1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _is_predicted;
  50   bool             _does_virtual_dispatch;
  51   vmIntrinsics::ID _intrinsic_id;
  52 
  53  public:
  54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  55     : InlineCallGenerator(m),
  56       _is_virtual(is_virtual),
  57       _is_predicted(is_predicted),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _intrinsic_id(id)
  60   {
  61   }
  62   virtual bool is_intrinsic() const { return true; }
  63   virtual bool is_virtual()   const { return _is_virtual; }
  64   virtual bool is_predicted()   const { return _is_predicted; }
  65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  67   virtual Node* generate_predicate(JVMState* jvms);
  68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  69 };
  70 
  71 
  72 // Local helper class for LibraryIntrinsic:
  73 class LibraryCallKit : public GraphKit {
  74  private:
  75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  76   Node*             _result;        // the result node, if any
  77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  78 
  79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  80 
  81  public:
  82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  83     : GraphKit(jvms),
  84       _intrinsic(intrinsic),
  85       _result(NULL)
  86   {
  87     // Check if this is a root compile.  In that case we don't have a caller.
  88     if (!jvms->has_method()) {
  89       _reexecute_sp = sp();
  90     } else {
  91       // Find out how many arguments the interpreter needs when deoptimizing
  92       // and save the stack pointer value so it can used by uncommon_trap.
  93       // We find the argument count by looking at the declared signature.
  94       bool ignored_will_link;
  95       ciSignature* declared_signature = NULL;
  96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  99     }
 100   }
 101 
 102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 103 
 104   ciMethod*         caller()    const    { return jvms()->method(); }
 105   int               bci()       const    { return jvms()->bci(); }
 106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 108   ciMethod*         callee()    const    { return _intrinsic->method(); }
 109 
 110   bool try_to_inline();
 111   Node* try_to_predicate();
 112 
 113   void push_result() {
 114     // Push the result onto the stack.
 115     if (!stopped() && result() != NULL) {
 116       BasicType bt = result()->bottom_type()->basic_type();
 117       push_node(bt, result());
 118     }
 119   }
 120 
 121  private:
 122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 124   }
 125 
 126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 127   void  set_result(RegionNode* region, PhiNode* value);
 128   Node*     result() { return _result; }
 129 
 130   virtual int reexecute_sp() { return _reexecute_sp; }
 131 
 132   // Helper functions to inline natives
 133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 134   Node* generate_slow_guard(Node* test, RegionNode* region);
 135   Node* generate_fair_guard(Node* test, RegionNode* region);
 136   Node* generate_negative_guard(Node* index, RegionNode* region,
 137                                 // resulting CastII of index:
 138                                 Node* *pos_index = NULL);
 139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 140                                    // resulting CastII of index:
 141                                    Node* *pos_index = NULL);
 142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 143                              Node* array_length,
 144                              RegionNode* region);
 145   Node* generate_current_thread(Node* &tls_output);
 146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 148   Node* load_mirror_from_klass(Node* klass);
 149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 150                                       RegionNode* region, int null_path,
 151                                       int offset);
 152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 153                                RegionNode* region, int null_path) {
 154     int offset = java_lang_Class::klass_offset_in_bytes();
 155     return load_klass_from_mirror_common(mirror, never_see_null,
 156                                          region, null_path,
 157                                          offset);
 158   }
 159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                      RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::array_klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* generate_access_flags_guard(Node* kls,
 167                                     int modifier_mask, int modifier_bits,
 168                                     RegionNode* region);
 169   Node* generate_interface_guard(Node* kls, RegionNode* region);
 170   Node* generate_array_guard(Node* kls, RegionNode* region) {
 171     return generate_array_guard_common(kls, region, false, false);
 172   }
 173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, true);
 175   }
 176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, true, false);
 178   }
 179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, true);
 181   }
 182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 183                                     bool obj_array, bool not_array);
 184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 186                                      bool is_virtual = false, bool is_static = false);
 187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 188     return generate_method_call(method_id, false, true);
 189   }
 190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, true, false);
 192   }
 193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 194 
 195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 197   bool inline_string_compareTo();
 198   bool inline_string_indexOf();
 199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 200   bool inline_string_equals();
 201   Node* round_double_node(Node* n);
 202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 203   bool inline_math_native(vmIntrinsics::ID id);
 204   bool inline_trig(vmIntrinsics::ID id);
 205   bool inline_math(vmIntrinsics::ID id);
 206   template <typename OverflowOp>
 207   bool inline_math_overflow(Node* arg1, Node* arg2);
 208   template <typename OverflowOp>
 209   bool inline_math_overflow(bool is_unary);
 210   void inline_math_mathExact(Node* math, Node* test);
 211   bool inline_math_addExactI(bool is_increment);
 212   bool inline_math_addExactL(bool is_increment);
 213   bool inline_math_multiplyExactI();
 214   bool inline_math_multiplyExactL();
 215   bool inline_math_negateExactI();
 216   bool inline_math_negateExactL();
 217   bool inline_math_subtractExactI(bool is_decrement);
 218   bool inline_math_subtractExactL(bool is_decrement);
 219   bool inline_exp();
 220   bool inline_pow();
 221   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 222   bool inline_min_max(vmIntrinsics::ID id);
 223   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 224   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 225   int classify_unsafe_addr(Node* &base, Node* &offset);
 226   Node* make_unsafe_address(Node* base, Node* offset);
 227   // Helper for inline_unsafe_access.
 228   // Generates the guards that check whether the result of
 229   // Unsafe.getObject should be recorded in an SATB log buffer.
 230   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 231   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 232   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 233   static bool klass_needs_init_guard(Node* kls);
 234   bool inline_unsafe_allocate();
 235   bool inline_unsafe_copyMemory();
 236   bool inline_native_currentThread();
 237 #ifdef TRACE_HAVE_INTRINSICS
 238   bool inline_native_classID();
 239   bool inline_native_threadID();
 240 #endif
 241   bool inline_native_time_funcs(address method, const char* funcName);
 242   bool inline_native_isInterrupted();
 243   bool inline_native_Class_query(vmIntrinsics::ID id);
 244   bool inline_native_subtype_check();
 245 
 246   bool inline_native_newArray();
 247   bool inline_native_getLength();
 248   bool inline_array_copyOf(bool is_copyOfRange);
 249   bool inline_array_equals();
 250   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 251   bool inline_native_clone(bool is_virtual);
 252   bool inline_native_Reflection_getCallerClass();
 253   // Helper function for inlining native object hash method
 254   bool inline_native_hashcode(bool is_virtual, bool is_static);
 255   bool inline_native_getClass();
 256 
 257   // Helper functions for inlining arraycopy
 258   bool inline_arraycopy();
 259   void generate_arraycopy(const TypePtr* adr_type,
 260                           BasicType basic_elem_type,
 261                           Node* src,  Node* src_offset,
 262                           Node* dest, Node* dest_offset,
 263                           Node* copy_length,
 264                           bool disjoint_bases = false,
 265                           bool length_never_negative = false,
 266                           RegionNode* slow_region = NULL);
 267   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 268                                                 RegionNode* slow_region);
 269   void generate_clear_array(const TypePtr* adr_type,
 270                             Node* dest,
 271                             BasicType basic_elem_type,
 272                             Node* slice_off,
 273                             Node* slice_len,
 274                             Node* slice_end);
 275   bool generate_block_arraycopy(const TypePtr* adr_type,
 276                                 BasicType basic_elem_type,
 277                                 AllocateNode* alloc,
 278                                 Node* src,  Node* src_offset,
 279                                 Node* dest, Node* dest_offset,
 280                                 Node* dest_size, bool dest_uninitialized);
 281   void generate_slow_arraycopy(const TypePtr* adr_type,
 282                                Node* src,  Node* src_offset,
 283                                Node* dest, Node* dest_offset,
 284                                Node* copy_length, bool dest_uninitialized);
 285   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 286                                      Node* dest_elem_klass,
 287                                      Node* src,  Node* src_offset,
 288                                      Node* dest, Node* dest_offset,
 289                                      Node* copy_length, bool dest_uninitialized);
 290   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 291                                    Node* src,  Node* src_offset,
 292                                    Node* dest, Node* dest_offset,
 293                                    Node* copy_length, bool dest_uninitialized);
 294   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 295                                     BasicType basic_elem_type,
 296                                     bool disjoint_bases,
 297                                     Node* src,  Node* src_offset,
 298                                     Node* dest, Node* dest_offset,
 299                                     Node* copy_length, bool dest_uninitialized);
 300   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 301   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 302   bool inline_unsafe_ordered_store(BasicType type);
 303   bool inline_unsafe_fence(vmIntrinsics::ID id);
 304   bool inline_fp_conversions(vmIntrinsics::ID id);
 305   bool inline_number_methods(vmIntrinsics::ID id);
 306   bool inline_reference_get();
 307   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 308   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 309   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 310   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 311   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 312   bool inline_encodeISOArray();
 313   bool inline_updateCRC32();
 314   bool inline_updateBytesCRC32();
 315   bool inline_updateByteBufferCRC32();
 316 };
 317 
 318 
 319 //---------------------------make_vm_intrinsic----------------------------
 320 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 321   vmIntrinsics::ID id = m->intrinsic_id();
 322   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 323 
 324   if (DisableIntrinsic[0] != '\0'
 325       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 326     // disabled by a user request on the command line:
 327     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 328     return NULL;
 329   }
 330 
 331   if (!m->is_loaded()) {
 332     // do not attempt to inline unloaded methods
 333     return NULL;
 334   }
 335 
 336   // Only a few intrinsics implement a virtual dispatch.
 337   // They are expensive calls which are also frequently overridden.
 338   if (is_virtual) {
 339     switch (id) {
 340     case vmIntrinsics::_hashCode:
 341     case vmIntrinsics::_clone:
 342       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 343       break;
 344     default:
 345       return NULL;
 346     }
 347   }
 348 
 349   // -XX:-InlineNatives disables nearly all intrinsics:
 350   if (!InlineNatives) {
 351     switch (id) {
 352     case vmIntrinsics::_indexOf:
 353     case vmIntrinsics::_compareTo:
 354     case vmIntrinsics::_equals:
 355     case vmIntrinsics::_equalsC:
 356     case vmIntrinsics::_getAndAddInt:
 357     case vmIntrinsics::_getAndAddLong:
 358     case vmIntrinsics::_getAndSetInt:
 359     case vmIntrinsics::_getAndSetLong:
 360     case vmIntrinsics::_getAndSetObject:
 361     case vmIntrinsics::_loadFence:
 362     case vmIntrinsics::_storeFence:
 363     case vmIntrinsics::_fullFence:
 364       break;  // InlineNatives does not control String.compareTo
 365     case vmIntrinsics::_Reference_get:
 366       break;  // InlineNatives does not control Reference.get
 367     default:
 368       return NULL;
 369     }
 370   }
 371 
 372   bool is_predicted = false;
 373   bool does_virtual_dispatch = false;
 374 
 375   switch (id) {
 376   case vmIntrinsics::_compareTo:
 377     if (!SpecialStringCompareTo)  return NULL;
 378     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 379     break;
 380   case vmIntrinsics::_indexOf:
 381     if (!SpecialStringIndexOf)  return NULL;
 382     break;
 383   case vmIntrinsics::_equals:
 384     if (!SpecialStringEquals)  return NULL;
 385     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 386     break;
 387   case vmIntrinsics::_equalsC:
 388     if (!SpecialArraysEquals)  return NULL;
 389     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 390     break;
 391   case vmIntrinsics::_arraycopy:
 392     if (!InlineArrayCopy)  return NULL;
 393     break;
 394   case vmIntrinsics::_copyMemory:
 395     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 396     if (!InlineArrayCopy)  return NULL;
 397     break;
 398   case vmIntrinsics::_hashCode:
 399     if (!InlineObjectHash)  return NULL;
 400     does_virtual_dispatch = true;
 401     break;
 402   case vmIntrinsics::_clone:
 403     does_virtual_dispatch = true;
 404   case vmIntrinsics::_copyOf:
 405   case vmIntrinsics::_copyOfRange:
 406     if (!InlineObjectCopy)  return NULL;
 407     // These also use the arraycopy intrinsic mechanism:
 408     if (!InlineArrayCopy)  return NULL;
 409     break;
 410   case vmIntrinsics::_encodeISOArray:
 411     if (!SpecialEncodeISOArray)  return NULL;
 412     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 413     break;
 414   case vmIntrinsics::_checkIndex:
 415     // We do not intrinsify this.  The optimizer does fine with it.
 416     return NULL;
 417 
 418   case vmIntrinsics::_getCallerClass:
 419     if (!UseNewReflection)  return NULL;
 420     if (!InlineReflectionGetCallerClass)  return NULL;
 421     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_bitCount_i:
 425     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_bitCount_l:
 429     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_numberOfLeadingZeros_i:
 433     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_numberOfLeadingZeros_l:
 437     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_numberOfTrailingZeros_i:
 441     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 442     break;
 443 
 444   case vmIntrinsics::_numberOfTrailingZeros_l:
 445     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 446     break;
 447 
 448   case vmIntrinsics::_reverseBytes_c:
 449     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 450     break;
 451   case vmIntrinsics::_reverseBytes_s:
 452     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 453     break;
 454   case vmIntrinsics::_reverseBytes_i:
 455     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 456     break;
 457   case vmIntrinsics::_reverseBytes_l:
 458     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_Reference_get:
 462     // Use the intrinsic version of Reference.get() so that the value in
 463     // the referent field can be registered by the G1 pre-barrier code.
 464     // Also add memory barrier to prevent commoning reads from this field
 465     // across safepoint since GC can change it value.
 466     break;
 467 
 468   case vmIntrinsics::_compareAndSwapObject:
 469 #ifdef _LP64
 470     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 471 #endif
 472     break;
 473 
 474   case vmIntrinsics::_compareAndSwapLong:
 475     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_getAndAddInt:
 479     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndAddLong:
 483     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_getAndSetInt:
 487     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 488     break;
 489 
 490   case vmIntrinsics::_getAndSetLong:
 491     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 492     break;
 493 
 494   case vmIntrinsics::_getAndSetObject:
 495 #ifdef _LP64
 496     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 497     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 498     break;
 499 #else
 500     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 501     break;
 502 #endif
 503 
 504   case vmIntrinsics::_aescrypt_encryptBlock:
 505   case vmIntrinsics::_aescrypt_decryptBlock:
 506     if (!UseAESIntrinsics) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 510   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 511     if (!UseAESIntrinsics) return NULL;
 512     // these two require the predicated logic
 513     is_predicted = true;
 514     break;
 515 
 516   case vmIntrinsics::_updateCRC32:
 517   case vmIntrinsics::_updateBytesCRC32:
 518   case vmIntrinsics::_updateByteBufferCRC32:
 519     if (!UseCRC32Intrinsics) return NULL;
 520     break;
 521 
 522   case vmIntrinsics::_incrementExactI:
 523   case vmIntrinsics::_addExactI:
 524     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 525     break;
 526   case vmIntrinsics::_incrementExactL:
 527   case vmIntrinsics::_addExactL:
 528     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_decrementExactI:
 531   case vmIntrinsics::_subtractExactI:
 532     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_decrementExactL:
 535   case vmIntrinsics::_subtractExactL:
 536     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 537     break;
 538   case vmIntrinsics::_negateExactI:
 539     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 540     break;
 541   case vmIntrinsics::_negateExactL:
 542     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 543     break;
 544   case vmIntrinsics::_multiplyExactI:
 545     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 546     break;
 547   case vmIntrinsics::_multiplyExactL:
 548     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 549     break;
 550 
 551  default:
 552     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 553     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 554     break;
 555   }
 556 
 557   // -XX:-InlineClassNatives disables natives from the Class class.
 558   // The flag applies to all reflective calls, notably Array.newArray
 559   // (visible to Java programmers as Array.newInstance).
 560   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 561       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 562     if (!InlineClassNatives)  return NULL;
 563   }
 564 
 565   // -XX:-InlineThreadNatives disables natives from the Thread class.
 566   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 567     if (!InlineThreadNatives)  return NULL;
 568   }
 569 
 570   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 571   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 572       m->holder()->name() == ciSymbol::java_lang_Float() ||
 573       m->holder()->name() == ciSymbol::java_lang_Double()) {
 574     if (!InlineMathNatives)  return NULL;
 575   }
 576 
 577   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 578   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 579     if (!InlineUnsafeOps)  return NULL;
 580   }
 581 
 582   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 583 }
 584 
 585 //----------------------register_library_intrinsics-----------------------
 586 // Initialize this file's data structures, for each Compile instance.
 587 void Compile::register_library_intrinsics() {
 588   // Nothing to do here.
 589 }
 590 
 591 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 592   LibraryCallKit kit(jvms, this);
 593   Compile* C = kit.C;
 594   int nodes = C->unique();
 595 #ifndef PRODUCT
 596   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 597     char buf[1000];
 598     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 599     tty->print_cr("Intrinsic %s", str);
 600   }
 601 #endif
 602   ciMethod* callee = kit.callee();
 603   const int bci    = kit.bci();
 604 
 605   // Try to inline the intrinsic.
 606   if (kit.try_to_inline()) {
 607     if (C->print_intrinsics() || C->print_inlining()) {
 608       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 609     }
 610     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 611     if (C->log()) {
 612       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 613                      vmIntrinsics::name_at(intrinsic_id()),
 614                      (is_virtual() ? " virtual='1'" : ""),
 615                      C->unique() - nodes);
 616     }
 617     // Push the result from the inlined method onto the stack.
 618     kit.push_result();
 619     return kit.transfer_exceptions_into_jvms();
 620   }
 621 
 622   // The intrinsic bailed out
 623   if (C->print_intrinsics() || C->print_inlining()) {
 624     if (jvms->has_method()) {
 625       // Not a root compile.
 626       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 627       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 628     } else {
 629       // Root compile
 630       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 631                vmIntrinsics::name_at(intrinsic_id()),
 632                (is_virtual() ? " (virtual)" : ""), bci);
 633     }
 634   }
 635   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 636   return NULL;
 637 }
 638 
 639 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 640   LibraryCallKit kit(jvms, this);
 641   Compile* C = kit.C;
 642   int nodes = C->unique();
 643 #ifndef PRODUCT
 644   assert(is_predicted(), "sanity");
 645   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 646     char buf[1000];
 647     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 648     tty->print_cr("Predicate for intrinsic %s", str);
 649   }
 650 #endif
 651   ciMethod* callee = kit.callee();
 652   const int bci    = kit.bci();
 653 
 654   Node* slow_ctl = kit.try_to_predicate();
 655   if (!kit.failing()) {
 656     if (C->print_intrinsics() || C->print_inlining()) {
 657       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 658     }
 659     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 660     if (C->log()) {
 661       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 662                      vmIntrinsics::name_at(intrinsic_id()),
 663                      (is_virtual() ? " virtual='1'" : ""),
 664                      C->unique() - nodes);
 665     }
 666     return slow_ctl; // Could be NULL if the check folds.
 667   }
 668 
 669   // The intrinsic bailed out
 670   if (C->print_intrinsics() || C->print_inlining()) {
 671     if (jvms->has_method()) {
 672       // Not a root compile.
 673       const char* msg = "failed to generate predicate for intrinsic";
 674       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 675     } else {
 676       // Root compile
 677       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 678                                         vmIntrinsics::name_at(intrinsic_id()),
 679                                         (is_virtual() ? " (virtual)" : ""), bci);
 680     }
 681   }
 682   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 683   return NULL;
 684 }
 685 
 686 bool LibraryCallKit::try_to_inline() {
 687   // Handle symbolic names for otherwise undistinguished boolean switches:
 688   const bool is_store       = true;
 689   const bool is_native_ptr  = true;
 690   const bool is_static      = true;
 691   const bool is_volatile    = true;
 692 
 693   if (!jvms()->has_method()) {
 694     // Root JVMState has a null method.
 695     assert(map()->memory()->Opcode() == Op_Parm, "");
 696     // Insert the memory aliasing node
 697     set_all_memory(reset_memory());
 698   }
 699   assert(merged_memory(), "");
 700 
 701 
 702   switch (intrinsic_id()) {
 703   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 704   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 705   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 706 
 707   case vmIntrinsics::_dsin:
 708   case vmIntrinsics::_dcos:
 709   case vmIntrinsics::_dtan:
 710   case vmIntrinsics::_dabs:
 711   case vmIntrinsics::_datan2:
 712   case vmIntrinsics::_dsqrt:
 713   case vmIntrinsics::_dexp:
 714   case vmIntrinsics::_dlog:
 715   case vmIntrinsics::_dlog10:
 716   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 717 
 718   case vmIntrinsics::_min:
 719   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 720 
 721   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 722   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 723   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 724   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 725   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 726   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 727   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 728   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 729   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 730   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 731   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 732   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 733 
 734   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 735 
 736   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 737   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 738   case vmIntrinsics::_equals:                   return inline_string_equals();
 739 
 740   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 741   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 742   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 743   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 744   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 745   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 746   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 747   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 748   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 749 
 750   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 751   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 752   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 753   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 754   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 755   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 756   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 757   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 758   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 759 
 760   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 761   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 762   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 763   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 764   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 765   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 766   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 767   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 768 
 769   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 770   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 771   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 772   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 773   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 774   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 775   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 776   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 777 
 778   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 779   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 780   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 781   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 782   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 783   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 784   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 785   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 786   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 787 
 788   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 789   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 790   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 791   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 792   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 793   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 794   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 795   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 796   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 797 
 798   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 799   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 800   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 801   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 802 
 803   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 804   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 805   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 806 
 807   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 808   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 809   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 810 
 811   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 812   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 813   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 814   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 815   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 816 
 817   case vmIntrinsics::_loadFence:
 818   case vmIntrinsics::_storeFence:
 819   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 820 
 821   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 822   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 823 
 824 #ifdef TRACE_HAVE_INTRINSICS
 825   case vmIntrinsics::_classID:                  return inline_native_classID();
 826   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 827   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 828 #endif
 829   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 830   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 831   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 832   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 833   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 834   case vmIntrinsics::_getLength:                return inline_native_getLength();
 835   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 836   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 837   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 838   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 839 
 840   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 841 
 842   case vmIntrinsics::_isInstance:
 843   case vmIntrinsics::_getModifiers:
 844   case vmIntrinsics::_isInterface:
 845   case vmIntrinsics::_isArray:
 846   case vmIntrinsics::_isPrimitive:
 847   case vmIntrinsics::_getSuperclass:
 848   case vmIntrinsics::_getComponentType:
 849   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 850 
 851   case vmIntrinsics::_floatToRawIntBits:
 852   case vmIntrinsics::_floatToIntBits:
 853   case vmIntrinsics::_intBitsToFloat:
 854   case vmIntrinsics::_doubleToRawLongBits:
 855   case vmIntrinsics::_doubleToLongBits:
 856   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 857 
 858   case vmIntrinsics::_numberOfLeadingZeros_i:
 859   case vmIntrinsics::_numberOfLeadingZeros_l:
 860   case vmIntrinsics::_numberOfTrailingZeros_i:
 861   case vmIntrinsics::_numberOfTrailingZeros_l:
 862   case vmIntrinsics::_bitCount_i:
 863   case vmIntrinsics::_bitCount_l:
 864   case vmIntrinsics::_reverseBytes_i:
 865   case vmIntrinsics::_reverseBytes_l:
 866   case vmIntrinsics::_reverseBytes_s:
 867   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 868 
 869   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 870 
 871   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 872 
 873   case vmIntrinsics::_aescrypt_encryptBlock:
 874   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 875 
 876   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 877   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 878     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 879 
 880   case vmIntrinsics::_encodeISOArray:
 881     return inline_encodeISOArray();
 882 
 883   case vmIntrinsics::_updateCRC32:
 884     return inline_updateCRC32();
 885   case vmIntrinsics::_updateBytesCRC32:
 886     return inline_updateBytesCRC32();
 887   case vmIntrinsics::_updateByteBufferCRC32:
 888     return inline_updateByteBufferCRC32();
 889 
 890   default:
 891     // If you get here, it may be that someone has added a new intrinsic
 892     // to the list in vmSymbols.hpp without implementing it here.
 893 #ifndef PRODUCT
 894     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 895       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 896                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 897     }
 898 #endif
 899     return false;
 900   }
 901 }
 902 
 903 Node* LibraryCallKit::try_to_predicate() {
 904   if (!jvms()->has_method()) {
 905     // Root JVMState has a null method.
 906     assert(map()->memory()->Opcode() == Op_Parm, "");
 907     // Insert the memory aliasing node
 908     set_all_memory(reset_memory());
 909   }
 910   assert(merged_memory(), "");
 911 
 912   switch (intrinsic_id()) {
 913   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 914     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 915   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 916     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 917 
 918   default:
 919     // If you get here, it may be that someone has added a new intrinsic
 920     // to the list in vmSymbols.hpp without implementing it here.
 921 #ifndef PRODUCT
 922     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 923       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 924                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 925     }
 926 #endif
 927     Node* slow_ctl = control();
 928     set_control(top()); // No fast path instrinsic
 929     return slow_ctl;
 930   }
 931 }
 932 
 933 //------------------------------set_result-------------------------------
 934 // Helper function for finishing intrinsics.
 935 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 936   record_for_igvn(region);
 937   set_control(_gvn.transform(region));
 938   set_result( _gvn.transform(value));
 939   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 940 }
 941 
 942 //------------------------------generate_guard---------------------------
 943 // Helper function for generating guarded fast-slow graph structures.
 944 // The given 'test', if true, guards a slow path.  If the test fails
 945 // then a fast path can be taken.  (We generally hope it fails.)
 946 // In all cases, GraphKit::control() is updated to the fast path.
 947 // The returned value represents the control for the slow path.
 948 // The return value is never 'top'; it is either a valid control
 949 // or NULL if it is obvious that the slow path can never be taken.
 950 // Also, if region and the slow control are not NULL, the slow edge
 951 // is appended to the region.
 952 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 953   if (stopped()) {
 954     // Already short circuited.
 955     return NULL;
 956   }
 957 
 958   // Build an if node and its projections.
 959   // If test is true we take the slow path, which we assume is uncommon.
 960   if (_gvn.type(test) == TypeInt::ZERO) {
 961     // The slow branch is never taken.  No need to build this guard.
 962     return NULL;
 963   }
 964 
 965   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 966 
 967   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 968   if (if_slow == top()) {
 969     // The slow branch is never taken.  No need to build this guard.
 970     return NULL;
 971   }
 972 
 973   if (region != NULL)
 974     region->add_req(if_slow);
 975 
 976   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 977   set_control(if_fast);
 978 
 979   return if_slow;
 980 }
 981 
 982 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 983   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 984 }
 985 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 986   return generate_guard(test, region, PROB_FAIR);
 987 }
 988 
 989 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 990                                                      Node* *pos_index) {
 991   if (stopped())
 992     return NULL;                // already stopped
 993   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 994     return NULL;                // index is already adequately typed
 995   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 996   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 997   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 998   if (is_neg != NULL && pos_index != NULL) {
 999     // Emulate effect of Parse::adjust_map_after_if.
1000     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1001     ccast->set_req(0, control());
1002     (*pos_index) = _gvn.transform(ccast);
1003   }
1004   return is_neg;
1005 }
1006 
1007 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1008                                                         Node* *pos_index) {
1009   if (stopped())
1010     return NULL;                // already stopped
1011   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1012     return NULL;                // index is already adequately typed
1013   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1014   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1015   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1016   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1017   if (is_notp != NULL && pos_index != NULL) {
1018     // Emulate effect of Parse::adjust_map_after_if.
1019     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1020     ccast->set_req(0, control());
1021     (*pos_index) = _gvn.transform(ccast);
1022   }
1023   return is_notp;
1024 }
1025 
1026 // Make sure that 'position' is a valid limit index, in [0..length].
1027 // There are two equivalent plans for checking this:
1028 //   A. (offset + copyLength)  unsigned<=  arrayLength
1029 //   B. offset  <=  (arrayLength - copyLength)
1030 // We require that all of the values above, except for the sum and
1031 // difference, are already known to be non-negative.
1032 // Plan A is robust in the face of overflow, if offset and copyLength
1033 // are both hugely positive.
1034 //
1035 // Plan B is less direct and intuitive, but it does not overflow at
1036 // all, since the difference of two non-negatives is always
1037 // representable.  Whenever Java methods must perform the equivalent
1038 // check they generally use Plan B instead of Plan A.
1039 // For the moment we use Plan A.
1040 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1041                                                   Node* subseq_length,
1042                                                   Node* array_length,
1043                                                   RegionNode* region) {
1044   if (stopped())
1045     return NULL;                // already stopped
1046   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1047   if (zero_offset && subseq_length->eqv_uncast(array_length))
1048     return NULL;                // common case of whole-array copy
1049   Node* last = subseq_length;
1050   if (!zero_offset)             // last += offset
1051     last = _gvn.transform(new (C) AddINode(last, offset));
1052   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1053   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1054   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1055   return is_over;
1056 }
1057 
1058 
1059 //--------------------------generate_current_thread--------------------
1060 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1061   ciKlass*    thread_klass = env()->Thread_klass();
1062   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1063   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1064   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1065   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1066   tls_output = thread;
1067   return threadObj;
1068 }
1069 
1070 
1071 //------------------------------make_string_method_node------------------------
1072 // Helper method for String intrinsic functions. This version is called
1073 // with str1 and str2 pointing to String object nodes.
1074 //
1075 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1076   Node* no_ctrl = NULL;
1077 
1078   // Get start addr of string
1079   Node* str1_value   = load_String_value(no_ctrl, str1);
1080   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1081   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1082 
1083   // Get length of string 1
1084   Node* str1_len  = load_String_length(no_ctrl, str1);
1085 
1086   Node* str2_value   = load_String_value(no_ctrl, str2);
1087   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1088   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1089 
1090   Node* str2_len = NULL;
1091   Node* result = NULL;
1092 
1093   switch (opcode) {
1094   case Op_StrIndexOf:
1095     // Get length of string 2
1096     str2_len = load_String_length(no_ctrl, str2);
1097 
1098     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1099                                  str1_start, str1_len, str2_start, str2_len);
1100     break;
1101   case Op_StrComp:
1102     // Get length of string 2
1103     str2_len = load_String_length(no_ctrl, str2);
1104 
1105     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1106                                  str1_start, str1_len, str2_start, str2_len);
1107     break;
1108   case Op_StrEquals:
1109     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1110                                str1_start, str2_start, str1_len);
1111     break;
1112   default:
1113     ShouldNotReachHere();
1114     return NULL;
1115   }
1116 
1117   // All these intrinsics have checks.
1118   C->set_has_split_ifs(true); // Has chance for split-if optimization
1119 
1120   return _gvn.transform(result);
1121 }
1122 
1123 // Helper method for String intrinsic functions. This version is called
1124 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1125 // to Int nodes containing the lenghts of str1 and str2.
1126 //
1127 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1128   Node* result = NULL;
1129   switch (opcode) {
1130   case Op_StrIndexOf:
1131     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1132                                  str1_start, cnt1, str2_start, cnt2);
1133     break;
1134   case Op_StrComp:
1135     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1136                                  str1_start, cnt1, str2_start, cnt2);
1137     break;
1138   case Op_StrEquals:
1139     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1140                                  str1_start, str2_start, cnt1);
1141     break;
1142   default:
1143     ShouldNotReachHere();
1144     return NULL;
1145   }
1146 
1147   // All these intrinsics have checks.
1148   C->set_has_split_ifs(true); // Has chance for split-if optimization
1149 
1150   return _gvn.transform(result);
1151 }
1152 
1153 //------------------------------inline_string_compareTo------------------------
1154 // public int java.lang.String.compareTo(String anotherString);
1155 bool LibraryCallKit::inline_string_compareTo() {
1156   Node* receiver = null_check(argument(0));
1157   Node* arg      = null_check(argument(1));
1158   if (stopped()) {
1159     return true;
1160   }
1161   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1162   return true;
1163 }
1164 
1165 //------------------------------inline_string_equals------------------------
1166 bool LibraryCallKit::inline_string_equals() {
1167   Node* receiver = null_check_receiver();
1168   // NOTE: Do not null check argument for String.equals() because spec
1169   // allows to specify NULL as argument.
1170   Node* argument = this->argument(1);
1171   if (stopped()) {
1172     return true;
1173   }
1174 
1175   // paths (plus control) merge
1176   RegionNode* region = new (C) RegionNode(5);
1177   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1178 
1179   // does source == target string?
1180   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1181   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1182 
1183   Node* if_eq = generate_slow_guard(bol, NULL);
1184   if (if_eq != NULL) {
1185     // receiver == argument
1186     phi->init_req(2, intcon(1));
1187     region->init_req(2, if_eq);
1188   }
1189 
1190   // get String klass for instanceOf
1191   ciInstanceKlass* klass = env()->String_klass();
1192 
1193   if (!stopped()) {
1194     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1195     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1196     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1197 
1198     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1199     //instanceOf == true, fallthrough
1200 
1201     if (inst_false != NULL) {
1202       phi->init_req(3, intcon(0));
1203       region->init_req(3, inst_false);
1204     }
1205   }
1206 
1207   if (!stopped()) {
1208     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1209 
1210     // Properly cast the argument to String
1211     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1212     // This path is taken only when argument's type is String:NotNull.
1213     argument = cast_not_null(argument, false);
1214 
1215     Node* no_ctrl = NULL;
1216 
1217     // Get start addr of receiver
1218     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1219     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1220     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1221 
1222     // Get length of receiver
1223     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1224 
1225     // Get start addr of argument
1226     Node* argument_val    = load_String_value(no_ctrl, argument);
1227     Node* argument_offset = load_String_offset(no_ctrl, argument);
1228     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1229 
1230     // Get length of argument
1231     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1232 
1233     // Check for receiver count != argument count
1234     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1235     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1236     Node* if_ne = generate_slow_guard(bol, NULL);
1237     if (if_ne != NULL) {
1238       phi->init_req(4, intcon(0));
1239       region->init_req(4, if_ne);
1240     }
1241 
1242     // Check for count == 0 is done by assembler code for StrEquals.
1243 
1244     if (!stopped()) {
1245       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1246       phi->init_req(1, equals);
1247       region->init_req(1, control());
1248     }
1249   }
1250 
1251   // post merge
1252   set_control(_gvn.transform(region));
1253   record_for_igvn(region);
1254 
1255   set_result(_gvn.transform(phi));
1256   return true;
1257 }
1258 
1259 //------------------------------inline_array_equals----------------------------
1260 bool LibraryCallKit::inline_array_equals() {
1261   Node* arg1 = argument(0);
1262   Node* arg2 = argument(1);
1263   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1264   return true;
1265 }
1266 
1267 // Java version of String.indexOf(constant string)
1268 // class StringDecl {
1269 //   StringDecl(char[] ca) {
1270 //     offset = 0;
1271 //     count = ca.length;
1272 //     value = ca;
1273 //   }
1274 //   int offset;
1275 //   int count;
1276 //   char[] value;
1277 // }
1278 //
1279 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1280 //                             int targetOffset, int cache_i, int md2) {
1281 //   int cache = cache_i;
1282 //   int sourceOffset = string_object.offset;
1283 //   int sourceCount = string_object.count;
1284 //   int targetCount = target_object.length;
1285 //
1286 //   int targetCountLess1 = targetCount - 1;
1287 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1288 //
1289 //   char[] source = string_object.value;
1290 //   char[] target = target_object;
1291 //   int lastChar = target[targetCountLess1];
1292 //
1293 //  outer_loop:
1294 //   for (int i = sourceOffset; i < sourceEnd; ) {
1295 //     int src = source[i + targetCountLess1];
1296 //     if (src == lastChar) {
1297 //       // With random strings and a 4-character alphabet,
1298 //       // reverse matching at this point sets up 0.8% fewer
1299 //       // frames, but (paradoxically) makes 0.3% more probes.
1300 //       // Since those probes are nearer the lastChar probe,
1301 //       // there is may be a net D$ win with reverse matching.
1302 //       // But, reversing loop inhibits unroll of inner loop
1303 //       // for unknown reason.  So, does running outer loop from
1304 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1305 //       for (int j = 0; j < targetCountLess1; j++) {
1306 //         if (target[targetOffset + j] != source[i+j]) {
1307 //           if ((cache & (1 << source[i+j])) == 0) {
1308 //             if (md2 < j+1) {
1309 //               i += j+1;
1310 //               continue outer_loop;
1311 //             }
1312 //           }
1313 //           i += md2;
1314 //           continue outer_loop;
1315 //         }
1316 //       }
1317 //       return i - sourceOffset;
1318 //     }
1319 //     if ((cache & (1 << src)) == 0) {
1320 //       i += targetCountLess1;
1321 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1322 //     i++;
1323 //   }
1324 //   return -1;
1325 // }
1326 
1327 //------------------------------string_indexOf------------------------
1328 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1329                                      jint cache_i, jint md2_i) {
1330 
1331   Node* no_ctrl  = NULL;
1332   float likely   = PROB_LIKELY(0.9);
1333   float unlikely = PROB_UNLIKELY(0.9);
1334 
1335   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1336 
1337   Node* source        = load_String_value(no_ctrl, string_object);
1338   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1339   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1340 
1341   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1342   jint target_length = target_array->length();
1343   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1344   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1345 
1346   // String.value field is known to be @Stable.
1347   if (UseImplicitStableValues) {
1348     target = cast_array_to_stable(target, target_type);
1349   }
1350 
1351   IdealKit kit(this, false, true);
1352 #define __ kit.
1353   Node* zero             = __ ConI(0);
1354   Node* one              = __ ConI(1);
1355   Node* cache            = __ ConI(cache_i);
1356   Node* md2              = __ ConI(md2_i);
1357   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1358   Node* targetCount      = __ ConI(target_length);
1359   Node* targetCountLess1 = __ ConI(target_length - 1);
1360   Node* targetOffset     = __ ConI(targetOffset_i);
1361   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1362 
1363   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1364   Node* outer_loop = __ make_label(2 /* goto */);
1365   Node* return_    = __ make_label(1);
1366 
1367   __ set(rtn,__ ConI(-1));
1368   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1369        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1370        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1371        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1372        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1373          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1374               Node* tpj = __ AddI(targetOffset, __ value(j));
1375               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1376               Node* ipj  = __ AddI(__ value(i), __ value(j));
1377               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1378               __ if_then(targ, BoolTest::ne, src2); {
1379                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1380                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1381                     __ increment(i, __ AddI(__ value(j), one));
1382                     __ goto_(outer_loop);
1383                   } __ end_if(); __ dead(j);
1384                 }__ end_if(); __ dead(j);
1385                 __ increment(i, md2);
1386                 __ goto_(outer_loop);
1387               }__ end_if();
1388               __ increment(j, one);
1389          }__ end_loop(); __ dead(j);
1390          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1391          __ goto_(return_);
1392        }__ end_if();
1393        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1394          __ increment(i, targetCountLess1);
1395        }__ end_if();
1396        __ increment(i, one);
1397        __ bind(outer_loop);
1398   }__ end_loop(); __ dead(i);
1399   __ bind(return_);
1400 
1401   // Final sync IdealKit and GraphKit.
1402   final_sync(kit);
1403   Node* result = __ value(rtn);
1404 #undef __
1405   C->set_has_loops(true);
1406   return result;
1407 }
1408 
1409 //------------------------------inline_string_indexOf------------------------
1410 bool LibraryCallKit::inline_string_indexOf() {
1411   Node* receiver = argument(0);
1412   Node* arg      = argument(1);
1413 
1414   Node* result;
1415   // Disable the use of pcmpestri until it can be guaranteed that
1416   // the load doesn't cross into the uncommited space.
1417   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1418       UseSSE42Intrinsics) {
1419     // Generate SSE4.2 version of indexOf
1420     // We currently only have match rules that use SSE4.2
1421 
1422     receiver = null_check(receiver);
1423     arg      = null_check(arg);
1424     if (stopped()) {
1425       return true;
1426     }
1427 
1428     ciInstanceKlass* str_klass = env()->String_klass();
1429     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1430 
1431     // Make the merge point
1432     RegionNode* result_rgn = new (C) RegionNode(4);
1433     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1434     Node* no_ctrl  = NULL;
1435 
1436     // Get start addr of source string
1437     Node* source = load_String_value(no_ctrl, receiver);
1438     Node* source_offset = load_String_offset(no_ctrl, receiver);
1439     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1440 
1441     // Get length of source string
1442     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1443 
1444     // Get start addr of substring
1445     Node* substr = load_String_value(no_ctrl, arg);
1446     Node* substr_offset = load_String_offset(no_ctrl, arg);
1447     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1448 
1449     // Get length of source string
1450     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1451 
1452     // Check for substr count > string count
1453     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1454     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1455     Node* if_gt = generate_slow_guard(bol, NULL);
1456     if (if_gt != NULL) {
1457       result_phi->init_req(2, intcon(-1));
1458       result_rgn->init_req(2, if_gt);
1459     }
1460 
1461     if (!stopped()) {
1462       // Check for substr count == 0
1463       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1464       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1465       Node* if_zero = generate_slow_guard(bol, NULL);
1466       if (if_zero != NULL) {
1467         result_phi->init_req(3, intcon(0));
1468         result_rgn->init_req(3, if_zero);
1469       }
1470     }
1471 
1472     if (!stopped()) {
1473       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1474       result_phi->init_req(1, result);
1475       result_rgn->init_req(1, control());
1476     }
1477     set_control(_gvn.transform(result_rgn));
1478     record_for_igvn(result_rgn);
1479     result = _gvn.transform(result_phi);
1480 
1481   } else { // Use LibraryCallKit::string_indexOf
1482     // don't intrinsify if argument isn't a constant string.
1483     if (!arg->is_Con()) {
1484      return false;
1485     }
1486     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1487     if (str_type == NULL) {
1488       return false;
1489     }
1490     ciInstanceKlass* klass = env()->String_klass();
1491     ciObject* str_const = str_type->const_oop();
1492     if (str_const == NULL || str_const->klass() != klass) {
1493       return false;
1494     }
1495     ciInstance* str = str_const->as_instance();
1496     assert(str != NULL, "must be instance");
1497 
1498     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1499     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1500 
1501     int o;
1502     int c;
1503     if (java_lang_String::has_offset_field()) {
1504       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1505       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1506     } else {
1507       o = 0;
1508       c = pat->length();
1509     }
1510 
1511     // constant strings have no offset and count == length which
1512     // simplifies the resulting code somewhat so lets optimize for that.
1513     if (o != 0 || c != pat->length()) {
1514      return false;
1515     }
1516 
1517     receiver = null_check(receiver, T_OBJECT);
1518     // NOTE: No null check on the argument is needed since it's a constant String oop.
1519     if (stopped()) {
1520       return true;
1521     }
1522 
1523     // The null string as a pattern always returns 0 (match at beginning of string)
1524     if (c == 0) {
1525       set_result(intcon(0));
1526       return true;
1527     }
1528 
1529     // Generate default indexOf
1530     jchar lastChar = pat->char_at(o + (c - 1));
1531     int cache = 0;
1532     int i;
1533     for (i = 0; i < c - 1; i++) {
1534       assert(i < pat->length(), "out of range");
1535       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1536     }
1537 
1538     int md2 = c;
1539     for (i = 0; i < c - 1; i++) {
1540       assert(i < pat->length(), "out of range");
1541       if (pat->char_at(o + i) == lastChar) {
1542         md2 = (c - 1) - i;
1543       }
1544     }
1545 
1546     result = string_indexOf(receiver, pat, o, cache, md2);
1547   }
1548   set_result(result);
1549   return true;
1550 }
1551 
1552 //--------------------------round_double_node--------------------------------
1553 // Round a double node if necessary.
1554 Node* LibraryCallKit::round_double_node(Node* n) {
1555   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1556     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1557   return n;
1558 }
1559 
1560 //------------------------------inline_math-----------------------------------
1561 // public static double Math.abs(double)
1562 // public static double Math.sqrt(double)
1563 // public static double Math.log(double)
1564 // public static double Math.log10(double)
1565 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1566   Node* arg = round_double_node(argument(0));
1567   Node* n;
1568   switch (id) {
1569   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1570   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1571   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1572   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1573   default:  fatal_unexpected_iid(id);  break;
1574   }
1575   set_result(_gvn.transform(n));
1576   return true;
1577 }
1578 
1579 //------------------------------inline_trig----------------------------------
1580 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1581 // argument reduction which will turn into a fast/slow diamond.
1582 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1583   Node* arg = round_double_node(argument(0));
1584   Node* n = NULL;
1585 
1586   switch (id) {
1587   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1588   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1589   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1590   default:  fatal_unexpected_iid(id);  break;
1591   }
1592   n = _gvn.transform(n);
1593 
1594   // Rounding required?  Check for argument reduction!
1595   if (Matcher::strict_fp_requires_explicit_rounding) {
1596     static const double     pi_4 =  0.7853981633974483;
1597     static const double neg_pi_4 = -0.7853981633974483;
1598     // pi/2 in 80-bit extended precision
1599     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1600     // -pi/2 in 80-bit extended precision
1601     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1602     // Cutoff value for using this argument reduction technique
1603     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1604     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1605 
1606     // Pseudocode for sin:
1607     // if (x <= Math.PI / 4.0) {
1608     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1609     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1610     // } else {
1611     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1612     // }
1613     // return StrictMath.sin(x);
1614 
1615     // Pseudocode for cos:
1616     // if (x <= Math.PI / 4.0) {
1617     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1618     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1619     // } else {
1620     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1621     // }
1622     // return StrictMath.cos(x);
1623 
1624     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1625     // requires a special machine instruction to load it.  Instead we'll try
1626     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1627     // probably do the math inside the SIN encoding.
1628 
1629     // Make the merge point
1630     RegionNode* r = new (C) RegionNode(3);
1631     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1632 
1633     // Flatten arg so we need only 1 test
1634     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1635     // Node for PI/4 constant
1636     Node *pi4 = makecon(TypeD::make(pi_4));
1637     // Check PI/4 : abs(arg)
1638     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1639     // Check: If PI/4 < abs(arg) then go slow
1640     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1641     // Branch either way
1642     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1643     set_control(opt_iff(r,iff));
1644 
1645     // Set fast path result
1646     phi->init_req(2, n);
1647 
1648     // Slow path - non-blocking leaf call
1649     Node* call = NULL;
1650     switch (id) {
1651     case vmIntrinsics::_dsin:
1652       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1653                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1654                                "Sin", NULL, arg, top());
1655       break;
1656     case vmIntrinsics::_dcos:
1657       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1658                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1659                                "Cos", NULL, arg, top());
1660       break;
1661     case vmIntrinsics::_dtan:
1662       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1663                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1664                                "Tan", NULL, arg, top());
1665       break;
1666     }
1667     assert(control()->in(0) == call, "");
1668     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1669     r->init_req(1, control());
1670     phi->init_req(1, slow_result);
1671 
1672     // Post-merge
1673     set_control(_gvn.transform(r));
1674     record_for_igvn(r);
1675     n = _gvn.transform(phi);
1676 
1677     C->set_has_split_ifs(true); // Has chance for split-if optimization
1678   }
1679   set_result(n);
1680   return true;
1681 }
1682 
1683 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1684   //-------------------
1685   //result=(result.isNaN())? funcAddr():result;
1686   // Check: If isNaN() by checking result!=result? then either trap
1687   // or go to runtime
1688   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1689   // Build the boolean node
1690   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1691 
1692   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1693     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1694       // The pow or exp intrinsic returned a NaN, which requires a call
1695       // to the runtime.  Recompile with the runtime call.
1696       uncommon_trap(Deoptimization::Reason_intrinsic,
1697                     Deoptimization::Action_make_not_entrant);
1698     }
1699     set_result(result);
1700   } else {
1701     // If this inlining ever returned NaN in the past, we compile a call
1702     // to the runtime to properly handle corner cases
1703 
1704     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1705     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1706     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1707 
1708     if (!if_slow->is_top()) {
1709       RegionNode* result_region = new (C) RegionNode(3);
1710       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1711 
1712       result_region->init_req(1, if_fast);
1713       result_val->init_req(1, result);
1714 
1715       set_control(if_slow);
1716 
1717       const TypePtr* no_memory_effects = NULL;
1718       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1719                                    no_memory_effects,
1720                                    x, top(), y, y ? top() : NULL);
1721       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1722 #ifdef ASSERT
1723       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1724       assert(value_top == top(), "second value must be top");
1725 #endif
1726 
1727       result_region->init_req(2, control());
1728       result_val->init_req(2, value);
1729       set_result(result_region, result_val);
1730     } else {
1731       set_result(result);
1732     }
1733   }
1734 }
1735 
1736 //------------------------------inline_exp-------------------------------------
1737 // Inline exp instructions, if possible.  The Intel hardware only misses
1738 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1739 bool LibraryCallKit::inline_exp() {
1740   Node* arg = round_double_node(argument(0));
1741   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1742 
1743   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1744 
1745   C->set_has_split_ifs(true); // Has chance for split-if optimization
1746   return true;
1747 }
1748 
1749 //------------------------------inline_pow-------------------------------------
1750 // Inline power instructions, if possible.
1751 bool LibraryCallKit::inline_pow() {
1752   // Pseudocode for pow
1753   // if (x <= 0.0) {
1754   //   long longy = (long)y;
1755   //   if ((double)longy == y) { // if y is long
1756   //     if (y + 1 == y) longy = 0; // huge number: even
1757   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1758   //   } else {
1759   //     result = NaN;
1760   //   }
1761   // } else {
1762   //   result = DPow(x,y);
1763   // }
1764   // if (result != result)?  {
1765   //   result = uncommon_trap() or runtime_call();
1766   // }
1767   // return result;
1768 
1769   Node* x = round_double_node(argument(0));
1770   Node* y = round_double_node(argument(2));
1771 
1772   Node* result = NULL;
1773 
1774   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1775     // Short form: skip the fancy tests and just check for NaN result.
1776     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1777   } else {
1778     // If this inlining ever returned NaN in the past, include all
1779     // checks + call to the runtime.
1780 
1781     // Set the merge point for If node with condition of (x <= 0.0)
1782     // There are four possible paths to region node and phi node
1783     RegionNode *r = new (C) RegionNode(4);
1784     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1785 
1786     // Build the first if node: if (x <= 0.0)
1787     // Node for 0 constant
1788     Node *zeronode = makecon(TypeD::ZERO);
1789     // Check x:0
1790     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1791     // Check: If (x<=0) then go complex path
1792     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1793     // Branch either way
1794     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1795     // Fast path taken; set region slot 3
1796     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1797     r->init_req(3,fast_taken); // Capture fast-control
1798 
1799     // Fast path not-taken, i.e. slow path
1800     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1801 
1802     // Set fast path result
1803     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1804     phi->init_req(3, fast_result);
1805 
1806     // Complex path
1807     // Build the second if node (if y is long)
1808     // Node for (long)y
1809     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1810     // Node for (double)((long) y)
1811     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1812     // Check (double)((long) y) : y
1813     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1814     // Check if (y isn't long) then go to slow path
1815 
1816     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1817     // Branch either way
1818     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1819     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1820 
1821     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1822 
1823     // Calculate DPow(abs(x), y)*(1 & (long)y)
1824     // Node for constant 1
1825     Node *conone = longcon(1);
1826     // 1& (long)y
1827     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1828 
1829     // A huge number is always even. Detect a huge number by checking
1830     // if y + 1 == y and set integer to be tested for parity to 0.
1831     // Required for corner case:
1832     // (long)9.223372036854776E18 = max_jlong
1833     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1834     // max_jlong is odd but 9.223372036854776E18 is even
1835     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1836     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1837     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1838     Node* correctedsign = NULL;
1839     if (ConditionalMoveLimit != 0) {
1840       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1841     } else {
1842       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1843       RegionNode *r = new (C) RegionNode(3);
1844       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1845       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1846       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1847       phi->init_req(1, signnode);
1848       phi->init_req(2, longcon(0));
1849       correctedsign = _gvn.transform(phi);
1850       ylong_path = _gvn.transform(r);
1851       record_for_igvn(r);
1852     }
1853 
1854     // zero node
1855     Node *conzero = longcon(0);
1856     // Check (1&(long)y)==0?
1857     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1858     // Check if (1&(long)y)!=0?, if so the result is negative
1859     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1860     // abs(x)
1861     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1862     // abs(x)^y
1863     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1864     // -abs(x)^y
1865     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1866     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1867     Node *signresult = NULL;
1868     if (ConditionalMoveLimit != 0) {
1869       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1870     } else {
1871       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1872       RegionNode *r = new (C) RegionNode(3);
1873       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1874       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1875       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1876       phi->init_req(1, absxpowy);
1877       phi->init_req(2, negabsxpowy);
1878       signresult = _gvn.transform(phi);
1879       ylong_path = _gvn.transform(r);
1880       record_for_igvn(r);
1881     }
1882     // Set complex path fast result
1883     r->init_req(2, ylong_path);
1884     phi->init_req(2, signresult);
1885 
1886     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1887     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1888     r->init_req(1,slow_path);
1889     phi->init_req(1,slow_result);
1890 
1891     // Post merge
1892     set_control(_gvn.transform(r));
1893     record_for_igvn(r);
1894     result = _gvn.transform(phi);
1895   }
1896 
1897   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1898 
1899   C->set_has_split_ifs(true); // Has chance for split-if optimization
1900   return true;
1901 }
1902 
1903 //------------------------------runtime_math-----------------------------
1904 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1905   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1906          "must be (DD)D or (D)D type");
1907 
1908   // Inputs
1909   Node* a = round_double_node(argument(0));
1910   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1911 
1912   const TypePtr* no_memory_effects = NULL;
1913   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1914                                  no_memory_effects,
1915                                  a, top(), b, b ? top() : NULL);
1916   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1917 #ifdef ASSERT
1918   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1919   assert(value_top == top(), "second value must be top");
1920 #endif
1921 
1922   set_result(value);
1923   return true;
1924 }
1925 
1926 //------------------------------inline_math_native-----------------------------
1927 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1928 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1929   switch (id) {
1930     // These intrinsics are not properly supported on all hardware
1931   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1932     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1933   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1934     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1935   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1936     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1937 
1938   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1939     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1940   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1941     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1942 
1943     // These intrinsics are supported on all hardware
1944   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1945   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1946 
1947   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1948     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1949   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1950     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1951 #undef FN_PTR
1952 
1953    // These intrinsics are not yet correctly implemented
1954   case vmIntrinsics::_datan2:
1955     return false;
1956 
1957   default:
1958     fatal_unexpected_iid(id);
1959     return false;
1960   }
1961 }
1962 
1963 static bool is_simple_name(Node* n) {
1964   return (n->req() == 1         // constant
1965           || (n->is_Type() && n->as_Type()->type()->singleton())
1966           || n->is_Proj()       // parameter or return value
1967           || n->is_Phi()        // local of some sort
1968           );
1969 }
1970 
1971 //----------------------------inline_min_max-----------------------------------
1972 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1973   set_result(generate_min_max(id, argument(0), argument(1)));
1974   return true;
1975 }
1976 
1977 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1978   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
1979   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1980   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1981   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1982 
1983   {
1984     PreserveJVMState pjvms(this);
1985     PreserveReexecuteState preexecs(this);
1986     jvms()->set_should_reexecute(true);
1987 
1988     set_control(slow_path);
1989     set_i_o(i_o());
1990 
1991     uncommon_trap(Deoptimization::Reason_intrinsic,
1992                   Deoptimization::Action_none);
1993   }
1994 
1995   set_control(fast_path);
1996   set_result(math);
1997 }
1998 
1999 template <typename OverflowOp>
2000 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2001   typedef typename OverflowOp::MathOp MathOp;
2002 
2003   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2004   Node* operation = _gvn.transform( mathOp );
2005   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2006   inline_math_mathExact(operation, ofcheck);
2007   return true;
2008 }
2009 
2010 template <typename OverflowOp>
2011 bool LibraryCallKit::inline_math_overflow(bool is_unary) {
2012   Node* arg1 = argument(0);
2013   Node* arg2 = NULL;
2014 
2015   if (OverflowOp::IsLong) {
2016     arg2 = (is_unary ? longcon(1) : argument(2));
2017   } else {
2018     arg2 = (is_unary ? intcon(1) : argument(1));
2019   }
2020   return inline_math_overflow<OverflowOp>(arg1, arg2);
2021 }
2022 
2023 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2024   return inline_math_overflow<OverflowAddINode>(is_increment);
2025 }
2026 
2027 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2028   return inline_math_overflow<OverflowAddLNode>(is_increment);
2029 }
2030 
2031 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2032   return inline_math_overflow<OverflowSubINode>(is_decrement);
2033 }
2034 
2035 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2036   return inline_math_overflow<OverflowSubLNode>(is_decrement);
2037 }
2038 
2039 bool LibraryCallKit::inline_math_negateExactI() {
2040   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2041 }
2042 
2043 bool LibraryCallKit::inline_math_negateExactL() {
2044   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2045 }
2046 
2047 bool LibraryCallKit::inline_math_multiplyExactI() {
2048   return inline_math_overflow<OverflowMulINode>(false);
2049 }
2050 
2051 bool LibraryCallKit::inline_math_multiplyExactL() {
2052   return inline_math_overflow<OverflowMulLNode>(false);
2053 }
2054 
2055 Node*
2056 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2057   // These are the candidate return value:
2058   Node* xvalue = x0;
2059   Node* yvalue = y0;
2060 
2061   if (xvalue == yvalue) {
2062     return xvalue;
2063   }
2064 
2065   bool want_max = (id == vmIntrinsics::_max);
2066 
2067   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2068   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2069   if (txvalue == NULL || tyvalue == NULL)  return top();
2070   // This is not really necessary, but it is consistent with a
2071   // hypothetical MaxINode::Value method:
2072   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2073 
2074   // %%% This folding logic should (ideally) be in a different place.
2075   // Some should be inside IfNode, and there to be a more reliable
2076   // transformation of ?: style patterns into cmoves.  We also want
2077   // more powerful optimizations around cmove and min/max.
2078 
2079   // Try to find a dominating comparison of these guys.
2080   // It can simplify the index computation for Arrays.copyOf
2081   // and similar uses of System.arraycopy.
2082   // First, compute the normalized version of CmpI(x, y).
2083   int   cmp_op = Op_CmpI;
2084   Node* xkey = xvalue;
2085   Node* ykey = yvalue;
2086   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2087   if (ideal_cmpxy->is_Cmp()) {
2088     // E.g., if we have CmpI(length - offset, count),
2089     // it might idealize to CmpI(length, count + offset)
2090     cmp_op = ideal_cmpxy->Opcode();
2091     xkey = ideal_cmpxy->in(1);
2092     ykey = ideal_cmpxy->in(2);
2093   }
2094 
2095   // Start by locating any relevant comparisons.
2096   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2097   Node* cmpxy = NULL;
2098   Node* cmpyx = NULL;
2099   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2100     Node* cmp = start_from->fast_out(k);
2101     if (cmp->outcnt() > 0 &&            // must have prior uses
2102         cmp->in(0) == NULL &&           // must be context-independent
2103         cmp->Opcode() == cmp_op) {      // right kind of compare
2104       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2105       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2106     }
2107   }
2108 
2109   const int NCMPS = 2;
2110   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2111   int cmpn;
2112   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2113     if (cmps[cmpn] != NULL)  break;     // find a result
2114   }
2115   if (cmpn < NCMPS) {
2116     // Look for a dominating test that tells us the min and max.
2117     int depth = 0;                // Limit search depth for speed
2118     Node* dom = control();
2119     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2120       if (++depth >= 100)  break;
2121       Node* ifproj = dom;
2122       if (!ifproj->is_Proj())  continue;
2123       Node* iff = ifproj->in(0);
2124       if (!iff->is_If())  continue;
2125       Node* bol = iff->in(1);
2126       if (!bol->is_Bool())  continue;
2127       Node* cmp = bol->in(1);
2128       if (cmp == NULL)  continue;
2129       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2130         if (cmps[cmpn] == cmp)  break;
2131       if (cmpn == NCMPS)  continue;
2132       BoolTest::mask btest = bol->as_Bool()->_test._test;
2133       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2134       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2135       // At this point, we know that 'x btest y' is true.
2136       switch (btest) {
2137       case BoolTest::eq:
2138         // They are proven equal, so we can collapse the min/max.
2139         // Either value is the answer.  Choose the simpler.
2140         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2141           return yvalue;
2142         return xvalue;
2143       case BoolTest::lt:          // x < y
2144       case BoolTest::le:          // x <= y
2145         return (want_max ? yvalue : xvalue);
2146       case BoolTest::gt:          // x > y
2147       case BoolTest::ge:          // x >= y
2148         return (want_max ? xvalue : yvalue);
2149       }
2150     }
2151   }
2152 
2153   // We failed to find a dominating test.
2154   // Let's pick a test that might GVN with prior tests.
2155   Node*          best_bol   = NULL;
2156   BoolTest::mask best_btest = BoolTest::illegal;
2157   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2158     Node* cmp = cmps[cmpn];
2159     if (cmp == NULL)  continue;
2160     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2161       Node* bol = cmp->fast_out(j);
2162       if (!bol->is_Bool())  continue;
2163       BoolTest::mask btest = bol->as_Bool()->_test._test;
2164       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2165       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2166       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2167         best_bol   = bol->as_Bool();
2168         best_btest = btest;
2169       }
2170     }
2171   }
2172 
2173   Node* answer_if_true  = NULL;
2174   Node* answer_if_false = NULL;
2175   switch (best_btest) {
2176   default:
2177     if (cmpxy == NULL)
2178       cmpxy = ideal_cmpxy;
2179     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2180     // and fall through:
2181   case BoolTest::lt:          // x < y
2182   case BoolTest::le:          // x <= y
2183     answer_if_true  = (want_max ? yvalue : xvalue);
2184     answer_if_false = (want_max ? xvalue : yvalue);
2185     break;
2186   case BoolTest::gt:          // x > y
2187   case BoolTest::ge:          // x >= y
2188     answer_if_true  = (want_max ? xvalue : yvalue);
2189     answer_if_false = (want_max ? yvalue : xvalue);
2190     break;
2191   }
2192 
2193   jint hi, lo;
2194   if (want_max) {
2195     // We can sharpen the minimum.
2196     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2197     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2198   } else {
2199     // We can sharpen the maximum.
2200     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2201     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2202   }
2203 
2204   // Use a flow-free graph structure, to avoid creating excess control edges
2205   // which could hinder other optimizations.
2206   // Since Math.min/max is often used with arraycopy, we want
2207   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2208   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2209                                answer_if_false, answer_if_true,
2210                                TypeInt::make(lo, hi, widen));
2211 
2212   return _gvn.transform(cmov);
2213 
2214   /*
2215   // This is not as desirable as it may seem, since Min and Max
2216   // nodes do not have a full set of optimizations.
2217   // And they would interfere, anyway, with 'if' optimizations
2218   // and with CMoveI canonical forms.
2219   switch (id) {
2220   case vmIntrinsics::_min:
2221     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2222   case vmIntrinsics::_max:
2223     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2224   default:
2225     ShouldNotReachHere();
2226   }
2227   */
2228 }
2229 
2230 inline int
2231 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2232   const TypePtr* base_type = TypePtr::NULL_PTR;
2233   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2234   if (base_type == NULL) {
2235     // Unknown type.
2236     return Type::AnyPtr;
2237   } else if (base_type == TypePtr::NULL_PTR) {
2238     // Since this is a NULL+long form, we have to switch to a rawptr.
2239     base   = _gvn.transform(new (C) CastX2PNode(offset));
2240     offset = MakeConX(0);
2241     return Type::RawPtr;
2242   } else if (base_type->base() == Type::RawPtr) {
2243     return Type::RawPtr;
2244   } else if (base_type->isa_oopptr()) {
2245     // Base is never null => always a heap address.
2246     if (base_type->ptr() == TypePtr::NotNull) {
2247       return Type::OopPtr;
2248     }
2249     // Offset is small => always a heap address.
2250     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2251     if (offset_type != NULL &&
2252         base_type->offset() == 0 &&     // (should always be?)
2253         offset_type->_lo >= 0 &&
2254         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2255       return Type::OopPtr;
2256     }
2257     // Otherwise, it might either be oop+off or NULL+addr.
2258     return Type::AnyPtr;
2259   } else {
2260     // No information:
2261     return Type::AnyPtr;
2262   }
2263 }
2264 
2265 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2266   int kind = classify_unsafe_addr(base, offset);
2267   if (kind == Type::RawPtr) {
2268     return basic_plus_adr(top(), base, offset);
2269   } else {
2270     return basic_plus_adr(base, offset);
2271   }
2272 }
2273 
2274 //--------------------------inline_number_methods-----------------------------
2275 // inline int     Integer.numberOfLeadingZeros(int)
2276 // inline int        Long.numberOfLeadingZeros(long)
2277 //
2278 // inline int     Integer.numberOfTrailingZeros(int)
2279 // inline int        Long.numberOfTrailingZeros(long)
2280 //
2281 // inline int     Integer.bitCount(int)
2282 // inline int        Long.bitCount(long)
2283 //
2284 // inline char  Character.reverseBytes(char)
2285 // inline short     Short.reverseBytes(short)
2286 // inline int     Integer.reverseBytes(int)
2287 // inline long       Long.reverseBytes(long)
2288 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2289   Node* arg = argument(0);
2290   Node* n;
2291   switch (id) {
2292   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2293   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2294   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2295   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2296   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2297   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2298   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2299   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2300   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2301   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2302   default:  fatal_unexpected_iid(id);  break;
2303   }
2304   set_result(_gvn.transform(n));
2305   return true;
2306 }
2307 
2308 //----------------------------inline_unsafe_access----------------------------
2309 
2310 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2311 
2312 // Helper that guards and inserts a pre-barrier.
2313 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2314                                         Node* pre_val, bool need_mem_bar) {
2315   // We could be accessing the referent field of a reference object. If so, when G1
2316   // is enabled, we need to log the value in the referent field in an SATB buffer.
2317   // This routine performs some compile time filters and generates suitable
2318   // runtime filters that guard the pre-barrier code.
2319   // Also add memory barrier for non volatile load from the referent field
2320   // to prevent commoning of loads across safepoint.
2321   if (!UseG1GC && !need_mem_bar)
2322     return;
2323 
2324   // Some compile time checks.
2325 
2326   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2327   const TypeX* otype = offset->find_intptr_t_type();
2328   if (otype != NULL && otype->is_con() &&
2329       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2330     // Constant offset but not the reference_offset so just return
2331     return;
2332   }
2333 
2334   // We only need to generate the runtime guards for instances.
2335   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2336   if (btype != NULL) {
2337     if (btype->isa_aryptr()) {
2338       // Array type so nothing to do
2339       return;
2340     }
2341 
2342     const TypeInstPtr* itype = btype->isa_instptr();
2343     if (itype != NULL) {
2344       // Can the klass of base_oop be statically determined to be
2345       // _not_ a sub-class of Reference and _not_ Object?
2346       ciKlass* klass = itype->klass();
2347       if ( klass->is_loaded() &&
2348           !klass->is_subtype_of(env()->Reference_klass()) &&
2349           !env()->Object_klass()->is_subtype_of(klass)) {
2350         return;
2351       }
2352     }
2353   }
2354 
2355   // The compile time filters did not reject base_oop/offset so
2356   // we need to generate the following runtime filters
2357   //
2358   // if (offset == java_lang_ref_Reference::_reference_offset) {
2359   //   if (instance_of(base, java.lang.ref.Reference)) {
2360   //     pre_barrier(_, pre_val, ...);
2361   //   }
2362   // }
2363 
2364   float likely   = PROB_LIKELY(  0.999);
2365   float unlikely = PROB_UNLIKELY(0.999);
2366 
2367   IdealKit ideal(this);
2368 #define __ ideal.
2369 
2370   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2371 
2372   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2373       // Update graphKit memory and control from IdealKit.
2374       sync_kit(ideal);
2375 
2376       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2377       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2378 
2379       // Update IdealKit memory and control from graphKit.
2380       __ sync_kit(this);
2381 
2382       Node* one = __ ConI(1);
2383       // is_instof == 0 if base_oop == NULL
2384       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2385 
2386         // Update graphKit from IdeakKit.
2387         sync_kit(ideal);
2388 
2389         // Use the pre-barrier to record the value in the referent field
2390         pre_barrier(false /* do_load */,
2391                     __ ctrl(),
2392                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2393                     pre_val /* pre_val */,
2394                     T_OBJECT);
2395         if (need_mem_bar) {
2396           // Add memory barrier to prevent commoning reads from this field
2397           // across safepoint since GC can change its value.
2398           insert_mem_bar(Op_MemBarCPUOrder);
2399         }
2400         // Update IdealKit from graphKit.
2401         __ sync_kit(this);
2402 
2403       } __ end_if(); // _ref_type != ref_none
2404   } __ end_if(); // offset == referent_offset
2405 
2406   // Final sync IdealKit and GraphKit.
2407   final_sync(ideal);
2408 #undef __
2409 }
2410 
2411 
2412 // Interpret Unsafe.fieldOffset cookies correctly:
2413 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2414 
2415 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2416   // Attempt to infer a sharper value type from the offset and base type.
2417   ciKlass* sharpened_klass = NULL;
2418 
2419   // See if it is an instance field, with an object type.
2420   if (alias_type->field() != NULL) {
2421     assert(!is_native_ptr, "native pointer op cannot use a java address");
2422     if (alias_type->field()->type()->is_klass()) {
2423       sharpened_klass = alias_type->field()->type()->as_klass();
2424     }
2425   }
2426 
2427   // See if it is a narrow oop array.
2428   if (adr_type->isa_aryptr()) {
2429     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2430       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2431       if (elem_type != NULL) {
2432         sharpened_klass = elem_type->klass();
2433       }
2434     }
2435   }
2436 
2437   // The sharpened class might be unloaded if there is no class loader
2438   // contraint in place.
2439   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2440     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2441 
2442 #ifndef PRODUCT
2443     if (C->print_intrinsics() || C->print_inlining()) {
2444       tty->print("  from base type: ");  adr_type->dump();
2445       tty->print("  sharpened value: ");  tjp->dump();
2446     }
2447 #endif
2448     // Sharpen the value type.
2449     return tjp;
2450   }
2451   return NULL;
2452 }
2453 
2454 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2455   if (callee()->is_static())  return false;  // caller must have the capability!
2456 
2457 #ifndef PRODUCT
2458   {
2459     ResourceMark rm;
2460     // Check the signatures.
2461     ciSignature* sig = callee()->signature();
2462 #ifdef ASSERT
2463     if (!is_store) {
2464       // Object getObject(Object base, int/long offset), etc.
2465       BasicType rtype = sig->return_type()->basic_type();
2466       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2467           rtype = T_ADDRESS;  // it is really a C void*
2468       assert(rtype == type, "getter must return the expected value");
2469       if (!is_native_ptr) {
2470         assert(sig->count() == 2, "oop getter has 2 arguments");
2471         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2472         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2473       } else {
2474         assert(sig->count() == 1, "native getter has 1 argument");
2475         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2476       }
2477     } else {
2478       // void putObject(Object base, int/long offset, Object x), etc.
2479       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2480       if (!is_native_ptr) {
2481         assert(sig->count() == 3, "oop putter has 3 arguments");
2482         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2483         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2484       } else {
2485         assert(sig->count() == 2, "native putter has 2 arguments");
2486         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2487       }
2488       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2489       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2490         vtype = T_ADDRESS;  // it is really a C void*
2491       assert(vtype == type, "putter must accept the expected value");
2492     }
2493 #endif // ASSERT
2494  }
2495 #endif //PRODUCT
2496 
2497   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2498 
2499   Node* receiver = argument(0);  // type: oop
2500 
2501   // Build address expression.  See the code in inline_unsafe_prefetch.
2502   Node* adr;
2503   Node* heap_base_oop = top();
2504   Node* offset = top();
2505   Node* val;
2506 
2507   if (!is_native_ptr) {
2508     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2509     Node* base = argument(1);  // type: oop
2510     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2511     offset = argument(2);  // type: long
2512     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2513     // to be plain byte offsets, which are also the same as those accepted
2514     // by oopDesc::field_base.
2515     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2516            "fieldOffset must be byte-scaled");
2517     // 32-bit machines ignore the high half!
2518     offset = ConvL2X(offset);
2519     adr = make_unsafe_address(base, offset);
2520     heap_base_oop = base;
2521     val = is_store ? argument(4) : NULL;
2522   } else {
2523     Node* ptr = argument(1);  // type: long
2524     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2525     adr = make_unsafe_address(NULL, ptr);
2526     val = is_store ? argument(3) : NULL;
2527   }
2528 
2529   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2530 
2531   // First guess at the value type.
2532   const Type *value_type = Type::get_const_basic_type(type);
2533 
2534   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2535   // there was not enough information to nail it down.
2536   Compile::AliasType* alias_type = C->alias_type(adr_type);
2537   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2538 
2539   // We will need memory barriers unless we can determine a unique
2540   // alias category for this reference.  (Note:  If for some reason
2541   // the barriers get omitted and the unsafe reference begins to "pollute"
2542   // the alias analysis of the rest of the graph, either Compile::can_alias
2543   // or Compile::must_alias will throw a diagnostic assert.)
2544   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2545 
2546   // If we are reading the value of the referent field of a Reference
2547   // object (either by using Unsafe directly or through reflection)
2548   // then, if G1 is enabled, we need to record the referent in an
2549   // SATB log buffer using the pre-barrier mechanism.
2550   // Also we need to add memory barrier to prevent commoning reads
2551   // from this field across safepoint since GC can change its value.
2552   bool need_read_barrier = !is_native_ptr && !is_store &&
2553                            offset != top() && heap_base_oop != top();
2554 
2555   if (!is_store && type == T_OBJECT) {
2556     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2557     if (tjp != NULL) {
2558       value_type = tjp;
2559     }
2560   }
2561 
2562   receiver = null_check(receiver);
2563   if (stopped()) {
2564     return true;
2565   }
2566   // Heap pointers get a null-check from the interpreter,
2567   // as a courtesy.  However, this is not guaranteed by Unsafe,
2568   // and it is not possible to fully distinguish unintended nulls
2569   // from intended ones in this API.
2570 
2571   if (is_volatile) {
2572     // We need to emit leading and trailing CPU membars (see below) in
2573     // addition to memory membars when is_volatile. This is a little
2574     // too strong, but avoids the need to insert per-alias-type
2575     // volatile membars (for stores; compare Parse::do_put_xxx), which
2576     // we cannot do effectively here because we probably only have a
2577     // rough approximation of type.
2578     need_mem_bar = true;
2579     // For Stores, place a memory ordering barrier now.
2580     if (is_store) {
2581       insert_mem_bar(Op_MemBarRelease);
2582     } else {
2583       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2584         insert_mem_bar(Op_MemBarVolatile);
2585       }
2586     }
2587   }
2588 
2589   // Memory barrier to prevent normal and 'unsafe' accesses from
2590   // bypassing each other.  Happens after null checks, so the
2591   // exception paths do not take memory state from the memory barrier,
2592   // so there's no problems making a strong assert about mixing users
2593   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2594   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2595   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2596 
2597   if (!is_store) {
2598     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2599     // load value
2600     switch (type) {
2601     case T_BOOLEAN:
2602     case T_CHAR:
2603     case T_BYTE:
2604     case T_SHORT:
2605     case T_INT:
2606     case T_LONG:
2607     case T_FLOAT:
2608     case T_DOUBLE:
2609       break;
2610     case T_OBJECT:
2611       if (need_read_barrier) {
2612         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2613       }
2614       break;
2615     case T_ADDRESS:
2616       // Cast to an int type.
2617       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2618       p = ConvX2L(p);
2619       break;
2620     default:
2621       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2622       break;
2623     }
2624     // The load node has the control of the preceding MemBarCPUOrder.  All
2625     // following nodes will have the control of the MemBarCPUOrder inserted at
2626     // the end of this method.  So, pushing the load onto the stack at a later
2627     // point is fine.
2628     set_result(p);
2629   } else {
2630     // place effect of store into memory
2631     switch (type) {
2632     case T_DOUBLE:
2633       val = dstore_rounding(val);
2634       break;
2635     case T_ADDRESS:
2636       // Repackage the long as a pointer.
2637       val = ConvL2X(val);
2638       val = _gvn.transform(new (C) CastX2PNode(val));
2639       break;
2640     }
2641 
2642     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2643     if (type != T_OBJECT ) {
2644       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2645     } else {
2646       // Possibly an oop being stored to Java heap or native memory
2647       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2648         // oop to Java heap.
2649         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2650       } else {
2651         // We can't tell at compile time if we are storing in the Java heap or outside
2652         // of it. So we need to emit code to conditionally do the proper type of
2653         // store.
2654 
2655         IdealKit ideal(this);
2656 #define __ ideal.
2657         // QQQ who knows what probability is here??
2658         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2659           // Sync IdealKit and graphKit.
2660           sync_kit(ideal);
2661           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2662           // Update IdealKit memory.
2663           __ sync_kit(this);
2664         } __ else_(); {
2665           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2666         } __ end_if();
2667         // Final sync IdealKit and GraphKit.
2668         final_sync(ideal);
2669 #undef __
2670       }
2671     }
2672   }
2673 
2674   if (is_volatile) {
2675     if (!is_store) {
2676       insert_mem_bar(Op_MemBarAcquire);
2677     } else {
2678       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2679         insert_mem_bar(Op_MemBarVolatile);
2680       }
2681     }
2682   }
2683 
2684   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2685 
2686   return true;
2687 }
2688 
2689 //----------------------------inline_unsafe_prefetch----------------------------
2690 
2691 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2692 #ifndef PRODUCT
2693   {
2694     ResourceMark rm;
2695     // Check the signatures.
2696     ciSignature* sig = callee()->signature();
2697 #ifdef ASSERT
2698     // Object getObject(Object base, int/long offset), etc.
2699     BasicType rtype = sig->return_type()->basic_type();
2700     if (!is_native_ptr) {
2701       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2702       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2703       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2704     } else {
2705       assert(sig->count() == 1, "native prefetch has 1 argument");
2706       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2707     }
2708 #endif // ASSERT
2709   }
2710 #endif // !PRODUCT
2711 
2712   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2713 
2714   const int idx = is_static ? 0 : 1;
2715   if (!is_static) {
2716     null_check_receiver();
2717     if (stopped()) {
2718       return true;
2719     }
2720   }
2721 
2722   // Build address expression.  See the code in inline_unsafe_access.
2723   Node *adr;
2724   if (!is_native_ptr) {
2725     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2726     Node* base   = argument(idx + 0);  // type: oop
2727     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2728     Node* offset = argument(idx + 1);  // type: long
2729     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2730     // to be plain byte offsets, which are also the same as those accepted
2731     // by oopDesc::field_base.
2732     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2733            "fieldOffset must be byte-scaled");
2734     // 32-bit machines ignore the high half!
2735     offset = ConvL2X(offset);
2736     adr = make_unsafe_address(base, offset);
2737   } else {
2738     Node* ptr = argument(idx + 0);  // type: long
2739     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2740     adr = make_unsafe_address(NULL, ptr);
2741   }
2742 
2743   // Generate the read or write prefetch
2744   Node *prefetch;
2745   if (is_store) {
2746     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2747   } else {
2748     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2749   }
2750   prefetch->init_req(0, control());
2751   set_i_o(_gvn.transform(prefetch));
2752 
2753   return true;
2754 }
2755 
2756 //----------------------------inline_unsafe_load_store----------------------------
2757 // This method serves a couple of different customers (depending on LoadStoreKind):
2758 //
2759 // LS_cmpxchg:
2760 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2761 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2762 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2763 //
2764 // LS_xadd:
2765 //   public int  getAndAddInt( Object o, long offset, int  delta)
2766 //   public long getAndAddLong(Object o, long offset, long delta)
2767 //
2768 // LS_xchg:
2769 //   int    getAndSet(Object o, long offset, int    newValue)
2770 //   long   getAndSet(Object o, long offset, long   newValue)
2771 //   Object getAndSet(Object o, long offset, Object newValue)
2772 //
2773 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2774   // This basic scheme here is the same as inline_unsafe_access, but
2775   // differs in enough details that combining them would make the code
2776   // overly confusing.  (This is a true fact! I originally combined
2777   // them, but even I was confused by it!) As much code/comments as
2778   // possible are retained from inline_unsafe_access though to make
2779   // the correspondences clearer. - dl
2780 
2781   if (callee()->is_static())  return false;  // caller must have the capability!
2782 
2783 #ifndef PRODUCT
2784   BasicType rtype;
2785   {
2786     ResourceMark rm;
2787     // Check the signatures.
2788     ciSignature* sig = callee()->signature();
2789     rtype = sig->return_type()->basic_type();
2790     if (kind == LS_xadd || kind == LS_xchg) {
2791       // Check the signatures.
2792 #ifdef ASSERT
2793       assert(rtype == type, "get and set must return the expected type");
2794       assert(sig->count() == 3, "get and set has 3 arguments");
2795       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2796       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2797       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2798 #endif // ASSERT
2799     } else if (kind == LS_cmpxchg) {
2800       // Check the signatures.
2801 #ifdef ASSERT
2802       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2803       assert(sig->count() == 4, "CAS has 4 arguments");
2804       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2805       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2806 #endif // ASSERT
2807     } else {
2808       ShouldNotReachHere();
2809     }
2810   }
2811 #endif //PRODUCT
2812 
2813   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2814 
2815   // Get arguments:
2816   Node* receiver = NULL;
2817   Node* base     = NULL;
2818   Node* offset   = NULL;
2819   Node* oldval   = NULL;
2820   Node* newval   = NULL;
2821   if (kind == LS_cmpxchg) {
2822     const bool two_slot_type = type2size[type] == 2;
2823     receiver = argument(0);  // type: oop
2824     base     = argument(1);  // type: oop
2825     offset   = argument(2);  // type: long
2826     oldval   = argument(4);  // type: oop, int, or long
2827     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2828   } else if (kind == LS_xadd || kind == LS_xchg){
2829     receiver = argument(0);  // type: oop
2830     base     = argument(1);  // type: oop
2831     offset   = argument(2);  // type: long
2832     oldval   = NULL;
2833     newval   = argument(4);  // type: oop, int, or long
2834   }
2835 
2836   // Null check receiver.
2837   receiver = null_check(receiver);
2838   if (stopped()) {
2839     return true;
2840   }
2841 
2842   // Build field offset expression.
2843   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2844   // to be plain byte offsets, which are also the same as those accepted
2845   // by oopDesc::field_base.
2846   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2847   // 32-bit machines ignore the high half of long offsets
2848   offset = ConvL2X(offset);
2849   Node* adr = make_unsafe_address(base, offset);
2850   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2851 
2852   // For CAS, unlike inline_unsafe_access, there seems no point in
2853   // trying to refine types. Just use the coarse types here.
2854   const Type *value_type = Type::get_const_basic_type(type);
2855   Compile::AliasType* alias_type = C->alias_type(adr_type);
2856   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2857 
2858   if (kind == LS_xchg && type == T_OBJECT) {
2859     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2860     if (tjp != NULL) {
2861       value_type = tjp;
2862     }
2863   }
2864 
2865   int alias_idx = C->get_alias_index(adr_type);
2866 
2867   // Memory-model-wise, a LoadStore acts like a little synchronized
2868   // block, so needs barriers on each side.  These don't translate
2869   // into actual barriers on most machines, but we still need rest of
2870   // compiler to respect ordering.
2871 
2872   insert_mem_bar(Op_MemBarRelease);
2873   insert_mem_bar(Op_MemBarCPUOrder);
2874 
2875   // 4984716: MemBars must be inserted before this
2876   //          memory node in order to avoid a false
2877   //          dependency which will confuse the scheduler.
2878   Node *mem = memory(alias_idx);
2879 
2880   // For now, we handle only those cases that actually exist: ints,
2881   // longs, and Object. Adding others should be straightforward.
2882   Node* load_store;
2883   switch(type) {
2884   case T_INT:
2885     if (kind == LS_xadd) {
2886       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2887     } else if (kind == LS_xchg) {
2888       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2889     } else if (kind == LS_cmpxchg) {
2890       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2891     } else {
2892       ShouldNotReachHere();
2893     }
2894     break;
2895   case T_LONG:
2896     if (kind == LS_xadd) {
2897       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2898     } else if (kind == LS_xchg) {
2899       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2900     } else if (kind == LS_cmpxchg) {
2901       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2902     } else {
2903       ShouldNotReachHere();
2904     }
2905     break;
2906   case T_OBJECT:
2907     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2908     // could be delayed during Parse (for example, in adjust_map_after_if()).
2909     // Execute transformation here to avoid barrier generation in such case.
2910     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2911       newval = _gvn.makecon(TypePtr::NULL_PTR);
2912 
2913     // Reference stores need a store barrier.
2914     if (kind == LS_xchg) {
2915       // If pre-barrier must execute before the oop store, old value will require do_load here.
2916       if (!can_move_pre_barrier()) {
2917         pre_barrier(true /* do_load*/,
2918                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2919                     NULL /* pre_val*/,
2920                     T_OBJECT);
2921       } // Else move pre_barrier to use load_store value, see below.
2922     } else if (kind == LS_cmpxchg) {
2923       // Same as for newval above:
2924       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2925         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2926       }
2927       // The only known value which might get overwritten is oldval.
2928       pre_barrier(false /* do_load */,
2929                   control(), NULL, NULL, max_juint, NULL, NULL,
2930                   oldval /* pre_val */,
2931                   T_OBJECT);
2932     } else {
2933       ShouldNotReachHere();
2934     }
2935 
2936 #ifdef _LP64
2937     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2938       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2939       if (kind == LS_xchg) {
2940         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2941                                                            newval_enc, adr_type, value_type->make_narrowoop()));
2942       } else {
2943         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2944         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2945         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2946                                                                 newval_enc, oldval_enc));
2947       }
2948     } else
2949 #endif
2950     {
2951       if (kind == LS_xchg) {
2952         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2953       } else {
2954         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2955         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2956       }
2957     }
2958     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2959     break;
2960   default:
2961     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2962     break;
2963   }
2964 
2965   // SCMemProjNodes represent the memory state of a LoadStore. Their
2966   // main role is to prevent LoadStore nodes from being optimized away
2967   // when their results aren't used.
2968   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2969   set_memory(proj, alias_idx);
2970 
2971   if (type == T_OBJECT && kind == LS_xchg) {
2972 #ifdef _LP64
2973     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2974       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2975     }
2976 #endif
2977     if (can_move_pre_barrier()) {
2978       // Don't need to load pre_val. The old value is returned by load_store.
2979       // The pre_barrier can execute after the xchg as long as no safepoint
2980       // gets inserted between them.
2981       pre_barrier(false /* do_load */,
2982                   control(), NULL, NULL, max_juint, NULL, NULL,
2983                   load_store /* pre_val */,
2984                   T_OBJECT);
2985     }
2986   }
2987 
2988   // Add the trailing membar surrounding the access
2989   insert_mem_bar(Op_MemBarCPUOrder);
2990   insert_mem_bar(Op_MemBarAcquire);
2991 
2992   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2993   set_result(load_store);
2994   return true;
2995 }
2996 
2997 //----------------------------inline_unsafe_ordered_store----------------------
2998 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2999 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3000 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3001 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3002   // This is another variant of inline_unsafe_access, differing in
3003   // that it always issues store-store ("release") barrier and ensures
3004   // store-atomicity (which only matters for "long").
3005 
3006   if (callee()->is_static())  return false;  // caller must have the capability!
3007 
3008 #ifndef PRODUCT
3009   {
3010     ResourceMark rm;
3011     // Check the signatures.
3012     ciSignature* sig = callee()->signature();
3013 #ifdef ASSERT
3014     BasicType rtype = sig->return_type()->basic_type();
3015     assert(rtype == T_VOID, "must return void");
3016     assert(sig->count() == 3, "has 3 arguments");
3017     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3018     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3019 #endif // ASSERT
3020   }
3021 #endif //PRODUCT
3022 
3023   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3024 
3025   // Get arguments:
3026   Node* receiver = argument(0);  // type: oop
3027   Node* base     = argument(1);  // type: oop
3028   Node* offset   = argument(2);  // type: long
3029   Node* val      = argument(4);  // type: oop, int, or long
3030 
3031   // Null check receiver.
3032   receiver = null_check(receiver);
3033   if (stopped()) {
3034     return true;
3035   }
3036 
3037   // Build field offset expression.
3038   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3039   // 32-bit machines ignore the high half of long offsets
3040   offset = ConvL2X(offset);
3041   Node* adr = make_unsafe_address(base, offset);
3042   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3043   const Type *value_type = Type::get_const_basic_type(type);
3044   Compile::AliasType* alias_type = C->alias_type(adr_type);
3045 
3046   insert_mem_bar(Op_MemBarRelease);
3047   insert_mem_bar(Op_MemBarCPUOrder);
3048   // Ensure that the store is atomic for longs:
3049   const bool require_atomic_access = true;
3050   Node* store;
3051   if (type == T_OBJECT) // reference stores need a store barrier.
3052     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3053   else {
3054     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3055   }
3056   insert_mem_bar(Op_MemBarCPUOrder);
3057   return true;
3058 }
3059 
3060 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3061   // Regardless of form, don't allow previous ld/st to move down,
3062   // then issue acquire, release, or volatile mem_bar.
3063   insert_mem_bar(Op_MemBarCPUOrder);
3064   switch(id) {
3065     case vmIntrinsics::_loadFence:
3066       insert_mem_bar(Op_LoadFence);
3067       return true;
3068     case vmIntrinsics::_storeFence:
3069       insert_mem_bar(Op_StoreFence);
3070       return true;
3071     case vmIntrinsics::_fullFence:
3072       insert_mem_bar(Op_MemBarVolatile);
3073       return true;
3074     default:
3075       fatal_unexpected_iid(id);
3076       return false;
3077   }
3078 }
3079 
3080 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3081   if (!kls->is_Con()) {
3082     return true;
3083   }
3084   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3085   if (klsptr == NULL) {
3086     return true;
3087   }
3088   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3089   // don't need a guard for a klass that is already initialized
3090   return !ik->is_initialized();
3091 }
3092 
3093 //----------------------------inline_unsafe_allocate---------------------------
3094 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3095 bool LibraryCallKit::inline_unsafe_allocate() {
3096   if (callee()->is_static())  return false;  // caller must have the capability!
3097 
3098   null_check_receiver();  // null-check, then ignore
3099   Node* cls = null_check(argument(1));
3100   if (stopped())  return true;
3101 
3102   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3103   kls = null_check(kls);
3104   if (stopped())  return true;  // argument was like int.class
3105 
3106   Node* test = NULL;
3107   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3108     // Note:  The argument might still be an illegal value like
3109     // Serializable.class or Object[].class.   The runtime will handle it.
3110     // But we must make an explicit check for initialization.
3111     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3112     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3113     // can generate code to load it as unsigned byte.
3114     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3115     Node* bits = intcon(InstanceKlass::fully_initialized);
3116     test = _gvn.transform(new (C) SubINode(inst, bits));
3117     // The 'test' is non-zero if we need to take a slow path.
3118   }
3119 
3120   Node* obj = new_instance(kls, test);
3121   set_result(obj);
3122   return true;
3123 }
3124 
3125 #ifdef TRACE_HAVE_INTRINSICS
3126 /*
3127  * oop -> myklass
3128  * myklass->trace_id |= USED
3129  * return myklass->trace_id & ~0x3
3130  */
3131 bool LibraryCallKit::inline_native_classID() {
3132   null_check_receiver();  // null-check, then ignore
3133   Node* cls = null_check(argument(1), T_OBJECT);
3134   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3135   kls = null_check(kls, T_OBJECT);
3136   ByteSize offset = TRACE_ID_OFFSET;
3137   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3138   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3139   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3140   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3141   Node* clsused = longcon(0x01l); // set the class bit
3142   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3143 
3144   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3145   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3146   set_result(andl);
3147   return true;
3148 }
3149 
3150 bool LibraryCallKit::inline_native_threadID() {
3151   Node* tls_ptr = NULL;
3152   Node* cur_thr = generate_current_thread(tls_ptr);
3153   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3154   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3155   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3156 
3157   Node* threadid = NULL;
3158   size_t thread_id_size = OSThread::thread_id_size();
3159   if (thread_id_size == (size_t) BytesPerLong) {
3160     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3161   } else if (thread_id_size == (size_t) BytesPerInt) {
3162     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3163   } else {
3164     ShouldNotReachHere();
3165   }
3166   set_result(threadid);
3167   return true;
3168 }
3169 #endif
3170 
3171 //------------------------inline_native_time_funcs--------------
3172 // inline code for System.currentTimeMillis() and System.nanoTime()
3173 // these have the same type and signature
3174 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3175   const TypeFunc* tf = OptoRuntime::void_long_Type();
3176   const TypePtr* no_memory_effects = NULL;
3177   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3178   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3179 #ifdef ASSERT
3180   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3181   assert(value_top == top(), "second value must be top");
3182 #endif
3183   set_result(value);
3184   return true;
3185 }
3186 
3187 //------------------------inline_native_currentThread------------------
3188 bool LibraryCallKit::inline_native_currentThread() {
3189   Node* junk = NULL;
3190   set_result(generate_current_thread(junk));
3191   return true;
3192 }
3193 
3194 //------------------------inline_native_isInterrupted------------------
3195 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3196 bool LibraryCallKit::inline_native_isInterrupted() {
3197   // Add a fast path to t.isInterrupted(clear_int):
3198   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3199   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3200   // So, in the common case that the interrupt bit is false,
3201   // we avoid making a call into the VM.  Even if the interrupt bit
3202   // is true, if the clear_int argument is false, we avoid the VM call.
3203   // However, if the receiver is not currentThread, we must call the VM,
3204   // because there must be some locking done around the operation.
3205 
3206   // We only go to the fast case code if we pass two guards.
3207   // Paths which do not pass are accumulated in the slow_region.
3208 
3209   enum {
3210     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3211     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3212     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3213     PATH_LIMIT
3214   };
3215 
3216   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3217   // out of the function.
3218   insert_mem_bar(Op_MemBarCPUOrder);
3219 
3220   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3221   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3222 
3223   RegionNode* slow_region = new (C) RegionNode(1);
3224   record_for_igvn(slow_region);
3225 
3226   // (a) Receiving thread must be the current thread.
3227   Node* rec_thr = argument(0);
3228   Node* tls_ptr = NULL;
3229   Node* cur_thr = generate_current_thread(tls_ptr);
3230   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3231   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3232 
3233   generate_slow_guard(bol_thr, slow_region);
3234 
3235   // (b) Interrupt bit on TLS must be false.
3236   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3237   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3238   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3239 
3240   // Set the control input on the field _interrupted read to prevent it floating up.
3241   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3242   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3243   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3244 
3245   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3246 
3247   // First fast path:  if (!TLS._interrupted) return false;
3248   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3249   result_rgn->init_req(no_int_result_path, false_bit);
3250   result_val->init_req(no_int_result_path, intcon(0));
3251 
3252   // drop through to next case
3253   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3254 
3255   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3256   Node* clr_arg = argument(1);
3257   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3258   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3259   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3260 
3261   // Second fast path:  ... else if (!clear_int) return true;
3262   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3263   result_rgn->init_req(no_clear_result_path, false_arg);
3264   result_val->init_req(no_clear_result_path, intcon(1));
3265 
3266   // drop through to next case
3267   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3268 
3269   // (d) Otherwise, go to the slow path.
3270   slow_region->add_req(control());
3271   set_control( _gvn.transform(slow_region));
3272 
3273   if (stopped()) {
3274     // There is no slow path.
3275     result_rgn->init_req(slow_result_path, top());
3276     result_val->init_req(slow_result_path, top());
3277   } else {
3278     // non-virtual because it is a private non-static
3279     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3280 
3281     Node* slow_val = set_results_for_java_call(slow_call);
3282     // this->control() comes from set_results_for_java_call
3283 
3284     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3285     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3286 
3287     // These two phis are pre-filled with copies of of the fast IO and Memory
3288     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3289     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3290 
3291     result_rgn->init_req(slow_result_path, control());
3292     result_io ->init_req(slow_result_path, i_o());
3293     result_mem->init_req(slow_result_path, reset_memory());
3294     result_val->init_req(slow_result_path, slow_val);
3295 
3296     set_all_memory(_gvn.transform(result_mem));
3297     set_i_o(       _gvn.transform(result_io));
3298   }
3299 
3300   C->set_has_split_ifs(true); // Has chance for split-if optimization
3301   set_result(result_rgn, result_val);
3302   return true;
3303 }
3304 
3305 //---------------------------load_mirror_from_klass----------------------------
3306 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3307 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3308   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3309   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3310 }
3311 
3312 //-----------------------load_klass_from_mirror_common-------------------------
3313 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3314 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3315 // and branch to the given path on the region.
3316 // If never_see_null, take an uncommon trap on null, so we can optimistically
3317 // compile for the non-null case.
3318 // If the region is NULL, force never_see_null = true.
3319 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3320                                                     bool never_see_null,
3321                                                     RegionNode* region,
3322                                                     int null_path,
3323                                                     int offset) {
3324   if (region == NULL)  never_see_null = true;
3325   Node* p = basic_plus_adr(mirror, offset);
3326   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3327   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3328   Node* null_ctl = top();
3329   kls = null_check_oop(kls, &null_ctl, never_see_null);
3330   if (region != NULL) {
3331     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3332     region->init_req(null_path, null_ctl);
3333   } else {
3334     assert(null_ctl == top(), "no loose ends");
3335   }
3336   return kls;
3337 }
3338 
3339 //--------------------(inline_native_Class_query helpers)---------------------
3340 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3341 // Fall through if (mods & mask) == bits, take the guard otherwise.
3342 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3343   // Branch around if the given klass has the given modifier bit set.
3344   // Like generate_guard, adds a new path onto the region.
3345   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3346   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3347   Node* mask = intcon(modifier_mask);
3348   Node* bits = intcon(modifier_bits);
3349   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3350   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3351   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3352   return generate_fair_guard(bol, region);
3353 }
3354 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3355   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3356 }
3357 
3358 //-------------------------inline_native_Class_query-------------------
3359 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3360   const Type* return_type = TypeInt::BOOL;
3361   Node* prim_return_value = top();  // what happens if it's a primitive class?
3362   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3363   bool expect_prim = false;     // most of these guys expect to work on refs
3364 
3365   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3366 
3367   Node* mirror = argument(0);
3368   Node* obj    = top();
3369 
3370   switch (id) {
3371   case vmIntrinsics::_isInstance:
3372     // nothing is an instance of a primitive type
3373     prim_return_value = intcon(0);
3374     obj = argument(1);
3375     break;
3376   case vmIntrinsics::_getModifiers:
3377     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3378     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3379     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3380     break;
3381   case vmIntrinsics::_isInterface:
3382     prim_return_value = intcon(0);
3383     break;
3384   case vmIntrinsics::_isArray:
3385     prim_return_value = intcon(0);
3386     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3387     break;
3388   case vmIntrinsics::_isPrimitive:
3389     prim_return_value = intcon(1);
3390     expect_prim = true;  // obviously
3391     break;
3392   case vmIntrinsics::_getSuperclass:
3393     prim_return_value = null();
3394     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3395     break;
3396   case vmIntrinsics::_getComponentType:
3397     prim_return_value = null();
3398     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3399     break;
3400   case vmIntrinsics::_getClassAccessFlags:
3401     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3402     return_type = TypeInt::INT;  // not bool!  6297094
3403     break;
3404   default:
3405     fatal_unexpected_iid(id);
3406     break;
3407   }
3408 
3409   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3410   if (mirror_con == NULL)  return false;  // cannot happen?
3411 
3412 #ifndef PRODUCT
3413   if (C->print_intrinsics() || C->print_inlining()) {
3414     ciType* k = mirror_con->java_mirror_type();
3415     if (k) {
3416       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3417       k->print_name();
3418       tty->cr();
3419     }
3420   }
3421 #endif
3422 
3423   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3424   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3425   record_for_igvn(region);
3426   PhiNode* phi = new (C) PhiNode(region, return_type);
3427 
3428   // The mirror will never be null of Reflection.getClassAccessFlags, however
3429   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3430   // if it is. See bug 4774291.
3431 
3432   // For Reflection.getClassAccessFlags(), the null check occurs in
3433   // the wrong place; see inline_unsafe_access(), above, for a similar
3434   // situation.
3435   mirror = null_check(mirror);
3436   // If mirror or obj is dead, only null-path is taken.
3437   if (stopped())  return true;
3438 
3439   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3440 
3441   // Now load the mirror's klass metaobject, and null-check it.
3442   // Side-effects region with the control path if the klass is null.
3443   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3444   // If kls is null, we have a primitive mirror.
3445   phi->init_req(_prim_path, prim_return_value);
3446   if (stopped()) { set_result(region, phi); return true; }
3447   bool safe_for_replace = (region->in(_prim_path) == top());
3448 
3449   Node* p;  // handy temp
3450   Node* null_ctl;
3451 
3452   // Now that we have the non-null klass, we can perform the real query.
3453   // For constant classes, the query will constant-fold in LoadNode::Value.
3454   Node* query_value = top();
3455   switch (id) {
3456   case vmIntrinsics::_isInstance:
3457     // nothing is an instance of a primitive type
3458     query_value = gen_instanceof(obj, kls, safe_for_replace);
3459     break;
3460 
3461   case vmIntrinsics::_getModifiers:
3462     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3463     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3464     break;
3465 
3466   case vmIntrinsics::_isInterface:
3467     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3468     if (generate_interface_guard(kls, region) != NULL)
3469       // A guard was added.  If the guard is taken, it was an interface.
3470       phi->add_req(intcon(1));
3471     // If we fall through, it's a plain class.
3472     query_value = intcon(0);
3473     break;
3474 
3475   case vmIntrinsics::_isArray:
3476     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3477     if (generate_array_guard(kls, region) != NULL)
3478       // A guard was added.  If the guard is taken, it was an array.
3479       phi->add_req(intcon(1));
3480     // If we fall through, it's a plain class.
3481     query_value = intcon(0);
3482     break;
3483 
3484   case vmIntrinsics::_isPrimitive:
3485     query_value = intcon(0); // "normal" path produces false
3486     break;
3487 
3488   case vmIntrinsics::_getSuperclass:
3489     // The rules here are somewhat unfortunate, but we can still do better
3490     // with random logic than with a JNI call.
3491     // Interfaces store null or Object as _super, but must report null.
3492     // Arrays store an intermediate super as _super, but must report Object.
3493     // Other types can report the actual _super.
3494     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3495     if (generate_interface_guard(kls, region) != NULL)
3496       // A guard was added.  If the guard is taken, it was an interface.
3497       phi->add_req(null());
3498     if (generate_array_guard(kls, region) != NULL)
3499       // A guard was added.  If the guard is taken, it was an array.
3500       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3501     // If we fall through, it's a plain class.  Get its _super.
3502     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3503     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3504     null_ctl = top();
3505     kls = null_check_oop(kls, &null_ctl);
3506     if (null_ctl != top()) {
3507       // If the guard is taken, Object.superClass is null (both klass and mirror).
3508       region->add_req(null_ctl);
3509       phi   ->add_req(null());
3510     }
3511     if (!stopped()) {
3512       query_value = load_mirror_from_klass(kls);
3513     }
3514     break;
3515 
3516   case vmIntrinsics::_getComponentType:
3517     if (generate_array_guard(kls, region) != NULL) {
3518       // Be sure to pin the oop load to the guard edge just created:
3519       Node* is_array_ctrl = region->in(region->req()-1);
3520       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3521       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3522       phi->add_req(cmo);
3523     }
3524     query_value = null();  // non-array case is null
3525     break;
3526 
3527   case vmIntrinsics::_getClassAccessFlags:
3528     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3529     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3530     break;
3531 
3532   default:
3533     fatal_unexpected_iid(id);
3534     break;
3535   }
3536 
3537   // Fall-through is the normal case of a query to a real class.
3538   phi->init_req(1, query_value);
3539   region->init_req(1, control());
3540 
3541   C->set_has_split_ifs(true); // Has chance for split-if optimization
3542   set_result(region, phi);
3543   return true;
3544 }
3545 
3546 //--------------------------inline_native_subtype_check------------------------
3547 // This intrinsic takes the JNI calls out of the heart of
3548 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3549 bool LibraryCallKit::inline_native_subtype_check() {
3550   // Pull both arguments off the stack.
3551   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3552   args[0] = argument(0);
3553   args[1] = argument(1);
3554   Node* klasses[2];             // corresponding Klasses: superk, subk
3555   klasses[0] = klasses[1] = top();
3556 
3557   enum {
3558     // A full decision tree on {superc is prim, subc is prim}:
3559     _prim_0_path = 1,           // {P,N} => false
3560                                 // {P,P} & superc!=subc => false
3561     _prim_same_path,            // {P,P} & superc==subc => true
3562     _prim_1_path,               // {N,P} => false
3563     _ref_subtype_path,          // {N,N} & subtype check wins => true
3564     _both_ref_path,             // {N,N} & subtype check loses => false
3565     PATH_LIMIT
3566   };
3567 
3568   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3569   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3570   record_for_igvn(region);
3571 
3572   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3573   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3574   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3575 
3576   // First null-check both mirrors and load each mirror's klass metaobject.
3577   int which_arg;
3578   for (which_arg = 0; which_arg <= 1; which_arg++) {
3579     Node* arg = args[which_arg];
3580     arg = null_check(arg);
3581     if (stopped())  break;
3582     args[which_arg] = arg;
3583 
3584     Node* p = basic_plus_adr(arg, class_klass_offset);
3585     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3586     klasses[which_arg] = _gvn.transform(kls);
3587   }
3588 
3589   // Having loaded both klasses, test each for null.
3590   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3591   for (which_arg = 0; which_arg <= 1; which_arg++) {
3592     Node* kls = klasses[which_arg];
3593     Node* null_ctl = top();
3594     kls = null_check_oop(kls, &null_ctl, never_see_null);
3595     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3596     region->init_req(prim_path, null_ctl);
3597     if (stopped())  break;
3598     klasses[which_arg] = kls;
3599   }
3600 
3601   if (!stopped()) {
3602     // now we have two reference types, in klasses[0..1]
3603     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3604     Node* superk = klasses[0];  // the receiver
3605     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3606     // now we have a successful reference subtype check
3607     region->set_req(_ref_subtype_path, control());
3608   }
3609 
3610   // If both operands are primitive (both klasses null), then
3611   // we must return true when they are identical primitives.
3612   // It is convenient to test this after the first null klass check.
3613   set_control(region->in(_prim_0_path)); // go back to first null check
3614   if (!stopped()) {
3615     // Since superc is primitive, make a guard for the superc==subc case.
3616     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3617     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3618     generate_guard(bol_eq, region, PROB_FAIR);
3619     if (region->req() == PATH_LIMIT+1) {
3620       // A guard was added.  If the added guard is taken, superc==subc.
3621       region->swap_edges(PATH_LIMIT, _prim_same_path);
3622       region->del_req(PATH_LIMIT);
3623     }
3624     region->set_req(_prim_0_path, control()); // Not equal after all.
3625   }
3626 
3627   // these are the only paths that produce 'true':
3628   phi->set_req(_prim_same_path,   intcon(1));
3629   phi->set_req(_ref_subtype_path, intcon(1));
3630 
3631   // pull together the cases:
3632   assert(region->req() == PATH_LIMIT, "sane region");
3633   for (uint i = 1; i < region->req(); i++) {
3634     Node* ctl = region->in(i);
3635     if (ctl == NULL || ctl == top()) {
3636       region->set_req(i, top());
3637       phi   ->set_req(i, top());
3638     } else if (phi->in(i) == NULL) {
3639       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3640     }
3641   }
3642 
3643   set_control(_gvn.transform(region));
3644   set_result(_gvn.transform(phi));
3645   return true;
3646 }
3647 
3648 //---------------------generate_array_guard_common------------------------
3649 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3650                                                   bool obj_array, bool not_array) {
3651   // If obj_array/non_array==false/false:
3652   // Branch around if the given klass is in fact an array (either obj or prim).
3653   // If obj_array/non_array==false/true:
3654   // Branch around if the given klass is not an array klass of any kind.
3655   // If obj_array/non_array==true/true:
3656   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3657   // If obj_array/non_array==true/false:
3658   // Branch around if the kls is an oop array (Object[] or subtype)
3659   //
3660   // Like generate_guard, adds a new path onto the region.
3661   jint  layout_con = 0;
3662   Node* layout_val = get_layout_helper(kls, layout_con);
3663   if (layout_val == NULL) {
3664     bool query = (obj_array
3665                   ? Klass::layout_helper_is_objArray(layout_con)
3666                   : Klass::layout_helper_is_array(layout_con));
3667     if (query == not_array) {
3668       return NULL;                       // never a branch
3669     } else {                             // always a branch
3670       Node* always_branch = control();
3671       if (region != NULL)
3672         region->add_req(always_branch);
3673       set_control(top());
3674       return always_branch;
3675     }
3676   }
3677   // Now test the correct condition.
3678   jint  nval = (obj_array
3679                 ? ((jint)Klass::_lh_array_tag_type_value
3680                    <<    Klass::_lh_array_tag_shift)
3681                 : Klass::_lh_neutral_value);
3682   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3683   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3684   // invert the test if we are looking for a non-array
3685   if (not_array)  btest = BoolTest(btest).negate();
3686   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3687   return generate_fair_guard(bol, region);
3688 }
3689 
3690 
3691 //-----------------------inline_native_newArray--------------------------
3692 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3693 bool LibraryCallKit::inline_native_newArray() {
3694   Node* mirror    = argument(0);
3695   Node* count_val = argument(1);
3696 
3697   mirror = null_check(mirror);
3698   // If mirror or obj is dead, only null-path is taken.
3699   if (stopped())  return true;
3700 
3701   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3702   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3703   PhiNode*    result_val = new(C) PhiNode(result_reg,
3704                                           TypeInstPtr::NOTNULL);
3705   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3706   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3707                                           TypePtr::BOTTOM);
3708 
3709   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3710   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3711                                                   result_reg, _slow_path);
3712   Node* normal_ctl   = control();
3713   Node* no_array_ctl = result_reg->in(_slow_path);
3714 
3715   // Generate code for the slow case.  We make a call to newArray().
3716   set_control(no_array_ctl);
3717   if (!stopped()) {
3718     // Either the input type is void.class, or else the
3719     // array klass has not yet been cached.  Either the
3720     // ensuing call will throw an exception, or else it
3721     // will cache the array klass for next time.
3722     PreserveJVMState pjvms(this);
3723     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3724     Node* slow_result = set_results_for_java_call(slow_call);
3725     // this->control() comes from set_results_for_java_call
3726     result_reg->set_req(_slow_path, control());
3727     result_val->set_req(_slow_path, slow_result);
3728     result_io ->set_req(_slow_path, i_o());
3729     result_mem->set_req(_slow_path, reset_memory());
3730   }
3731 
3732   set_control(normal_ctl);
3733   if (!stopped()) {
3734     // Normal case:  The array type has been cached in the java.lang.Class.
3735     // The following call works fine even if the array type is polymorphic.
3736     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3737     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3738     result_reg->init_req(_normal_path, control());
3739     result_val->init_req(_normal_path, obj);
3740     result_io ->init_req(_normal_path, i_o());
3741     result_mem->init_req(_normal_path, reset_memory());
3742   }
3743 
3744   // Return the combined state.
3745   set_i_o(        _gvn.transform(result_io)  );
3746   set_all_memory( _gvn.transform(result_mem));
3747 
3748   C->set_has_split_ifs(true); // Has chance for split-if optimization
3749   set_result(result_reg, result_val);
3750   return true;
3751 }
3752 
3753 //----------------------inline_native_getLength--------------------------
3754 // public static native int java.lang.reflect.Array.getLength(Object array);
3755 bool LibraryCallKit::inline_native_getLength() {
3756   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3757 
3758   Node* array = null_check(argument(0));
3759   // If array is dead, only null-path is taken.
3760   if (stopped())  return true;
3761 
3762   // Deoptimize if it is a non-array.
3763   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3764 
3765   if (non_array != NULL) {
3766     PreserveJVMState pjvms(this);
3767     set_control(non_array);
3768     uncommon_trap(Deoptimization::Reason_intrinsic,
3769                   Deoptimization::Action_maybe_recompile);
3770   }
3771 
3772   // If control is dead, only non-array-path is taken.
3773   if (stopped())  return true;
3774 
3775   // The works fine even if the array type is polymorphic.
3776   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3777   Node* result = load_array_length(array);
3778 
3779   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3780   set_result(result);
3781   return true;
3782 }
3783 
3784 //------------------------inline_array_copyOf----------------------------
3785 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3786 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3787 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3788   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3789 
3790   // Get the arguments.
3791   Node* original          = argument(0);
3792   Node* start             = is_copyOfRange? argument(1): intcon(0);
3793   Node* end               = is_copyOfRange? argument(2): argument(1);
3794   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3795 
3796   Node* newcopy;
3797 
3798   // Set the original stack and the reexecute bit for the interpreter to reexecute
3799   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3800   { PreserveReexecuteState preexecs(this);
3801     jvms()->set_should_reexecute(true);
3802 
3803     array_type_mirror = null_check(array_type_mirror);
3804     original          = null_check(original);
3805 
3806     // Check if a null path was taken unconditionally.
3807     if (stopped())  return true;
3808 
3809     Node* orig_length = load_array_length(original);
3810 
3811     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3812     klass_node = null_check(klass_node);
3813 
3814     RegionNode* bailout = new (C) RegionNode(1);
3815     record_for_igvn(bailout);
3816 
3817     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3818     // Bail out if that is so.
3819     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3820     if (not_objArray != NULL) {
3821       // Improve the klass node's type from the new optimistic assumption:
3822       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3823       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3824       Node* cast = new (C) CastPPNode(klass_node, akls);
3825       cast->init_req(0, control());
3826       klass_node = _gvn.transform(cast);
3827     }
3828 
3829     // Bail out if either start or end is negative.
3830     generate_negative_guard(start, bailout, &start);
3831     generate_negative_guard(end,   bailout, &end);
3832 
3833     Node* length = end;
3834     if (_gvn.type(start) != TypeInt::ZERO) {
3835       length = _gvn.transform(new (C) SubINode(end, start));
3836     }
3837 
3838     // Bail out if length is negative.
3839     // Without this the new_array would throw
3840     // NegativeArraySizeException but IllegalArgumentException is what
3841     // should be thrown
3842     generate_negative_guard(length, bailout, &length);
3843 
3844     if (bailout->req() > 1) {
3845       PreserveJVMState pjvms(this);
3846       set_control(_gvn.transform(bailout));
3847       uncommon_trap(Deoptimization::Reason_intrinsic,
3848                     Deoptimization::Action_maybe_recompile);
3849     }
3850 
3851     if (!stopped()) {
3852       // How many elements will we copy from the original?
3853       // The answer is MinI(orig_length - start, length).
3854       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3855       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3856 
3857       newcopy = new_array(klass_node, length, 0);  // no argments to push
3858 
3859       // Generate a direct call to the right arraycopy function(s).
3860       // We know the copy is disjoint but we might not know if the
3861       // oop stores need checking.
3862       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3863       // This will fail a store-check if x contains any non-nulls.
3864       bool disjoint_bases = true;
3865       // if start > orig_length then the length of the copy may be
3866       // negative.
3867       bool length_never_negative = !is_copyOfRange;
3868       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3869                          original, start, newcopy, intcon(0), moved,
3870                          disjoint_bases, length_never_negative);
3871     }
3872   } // original reexecute is set back here
3873 
3874   C->set_has_split_ifs(true); // Has chance for split-if optimization
3875   if (!stopped()) {
3876     set_result(newcopy);
3877   }
3878   return true;
3879 }
3880 
3881 
3882 //----------------------generate_virtual_guard---------------------------
3883 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3884 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3885                                              RegionNode* slow_region) {
3886   ciMethod* method = callee();
3887   int vtable_index = method->vtable_index();
3888   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3889          err_msg_res("bad index %d", vtable_index));
3890   // Get the Method* out of the appropriate vtable entry.
3891   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3892                      vtable_index*vtableEntry::size()) * wordSize +
3893                      vtableEntry::method_offset_in_bytes();
3894   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3895   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3896 
3897   // Compare the target method with the expected method (e.g., Object.hashCode).
3898   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3899 
3900   Node* native_call = makecon(native_call_addr);
3901   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3902   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3903 
3904   return generate_slow_guard(test_native, slow_region);
3905 }
3906 
3907 //-----------------------generate_method_call----------------------------
3908 // Use generate_method_call to make a slow-call to the real
3909 // method if the fast path fails.  An alternative would be to
3910 // use a stub like OptoRuntime::slow_arraycopy_Java.
3911 // This only works for expanding the current library call,
3912 // not another intrinsic.  (E.g., don't use this for making an
3913 // arraycopy call inside of the copyOf intrinsic.)
3914 CallJavaNode*
3915 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3916   // When compiling the intrinsic method itself, do not use this technique.
3917   guarantee(callee() != C->method(), "cannot make slow-call to self");
3918 
3919   ciMethod* method = callee();
3920   // ensure the JVMS we have will be correct for this call
3921   guarantee(method_id == method->intrinsic_id(), "must match");
3922 
3923   const TypeFunc* tf = TypeFunc::make(method);
3924   CallJavaNode* slow_call;
3925   if (is_static) {
3926     assert(!is_virtual, "");
3927     slow_call = new(C) CallStaticJavaNode(C, tf,
3928                            SharedRuntime::get_resolve_static_call_stub(),
3929                            method, bci());
3930   } else if (is_virtual) {
3931     null_check_receiver();
3932     int vtable_index = Method::invalid_vtable_index;
3933     if (UseInlineCaches) {
3934       // Suppress the vtable call
3935     } else {
3936       // hashCode and clone are not a miranda methods,
3937       // so the vtable index is fixed.
3938       // No need to use the linkResolver to get it.
3939        vtable_index = method->vtable_index();
3940        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3941               err_msg_res("bad index %d", vtable_index));
3942     }
3943     slow_call = new(C) CallDynamicJavaNode(tf,
3944                           SharedRuntime::get_resolve_virtual_call_stub(),
3945                           method, vtable_index, bci());
3946   } else {  // neither virtual nor static:  opt_virtual
3947     null_check_receiver();
3948     slow_call = new(C) CallStaticJavaNode(C, tf,
3949                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3950                                 method, bci());
3951     slow_call->set_optimized_virtual(true);
3952   }
3953   set_arguments_for_java_call(slow_call);
3954   set_edges_for_java_call(slow_call);
3955   return slow_call;
3956 }
3957 
3958 
3959 //------------------------------inline_native_hashcode--------------------
3960 // Build special case code for calls to hashCode on an object.
3961 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3962   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3963   assert(!(is_virtual && is_static), "either virtual, special, or static");
3964 
3965   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3966 
3967   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3968   PhiNode*    result_val = new(C) PhiNode(result_reg,
3969                                           TypeInt::INT);
3970   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3971   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3972                                           TypePtr::BOTTOM);
3973   Node* obj = NULL;
3974   if (!is_static) {
3975     // Check for hashing null object
3976     obj = null_check_receiver();
3977     if (stopped())  return true;        // unconditionally null
3978     result_reg->init_req(_null_path, top());
3979     result_val->init_req(_null_path, top());
3980   } else {
3981     // Do a null check, and return zero if null.
3982     // System.identityHashCode(null) == 0
3983     obj = argument(0);
3984     Node* null_ctl = top();
3985     obj = null_check_oop(obj, &null_ctl);
3986     result_reg->init_req(_null_path, null_ctl);
3987     result_val->init_req(_null_path, _gvn.intcon(0));
3988   }
3989 
3990   // Unconditionally null?  Then return right away.
3991   if (stopped()) {
3992     set_control( result_reg->in(_null_path));
3993     if (!stopped())
3994       set_result(result_val->in(_null_path));
3995     return true;
3996   }
3997 
3998   // After null check, get the object's klass.
3999   Node* obj_klass = load_object_klass(obj);
4000 
4001   // This call may be virtual (invokevirtual) or bound (invokespecial).
4002   // For each case we generate slightly different code.
4003 
4004   // We only go to the fast case code if we pass a number of guards.  The
4005   // paths which do not pass are accumulated in the slow_region.
4006   RegionNode* slow_region = new (C) RegionNode(1);
4007   record_for_igvn(slow_region);
4008 
4009   // If this is a virtual call, we generate a funny guard.  We pull out
4010   // the vtable entry corresponding to hashCode() from the target object.
4011   // If the target method which we are calling happens to be the native
4012   // Object hashCode() method, we pass the guard.  We do not need this
4013   // guard for non-virtual calls -- the caller is known to be the native
4014   // Object hashCode().
4015   if (is_virtual) {
4016     generate_virtual_guard(obj_klass, slow_region);
4017   }
4018 
4019   // Get the header out of the object, use LoadMarkNode when available
4020   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4021   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4022 
4023   // Test the header to see if it is unlocked.
4024   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4025   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4026   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4027   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4028   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4029 
4030   generate_slow_guard(test_unlocked, slow_region);
4031 
4032   // Get the hash value and check to see that it has been properly assigned.
4033   // We depend on hash_mask being at most 32 bits and avoid the use of
4034   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4035   // vm: see markOop.hpp.
4036   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4037   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4038   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4039   // This hack lets the hash bits live anywhere in the mark object now, as long
4040   // as the shift drops the relevant bits into the low 32 bits.  Note that
4041   // Java spec says that HashCode is an int so there's no point in capturing
4042   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4043   hshifted_header      = ConvX2I(hshifted_header);
4044   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4045 
4046   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4047   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4048   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4049 
4050   generate_slow_guard(test_assigned, slow_region);
4051 
4052   Node* init_mem = reset_memory();
4053   // fill in the rest of the null path:
4054   result_io ->init_req(_null_path, i_o());
4055   result_mem->init_req(_null_path, init_mem);
4056 
4057   result_val->init_req(_fast_path, hash_val);
4058   result_reg->init_req(_fast_path, control());
4059   result_io ->init_req(_fast_path, i_o());
4060   result_mem->init_req(_fast_path, init_mem);
4061 
4062   // Generate code for the slow case.  We make a call to hashCode().
4063   set_control(_gvn.transform(slow_region));
4064   if (!stopped()) {
4065     // No need for PreserveJVMState, because we're using up the present state.
4066     set_all_memory(init_mem);
4067     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4068     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4069     Node* slow_result = set_results_for_java_call(slow_call);
4070     // this->control() comes from set_results_for_java_call
4071     result_reg->init_req(_slow_path, control());
4072     result_val->init_req(_slow_path, slow_result);
4073     result_io  ->set_req(_slow_path, i_o());
4074     result_mem ->set_req(_slow_path, reset_memory());
4075   }
4076 
4077   // Return the combined state.
4078   set_i_o(        _gvn.transform(result_io)  );
4079   set_all_memory( _gvn.transform(result_mem));
4080 
4081   set_result(result_reg, result_val);
4082   return true;
4083 }
4084 
4085 //---------------------------inline_native_getClass----------------------------
4086 // public final native Class<?> java.lang.Object.getClass();
4087 //
4088 // Build special case code for calls to getClass on an object.
4089 bool LibraryCallKit::inline_native_getClass() {
4090   Node* obj = null_check_receiver();
4091   if (stopped())  return true;
4092   set_result(load_mirror_from_klass(load_object_klass(obj)));
4093   return true;
4094 }
4095 
4096 //-----------------inline_native_Reflection_getCallerClass---------------------
4097 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4098 //
4099 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4100 //
4101 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4102 // in that it must skip particular security frames and checks for
4103 // caller sensitive methods.
4104 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4105 #ifndef PRODUCT
4106   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4107     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4108   }
4109 #endif
4110 
4111   if (!jvms()->has_method()) {
4112 #ifndef PRODUCT
4113     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4114       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4115     }
4116 #endif
4117     return false;
4118   }
4119 
4120   // Walk back up the JVM state to find the caller at the required
4121   // depth.
4122   JVMState* caller_jvms = jvms();
4123 
4124   // Cf. JVM_GetCallerClass
4125   // NOTE: Start the loop at depth 1 because the current JVM state does
4126   // not include the Reflection.getCallerClass() frame.
4127   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4128     ciMethod* m = caller_jvms->method();
4129     switch (n) {
4130     case 0:
4131       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4132       break;
4133     case 1:
4134       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4135       if (!m->caller_sensitive()) {
4136 #ifndef PRODUCT
4137         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4138           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4139         }
4140 #endif
4141         return false;  // bail-out; let JVM_GetCallerClass do the work
4142       }
4143       break;
4144     default:
4145       if (!m->is_ignored_by_security_stack_walk()) {
4146         // We have reached the desired frame; return the holder class.
4147         // Acquire method holder as java.lang.Class and push as constant.
4148         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4149         ciInstance* caller_mirror = caller_klass->java_mirror();
4150         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4151 
4152 #ifndef PRODUCT
4153         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4154           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4155           tty->print_cr("  JVM state at this point:");
4156           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4157             ciMethod* m = jvms()->of_depth(i)->method();
4158             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4159           }
4160         }
4161 #endif
4162         return true;
4163       }
4164       break;
4165     }
4166   }
4167 
4168 #ifndef PRODUCT
4169   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4170     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4171     tty->print_cr("  JVM state at this point:");
4172     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4173       ciMethod* m = jvms()->of_depth(i)->method();
4174       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4175     }
4176   }
4177 #endif
4178 
4179   return false;  // bail-out; let JVM_GetCallerClass do the work
4180 }
4181 
4182 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4183   Node* arg = argument(0);
4184   Node* result;
4185 
4186   switch (id) {
4187   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4188   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4189   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4190   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4191 
4192   case vmIntrinsics::_doubleToLongBits: {
4193     // two paths (plus control) merge in a wood
4194     RegionNode *r = new (C) RegionNode(3);
4195     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4196 
4197     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4198     // Build the boolean node
4199     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4200 
4201     // Branch either way.
4202     // NaN case is less traveled, which makes all the difference.
4203     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4204     Node *opt_isnan = _gvn.transform(ifisnan);
4205     assert( opt_isnan->is_If(), "Expect an IfNode");
4206     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4207     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4208 
4209     set_control(iftrue);
4210 
4211     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4212     Node *slow_result = longcon(nan_bits); // return NaN
4213     phi->init_req(1, _gvn.transform( slow_result ));
4214     r->init_req(1, iftrue);
4215 
4216     // Else fall through
4217     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4218     set_control(iffalse);
4219 
4220     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4221     r->init_req(2, iffalse);
4222 
4223     // Post merge
4224     set_control(_gvn.transform(r));
4225     record_for_igvn(r);
4226 
4227     C->set_has_split_ifs(true); // Has chance for split-if optimization
4228     result = phi;
4229     assert(result->bottom_type()->isa_long(), "must be");
4230     break;
4231   }
4232 
4233   case vmIntrinsics::_floatToIntBits: {
4234     // two paths (plus control) merge in a wood
4235     RegionNode *r = new (C) RegionNode(3);
4236     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4237 
4238     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4239     // Build the boolean node
4240     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4241 
4242     // Branch either way.
4243     // NaN case is less traveled, which makes all the difference.
4244     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4245     Node *opt_isnan = _gvn.transform(ifisnan);
4246     assert( opt_isnan->is_If(), "Expect an IfNode");
4247     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4248     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4249 
4250     set_control(iftrue);
4251 
4252     static const jint nan_bits = 0x7fc00000;
4253     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4254     phi->init_req(1, _gvn.transform( slow_result ));
4255     r->init_req(1, iftrue);
4256 
4257     // Else fall through
4258     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4259     set_control(iffalse);
4260 
4261     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4262     r->init_req(2, iffalse);
4263 
4264     // Post merge
4265     set_control(_gvn.transform(r));
4266     record_for_igvn(r);
4267 
4268     C->set_has_split_ifs(true); // Has chance for split-if optimization
4269     result = phi;
4270     assert(result->bottom_type()->isa_int(), "must be");
4271     break;
4272   }
4273 
4274   default:
4275     fatal_unexpected_iid(id);
4276     break;
4277   }
4278   set_result(_gvn.transform(result));
4279   return true;
4280 }
4281 
4282 #ifdef _LP64
4283 #define XTOP ,top() /*additional argument*/
4284 #else  //_LP64
4285 #define XTOP        /*no additional argument*/
4286 #endif //_LP64
4287 
4288 //----------------------inline_unsafe_copyMemory-------------------------
4289 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4290 bool LibraryCallKit::inline_unsafe_copyMemory() {
4291   if (callee()->is_static())  return false;  // caller must have the capability!
4292   null_check_receiver();  // null-check receiver
4293   if (stopped())  return true;
4294 
4295   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4296 
4297   Node* src_ptr =         argument(1);   // type: oop
4298   Node* src_off = ConvL2X(argument(2));  // type: long
4299   Node* dst_ptr =         argument(4);   // type: oop
4300   Node* dst_off = ConvL2X(argument(5));  // type: long
4301   Node* size    = ConvL2X(argument(7));  // type: long
4302 
4303   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4304          "fieldOffset must be byte-scaled");
4305 
4306   Node* src = make_unsafe_address(src_ptr, src_off);
4307   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4308 
4309   // Conservatively insert a memory barrier on all memory slices.
4310   // Do not let writes of the copy source or destination float below the copy.
4311   insert_mem_bar(Op_MemBarCPUOrder);
4312 
4313   // Call it.  Note that the length argument is not scaled.
4314   make_runtime_call(RC_LEAF|RC_NO_FP,
4315                     OptoRuntime::fast_arraycopy_Type(),
4316                     StubRoutines::unsafe_arraycopy(),
4317                     "unsafe_arraycopy",
4318                     TypeRawPtr::BOTTOM,
4319                     src, dst, size XTOP);
4320 
4321   // Do not let reads of the copy destination float above the copy.
4322   insert_mem_bar(Op_MemBarCPUOrder);
4323 
4324   return true;
4325 }
4326 
4327 //------------------------clone_coping-----------------------------------
4328 // Helper function for inline_native_clone.
4329 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4330   assert(obj_size != NULL, "");
4331   Node* raw_obj = alloc_obj->in(1);
4332   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4333 
4334   AllocateNode* alloc = NULL;
4335   if (ReduceBulkZeroing) {
4336     // We will be completely responsible for initializing this object -
4337     // mark Initialize node as complete.
4338     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4339     // The object was just allocated - there should be no any stores!
4340     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4341     // Mark as complete_with_arraycopy so that on AllocateNode
4342     // expansion, we know this AllocateNode is initialized by an array
4343     // copy and a StoreStore barrier exists after the array copy.
4344     alloc->initialization()->set_complete_with_arraycopy();
4345   }
4346 
4347   // Copy the fastest available way.
4348   // TODO: generate fields copies for small objects instead.
4349   Node* src  = obj;
4350   Node* dest = alloc_obj;
4351   Node* size = _gvn.transform(obj_size);
4352 
4353   // Exclude the header but include array length to copy by 8 bytes words.
4354   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4355   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4356                             instanceOopDesc::base_offset_in_bytes();
4357   // base_off:
4358   // 8  - 32-bit VM
4359   // 12 - 64-bit VM, compressed klass
4360   // 16 - 64-bit VM, normal klass
4361   if (base_off % BytesPerLong != 0) {
4362     assert(UseCompressedClassPointers, "");
4363     if (is_array) {
4364       // Exclude length to copy by 8 bytes words.
4365       base_off += sizeof(int);
4366     } else {
4367       // Include klass to copy by 8 bytes words.
4368       base_off = instanceOopDesc::klass_offset_in_bytes();
4369     }
4370     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4371   }
4372   src  = basic_plus_adr(src,  base_off);
4373   dest = basic_plus_adr(dest, base_off);
4374 
4375   // Compute the length also, if needed:
4376   Node* countx = size;
4377   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4378   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4379 
4380   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4381   bool disjoint_bases = true;
4382   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4383                                src, NULL, dest, NULL, countx,
4384                                /*dest_uninitialized*/true);
4385 
4386   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4387   if (card_mark) {
4388     assert(!is_array, "");
4389     // Put in store barrier for any and all oops we are sticking
4390     // into this object.  (We could avoid this if we could prove
4391     // that the object type contains no oop fields at all.)
4392     Node* no_particular_value = NULL;
4393     Node* no_particular_field = NULL;
4394     int raw_adr_idx = Compile::AliasIdxRaw;
4395     post_barrier(control(),
4396                  memory(raw_adr_type),
4397                  alloc_obj,
4398                  no_particular_field,
4399                  raw_adr_idx,
4400                  no_particular_value,
4401                  T_OBJECT,
4402                  false);
4403   }
4404 
4405   // Do not let reads from the cloned object float above the arraycopy.
4406   if (alloc != NULL) {
4407     // Do not let stores that initialize this object be reordered with
4408     // a subsequent store that would make this object accessible by
4409     // other threads.
4410     // Record what AllocateNode this StoreStore protects so that
4411     // escape analysis can go from the MemBarStoreStoreNode to the
4412     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4413     // based on the escape status of the AllocateNode.
4414     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4415   } else {
4416     insert_mem_bar(Op_MemBarCPUOrder);
4417   }
4418 }
4419 
4420 //------------------------inline_native_clone----------------------------
4421 // protected native Object java.lang.Object.clone();
4422 //
4423 // Here are the simple edge cases:
4424 //  null receiver => normal trap
4425 //  virtual and clone was overridden => slow path to out-of-line clone
4426 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4427 //
4428 // The general case has two steps, allocation and copying.
4429 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4430 //
4431 // Copying also has two cases, oop arrays and everything else.
4432 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4433 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4434 //
4435 // These steps fold up nicely if and when the cloned object's klass
4436 // can be sharply typed as an object array, a type array, or an instance.
4437 //
4438 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4439   PhiNode* result_val;
4440 
4441   // Set the reexecute bit for the interpreter to reexecute
4442   // the bytecode that invokes Object.clone if deoptimization happens.
4443   { PreserveReexecuteState preexecs(this);
4444     jvms()->set_should_reexecute(true);
4445 
4446     Node* obj = null_check_receiver();
4447     if (stopped())  return true;
4448 
4449     Node* obj_klass = load_object_klass(obj);
4450     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4451     const TypeOopPtr*   toop   = ((tklass != NULL)
4452                                 ? tklass->as_instance_type()
4453                                 : TypeInstPtr::NOTNULL);
4454 
4455     // Conservatively insert a memory barrier on all memory slices.
4456     // Do not let writes into the original float below the clone.
4457     insert_mem_bar(Op_MemBarCPUOrder);
4458 
4459     // paths into result_reg:
4460     enum {
4461       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4462       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4463       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4464       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4465       PATH_LIMIT
4466     };
4467     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4468     result_val             = new(C) PhiNode(result_reg,
4469                                             TypeInstPtr::NOTNULL);
4470     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4471     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4472                                             TypePtr::BOTTOM);
4473     record_for_igvn(result_reg);
4474 
4475     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4476     int raw_adr_idx = Compile::AliasIdxRaw;
4477 
4478     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4479     if (array_ctl != NULL) {
4480       // It's an array.
4481       PreserveJVMState pjvms(this);
4482       set_control(array_ctl);
4483       Node* obj_length = load_array_length(obj);
4484       Node* obj_size  = NULL;
4485       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4486 
4487       if (!use_ReduceInitialCardMarks()) {
4488         // If it is an oop array, it requires very special treatment,
4489         // because card marking is required on each card of the array.
4490         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4491         if (is_obja != NULL) {
4492           PreserveJVMState pjvms2(this);
4493           set_control(is_obja);
4494           // Generate a direct call to the right arraycopy function(s).
4495           bool disjoint_bases = true;
4496           bool length_never_negative = true;
4497           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4498                              obj, intcon(0), alloc_obj, intcon(0),
4499                              obj_length,
4500                              disjoint_bases, length_never_negative);
4501           result_reg->init_req(_objArray_path, control());
4502           result_val->init_req(_objArray_path, alloc_obj);
4503           result_i_o ->set_req(_objArray_path, i_o());
4504           result_mem ->set_req(_objArray_path, reset_memory());
4505         }
4506       }
4507       // Otherwise, there are no card marks to worry about.
4508       // (We can dispense with card marks if we know the allocation
4509       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4510       //  causes the non-eden paths to take compensating steps to
4511       //  simulate a fresh allocation, so that no further
4512       //  card marks are required in compiled code to initialize
4513       //  the object.)
4514 
4515       if (!stopped()) {
4516         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4517 
4518         // Present the results of the copy.
4519         result_reg->init_req(_array_path, control());
4520         result_val->init_req(_array_path, alloc_obj);
4521         result_i_o ->set_req(_array_path, i_o());
4522         result_mem ->set_req(_array_path, reset_memory());
4523       }
4524     }
4525 
4526     // We only go to the instance fast case code if we pass a number of guards.
4527     // The paths which do not pass are accumulated in the slow_region.
4528     RegionNode* slow_region = new (C) RegionNode(1);
4529     record_for_igvn(slow_region);
4530     if (!stopped()) {
4531       // It's an instance (we did array above).  Make the slow-path tests.
4532       // If this is a virtual call, we generate a funny guard.  We grab
4533       // the vtable entry corresponding to clone() from the target object.
4534       // If the target method which we are calling happens to be the
4535       // Object clone() method, we pass the guard.  We do not need this
4536       // guard for non-virtual calls; the caller is known to be the native
4537       // Object clone().
4538       if (is_virtual) {
4539         generate_virtual_guard(obj_klass, slow_region);
4540       }
4541 
4542       // The object must be cloneable and must not have a finalizer.
4543       // Both of these conditions may be checked in a single test.
4544       // We could optimize the cloneable test further, but we don't care.
4545       generate_access_flags_guard(obj_klass,
4546                                   // Test both conditions:
4547                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4548                                   // Must be cloneable but not finalizer:
4549                                   JVM_ACC_IS_CLONEABLE,
4550                                   slow_region);
4551     }
4552 
4553     if (!stopped()) {
4554       // It's an instance, and it passed the slow-path tests.
4555       PreserveJVMState pjvms(this);
4556       Node* obj_size  = NULL;
4557       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4558 
4559       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4560 
4561       // Present the results of the slow call.
4562       result_reg->init_req(_instance_path, control());
4563       result_val->init_req(_instance_path, alloc_obj);
4564       result_i_o ->set_req(_instance_path, i_o());
4565       result_mem ->set_req(_instance_path, reset_memory());
4566     }
4567 
4568     // Generate code for the slow case.  We make a call to clone().
4569     set_control(_gvn.transform(slow_region));
4570     if (!stopped()) {
4571       PreserveJVMState pjvms(this);
4572       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4573       Node* slow_result = set_results_for_java_call(slow_call);
4574       // this->control() comes from set_results_for_java_call
4575       result_reg->init_req(_slow_path, control());
4576       result_val->init_req(_slow_path, slow_result);
4577       result_i_o ->set_req(_slow_path, i_o());
4578       result_mem ->set_req(_slow_path, reset_memory());
4579     }
4580 
4581     // Return the combined state.
4582     set_control(    _gvn.transform(result_reg));
4583     set_i_o(        _gvn.transform(result_i_o));
4584     set_all_memory( _gvn.transform(result_mem));
4585   } // original reexecute is set back here
4586 
4587   set_result(_gvn.transform(result_val));
4588   return true;
4589 }
4590 
4591 //------------------------------basictype2arraycopy----------------------------
4592 address LibraryCallKit::basictype2arraycopy(BasicType t,
4593                                             Node* src_offset,
4594                                             Node* dest_offset,
4595                                             bool disjoint_bases,
4596                                             const char* &name,
4597                                             bool dest_uninitialized) {
4598   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4599   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4600 
4601   bool aligned = false;
4602   bool disjoint = disjoint_bases;
4603 
4604   // if the offsets are the same, we can treat the memory regions as
4605   // disjoint, because either the memory regions are in different arrays,
4606   // or they are identical (which we can treat as disjoint.)  We can also
4607   // treat a copy with a destination index  less that the source index
4608   // as disjoint since a low->high copy will work correctly in this case.
4609   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4610       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4611     // both indices are constants
4612     int s_offs = src_offset_inttype->get_con();
4613     int d_offs = dest_offset_inttype->get_con();
4614     int element_size = type2aelembytes(t);
4615     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4616               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4617     if (s_offs >= d_offs)  disjoint = true;
4618   } else if (src_offset == dest_offset && src_offset != NULL) {
4619     // This can occur if the offsets are identical non-constants.
4620     disjoint = true;
4621   }
4622 
4623   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4624 }
4625 
4626 
4627 //------------------------------inline_arraycopy-----------------------
4628 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4629 //                                                      Object dest, int destPos,
4630 //                                                      int length);
4631 bool LibraryCallKit::inline_arraycopy() {
4632   // Get the arguments.
4633   Node* src         = argument(0);  // type: oop
4634   Node* src_offset  = argument(1);  // type: int
4635   Node* dest        = argument(2);  // type: oop
4636   Node* dest_offset = argument(3);  // type: int
4637   Node* length      = argument(4);  // type: int
4638 
4639   // Compile time checks.  If any of these checks cannot be verified at compile time,
4640   // we do not make a fast path for this call.  Instead, we let the call remain as it
4641   // is.  The checks we choose to mandate at compile time are:
4642   //
4643   // (1) src and dest are arrays.
4644   const Type* src_type  = src->Value(&_gvn);
4645   const Type* dest_type = dest->Value(&_gvn);
4646   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4647   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4648 
4649   // Do we have the type of src?
4650   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4651   // Do we have the type of dest?
4652   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4653   // Is the type for src from speculation?
4654   bool src_spec = false;
4655   // Is the type for dest from speculation?
4656   bool dest_spec = false;
4657 
4658   if (!has_src || !has_dest) {
4659     // We don't have sufficient type information, let's see if
4660     // speculative types can help. We need to have types for both src
4661     // and dest so that it pays off.
4662 
4663     // Do we already have or could we have type information for src
4664     bool could_have_src = has_src;
4665     // Do we already have or could we have type information for dest
4666     bool could_have_dest = has_dest;
4667 
4668     ciKlass* src_k = NULL;
4669     if (!has_src) {
4670       src_k = src_type->speculative_type();
4671       if (src_k != NULL && src_k->is_array_klass()) {
4672         could_have_src = true;
4673       }
4674     }
4675 
4676     ciKlass* dest_k = NULL;
4677     if (!has_dest) {
4678       dest_k = dest_type->speculative_type();
4679       if (dest_k != NULL && dest_k->is_array_klass()) {
4680         could_have_dest = true;
4681       }
4682     }
4683 
4684     if (could_have_src && could_have_dest) {
4685       // This is going to pay off so emit the required guards
4686       if (!has_src) {
4687         src = maybe_cast_profiled_obj(src, src_k);
4688         src_type  = _gvn.type(src);
4689         top_src  = src_type->isa_aryptr();
4690         has_src = (top_src != NULL && top_src->klass() != NULL);
4691         src_spec = true;
4692       }
4693       if (!has_dest) {
4694         dest = maybe_cast_profiled_obj(dest, dest_k);
4695         dest_type  = _gvn.type(dest);
4696         top_dest  = dest_type->isa_aryptr();
4697         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4698         dest_spec = true;
4699       }
4700     }
4701   }
4702 
4703   if (!has_src || !has_dest) {
4704     // Conservatively insert a memory barrier on all memory slices.
4705     // Do not let writes into the source float below the arraycopy.
4706     insert_mem_bar(Op_MemBarCPUOrder);
4707 
4708     // Call StubRoutines::generic_arraycopy stub.
4709     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4710                        src, src_offset, dest, dest_offset, length);
4711 
4712     // Do not let reads from the destination float above the arraycopy.
4713     // Since we cannot type the arrays, we don't know which slices
4714     // might be affected.  We could restrict this barrier only to those
4715     // memory slices which pertain to array elements--but don't bother.
4716     if (!InsertMemBarAfterArraycopy)
4717       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4718       insert_mem_bar(Op_MemBarCPUOrder);
4719     return true;
4720   }
4721 
4722   // (2) src and dest arrays must have elements of the same BasicType
4723   // Figure out the size and type of the elements we will be copying.
4724   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4725   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4726   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4727   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4728 
4729   if (src_elem != dest_elem || dest_elem == T_VOID) {
4730     // The component types are not the same or are not recognized.  Punt.
4731     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4732     generate_slow_arraycopy(TypePtr::BOTTOM,
4733                             src, src_offset, dest, dest_offset, length,
4734                             /*dest_uninitialized*/false);
4735     return true;
4736   }
4737 
4738   if (src_elem == T_OBJECT) {
4739     // If both arrays are object arrays then having the exact types
4740     // for both will remove the need for a subtype check at runtime
4741     // before the call and may make it possible to pick a faster copy
4742     // routine (without a subtype check on every element)
4743     // Do we have the exact type of src?
4744     bool could_have_src = src_spec;
4745     // Do we have the exact type of dest?
4746     bool could_have_dest = dest_spec;
4747     ciKlass* src_k = top_src->klass();
4748     ciKlass* dest_k = top_dest->klass();
4749     if (!src_spec) {
4750       src_k = src_type->speculative_type();
4751       if (src_k != NULL && src_k->is_array_klass()) {
4752           could_have_src = true;
4753       }
4754     }
4755     if (!dest_spec) {
4756       dest_k = dest_type->speculative_type();
4757       if (dest_k != NULL && dest_k->is_array_klass()) {
4758         could_have_dest = true;
4759       }
4760     }
4761     if (could_have_src && could_have_dest) {
4762       // If we can have both exact types, emit the missing guards
4763       if (could_have_src && !src_spec) {
4764         src = maybe_cast_profiled_obj(src, src_k);
4765       }
4766       if (could_have_dest && !dest_spec) {
4767         dest = maybe_cast_profiled_obj(dest, dest_k);
4768       }
4769     }
4770   }
4771 
4772   //---------------------------------------------------------------------------
4773   // We will make a fast path for this call to arraycopy.
4774 
4775   // We have the following tests left to perform:
4776   //
4777   // (3) src and dest must not be null.
4778   // (4) src_offset must not be negative.
4779   // (5) dest_offset must not be negative.
4780   // (6) length must not be negative.
4781   // (7) src_offset + length must not exceed length of src.
4782   // (8) dest_offset + length must not exceed length of dest.
4783   // (9) each element of an oop array must be assignable
4784 
4785   RegionNode* slow_region = new (C) RegionNode(1);
4786   record_for_igvn(slow_region);
4787 
4788   // (3) operands must not be null
4789   // We currently perform our null checks with the null_check routine.
4790   // This means that the null exceptions will be reported in the caller
4791   // rather than (correctly) reported inside of the native arraycopy call.
4792   // This should be corrected, given time.  We do our null check with the
4793   // stack pointer restored.
4794   src  = null_check(src,  T_ARRAY);
4795   dest = null_check(dest, T_ARRAY);
4796 
4797   // (4) src_offset must not be negative.
4798   generate_negative_guard(src_offset, slow_region);
4799 
4800   // (5) dest_offset must not be negative.
4801   generate_negative_guard(dest_offset, slow_region);
4802 
4803   // (6) length must not be negative (moved to generate_arraycopy()).
4804   // generate_negative_guard(length, slow_region);
4805 
4806   // (7) src_offset + length must not exceed length of src.
4807   generate_limit_guard(src_offset, length,
4808                        load_array_length(src),
4809                        slow_region);
4810 
4811   // (8) dest_offset + length must not exceed length of dest.
4812   generate_limit_guard(dest_offset, length,
4813                        load_array_length(dest),
4814                        slow_region);
4815 
4816   // (9) each element of an oop array must be assignable
4817   // The generate_arraycopy subroutine checks this.
4818 
4819   // This is where the memory effects are placed:
4820   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4821   generate_arraycopy(adr_type, dest_elem,
4822                      src, src_offset, dest, dest_offset, length,
4823                      false, false, slow_region);
4824 
4825   return true;
4826 }
4827 
4828 //-----------------------------generate_arraycopy----------------------
4829 // Generate an optimized call to arraycopy.
4830 // Caller must guard against non-arrays.
4831 // Caller must determine a common array basic-type for both arrays.
4832 // Caller must validate offsets against array bounds.
4833 // The slow_region has already collected guard failure paths
4834 // (such as out of bounds length or non-conformable array types).
4835 // The generated code has this shape, in general:
4836 //
4837 //     if (length == 0)  return   // via zero_path
4838 //     slowval = -1
4839 //     if (types unknown) {
4840 //       slowval = call generic copy loop
4841 //       if (slowval == 0)  return  // via checked_path
4842 //     } else if (indexes in bounds) {
4843 //       if ((is object array) && !(array type check)) {
4844 //         slowval = call checked copy loop
4845 //         if (slowval == 0)  return  // via checked_path
4846 //       } else {
4847 //         call bulk copy loop
4848 //         return  // via fast_path
4849 //       }
4850 //     }
4851 //     // adjust params for remaining work:
4852 //     if (slowval != -1) {
4853 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4854 //     }
4855 //   slow_region:
4856 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4857 //     return  // via slow_call_path
4858 //
4859 // This routine is used from several intrinsics:  System.arraycopy,
4860 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4861 //
4862 void
4863 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4864                                    BasicType basic_elem_type,
4865                                    Node* src,  Node* src_offset,
4866                                    Node* dest, Node* dest_offset,
4867                                    Node* copy_length,
4868                                    bool disjoint_bases,
4869                                    bool length_never_negative,
4870                                    RegionNode* slow_region) {
4871 
4872   if (slow_region == NULL) {
4873     slow_region = new(C) RegionNode(1);
4874     record_for_igvn(slow_region);
4875   }
4876 
4877   Node* original_dest      = dest;
4878   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4879   bool  dest_uninitialized = false;
4880 
4881   // See if this is the initialization of a newly-allocated array.
4882   // If so, we will take responsibility here for initializing it to zero.
4883   // (Note:  Because tightly_coupled_allocation performs checks on the
4884   // out-edges of the dest, we need to avoid making derived pointers
4885   // from it until we have checked its uses.)
4886   if (ReduceBulkZeroing
4887       && !ZeroTLAB              // pointless if already zeroed
4888       && basic_elem_type != T_CONFLICT // avoid corner case
4889       && !src->eqv_uncast(dest)
4890       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4891           != NULL)
4892       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4893       && alloc->maybe_set_complete(&_gvn)) {
4894     // "You break it, you buy it."
4895     InitializeNode* init = alloc->initialization();
4896     assert(init->is_complete(), "we just did this");
4897     init->set_complete_with_arraycopy();
4898     assert(dest->is_CheckCastPP(), "sanity");
4899     assert(dest->in(0)->in(0) == init, "dest pinned");
4900     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4901     // From this point on, every exit path is responsible for
4902     // initializing any non-copied parts of the object to zero.
4903     // Also, if this flag is set we make sure that arraycopy interacts properly
4904     // with G1, eliding pre-barriers. See CR 6627983.
4905     dest_uninitialized = true;
4906   } else {
4907     // No zeroing elimination here.
4908     alloc             = NULL;
4909     //original_dest   = dest;
4910     //dest_uninitialized = false;
4911   }
4912 
4913   // Results are placed here:
4914   enum { fast_path        = 1,  // normal void-returning assembly stub
4915          checked_path     = 2,  // special assembly stub with cleanup
4916          slow_call_path   = 3,  // something went wrong; call the VM
4917          zero_path        = 4,  // bypass when length of copy is zero
4918          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4919          PATH_LIMIT       = 6
4920   };
4921   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4922   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4923   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4924   record_for_igvn(result_region);
4925   _gvn.set_type_bottom(result_i_o);
4926   _gvn.set_type_bottom(result_memory);
4927   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4928 
4929   // The slow_control path:
4930   Node* slow_control;
4931   Node* slow_i_o = i_o();
4932   Node* slow_mem = memory(adr_type);
4933   debug_only(slow_control = (Node*) badAddress);
4934 
4935   // Checked control path:
4936   Node* checked_control = top();
4937   Node* checked_mem     = NULL;
4938   Node* checked_i_o     = NULL;
4939   Node* checked_value   = NULL;
4940 
4941   if (basic_elem_type == T_CONFLICT) {
4942     assert(!dest_uninitialized, "");
4943     Node* cv = generate_generic_arraycopy(adr_type,
4944                                           src, src_offset, dest, dest_offset,
4945                                           copy_length, dest_uninitialized);
4946     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4947     checked_control = control();
4948     checked_i_o     = i_o();
4949     checked_mem     = memory(adr_type);
4950     checked_value   = cv;
4951     set_control(top());         // no fast path
4952   }
4953 
4954   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4955   if (not_pos != NULL) {
4956     PreserveJVMState pjvms(this);
4957     set_control(not_pos);
4958 
4959     // (6) length must not be negative.
4960     if (!length_never_negative) {
4961       generate_negative_guard(copy_length, slow_region);
4962     }
4963 
4964     // copy_length is 0.
4965     if (!stopped() && dest_uninitialized) {
4966       Node* dest_length = alloc->in(AllocateNode::ALength);
4967       if (copy_length->eqv_uncast(dest_length)
4968           || _gvn.find_int_con(dest_length, 1) <= 0) {
4969         // There is no zeroing to do. No need for a secondary raw memory barrier.
4970       } else {
4971         // Clear the whole thing since there are no source elements to copy.
4972         generate_clear_array(adr_type, dest, basic_elem_type,
4973                              intcon(0), NULL,
4974                              alloc->in(AllocateNode::AllocSize));
4975         // Use a secondary InitializeNode as raw memory barrier.
4976         // Currently it is needed only on this path since other
4977         // paths have stub or runtime calls as raw memory barriers.
4978         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4979                                                        Compile::AliasIdxRaw,
4980                                                        top())->as_Initialize();
4981         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4982       }
4983     }
4984 
4985     // Present the results of the fast call.
4986     result_region->init_req(zero_path, control());
4987     result_i_o   ->init_req(zero_path, i_o());
4988     result_memory->init_req(zero_path, memory(adr_type));
4989   }
4990 
4991   if (!stopped() && dest_uninitialized) {
4992     // We have to initialize the *uncopied* part of the array to zero.
4993     // The copy destination is the slice dest[off..off+len].  The other slices
4994     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4995     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4996     Node* dest_length = alloc->in(AllocateNode::ALength);
4997     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4998                                                           copy_length));
4999 
5000     // If there is a head section that needs zeroing, do it now.
5001     if (find_int_con(dest_offset, -1) != 0) {
5002       generate_clear_array(adr_type, dest, basic_elem_type,
5003                            intcon(0), dest_offset,
5004                            NULL);
5005     }
5006 
5007     // Next, perform a dynamic check on the tail length.
5008     // It is often zero, and we can win big if we prove this.
5009     // There are two wins:  Avoid generating the ClearArray
5010     // with its attendant messy index arithmetic, and upgrade
5011     // the copy to a more hardware-friendly word size of 64 bits.
5012     Node* tail_ctl = NULL;
5013     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5014       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5015       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5016       tail_ctl = generate_slow_guard(bol_lt, NULL);
5017       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5018     }
5019 
5020     // At this point, let's assume there is no tail.
5021     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5022       // There is no tail.  Try an upgrade to a 64-bit copy.
5023       bool didit = false;
5024       { PreserveJVMState pjvms(this);
5025         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5026                                          src, src_offset, dest, dest_offset,
5027                                          dest_size, dest_uninitialized);
5028         if (didit) {
5029           // Present the results of the block-copying fast call.
5030           result_region->init_req(bcopy_path, control());
5031           result_i_o   ->init_req(bcopy_path, i_o());
5032           result_memory->init_req(bcopy_path, memory(adr_type));
5033         }
5034       }
5035       if (didit)
5036         set_control(top());     // no regular fast path
5037     }
5038 
5039     // Clear the tail, if any.
5040     if (tail_ctl != NULL) {
5041       Node* notail_ctl = stopped() ? NULL : control();
5042       set_control(tail_ctl);
5043       if (notail_ctl == NULL) {
5044         generate_clear_array(adr_type, dest, basic_elem_type,
5045                              dest_tail, NULL,
5046                              dest_size);
5047       } else {
5048         // Make a local merge.
5049         Node* done_ctl = new(C) RegionNode(3);
5050         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5051         done_ctl->init_req(1, notail_ctl);
5052         done_mem->init_req(1, memory(adr_type));
5053         generate_clear_array(adr_type, dest, basic_elem_type,
5054                              dest_tail, NULL,
5055                              dest_size);
5056         done_ctl->init_req(2, control());
5057         done_mem->init_req(2, memory(adr_type));
5058         set_control( _gvn.transform(done_ctl));
5059         set_memory(  _gvn.transform(done_mem), adr_type );
5060       }
5061     }
5062   }
5063 
5064   BasicType copy_type = basic_elem_type;
5065   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5066   if (!stopped() && copy_type == T_OBJECT) {
5067     // If src and dest have compatible element types, we can copy bits.
5068     // Types S[] and D[] are compatible if D is a supertype of S.
5069     //
5070     // If they are not, we will use checked_oop_disjoint_arraycopy,
5071     // which performs a fast optimistic per-oop check, and backs off
5072     // further to JVM_ArrayCopy on the first per-oop check that fails.
5073     // (Actually, we don't move raw bits only; the GC requires card marks.)
5074 
5075     // Get the Klass* for both src and dest
5076     Node* src_klass  = load_object_klass(src);
5077     Node* dest_klass = load_object_klass(dest);
5078 
5079     // Generate the subtype check.
5080     // This might fold up statically, or then again it might not.
5081     //
5082     // Non-static example:  Copying List<String>.elements to a new String[].
5083     // The backing store for a List<String> is always an Object[],
5084     // but its elements are always type String, if the generic types
5085     // are correct at the source level.
5086     //
5087     // Test S[] against D[], not S against D, because (probably)
5088     // the secondary supertype cache is less busy for S[] than S.
5089     // This usually only matters when D is an interface.
5090     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5091     // Plug failing path into checked_oop_disjoint_arraycopy
5092     if (not_subtype_ctrl != top()) {
5093       PreserveJVMState pjvms(this);
5094       set_control(not_subtype_ctrl);
5095       // (At this point we can assume disjoint_bases, since types differ.)
5096       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5097       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5098       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5099       Node* dest_elem_klass = _gvn.transform(n1);
5100       Node* cv = generate_checkcast_arraycopy(adr_type,
5101                                               dest_elem_klass,
5102                                               src, src_offset, dest, dest_offset,
5103                                               ConvI2X(copy_length), dest_uninitialized);
5104       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5105       checked_control = control();
5106       checked_i_o     = i_o();
5107       checked_mem     = memory(adr_type);
5108       checked_value   = cv;
5109     }
5110     // At this point we know we do not need type checks on oop stores.
5111 
5112     // Let's see if we need card marks:
5113     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5114       // If we do not need card marks, copy using the jint or jlong stub.
5115       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5116       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5117              "sizes agree");
5118     }
5119   }
5120 
5121   if (!stopped()) {
5122     // Generate the fast path, if possible.
5123     PreserveJVMState pjvms(this);
5124     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5125                                  src, src_offset, dest, dest_offset,
5126                                  ConvI2X(copy_length), dest_uninitialized);
5127 
5128     // Present the results of the fast call.
5129     result_region->init_req(fast_path, control());
5130     result_i_o   ->init_req(fast_path, i_o());
5131     result_memory->init_req(fast_path, memory(adr_type));
5132   }
5133 
5134   // Here are all the slow paths up to this point, in one bundle:
5135   slow_control = top();
5136   if (slow_region != NULL)
5137     slow_control = _gvn.transform(slow_region);
5138   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5139 
5140   set_control(checked_control);
5141   if (!stopped()) {
5142     // Clean up after the checked call.
5143     // The returned value is either 0 or -1^K,
5144     // where K = number of partially transferred array elements.
5145     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5146     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5147     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5148 
5149     // If it is 0, we are done, so transfer to the end.
5150     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5151     result_region->init_req(checked_path, checks_done);
5152     result_i_o   ->init_req(checked_path, checked_i_o);
5153     result_memory->init_req(checked_path, checked_mem);
5154 
5155     // If it is not zero, merge into the slow call.
5156     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5157     RegionNode* slow_reg2 = new(C) RegionNode(3);
5158     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5159     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5160     record_for_igvn(slow_reg2);
5161     slow_reg2  ->init_req(1, slow_control);
5162     slow_i_o2  ->init_req(1, slow_i_o);
5163     slow_mem2  ->init_req(1, slow_mem);
5164     slow_reg2  ->init_req(2, control());
5165     slow_i_o2  ->init_req(2, checked_i_o);
5166     slow_mem2  ->init_req(2, checked_mem);
5167 
5168     slow_control = _gvn.transform(slow_reg2);
5169     slow_i_o     = _gvn.transform(slow_i_o2);
5170     slow_mem     = _gvn.transform(slow_mem2);
5171 
5172     if (alloc != NULL) {
5173       // We'll restart from the very beginning, after zeroing the whole thing.
5174       // This can cause double writes, but that's OK since dest is brand new.
5175       // So we ignore the low 31 bits of the value returned from the stub.
5176     } else {
5177       // We must continue the copy exactly where it failed, or else
5178       // another thread might see the wrong number of writes to dest.
5179       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5180       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5181       slow_offset->init_req(1, intcon(0));
5182       slow_offset->init_req(2, checked_offset);
5183       slow_offset  = _gvn.transform(slow_offset);
5184 
5185       // Adjust the arguments by the conditionally incoming offset.
5186       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5187       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5188       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5189 
5190       // Tweak the node variables to adjust the code produced below:
5191       src_offset  = src_off_plus;
5192       dest_offset = dest_off_plus;
5193       copy_length = length_minus;
5194     }
5195   }
5196 
5197   set_control(slow_control);
5198   if (!stopped()) {
5199     // Generate the slow path, if needed.
5200     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5201 
5202     set_memory(slow_mem, adr_type);
5203     set_i_o(slow_i_o);
5204 
5205     if (dest_uninitialized) {
5206       generate_clear_array(adr_type, dest, basic_elem_type,
5207                            intcon(0), NULL,
5208                            alloc->in(AllocateNode::AllocSize));
5209     }
5210 
5211     generate_slow_arraycopy(adr_type,
5212                             src, src_offset, dest, dest_offset,
5213                             copy_length, /*dest_uninitialized*/false);
5214 
5215     result_region->init_req(slow_call_path, control());
5216     result_i_o   ->init_req(slow_call_path, i_o());
5217     result_memory->init_req(slow_call_path, memory(adr_type));
5218   }
5219 
5220   // Remove unused edges.
5221   for (uint i = 1; i < result_region->req(); i++) {
5222     if (result_region->in(i) == NULL)
5223       result_region->init_req(i, top());
5224   }
5225 
5226   // Finished; return the combined state.
5227   set_control( _gvn.transform(result_region));
5228   set_i_o(     _gvn.transform(result_i_o)    );
5229   set_memory(  _gvn.transform(result_memory), adr_type );
5230 
5231   // The memory edges above are precise in order to model effects around
5232   // array copies accurately to allow value numbering of field loads around
5233   // arraycopy.  Such field loads, both before and after, are common in Java
5234   // collections and similar classes involving header/array data structures.
5235   //
5236   // But with low number of register or when some registers are used or killed
5237   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5238   // The next memory barrier is added to avoid it. If the arraycopy can be
5239   // optimized away (which it can, sometimes) then we can manually remove
5240   // the membar also.
5241   //
5242   // Do not let reads from the cloned object float above the arraycopy.
5243   if (alloc != NULL) {
5244     // Do not let stores that initialize this object be reordered with
5245     // a subsequent store that would make this object accessible by
5246     // other threads.
5247     // Record what AllocateNode this StoreStore protects so that
5248     // escape analysis can go from the MemBarStoreStoreNode to the
5249     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5250     // based on the escape status of the AllocateNode.
5251     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5252   } else if (InsertMemBarAfterArraycopy)
5253     insert_mem_bar(Op_MemBarCPUOrder);
5254 }
5255 
5256 
5257 // Helper function which determines if an arraycopy immediately follows
5258 // an allocation, with no intervening tests or other escapes for the object.
5259 AllocateArrayNode*
5260 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5261                                            RegionNode* slow_region) {
5262   if (stopped())             return NULL;  // no fast path
5263   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5264 
5265   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5266   if (alloc == NULL)  return NULL;
5267 
5268   Node* rawmem = memory(Compile::AliasIdxRaw);
5269   // Is the allocation's memory state untouched?
5270   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5271     // Bail out if there have been raw-memory effects since the allocation.
5272     // (Example:  There might have been a call or safepoint.)
5273     return NULL;
5274   }
5275   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5276   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5277     return NULL;
5278   }
5279 
5280   // There must be no unexpected observers of this allocation.
5281   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5282     Node* obs = ptr->fast_out(i);
5283     if (obs != this->map()) {
5284       return NULL;
5285     }
5286   }
5287 
5288   // This arraycopy must unconditionally follow the allocation of the ptr.
5289   Node* alloc_ctl = ptr->in(0);
5290   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5291 
5292   Node* ctl = control();
5293   while (ctl != alloc_ctl) {
5294     // There may be guards which feed into the slow_region.
5295     // Any other control flow means that we might not get a chance
5296     // to finish initializing the allocated object.
5297     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5298       IfNode* iff = ctl->in(0)->as_If();
5299       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5300       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5301       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5302         ctl = iff->in(0);       // This test feeds the known slow_region.
5303         continue;
5304       }
5305       // One more try:  Various low-level checks bottom out in
5306       // uncommon traps.  If the debug-info of the trap omits
5307       // any reference to the allocation, as we've already
5308       // observed, then there can be no objection to the trap.
5309       bool found_trap = false;
5310       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5311         Node* obs = not_ctl->fast_out(j);
5312         if (obs->in(0) == not_ctl && obs->is_Call() &&
5313             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5314           found_trap = true; break;
5315         }
5316       }
5317       if (found_trap) {
5318         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5319         continue;
5320       }
5321     }
5322     return NULL;
5323   }
5324 
5325   // If we get this far, we have an allocation which immediately
5326   // precedes the arraycopy, and we can take over zeroing the new object.
5327   // The arraycopy will finish the initialization, and provide
5328   // a new control state to which we will anchor the destination pointer.
5329 
5330   return alloc;
5331 }
5332 
5333 // Helper for initialization of arrays, creating a ClearArray.
5334 // It writes zero bits in [start..end), within the body of an array object.
5335 // The memory effects are all chained onto the 'adr_type' alias category.
5336 //
5337 // Since the object is otherwise uninitialized, we are free
5338 // to put a little "slop" around the edges of the cleared area,
5339 // as long as it does not go back into the array's header,
5340 // or beyond the array end within the heap.
5341 //
5342 // The lower edge can be rounded down to the nearest jint and the
5343 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5344 //
5345 // Arguments:
5346 //   adr_type           memory slice where writes are generated
5347 //   dest               oop of the destination array
5348 //   basic_elem_type    element type of the destination
5349 //   slice_idx          array index of first element to store
5350 //   slice_len          number of elements to store (or NULL)
5351 //   dest_size          total size in bytes of the array object
5352 //
5353 // Exactly one of slice_len or dest_size must be non-NULL.
5354 // If dest_size is non-NULL, zeroing extends to the end of the object.
5355 // If slice_len is non-NULL, the slice_idx value must be a constant.
5356 void
5357 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5358                                      Node* dest,
5359                                      BasicType basic_elem_type,
5360                                      Node* slice_idx,
5361                                      Node* slice_len,
5362                                      Node* dest_size) {
5363   // one or the other but not both of slice_len and dest_size:
5364   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5365   if (slice_len == NULL)  slice_len = top();
5366   if (dest_size == NULL)  dest_size = top();
5367 
5368   // operate on this memory slice:
5369   Node* mem = memory(adr_type); // memory slice to operate on
5370 
5371   // scaling and rounding of indexes:
5372   int scale = exact_log2(type2aelembytes(basic_elem_type));
5373   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5374   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5375   int bump_bit  = (-1 << scale) & BytesPerInt;
5376 
5377   // determine constant starts and ends
5378   const intptr_t BIG_NEG = -128;
5379   assert(BIG_NEG + 2*abase < 0, "neg enough");
5380   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5381   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5382   if (slice_len_con == 0) {
5383     return;                     // nothing to do here
5384   }
5385   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5386   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5387   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5388     assert(end_con < 0, "not two cons");
5389     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5390                        BytesPerLong);
5391   }
5392 
5393   if (start_con >= 0 && end_con >= 0) {
5394     // Constant start and end.  Simple.
5395     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5396                                        start_con, end_con, &_gvn);
5397   } else if (start_con >= 0 && dest_size != top()) {
5398     // Constant start, pre-rounded end after the tail of the array.
5399     Node* end = dest_size;
5400     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5401                                        start_con, end, &_gvn);
5402   } else if (start_con >= 0 && slice_len != top()) {
5403     // Constant start, non-constant end.  End needs rounding up.
5404     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5405     intptr_t end_base  = abase + (slice_idx_con << scale);
5406     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5407     Node*    end       = ConvI2X(slice_len);
5408     if (scale != 0)
5409       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5410     end_base += end_round;
5411     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5412     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5413     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5414                                        start_con, end, &_gvn);
5415   } else if (start_con < 0 && dest_size != top()) {
5416     // Non-constant start, pre-rounded end after the tail of the array.
5417     // This is almost certainly a "round-to-end" operation.
5418     Node* start = slice_idx;
5419     start = ConvI2X(start);
5420     if (scale != 0)
5421       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5422     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5423     if ((bump_bit | clear_low) != 0) {
5424       int to_clear = (bump_bit | clear_low);
5425       // Align up mod 8, then store a jint zero unconditionally
5426       // just before the mod-8 boundary.
5427       if (((abase + bump_bit) & ~to_clear) - bump_bit
5428           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5429         bump_bit = 0;
5430         assert((abase & to_clear) == 0, "array base must be long-aligned");
5431       } else {
5432         // Bump 'start' up to (or past) the next jint boundary:
5433         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5434         assert((abase & clear_low) == 0, "array base must be int-aligned");
5435       }
5436       // Round bumped 'start' down to jlong boundary in body of array.
5437       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5438       if (bump_bit != 0) {
5439         // Store a zero to the immediately preceding jint:
5440         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5441         Node* p1 = basic_plus_adr(dest, x1);
5442         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5443         mem = _gvn.transform(mem);
5444       }
5445     }
5446     Node* end = dest_size; // pre-rounded
5447     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5448                                        start, end, &_gvn);
5449   } else {
5450     // Non-constant start, unrounded non-constant end.
5451     // (Nobody zeroes a random midsection of an array using this routine.)
5452     ShouldNotReachHere();       // fix caller
5453   }
5454 
5455   // Done.
5456   set_memory(mem, adr_type);
5457 }
5458 
5459 
5460 bool
5461 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5462                                          BasicType basic_elem_type,
5463                                          AllocateNode* alloc,
5464                                          Node* src,  Node* src_offset,
5465                                          Node* dest, Node* dest_offset,
5466                                          Node* dest_size, bool dest_uninitialized) {
5467   // See if there is an advantage from block transfer.
5468   int scale = exact_log2(type2aelembytes(basic_elem_type));
5469   if (scale >= LogBytesPerLong)
5470     return false;               // it is already a block transfer
5471 
5472   // Look at the alignment of the starting offsets.
5473   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5474 
5475   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5476   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5477   if (src_off_con < 0 || dest_off_con < 0)
5478     // At present, we can only understand constants.
5479     return false;
5480 
5481   intptr_t src_off  = abase + (src_off_con  << scale);
5482   intptr_t dest_off = abase + (dest_off_con << scale);
5483 
5484   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5485     // Non-aligned; too bad.
5486     // One more chance:  Pick off an initial 32-bit word.
5487     // This is a common case, since abase can be odd mod 8.
5488     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5489         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5490       Node* sptr = basic_plus_adr(src,  src_off);
5491       Node* dptr = basic_plus_adr(dest, dest_off);
5492       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5493       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5494       src_off += BytesPerInt;
5495       dest_off += BytesPerInt;
5496     } else {
5497       return false;
5498     }
5499   }
5500   assert(src_off % BytesPerLong == 0, "");
5501   assert(dest_off % BytesPerLong == 0, "");
5502 
5503   // Do this copy by giant steps.
5504   Node* sptr  = basic_plus_adr(src,  src_off);
5505   Node* dptr  = basic_plus_adr(dest, dest_off);
5506   Node* countx = dest_size;
5507   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5508   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5509 
5510   bool disjoint_bases = true;   // since alloc != NULL
5511   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5512                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5513 
5514   return true;
5515 }
5516 
5517 
5518 // Helper function; generates code for the slow case.
5519 // We make a call to a runtime method which emulates the native method,
5520 // but without the native wrapper overhead.
5521 void
5522 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5523                                         Node* src,  Node* src_offset,
5524                                         Node* dest, Node* dest_offset,
5525                                         Node* copy_length, bool dest_uninitialized) {
5526   assert(!dest_uninitialized, "Invariant");
5527   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5528                                  OptoRuntime::slow_arraycopy_Type(),
5529                                  OptoRuntime::slow_arraycopy_Java(),
5530                                  "slow_arraycopy", adr_type,
5531                                  src, src_offset, dest, dest_offset,
5532                                  copy_length);
5533 
5534   // Handle exceptions thrown by this fellow:
5535   make_slow_call_ex(call, env()->Throwable_klass(), false);
5536 }
5537 
5538 // Helper function; generates code for cases requiring runtime checks.
5539 Node*
5540 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5541                                              Node* dest_elem_klass,
5542                                              Node* src,  Node* src_offset,
5543                                              Node* dest, Node* dest_offset,
5544                                              Node* copy_length, bool dest_uninitialized) {
5545   if (stopped())  return NULL;
5546 
5547   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5548   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5549     return NULL;
5550   }
5551 
5552   // Pick out the parameters required to perform a store-check
5553   // for the target array.  This is an optimistic check.  It will
5554   // look in each non-null element's class, at the desired klass's
5555   // super_check_offset, for the desired klass.
5556   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5557   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5558   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5559   Node* check_offset = ConvI2X(_gvn.transform(n3));
5560   Node* check_value  = dest_elem_klass;
5561 
5562   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5563   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5564 
5565   // (We know the arrays are never conjoint, because their types differ.)
5566   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5567                                  OptoRuntime::checkcast_arraycopy_Type(),
5568                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5569                                  // five arguments, of which two are
5570                                  // intptr_t (jlong in LP64)
5571                                  src_start, dest_start,
5572                                  copy_length XTOP,
5573                                  check_offset XTOP,
5574                                  check_value);
5575 
5576   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5577 }
5578 
5579 
5580 // Helper function; generates code for cases requiring runtime checks.
5581 Node*
5582 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5583                                            Node* src,  Node* src_offset,
5584                                            Node* dest, Node* dest_offset,
5585                                            Node* copy_length, bool dest_uninitialized) {
5586   assert(!dest_uninitialized, "Invariant");
5587   if (stopped())  return NULL;
5588   address copyfunc_addr = StubRoutines::generic_arraycopy();
5589   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5590     return NULL;
5591   }
5592 
5593   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5594                     OptoRuntime::generic_arraycopy_Type(),
5595                     copyfunc_addr, "generic_arraycopy", adr_type,
5596                     src, src_offset, dest, dest_offset, copy_length);
5597 
5598   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5599 }
5600 
5601 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5602 void
5603 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5604                                              BasicType basic_elem_type,
5605                                              bool disjoint_bases,
5606                                              Node* src,  Node* src_offset,
5607                                              Node* dest, Node* dest_offset,
5608                                              Node* copy_length, bool dest_uninitialized) {
5609   if (stopped())  return;               // nothing to do
5610 
5611   Node* src_start  = src;
5612   Node* dest_start = dest;
5613   if (src_offset != NULL || dest_offset != NULL) {
5614     assert(src_offset != NULL && dest_offset != NULL, "");
5615     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5616     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5617   }
5618 
5619   // Figure out which arraycopy runtime method to call.
5620   const char* copyfunc_name = "arraycopy";
5621   address     copyfunc_addr =
5622       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5623                           disjoint_bases, copyfunc_name, dest_uninitialized);
5624 
5625   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5626   make_runtime_call(RC_LEAF|RC_NO_FP,
5627                     OptoRuntime::fast_arraycopy_Type(),
5628                     copyfunc_addr, copyfunc_name, adr_type,
5629                     src_start, dest_start, copy_length XTOP);
5630 }
5631 
5632 //-------------inline_encodeISOArray-----------------------------------
5633 // encode char[] to byte[] in ISO_8859_1
5634 bool LibraryCallKit::inline_encodeISOArray() {
5635   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5636   // no receiver since it is static method
5637   Node *src         = argument(0);
5638   Node *src_offset  = argument(1);
5639   Node *dst         = argument(2);
5640   Node *dst_offset  = argument(3);
5641   Node *length      = argument(4);
5642 
5643   const Type* src_type = src->Value(&_gvn);
5644   const Type* dst_type = dst->Value(&_gvn);
5645   const TypeAryPtr* top_src = src_type->isa_aryptr();
5646   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5647   if (top_src  == NULL || top_src->klass()  == NULL ||
5648       top_dest == NULL || top_dest->klass() == NULL) {
5649     // failed array check
5650     return false;
5651   }
5652 
5653   // Figure out the size and type of the elements we will be copying.
5654   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5655   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5656   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5657     return false;
5658   }
5659   Node* src_start = array_element_address(src, src_offset, src_elem);
5660   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5661   // 'src_start' points to src array + scaled offset
5662   // 'dst_start' points to dst array + scaled offset
5663 
5664   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5665   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5666   enc = _gvn.transform(enc);
5667   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5668   set_memory(res_mem, mtype);
5669   set_result(enc);
5670   return true;
5671 }
5672 
5673 /**
5674  * Calculate CRC32 for byte.
5675  * int java.util.zip.CRC32.update(int crc, int b)
5676  */
5677 bool LibraryCallKit::inline_updateCRC32() {
5678   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5679   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5680   // no receiver since it is static method
5681   Node* crc  = argument(0); // type: int
5682   Node* b    = argument(1); // type: int
5683 
5684   /*
5685    *    int c = ~ crc;
5686    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5687    *    b = b ^ (c >>> 8);
5688    *    crc = ~b;
5689    */
5690 
5691   Node* M1 = intcon(-1);
5692   crc = _gvn.transform(new (C) XorINode(crc, M1));
5693   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5694   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5695 
5696   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5697   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5698   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5699   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5700 
5701   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5702   result = _gvn.transform(new (C) XorINode(crc, result));
5703   result = _gvn.transform(new (C) XorINode(result, M1));
5704   set_result(result);
5705   return true;
5706 }
5707 
5708 /**
5709  * Calculate CRC32 for byte[] array.
5710  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5711  */
5712 bool LibraryCallKit::inline_updateBytesCRC32() {
5713   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5714   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5715   // no receiver since it is static method
5716   Node* crc     = argument(0); // type: int
5717   Node* src     = argument(1); // type: oop
5718   Node* offset  = argument(2); // type: int
5719   Node* length  = argument(3); // type: int
5720 
5721   const Type* src_type = src->Value(&_gvn);
5722   const TypeAryPtr* top_src = src_type->isa_aryptr();
5723   if (top_src  == NULL || top_src->klass()  == NULL) {
5724     // failed array check
5725     return false;
5726   }
5727 
5728   // Figure out the size and type of the elements we will be copying.
5729   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5730   if (src_elem != T_BYTE) {
5731     return false;
5732   }
5733 
5734   // 'src_start' points to src array + scaled offset
5735   Node* src_start = array_element_address(src, offset, src_elem);
5736 
5737   // We assume that range check is done by caller.
5738   // TODO: generate range check (offset+length < src.length) in debug VM.
5739 
5740   // Call the stub.
5741   address stubAddr = StubRoutines::updateBytesCRC32();
5742   const char *stubName = "updateBytesCRC32";
5743 
5744   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5745                                  stubAddr, stubName, TypePtr::BOTTOM,
5746                                  crc, src_start, length);
5747   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5748   set_result(result);
5749   return true;
5750 }
5751 
5752 /**
5753  * Calculate CRC32 for ByteBuffer.
5754  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5755  */
5756 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5757   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5758   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5759   // no receiver since it is static method
5760   Node* crc     = argument(0); // type: int
5761   Node* src     = argument(1); // type: long
5762   Node* offset  = argument(3); // type: int
5763   Node* length  = argument(4); // type: int
5764 
5765   src = ConvL2X(src);  // adjust Java long to machine word
5766   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5767   offset = ConvI2X(offset);
5768 
5769   // 'src_start' points to src array + scaled offset
5770   Node* src_start = basic_plus_adr(top(), base, offset);
5771 
5772   // Call the stub.
5773   address stubAddr = StubRoutines::updateBytesCRC32();
5774   const char *stubName = "updateBytesCRC32";
5775 
5776   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5777                                  stubAddr, stubName, TypePtr::BOTTOM,
5778                                  crc, src_start, length);
5779   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5780   set_result(result);
5781   return true;
5782 }
5783 
5784 //----------------------------inline_reference_get----------------------------
5785 // public T java.lang.ref.Reference.get();
5786 bool LibraryCallKit::inline_reference_get() {
5787   const int referent_offset = java_lang_ref_Reference::referent_offset;
5788   guarantee(referent_offset > 0, "should have already been set");
5789 
5790   // Get the argument:
5791   Node* reference_obj = null_check_receiver();
5792   if (stopped()) return true;
5793 
5794   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5795 
5796   ciInstanceKlass* klass = env()->Object_klass();
5797   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5798 
5799   Node* no_ctrl = NULL;
5800   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5801 
5802   // Use the pre-barrier to record the value in the referent field
5803   pre_barrier(false /* do_load */,
5804               control(),
5805               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5806               result /* pre_val */,
5807               T_OBJECT);
5808 
5809   // Add memory barrier to prevent commoning reads from this field
5810   // across safepoint since GC can change its value.
5811   insert_mem_bar(Op_MemBarCPUOrder);
5812 
5813   set_result(result);
5814   return true;
5815 }
5816 
5817 
5818 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5819                                               bool is_exact=true, bool is_static=false) {
5820 
5821   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5822   assert(tinst != NULL, "obj is null");
5823   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5824   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5825 
5826   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5827                                                                           ciSymbol::make(fieldTypeString),
5828                                                                           is_static);
5829   if (field == NULL) return (Node *) NULL;
5830   assert (field != NULL, "undefined field");
5831 
5832   // Next code  copied from Parse::do_get_xxx():
5833 
5834   // Compute address and memory type.
5835   int offset  = field->offset_in_bytes();
5836   bool is_vol = field->is_volatile();
5837   ciType* field_klass = field->type();
5838   assert(field_klass->is_loaded(), "should be loaded");
5839   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5840   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5841   BasicType bt = field->layout_type();
5842 
5843   // Build the resultant type of the load
5844   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5845 
5846   // Build the load.
5847   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5848   return loadedField;
5849 }
5850 
5851 
5852 //------------------------------inline_aescrypt_Block-----------------------
5853 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5854   address stubAddr;
5855   const char *stubName;
5856   assert(UseAES, "need AES instruction support");
5857 
5858   switch(id) {
5859   case vmIntrinsics::_aescrypt_encryptBlock:
5860     stubAddr = StubRoutines::aescrypt_encryptBlock();
5861     stubName = "aescrypt_encryptBlock";
5862     break;
5863   case vmIntrinsics::_aescrypt_decryptBlock:
5864     stubAddr = StubRoutines::aescrypt_decryptBlock();
5865     stubName = "aescrypt_decryptBlock";
5866     break;
5867   }
5868   if (stubAddr == NULL) return false;
5869 
5870   Node* aescrypt_object = argument(0);
5871   Node* src             = argument(1);
5872   Node* src_offset      = argument(2);
5873   Node* dest            = argument(3);
5874   Node* dest_offset     = argument(4);
5875 
5876   // (1) src and dest are arrays.
5877   const Type* src_type = src->Value(&_gvn);
5878   const Type* dest_type = dest->Value(&_gvn);
5879   const TypeAryPtr* top_src = src_type->isa_aryptr();
5880   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5881   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5882 
5883   // for the quick and dirty code we will skip all the checks.
5884   // we are just trying to get the call to be generated.
5885   Node* src_start  = src;
5886   Node* dest_start = dest;
5887   if (src_offset != NULL || dest_offset != NULL) {
5888     assert(src_offset != NULL && dest_offset != NULL, "");
5889     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5890     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5891   }
5892 
5893   // now need to get the start of its expanded key array
5894   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5895   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5896   if (k_start == NULL) return false;
5897 
5898   if (Matcher::pass_original_key_for_aes()) {
5899     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5900     // compatibility issues between Java key expansion and SPARC crypto instructions
5901     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5902     if (original_k_start == NULL) return false;
5903 
5904     // Call the stub.
5905     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5906                       stubAddr, stubName, TypePtr::BOTTOM,
5907                       src_start, dest_start, k_start, original_k_start);
5908   } else {
5909     // Call the stub.
5910     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5911                       stubAddr, stubName, TypePtr::BOTTOM,
5912                       src_start, dest_start, k_start);
5913   }
5914 
5915   return true;
5916 }
5917 
5918 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5919 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5920   address stubAddr;
5921   const char *stubName;
5922 
5923   assert(UseAES, "need AES instruction support");
5924 
5925   switch(id) {
5926   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5927     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5928     stubName = "cipherBlockChaining_encryptAESCrypt";
5929     break;
5930   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5931     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5932     stubName = "cipherBlockChaining_decryptAESCrypt";
5933     break;
5934   }
5935   if (stubAddr == NULL) return false;
5936 
5937   Node* cipherBlockChaining_object = argument(0);
5938   Node* src                        = argument(1);
5939   Node* src_offset                 = argument(2);
5940   Node* len                        = argument(3);
5941   Node* dest                       = argument(4);
5942   Node* dest_offset                = argument(5);
5943 
5944   // (1) src and dest are arrays.
5945   const Type* src_type = src->Value(&_gvn);
5946   const Type* dest_type = dest->Value(&_gvn);
5947   const TypeAryPtr* top_src = src_type->isa_aryptr();
5948   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5949   assert (top_src  != NULL && top_src->klass()  != NULL
5950           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5951 
5952   // checks are the responsibility of the caller
5953   Node* src_start  = src;
5954   Node* dest_start = dest;
5955   if (src_offset != NULL || dest_offset != NULL) {
5956     assert(src_offset != NULL && dest_offset != NULL, "");
5957     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5958     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5959   }
5960 
5961   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5962   // (because of the predicated logic executed earlier).
5963   // so we cast it here safely.
5964   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5965 
5966   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5967   if (embeddedCipherObj == NULL) return false;
5968 
5969   // cast it to what we know it will be at runtime
5970   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5971   assert(tinst != NULL, "CBC obj is null");
5972   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5973   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5974   if (!klass_AESCrypt->is_loaded()) return false;
5975 
5976   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5977   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5978   const TypeOopPtr* xtype = aklass->as_instance_type();
5979   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5980   aescrypt_object = _gvn.transform(aescrypt_object);
5981 
5982   // we need to get the start of the aescrypt_object's expanded key array
5983   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5984   if (k_start == NULL) return false;
5985 
5986   // similarly, get the start address of the r vector
5987   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5988   if (objRvec == NULL) return false;
5989   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5990 
5991   Node* cbcCrypt;
5992   if (Matcher::pass_original_key_for_aes()) {
5993     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5994     // compatibility issues between Java key expansion and SPARC crypto instructions
5995     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5996     if (original_k_start == NULL) return false;
5997 
5998     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5999     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6000                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6001                                  stubAddr, stubName, TypePtr::BOTTOM,
6002                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6003   } else {
6004     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6005     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6006                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6007                                  stubAddr, stubName, TypePtr::BOTTOM,
6008                                  src_start, dest_start, k_start, r_start, len);
6009   }
6010 
6011   // return cipher length (int)
6012   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6013   set_result(retvalue);
6014   return true;
6015 }
6016 
6017 //------------------------------get_key_start_from_aescrypt_object-----------------------
6018 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6019   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6020   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6021   if (objAESCryptKey == NULL) return (Node *) NULL;
6022 
6023   // now have the array, need to get the start address of the K array
6024   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6025   return k_start;
6026 }
6027 
6028 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6029 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6030   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6031   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6032   if (objAESCryptKey == NULL) return (Node *) NULL;
6033 
6034   // now have the array, need to get the start address of the lastKey array
6035   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6036   return original_k_start;
6037 }
6038 
6039 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6040 // Return node representing slow path of predicate check.
6041 // the pseudo code we want to emulate with this predicate is:
6042 // for encryption:
6043 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6044 // for decryption:
6045 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6046 //    note cipher==plain is more conservative than the original java code but that's OK
6047 //
6048 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6049   // First, check receiver for NULL since it is virtual method.
6050   Node* objCBC = argument(0);
6051   objCBC = null_check(objCBC);
6052 
6053   if (stopped()) return NULL; // Always NULL
6054 
6055   // Load embeddedCipher field of CipherBlockChaining object.
6056   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6057 
6058   // get AESCrypt klass for instanceOf check
6059   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6060   // will have same classloader as CipherBlockChaining object
6061   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6062   assert(tinst != NULL, "CBCobj is null");
6063   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6064 
6065   // we want to do an instanceof comparison against the AESCrypt class
6066   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6067   if (!klass_AESCrypt->is_loaded()) {
6068     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6069     Node* ctrl = control();
6070     set_control(top()); // no regular fast path
6071     return ctrl;
6072   }
6073   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6074 
6075   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6076   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6077   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6078 
6079   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6080 
6081   // for encryption, we are done
6082   if (!decrypting)
6083     return instof_false;  // even if it is NULL
6084 
6085   // for decryption, we need to add a further check to avoid
6086   // taking the intrinsic path when cipher and plain are the same
6087   // see the original java code for why.
6088   RegionNode* region = new(C) RegionNode(3);
6089   region->init_req(1, instof_false);
6090   Node* src = argument(1);
6091   Node* dest = argument(4);
6092   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6093   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6094   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6095   region->init_req(2, src_dest_conjoint);
6096 
6097   record_for_igvn(region);
6098   return _gvn.transform(region);
6099 }