Here are the simple edge cases:
4475 //  null receiver => normal trap
4476 //  virtual and clone was overridden => slow path to out-of-line clone
4477 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4478 //
4479 // The general case has two steps, allocation and copying.
4480 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4481 //
4482 // Copying also has two cases, oop arrays and everything else.
4483 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4484 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4485 //
4486 // These steps fold up nicely if and when the cloned object's klass
4487 // can be sharply typed as an object array, a type array, or an instance.
4488 //
4489 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4490   PhiNode* result_val;
4491 
4492   // Set the reexecute bit for the interpreter to reexecute
4493   // the bytecode that invokes Object.clone if deoptimization happens.
4494   { PreserveReexecuteState preexecs(this);
4495     jvms()->set_should_reexecute(true);
4496 
4497     Node* obj = null_check_receiver();
4498     if (stopped())  return true;
4499 
4500     Node* obj_klass = load_object_klass(obj);
4501     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4502     const TypeOopPtr*   toop   = ((tklass != NULL)
4503                                 ? tklass->as_instance_type()
4504                                 : TypeInstPtr::NOTNULL);
4505 
4506     // Conservatively insert a memory barrier on all memory slices.
4507     // Do not let writes into the original float below the clone.
4508     insert_mem_bar(Op_MemBarCPUOrder);
4509 
4510     // paths into result_reg:
4511     enum {
4512       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4513       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4514       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4515       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4516       PATH_LIMIT
4517     };
4518     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4519     result_val             = new(C) PhiNode(result_reg,
4520                                             TypeInstPtr::NOTNULL);
4521     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4522     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4523                                             TypePtr::BOTTOM);
4524     record_for_igvn(result_reg);
4525 
4526     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4527     int raw_adr_idx = Compile::AliasIdxRaw;
4528 
4529     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4530     if (array_ctl != NULL) {
4531       // It's an array.
4532       PreserveJVMState pjvms(this);
4533       set_control(array_ctl);
4534       Node* obj_length = load_array_length(obj);
4535       Node* obj_size  = NULL;
4536       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4537 
4538       if (!use_ReduceInitialCardMarks()) {
4539         // If it is an oop array, it requires very special treatment,
4540         // because card marking is required on each card of the array.
4541         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4542         if (is_obja != NULL) {
4543           PreserveJVMState pjvms2(this);
4544           set_control(is_obja);
4545           // Generate a direct call to the right arraycopy function(s).
4546           bool disjoint_bases = true;
4547           bool length_never_negative = true;
4548           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4549                              obj, intcon(0), alloc_obj, intcon(0),
4550                              obj_length,
4551                              disjoint_bases, length_never_negative);
4552           result_reg->init_req(_objArray_path, control());
4553           result_val->init_req(_objArray_path, alloc_obj);
4554           result_i_o ->set_req(_objArray_path, i_o());
4555           result_mem ->set_req(_objArray_path, reset_memory());
4556         }
4557       }
4558       // Otherwise, there are no card marks to worry about.
4559       // (We can dispense with card marks if we know the allocation
4560       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4561       //  causes the non-eden paths to take compensating steps to
4562       //  simulate a fresh allocation, so that no further
4563       //  card marks are required in compiled code to initialize
4564       //  the object.)
4565 
4566       if (!stopped()) {
4567         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4568 
4569         // Present the results of the copy.
4570         result_reg->init_req(_array_path, control());
4571         result_val->init_req(_array_path, alloc_obj);
4572         result_i_o ->set_req(_array_path, i_o());
4573         result_mem ->set_req(_array_path, reset_memory());
4574       }
4575     }
4576 
4577     // We only go to the instance fast case code if we pass a number of guards.
4578     // The paths which do not pass are accumulated in the slow_region.
4579     RegionNode* slow_region = new (C) RegionNode(1);
4580     record_for_igvn(slow_region);
4581     if (!stopped()) {
4582       // It's an instance (we did array above).  Make the slow-path tests.
4583       // If this is a virtual call, we generate a funny guard.  We grab
4584       // the vtable entry corresponding to clone() from the target object.
4585       // If the target method which we are calling happens to be the
4586       // Object clone() method, we pass the guard.  We do not need this
4587       // guard for non-virtual calls; the caller is known to be the native
4588       // Object clone().
4589       if (is_virtual) {
4590         generate_virtual_guard(obj_klass, slow_region);
4591       }
4592 
4593       // The object must be cloneable and must not have a finalizer.
4594       // Both of these conditions may be checked in a single test.
4595       // We could optimize the cloneable test further, but we don't care.
4596       generate_access_flags_guard(obj_klass,
4597                                   // Test both conditions:
4598                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4599                                   // Must be cloneable but not finalizer:
4600                                   JVM_ACC_IS_CLONEABLE,
4601                                   slow_region);
4602     }
4603 
4604     if (!stopped()) {
4605       // It's an instance, and it passed the slow-path tests.
4606       PreserveJVMState pjvms(this);
4607       Node* obj_size  = NULL;
4608       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4609 
4610       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4611 
4612       // Present the results of the slow call.
4613       result_reg->init_req(_instance_path, control());
4614       result_val->init_req(_instance_path, alloc_obj);
4615       result_i_o ->set_req(_instance_path, i_o());
4616       result_mem ->set_req(_instance_path, reset_memory());
4617     }
4618 
4619     // Generate code for the slow case.  We make a call to clone().
4620     set_control(_gvn.transform(slow_region));
4621     if (!stopped()) {
4622       PreserveJVMState pjvms(this);
4623       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4624       Node* slow_result = set_results_for_java_call(slow_call);
4625       // this->control() comes from set_results_for_java_call
4626       result_reg->init_req(_slow_path, control());
4627       result_val->init_req(_slow_path, slow_result);
4628       result_i_o ->set_req(_slow_path, i_o());
4629       result_mem ->set_req(_slow_path, reset_memory());
4630     }
4631 
4632     // Return the combined state.
4633     set_control(    _gvn.transform(result_reg));
4634     set_i_o(        _gvn.transform(result_i_o));
4635     set_all_memory( _gvn.transform(result_mem));
4636   } // original reexecute is set back here
4637 
4638   set_result(_gvn.transform(result_val));
4639   return true;
4640 }
4641 
4642 //------------------------------basictype2arraycopy----------------------------
4643 address LibraryCallKit::basictype2arraycopy(BasicType t,
4644                                             Node* src_offset,
4645                                             Node* dest_offset,
4646                                             bool disjoint_bases,
4647                                             const char* &name,
4648                                             bool dest_uninitialized) {
4649   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4650   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4651 
4652   bool aligned = false;
4653   bool disjoint = disjoint_bases;
4654 
4655   // if the offsets are the same, we can treat the memory regions as
4656   // disjoint, because either the memory regions are in different arrays,
4657   // or they are identical (which we can treat as disjoint.)  We can also
4658   // treat a copy with a destination index  less that the source index
4659   // as disjoint since a low->high copy will work correctly in this case.
4660   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4661       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4662     // both indices are constants
4663     int s_offs = src_offset_inttype->get_con();
4664     int d_offs = dest_offset_inttype->get_con();
4665     int element_size = type2aelembytes(t);
4666     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4667               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4668     if (s_offs >= d_offs)  disjoint = true;
4669   } else if (src_offset == dest_offset && src_offset != NULL) {
4670     // This can occur if the offsets are identical non-constants.
4671     disjoint = true;
4672   }
4673 
4674   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4675 }
4676 
4677 
4678 //------------------------------inline_arraycopy-----------------------
4679 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4680 //                                                      Object dest, int destPos,
4681 //                                                      int length);
4682 bool LibraryCallKit::inline_arraycopy() {
4683   // Get the arguments.
4684   Node* src         = argument(0);  // type: oop
4685   Node* src_offset  = argument(1);  // type: int
4686   Node* dest        = argument(2);  // type: oop
4687   Node* dest_offset = argument(3);  // type: int
4688   Node* length      = argument(4);  // type: int
4689 
4690   // Compile time checks.  If any of these checks cannot be verified at compile time,
4691   // we do not make a fast path for this call.  Instead, we let the call remain as it
4692   // is.  The checks we choose to mandate at compile time are:
4693   //
4694   // (1) src and dest are arrays.
4695   const Type* src_type  = src->Value(&_gvn);
4696   const Type* dest_type = dest->Value(&_gvn);
4697   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4698   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4699 
4700   // Do we have the type of src?
4701   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4702   // Do we have the type of dest?
4703   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4704   // Is the type for src from speculation?
4705   bool src_spec = false;
4706   // Is the type for dest from speculation?
4707   bool dest_spec = false;
4708 
4709   if (!has_src || !has_dest) {
4710     // We don't have sufficient type information, let's see if
4711     // speculative types can help. We need to have types for both src
4712     // and dest so that it pays off.
4713 
4714     // Do we already have or could we have type information for src
4715     bool could_have_src = has_src;
4716     // Do we already have or could we have type information for dest
4717     bool could_have_dest = has_dest;
4718 
4719     ciKlass* src_k = NULL;
4720     if (!has_src) {
4721       src_k = src_type->speculative_type();
4722       if (src_k != NULL && src_k->is_array_klass()) {
4723         could_have_src = true;
4724       }
4725     }
4726 
4727     ciKlass* dest_k = NULL;
4728     if (!has_dest) {
4729       dest_k = dest_type->speculative_type();
4730       if (dest_k != NULL && dest_k->is_array_klass()) {
4731         could_have_dest = true;
4732       }
4733     }
4734 
4735     if (could_have_src && could_have_dest) {
4736       // This is going to pay off so emit the required guards
4737       if (!has_src) {
4738         src = maybe_cast_profiled_obj(src, src_k);
4739         src_type  = _gvn.type(src);
4740         top_src  = src_type->isa_aryptr();
4741         has_src = (top_src != NULL && top_src->klass() != NULL);
4742         src_spec = true;
4743       }
4744       if (!has_dest) {
4745         dest = maybe_cast_profiled_obj(dest, dest_k);
4746         dest_type  = _gvn.type(dest);
4747         top_dest  = dest_type->isa_aryptr();
4748         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4749         dest_spec = true;
4750       }
4751     }
4752   }
4753 
4754   if (!has_src || !has_dest) {
4755     // Conservatively insert a memory barrier on all memory slices.
4756     // Do not let writes into the source float below the arraycopy.
4757     insert_mem_bar(Op_MemBarCPUOrder);
4758 
4759     // Call StubRoutines::generic_arraycopy stub.
4760     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4761                        src, src_offset, dest, dest_offset, length);
4762 
4763     // Do not let reads from the destination float above the arraycopy.
4764     // Since we cannot type the arrays, we don't know which slices
4765     // might be affected.  We could restrict this barrier only to those
4766     // memory slices which pertain to array elements--but don't bother.
4767     if (!InsertMemBarAfterArraycopy)
4768       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4769       insert_mem_bar(Op_MemBarCPUOrder);
4770     return true;
4771   }
4772 
4773   // (2) src and dest arrays must have elements of the same BasicType
4774   // Figure out the size and type of the elements we will be copying.
4775   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4776   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4777   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4778   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4779 
4780   if (src_elem != dest_elem || dest_elem == T_VOID) {
4781     // The component types are not the same or are not recognized.  Punt.
4782     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4783     generate_slow_arraycopy(TypePtr::BOTTOM,
4784                             src, src_offset, dest, dest_offset, length,
4785                             /*dest_uninitialized*/false);
4786     return true;
4787   }
4788 
4789   if (src_elem == T_OBJECT) {
4790     // If both arrays are object arrays then having the exact types
4791     // for both will remove the need for a subtype check at runtime
4792     // before the call and may make it possible to pick a faster copy
4793     // routine (without a subtype check on every element)
4794     // Do we have the exact type of src?
4795     bool could_have_src = src_spec;
4796     // Do we have the exact type of dest?
4797     bool could_have_dest = dest_spec;
4798     ciKlass* src_k = top_src->klass();
4799     ciKlass* dest_k = top_dest->klass();
4800     if (!src_spec) {
4801       src_k = src_type->speculative_type();
4802       if (src_k != NULL && src_k->is_array_klass()) {
4803           could_have_src = true;
4804       }
4805     }
4806     if (!dest_spec) {
4807       dest_k = dest_type->speculative_type();
4808       if (dest_k != NULL && dest_k->is_array_klass()) {
4809         could_have_dest = true;
4810       }
4811     }
4812     if (could_have_src && could_have_dest) {
4813       // If we can have both exact types, emit the missing guards
4814       if (could_have_src && !src_spec) {
4815         src = maybe_cast_profiled_obj(src, src_k);
4816       }
4817       if (could_have_dest && !dest_spec) {
4818         dest = maybe_cast_profiled_obj(dest, dest_k);
4819       }
4820     }
4821   }
4822 
4823   //---------------------------------------------------------------------------
4824   // We will make a fast path for this call to arraycopy.
4825 
4826   // We have the following tests left to perform:
4827   //
4828   // (3) src and dest must not be null.
4829   // (4) src_offset must not be negative.
4830   // (5) dest_offset must not be negative.
4831   // (6) length must not be negative.
4832   // (7) src_offset + length must not exceed length of src.
4833   // (8) dest_offset + length must not exceed length of dest.
4834   // (9) each element of an oop array must be assignable
4835 
4836   RegionNode* slow_region = new (C) RegionNode(1);
4837   record_for_igvn(slow_region);
4838 
4839   // (3) operands must not be null
4840   // We currently perform our null checks with the null_check routine.
4841   // This means that the null exceptions will be reported in the caller
4842   // rather than (correctly) reported inside of the native arraycopy call.
4843   // This should be corrected, given time.  We do our null check with the
4844   // stack pointer restored.
4845   src  = null_check(src,  T_ARRAY);
4846   dest = null_check(dest, T_ARRAY);
4847 
4848   // (4) src_offset must not be negative.
4849   generate_negative_guard(src_offset, slow_region);
4850 
4851   // (5) dest_offset must not be negative.
4852   generate_negative_guard(dest_offset, slow_region);
4853 
4854   // (6) length must not be negative (moved to generate_arraycopy()).
4855   // generate_negative_guard(length, slow_region);
4856 
4857   // (7) src_offset + length must not exceed length of src.
4858   generate_limit_guard(src_offset, length,
4859                        load_array_length(src),
4860                        slow_region);
4861 
4862   // (8) dest_offset + length must not exceed length of dest.
4863   generate_limit_guard(dest_offset, length,
4864                        load_array_length(dest),
4865                        slow_region);
4866 
4867   // (9) each element of an oop array must be assignable
4868   // The generate_arraycopy subroutine checks this.
4869 
4870   // This is where the memory effects are placed:
4871   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4872   generate_arraycopy(adr_type, dest_elem,
4873                      src, src_offset, dest, dest_offset, length,
4874                      false, false, slow_region);
4875 
4876   return true;
4877 }
4878 
4879 //-----------------------------generate_arraycopy----------------------
4880 // Generate an optimized call to arraycopy.
4881 // Caller must guard against non-arrays.
4882 // Caller must determine a common array basic-type for both arrays.
4883 // Caller must validate offsets against array bounds.
4884 // The slow_region has already collected guard failure paths
4885 // (such as out of bounds length or non-conformable array types).
4886 // The generated code has this shape, in general:
4887 //
4888 //     if (length == 0)  return   // via zero_path
4889 //     slowval = -1
4890 //     if (types unknown) {
4891 //       slowval = call generic copy loop
4892 //       if (slowval == 0)  return  // via checked_path
4893 //     } else if (indexes in bounds) {
4894 //       if ((is object array) && !(array type check)) {
4895 //         slowval = call checked copy loop
4896 //         if (slowval == 0)  return  // via checked_path
4897 //       } else {
4898 //         call bulk copy loop
4899 //         return  // via fast_path
4900 //       }
4901 //     }
4902 //     // adjust params for remaining work:
4903 //     if (slowval != -1) {
4904 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4905 //     }
4906 //   slow_region:
4907 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4908 //     return  // via slow_call_path
4909 //
4910 // This routine is used from several intrinsics:  System.arraycopy,
4911 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4912 //
4913 void
4914 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4915                                    BasicType basic_elem_type,
4916                                    Node* src,  Node* src_offset,
4917                                    Node* dest, Node* dest_offset,
4918                                    Node* copy_length,
4919                                    bool disjoint_bases,
4920                                    bool length_never_negative,
4921                                    RegionNode* slow_region) {
4922 
4923   if (slow_region == NULL) {
4924     slow_region = new(C) RegionNode(1);
4925     record_for_igvn(slow_region);
4926   }
4927 
4928   Node* original_dest      = dest;
4929   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4930   bool  dest_uninitialized = false;
4931 
4932   // See if this is the initialization of a newly-allocated array.
4933   // If so, we will take responsibility here for initializing it to zero.
4934   // (Note:  Because tightly_coupled_allocation performs checks on the
4935   // out-edges of the dest, we need to avoid making derived pointers
4936   // from it until we have checked its uses.)
4937   if (ReduceBulkZeroing
4938       && !ZeroTLAB              // pointless if already zeroed
4939       && basic_elem_type != T_CONFLICT // avoid corner case
4940       && !src->eqv_uncast(dest)
4941       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4942           != NULL)
4943       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4944       && alloc->maybe_set_complete(&_gvn)) {
4945     // "You break it, you buy it."
4946     InitializeNode* init = alloc->initialization();
4947     assert(init->is_complete(), "we just did this");
4948     init->set_complete_with_arraycopy();
4949     assert(dest->is_CheckCastPP(), "sanity");
4950     assert(dest->in(0)->in(0) == init, "dest pinned");
4951     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4952     // From this point on, every exit path is responsible for
4953     // initializing any non-copied parts of the object to zero.
4954     // Also, if this flag is set we make sure that arraycopy interacts properly
4955     // with G1, eliding pre-barriers. See CR 6627983.
4956     dest_uninitialized = true;
4957   } else {
4958     // No zeroing elimination here.
4959     alloc             = NULL;
4960     //original_dest   = dest;
4961     //dest_uninitialized = false;
4962   }
4963 
4964   // Results are placed here:
4965   enum { fast_path        = 1,  // normal void-returning assembly stub
4966          checked_path     = 2,  // special assembly stub with cleanup
4967          slow_call_path   = 3,  // something went wrong; call the VM
4968          zero_path        = 4,  // bypass when length of copy is zero
4969          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4970          PATH_LIMIT       = 6
4971   };
4972   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4973   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4974   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4975   record_for_igvn(result_region);
4976   _gvn.set_type_bottom(result_i_o);
4977   _gvn.set_type_bottom(result_memory);
4978   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4979 
4980   // The slow_control path:
4981   Node* slow_control;
4982   Node* slow_i_o = i_o();
4983   Node* slow_mem = memory(adr_type);
4984   debug_only(slow_control = (Node*) badAddress);
4985 
4986   // Checked control path:
4987   Node* checked_control = top();
4988   Node* checked_mem     = NULL;
4989   Node* checked_i_o     = NULL;
4990   Node* checked_value   = NULL;
4991 
4992   if (basic_elem_type == T_CONFLICT) {
4993     assert(!dest_uninitialized, "");
4994     Node* cv = generate_generic_arraycopy(adr_type,
4995                                           src, src_offset, dest, dest_offset,
4996                                           copy_length, dest_uninitialized);
4997     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4998     checked_control = control();
4999     checked_i_o     = i_o();
5000     checked_mem     = memory(adr_type);
5001     checked_value   = cv;
5002     set_control(top());         // no fast path
5003   }
5004 
5005   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5006   if (not_pos != NULL) {
5007     PreserveJVMState pjvms(this);
5008     set_control(not_pos);
5009 
5010     // (6) length must not be negative.
5011     if (!length_never_negative) {
5012       generate_negative_guard(copy_length, slow_region);
5013     }
5014 
5015     // copy_length is 0.
5016     if (!stopped() && dest_uninitialized) {
5017       Node* dest_length = alloc->in(AllocateNode::ALength);
5018       if (copy_length->eqv_uncast(dest_length)
5019           || _gvn.find_int_con(dest_length, 1) <= 0) {
5020         // There is no zeroing to do. No need for a secondary raw memory barrier.
5021       } else {
5022         // Clear the whole thing since there are no source elements to copy.
5023         generate_clear_array(adr_type, dest, basic_elem_type,
5024                              intcon(0), NULL,
5025                              alloc->in(AllocateNode::AllocSize));
5026         // Use a secondary InitializeNode as raw memory barrier.
5027         // Currently it is needed only on this path since other
5028         // paths have stub or runtime calls as raw memory barriers.
5029         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5030                                                        Compile::AliasIdxRaw,
5031                                                        top())->as_Initialize();
5032         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5033       }
5034     }
5035 
5036     // Present the results of the fast call.
5037     result_region->init_req(zero_path, control());
5038     result_i_o   ->init_req(zero_path, i_o());
5039     result_memory->init_req(zero_path, memory(adr_type));
5040   }
5041 
5042   if (!stopped() && dest_uninitialized) {
5043     // We have to initialize the *uncopied* part of the array to zero.
5044     // The copy destination is the slice dest[off..off+len].  The other slices
5045     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5046     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5047     Node* dest_length = alloc->in(AllocateNode::ALength);
5048     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5049                                                           copy_length));
5050 
5051     // If there is a head section that needs zeroing, do it now.
5052     if (find_int_con(dest_offset, -1) != 0) {
5053       generate_clear_array(adr_type, dest, basic_elem_type,
5054                            intcon(0), dest_offset,
5055                            NULL);
5056     }
5057 
5058     // Next, perform a dynamic check on the tail length.
5059     // It is often zero, and we can win big if we prove this.
5060     // There are two wins:  Avoid generating the ClearArray
5061     // with its attendant messy index arithmetic, and upgrade
5062     // the copy to a more hardware-friendly word size of 64 bits.
5063     Node* tail_ctl = NULL;
5064     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5065       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5066       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5067       tail_ctl = generate_slow_guard(bol_lt, NULL);
5068       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5069     }
5070 
5071     // At this point, let's assume there is no tail.
5072     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5073       // There is no tail.  Try an upgrade to a 64-bit copy.
5074       bool didit = false;
5075       { PreserveJVMState pjvms(this);
5076         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5077                                          src, src_offset, dest, dest_offset,
5078                                          dest_size, dest_uninitialized);
5079         if (didit) {
5080           // Present the results of the block-copying fast call.
5081           result_region->init_req(bcopy_path, control());
5082           result_i_o   ->init_req(bcopy_path, i_o());
5083           result_memory->init_req(bcopy_path, memory(adr_type));
5084         }
5085       }
5086       if (didit)
5087         set_control(top());     // no regular fast path
5088     }
5089 
5090     // Clear the tail, if any.
5091     if (tail_ctl != NULL) {
5092       Node* notail_ctl = stopped() ? NULL : control();
5093       set_control(tail_ctl);
5094       if (notail_ctl == NULL) {
5095         generate_clear_array(adr_type, dest, basic_elem_type,
5096                              dest_tail, NULL,
5097                              dest_size);
5098       } else {
5099         // Make a local merge.
5100         Node* done_ctl = new(C) RegionNode(3);
5101         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5102         done_ctl->init_req(1, notail_ctl);
5103         done_mem->init_req(1, memory(adr_type));
5104         generate_clear_array(adr_type, dest, basic_elem_type,
5105                              dest_tail, NULL,
5106                              dest_size);
5107         done_ctl->init_req(2, control());
5108         done_mem->init_req(2, memory(adr_type));
5109         set_control( _gvn.transform(done_ctl));
5110         set_memory(  _gvn.transform(done_mem), adr_type );
5111       }
5112     }
5113   }
5114 
5115   BasicType copy_type = basic_elem_type;
5116   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5117   if (!stopped() && copy_type == T_OBJECT) {
5118     // If src and dest have compatible element types, we can copy bits.
5119     // Types S[] and D[] are compatible if D is a supertype of S.
5120     //
5121     // If they are not, we will use checked_oop_disjoint_arraycopy,
5122     // which performs a fast optimistic per-oop check, and backs off
5123     // further to JVM_ArrayCopy on the first per-oop check that fails.
5124     // (Actually, we don't move raw bits only; the GC requires card marks.)
5125 
5126     // Get the Klass* for both src and dest
5127     Node* src_klass  = load_object_klass(src);
5128     Node* dest_klass = load_object_klass(dest);
5129 
5130     // Generate the subtype check.
5131     // This might fold up statically, or then again it might not.
5132     //
5133     // Non-static example:  Copying List<String>.elements to a new String[].
5134     // The backing store for a List<String> is always an Object[],
5135     // but its elements are always type String, if the generic types
5136     // are correct at the source level.
5137     //
5138     // Test S[] against D[], not S against D, because (probably)
5139     // the secondary supertype cache is less busy for S[] than S.
5140     // This usually only matters when D is an interface.
5141     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5142     // Plug failing path into checked_oop_disjoint_arraycopy
5143     if (not_subtype_ctrl != top()) {
5144       PreserveJVMState pjvms(this);
5145       set_control(not_subtype_ctrl);
5146       // (At this point we can assume disjoint_bases, since types differ.)
5147       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5148       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5149       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5150       Node* dest_elem_klass = _gvn.transform(n1);
5151       Node* cv = generate_checkcast_arraycopy(adr_type,
5152                                               dest_elem_klass,
5153                                               src, src_offset, dest, dest_offset,
5154                                               ConvI2X(copy_length), dest_uninitialized);
5155       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5156       checked_control = control();
5157       checked_i_o     = i_o();
5158       checked_mem     = memory(adr_type);
5159       checked_value   = cv;
5160     }
5161     // At this point we know we do not need type checks on oop stores.
5162 
5163     // Let's see if we need card marks:
5164     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5165       // If we do not need card marks, copy using the jint or jlong stub.
5166       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5167       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5168              "sizes agree");
5169     }
5170   }
5171 
5172   if (!stopped()) {
5173     // Generate the fast path, if possible.
5174     PreserveJVMState pjvms(this);
5175     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5176                                  src, src_offset, dest, dest_offset,
5177                                  ConvI2X(copy_length), dest_uninitialized);
5178 
5179     // Present the results of the fast call.
5180     result_region->init_req(fast_path, control());
5181     result_i_o   ->init_req(fast_path, i_o());
5182     result_memory->init_req(fast_path, memory(adr_type));
5183   }
5184 
5185   // Here are all the slow paths up to this point, in one bundle:
5186   slow_control = top();
5187   if (slow_region != NULL)
5188     slow_control = _gvn.transform(slow_region);
5189   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5190 
5191   set_control(checked_control);
5192   if (!stopped()) {
5193     // Clean up after the checked call.
5194     // The returned value is either 0 or -1^K,
5195     // where K = number of partially transferred array elements.
5196     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5197     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5198     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5199 
5200     // If it is 0, we are done, so transfer to the end.
5201     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5202     result_region->init_req(checked_path, checks_done);
5203     result_i_o   ->init_req(checked_path, checked_i_o);
5204     result_memory->init_req(checked_path, checked_mem);
5205 
5206     // If it is not zero, merge into the slow call.
5207     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5208     RegionNode* slow_reg2 = new(C) RegionNode(3);
5209     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5210     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5211     record_for_igvn(slow_reg2);
5212     slow_reg2  ->init_req(1, slow_control);
5213     slow_i_o2  ->init_req(1, slow_i_o);
5214     slow_mem2  ->init_req(1, slow_mem);
5215     slow_reg2  ->init_req(2, control());
5216     slow_i_o2  ->init_req(2, checked_i_o);
5217     slow_mem2  ->init_req(2, checked_mem);
5218 
5219     slow_control = _gvn.transform(slow_reg2);
5220     slow_i_o     = _gvn.transform(slow_i_o2);
5221     slow_mem     = _gvn.transform(slow_mem2);
5222 
5223     if (alloc != NULL) {
5224       // We'll restart from the very beginning, after zeroing the whole thing.
5225       // This can cause double writes, but that's OK since dest is brand new.
5226       // So we ignore the low 31 bits of the value returned from the stub.
5227     } else {
5228       // We must continue the copy exactly where it failed, or else
5229       // another thread might see the wrong number of writes to dest.
5230       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5231       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5232       slow_offset->init_req(1, intcon(0));
5233       slow_offset->init_req(2, checked_offset);
5234       slow_offset  = _gvn.transform(slow_offset);
5235 
5236       // Adjust the arguments by the conditionally incoming offset.
5237       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5238       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5239       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5240 
5241       // Tweak the node variables to adjust the code produced below:
5242       src_offset  = src_off_plus;
5243       dest_offset = dest_off_plus;
5244       copy_length = length_minus;
5245     }
5246   }
5247 
5248   set_control(slow_control);
5249   if (!stopped()) {
5250     // Generate the slow path, if needed.
5251     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5252 
5253     set_memory(slow_mem, adr_type);
5254     set_i_o(slow_i_o);
5255 
5256     if (dest_uninitialized) {
5257       generate_clear_array(adr_type, dest, basic_elem_type,
5258                            intcon(0), NULL,
5259                            alloc->in(AllocateNode::AllocSize));
5260     }
5261 
5262     generate_slow_arraycopy(adr_type,
5263                             src, src_offset, dest, dest_offset,
5264                             copy_length, /*dest_uninitialized*/false);
5265 
5266     result_region->init_req(slow_call_path, control());
5267     result_i_o   ->init_req(slow_call_path, i_o());
5268     result_memory->init_req(slow_call_path, memory(adr_type));
5269   }
5270 
5271   // Remove unused edges.
5272   for (uint i = 1; i < result_region->req(); i++) {
5273     if (result_region->in(i) == NULL)
5274       result_region->init_req(i, top());
5275   }
5276 
5277   // Finished; return the combined state.
5278   set_control( _gvn.transform(result_region));
5279   set_i_o(     _gvn.transform(result_i_o)    );
5280   set_memory(  _gvn.transform(result_memory), adr_type );
5281 
5282   // The memory edges above are precise in order to model effects around
5283   // array copies accurately to allow value numbering of field loads around
5284   // arraycopy.  Such field loads, both before and after, are common in Java
5285   // collections and similar classes involving header/array data structures.
5286   //
5287   // But with low number of register or when some registers are used or killed
5288   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5289   // The next memory barrier is added to avoid it. If the arraycopy can be
5290   // optimized away (which it can, sometimes) then we can manually remove
5291   // the membar also.
5292   //
5293   // Do not let reads from the cloned object float above the arraycopy.
5294   if (alloc != NULL) {
5295     // Do not let stores that initialize this object be reordered with
5296     // a subsequent store that would make this object accessible by
5297     // other threads.
5298     // Record what AllocateNode this StoreStore protects so that
5299     // escape analysis can go from the MemBarStoreStoreNode to the
5300     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5301     // based on the escape status of the AllocateNode.
5302     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5303   } else if (InsertMemBarAfterArraycopy)
5304     insert_mem_bar(Op_MemBarCPUOrder);
5305 }
5306 
5307 
5308 // Helper function which determines if an arraycopy immediately follows
5309 // an allocation, with no intervening tests or other escapes for the object.
5310 AllocateArrayNode*
5311 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5312                                            RegionNode* slow_region) {
5313   if (stopped())             return NULL;  // no fast path
5314   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5315 
5316   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5317   if (alloc == NULL)  return NULL;
5318 
5319   Node* rawmem = memory(Compile::AliasIdxRaw);
5320   // Is the allocation's memory state untouched?
5321   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5322     // Bail out if there have been raw-memory effects since the allocation.
5323     // (Example:  There might have been a call or safepoint.)
5324     return NULL;
5325   }
5326   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5327   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5328     return NULL;
5329   }
5330 
5331   // There must be no unexpected observers of this allocation.
5332   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5333     Node* obs = ptr->fast_out(i);
5334     if (obs != this->map()) {
5335       return NULL;
5336     }
5337   }
5338 
5339   // This arraycopy must unconditionally follow the allocation of the ptr.
5340   Node* alloc_ctl = ptr->in(0);
5341   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5342 
5343   Node* ctl = control();
5344   while (ctl != alloc_ctl) {
5345     // There may be guards which feed into the slow_region.
5346     // Any other control flow means that we might not get a chance
5347     // to finish initializing the allocated object.
5348     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5349       IfNode* iff = ctl->in(0)->as_If();
5350       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5351       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5352       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5353         ctl = iff->in(0);       // This test feeds the known slow_region.
5354         continue;
5355       }
5356       // One more try:  Various low-level checks bottom out in
5357       // uncommon traps.  If the debug-info of the trap omits
5358       // any reference to the allocation, as we've already
5359       // observed, then there can be no objection to the trap.
5360       bool found_trap = false;
5361       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5362         Node* obs = not_ctl->fast_out(j);
5363         if (obs->in(0) == not_ctl && obs->is_Call() &&
5364             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5365           found_trap = true; break;
5366         }
5367       }
5368       if (found_trap) {
5369         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5370         continue;
5371       }
5372     }
5373     return NULL;
5374   }
5375 
5376   // If we get this far, we have an allocation which immediately
5377   // precedes the arraycopy, and we can take over zeroing the new object.
5378   // The arraycopy will finish the initialization, and provide
5379   // a new control state to which we will anchor the destination pointer.
5380 
5381   return alloc;
5382 }
5383 
5384 // Helper for initialization of arrays, creating a ClearArray.
5385 // It writes zero bits in [start..end), within the body of an array object.
5386 // The memory effects are all chained onto the 'adr_type' alias category.
5387 //
5388 // Since the object is otherwise uninitialized, we are free
5389 // to put a little "slop" around the edges of the cleared area,
5390 // as long as it does not go back into the array's header,
5391 // or beyond the array end within the heap.
5392 //
5393 // The lower edge can be rounded down to the nearest jint and the
5394 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5395 //
5396 // Arguments:
5397 //   adr_type           memory slice where writes are generated
5398 //   dest               oop of the destination array
5399 //   basic_elem_type    element type of the destination
5400 //   slice_idx          array index of first element to store
5401 //   slice_len          number of elements to store (or NULL)
5402 //   dest_size          total size in bytes of the array object
5403 //
5404 // Exactly one of slice_len or dest_size must be non-NULL.
5405 // If dest_size is non-NULL, zeroing extends to the end of the object.
5406 // If slice_len is non-NULL, the slice_idx value must be a constant.
5407 void
5408 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5409                                      Node* dest,
5410                                      BasicType basic_elem_type,
5411                                      Node* slice_idx,
5412                                      Node* slice_len,
5413                                      Node* dest_size) {
5414   // one or the other but not both of slice_len and dest_size:
5415   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5416   if (slice_len == NULL)  slice_len = top();
5417   if (dest_size == NULL)  dest_size = top();
5418 
5419   // operate on this memory slice:
5420   Node* mem = memory(adr_type); // memory slice to operate on
5421 
5422   // scaling and rounding of indexes:
5423   int scale = exact_log2(type2aelembytes(basic_elem_type));
5424   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5425   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5426   int bump_bit  = (-1 << scale) & BytesPerInt;
5427 
5428   // determine constant starts and ends
5429   const intptr_t BIG_NEG = -128;
5430   assert(BIG_NEG + 2*abase < 0, "neg enough");
5431   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5432   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5433   if (slice_len_con == 0) {
5434     return;                     // nothing to do here
5435   }
5436   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5437   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5438   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5439     assert(end_con < 0, "not two cons");
5440     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5441                        BytesPerLong);
5442   }
5443 
5444   if (start_con >= 0 && end_con >= 0) {
5445     // Constant start and end.  Simple.
5446     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5447                                        start_con, end_con, &_gvn);
5448   } else if (start_con >= 0 && dest_size != top()) {
5449     // Constant start, pre-rounded end after the tail of the array.
5450     Node* end = dest_size;
5451     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5452                                        start_con, end, &_gvn);
5453   } else if (start_con >= 0 && slice_len != top()) {
5454     // Constant start, non-constant end.  End needs rounding up.
5455     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5456     intptr_t end_base  = abase + (slice_idx_con << scale);
5457     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5458     Node*    end       = ConvI2X(slice_len);
5459     if (scale != 0)
5460       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5461     end_base += end_round;
5462     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5463     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5464     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5465                                        start_con, end, &_gvn);
5466   } else if (start_con < 0 && dest_size != top()) {
5467     // Non-constant start, pre-rounded end after the tail of the array.
5468     // This is almost certainly a "round-to-end" operation.
5469     Node* start = slice_idx;
5470     start = ConvI2X(start);
5471     if (scale != 0)
5472       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5473     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5474     if ((bump_bit | clear_low) != 0) {
5475       int to_clear = (bump_bit | clear_low);
5476       // Align up mod 8, then store a jint zero unconditionally
5477       // just before the mod-8 boundary.
5478       if (((abase + bump_bit) & ~to_clear) - bump_bit
5479           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5480         bump_bit = 0;
5481         assert((abase & to_clear) == 0, "array base must be long-aligned");
5482       } else {
5483         // Bump 'start' up to (or past) the next jint boundary:
5484         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5485         assert((abase & clear_low) == 0, "array base must be int-aligned");
5486       }
5487       // Round bumped 'start' down to jlong boundary in body of array.
5488       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5489       if (bump_bit != 0) {
5490         // Store a zero to the immediately preceding jint:
5491         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5492         Node* p1 = basic_plus_adr(dest, x1);
5493         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5494         mem = _gvn.transform(mem);
5495       }
5496     }
5497     Node* end = dest_size; // pre-rounded
5498     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5499                                        start, end, &_gvn);
5500   } else {
5501     // Non-constant start, unrounded non-constant end.
5502     // (Nobody zeroes a random midsection of an array using this routine.)
5503     ShouldNotReachHere();       // fix caller
5504   }
5505 
5506   // Done.
5507   set_memory(mem, adr_type);
5508 }
5509 
5510 
5511 bool
5512 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5513                                          BasicType basic_elem_type,
5514                                          AllocateNode* alloc,
5515                                          Node* src,  Node* src_offset,
5516                                          Node* dest, Node* dest_offset,
5517                                          Node* dest_size, bool dest_uninitialized) {
5518   // See if there is an advantage from block transfer.
5519   int scale = exact_log2(type2aelembytes(basic_elem_type));
5520   if (scale >= LogBytesPerLong)
5521     return false;               // it is already a block transfer
5522 
5523   // Look at the alignment of the starting offsets.
5524   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5525 
5526   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5527   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5528   if (src_off_con < 0 || dest_off_con < 0)
5529     // At present, we can only understand constants.
5530     return false;
5531 
5532   intptr_t src_off  = abase + (src_off_con  << scale);
5533   intptr_t dest_off = abase + (dest_off_con << scale);
5534 
5535   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5536     // Non-aligned; too bad.
5537     // One more chance:  Pick off an initial 32-bit word.
5538     // This is a common case, since abase can be odd mod 8.
5539     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5540         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5541       Node* sptr = basic_plus_adr(src,  src_off);
5542       Node* dptr = basic_plus_adr(dest, dest_off);
5543       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5544       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5545       src_off += BytesPerInt;
5546       dest_off += BytesPerInt;
5547     } else {
5548       return false;
5549     }
5550   }
5551   assert(src_off % BytesPerLong == 0, "");
5552   assert(dest_off % BytesPerLong == 0, "");
5553 
5554   // Do this copy by giant steps.
5555   Node* sptr  = basic_plus_adr(src,  src_off);
5556   Node* dptr  = basic_plus_adr(dest, dest_off);
5557   Node* countx = dest_size;
5558   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5559   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5560 
5561   bool disjoint_bases = true;   // since alloc != NULL
5562   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5563                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5564 
5565   return true;
5566 }
5567 
5568 
5569 // Helper function; generates code for the slow case.
5570 // We make a call to a runtime method which emulates the native method,
5571 // but without the native wrapper overhead.
5572 void
5573 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5574                                         Node* src,  Node* src_offset,
5575                                         Node* dest, Node* dest_offset,
5576                                         Node* copy_length, bool dest_uninitialized) {
5577   assert(!dest_uninitialized, "Invariant");
5578   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5579                                  OptoRuntime::slow_arraycopy_Type(),
5580                                  OptoRuntime::slow_arraycopy_Java(),
5581                                  "slow_arraycopy", adr_type,
5582                                  src, src_offset, dest, dest_offset,
5583                                  copy_length);
5584 
5585   // Handle exceptions thrown by this fellow:
5586   make_slow_call_ex(call, env()->Throwable_klass(), false);
5587 }
5588 
5589 // Helper function; generates code for cases requiring runtime checks.
5590 Node*
5591 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5592                                              Node* dest_elem_klass,
5593                                              Node* src,  Node* src_offset,
5594                                              Node* dest, Node* dest_offset,
5595                                              Node* copy_length, bool dest_uninitialized) {
5596   if (stopped())  return NULL;
5597 
5598   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5599   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5600     return NULL;
5601   }
5602 
5603   // Pick out the parameters required to perform a store-check
5604   // for the target array.  This is an optimistic check.  It will
5605   // look in each non-null element's class, at the desired klass's
5606   // super_check_offset, for the desired klass.
5607   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5608   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5609   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5610   Node* check_offset = ConvI2X(_gvn.transform(n3));
5611   Node* check_value  = dest_elem_klass;
5612 
5613   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5614   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5615 
5616   // (We know the arrays are never conjoint, because their types differ.)
5617   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5618                                  OptoRuntime::checkcast_arraycopy_Type(),
5619                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5620                                  // five arguments, of which two are
5621                                  // intptr_t (jlong in LP64)
5622                                  src_start, dest_start,
5623                                  copy_length XTOP,
5624                                  check_offset XTOP,
5625                                  check_value);
5626 
5627   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5628 }
5629 
5630 
5631 // Helper function; generates code for cases requiring runtime checks.
5632 Node*
5633 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5634                                            Node* src,  Node* src_offset,
5635                                            Node* dest, Node* dest_offset,
5636                                            Node* copy_length, bool dest_uninitialized) {
5637   assert(!dest_uninitialized, "Invariant");
5638   if (stopped())  return NULL;
5639   address copyfunc_addr = StubRoutines::generic_arraycopy();
5640   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5641     return NULL;
5642   }
5643 
5644   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5645                     OptoRuntime::generic_arraycopy_Type(),
5646                     copyfunc_addr, "generic_arraycopy", adr_type,
5647                     src, src_offset, dest, dest_offset, copy_length);
5648 
5649   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5650 }
5651 
5652 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5653 void
5654 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5655                                              BasicType basic_elem_type,
5656                                              bool disjoint_bases,
5657                                              Node* src,  Node* src_offset,
5658                                              Node* dest, Node* dest_offset,
5659                                              Node* copy_length, bool dest_uninitialized) {
5660   if (stopped())  return;               // nothing to do
5661 
5662   Node* src_start  = src;
5663   Node* dest_start = dest;
5664   if (src_offset != NULL || dest_offset != NULL) {
5665     assert(src_offset != NULL && dest_offset != NULL, "");
5666     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5667     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5668   }
5669 
5670   // Figure out which arraycopy runtime method to call.
5671   const char* copyfunc_name = "arraycopy";
5672   address     copyfunc_addr =
5673       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5674                           disjoint_bases, copyfunc_name, dest_uninitialized);
5675 
5676   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5677   make_runtime_call(RC_LEAF|RC_NO_FP,
5678                     OptoRuntime::fast_arraycopy_Type(),
5679                     copyfunc_addr, copyfunc_name, adr_type,
5680                     src_start, dest_start, copy_length XTOP);
5681 }
5682 
5683 //-------------inline_encodeISOArray-----------------------------------
5684 // encode char[] to byte[] in ISO_8859_1
5685 bool LibraryCallKit::inline_encodeISOArray() {
5686   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5687   // no receiver since it is static method
5688   Node *src         = argument(0);
5689   Node *src_offset  = argument(1);
5690   Node *dst         = argument(2);
5691   Node *dst_offset  = argument(3);
5692   Node *length      = argument(4);
5693 
5694   const Type* src_type = src->Value(&_gvn);
5695   const Type* dst_type = dst->Value(&_gvn);
5696   const TypeAryPtr* top_src = src_type->isa_aryptr();
5697   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5698   if (top_src  == NULL || top_src->klass()  == NULL ||
5699       top_dest == NULL || top_dest->klass() == NULL) {
5700     // failed array check
5701     return false;
5702   }
5703 
5704   // Figure out the size and type of the elements we will be copying.
5705   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5706   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5707   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5708     return false;
5709   }
5710   Node* src_start = array_element_address(src, src_offset, src_elem);
5711   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5712   // 'src_start' points to src array + scaled offset
5713   // 'dst_start' points to dst array + scaled offset
5714 
5715   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5716   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5717   enc = _gvn.transform(enc);
5718   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5719   set_memory(res_mem, mtype);
5720   set_result(enc);
5721   return true;
5722 }
5723 
5724 /**
5725  * Calculate CRC32 for byte.
5726  * int java.util.zip.CRC32.update(int crc, int b)
5727  */
5728 bool LibraryCallKit::inline_updateCRC32() {
5729   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5730   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5731   // no receiver since it is static method
5732   Node* crc  = argument(0); // type: int
5733   Node* b    = argument(1); // type: int
5734 
5735   /*
5736    *    int c = ~ crc;
5737    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5738    *    b = b ^ (c >>> 8);
5739    *    crc = ~b;
5740    */
5741 
5742   Node* M1 = intcon(-1);
5743   crc = _gvn.transform(new (C) XorINode(crc, M1));
5744   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5745   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5746 
5747   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5748   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5749   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5750   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5751 
5752   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5753   result = _gvn.transform(new (C) XorINode(crc, result));
5754   result = _gvn.transform(new (C) XorINode(result, M1));
5755   set_result(result);
5756   return true;
5757 }
5758 
5759 /**
5760  * Calculate CRC32 for byte[] array.
5761  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5762  */
5763 bool LibraryCallKit::inline_updateBytesCRC32() {
5764   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5765   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5766   // no receiver since it is static method
5767   Node* crc     = argument(0); // type: int
5768   Node* src     = argument(1); // type: oop
5769   Node* offset  = argument(2); // type: int
5770   Node* length  = argument(3); // type: int
5771 
5772   const Type* src_type = src->Value(&_gvn);
5773   const TypeAryPtr* top_src = src_type->isa_aryptr();
5774   if (top_src  == NULL || top_src->klass()  == NULL) {
5775     // failed array check
5776     return false;
5777   }
5778 
5779   // Figure out the size and type of the elements we will be copying.
5780   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5781   if (src_elem != T_BYTE) {
5782     return false;
5783   }
5784 
5785   // 'src_start' points to src array + scaled offset
5786   Node* src_start = array_element_address(src, offset, src_elem);
5787 
5788   // We assume that range check is done by caller.
5789   // TODO: generate range check (offset+length < src.length) in debug VM.
5790 
5791   // Call the stub.
5792   address stubAddr = StubRoutines::updateBytesCRC32();
5793   const char *stubName = "updateBytesCRC32";
5794 
5795   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5796                                  stubAddr, stubName, TypePtr::BOTTOM,
5797                                  crc, src_start, length);
5798   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5799   set_result(result);
5800   return true;
5801 }
5802 
5803 /**
5804  * Calculate CRC32 for ByteBuffer.
5805  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5806  */
5807 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5808   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5809   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5810   // no receiver since it is static method
5811   Node* crc     = argument(0); // type: int
5812   Node* src     = argument(1); // type: long
5813   Node* offset  = argument(3); // type: int
5814   Node* length  = argument(4); // type: int
5815 
5816   src = ConvL2X(src);  // adjust Java long to machine word
5817   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5818   offset = ConvI2X(offset);
5819 
5820   // 'src_start' points to src array + scaled offset
5821   Node* src_start = basic_plus_adr(top(), base, offset);
5822 
5823   // Call the stub.
5824   address stubAddr = StubRoutines::updateBytesCRC32();
5825   const char *stubName = "updateBytesCRC32";
5826 
5827   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5828                                  stubAddr, stubName, TypePtr::BOTTOM,
5829                                  crc, src_start, length);
5830   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5831   set_result(result);
5832   return true;
5833 }
5834 
5835 //----------------------------inline_reference_get----------------------------
5836 // public T java.lang.ref.Reference.get();
5837 bool LibraryCallKit::inline_reference_get() {
5838   const int referent_offset = java_lang_ref_Reference::referent_offset;
5839   guarantee(referent_offset > 0, "should have already been set");
5840 
5841   // Get the argument:
5842   Node* reference_obj = null_check_receiver();
5843   if (stopped()) return true;
5844 
5845   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5846 
5847   ciInstanceKlass* klass = env()->Object_klass();
5848   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5849 
5850   Node* no_ctrl = NULL;
5851   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5852 
5853   // Use the pre-barrier to record the value in the referent field
5854   pre_barrier(false /* do_load */,
5855               control(),
5856               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5857               result /* pre_val */,
5858               T_OBJECT);
5859 
5860   // Add memory barrier to prevent commoning reads from this field
5861   // across safepoint since GC can change its value.
5862   insert_mem_bar(Op_MemBarCPUOrder);
5863 
5864   set_result(result);
5865   return true;
5866 }
5867 
5868 
5869 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5870                                               bool is_exact=true, bool is_static=false) {
5871 
5872   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5873   assert(tinst != NULL, "obj is null");
5874   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5875   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5876 
5877   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5878                                                                           ciSymbol::make(fieldTypeString),
5879                                                                           is_static);
5880   if (field == NULL) return (Node *) NULL;
5881   assert (field != NULL, "undefined field");
5882 
5883   // Next code  copied from Parse::do_get_xxx():
5884 
5885   // Compute address and memory type.
5886   int offset  = field->offset_in_bytes();
5887   bool is_vol = field->is_volatile();
5888   ciType* field_klass = field->type();
5889   assert(field_klass->is_loaded(), "should be loaded");
5890   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5891   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5892   BasicType bt = field->layout_type();
5893 
5894   // Build the resultant type of the load
5895   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5896 
5897   // Build the load.
5898   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5899   return loadedField;
5900 }
5901 
5902 
5903 //------------------------------inline_aescrypt_Block-----------------------
5904 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5905   address stubAddr;
5906   const char *stubName;
5907   assert(UseAES, "need AES instruction support");
5908 
5909   switch(id) {
5910   case vmIntrinsics::_aescrypt_encryptBlock:
5911     stubAddr = StubRoutines::aescrypt_encryptBlock();
5912     stubName = "aescrypt_encryptBlock";
5913     break;
5914   case vmIntrinsics::_aescrypt_decryptBlock:
5915     stubAddr = StubRoutines::aescrypt_decryptBlock();
5916     stubName = "aescrypt_decryptBlock";
5917     break;
5918   }
5919   if (stubAddr == NULL) return false;
5920 
5921   Node* aescrypt_object = argument(0);
5922   Node* src             = argument(1);
5923   Node* src_offset      = argument(2);
5924   Node* dest            = argument(3);
5925   Node* dest_offset     = argument(4);
5926 
5927   // (1) src and dest are arrays.
5928   const Type* src_type = src->Value(&_gvn);
5929   const Type* dest_type = dest->Value(&_gvn);
5930   const TypeAryPtr* top_src = src_type->isa_aryptr();
5931   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5932   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5933 
5934   // for the quick and dirty code we will skip all the checks.
5935   // we are just trying to get the call to be generated.
5936   Node* src_start  = src;
5937   Node* dest_start = dest;
5938   if (src_offset != NULL || dest_offset != NULL) {
5939     assert(src_offset != NULL && dest_offset != NULL, "");
5940     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5941     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5942   }
5943 
5944   // now need to get the start of its expanded key array
5945   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5946   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5947   if (k_start == NULL) return false;
5948 
5949   if (Matcher::pass_original_key_for_aes()) {
5950     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5951     // compatibility issues between Java key expansion and SPARC crypto instructions
5952     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5953     if (original_k_start == NULL) return false;
5954 
5955     // Call the stub.
5956     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5957                       stubAddr, stubName, TypePtr::BOTTOM,
5958                       src_start, dest_start, k_start, original_k_start);
5959   } else {
5960     // Call the stub.
5961     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5962                       stubAddr, stubName, TypePtr::BOTTOM,
5963                       src_start, dest_start, k_start);
5964   }
5965 
5966   return true;
5967 }
5968 
5969 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5970 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5971   address stubAddr;
5972   const char *stubName;
5973 
5974   assert(UseAES, "need AES instruction support");
5975 
5976   switch(id) {
5977   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5978     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5979     stubName = "cipherBlockChaining_encryptAESCrypt";
5980     break;
5981   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5982     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5983     stubName = "cipherBlockChaining_decryptAESCrypt";
5984     break;
5985   }
5986   if (stubAddr == NULL) return false;
5987 
5988   Node* cipherBlockChaining_object = argument(0);
5989   Node* src                        = argument(1);
5990   Node* src_offset                 = argument(2);
5991   Node* len                        = argument(3);
5992   Node* dest                       = argument(4);
5993   Node* dest_offset                = argument(5);
5994 
5995   // (1) src and dest are arrays.
5996   const Type* src_type = src->Value(&_gvn);
5997   const Type* dest_type = dest->Value(&_gvn);
5998   const TypeAryPtr* top_src = src_type->isa_aryptr();
5999   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6000   assert (top_src  != NULL && top_src->klass()  != NULL
6001           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6002 
6003   // checks are the responsibility of the caller
6004   Node* src_start  = src;
6005   Node* dest_start = dest;
6006   if (src_offset != NULL || dest_offset != NULL) {
6007     assert(src_offset != NULL && dest_offset != NULL, "");
6008     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6009     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6010   }
6011 
6012   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6013   // (because of the predicated logic executed earlier).
6014   // so we cast it here safely.
6015   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6016 
6017   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6018   if (embeddedCipherObj == NULL) return false;
6019 
6020   // cast it to what we know it will be at runtime
6021   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6022   assert(tinst != NULL, "CBC obj is null");
6023   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6024   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6025   if (!klass_AESCrypt->is_loaded()) return false;
6026 
6027   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6028   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6029   const TypeOopPtr* xtype = aklass->as_instance_type();
6030   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6031   aescrypt_object = _gvn.transform(aescrypt_object);
6032 
6033   // we need to get the start of the aescrypt_object's expanded key array
6034   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6035   if (k_start == NULL) return false;
6036 
6037   // similarly, get the start address of the r vector
6038   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6039   if (objRvec == NULL) return false;
6040   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6041 
6042   Node* cbcCrypt;
6043   if (Matcher::pass_original_key_for_aes()) {
6044     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6045     // compatibility issues between Java key expansion and SPARC crypto instructions
6046     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6047     if (original_k_start == NULL) return false;
6048 
6049     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6050     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6051                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6052                                  stubAddr, stubName, TypePtr::BOTTOM,
6053                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6054   } else {
6055     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6056     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6057                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6058                                  stubAddr, stubName, TypePtr::BOTTOM,
6059                                  src_start, dest_start, k_start, r_start, len);
6060   }
6061 
6062   // return cipher length (int)
6063   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6064   set_result(retvalue);
6065   return true;
6066 }
6067 
6068 //------------------------------get_key_start_from_aescrypt_object-----------------------
6069 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6070   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6071   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6072   if (objAESCryptKey == NULL) return (Node *) NULL;
6073 
6074   // now have the array, need to get the start address of the K array
6075   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6076   return k_start;
6077 }
6078 
6079 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6080 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6081   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6082   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6083   if (objAESCryptKey == NULL) return (Node *) NULL;
6084 
6085   // now have the array, need to get the start address of the lastKey array
6086   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6087   return original_k_start;
6088 }
6089 
6090 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6091 // Return node representing slow path of predicate check.
6092 // the pseudo code we want to emulate with this predicate is:
6093 // for encryption:
6094 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6095 // for decryption:
6096 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6097 //    note cipher==plain is more conservative than the original java code but that's OK
6098 //
6099 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6100   // First, check receiver for NULL since it is virtual method.
6101   Node* objCBC = argument(0);
6102   objCBC = null_check(objCBC);
6103 
6104   if (stopped()) return NULL; // Always NULL
6105 
6106   // Load embeddedCipher field of CipherBlockChaining object.
6107   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6108 
6109   // get AESCrypt klass for instanceOf check
6110   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6111   // will have same classloader as CipherBlockChaining object
6112   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6113   assert(tinst != NULL, "CBCobj is null");
6114   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6115 
6116   // we want to do an instanceof comparison against the AESCrypt class
6117   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6118   if (!klass_AESCrypt->is_loaded()) {
6119     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6120     Node* ctrl = control();
6121     set_control(top()); // no regular fast path
6122     return ctrl;
6123   }
6124   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6125 
6126   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6127   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6128   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6129 
6130   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6131 
6132   // for encryption, we are done
6133   if (!decrypting)
6134     return instof_false;  // even if it is NULL
6135 
6136   // for decryption, we need to add a further check to avoid
6137   // taking the intrinsic path when cipher and plain are the same
6138   // see the original java code for why.
6139   RegionNode* region = new(C) RegionNode(3);
6140   region->init_req(1, instof_false);
6141   Node* src = argument(1);
6142   Node* dest = argument(4);
6143   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6144   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6145   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6146   region->init_req(2, src_dest_conjoint);
6147 
6148   record_for_igvn(region);
6149   return _gvn.transform(region);
6150 }