1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _is_predicted;
  50   bool             _does_virtual_dispatch;
  51   vmIntrinsics::ID _intrinsic_id;
  52 
  53  public:
  54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  55     : InlineCallGenerator(m),
  56       _is_virtual(is_virtual),
  57       _is_predicted(is_predicted),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _intrinsic_id(id)
  60   {
  61   }
  62   virtual bool is_intrinsic() const { return true; }
  63   virtual bool is_virtual()   const { return _is_virtual; }
  64   virtual bool is_predicted()   const { return _is_predicted; }
  65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  67   virtual Node* generate_predicate(JVMState* jvms);
  68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  69 };
  70 
  71 
  72 // Local helper class for LibraryIntrinsic:
  73 class LibraryCallKit : public GraphKit {
  74  private:
  75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  76   Node*             _result;        // the result node, if any
  77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  78 
  79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  80 
  81  public:
  82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  83     : GraphKit(jvms),
  84       _intrinsic(intrinsic),
  85       _result(NULL)
  86   {
  87     // Check if this is a root compile.  In that case we don't have a caller.
  88     if (!jvms->has_method()) {
  89       _reexecute_sp = sp();
  90     } else {
  91       // Find out how many arguments the interpreter needs when deoptimizing
  92       // and save the stack pointer value so it can used by uncommon_trap.
  93       // We find the argument count by looking at the declared signature.
  94       bool ignored_will_link;
  95       ciSignature* declared_signature = NULL;
  96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  99     }
 100   }
 101 
 102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 103 
 104   ciMethod*         caller()    const    { return jvms()->method(); }
 105   int               bci()       const    { return jvms()->bci(); }
 106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 108   ciMethod*         callee()    const    { return _intrinsic->method(); }
 109 
 110   bool try_to_inline();
 111   Node* try_to_predicate();
 112 
 113   void push_result() {
 114     // Push the result onto the stack.
 115     if (!stopped() && result() != NULL) {
 116       BasicType bt = result()->bottom_type()->basic_type();
 117       push_node(bt, result());
 118     }
 119   }
 120 
 121  private:
 122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 124   }
 125 
 126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 127   void  set_result(RegionNode* region, PhiNode* value);
 128   Node*     result() { return _result; }
 129 
 130   virtual int reexecute_sp() { return _reexecute_sp; }
 131 
 132   // Helper functions to inline natives
 133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 134   Node* generate_slow_guard(Node* test, RegionNode* region);
 135   Node* generate_fair_guard(Node* test, RegionNode* region);
 136   Node* generate_negative_guard(Node* index, RegionNode* region,
 137                                 // resulting CastII of index:
 138                                 Node* *pos_index = NULL);
 139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 140                                    // resulting CastII of index:
 141                                    Node* *pos_index = NULL);
 142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 143                              Node* array_length,
 144                              RegionNode* region);
 145   Node* generate_current_thread(Node* &tls_output);
 146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 148   Node* load_mirror_from_klass(Node* klass);
 149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 150                                       RegionNode* region, int null_path,
 151                                       int offset);
 152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 153                                RegionNode* region, int null_path) {
 154     int offset = java_lang_Class::klass_offset_in_bytes();
 155     return load_klass_from_mirror_common(mirror, never_see_null,
 156                                          region, null_path,
 157                                          offset);
 158   }
 159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                      RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::array_klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* generate_access_flags_guard(Node* kls,
 167                                     int modifier_mask, int modifier_bits,
 168                                     RegionNode* region);
 169   Node* generate_interface_guard(Node* kls, RegionNode* region);
 170   Node* generate_array_guard(Node* kls, RegionNode* region) {
 171     return generate_array_guard_common(kls, region, false, false);
 172   }
 173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, true);
 175   }
 176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, true, false);
 178   }
 179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, true);
 181   }
 182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 183                                     bool obj_array, bool not_array);
 184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 186                                      bool is_virtual = false, bool is_static = false);
 187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 188     return generate_method_call(method_id, false, true);
 189   }
 190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, true, false);
 192   }
 193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 194 
 195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 197   bool inline_string_compareTo();
 198   bool inline_string_indexOf();
 199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 200   bool inline_string_equals();
 201   Node* round_double_node(Node* n);
 202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 203   bool inline_math_native(vmIntrinsics::ID id);
 204   bool inline_trig(vmIntrinsics::ID id);
 205   bool inline_math(vmIntrinsics::ID id);
 206   template <typename OverflowOp>
 207   bool inline_math_overflow(Node* arg1, Node* arg2);
 208   template <typename OverflowOp>
 209   bool inline_math_overflow(bool is_unary);
 210   void inline_math_mathExact(Node* math, Node* test);
 211   bool inline_math_addExactI(bool is_increment);
 212   bool inline_math_addExactL(bool is_increment);
 213   bool inline_math_multiplyExactI();
 214   bool inline_math_multiplyExactL();
 215   bool inline_math_negateExactI();
 216   bool inline_math_negateExactL();
 217   bool inline_math_subtractExactI(bool is_decrement);
 218   bool inline_math_subtractExactL(bool is_decrement);
 219   bool inline_exp();
 220   bool inline_pow();
 221   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 222   bool inline_min_max(vmIntrinsics::ID id);
 223   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 224   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 225   int classify_unsafe_addr(Node* &base, Node* &offset);
 226   Node* make_unsafe_address(Node* base, Node* offset);
 227   // Helper for inline_unsafe_access.
 228   // Generates the guards that check whether the result of
 229   // Unsafe.getObject should be recorded in an SATB log buffer.
 230   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 231   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 232   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 233   static bool klass_needs_init_guard(Node* kls);
 234   bool inline_unsafe_allocate();
 235   bool inline_unsafe_copyMemory();
 236   bool inline_native_currentThread();
 237 #ifdef TRACE_HAVE_INTRINSICS
 238   bool inline_native_classID();
 239   bool inline_native_threadID();
 240 #endif
 241   bool inline_native_time_funcs(address method, const char* funcName);
 242   bool inline_native_isInterrupted();
 243   bool inline_native_Class_query(vmIntrinsics::ID id);
 244   bool inline_native_subtype_check();
 245 
 246   bool inline_native_newArray();
 247   bool inline_native_getLength();
 248   bool inline_array_copyOf(bool is_copyOfRange);
 249   bool inline_array_equals();
 250   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 251   bool inline_native_clone(bool is_virtual);
 252   bool inline_native_Reflection_getCallerClass();
 253   // Helper function for inlining native object hash method
 254   bool inline_native_hashcode(bool is_virtual, bool is_static);
 255   bool inline_native_getClass();
 256 
 257   // Helper functions for inlining arraycopy
 258   bool inline_arraycopy();
 259   void generate_arraycopy(const TypePtr* adr_type,
 260                           BasicType basic_elem_type,
 261                           Node* src,  Node* src_offset,
 262                           Node* dest, Node* dest_offset,
 263                           Node* copy_length,
 264                           bool disjoint_bases = false,
 265                           bool length_never_negative = false,
 266                           RegionNode* slow_region = NULL);
 267   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 268                                                 RegionNode* slow_region);
 269   void generate_clear_array(const TypePtr* adr_type,
 270                             Node* dest,
 271                             BasicType basic_elem_type,
 272                             Node* slice_off,
 273                             Node* slice_len,
 274                             Node* slice_end);
 275   bool generate_block_arraycopy(const TypePtr* adr_type,
 276                                 BasicType basic_elem_type,
 277                                 AllocateNode* alloc,
 278                                 Node* src,  Node* src_offset,
 279                                 Node* dest, Node* dest_offset,
 280                                 Node* dest_size, bool dest_uninitialized);
 281   void generate_slow_arraycopy(const TypePtr* adr_type,
 282                                Node* src,  Node* src_offset,
 283                                Node* dest, Node* dest_offset,
 284                                Node* copy_length, bool dest_uninitialized);
 285   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 286                                      Node* dest_elem_klass,
 287                                      Node* src,  Node* src_offset,
 288                                      Node* dest, Node* dest_offset,
 289                                      Node* copy_length, bool dest_uninitialized);
 290   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 291                                    Node* src,  Node* src_offset,
 292                                    Node* dest, Node* dest_offset,
 293                                    Node* copy_length, bool dest_uninitialized);
 294   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 295                                     BasicType basic_elem_type,
 296                                     bool disjoint_bases,
 297                                     Node* src,  Node* src_offset,
 298                                     Node* dest, Node* dest_offset,
 299                                     Node* copy_length, bool dest_uninitialized);
 300   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 301   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 302   bool inline_unsafe_ordered_store(BasicType type);
 303   bool inline_unsafe_fence(vmIntrinsics::ID id);
 304   bool inline_fp_conversions(vmIntrinsics::ID id);
 305   bool inline_number_methods(vmIntrinsics::ID id);
 306   bool inline_reference_get();
 307   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 308   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 309   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 310   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 311   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 312   bool inline_encodeISOArray();
 313   bool inline_updateCRC32();
 314   bool inline_updateBytesCRC32();
 315   bool inline_updateByteBufferCRC32();
 316 };
 317 
 318 
 319 //---------------------------make_vm_intrinsic----------------------------
 320 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 321   vmIntrinsics::ID id = m->intrinsic_id();
 322   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 323 
 324   if (DisableIntrinsic[0] != '\0'
 325       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 326     // disabled by a user request on the command line:
 327     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 328     return NULL;
 329   }
 330 
 331   if (!m->is_loaded()) {
 332     // do not attempt to inline unloaded methods
 333     return NULL;
 334   }
 335 
 336   // Only a few intrinsics implement a virtual dispatch.
 337   // They are expensive calls which are also frequently overridden.
 338   if (is_virtual) {
 339     switch (id) {
 340     case vmIntrinsics::_hashCode:
 341     case vmIntrinsics::_clone:
 342       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 343       break;
 344     default:
 345       return NULL;
 346     }
 347   }
 348 
 349   // -XX:-InlineNatives disables nearly all intrinsics:
 350   if (!InlineNatives) {
 351     switch (id) {
 352     case vmIntrinsics::_indexOf:
 353     case vmIntrinsics::_compareTo:
 354     case vmIntrinsics::_equals:
 355     case vmIntrinsics::_equalsC:
 356     case vmIntrinsics::_getAndAddInt:
 357     case vmIntrinsics::_getAndAddLong:
 358     case vmIntrinsics::_getAndSetInt:
 359     case vmIntrinsics::_getAndSetLong:
 360     case vmIntrinsics::_getAndSetObject:
 361     case vmIntrinsics::_loadFence:
 362     case vmIntrinsics::_storeFence:
 363     case vmIntrinsics::_fullFence:
 364       break;  // InlineNatives does not control String.compareTo
 365     case vmIntrinsics::_Reference_get:
 366       break;  // InlineNatives does not control Reference.get
 367     default:
 368       return NULL;
 369     }
 370   }
 371 
 372   bool is_predicted = false;
 373   bool does_virtual_dispatch = false;
 374 
 375   switch (id) {
 376   case vmIntrinsics::_compareTo:
 377     if (!SpecialStringCompareTo)  return NULL;
 378     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 379     break;
 380   case vmIntrinsics::_indexOf:
 381     if (!SpecialStringIndexOf)  return NULL;
 382     break;
 383   case vmIntrinsics::_equals:
 384     if (!SpecialStringEquals)  return NULL;
 385     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 386     break;
 387   case vmIntrinsics::_equalsC:
 388     if (!SpecialArraysEquals)  return NULL;
 389     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 390     break;
 391   case vmIntrinsics::_arraycopy:
 392     if (!InlineArrayCopy)  return NULL;
 393     break;
 394   case vmIntrinsics::_copyMemory:
 395     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 396     if (!InlineArrayCopy)  return NULL;
 397     break;
 398   case vmIntrinsics::_hashCode:
 399     if (!InlineObjectHash)  return NULL;
 400     does_virtual_dispatch = true;
 401     break;
 402   case vmIntrinsics::_clone:
 403     does_virtual_dispatch = true;
 404   case vmIntrinsics::_copyOf:
 405   case vmIntrinsics::_copyOfRange:
 406     if (!InlineObjectCopy)  return NULL;
 407     // These also use the arraycopy intrinsic mechanism:
 408     if (!InlineArrayCopy)  return NULL;
 409     break;
 410   case vmIntrinsics::_encodeISOArray:
 411     if (!SpecialEncodeISOArray)  return NULL;
 412     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 413     break;
 414   case vmIntrinsics::_checkIndex:
 415     // We do not intrinsify this.  The optimizer does fine with it.
 416     return NULL;
 417 
 418   case vmIntrinsics::_getCallerClass:
 419     if (!UseNewReflection)  return NULL;
 420     if (!InlineReflectionGetCallerClass)  return NULL;
 421     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_bitCount_i:
 425     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_bitCount_l:
 429     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_numberOfLeadingZeros_i:
 433     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_numberOfLeadingZeros_l:
 437     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_numberOfTrailingZeros_i:
 441     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 442     break;
 443 
 444   case vmIntrinsics::_numberOfTrailingZeros_l:
 445     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 446     break;
 447 
 448   case vmIntrinsics::_reverseBytes_c:
 449     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 450     break;
 451   case vmIntrinsics::_reverseBytes_s:
 452     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 453     break;
 454   case vmIntrinsics::_reverseBytes_i:
 455     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 456     break;
 457   case vmIntrinsics::_reverseBytes_l:
 458     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_Reference_get:
 462     // Use the intrinsic version of Reference.get() so that the value in
 463     // the referent field can be registered by the G1 pre-barrier code.
 464     // Also add memory barrier to prevent commoning reads from this field
 465     // across safepoint since GC can change it value.
 466     break;
 467 
 468   case vmIntrinsics::_compareAndSwapObject:
 469 #ifdef _LP64
 470     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 471 #endif
 472     break;
 473 
 474   case vmIntrinsics::_compareAndSwapLong:
 475     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_getAndAddInt:
 479     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndAddLong:
 483     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_getAndSetInt:
 487     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 488     break;
 489 
 490   case vmIntrinsics::_getAndSetLong:
 491     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 492     break;
 493 
 494   case vmIntrinsics::_getAndSetObject:
 495 #ifdef _LP64
 496     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 497     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 498     break;
 499 #else
 500     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 501     break;
 502 #endif
 503 
 504   case vmIntrinsics::_aescrypt_encryptBlock:
 505   case vmIntrinsics::_aescrypt_decryptBlock:
 506     if (!UseAESIntrinsics) return NULL;
 507     break;
 508 
 509   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 510   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 511     if (!UseAESIntrinsics) return NULL;
 512     // these two require the predicated logic
 513     is_predicted = true;
 514     break;
 515 
 516   case vmIntrinsics::_updateCRC32:
 517   case vmIntrinsics::_updateBytesCRC32:
 518   case vmIntrinsics::_updateByteBufferCRC32:
 519     if (!UseCRC32Intrinsics) return NULL;
 520     break;
 521 
 522   case vmIntrinsics::_incrementExactI:
 523   case vmIntrinsics::_addExactI:
 524     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 525     break;
 526   case vmIntrinsics::_incrementExactL:
 527   case vmIntrinsics::_addExactL:
 528     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_decrementExactI:
 531   case vmIntrinsics::_subtractExactI:
 532     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_decrementExactL:
 535   case vmIntrinsics::_subtractExactL:
 536     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 537     break;
 538   case vmIntrinsics::_negateExactI:
 539     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 540     break;
 541   case vmIntrinsics::_negateExactL:
 542     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 543     break;
 544   case vmIntrinsics::_multiplyExactI:
 545     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 546     break;
 547   case vmIntrinsics::_multiplyExactL:
 548     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 549     break;
 550 
 551  default:
 552     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 553     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 554     break;
 555   }
 556 
 557   // -XX:-InlineClassNatives disables natives from the Class class.
 558   // The flag applies to all reflective calls, notably Array.newArray
 559   // (visible to Java programmers as Array.newInstance).
 560   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 561       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 562     if (!InlineClassNatives)  return NULL;
 563   }
 564 
 565   // -XX:-InlineThreadNatives disables natives from the Thread class.
 566   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 567     if (!InlineThreadNatives)  return NULL;
 568   }
 569 
 570   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 571   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 572       m->holder()->name() == ciSymbol::java_lang_Float() ||
 573       m->holder()->name() == ciSymbol::java_lang_Double()) {
 574     if (!InlineMathNatives)  return NULL;
 575   }
 576 
 577   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 578   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 579     if (!InlineUnsafeOps)  return NULL;
 580   }
 581 
 582   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 583 }
 584 
 585 //----------------------register_library_intrinsics-----------------------
 586 // Initialize this file's data structures, for each Compile instance.
 587 void Compile::register_library_intrinsics() {
 588   // Nothing to do here.
 589 }
 590 
 591 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 592   LibraryCallKit kit(jvms, this);
 593   Compile* C = kit.C;
 594   int nodes = C->unique();
 595 #ifndef PRODUCT
 596   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 597     char buf[1000];
 598     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 599     tty->print_cr("Intrinsic %s", str);
 600   }
 601 #endif
 602   ciMethod* callee = kit.callee();
 603   const int bci    = kit.bci();
 604 
 605   // Try to inline the intrinsic.
 606   if (kit.try_to_inline()) {
 607     if (C->print_intrinsics() || C->print_inlining()) {
 608       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 609     }
 610     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 611     if (C->log()) {
 612       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 613                      vmIntrinsics::name_at(intrinsic_id()),
 614                      (is_virtual() ? " virtual='1'" : ""),
 615                      C->unique() - nodes);
 616     }
 617     // Push the result from the inlined method onto the stack.
 618     kit.push_result();
 619     return kit.transfer_exceptions_into_jvms();
 620   }
 621 
 622   // The intrinsic bailed out
 623   if (C->print_intrinsics() || C->print_inlining()) {
 624     if (jvms->has_method()) {
 625       // Not a root compile.
 626       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 627       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 628     } else {
 629       // Root compile
 630       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 631                vmIntrinsics::name_at(intrinsic_id()),
 632                (is_virtual() ? " (virtual)" : ""), bci);
 633     }
 634   }
 635   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 636   return NULL;
 637 }
 638 
 639 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 640   LibraryCallKit kit(jvms, this);
 641   Compile* C = kit.C;
 642   int nodes = C->unique();
 643 #ifndef PRODUCT
 644   assert(is_predicted(), "sanity");
 645   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 646     char buf[1000];
 647     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 648     tty->print_cr("Predicate for intrinsic %s", str);
 649   }
 650 #endif
 651   ciMethod* callee = kit.callee();
 652   const int bci    = kit.bci();
 653 
 654   Node* slow_ctl = kit.try_to_predicate();
 655   if (!kit.failing()) {
 656     if (C->print_intrinsics() || C->print_inlining()) {
 657       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 658     }
 659     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 660     if (C->log()) {
 661       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 662                      vmIntrinsics::name_at(intrinsic_id()),
 663                      (is_virtual() ? " virtual='1'" : ""),
 664                      C->unique() - nodes);
 665     }
 666     return slow_ctl; // Could be NULL if the check folds.
 667   }
 668 
 669   // The intrinsic bailed out
 670   if (C->print_intrinsics() || C->print_inlining()) {
 671     if (jvms->has_method()) {
 672       // Not a root compile.
 673       const char* msg = "failed to generate predicate for intrinsic";
 674       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 675     } else {
 676       // Root compile
 677       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 678                                         vmIntrinsics::name_at(intrinsic_id()),
 679                                         (is_virtual() ? " (virtual)" : ""), bci);
 680     }
 681   }
 682   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 683   return NULL;
 684 }
 685 
 686 bool LibraryCallKit::try_to_inline() {
 687   // Handle symbolic names for otherwise undistinguished boolean switches:
 688   const bool is_store       = true;
 689   const bool is_native_ptr  = true;
 690   const bool is_static      = true;
 691   const bool is_volatile    = true;
 692 
 693   if (!jvms()->has_method()) {
 694     // Root JVMState has a null method.
 695     assert(map()->memory()->Opcode() == Op_Parm, "");
 696     // Insert the memory aliasing node
 697     set_all_memory(reset_memory());
 698   }
 699   assert(merged_memory(), "");
 700 
 701 
 702   switch (intrinsic_id()) {
 703   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 704   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 705   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 706 
 707   case vmIntrinsics::_dsin:
 708   case vmIntrinsics::_dcos:
 709   case vmIntrinsics::_dtan:
 710   case vmIntrinsics::_dabs:
 711   case vmIntrinsics::_datan2:
 712   case vmIntrinsics::_dsqrt:
 713   case vmIntrinsics::_dexp:
 714   case vmIntrinsics::_dlog:
 715   case vmIntrinsics::_dlog10:
 716   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 717 
 718   case vmIntrinsics::_min:
 719   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 720 
 721   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 722   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 723   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 724   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 725   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 726   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 727   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 728   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 729   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 730   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 731   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 732   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 733 
 734   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 735 
 736   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 737   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 738   case vmIntrinsics::_equals:                   return inline_string_equals();
 739 
 740   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 741   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 742   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 743   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 744   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 745   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 746   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 747   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 748   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 749 
 750   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 751   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 752   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 753   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 754   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 755   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 756   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 757   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 758   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 759 
 760   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 761   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 762   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 763   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 764   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 765   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 766   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 767   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 768 
 769   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 770   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 771   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 772   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 773   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 774   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 775   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 776   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 777 
 778   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 779   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 780   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 781   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 782   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 783   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 784   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 785   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 786   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 787 
 788   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 789   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 790   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 791   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 792   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 793   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 794   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 795   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 796   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 797 
 798   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 799   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 800   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 801   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 802 
 803   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 804   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 805   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 806 
 807   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 808   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 809   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 810 
 811   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 812   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 813   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 814   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 815   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 816 
 817   case vmIntrinsics::_loadFence:
 818   case vmIntrinsics::_storeFence:
 819   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 820 
 821   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 822   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 823 
 824 #ifdef TRACE_HAVE_INTRINSICS
 825   case vmIntrinsics::_classID:                  return inline_native_classID();
 826   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 827   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 828 #endif
 829   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 830   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 831   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 832   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 833   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 834   case vmIntrinsics::_getLength:                return inline_native_getLength();
 835   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 836   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 837   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 838   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 839 
 840   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 841 
 842   case vmIntrinsics::_isInstance:
 843   case vmIntrinsics::_getModifiers:
 844   case vmIntrinsics::_isInterface:
 845   case vmIntrinsics::_isArray:
 846   case vmIntrinsics::_isPrimitive:
 847   case vmIntrinsics::_getSuperclass:
 848   case vmIntrinsics::_getComponentType:
 849   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 850 
 851   case vmIntrinsics::_floatToRawIntBits:
 852   case vmIntrinsics::_floatToIntBits:
 853   case vmIntrinsics::_intBitsToFloat:
 854   case vmIntrinsics::_doubleToRawLongBits:
 855   case vmIntrinsics::_doubleToLongBits:
 856   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 857 
 858   case vmIntrinsics::_numberOfLeadingZeros_i:
 859   case vmIntrinsics::_numberOfLeadingZeros_l:
 860   case vmIntrinsics::_numberOfTrailingZeros_i:
 861   case vmIntrinsics::_numberOfTrailingZeros_l:
 862   case vmIntrinsics::_bitCount_i:
 863   case vmIntrinsics::_bitCount_l:
 864   case vmIntrinsics::_reverseBytes_i:
 865   case vmIntrinsics::_reverseBytes_l:
 866   case vmIntrinsics::_reverseBytes_s:
 867   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 868 
 869   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 870 
 871   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 872 
 873   case vmIntrinsics::_aescrypt_encryptBlock:
 874   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 875 
 876   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 877   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 878     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 879 
 880   case vmIntrinsics::_encodeISOArray:
 881     return inline_encodeISOArray();
 882 
 883   case vmIntrinsics::_updateCRC32:
 884     return inline_updateCRC32();
 885   case vmIntrinsics::_updateBytesCRC32:
 886     return inline_updateBytesCRC32();
 887   case vmIntrinsics::_updateByteBufferCRC32:
 888     return inline_updateByteBufferCRC32();
 889 
 890   default:
 891     // If you get here, it may be that someone has added a new intrinsic
 892     // to the list in vmSymbols.hpp without implementing it here.
 893 #ifndef PRODUCT
 894     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 895       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 896                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 897     }
 898 #endif
 899     return false;
 900   }
 901 }
 902 
 903 Node* LibraryCallKit::try_to_predicate() {
 904   if (!jvms()->has_method()) {
 905     // Root JVMState has a null method.
 906     assert(map()->memory()->Opcode() == Op_Parm, "");
 907     // Insert the memory aliasing node
 908     set_all_memory(reset_memory());
 909   }
 910   assert(merged_memory(), "");
 911 
 912   switch (intrinsic_id()) {
 913   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 914     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 915   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 916     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 917 
 918   default:
 919     // If you get here, it may be that someone has added a new intrinsic
 920     // to the list in vmSymbols.hpp without implementing it here.
 921 #ifndef PRODUCT
 922     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 923       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 924                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 925     }
 926 #endif
 927     Node* slow_ctl = control();
 928     set_control(top()); // No fast path instrinsic
 929     return slow_ctl;
 930   }
 931 }
 932 
 933 //------------------------------set_result-------------------------------
 934 // Helper function for finishing intrinsics.
 935 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 936   record_for_igvn(region);
 937   set_control(_gvn.transform(region));
 938   set_result( _gvn.transform(value));
 939   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 940 }
 941 
 942 //------------------------------generate_guard---------------------------
 943 // Helper function for generating guarded fast-slow graph structures.
 944 // The given 'test', if true, guards a slow path.  If the test fails
 945 // then a fast path can be taken.  (We generally hope it fails.)
 946 // In all cases, GraphKit::control() is updated to the fast path.
 947 // The returned value represents the control for the slow path.
 948 // The return value is never 'top'; it is either a valid control
 949 // or NULL if it is obvious that the slow path can never be taken.
 950 // Also, if region and the slow control are not NULL, the slow edge
 951 // is appended to the region.
 952 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 953   if (stopped()) {
 954     // Already short circuited.
 955     return NULL;
 956   }
 957 
 958   // Build an if node and its projections.
 959   // If test is true we take the slow path, which we assume is uncommon.
 960   if (_gvn.type(test) == TypeInt::ZERO) {
 961     // The slow branch is never taken.  No need to build this guard.
 962     return NULL;
 963   }
 964 
 965   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 966 
 967   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 968   if (if_slow == top()) {
 969     // The slow branch is never taken.  No need to build this guard.
 970     return NULL;
 971   }
 972 
 973   if (region != NULL)
 974     region->add_req(if_slow);
 975 
 976   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 977   set_control(if_fast);
 978 
 979   return if_slow;
 980 }
 981 
 982 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 983   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 984 }
 985 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 986   return generate_guard(test, region, PROB_FAIR);
 987 }
 988 
 989 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 990                                                      Node* *pos_index) {
 991   if (stopped())
 992     return NULL;                // already stopped
 993   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 994     return NULL;                // index is already adequately typed
 995   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 996   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 997   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 998   if (is_neg != NULL && pos_index != NULL) {
 999     // Emulate effect of Parse::adjust_map_after_if.
1000     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1001     ccast->set_req(0, control());
1002     (*pos_index) = _gvn.transform(ccast);
1003   }
1004   return is_neg;
1005 }
1006 
1007 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1008                                                         Node* *pos_index) {
1009   if (stopped())
1010     return NULL;                // already stopped
1011   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1012     return NULL;                // index is already adequately typed
1013   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1014   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1015   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1016   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1017   if (is_notp != NULL && pos_index != NULL) {
1018     // Emulate effect of Parse::adjust_map_after_if.
1019     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1020     ccast->set_req(0, control());
1021     (*pos_index) = _gvn.transform(ccast);
1022   }
1023   return is_notp;
1024 }
1025 
1026 // Make sure that 'position' is a valid limit index, in [0..length].
1027 // There are two equivalent plans for checking this:
1028 //   A. (offset + copyLength)  unsigned<=  arrayLength
1029 //   B. offset  <=  (arrayLength - copyLength)
1030 // We require that all of the values above, except for the sum and
1031 // difference, are already known to be non-negative.
1032 // Plan A is robust in the face of overflow, if offset and copyLength
1033 // are both hugely positive.
1034 //
1035 // Plan B is less direct and intuitive, but it does not overflow at
1036 // all, since the difference of two non-negatives is always
1037 // representable.  Whenever Java methods must perform the equivalent
1038 // check they generally use Plan B instead of Plan A.
1039 // For the moment we use Plan A.
1040 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1041                                                   Node* subseq_length,
1042                                                   Node* array_length,
1043                                                   RegionNode* region) {
1044   if (stopped())
1045     return NULL;                // already stopped
1046   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1047   if (zero_offset && subseq_length->eqv_uncast(array_length))
1048     return NULL;                // common case of whole-array copy
1049   Node* last = subseq_length;
1050   if (!zero_offset)             // last += offset
1051     last = _gvn.transform(new (C) AddINode(last, offset));
1052   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1053   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1054   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1055   return is_over;
1056 }
1057 
1058 
1059 //--------------------------generate_current_thread--------------------
1060 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1061   ciKlass*    thread_klass = env()->Thread_klass();
1062   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1063   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1064   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1065   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1066   tls_output = thread;
1067   return threadObj;
1068 }
1069 
1070 
1071 //------------------------------make_string_method_node------------------------
1072 // Helper method for String intrinsic functions. This version is called
1073 // with str1 and str2 pointing to String object nodes.
1074 //
1075 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1076   Node* no_ctrl = NULL;
1077 
1078   // Get start addr of string
1079   Node* str1_value   = load_String_value(no_ctrl, str1);
1080   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1081   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1082 
1083   // Get length of string 1
1084   Node* str1_len  = load_String_length(no_ctrl, str1);
1085 
1086   Node* str2_value   = load_String_value(no_ctrl, str2);
1087   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1088   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1089 
1090   Node* str2_len = NULL;
1091   Node* result = NULL;
1092 
1093   switch (opcode) {
1094   case Op_StrIndexOf:
1095     // Get length of string 2
1096     str2_len = load_String_length(no_ctrl, str2);
1097 
1098     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1099                                  str1_start, str1_len, str2_start, str2_len);
1100     break;
1101   case Op_StrComp:
1102     // Get length of string 2
1103     str2_len = load_String_length(no_ctrl, str2);
1104 
1105     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1106                                  str1_start, str1_len, str2_start, str2_len);
1107     break;
1108   case Op_StrEquals:
1109     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1110                                str1_start, str2_start, str1_len);
1111     break;
1112   default:
1113     ShouldNotReachHere();
1114     return NULL;
1115   }
1116 
1117   // All these intrinsics have checks.
1118   C->set_has_split_ifs(true); // Has chance for split-if optimization
1119 
1120   return _gvn.transform(result);
1121 }
1122 
1123 // Helper method for String intrinsic functions. This version is called
1124 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1125 // to Int nodes containing the lenghts of str1 and str2.
1126 //
1127 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1128   Node* result = NULL;
1129   switch (opcode) {
1130   case Op_StrIndexOf:
1131     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1132                                  str1_start, cnt1, str2_start, cnt2);
1133     break;
1134   case Op_StrComp:
1135     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1136                                  str1_start, cnt1, str2_start, cnt2);
1137     break;
1138   case Op_StrEquals:
1139     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1140                                  str1_start, str2_start, cnt1);
1141     break;
1142   default:
1143     ShouldNotReachHere();
1144     return NULL;
1145   }
1146 
1147   // All these intrinsics have checks.
1148   C->set_has_split_ifs(true); // Has chance for split-if optimization
1149 
1150   return _gvn.transform(result);
1151 }
1152 
1153 //------------------------------inline_string_compareTo------------------------
1154 // public int java.lang.String.compareTo(String anotherString);
1155 bool LibraryCallKit::inline_string_compareTo() {
1156   Node* receiver = null_check(argument(0));
1157   Node* arg      = null_check(argument(1));
1158   if (stopped()) {
1159     return true;
1160   }
1161   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1162   return true;
1163 }
1164 
1165 //------------------------------inline_string_equals------------------------
1166 bool LibraryCallKit::inline_string_equals() {
1167   Node* receiver = null_check_receiver();
1168   // NOTE: Do not null check argument for String.equals() because spec
1169   // allows to specify NULL as argument.
1170   Node* argument = this->argument(1);
1171   if (stopped()) {
1172     return true;
1173   }
1174 
1175   // paths (plus control) merge
1176   RegionNode* region = new (C) RegionNode(5);
1177   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1178 
1179   // does source == target string?
1180   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1181   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1182 
1183   Node* if_eq = generate_slow_guard(bol, NULL);
1184   if (if_eq != NULL) {
1185     // receiver == argument
1186     phi->init_req(2, intcon(1));
1187     region->init_req(2, if_eq);
1188   }
1189 
1190   // get String klass for instanceOf
1191   ciInstanceKlass* klass = env()->String_klass();
1192 
1193   if (!stopped()) {
1194     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1195     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1196     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1197 
1198     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1199     //instanceOf == true, fallthrough
1200 
1201     if (inst_false != NULL) {
1202       phi->init_req(3, intcon(0));
1203       region->init_req(3, inst_false);
1204     }
1205   }
1206 
1207   if (!stopped()) {
1208     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1209 
1210     // Properly cast the argument to String
1211     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1212     // This path is taken only when argument's type is String:NotNull.
1213     argument = cast_not_null(argument, false);
1214 
1215     Node* no_ctrl = NULL;
1216 
1217     // Get start addr of receiver
1218     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1219     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1220     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1221 
1222     // Get length of receiver
1223     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1224 
1225     // Get start addr of argument
1226     Node* argument_val    = load_String_value(no_ctrl, argument);
1227     Node* argument_offset = load_String_offset(no_ctrl, argument);
1228     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1229 
1230     // Get length of argument
1231     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1232 
1233     // Check for receiver count != argument count
1234     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1235     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1236     Node* if_ne = generate_slow_guard(bol, NULL);
1237     if (if_ne != NULL) {
1238       phi->init_req(4, intcon(0));
1239       region->init_req(4, if_ne);
1240     }
1241 
1242     // Check for count == 0 is done by assembler code for StrEquals.
1243 
1244     if (!stopped()) {
1245       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1246       phi->init_req(1, equals);
1247       region->init_req(1, control());
1248     }
1249   }
1250 
1251   // post merge
1252   set_control(_gvn.transform(region));
1253   record_for_igvn(region);
1254 
1255   set_result(_gvn.transform(phi));
1256   return true;
1257 }
1258 
1259 //------------------------------inline_array_equals----------------------------
1260 bool LibraryCallKit::inline_array_equals() {
1261   Node* arg1 = argument(0);
1262   Node* arg2 = argument(1);
1263   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1264   return true;
1265 }
1266 
1267 // Java version of String.indexOf(constant string)
1268 // class StringDecl {
1269 //   StringDecl(char[] ca) {
1270 //     offset = 0;
1271 //     count = ca.length;
1272 //     value = ca;
1273 //   }
1274 //   int offset;
1275 //   int count;
1276 //   char[] value;
1277 // }
1278 //
1279 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1280 //                             int targetOffset, int cache_i, int md2) {
1281 //   int cache = cache_i;
1282 //   int sourceOffset = string_object.offset;
1283 //   int sourceCount = string_object.count;
1284 //   int targetCount = target_object.length;
1285 //
1286 //   int targetCountLess1 = targetCount - 1;
1287 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1288 //
1289 //   char[] source = string_object.value;
1290 //   char[] target = target_object;
1291 //   int lastChar = target[targetCountLess1];
1292 //
1293 //  outer_loop:
1294 //   for (int i = sourceOffset; i < sourceEnd; ) {
1295 //     int src = source[i + targetCountLess1];
1296 //     if (src == lastChar) {
1297 //       // With random strings and a 4-character alphabet,
1298 //       // reverse matching at this point sets up 0.8% fewer
1299 //       // frames, but (paradoxically) makes 0.3% more probes.
1300 //       // Since those probes are nearer the lastChar probe,
1301 //       // there is may be a net D$ win with reverse matching.
1302 //       // But, reversing loop inhibits unroll of inner loop
1303 //       // for unknown reason.  So, does running outer loop from
1304 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1305 //       for (int j = 0; j < targetCountLess1; j++) {
1306 //         if (target[targetOffset + j] != source[i+j]) {
1307 //           if ((cache & (1 << source[i+j])) == 0) {
1308 //             if (md2 < j+1) {
1309 //               i += j+1;
1310 //               continue outer_loop;
1311 //             }
1312 //           }
1313 //           i += md2;
1314 //           continue outer_loop;
1315 //         }
1316 //       }
1317 //       return i - sourceOffset;
1318 //     }
1319 //     if ((cache & (1 << src)) == 0) {
1320 //       i += targetCountLess1;
1321 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1322 //     i++;
1323 //   }
1324 //   return -1;
1325 // }
1326 
1327 //------------------------------string_indexOf------------------------
1328 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1329                                      jint cache_i, jint md2_i) {
1330 
1331   Node* no_ctrl  = NULL;
1332   float likely   = PROB_LIKELY(0.9);
1333   float unlikely = PROB_UNLIKELY(0.9);
1334 
1335   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1336 
1337   Node* source        = load_String_value(no_ctrl, string_object);
1338   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1339   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1340 
1341   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1342   jint target_length = target_array->length();
1343   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1344   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1345 
1346   // String.value field is known to be @Stable.
1347   if (UseImplicitStableValues) {
1348     target = cast_array_to_stable(target, target_type);
1349   }
1350 
1351   IdealKit kit(this, false, true);
1352 #define __ kit.
1353   Node* zero             = __ ConI(0);
1354   Node* one              = __ ConI(1);
1355   Node* cache            = __ ConI(cache_i);
1356   Node* md2              = __ ConI(md2_i);
1357   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1358   Node* targetCount      = __ ConI(target_length);
1359   Node* targetCountLess1 = __ ConI(target_length - 1);
1360   Node* targetOffset     = __ ConI(targetOffset_i);
1361   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1362 
1363   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1364   Node* outer_loop = __ make_label(2 /* goto */);
1365   Node* return_    = __ make_label(1);
1366 
1367   __ set(rtn,__ ConI(-1));
1368   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1369        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1370        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1371        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1372        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1373          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1374               Node* tpj = __ AddI(targetOffset, __ value(j));
1375               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1376               Node* ipj  = __ AddI(__ value(i), __ value(j));
1377               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1378               __ if_then(targ, BoolTest::ne, src2); {
1379                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1380                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1381                     __ increment(i, __ AddI(__ value(j), one));
1382                     __ goto_(outer_loop);
1383                   } __ end_if(); __ dead(j);
1384                 }__ end_if(); __ dead(j);
1385                 __ increment(i, md2);
1386                 __ goto_(outer_loop);
1387               }__ end_if();
1388               __ increment(j, one);
1389          }__ end_loop(); __ dead(j);
1390          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1391          __ goto_(return_);
1392        }__ end_if();
1393        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1394          __ increment(i, targetCountLess1);
1395        }__ end_if();
1396        __ increment(i, one);
1397        __ bind(outer_loop);
1398   }__ end_loop(); __ dead(i);
1399   __ bind(return_);
1400 
1401   // Final sync IdealKit and GraphKit.
1402   final_sync(kit);
1403   Node* result = __ value(rtn);
1404 #undef __
1405   C->set_has_loops(true);
1406   return result;
1407 }
1408 
1409 //------------------------------inline_string_indexOf------------------------
1410 bool LibraryCallKit::inline_string_indexOf() {
1411   Node* receiver = argument(0);
1412   Node* arg      = argument(1);
1413 
1414   Node* result;
1415   // Disable the use of pcmpestri until it can be guaranteed that
1416   // the load doesn't cross into the uncommited space.
1417   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1418       UseSSE42Intrinsics) {
1419     // Generate SSE4.2 version of indexOf
1420     // We currently only have match rules that use SSE4.2
1421 
1422     receiver = null_check(receiver);
1423     arg      = null_check(arg);
1424     if (stopped()) {
1425       return true;
1426     }
1427 
1428     ciInstanceKlass* str_klass = env()->String_klass();
1429     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1430 
1431     // Make the merge point
1432     RegionNode* result_rgn = new (C) RegionNode(4);
1433     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1434     Node* no_ctrl  = NULL;
1435 
1436     // Get start addr of source string
1437     Node* source = load_String_value(no_ctrl, receiver);
1438     Node* source_offset = load_String_offset(no_ctrl, receiver);
1439     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1440 
1441     // Get length of source string
1442     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1443 
1444     // Get start addr of substring
1445     Node* substr = load_String_value(no_ctrl, arg);
1446     Node* substr_offset = load_String_offset(no_ctrl, arg);
1447     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1448 
1449     // Get length of source string
1450     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1451 
1452     // Check for substr count > string count
1453     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1454     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1455     Node* if_gt = generate_slow_guard(bol, NULL);
1456     if (if_gt != NULL) {
1457       result_phi->init_req(2, intcon(-1));
1458       result_rgn->init_req(2, if_gt);
1459     }
1460 
1461     if (!stopped()) {
1462       // Check for substr count == 0
1463       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1464       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1465       Node* if_zero = generate_slow_guard(bol, NULL);
1466       if (if_zero != NULL) {
1467         result_phi->init_req(3, intcon(0));
1468         result_rgn->init_req(3, if_zero);
1469       }
1470     }
1471 
1472     if (!stopped()) {
1473       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1474       result_phi->init_req(1, result);
1475       result_rgn->init_req(1, control());
1476     }
1477     set_control(_gvn.transform(result_rgn));
1478     record_for_igvn(result_rgn);
1479     result = _gvn.transform(result_phi);
1480 
1481   } else { // Use LibraryCallKit::string_indexOf
1482     // don't intrinsify if argument isn't a constant string.
1483     if (!arg->is_Con()) {
1484      return false;
1485     }
1486     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1487     if (str_type == NULL) {
1488       return false;
1489     }
1490     ciInstanceKlass* klass = env()->String_klass();
1491     ciObject* str_const = str_type->const_oop();
1492     if (str_const == NULL || str_const->klass() != klass) {
1493       return false;
1494     }
1495     ciInstance* str = str_const->as_instance();
1496     assert(str != NULL, "must be instance");
1497 
1498     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1499     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1500 
1501     int o;
1502     int c;
1503     if (java_lang_String::has_offset_field()) {
1504       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1505       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1506     } else {
1507       o = 0;
1508       c = pat->length();
1509     }
1510 
1511     // constant strings have no offset and count == length which
1512     // simplifies the resulting code somewhat so lets optimize for that.
1513     if (o != 0 || c != pat->length()) {
1514      return false;
1515     }
1516 
1517     receiver = null_check(receiver, T_OBJECT);
1518     // NOTE: No null check on the argument is needed since it's a constant String oop.
1519     if (stopped()) {
1520       return true;
1521     }
1522 
1523     // The null string as a pattern always returns 0 (match at beginning of string)
1524     if (c == 0) {
1525       set_result(intcon(0));
1526       return true;
1527     }
1528 
1529     // Generate default indexOf
1530     jchar lastChar = pat->char_at(o + (c - 1));
1531     int cache = 0;
1532     int i;
1533     for (i = 0; i < c - 1; i++) {
1534       assert(i < pat->length(), "out of range");
1535       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1536     }
1537 
1538     int md2 = c;
1539     for (i = 0; i < c - 1; i++) {
1540       assert(i < pat->length(), "out of range");
1541       if (pat->char_at(o + i) == lastChar) {
1542         md2 = (c - 1) - i;
1543       }
1544     }
1545 
1546     result = string_indexOf(receiver, pat, o, cache, md2);
1547   }
1548   set_result(result);
1549   return true;
1550 }
1551 
1552 //--------------------------round_double_node--------------------------------
1553 // Round a double node if necessary.
1554 Node* LibraryCallKit::round_double_node(Node* n) {
1555   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1556     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1557   return n;
1558 }
1559 
1560 //------------------------------inline_math-----------------------------------
1561 // public static double Math.abs(double)
1562 // public static double Math.sqrt(double)
1563 // public static double Math.log(double)
1564 // public static double Math.log10(double)
1565 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1566   Node* arg = round_double_node(argument(0));
1567   Node* n;
1568   switch (id) {
1569   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1570   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1571   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1572   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1573   default:  fatal_unexpected_iid(id);  break;
1574   }
1575   set_result(_gvn.transform(n));
1576   return true;
1577 }
1578 
1579 //------------------------------inline_trig----------------------------------
1580 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1581 // argument reduction which will turn into a fast/slow diamond.
1582 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1583   Node* arg = round_double_node(argument(0));
1584   Node* n = NULL;
1585 
1586   switch (id) {
1587   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1588   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1589   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1590   default:  fatal_unexpected_iid(id);  break;
1591   }
1592   n = _gvn.transform(n);
1593 
1594   // Rounding required?  Check for argument reduction!
1595   if (Matcher::strict_fp_requires_explicit_rounding) {
1596     static const double     pi_4 =  0.7853981633974483;
1597     static const double neg_pi_4 = -0.7853981633974483;
1598     // pi/2 in 80-bit extended precision
1599     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1600     // -pi/2 in 80-bit extended precision
1601     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1602     // Cutoff value for using this argument reduction technique
1603     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1604     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1605 
1606     // Pseudocode for sin:
1607     // if (x <= Math.PI / 4.0) {
1608     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1609     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1610     // } else {
1611     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1612     // }
1613     // return StrictMath.sin(x);
1614 
1615     // Pseudocode for cos:
1616     // if (x <= Math.PI / 4.0) {
1617     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1618     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1619     // } else {
1620     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1621     // }
1622     // return StrictMath.cos(x);
1623 
1624     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1625     // requires a special machine instruction to load it.  Instead we'll try
1626     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1627     // probably do the math inside the SIN encoding.
1628 
1629     // Make the merge point
1630     RegionNode* r = new (C) RegionNode(3);
1631     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1632 
1633     // Flatten arg so we need only 1 test
1634     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1635     // Node for PI/4 constant
1636     Node *pi4 = makecon(TypeD::make(pi_4));
1637     // Check PI/4 : abs(arg)
1638     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1639     // Check: If PI/4 < abs(arg) then go slow
1640     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1641     // Branch either way
1642     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1643     set_control(opt_iff(r,iff));
1644 
1645     // Set fast path result
1646     phi->init_req(2, n);
1647 
1648     // Slow path - non-blocking leaf call
1649     Node* call = NULL;
1650     switch (id) {
1651     case vmIntrinsics::_dsin:
1652       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1653                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1654                                "Sin", NULL, arg, top());
1655       break;
1656     case vmIntrinsics::_dcos:
1657       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1658                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1659                                "Cos", NULL, arg, top());
1660       break;
1661     case vmIntrinsics::_dtan:
1662       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1663                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1664                                "Tan", NULL, arg, top());
1665       break;
1666     }
1667     assert(control()->in(0) == call, "");
1668     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1669     r->init_req(1, control());
1670     phi->init_req(1, slow_result);
1671 
1672     // Post-merge
1673     set_control(_gvn.transform(r));
1674     record_for_igvn(r);
1675     n = _gvn.transform(phi);
1676 
1677     C->set_has_split_ifs(true); // Has chance for split-if optimization
1678   }
1679   set_result(n);
1680   return true;
1681 }
1682 
1683 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1684   //-------------------
1685   //result=(result.isNaN())? funcAddr():result;
1686   // Check: If isNaN() by checking result!=result? then either trap
1687   // or go to runtime
1688   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1689   // Build the boolean node
1690   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1691 
1692   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1693     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1694       // The pow or exp intrinsic returned a NaN, which requires a call
1695       // to the runtime.  Recompile with the runtime call.
1696       uncommon_trap(Deoptimization::Reason_intrinsic,
1697                     Deoptimization::Action_make_not_entrant);
1698     }
1699     set_result(result);
1700   } else {
1701     // If this inlining ever returned NaN in the past, we compile a call
1702     // to the runtime to properly handle corner cases
1703 
1704     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1705     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1706     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1707 
1708     if (!if_slow->is_top()) {
1709       RegionNode* result_region = new (C) RegionNode(3);
1710       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1711 
1712       result_region->init_req(1, if_fast);
1713       result_val->init_req(1, result);
1714 
1715       set_control(if_slow);
1716 
1717       const TypePtr* no_memory_effects = NULL;
1718       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1719                                    no_memory_effects,
1720                                    x, top(), y, y ? top() : NULL);
1721       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1722 #ifdef ASSERT
1723       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1724       assert(value_top == top(), "second value must be top");
1725 #endif
1726 
1727       result_region->init_req(2, control());
1728       result_val->init_req(2, value);
1729       set_result(result_region, result_val);
1730     } else {
1731       set_result(result);
1732     }
1733   }
1734 }
1735 
1736 //------------------------------inline_exp-------------------------------------
1737 // Inline exp instructions, if possible.  The Intel hardware only misses
1738 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1739 bool LibraryCallKit::inline_exp() {
1740   Node* arg = round_double_node(argument(0));
1741   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1742 
1743   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1744 
1745   C->set_has_split_ifs(true); // Has chance for split-if optimization
1746   return true;
1747 }
1748 
1749 //------------------------------inline_pow-------------------------------------
1750 // Inline power instructions, if possible.
1751 bool LibraryCallKit::inline_pow() {
1752   // Pseudocode for pow
1753   // if (x <= 0.0) {
1754   //   long longy = (long)y;
1755   //   if ((double)longy == y) { // if y is long
1756   //     if (y + 1 == y) longy = 0; // huge number: even
1757   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1758   //   } else {
1759   //     result = NaN;
1760   //   }
1761   // } else {
1762   //   result = DPow(x,y);
1763   // }
1764   // if (result != result)?  {
1765   //   result = uncommon_trap() or runtime_call();
1766   // }
1767   // return result;
1768 
1769   Node* x = round_double_node(argument(0));
1770   Node* y = round_double_node(argument(2));
1771 
1772   Node* result = NULL;
1773 
1774   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1775     // Short form: skip the fancy tests and just check for NaN result.
1776     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1777   } else {
1778     // If this inlining ever returned NaN in the past, include all
1779     // checks + call to the runtime.
1780 
1781     // Set the merge point for If node with condition of (x <= 0.0)
1782     // There are four possible paths to region node and phi node
1783     RegionNode *r = new (C) RegionNode(4);
1784     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1785 
1786     // Build the first if node: if (x <= 0.0)
1787     // Node for 0 constant
1788     Node *zeronode = makecon(TypeD::ZERO);
1789     // Check x:0
1790     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1791     // Check: If (x<=0) then go complex path
1792     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1793     // Branch either way
1794     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1795     // Fast path taken; set region slot 3
1796     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1797     r->init_req(3,fast_taken); // Capture fast-control
1798 
1799     // Fast path not-taken, i.e. slow path
1800     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1801 
1802     // Set fast path result
1803     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1804     phi->init_req(3, fast_result);
1805 
1806     // Complex path
1807     // Build the second if node (if y is long)
1808     // Node for (long)y
1809     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1810     // Node for (double)((long) y)
1811     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1812     // Check (double)((long) y) : y
1813     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1814     // Check if (y isn't long) then go to slow path
1815 
1816     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1817     // Branch either way
1818     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1819     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1820 
1821     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1822 
1823     // Calculate DPow(abs(x), y)*(1 & (long)y)
1824     // Node for constant 1
1825     Node *conone = longcon(1);
1826     // 1& (long)y
1827     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1828 
1829     // A huge number is always even. Detect a huge number by checking
1830     // if y + 1 == y and set integer to be tested for parity to 0.
1831     // Required for corner case:
1832     // (long)9.223372036854776E18 = max_jlong
1833     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1834     // max_jlong is odd but 9.223372036854776E18 is even
1835     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1836     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1837     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1838     Node* correctedsign = NULL;
1839     if (ConditionalMoveLimit != 0) {
1840       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1841     } else {
1842       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1843       RegionNode *r = new (C) RegionNode(3);
1844       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1845       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1846       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1847       phi->init_req(1, signnode);
1848       phi->init_req(2, longcon(0));
1849       correctedsign = _gvn.transform(phi);
1850       ylong_path = _gvn.transform(r);
1851       record_for_igvn(r);
1852     }
1853 
1854     // zero node
1855     Node *conzero = longcon(0);
1856     // Check (1&(long)y)==0?
1857     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1858     // Check if (1&(long)y)!=0?, if so the result is negative
1859     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1860     // abs(x)
1861     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1862     // abs(x)^y
1863     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1864     // -abs(x)^y
1865     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1866     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1867     Node *signresult = NULL;
1868     if (ConditionalMoveLimit != 0) {
1869       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1870     } else {
1871       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1872       RegionNode *r = new (C) RegionNode(3);
1873       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1874       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1875       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1876       phi->init_req(1, absxpowy);
1877       phi->init_req(2, negabsxpowy);
1878       signresult = _gvn.transform(phi);
1879       ylong_path = _gvn.transform(r);
1880       record_for_igvn(r);
1881     }
1882     // Set complex path fast result
1883     r->init_req(2, ylong_path);
1884     phi->init_req(2, signresult);
1885 
1886     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1887     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1888     r->init_req(1,slow_path);
1889     phi->init_req(1,slow_result);
1890 
1891     // Post merge
1892     set_control(_gvn.transform(r));
1893     record_for_igvn(r);
1894     result = _gvn.transform(phi);
1895   }
1896 
1897   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1898 
1899   C->set_has_split_ifs(true); // Has chance for split-if optimization
1900   return true;
1901 }
1902 
1903 //------------------------------runtime_math-----------------------------
1904 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1905   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1906          "must be (DD)D or (D)D type");
1907 
1908   // Inputs
1909   Node* a = round_double_node(argument(0));
1910   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1911 
1912   const TypePtr* no_memory_effects = NULL;
1913   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1914                                  no_memory_effects,
1915                                  a, top(), b, b ? top() : NULL);
1916   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1917 #ifdef ASSERT
1918   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1919   assert(value_top == top(), "second value must be top");
1920 #endif
1921 
1922   set_result(value);
1923   return true;
1924 }
1925 
1926 //------------------------------inline_math_native-----------------------------
1927 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1928 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1929   switch (id) {
1930     // These intrinsics are not properly supported on all hardware
1931   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1932     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1933   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1934     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1935   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1936     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1937 
1938   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1939     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1940   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1941     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1942 
1943     // These intrinsics are supported on all hardware
1944   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1945   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1946 
1947   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1948     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1949   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1950     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1951 #undef FN_PTR
1952 
1953    // These intrinsics are not yet correctly implemented
1954   case vmIntrinsics::_datan2:
1955     return false;
1956 
1957   default:
1958     fatal_unexpected_iid(id);
1959     return false;
1960   }
1961 }
1962 
1963 static bool is_simple_name(Node* n) {
1964   return (n->req() == 1         // constant
1965           || (n->is_Type() && n->as_Type()->type()->singleton())
1966           || n->is_Proj()       // parameter or return value
1967           || n->is_Phi()        // local of some sort
1968           );
1969 }
1970 
1971 //----------------------------inline_min_max-----------------------------------
1972 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1973   set_result(generate_min_max(id, argument(0), argument(1)));
1974   return true;
1975 }
1976 
1977 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1978   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
1979   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1980   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1981   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1982 
1983   {
1984     PreserveJVMState pjvms(this);
1985     PreserveReexecuteState preexecs(this);
1986     jvms()->set_should_reexecute(true);
1987 
1988     set_control(slow_path);
1989     set_i_o(i_o());
1990 
1991     uncommon_trap(Deoptimization::Reason_intrinsic,
1992                   Deoptimization::Action_none);
1993   }
1994 
1995   set_control(fast_path);
1996   set_result(math);
1997 }
1998 
1999 template <typename OverflowOp>
2000 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2001   typedef typename OverflowOp::MathOp MathOp;
2002 
2003   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2004   Node* operation = _gvn.transform( mathOp );
2005   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2006   inline_math_mathExact(operation, ofcheck);
2007   return true;
2008 }
2009 
2010 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2011   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2012 }
2013 
2014 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2015   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2016 }
2017 
2018 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2019   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2020 }
2021 
2022 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2023   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2024 }
2025 
2026 bool LibraryCallKit::inline_math_negateExactI() {
2027   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2028 }
2029 
2030 bool LibraryCallKit::inline_math_negateExactL() {
2031   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2032 }
2033 
2034 bool LibraryCallKit::inline_math_multiplyExactI() {
2035   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2036 }
2037 
2038 bool LibraryCallKit::inline_math_multiplyExactL() {
2039   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2040 }
2041 
2042 Node*
2043 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2044   // These are the candidate return value:
2045   Node* xvalue = x0;
2046   Node* yvalue = y0;
2047 
2048   if (xvalue == yvalue) {
2049     return xvalue;
2050   }
2051 
2052   bool want_max = (id == vmIntrinsics::_max);
2053 
2054   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2055   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2056   if (txvalue == NULL || tyvalue == NULL)  return top();
2057   // This is not really necessary, but it is consistent with a
2058   // hypothetical MaxINode::Value method:
2059   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2060 
2061   // %%% This folding logic should (ideally) be in a different place.
2062   // Some should be inside IfNode, and there to be a more reliable
2063   // transformation of ?: style patterns into cmoves.  We also want
2064   // more powerful optimizations around cmove and min/max.
2065 
2066   // Try to find a dominating comparison of these guys.
2067   // It can simplify the index computation for Arrays.copyOf
2068   // and similar uses of System.arraycopy.
2069   // First, compute the normalized version of CmpI(x, y).
2070   int   cmp_op = Op_CmpI;
2071   Node* xkey = xvalue;
2072   Node* ykey = yvalue;
2073   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2074   if (ideal_cmpxy->is_Cmp()) {
2075     // E.g., if we have CmpI(length - offset, count),
2076     // it might idealize to CmpI(length, count + offset)
2077     cmp_op = ideal_cmpxy->Opcode();
2078     xkey = ideal_cmpxy->in(1);
2079     ykey = ideal_cmpxy->in(2);
2080   }
2081 
2082   // Start by locating any relevant comparisons.
2083   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2084   Node* cmpxy = NULL;
2085   Node* cmpyx = NULL;
2086   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2087     Node* cmp = start_from->fast_out(k);
2088     if (cmp->outcnt() > 0 &&            // must have prior uses
2089         cmp->in(0) == NULL &&           // must be context-independent
2090         cmp->Opcode() == cmp_op) {      // right kind of compare
2091       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2092       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2093     }
2094   }
2095 
2096   const int NCMPS = 2;
2097   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2098   int cmpn;
2099   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2100     if (cmps[cmpn] != NULL)  break;     // find a result
2101   }
2102   if (cmpn < NCMPS) {
2103     // Look for a dominating test that tells us the min and max.
2104     int depth = 0;                // Limit search depth for speed
2105     Node* dom = control();
2106     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2107       if (++depth >= 100)  break;
2108       Node* ifproj = dom;
2109       if (!ifproj->is_Proj())  continue;
2110       Node* iff = ifproj->in(0);
2111       if (!iff->is_If())  continue;
2112       Node* bol = iff->in(1);
2113       if (!bol->is_Bool())  continue;
2114       Node* cmp = bol->in(1);
2115       if (cmp == NULL)  continue;
2116       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2117         if (cmps[cmpn] == cmp)  break;
2118       if (cmpn == NCMPS)  continue;
2119       BoolTest::mask btest = bol->as_Bool()->_test._test;
2120       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2121       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2122       // At this point, we know that 'x btest y' is true.
2123       switch (btest) {
2124       case BoolTest::eq:
2125         // They are proven equal, so we can collapse the min/max.
2126         // Either value is the answer.  Choose the simpler.
2127         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2128           return yvalue;
2129         return xvalue;
2130       case BoolTest::lt:          // x < y
2131       case BoolTest::le:          // x <= y
2132         return (want_max ? yvalue : xvalue);
2133       case BoolTest::gt:          // x > y
2134       case BoolTest::ge:          // x >= y
2135         return (want_max ? xvalue : yvalue);
2136       }
2137     }
2138   }
2139 
2140   // We failed to find a dominating test.
2141   // Let's pick a test that might GVN with prior tests.
2142   Node*          best_bol   = NULL;
2143   BoolTest::mask best_btest = BoolTest::illegal;
2144   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2145     Node* cmp = cmps[cmpn];
2146     if (cmp == NULL)  continue;
2147     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2148       Node* bol = cmp->fast_out(j);
2149       if (!bol->is_Bool())  continue;
2150       BoolTest::mask btest = bol->as_Bool()->_test._test;
2151       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2152       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2153       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2154         best_bol   = bol->as_Bool();
2155         best_btest = btest;
2156       }
2157     }
2158   }
2159 
2160   Node* answer_if_true  = NULL;
2161   Node* answer_if_false = NULL;
2162   switch (best_btest) {
2163   default:
2164     if (cmpxy == NULL)
2165       cmpxy = ideal_cmpxy;
2166     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2167     // and fall through:
2168   case BoolTest::lt:          // x < y
2169   case BoolTest::le:          // x <= y
2170     answer_if_true  = (want_max ? yvalue : xvalue);
2171     answer_if_false = (want_max ? xvalue : yvalue);
2172     break;
2173   case BoolTest::gt:          // x > y
2174   case BoolTest::ge:          // x >= y
2175     answer_if_true  = (want_max ? xvalue : yvalue);
2176     answer_if_false = (want_max ? yvalue : xvalue);
2177     break;
2178   }
2179 
2180   jint hi, lo;
2181   if (want_max) {
2182     // We can sharpen the minimum.
2183     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2184     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2185   } else {
2186     // We can sharpen the maximum.
2187     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2188     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2189   }
2190 
2191   // Use a flow-free graph structure, to avoid creating excess control edges
2192   // which could hinder other optimizations.
2193   // Since Math.min/max is often used with arraycopy, we want
2194   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2195   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2196                                answer_if_false, answer_if_true,
2197                                TypeInt::make(lo, hi, widen));
2198 
2199   return _gvn.transform(cmov);
2200 
2201   /*
2202   // This is not as desirable as it may seem, since Min and Max
2203   // nodes do not have a full set of optimizations.
2204   // And they would interfere, anyway, with 'if' optimizations
2205   // and with CMoveI canonical forms.
2206   switch (id) {
2207   case vmIntrinsics::_min:
2208     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2209   case vmIntrinsics::_max:
2210     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2211   default:
2212     ShouldNotReachHere();
2213   }
2214   */
2215 }
2216 
2217 inline int
2218 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2219   const TypePtr* base_type = TypePtr::NULL_PTR;
2220   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2221   if (base_type == NULL) {
2222     // Unknown type.
2223     return Type::AnyPtr;
2224   } else if (base_type == TypePtr::NULL_PTR) {
2225     // Since this is a NULL+long form, we have to switch to a rawptr.
2226     base   = _gvn.transform(new (C) CastX2PNode(offset));
2227     offset = MakeConX(0);
2228     return Type::RawPtr;
2229   } else if (base_type->base() == Type::RawPtr) {
2230     return Type::RawPtr;
2231   } else if (base_type->isa_oopptr()) {
2232     // Base is never null => always a heap address.
2233     if (base_type->ptr() == TypePtr::NotNull) {
2234       return Type::OopPtr;
2235     }
2236     // Offset is small => always a heap address.
2237     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2238     if (offset_type != NULL &&
2239         base_type->offset() == 0 &&     // (should always be?)
2240         offset_type->_lo >= 0 &&
2241         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2242       return Type::OopPtr;
2243     }
2244     // Otherwise, it might either be oop+off or NULL+addr.
2245     return Type::AnyPtr;
2246   } else {
2247     // No information:
2248     return Type::AnyPtr;
2249   }
2250 }
2251 
2252 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2253   int kind = classify_unsafe_addr(base, offset);
2254   if (kind == Type::RawPtr) {
2255     return basic_plus_adr(top(), base, offset);
2256   } else {
2257     return basic_plus_adr(base, offset);
2258   }
2259 }
2260 
2261 //--------------------------inline_number_methods-----------------------------
2262 // inline int     Integer.numberOfLeadingZeros(int)
2263 // inline int        Long.numberOfLeadingZeros(long)
2264 //
2265 // inline int     Integer.numberOfTrailingZeros(int)
2266 // inline int        Long.numberOfTrailingZeros(long)
2267 //
2268 // inline int     Integer.bitCount(int)
2269 // inline int        Long.bitCount(long)
2270 //
2271 // inline char  Character.reverseBytes(char)
2272 // inline short     Short.reverseBytes(short)
2273 // inline int     Integer.reverseBytes(int)
2274 // inline long       Long.reverseBytes(long)
2275 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2276   Node* arg = argument(0);
2277   Node* n;
2278   switch (id) {
2279   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2280   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2281   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2282   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2283   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2284   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2285   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2286   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2287   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2288   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2289   default:  fatal_unexpected_iid(id);  break;
2290   }
2291   set_result(_gvn.transform(n));
2292   return true;
2293 }
2294 
2295 //----------------------------inline_unsafe_access----------------------------
2296 
2297 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2298 
2299 // Helper that guards and inserts a pre-barrier.
2300 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2301                                         Node* pre_val, bool need_mem_bar) {
2302   // We could be accessing the referent field of a reference object. If so, when G1
2303   // is enabled, we need to log the value in the referent field in an SATB buffer.
2304   // This routine performs some compile time filters and generates suitable
2305   // runtime filters that guard the pre-barrier code.
2306   // Also add memory barrier for non volatile load from the referent field
2307   // to prevent commoning of loads across safepoint.
2308   if (!UseG1GC && !need_mem_bar)
2309     return;
2310 
2311   // Some compile time checks.
2312 
2313   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2314   const TypeX* otype = offset->find_intptr_t_type();
2315   if (otype != NULL && otype->is_con() &&
2316       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2317     // Constant offset but not the reference_offset so just return
2318     return;
2319   }
2320 
2321   // We only need to generate the runtime guards for instances.
2322   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2323   if (btype != NULL) {
2324     if (btype->isa_aryptr()) {
2325       // Array type so nothing to do
2326       return;
2327     }
2328 
2329     const TypeInstPtr* itype = btype->isa_instptr();
2330     if (itype != NULL) {
2331       // Can the klass of base_oop be statically determined to be
2332       // _not_ a sub-class of Reference and _not_ Object?
2333       ciKlass* klass = itype->klass();
2334       if ( klass->is_loaded() &&
2335           !klass->is_subtype_of(env()->Reference_klass()) &&
2336           !env()->Object_klass()->is_subtype_of(klass)) {
2337         return;
2338       }
2339     }
2340   }
2341 
2342   // The compile time filters did not reject base_oop/offset so
2343   // we need to generate the following runtime filters
2344   //
2345   // if (offset == java_lang_ref_Reference::_reference_offset) {
2346   //   if (instance_of(base, java.lang.ref.Reference)) {
2347   //     pre_barrier(_, pre_val, ...);
2348   //   }
2349   // }
2350 
2351   float likely   = PROB_LIKELY(  0.999);
2352   float unlikely = PROB_UNLIKELY(0.999);
2353 
2354   IdealKit ideal(this);
2355 #define __ ideal.
2356 
2357   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2358 
2359   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2360       // Update graphKit memory and control from IdealKit.
2361       sync_kit(ideal);
2362 
2363       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2364       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2365 
2366       // Update IdealKit memory and control from graphKit.
2367       __ sync_kit(this);
2368 
2369       Node* one = __ ConI(1);
2370       // is_instof == 0 if base_oop == NULL
2371       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2372 
2373         // Update graphKit from IdeakKit.
2374         sync_kit(ideal);
2375 
2376         // Use the pre-barrier to record the value in the referent field
2377         pre_barrier(false /* do_load */,
2378                     __ ctrl(),
2379                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2380                     pre_val /* pre_val */,
2381                     T_OBJECT);
2382         if (need_mem_bar) {
2383           // Add memory barrier to prevent commoning reads from this field
2384           // across safepoint since GC can change its value.
2385           insert_mem_bar(Op_MemBarCPUOrder);
2386         }
2387         // Update IdealKit from graphKit.
2388         __ sync_kit(this);
2389 
2390       } __ end_if(); // _ref_type != ref_none
2391   } __ end_if(); // offset == referent_offset
2392 
2393   // Final sync IdealKit and GraphKit.
2394   final_sync(ideal);
2395 #undef __
2396 }
2397 
2398 
2399 // Interpret Unsafe.fieldOffset cookies correctly:
2400 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2401 
2402 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2403   // Attempt to infer a sharper value type from the offset and base type.
2404   ciKlass* sharpened_klass = NULL;
2405 
2406   // See if it is an instance field, with an object type.
2407   if (alias_type->field() != NULL) {
2408     assert(!is_native_ptr, "native pointer op cannot use a java address");
2409     if (alias_type->field()->type()->is_klass()) {
2410       sharpened_klass = alias_type->field()->type()->as_klass();
2411     }
2412   }
2413 
2414   // See if it is a narrow oop array.
2415   if (adr_type->isa_aryptr()) {
2416     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2417       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2418       if (elem_type != NULL) {
2419         sharpened_klass = elem_type->klass();
2420       }
2421     }
2422   }
2423 
2424   // The sharpened class might be unloaded if there is no class loader
2425   // contraint in place.
2426   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2427     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2428 
2429 #ifndef PRODUCT
2430     if (C->print_intrinsics() || C->print_inlining()) {
2431       tty->print("  from base type: ");  adr_type->dump();
2432       tty->print("  sharpened value: ");  tjp->dump();
2433     }
2434 #endif
2435     // Sharpen the value type.
2436     return tjp;
2437   }
2438   return NULL;
2439 }
2440 
2441 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2442   if (callee()->is_static())  return false;  // caller must have the capability!
2443 
2444 #ifndef PRODUCT
2445   {
2446     ResourceMark rm;
2447     // Check the signatures.
2448     ciSignature* sig = callee()->signature();
2449 #ifdef ASSERT
2450     if (!is_store) {
2451       // Object getObject(Object base, int/long offset), etc.
2452       BasicType rtype = sig->return_type()->basic_type();
2453       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2454           rtype = T_ADDRESS;  // it is really a C void*
2455       assert(rtype == type, "getter must return the expected value");
2456       if (!is_native_ptr) {
2457         assert(sig->count() == 2, "oop getter has 2 arguments");
2458         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2459         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2460       } else {
2461         assert(sig->count() == 1, "native getter has 1 argument");
2462         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2463       }
2464     } else {
2465       // void putObject(Object base, int/long offset, Object x), etc.
2466       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2467       if (!is_native_ptr) {
2468         assert(sig->count() == 3, "oop putter has 3 arguments");
2469         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2470         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2471       } else {
2472         assert(sig->count() == 2, "native putter has 2 arguments");
2473         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2474       }
2475       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2476       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2477         vtype = T_ADDRESS;  // it is really a C void*
2478       assert(vtype == type, "putter must accept the expected value");
2479     }
2480 #endif // ASSERT
2481  }
2482 #endif //PRODUCT
2483 
2484   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2485 
2486   Node* receiver = argument(0);  // type: oop
2487 
2488   // Build address expression.  See the code in inline_unsafe_prefetch.
2489   Node* adr;
2490   Node* heap_base_oop = top();
2491   Node* offset = top();
2492   Node* val;
2493 
2494   if (!is_native_ptr) {
2495     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2496     Node* base = argument(1);  // type: oop
2497     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2498     offset = argument(2);  // type: long
2499     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2500     // to be plain byte offsets, which are also the same as those accepted
2501     // by oopDesc::field_base.
2502     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2503            "fieldOffset must be byte-scaled");
2504     // 32-bit machines ignore the high half!
2505     offset = ConvL2X(offset);
2506     adr = make_unsafe_address(base, offset);
2507     heap_base_oop = base;
2508     val = is_store ? argument(4) : NULL;
2509   } else {
2510     Node* ptr = argument(1);  // type: long
2511     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2512     adr = make_unsafe_address(NULL, ptr);
2513     val = is_store ? argument(3) : NULL;
2514   }
2515 
2516   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2517 
2518   // First guess at the value type.
2519   const Type *value_type = Type::get_const_basic_type(type);
2520 
2521   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2522   // there was not enough information to nail it down.
2523   Compile::AliasType* alias_type = C->alias_type(adr_type);
2524   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2525 
2526   // We will need memory barriers unless we can determine a unique
2527   // alias category for this reference.  (Note:  If for some reason
2528   // the barriers get omitted and the unsafe reference begins to "pollute"
2529   // the alias analysis of the rest of the graph, either Compile::can_alias
2530   // or Compile::must_alias will throw a diagnostic assert.)
2531   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2532 
2533   // If we are reading the value of the referent field of a Reference
2534   // object (either by using Unsafe directly or through reflection)
2535   // then, if G1 is enabled, we need to record the referent in an
2536   // SATB log buffer using the pre-barrier mechanism.
2537   // Also we need to add memory barrier to prevent commoning reads
2538   // from this field across safepoint since GC can change its value.
2539   bool need_read_barrier = !is_native_ptr && !is_store &&
2540                            offset != top() && heap_base_oop != top();
2541 
2542   if (!is_store && type == T_OBJECT) {
2543     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2544     if (tjp != NULL) {
2545       value_type = tjp;
2546     }
2547   }
2548 
2549   receiver = null_check(receiver);
2550   if (stopped()) {
2551     return true;
2552   }
2553   // Heap pointers get a null-check from the interpreter,
2554   // as a courtesy.  However, this is not guaranteed by Unsafe,
2555   // and it is not possible to fully distinguish unintended nulls
2556   // from intended ones in this API.
2557 
2558   if (is_volatile) {
2559     // We need to emit leading and trailing CPU membars (see below) in
2560     // addition to memory membars when is_volatile. This is a little
2561     // too strong, but avoids the need to insert per-alias-type
2562     // volatile membars (for stores; compare Parse::do_put_xxx), which
2563     // we cannot do effectively here because we probably only have a
2564     // rough approximation of type.
2565     need_mem_bar = true;
2566     // For Stores, place a memory ordering barrier now.
2567     if (is_store) {
2568       insert_mem_bar(Op_MemBarRelease);
2569     } else {
2570       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2571         insert_mem_bar(Op_MemBarVolatile);
2572       }
2573     }
2574   }
2575 
2576   // Memory barrier to prevent normal and 'unsafe' accesses from
2577   // bypassing each other.  Happens after null checks, so the
2578   // exception paths do not take memory state from the memory barrier,
2579   // so there's no problems making a strong assert about mixing users
2580   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2581   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2582   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2583 
2584   if (!is_store) {
2585     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2586     // load value
2587     switch (type) {
2588     case T_BOOLEAN:
2589     case T_CHAR:
2590     case T_BYTE:
2591     case T_SHORT:
2592     case T_INT:
2593     case T_LONG:
2594     case T_FLOAT:
2595     case T_DOUBLE:
2596       break;
2597     case T_OBJECT:
2598       if (need_read_barrier) {
2599         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2600       }
2601       break;
2602     case T_ADDRESS:
2603       // Cast to an int type.
2604       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2605       p = ConvX2L(p);
2606       break;
2607     default:
2608       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2609       break;
2610     }
2611     // The load node has the control of the preceding MemBarCPUOrder.  All
2612     // following nodes will have the control of the MemBarCPUOrder inserted at
2613     // the end of this method.  So, pushing the load onto the stack at a later
2614     // point is fine.
2615     set_result(p);
2616   } else {
2617     // place effect of store into memory
2618     switch (type) {
2619     case T_DOUBLE:
2620       val = dstore_rounding(val);
2621       break;
2622     case T_ADDRESS:
2623       // Repackage the long as a pointer.
2624       val = ConvL2X(val);
2625       val = _gvn.transform(new (C) CastX2PNode(val));
2626       break;
2627     }
2628 
2629     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2630     if (type != T_OBJECT ) {
2631       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2632     } else {
2633       // Possibly an oop being stored to Java heap or native memory
2634       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2635         // oop to Java heap.
2636         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2637       } else {
2638         // We can't tell at compile time if we are storing in the Java heap or outside
2639         // of it. So we need to emit code to conditionally do the proper type of
2640         // store.
2641 
2642         IdealKit ideal(this);
2643 #define __ ideal.
2644         // QQQ who knows what probability is here??
2645         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2646           // Sync IdealKit and graphKit.
2647           sync_kit(ideal);
2648           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2649           // Update IdealKit memory.
2650           __ sync_kit(this);
2651         } __ else_(); {
2652           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2653         } __ end_if();
2654         // Final sync IdealKit and GraphKit.
2655         final_sync(ideal);
2656 #undef __
2657       }
2658     }
2659   }
2660 
2661   if (is_volatile) {
2662     if (!is_store) {
2663       insert_mem_bar(Op_MemBarAcquire);
2664     } else {
2665       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2666         insert_mem_bar(Op_MemBarVolatile);
2667       }
2668     }
2669   }
2670 
2671   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2672 
2673   return true;
2674 }
2675 
2676 //----------------------------inline_unsafe_prefetch----------------------------
2677 
2678 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2679 #ifndef PRODUCT
2680   {
2681     ResourceMark rm;
2682     // Check the signatures.
2683     ciSignature* sig = callee()->signature();
2684 #ifdef ASSERT
2685     // Object getObject(Object base, int/long offset), etc.
2686     BasicType rtype = sig->return_type()->basic_type();
2687     if (!is_native_ptr) {
2688       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2689       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2690       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2691     } else {
2692       assert(sig->count() == 1, "native prefetch has 1 argument");
2693       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2694     }
2695 #endif // ASSERT
2696   }
2697 #endif // !PRODUCT
2698 
2699   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2700 
2701   const int idx = is_static ? 0 : 1;
2702   if (!is_static) {
2703     null_check_receiver();
2704     if (stopped()) {
2705       return true;
2706     }
2707   }
2708 
2709   // Build address expression.  See the code in inline_unsafe_access.
2710   Node *adr;
2711   if (!is_native_ptr) {
2712     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2713     Node* base   = argument(idx + 0);  // type: oop
2714     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2715     Node* offset = argument(idx + 1);  // type: long
2716     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2717     // to be plain byte offsets, which are also the same as those accepted
2718     // by oopDesc::field_base.
2719     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2720            "fieldOffset must be byte-scaled");
2721     // 32-bit machines ignore the high half!
2722     offset = ConvL2X(offset);
2723     adr = make_unsafe_address(base, offset);
2724   } else {
2725     Node* ptr = argument(idx + 0);  // type: long
2726     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2727     adr = make_unsafe_address(NULL, ptr);
2728   }
2729 
2730   // Generate the read or write prefetch
2731   Node *prefetch;
2732   if (is_store) {
2733     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2734   } else {
2735     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2736   }
2737   prefetch->init_req(0, control());
2738   set_i_o(_gvn.transform(prefetch));
2739 
2740   return true;
2741 }
2742 
2743 //----------------------------inline_unsafe_load_store----------------------------
2744 // This method serves a couple of different customers (depending on LoadStoreKind):
2745 //
2746 // LS_cmpxchg:
2747 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2748 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2749 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2750 //
2751 // LS_xadd:
2752 //   public int  getAndAddInt( Object o, long offset, int  delta)
2753 //   public long getAndAddLong(Object o, long offset, long delta)
2754 //
2755 // LS_xchg:
2756 //   int    getAndSet(Object o, long offset, int    newValue)
2757 //   long   getAndSet(Object o, long offset, long   newValue)
2758 //   Object getAndSet(Object o, long offset, Object newValue)
2759 //
2760 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2761   // This basic scheme here is the same as inline_unsafe_access, but
2762   // differs in enough details that combining them would make the code
2763   // overly confusing.  (This is a true fact! I originally combined
2764   // them, but even I was confused by it!) As much code/comments as
2765   // possible are retained from inline_unsafe_access though to make
2766   // the correspondences clearer. - dl
2767 
2768   if (callee()->is_static())  return false;  // caller must have the capability!
2769 
2770 #ifndef PRODUCT
2771   BasicType rtype;
2772   {
2773     ResourceMark rm;
2774     // Check the signatures.
2775     ciSignature* sig = callee()->signature();
2776     rtype = sig->return_type()->basic_type();
2777     if (kind == LS_xadd || kind == LS_xchg) {
2778       // Check the signatures.
2779 #ifdef ASSERT
2780       assert(rtype == type, "get and set must return the expected type");
2781       assert(sig->count() == 3, "get and set has 3 arguments");
2782       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2783       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2784       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2785 #endif // ASSERT
2786     } else if (kind == LS_cmpxchg) {
2787       // Check the signatures.
2788 #ifdef ASSERT
2789       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2790       assert(sig->count() == 4, "CAS has 4 arguments");
2791       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2792       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2793 #endif // ASSERT
2794     } else {
2795       ShouldNotReachHere();
2796     }
2797   }
2798 #endif //PRODUCT
2799 
2800   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2801 
2802   // Get arguments:
2803   Node* receiver = NULL;
2804   Node* base     = NULL;
2805   Node* offset   = NULL;
2806   Node* oldval   = NULL;
2807   Node* newval   = NULL;
2808   if (kind == LS_cmpxchg) {
2809     const bool two_slot_type = type2size[type] == 2;
2810     receiver = argument(0);  // type: oop
2811     base     = argument(1);  // type: oop
2812     offset   = argument(2);  // type: long
2813     oldval   = argument(4);  // type: oop, int, or long
2814     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2815   } else if (kind == LS_xadd || kind == LS_xchg){
2816     receiver = argument(0);  // type: oop
2817     base     = argument(1);  // type: oop
2818     offset   = argument(2);  // type: long
2819     oldval   = NULL;
2820     newval   = argument(4);  // type: oop, int, or long
2821   }
2822 
2823   // Null check receiver.
2824   receiver = null_check(receiver);
2825   if (stopped()) {
2826     return true;
2827   }
2828 
2829   // Build field offset expression.
2830   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2831   // to be plain byte offsets, which are also the same as those accepted
2832   // by oopDesc::field_base.
2833   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2834   // 32-bit machines ignore the high half of long offsets
2835   offset = ConvL2X(offset);
2836   Node* adr = make_unsafe_address(base, offset);
2837   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2838 
2839   // For CAS, unlike inline_unsafe_access, there seems no point in
2840   // trying to refine types. Just use the coarse types here.
2841   const Type *value_type = Type::get_const_basic_type(type);
2842   Compile::AliasType* alias_type = C->alias_type(adr_type);
2843   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2844 
2845   if (kind == LS_xchg && type == T_OBJECT) {
2846     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2847     if (tjp != NULL) {
2848       value_type = tjp;
2849     }
2850   }
2851 
2852   int alias_idx = C->get_alias_index(adr_type);
2853 
2854   // Memory-model-wise, a LoadStore acts like a little synchronized
2855   // block, so needs barriers on each side.  These don't translate
2856   // into actual barriers on most machines, but we still need rest of
2857   // compiler to respect ordering.
2858 
2859   insert_mem_bar(Op_MemBarRelease);
2860   insert_mem_bar(Op_MemBarCPUOrder);
2861 
2862   // 4984716: MemBars must be inserted before this
2863   //          memory node in order to avoid a false
2864   //          dependency which will confuse the scheduler.
2865   Node *mem = memory(alias_idx);
2866 
2867   // For now, we handle only those cases that actually exist: ints,
2868   // longs, and Object. Adding others should be straightforward.
2869   Node* load_store;
2870   switch(type) {
2871   case T_INT:
2872     if (kind == LS_xadd) {
2873       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2874     } else if (kind == LS_xchg) {
2875       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2876     } else if (kind == LS_cmpxchg) {
2877       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2878     } else {
2879       ShouldNotReachHere();
2880     }
2881     break;
2882   case T_LONG:
2883     if (kind == LS_xadd) {
2884       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2885     } else if (kind == LS_xchg) {
2886       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2887     } else if (kind == LS_cmpxchg) {
2888       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2889     } else {
2890       ShouldNotReachHere();
2891     }
2892     break;
2893   case T_OBJECT:
2894     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2895     // could be delayed during Parse (for example, in adjust_map_after_if()).
2896     // Execute transformation here to avoid barrier generation in such case.
2897     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2898       newval = _gvn.makecon(TypePtr::NULL_PTR);
2899 
2900     // Reference stores need a store barrier.
2901     if (kind == LS_xchg) {
2902       // If pre-barrier must execute before the oop store, old value will require do_load here.
2903       if (!can_move_pre_barrier()) {
2904         pre_barrier(true /* do_load*/,
2905                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2906                     NULL /* pre_val*/,
2907                     T_OBJECT);
2908       } // Else move pre_barrier to use load_store value, see below.
2909     } else if (kind == LS_cmpxchg) {
2910       // Same as for newval above:
2911       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2912         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2913       }
2914       // The only known value which might get overwritten is oldval.
2915       pre_barrier(false /* do_load */,
2916                   control(), NULL, NULL, max_juint, NULL, NULL,
2917                   oldval /* pre_val */,
2918                   T_OBJECT);
2919     } else {
2920       ShouldNotReachHere();
2921     }
2922 
2923 #ifdef _LP64
2924     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2925       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2926       if (kind == LS_xchg) {
2927         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2928                                                            newval_enc, adr_type, value_type->make_narrowoop()));
2929       } else {
2930         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2931         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2932         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2933                                                                 newval_enc, oldval_enc));
2934       }
2935     } else
2936 #endif
2937     {
2938       if (kind == LS_xchg) {
2939         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2940       } else {
2941         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2942         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2943       }
2944     }
2945     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2946     break;
2947   default:
2948     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2949     break;
2950   }
2951 
2952   // SCMemProjNodes represent the memory state of a LoadStore. Their
2953   // main role is to prevent LoadStore nodes from being optimized away
2954   // when their results aren't used.
2955   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2956   set_memory(proj, alias_idx);
2957 
2958   if (type == T_OBJECT && kind == LS_xchg) {
2959 #ifdef _LP64
2960     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2961       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2962     }
2963 #endif
2964     if (can_move_pre_barrier()) {
2965       // Don't need to load pre_val. The old value is returned by load_store.
2966       // The pre_barrier can execute after the xchg as long as no safepoint
2967       // gets inserted between them.
2968       pre_barrier(false /* do_load */,
2969                   control(), NULL, NULL, max_juint, NULL, NULL,
2970                   load_store /* pre_val */,
2971                   T_OBJECT);
2972     }
2973   }
2974 
2975   // Add the trailing membar surrounding the access
2976   insert_mem_bar(Op_MemBarCPUOrder);
2977   insert_mem_bar(Op_MemBarAcquire);
2978 
2979   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2980   set_result(load_store);
2981   return true;
2982 }
2983 
2984 //----------------------------inline_unsafe_ordered_store----------------------
2985 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2986 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2987 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2988 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2989   // This is another variant of inline_unsafe_access, differing in
2990   // that it always issues store-store ("release") barrier and ensures
2991   // store-atomicity (which only matters for "long").
2992 
2993   if (callee()->is_static())  return false;  // caller must have the capability!
2994 
2995 #ifndef PRODUCT
2996   {
2997     ResourceMark rm;
2998     // Check the signatures.
2999     ciSignature* sig = callee()->signature();
3000 #ifdef ASSERT
3001     BasicType rtype = sig->return_type()->basic_type();
3002     assert(rtype == T_VOID, "must return void");
3003     assert(sig->count() == 3, "has 3 arguments");
3004     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3005     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3006 #endif // ASSERT
3007   }
3008 #endif //PRODUCT
3009 
3010   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3011 
3012   // Get arguments:
3013   Node* receiver = argument(0);  // type: oop
3014   Node* base     = argument(1);  // type: oop
3015   Node* offset   = argument(2);  // type: long
3016   Node* val      = argument(4);  // type: oop, int, or long
3017 
3018   // Null check receiver.
3019   receiver = null_check(receiver);
3020   if (stopped()) {
3021     return true;
3022   }
3023 
3024   // Build field offset expression.
3025   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3026   // 32-bit machines ignore the high half of long offsets
3027   offset = ConvL2X(offset);
3028   Node* adr = make_unsafe_address(base, offset);
3029   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3030   const Type *value_type = Type::get_const_basic_type(type);
3031   Compile::AliasType* alias_type = C->alias_type(adr_type);
3032 
3033   insert_mem_bar(Op_MemBarRelease);
3034   insert_mem_bar(Op_MemBarCPUOrder);
3035   // Ensure that the store is atomic for longs:
3036   const bool require_atomic_access = true;
3037   Node* store;
3038   if (type == T_OBJECT) // reference stores need a store barrier.
3039     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3040   else {
3041     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3042   }
3043   insert_mem_bar(Op_MemBarCPUOrder);
3044   return true;
3045 }
3046 
3047 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3048   // Regardless of form, don't allow previous ld/st to move down,
3049   // then issue acquire, release, or volatile mem_bar.
3050   insert_mem_bar(Op_MemBarCPUOrder);
3051   switch(id) {
3052     case vmIntrinsics::_loadFence:
3053       insert_mem_bar(Op_LoadFence);
3054       return true;
3055     case vmIntrinsics::_storeFence:
3056       insert_mem_bar(Op_StoreFence);
3057       return true;
3058     case vmIntrinsics::_fullFence:
3059       insert_mem_bar(Op_MemBarVolatile);
3060       return true;
3061     default:
3062       fatal_unexpected_iid(id);
3063       return false;
3064   }
3065 }
3066 
3067 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3068   if (!kls->is_Con()) {
3069     return true;
3070   }
3071   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3072   if (klsptr == NULL) {
3073     return true;
3074   }
3075   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3076   // don't need a guard for a klass that is already initialized
3077   return !ik->is_initialized();
3078 }
3079 
3080 //----------------------------inline_unsafe_allocate---------------------------
3081 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3082 bool LibraryCallKit::inline_unsafe_allocate() {
3083   if (callee()->is_static())  return false;  // caller must have the capability!
3084 
3085   null_check_receiver();  // null-check, then ignore
3086   Node* cls = null_check(argument(1));
3087   if (stopped())  return true;
3088 
3089   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3090   kls = null_check(kls);
3091   if (stopped())  return true;  // argument was like int.class
3092 
3093   Node* test = NULL;
3094   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3095     // Note:  The argument might still be an illegal value like
3096     // Serializable.class or Object[].class.   The runtime will handle it.
3097     // But we must make an explicit check for initialization.
3098     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3099     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3100     // can generate code to load it as unsigned byte.
3101     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3102     Node* bits = intcon(InstanceKlass::fully_initialized);
3103     test = _gvn.transform(new (C) SubINode(inst, bits));
3104     // The 'test' is non-zero if we need to take a slow path.
3105   }
3106 
3107   Node* obj = new_instance(kls, test);
3108   set_result(obj);
3109   return true;
3110 }
3111 
3112 #ifdef TRACE_HAVE_INTRINSICS
3113 /*
3114  * oop -> myklass
3115  * myklass->trace_id |= USED
3116  * return myklass->trace_id & ~0x3
3117  */
3118 bool LibraryCallKit::inline_native_classID() {
3119   null_check_receiver();  // null-check, then ignore
3120   Node* cls = null_check(argument(1), T_OBJECT);
3121   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3122   kls = null_check(kls, T_OBJECT);
3123   ByteSize offset = TRACE_ID_OFFSET;
3124   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3125   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3126   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3127   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3128   Node* clsused = longcon(0x01l); // set the class bit
3129   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3130 
3131   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3132   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3133   set_result(andl);
3134   return true;
3135 }
3136 
3137 bool LibraryCallKit::inline_native_threadID() {
3138   Node* tls_ptr = NULL;
3139   Node* cur_thr = generate_current_thread(tls_ptr);
3140   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3141   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3142   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3143 
3144   Node* threadid = NULL;
3145   size_t thread_id_size = OSThread::thread_id_size();
3146   if (thread_id_size == (size_t) BytesPerLong) {
3147     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3148   } else if (thread_id_size == (size_t) BytesPerInt) {
3149     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3150   } else {
3151     ShouldNotReachHere();
3152   }
3153   set_result(threadid);
3154   return true;
3155 }
3156 #endif
3157 
3158 //------------------------inline_native_time_funcs--------------
3159 // inline code for System.currentTimeMillis() and System.nanoTime()
3160 // these have the same type and signature
3161 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3162   const TypeFunc* tf = OptoRuntime::void_long_Type();
3163   const TypePtr* no_memory_effects = NULL;
3164   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3165   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3166 #ifdef ASSERT
3167   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3168   assert(value_top == top(), "second value must be top");
3169 #endif
3170   set_result(value);
3171   return true;
3172 }
3173 
3174 //------------------------inline_native_currentThread------------------
3175 bool LibraryCallKit::inline_native_currentThread() {
3176   Node* junk = NULL;
3177   set_result(generate_current_thread(junk));
3178   return true;
3179 }
3180 
3181 //------------------------inline_native_isInterrupted------------------
3182 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3183 bool LibraryCallKit::inline_native_isInterrupted() {
3184   // Add a fast path to t.isInterrupted(clear_int):
3185   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3186   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3187   // So, in the common case that the interrupt bit is false,
3188   // we avoid making a call into the VM.  Even if the interrupt bit
3189   // is true, if the clear_int argument is false, we avoid the VM call.
3190   // However, if the receiver is not currentThread, we must call the VM,
3191   // because there must be some locking done around the operation.
3192 
3193   // We only go to the fast case code if we pass two guards.
3194   // Paths which do not pass are accumulated in the slow_region.
3195 
3196   enum {
3197     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3198     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3199     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3200     PATH_LIMIT
3201   };
3202 
3203   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3204   // out of the function.
3205   insert_mem_bar(Op_MemBarCPUOrder);
3206 
3207   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3208   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3209 
3210   RegionNode* slow_region = new (C) RegionNode(1);
3211   record_for_igvn(slow_region);
3212 
3213   // (a) Receiving thread must be the current thread.
3214   Node* rec_thr = argument(0);
3215   Node* tls_ptr = NULL;
3216   Node* cur_thr = generate_current_thread(tls_ptr);
3217   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3218   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3219 
3220   generate_slow_guard(bol_thr, slow_region);
3221 
3222   // (b) Interrupt bit on TLS must be false.
3223   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3224   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3225   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3226 
3227   // Set the control input on the field _interrupted read to prevent it floating up.
3228   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3229   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3230   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3231 
3232   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3233 
3234   // First fast path:  if (!TLS._interrupted) return false;
3235   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3236   result_rgn->init_req(no_int_result_path, false_bit);
3237   result_val->init_req(no_int_result_path, intcon(0));
3238 
3239   // drop through to next case
3240   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3241 
3242   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3243   Node* clr_arg = argument(1);
3244   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3245   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3246   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3247 
3248   // Second fast path:  ... else if (!clear_int) return true;
3249   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3250   result_rgn->init_req(no_clear_result_path, false_arg);
3251   result_val->init_req(no_clear_result_path, intcon(1));
3252 
3253   // drop through to next case
3254   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3255 
3256   // (d) Otherwise, go to the slow path.
3257   slow_region->add_req(control());
3258   set_control( _gvn.transform(slow_region));
3259 
3260   if (stopped()) {
3261     // There is no slow path.
3262     result_rgn->init_req(slow_result_path, top());
3263     result_val->init_req(slow_result_path, top());
3264   } else {
3265     // non-virtual because it is a private non-static
3266     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3267 
3268     Node* slow_val = set_results_for_java_call(slow_call);
3269     // this->control() comes from set_results_for_java_call
3270 
3271     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3272     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3273 
3274     // These two phis are pre-filled with copies of of the fast IO and Memory
3275     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3276     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3277 
3278     result_rgn->init_req(slow_result_path, control());
3279     result_io ->init_req(slow_result_path, i_o());
3280     result_mem->init_req(slow_result_path, reset_memory());
3281     result_val->init_req(slow_result_path, slow_val);
3282 
3283     set_all_memory(_gvn.transform(result_mem));
3284     set_i_o(       _gvn.transform(result_io));
3285   }
3286 
3287   C->set_has_split_ifs(true); // Has chance for split-if optimization
3288   set_result(result_rgn, result_val);
3289   return true;
3290 }
3291 
3292 //---------------------------load_mirror_from_klass----------------------------
3293 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3294 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3295   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3296   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3297 }
3298 
3299 //-----------------------load_klass_from_mirror_common-------------------------
3300 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3301 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3302 // and branch to the given path on the region.
3303 // If never_see_null, take an uncommon trap on null, so we can optimistically
3304 // compile for the non-null case.
3305 // If the region is NULL, force never_see_null = true.
3306 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3307                                                     bool never_see_null,
3308                                                     RegionNode* region,
3309                                                     int null_path,
3310                                                     int offset) {
3311   if (region == NULL)  never_see_null = true;
3312   Node* p = basic_plus_adr(mirror, offset);
3313   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3314   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3315   Node* null_ctl = top();
3316   kls = null_check_oop(kls, &null_ctl, never_see_null);
3317   if (region != NULL) {
3318     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3319     region->init_req(null_path, null_ctl);
3320   } else {
3321     assert(null_ctl == top(), "no loose ends");
3322   }
3323   return kls;
3324 }
3325 
3326 //--------------------(inline_native_Class_query helpers)---------------------
3327 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3328 // Fall through if (mods & mask) == bits, take the guard otherwise.
3329 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3330   // Branch around if the given klass has the given modifier bit set.
3331   // Like generate_guard, adds a new path onto the region.
3332   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3333   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3334   Node* mask = intcon(modifier_mask);
3335   Node* bits = intcon(modifier_bits);
3336   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3337   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3338   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3339   return generate_fair_guard(bol, region);
3340 }
3341 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3342   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3343 }
3344 
3345 //-------------------------inline_native_Class_query-------------------
3346 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3347   const Type* return_type = TypeInt::BOOL;
3348   Node* prim_return_value = top();  // what happens if it's a primitive class?
3349   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3350   bool expect_prim = false;     // most of these guys expect to work on refs
3351 
3352   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3353 
3354   Node* mirror = argument(0);
3355   Node* obj    = top();
3356 
3357   switch (id) {
3358   case vmIntrinsics::_isInstance:
3359     // nothing is an instance of a primitive type
3360     prim_return_value = intcon(0);
3361     obj = argument(1);
3362     break;
3363   case vmIntrinsics::_getModifiers:
3364     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3365     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3366     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3367     break;
3368   case vmIntrinsics::_isInterface:
3369     prim_return_value = intcon(0);
3370     break;
3371   case vmIntrinsics::_isArray:
3372     prim_return_value = intcon(0);
3373     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3374     break;
3375   case vmIntrinsics::_isPrimitive:
3376     prim_return_value = intcon(1);
3377     expect_prim = true;  // obviously
3378     break;
3379   case vmIntrinsics::_getSuperclass:
3380     prim_return_value = null();
3381     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3382     break;
3383   case vmIntrinsics::_getComponentType:
3384     prim_return_value = null();
3385     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3386     break;
3387   case vmIntrinsics::_getClassAccessFlags:
3388     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3389     return_type = TypeInt::INT;  // not bool!  6297094
3390     break;
3391   default:
3392     fatal_unexpected_iid(id);
3393     break;
3394   }
3395 
3396   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3397   if (mirror_con == NULL)  return false;  // cannot happen?
3398 
3399 #ifndef PRODUCT
3400   if (C->print_intrinsics() || C->print_inlining()) {
3401     ciType* k = mirror_con->java_mirror_type();
3402     if (k) {
3403       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3404       k->print_name();
3405       tty->cr();
3406     }
3407   }
3408 #endif
3409 
3410   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3411   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3412   record_for_igvn(region);
3413   PhiNode* phi = new (C) PhiNode(region, return_type);
3414 
3415   // The mirror will never be null of Reflection.getClassAccessFlags, however
3416   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3417   // if it is. See bug 4774291.
3418 
3419   // For Reflection.getClassAccessFlags(), the null check occurs in
3420   // the wrong place; see inline_unsafe_access(), above, for a similar
3421   // situation.
3422   mirror = null_check(mirror);
3423   // If mirror or obj is dead, only null-path is taken.
3424   if (stopped())  return true;
3425 
3426   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3427 
3428   // Now load the mirror's klass metaobject, and null-check it.
3429   // Side-effects region with the control path if the klass is null.
3430   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3431   // If kls is null, we have a primitive mirror.
3432   phi->init_req(_prim_path, prim_return_value);
3433   if (stopped()) { set_result(region, phi); return true; }
3434   bool safe_for_replace = (region->in(_prim_path) == top());
3435 
3436   Node* p;  // handy temp
3437   Node* null_ctl;
3438 
3439   // Now that we have the non-null klass, we can perform the real query.
3440   // For constant classes, the query will constant-fold in LoadNode::Value.
3441   Node* query_value = top();
3442   switch (id) {
3443   case vmIntrinsics::_isInstance:
3444     // nothing is an instance of a primitive type
3445     query_value = gen_instanceof(obj, kls, safe_for_replace);
3446     break;
3447 
3448   case vmIntrinsics::_getModifiers:
3449     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3450     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3451     break;
3452 
3453   case vmIntrinsics::_isInterface:
3454     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3455     if (generate_interface_guard(kls, region) != NULL)
3456       // A guard was added.  If the guard is taken, it was an interface.
3457       phi->add_req(intcon(1));
3458     // If we fall through, it's a plain class.
3459     query_value = intcon(0);
3460     break;
3461 
3462   case vmIntrinsics::_isArray:
3463     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3464     if (generate_array_guard(kls, region) != NULL)
3465       // A guard was added.  If the guard is taken, it was an array.
3466       phi->add_req(intcon(1));
3467     // If we fall through, it's a plain class.
3468     query_value = intcon(0);
3469     break;
3470 
3471   case vmIntrinsics::_isPrimitive:
3472     query_value = intcon(0); // "normal" path produces false
3473     break;
3474 
3475   case vmIntrinsics::_getSuperclass:
3476     // The rules here are somewhat unfortunate, but we can still do better
3477     // with random logic than with a JNI call.
3478     // Interfaces store null or Object as _super, but must report null.
3479     // Arrays store an intermediate super as _super, but must report Object.
3480     // Other types can report the actual _super.
3481     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3482     if (generate_interface_guard(kls, region) != NULL)
3483       // A guard was added.  If the guard is taken, it was an interface.
3484       phi->add_req(null());
3485     if (generate_array_guard(kls, region) != NULL)
3486       // A guard was added.  If the guard is taken, it was an array.
3487       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3488     // If we fall through, it's a plain class.  Get its _super.
3489     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3490     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3491     null_ctl = top();
3492     kls = null_check_oop(kls, &null_ctl);
3493     if (null_ctl != top()) {
3494       // If the guard is taken, Object.superClass is null (both klass and mirror).
3495       region->add_req(null_ctl);
3496       phi   ->add_req(null());
3497     }
3498     if (!stopped()) {
3499       query_value = load_mirror_from_klass(kls);
3500     }
3501     break;
3502 
3503   case vmIntrinsics::_getComponentType:
3504     if (generate_array_guard(kls, region) != NULL) {
3505       // Be sure to pin the oop load to the guard edge just created:
3506       Node* is_array_ctrl = region->in(region->req()-1);
3507       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3508       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3509       phi->add_req(cmo);
3510     }
3511     query_value = null();  // non-array case is null
3512     break;
3513 
3514   case vmIntrinsics::_getClassAccessFlags:
3515     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3516     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3517     break;
3518 
3519   default:
3520     fatal_unexpected_iid(id);
3521     break;
3522   }
3523 
3524   // Fall-through is the normal case of a query to a real class.
3525   phi->init_req(1, query_value);
3526   region->init_req(1, control());
3527 
3528   C->set_has_split_ifs(true); // Has chance for split-if optimization
3529   set_result(region, phi);
3530   return true;
3531 }
3532 
3533 //--------------------------inline_native_subtype_check------------------------
3534 // This intrinsic takes the JNI calls out of the heart of
3535 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3536 bool LibraryCallKit::inline_native_subtype_check() {
3537   // Pull both arguments off the stack.
3538   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3539   args[0] = argument(0);
3540   args[1] = argument(1);
3541   Node* klasses[2];             // corresponding Klasses: superk, subk
3542   klasses[0] = klasses[1] = top();
3543 
3544   enum {
3545     // A full decision tree on {superc is prim, subc is prim}:
3546     _prim_0_path = 1,           // {P,N} => false
3547                                 // {P,P} & superc!=subc => false
3548     _prim_same_path,            // {P,P} & superc==subc => true
3549     _prim_1_path,               // {N,P} => false
3550     _ref_subtype_path,          // {N,N} & subtype check wins => true
3551     _both_ref_path,             // {N,N} & subtype check loses => false
3552     PATH_LIMIT
3553   };
3554 
3555   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3556   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3557   record_for_igvn(region);
3558 
3559   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3560   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3561   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3562 
3563   // First null-check both mirrors and load each mirror's klass metaobject.
3564   int which_arg;
3565   for (which_arg = 0; which_arg <= 1; which_arg++) {
3566     Node* arg = args[which_arg];
3567     arg = null_check(arg);
3568     if (stopped())  break;
3569     args[which_arg] = arg;
3570 
3571     Node* p = basic_plus_adr(arg, class_klass_offset);
3572     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3573     klasses[which_arg] = _gvn.transform(kls);
3574   }
3575 
3576   // Having loaded both klasses, test each for null.
3577   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3578   for (which_arg = 0; which_arg <= 1; which_arg++) {
3579     Node* kls = klasses[which_arg];
3580     Node* null_ctl = top();
3581     kls = null_check_oop(kls, &null_ctl, never_see_null);
3582     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3583     region->init_req(prim_path, null_ctl);
3584     if (stopped())  break;
3585     klasses[which_arg] = kls;
3586   }
3587 
3588   if (!stopped()) {
3589     // now we have two reference types, in klasses[0..1]
3590     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3591     Node* superk = klasses[0];  // the receiver
3592     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3593     // now we have a successful reference subtype check
3594     region->set_req(_ref_subtype_path, control());
3595   }
3596 
3597   // If both operands are primitive (both klasses null), then
3598   // we must return true when they are identical primitives.
3599   // It is convenient to test this after the first null klass check.
3600   set_control(region->in(_prim_0_path)); // go back to first null check
3601   if (!stopped()) {
3602     // Since superc is primitive, make a guard for the superc==subc case.
3603     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3604     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3605     generate_guard(bol_eq, region, PROB_FAIR);
3606     if (region->req() == PATH_LIMIT+1) {
3607       // A guard was added.  If the added guard is taken, superc==subc.
3608       region->swap_edges(PATH_LIMIT, _prim_same_path);
3609       region->del_req(PATH_LIMIT);
3610     }
3611     region->set_req(_prim_0_path, control()); // Not equal after all.
3612   }
3613 
3614   // these are the only paths that produce 'true':
3615   phi->set_req(_prim_same_path,   intcon(1));
3616   phi->set_req(_ref_subtype_path, intcon(1));
3617 
3618   // pull together the cases:
3619   assert(region->req() == PATH_LIMIT, "sane region");
3620   for (uint i = 1; i < region->req(); i++) {
3621     Node* ctl = region->in(i);
3622     if (ctl == NULL || ctl == top()) {
3623       region->set_req(i, top());
3624       phi   ->set_req(i, top());
3625     } else if (phi->in(i) == NULL) {
3626       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3627     }
3628   }
3629 
3630   set_control(_gvn.transform(region));
3631   set_result(_gvn.transform(phi));
3632   return true;
3633 }
3634 
3635 //---------------------generate_array_guard_common------------------------
3636 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3637                                                   bool obj_array, bool not_array) {
3638   // If obj_array/non_array==false/false:
3639   // Branch around if the given klass is in fact an array (either obj or prim).
3640   // If obj_array/non_array==false/true:
3641   // Branch around if the given klass is not an array klass of any kind.
3642   // If obj_array/non_array==true/true:
3643   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3644   // If obj_array/non_array==true/false:
3645   // Branch around if the kls is an oop array (Object[] or subtype)
3646   //
3647   // Like generate_guard, adds a new path onto the region.
3648   jint  layout_con = 0;
3649   Node* layout_val = get_layout_helper(kls, layout_con);
3650   if (layout_val == NULL) {
3651     bool query = (obj_array
3652                   ? Klass::layout_helper_is_objArray(layout_con)
3653                   : Klass::layout_helper_is_array(layout_con));
3654     if (query == not_array) {
3655       return NULL;                       // never a branch
3656     } else {                             // always a branch
3657       Node* always_branch = control();
3658       if (region != NULL)
3659         region->add_req(always_branch);
3660       set_control(top());
3661       return always_branch;
3662     }
3663   }
3664   // Now test the correct condition.
3665   jint  nval = (obj_array
3666                 ? ((jint)Klass::_lh_array_tag_type_value
3667                    <<    Klass::_lh_array_tag_shift)
3668                 : Klass::_lh_neutral_value);
3669   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3670   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3671   // invert the test if we are looking for a non-array
3672   if (not_array)  btest = BoolTest(btest).negate();
3673   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3674   return generate_fair_guard(bol, region);
3675 }
3676 
3677 
3678 //-----------------------inline_native_newArray--------------------------
3679 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3680 bool LibraryCallKit::inline_native_newArray() {
3681   Node* mirror    = argument(0);
3682   Node* count_val = argument(1);
3683 
3684   mirror = null_check(mirror);
3685   // If mirror or obj is dead, only null-path is taken.
3686   if (stopped())  return true;
3687 
3688   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3689   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3690   PhiNode*    result_val = new(C) PhiNode(result_reg,
3691                                           TypeInstPtr::NOTNULL);
3692   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3693   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3694                                           TypePtr::BOTTOM);
3695 
3696   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3697   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3698                                                   result_reg, _slow_path);
3699   Node* normal_ctl   = control();
3700   Node* no_array_ctl = result_reg->in(_slow_path);
3701 
3702   // Generate code for the slow case.  We make a call to newArray().
3703   set_control(no_array_ctl);
3704   if (!stopped()) {
3705     // Either the input type is void.class, or else the
3706     // array klass has not yet been cached.  Either the
3707     // ensuing call will throw an exception, or else it
3708     // will cache the array klass for next time.
3709     PreserveJVMState pjvms(this);
3710     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3711     Node* slow_result = set_results_for_java_call(slow_call);
3712     // this->control() comes from set_results_for_java_call
3713     result_reg->set_req(_slow_path, control());
3714     result_val->set_req(_slow_path, slow_result);
3715     result_io ->set_req(_slow_path, i_o());
3716     result_mem->set_req(_slow_path, reset_memory());
3717   }
3718 
3719   set_control(normal_ctl);
3720   if (!stopped()) {
3721     // Normal case:  The array type has been cached in the java.lang.Class.
3722     // The following call works fine even if the array type is polymorphic.
3723     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3724     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3725     result_reg->init_req(_normal_path, control());
3726     result_val->init_req(_normal_path, obj);
3727     result_io ->init_req(_normal_path, i_o());
3728     result_mem->init_req(_normal_path, reset_memory());
3729   }
3730 
3731   // Return the combined state.
3732   set_i_o(        _gvn.transform(result_io)  );
3733   set_all_memory( _gvn.transform(result_mem));
3734 
3735   C->set_has_split_ifs(true); // Has chance for split-if optimization
3736   set_result(result_reg, result_val);
3737   return true;
3738 }
3739 
3740 //----------------------inline_native_getLength--------------------------
3741 // public static native int java.lang.reflect.Array.getLength(Object array);
3742 bool LibraryCallKit::inline_native_getLength() {
3743   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3744 
3745   Node* array = null_check(argument(0));
3746   // If array is dead, only null-path is taken.
3747   if (stopped())  return true;
3748 
3749   // Deoptimize if it is a non-array.
3750   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3751 
3752   if (non_array != NULL) {
3753     PreserveJVMState pjvms(this);
3754     set_control(non_array);
3755     uncommon_trap(Deoptimization::Reason_intrinsic,
3756                   Deoptimization::Action_maybe_recompile);
3757   }
3758 
3759   // If control is dead, only non-array-path is taken.
3760   if (stopped())  return true;
3761 
3762   // The works fine even if the array type is polymorphic.
3763   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3764   Node* result = load_array_length(array);
3765 
3766   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3767   set_result(result);
3768   return true;
3769 }
3770 
3771 //------------------------inline_array_copyOf----------------------------
3772 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3773 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3774 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3775   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3776 
3777   // Get the arguments.
3778   Node* original          = argument(0);
3779   Node* start             = is_copyOfRange? argument(1): intcon(0);
3780   Node* end               = is_copyOfRange? argument(2): argument(1);
3781   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3782 
3783   Node* newcopy;
3784 
3785   // Set the original stack and the reexecute bit for the interpreter to reexecute
3786   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3787   { PreserveReexecuteState preexecs(this);
3788     jvms()->set_should_reexecute(true);
3789 
3790     array_type_mirror = null_check(array_type_mirror);
3791     original          = null_check(original);
3792 
3793     // Check if a null path was taken unconditionally.
3794     if (stopped())  return true;
3795 
3796     Node* orig_length = load_array_length(original);
3797 
3798     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3799     klass_node = null_check(klass_node);
3800 
3801     RegionNode* bailout = new (C) RegionNode(1);
3802     record_for_igvn(bailout);
3803 
3804     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3805     // Bail out if that is so.
3806     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3807     if (not_objArray != NULL) {
3808       // Improve the klass node's type from the new optimistic assumption:
3809       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3810       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3811       Node* cast = new (C) CastPPNode(klass_node, akls);
3812       cast->init_req(0, control());
3813       klass_node = _gvn.transform(cast);
3814     }
3815 
3816     // Bail out if either start or end is negative.
3817     generate_negative_guard(start, bailout, &start);
3818     generate_negative_guard(end,   bailout, &end);
3819 
3820     Node* length = end;
3821     if (_gvn.type(start) != TypeInt::ZERO) {
3822       length = _gvn.transform(new (C) SubINode(end, start));
3823     }
3824 
3825     // Bail out if length is negative.
3826     // Without this the new_array would throw
3827     // NegativeArraySizeException but IllegalArgumentException is what
3828     // should be thrown
3829     generate_negative_guard(length, bailout, &length);
3830 
3831     if (bailout->req() > 1) {
3832       PreserveJVMState pjvms(this);
3833       set_control(_gvn.transform(bailout));
3834       uncommon_trap(Deoptimization::Reason_intrinsic,
3835                     Deoptimization::Action_maybe_recompile);
3836     }
3837 
3838     if (!stopped()) {
3839       // How many elements will we copy from the original?
3840       // The answer is MinI(orig_length - start, length).
3841       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3842       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3843 
3844       newcopy = new_array(klass_node, length, 0);  // no argments to push
3845 
3846       // Generate a direct call to the right arraycopy function(s).
3847       // We know the copy is disjoint but we might not know if the
3848       // oop stores need checking.
3849       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3850       // This will fail a store-check if x contains any non-nulls.
3851       bool disjoint_bases = true;
3852       // if start > orig_length then the length of the copy may be
3853       // negative.
3854       bool length_never_negative = !is_copyOfRange;
3855       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3856                          original, start, newcopy, intcon(0), moved,
3857                          disjoint_bases, length_never_negative);
3858     }
3859   } // original reexecute is set back here
3860 
3861   C->set_has_split_ifs(true); // Has chance for split-if optimization
3862   if (!stopped()) {
3863     set_result(newcopy);
3864   }
3865   return true;
3866 }
3867 
3868 
3869 //----------------------generate_virtual_guard---------------------------
3870 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3871 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3872                                              RegionNode* slow_region) {
3873   ciMethod* method = callee();
3874   int vtable_index = method->vtable_index();
3875   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3876          err_msg_res("bad index %d", vtable_index));
3877   // Get the Method* out of the appropriate vtable entry.
3878   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3879                      vtable_index*vtableEntry::size()) * wordSize +
3880                      vtableEntry::method_offset_in_bytes();
3881   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3882   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3883 
3884   // Compare the target method with the expected method (e.g., Object.hashCode).
3885   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3886 
3887   Node* native_call = makecon(native_call_addr);
3888   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3889   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3890 
3891   return generate_slow_guard(test_native, slow_region);
3892 }
3893 
3894 //-----------------------generate_method_call----------------------------
3895 // Use generate_method_call to make a slow-call to the real
3896 // method if the fast path fails.  An alternative would be to
3897 // use a stub like OptoRuntime::slow_arraycopy_Java.
3898 // This only works for expanding the current library call,
3899 // not another intrinsic.  (E.g., don't use this for making an
3900 // arraycopy call inside of the copyOf intrinsic.)
3901 CallJavaNode*
3902 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3903   // When compiling the intrinsic method itself, do not use this technique.
3904   guarantee(callee() != C->method(), "cannot make slow-call to self");
3905 
3906   ciMethod* method = callee();
3907   // ensure the JVMS we have will be correct for this call
3908   guarantee(method_id == method->intrinsic_id(), "must match");
3909 
3910   const TypeFunc* tf = TypeFunc::make(method);
3911   CallJavaNode* slow_call;
3912   if (is_static) {
3913     assert(!is_virtual, "");
3914     slow_call = new(C) CallStaticJavaNode(C, tf,
3915                            SharedRuntime::get_resolve_static_call_stub(),
3916                            method, bci());
3917   } else if (is_virtual) {
3918     null_check_receiver();
3919     int vtable_index = Method::invalid_vtable_index;
3920     if (UseInlineCaches) {
3921       // Suppress the vtable call
3922     } else {
3923       // hashCode and clone are not a miranda methods,
3924       // so the vtable index is fixed.
3925       // No need to use the linkResolver to get it.
3926        vtable_index = method->vtable_index();
3927        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3928               err_msg_res("bad index %d", vtable_index));
3929     }
3930     slow_call = new(C) CallDynamicJavaNode(tf,
3931                           SharedRuntime::get_resolve_virtual_call_stub(),
3932                           method, vtable_index, bci());
3933   } else {  // neither virtual nor static:  opt_virtual
3934     null_check_receiver();
3935     slow_call = new(C) CallStaticJavaNode(C, tf,
3936                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3937                                 method, bci());
3938     slow_call->set_optimized_virtual(true);
3939   }
3940   set_arguments_for_java_call(slow_call);
3941   set_edges_for_java_call(slow_call);
3942   return slow_call;
3943 }
3944 
3945 
3946 //------------------------------inline_native_hashcode--------------------
3947 // Build special case code for calls to hashCode on an object.
3948 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3949   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3950   assert(!(is_virtual && is_static), "either virtual, special, or static");
3951 
3952   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3953 
3954   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3955   PhiNode*    result_val = new(C) PhiNode(result_reg,
3956                                           TypeInt::INT);
3957   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3958   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3959                                           TypePtr::BOTTOM);
3960   Node* obj = NULL;
3961   if (!is_static) {
3962     // Check for hashing null object
3963     obj = null_check_receiver();
3964     if (stopped())  return true;        // unconditionally null
3965     result_reg->init_req(_null_path, top());
3966     result_val->init_req(_null_path, top());
3967   } else {
3968     // Do a null check, and return zero if null.
3969     // System.identityHashCode(null) == 0
3970     obj = argument(0);
3971     Node* null_ctl = top();
3972     obj = null_check_oop(obj, &null_ctl);
3973     result_reg->init_req(_null_path, null_ctl);
3974     result_val->init_req(_null_path, _gvn.intcon(0));
3975   }
3976 
3977   // Unconditionally null?  Then return right away.
3978   if (stopped()) {
3979     set_control( result_reg->in(_null_path));
3980     if (!stopped())
3981       set_result(result_val->in(_null_path));
3982     return true;
3983   }
3984 
3985   // After null check, get the object's klass.
3986   Node* obj_klass = load_object_klass(obj);
3987 
3988   // This call may be virtual (invokevirtual) or bound (invokespecial).
3989   // For each case we generate slightly different code.
3990 
3991   // We only go to the fast case code if we pass a number of guards.  The
3992   // paths which do not pass are accumulated in the slow_region.
3993   RegionNode* slow_region = new (C) RegionNode(1);
3994   record_for_igvn(slow_region);
3995 
3996   // If this is a virtual call, we generate a funny guard.  We pull out
3997   // the vtable entry corresponding to hashCode() from the target object.
3998   // If the target method which we are calling happens to be the native
3999   // Object hashCode() method, we pass the guard.  We do not need this
4000   // guard for non-virtual calls -- the caller is known to be the native
4001   // Object hashCode().
4002   if (is_virtual) {
4003     generate_virtual_guard(obj_klass, slow_region);
4004   }
4005 
4006   // Get the header out of the object, use LoadMarkNode when available
4007   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4008   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4009 
4010   // Test the header to see if it is unlocked.
4011   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4012   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4013   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4014   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4015   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4016 
4017   generate_slow_guard(test_unlocked, slow_region);
4018 
4019   // Get the hash value and check to see that it has been properly assigned.
4020   // We depend on hash_mask being at most 32 bits and avoid the use of
4021   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4022   // vm: see markOop.hpp.
4023   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4024   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4025   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4026   // This hack lets the hash bits live anywhere in the mark object now, as long
4027   // as the shift drops the relevant bits into the low 32 bits.  Note that
4028   // Java spec says that HashCode is an int so there's no point in capturing
4029   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4030   hshifted_header      = ConvX2I(hshifted_header);
4031   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4032 
4033   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4034   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4035   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4036 
4037   generate_slow_guard(test_assigned, slow_region);
4038 
4039   Node* init_mem = reset_memory();
4040   // fill in the rest of the null path:
4041   result_io ->init_req(_null_path, i_o());
4042   result_mem->init_req(_null_path, init_mem);
4043 
4044   result_val->init_req(_fast_path, hash_val);
4045   result_reg->init_req(_fast_path, control());
4046   result_io ->init_req(_fast_path, i_o());
4047   result_mem->init_req(_fast_path, init_mem);
4048 
4049   // Generate code for the slow case.  We make a call to hashCode().
4050   set_control(_gvn.transform(slow_region));
4051   if (!stopped()) {
4052     // No need for PreserveJVMState, because we're using up the present state.
4053     set_all_memory(init_mem);
4054     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4055     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4056     Node* slow_result = set_results_for_java_call(slow_call);
4057     // this->control() comes from set_results_for_java_call
4058     result_reg->init_req(_slow_path, control());
4059     result_val->init_req(_slow_path, slow_result);
4060     result_io  ->set_req(_slow_path, i_o());
4061     result_mem ->set_req(_slow_path, reset_memory());
4062   }
4063 
4064   // Return the combined state.
4065   set_i_o(        _gvn.transform(result_io)  );
4066   set_all_memory( _gvn.transform(result_mem));
4067 
4068   set_result(result_reg, result_val);
4069   return true;
4070 }
4071 
4072 //---------------------------inline_native_getClass----------------------------
4073 // public final native Class<?> java.lang.Object.getClass();
4074 //
4075 // Build special case code for calls to getClass on an object.
4076 bool LibraryCallKit::inline_native_getClass() {
4077   Node* obj = null_check_receiver();
4078   if (stopped())  return true;
4079   set_result(load_mirror_from_klass(load_object_klass(obj)));
4080   return true;
4081 }
4082 
4083 //-----------------inline_native_Reflection_getCallerClass---------------------
4084 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4085 //
4086 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4087 //
4088 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4089 // in that it must skip particular security frames and checks for
4090 // caller sensitive methods.
4091 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4092 #ifndef PRODUCT
4093   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4094     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4095   }
4096 #endif
4097 
4098   if (!jvms()->has_method()) {
4099 #ifndef PRODUCT
4100     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4101       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4102     }
4103 #endif
4104     return false;
4105   }
4106 
4107   // Walk back up the JVM state to find the caller at the required
4108   // depth.
4109   JVMState* caller_jvms = jvms();
4110 
4111   // Cf. JVM_GetCallerClass
4112   // NOTE: Start the loop at depth 1 because the current JVM state does
4113   // not include the Reflection.getCallerClass() frame.
4114   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4115     ciMethod* m = caller_jvms->method();
4116     switch (n) {
4117     case 0:
4118       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4119       break;
4120     case 1:
4121       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4122       if (!m->caller_sensitive()) {
4123 #ifndef PRODUCT
4124         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4125           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4126         }
4127 #endif
4128         return false;  // bail-out; let JVM_GetCallerClass do the work
4129       }
4130       break;
4131     default:
4132       if (!m->is_ignored_by_security_stack_walk()) {
4133         // We have reached the desired frame; return the holder class.
4134         // Acquire method holder as java.lang.Class and push as constant.
4135         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4136         ciInstance* caller_mirror = caller_klass->java_mirror();
4137         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4138 
4139 #ifndef PRODUCT
4140         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4141           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4142           tty->print_cr("  JVM state at this point:");
4143           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4144             ciMethod* m = jvms()->of_depth(i)->method();
4145             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4146           }
4147         }
4148 #endif
4149         return true;
4150       }
4151       break;
4152     }
4153   }
4154 
4155 #ifndef PRODUCT
4156   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4157     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4158     tty->print_cr("  JVM state at this point:");
4159     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4160       ciMethod* m = jvms()->of_depth(i)->method();
4161       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4162     }
4163   }
4164 #endif
4165 
4166   return false;  // bail-out; let JVM_GetCallerClass do the work
4167 }
4168 
4169 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4170   Node* arg = argument(0);
4171   Node* result;
4172 
4173   switch (id) {
4174   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4175   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4176   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4177   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4178 
4179   case vmIntrinsics::_doubleToLongBits: {
4180     // two paths (plus control) merge in a wood
4181     RegionNode *r = new (C) RegionNode(3);
4182     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4183 
4184     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4185     // Build the boolean node
4186     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4187 
4188     // Branch either way.
4189     // NaN case is less traveled, which makes all the difference.
4190     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4191     Node *opt_isnan = _gvn.transform(ifisnan);
4192     assert( opt_isnan->is_If(), "Expect an IfNode");
4193     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4194     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4195 
4196     set_control(iftrue);
4197 
4198     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4199     Node *slow_result = longcon(nan_bits); // return NaN
4200     phi->init_req(1, _gvn.transform( slow_result ));
4201     r->init_req(1, iftrue);
4202 
4203     // Else fall through
4204     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4205     set_control(iffalse);
4206 
4207     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4208     r->init_req(2, iffalse);
4209 
4210     // Post merge
4211     set_control(_gvn.transform(r));
4212     record_for_igvn(r);
4213 
4214     C->set_has_split_ifs(true); // Has chance for split-if optimization
4215     result = phi;
4216     assert(result->bottom_type()->isa_long(), "must be");
4217     break;
4218   }
4219 
4220   case vmIntrinsics::_floatToIntBits: {
4221     // two paths (plus control) merge in a wood
4222     RegionNode *r = new (C) RegionNode(3);
4223     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4224 
4225     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4226     // Build the boolean node
4227     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4228 
4229     // Branch either way.
4230     // NaN case is less traveled, which makes all the difference.
4231     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4232     Node *opt_isnan = _gvn.transform(ifisnan);
4233     assert( opt_isnan->is_If(), "Expect an IfNode");
4234     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4235     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4236 
4237     set_control(iftrue);
4238 
4239     static const jint nan_bits = 0x7fc00000;
4240     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4241     phi->init_req(1, _gvn.transform( slow_result ));
4242     r->init_req(1, iftrue);
4243 
4244     // Else fall through
4245     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4246     set_control(iffalse);
4247 
4248     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4249     r->init_req(2, iffalse);
4250 
4251     // Post merge
4252     set_control(_gvn.transform(r));
4253     record_for_igvn(r);
4254 
4255     C->set_has_split_ifs(true); // Has chance for split-if optimization
4256     result = phi;
4257     assert(result->bottom_type()->isa_int(), "must be");
4258     break;
4259   }
4260 
4261   default:
4262     fatal_unexpected_iid(id);
4263     break;
4264   }
4265   set_result(_gvn.transform(result));
4266   return true;
4267 }
4268 
4269 #ifdef _LP64
4270 #define XTOP ,top() /*additional argument*/
4271 #else  //_LP64
4272 #define XTOP        /*no additional argument*/
4273 #endif //_LP64
4274 
4275 //----------------------inline_unsafe_copyMemory-------------------------
4276 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4277 bool LibraryCallKit::inline_unsafe_copyMemory() {
4278   if (callee()->is_static())  return false;  // caller must have the capability!
4279   null_check_receiver();  // null-check receiver
4280   if (stopped())  return true;
4281 
4282   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4283 
4284   Node* src_ptr =         argument(1);   // type: oop
4285   Node* src_off = ConvL2X(argument(2));  // type: long
4286   Node* dst_ptr =         argument(4);   // type: oop
4287   Node* dst_off = ConvL2X(argument(5));  // type: long
4288   Node* size    = ConvL2X(argument(7));  // type: long
4289 
4290   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4291          "fieldOffset must be byte-scaled");
4292 
4293   Node* src = make_unsafe_address(src_ptr, src_off);
4294   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4295 
4296   // Conservatively insert a memory barrier on all memory slices.
4297   // Do not let writes of the copy source or destination float below the copy.
4298   insert_mem_bar(Op_MemBarCPUOrder);
4299 
4300   // Call it.  Note that the length argument is not scaled.
4301   make_runtime_call(RC_LEAF|RC_NO_FP,
4302                     OptoRuntime::fast_arraycopy_Type(),
4303                     StubRoutines::unsafe_arraycopy(),
4304                     "unsafe_arraycopy",
4305                     TypeRawPtr::BOTTOM,
4306                     src, dst, size XTOP);
4307 
4308   // Do not let reads of the copy destination float above the copy.
4309   insert_mem_bar(Op_MemBarCPUOrder);
4310 
4311   return true;
4312 }
4313 
4314 //------------------------clone_coping-----------------------------------
4315 // Helper function for inline_native_clone.
4316 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4317   assert(obj_size != NULL, "");
4318   Node* raw_obj = alloc_obj->in(1);
4319   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4320 
4321   AllocateNode* alloc = NULL;
4322   if (ReduceBulkZeroing) {
4323     // We will be completely responsible for initializing this object -
4324     // mark Initialize node as complete.
4325     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4326     // The object was just allocated - there should be no any stores!
4327     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4328     // Mark as complete_with_arraycopy so that on AllocateNode
4329     // expansion, we know this AllocateNode is initialized by an array
4330     // copy and a StoreStore barrier exists after the array copy.
4331     alloc->initialization()->set_complete_with_arraycopy();
4332   }
4333 
4334   // Copy the fastest available way.
4335   // TODO: generate fields copies for small objects instead.
4336   Node* src  = obj;
4337   Node* dest = alloc_obj;
4338   Node* size = _gvn.transform(obj_size);
4339 
4340   // Exclude the header but include array length to copy by 8 bytes words.
4341   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4342   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4343                             instanceOopDesc::base_offset_in_bytes();
4344   // base_off:
4345   // 8  - 32-bit VM
4346   // 12 - 64-bit VM, compressed klass
4347   // 16 - 64-bit VM, normal klass
4348   if (base_off % BytesPerLong != 0) {
4349     assert(UseCompressedClassPointers, "");
4350     if (is_array) {
4351       // Exclude length to copy by 8 bytes words.
4352       base_off += sizeof(int);
4353     } else {
4354       // Include klass to copy by 8 bytes words.
4355       base_off = instanceOopDesc::klass_offset_in_bytes();
4356     }
4357     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4358   }
4359   src  = basic_plus_adr(src,  base_off);
4360   dest = basic_plus_adr(dest, base_off);
4361 
4362   // Compute the length also, if needed:
4363   Node* countx = size;
4364   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4365   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4366 
4367   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4368   bool disjoint_bases = true;
4369   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4370                                src, NULL, dest, NULL, countx,
4371                                /*dest_uninitialized*/true);
4372 
4373   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4374   if (card_mark) {
4375     assert(!is_array, "");
4376     // Put in store barrier for any and all oops we are sticking
4377     // into this object.  (We could avoid this if we could prove
4378     // that the object type contains no oop fields at all.)
4379     Node* no_particular_value = NULL;
4380     Node* no_particular_field = NULL;
4381     int raw_adr_idx = Compile::AliasIdxRaw;
4382     post_barrier(control(),
4383                  memory(raw_adr_type),
4384                  alloc_obj,
4385                  no_particular_field,
4386                  raw_adr_idx,
4387                  no_particular_value,
4388                  T_OBJECT,
4389                  false);
4390   }
4391 
4392   // Do not let reads from the cloned object float above the arraycopy.
4393   if (alloc != NULL) {
4394     // Do not let stores that initialize this object be reordered with
4395     // a subsequent store that would make this object accessible by
4396     // other threads.
4397     // Record what AllocateNode this StoreStore protects so that
4398     // escape analysis can go from the MemBarStoreStoreNode to the
4399     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4400     // based on the escape status of the AllocateNode.
4401     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4402   } else {
4403     insert_mem_bar(Op_MemBarCPUOrder);
4404   }
4405 }
4406 
4407 //------------------------inline_native_clone----------------------------
4408 // protected native Object java.lang.Object.clone();
4409 //
4410 // Here are the simple edge cases:
4411 //  null receiver => normal trap
4412 //  virtual and clone was overridden => slow path to out-of-line clone
4413 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4414 //
4415 // The general case has two steps, allocation and copying.
4416 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4417 //
4418 // Copying also has two cases, oop arrays and everything else.
4419 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4420 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4421 //
4422 // These steps fold up nicely if and when the cloned object's klass
4423 // can be sharply typed as an object array, a type array, or an instance.
4424 //
4425 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4426   PhiNode* result_val;
4427 
4428   // Set the reexecute bit for the interpreter to reexecute
4429   // the bytecode that invokes Object.clone if deoptimization happens.
4430   { PreserveReexecuteState preexecs(this);
4431     jvms()->set_should_reexecute(true);
4432 
4433     Node* obj = null_check_receiver();
4434     if (stopped())  return true;
4435 
4436     Node* obj_klass = load_object_klass(obj);
4437     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4438     const TypeOopPtr*   toop   = ((tklass != NULL)
4439                                 ? tklass->as_instance_type()
4440                                 : TypeInstPtr::NOTNULL);
4441 
4442     // Conservatively insert a memory barrier on all memory slices.
4443     // Do not let writes into the original float below the clone.
4444     insert_mem_bar(Op_MemBarCPUOrder);
4445 
4446     // paths into result_reg:
4447     enum {
4448       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4449       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4450       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4451       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4452       PATH_LIMIT
4453     };
4454     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4455     result_val             = new(C) PhiNode(result_reg,
4456                                             TypeInstPtr::NOTNULL);
4457     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4458     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4459                                             TypePtr::BOTTOM);
4460     record_for_igvn(result_reg);
4461 
4462     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4463     int raw_adr_idx = Compile::AliasIdxRaw;
4464 
4465     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4466     if (array_ctl != NULL) {
4467       // It's an array.
4468       PreserveJVMState pjvms(this);
4469       set_control(array_ctl);
4470       Node* obj_length = load_array_length(obj);
4471       Node* obj_size  = NULL;
4472       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4473 
4474       if (!use_ReduceInitialCardMarks()) {
4475         // If it is an oop array, it requires very special treatment,
4476         // because card marking is required on each card of the array.
4477         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4478         if (is_obja != NULL) {
4479           PreserveJVMState pjvms2(this);
4480           set_control(is_obja);
4481           // Generate a direct call to the right arraycopy function(s).
4482           bool disjoint_bases = true;
4483           bool length_never_negative = true;
4484           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4485                              obj, intcon(0), alloc_obj, intcon(0),
4486                              obj_length,
4487                              disjoint_bases, length_never_negative);
4488           result_reg->init_req(_objArray_path, control());
4489           result_val->init_req(_objArray_path, alloc_obj);
4490           result_i_o ->set_req(_objArray_path, i_o());
4491           result_mem ->set_req(_objArray_path, reset_memory());
4492         }
4493       }
4494       // Otherwise, there are no card marks to worry about.
4495       // (We can dispense with card marks if we know the allocation
4496       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4497       //  causes the non-eden paths to take compensating steps to
4498       //  simulate a fresh allocation, so that no further
4499       //  card marks are required in compiled code to initialize
4500       //  the object.)
4501 
4502       if (!stopped()) {
4503         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4504 
4505         // Present the results of the copy.
4506         result_reg->init_req(_array_path, control());
4507         result_val->init_req(_array_path, alloc_obj);
4508         result_i_o ->set_req(_array_path, i_o());
4509         result_mem ->set_req(_array_path, reset_memory());
4510       }
4511     }
4512 
4513     // We only go to the instance fast case code if we pass a number of guards.
4514     // The paths which do not pass are accumulated in the slow_region.
4515     RegionNode* slow_region = new (C) RegionNode(1);
4516     record_for_igvn(slow_region);
4517     if (!stopped()) {
4518       // It's an instance (we did array above).  Make the slow-path tests.
4519       // If this is a virtual call, we generate a funny guard.  We grab
4520       // the vtable entry corresponding to clone() from the target object.
4521       // If the target method which we are calling happens to be the
4522       // Object clone() method, we pass the guard.  We do not need this
4523       // guard for non-virtual calls; the caller is known to be the native
4524       // Object clone().
4525       if (is_virtual) {
4526         generate_virtual_guard(obj_klass, slow_region);
4527       }
4528 
4529       // The object must be cloneable and must not have a finalizer.
4530       // Both of these conditions may be checked in a single test.
4531       // We could optimize the cloneable test further, but we don't care.
4532       generate_access_flags_guard(obj_klass,
4533                                   // Test both conditions:
4534                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4535                                   // Must be cloneable but not finalizer:
4536                                   JVM_ACC_IS_CLONEABLE,
4537                                   slow_region);
4538     }
4539 
4540     if (!stopped()) {
4541       // It's an instance, and it passed the slow-path tests.
4542       PreserveJVMState pjvms(this);
4543       Node* obj_size  = NULL;
4544       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4545 
4546       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4547 
4548       // Present the results of the slow call.
4549       result_reg->init_req(_instance_path, control());
4550       result_val->init_req(_instance_path, alloc_obj);
4551       result_i_o ->set_req(_instance_path, i_o());
4552       result_mem ->set_req(_instance_path, reset_memory());
4553     }
4554 
4555     // Generate code for the slow case.  We make a call to clone().
4556     set_control(_gvn.transform(slow_region));
4557     if (!stopped()) {
4558       PreserveJVMState pjvms(this);
4559       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4560       Node* slow_result = set_results_for_java_call(slow_call);
4561       // this->control() comes from set_results_for_java_call
4562       result_reg->init_req(_slow_path, control());
4563       result_val->init_req(_slow_path, slow_result);
4564       result_i_o ->set_req(_slow_path, i_o());
4565       result_mem ->set_req(_slow_path, reset_memory());
4566     }
4567 
4568     // Return the combined state.
4569     set_control(    _gvn.transform(result_reg));
4570     set_i_o(        _gvn.transform(result_i_o));
4571     set_all_memory( _gvn.transform(result_mem));
4572   } // original reexecute is set back here
4573 
4574   set_result(_gvn.transform(result_val));
4575   return true;
4576 }
4577 
4578 //------------------------------basictype2arraycopy----------------------------
4579 address LibraryCallKit::basictype2arraycopy(BasicType t,
4580                                             Node* src_offset,
4581                                             Node* dest_offset,
4582                                             bool disjoint_bases,
4583                                             const char* &name,
4584                                             bool dest_uninitialized) {
4585   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4586   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4587 
4588   bool aligned = false;
4589   bool disjoint = disjoint_bases;
4590 
4591   // if the offsets are the same, we can treat the memory regions as
4592   // disjoint, because either the memory regions are in different arrays,
4593   // or they are identical (which we can treat as disjoint.)  We can also
4594   // treat a copy with a destination index  less that the source index
4595   // as disjoint since a low->high copy will work correctly in this case.
4596   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4597       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4598     // both indices are constants
4599     int s_offs = src_offset_inttype->get_con();
4600     int d_offs = dest_offset_inttype->get_con();
4601     int element_size = type2aelembytes(t);
4602     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4603               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4604     if (s_offs >= d_offs)  disjoint = true;
4605   } else if (src_offset == dest_offset && src_offset != NULL) {
4606     // This can occur if the offsets are identical non-constants.
4607     disjoint = true;
4608   }
4609 
4610   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4611 }
4612 
4613 
4614 //------------------------------inline_arraycopy-----------------------
4615 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4616 //                                                      Object dest, int destPos,
4617 //                                                      int length);
4618 bool LibraryCallKit::inline_arraycopy() {
4619   // Get the arguments.
4620   Node* src         = argument(0);  // type: oop
4621   Node* src_offset  = argument(1);  // type: int
4622   Node* dest        = argument(2);  // type: oop
4623   Node* dest_offset = argument(3);  // type: int
4624   Node* length      = argument(4);  // type: int
4625 
4626   // Compile time checks.  If any of these checks cannot be verified at compile time,
4627   // we do not make a fast path for this call.  Instead, we let the call remain as it
4628   // is.  The checks we choose to mandate at compile time are:
4629   //
4630   // (1) src and dest are arrays.
4631   const Type* src_type  = src->Value(&_gvn);
4632   const Type* dest_type = dest->Value(&_gvn);
4633   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4634   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4635 
4636   // Do we have the type of src?
4637   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4638   // Do we have the type of dest?
4639   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4640   // Is the type for src from speculation?
4641   bool src_spec = false;
4642   // Is the type for dest from speculation?
4643   bool dest_spec = false;
4644 
4645   if (!has_src || !has_dest) {
4646     // We don't have sufficient type information, let's see if
4647     // speculative types can help. We need to have types for both src
4648     // and dest so that it pays off.
4649 
4650     // Do we already have or could we have type information for src
4651     bool could_have_src = has_src;
4652     // Do we already have or could we have type information for dest
4653     bool could_have_dest = has_dest;
4654 
4655     ciKlass* src_k = NULL;
4656     if (!has_src) {
4657       src_k = src_type->speculative_type();
4658       if (src_k != NULL && src_k->is_array_klass()) {
4659         could_have_src = true;
4660       }
4661     }
4662 
4663     ciKlass* dest_k = NULL;
4664     if (!has_dest) {
4665       dest_k = dest_type->speculative_type();
4666       if (dest_k != NULL && dest_k->is_array_klass()) {
4667         could_have_dest = true;
4668       }
4669     }
4670 
4671     if (could_have_src && could_have_dest) {
4672       // This is going to pay off so emit the required guards
4673       if (!has_src) {
4674         src = maybe_cast_profiled_obj(src, src_k);
4675         src_type  = _gvn.type(src);
4676         top_src  = src_type->isa_aryptr();
4677         has_src = (top_src != NULL && top_src->klass() != NULL);
4678         src_spec = true;
4679       }
4680       if (!has_dest) {
4681         dest = maybe_cast_profiled_obj(dest, dest_k);
4682         dest_type  = _gvn.type(dest);
4683         top_dest  = dest_type->isa_aryptr();
4684         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4685         dest_spec = true;
4686       }
4687     }
4688   }
4689 
4690   if (!has_src || !has_dest) {
4691     // Conservatively insert a memory barrier on all memory slices.
4692     // Do not let writes into the source float below the arraycopy.
4693     insert_mem_bar(Op_MemBarCPUOrder);
4694 
4695     // Call StubRoutines::generic_arraycopy stub.
4696     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4697                        src, src_offset, dest, dest_offset, length);
4698 
4699     // Do not let reads from the destination float above the arraycopy.
4700     // Since we cannot type the arrays, we don't know which slices
4701     // might be affected.  We could restrict this barrier only to those
4702     // memory slices which pertain to array elements--but don't bother.
4703     if (!InsertMemBarAfterArraycopy)
4704       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4705       insert_mem_bar(Op_MemBarCPUOrder);
4706     return true;
4707   }
4708 
4709   // (2) src and dest arrays must have elements of the same BasicType
4710   // Figure out the size and type of the elements we will be copying.
4711   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4712   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4713   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4714   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4715 
4716   if (src_elem != dest_elem || dest_elem == T_VOID) {
4717     // The component types are not the same or are not recognized.  Punt.
4718     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4719     generate_slow_arraycopy(TypePtr::BOTTOM,
4720                             src, src_offset, dest, dest_offset, length,
4721                             /*dest_uninitialized*/false);
4722     return true;
4723   }
4724 
4725   if (src_elem == T_OBJECT) {
4726     // If both arrays are object arrays then having the exact types
4727     // for both will remove the need for a subtype check at runtime
4728     // before the call and may make it possible to pick a faster copy
4729     // routine (without a subtype check on every element)
4730     // Do we have the exact type of src?
4731     bool could_have_src = src_spec;
4732     // Do we have the exact type of dest?
4733     bool could_have_dest = dest_spec;
4734     ciKlass* src_k = top_src->klass();
4735     ciKlass* dest_k = top_dest->klass();
4736     if (!src_spec) {
4737       src_k = src_type->speculative_type();
4738       if (src_k != NULL && src_k->is_array_klass()) {
4739           could_have_src = true;
4740       }
4741     }
4742     if (!dest_spec) {
4743       dest_k = dest_type->speculative_type();
4744       if (dest_k != NULL && dest_k->is_array_klass()) {
4745         could_have_dest = true;
4746       }
4747     }
4748     if (could_have_src && could_have_dest) {
4749       // If we can have both exact types, emit the missing guards
4750       if (could_have_src && !src_spec) {
4751         src = maybe_cast_profiled_obj(src, src_k);
4752       }
4753       if (could_have_dest && !dest_spec) {
4754         dest = maybe_cast_profiled_obj(dest, dest_k);
4755       }
4756     }
4757   }
4758 
4759   //---------------------------------------------------------------------------
4760   // We will make a fast path for this call to arraycopy.
4761 
4762   // We have the following tests left to perform:
4763   //
4764   // (3) src and dest must not be null.
4765   // (4) src_offset must not be negative.
4766   // (5) dest_offset must not be negative.
4767   // (6) length must not be negative.
4768   // (7) src_offset + length must not exceed length of src.
4769   // (8) dest_offset + length must not exceed length of dest.
4770   // (9) each element of an oop array must be assignable
4771 
4772   RegionNode* slow_region = new (C) RegionNode(1);
4773   record_for_igvn(slow_region);
4774 
4775   // (3) operands must not be null
4776   // We currently perform our null checks with the null_check routine.
4777   // This means that the null exceptions will be reported in the caller
4778   // rather than (correctly) reported inside of the native arraycopy call.
4779   // This should be corrected, given time.  We do our null check with the
4780   // stack pointer restored.
4781   src  = null_check(src,  T_ARRAY);
4782   dest = null_check(dest, T_ARRAY);
4783 
4784   // (4) src_offset must not be negative.
4785   generate_negative_guard(src_offset, slow_region);
4786 
4787   // (5) dest_offset must not be negative.
4788   generate_negative_guard(dest_offset, slow_region);
4789 
4790   // (6) length must not be negative (moved to generate_arraycopy()).
4791   // generate_negative_guard(length, slow_region);
4792 
4793   // (7) src_offset + length must not exceed length of src.
4794   generate_limit_guard(src_offset, length,
4795                        load_array_length(src),
4796                        slow_region);
4797 
4798   // (8) dest_offset + length must not exceed length of dest.
4799   generate_limit_guard(dest_offset, length,
4800                        load_array_length(dest),
4801                        slow_region);
4802 
4803   // (9) each element of an oop array must be assignable
4804   // The generate_arraycopy subroutine checks this.
4805 
4806   // This is where the memory effects are placed:
4807   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4808   generate_arraycopy(adr_type, dest_elem,
4809                      src, src_offset, dest, dest_offset, length,
4810                      false, false, slow_region);
4811 
4812   return true;
4813 }
4814 
4815 //-----------------------------generate_arraycopy----------------------
4816 // Generate an optimized call to arraycopy.
4817 // Caller must guard against non-arrays.
4818 // Caller must determine a common array basic-type for both arrays.
4819 // Caller must validate offsets against array bounds.
4820 // The slow_region has already collected guard failure paths
4821 // (such as out of bounds length or non-conformable array types).
4822 // The generated code has this shape, in general:
4823 //
4824 //     if (length == 0)  return   // via zero_path
4825 //     slowval = -1
4826 //     if (types unknown) {
4827 //       slowval = call generic copy loop
4828 //       if (slowval == 0)  return  // via checked_path
4829 //     } else if (indexes in bounds) {
4830 //       if ((is object array) && !(array type check)) {
4831 //         slowval = call checked copy loop
4832 //         if (slowval == 0)  return  // via checked_path
4833 //       } else {
4834 //         call bulk copy loop
4835 //         return  // via fast_path
4836 //       }
4837 //     }
4838 //     // adjust params for remaining work:
4839 //     if (slowval != -1) {
4840 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4841 //     }
4842 //   slow_region:
4843 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4844 //     return  // via slow_call_path
4845 //
4846 // This routine is used from several intrinsics:  System.arraycopy,
4847 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4848 //
4849 void
4850 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4851                                    BasicType basic_elem_type,
4852                                    Node* src,  Node* src_offset,
4853                                    Node* dest, Node* dest_offset,
4854                                    Node* copy_length,
4855                                    bool disjoint_bases,
4856                                    bool length_never_negative,
4857                                    RegionNode* slow_region) {
4858 
4859   if (slow_region == NULL) {
4860     slow_region = new(C) RegionNode(1);
4861     record_for_igvn(slow_region);
4862   }
4863 
4864   Node* original_dest      = dest;
4865   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4866   bool  dest_uninitialized = false;
4867 
4868   // See if this is the initialization of a newly-allocated array.
4869   // If so, we will take responsibility here for initializing it to zero.
4870   // (Note:  Because tightly_coupled_allocation performs checks on the
4871   // out-edges of the dest, we need to avoid making derived pointers
4872   // from it until we have checked its uses.)
4873   if (ReduceBulkZeroing
4874       && !ZeroTLAB              // pointless if already zeroed
4875       && basic_elem_type != T_CONFLICT // avoid corner case
4876       && !src->eqv_uncast(dest)
4877       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4878           != NULL)
4879       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4880       && alloc->maybe_set_complete(&_gvn)) {
4881     // "You break it, you buy it."
4882     InitializeNode* init = alloc->initialization();
4883     assert(init->is_complete(), "we just did this");
4884     init->set_complete_with_arraycopy();
4885     assert(dest->is_CheckCastPP(), "sanity");
4886     assert(dest->in(0)->in(0) == init, "dest pinned");
4887     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4888     // From this point on, every exit path is responsible for
4889     // initializing any non-copied parts of the object to zero.
4890     // Also, if this flag is set we make sure that arraycopy interacts properly
4891     // with G1, eliding pre-barriers. See CR 6627983.
4892     dest_uninitialized = true;
4893   } else {
4894     // No zeroing elimination here.
4895     alloc             = NULL;
4896     //original_dest   = dest;
4897     //dest_uninitialized = false;
4898   }
4899 
4900   // Results are placed here:
4901   enum { fast_path        = 1,  // normal void-returning assembly stub
4902          checked_path     = 2,  // special assembly stub with cleanup
4903          slow_call_path   = 3,  // something went wrong; call the VM
4904          zero_path        = 4,  // bypass when length of copy is zero
4905          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4906          PATH_LIMIT       = 6
4907   };
4908   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4909   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4910   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4911   record_for_igvn(result_region);
4912   _gvn.set_type_bottom(result_i_o);
4913   _gvn.set_type_bottom(result_memory);
4914   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4915 
4916   // The slow_control path:
4917   Node* slow_control;
4918   Node* slow_i_o = i_o();
4919   Node* slow_mem = memory(adr_type);
4920   debug_only(slow_control = (Node*) badAddress);
4921 
4922   // Checked control path:
4923   Node* checked_control = top();
4924   Node* checked_mem     = NULL;
4925   Node* checked_i_o     = NULL;
4926   Node* checked_value   = NULL;
4927 
4928   if (basic_elem_type == T_CONFLICT) {
4929     assert(!dest_uninitialized, "");
4930     Node* cv = generate_generic_arraycopy(adr_type,
4931                                           src, src_offset, dest, dest_offset,
4932                                           copy_length, dest_uninitialized);
4933     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4934     checked_control = control();
4935     checked_i_o     = i_o();
4936     checked_mem     = memory(adr_type);
4937     checked_value   = cv;
4938     set_control(top());         // no fast path
4939   }
4940 
4941   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4942   if (not_pos != NULL) {
4943     PreserveJVMState pjvms(this);
4944     set_control(not_pos);
4945 
4946     // (6) length must not be negative.
4947     if (!length_never_negative) {
4948       generate_negative_guard(copy_length, slow_region);
4949     }
4950 
4951     // copy_length is 0.
4952     if (!stopped() && dest_uninitialized) {
4953       Node* dest_length = alloc->in(AllocateNode::ALength);
4954       if (copy_length->eqv_uncast(dest_length)
4955           || _gvn.find_int_con(dest_length, 1) <= 0) {
4956         // There is no zeroing to do. No need for a secondary raw memory barrier.
4957       } else {
4958         // Clear the whole thing since there are no source elements to copy.
4959         generate_clear_array(adr_type, dest, basic_elem_type,
4960                              intcon(0), NULL,
4961                              alloc->in(AllocateNode::AllocSize));
4962         // Use a secondary InitializeNode as raw memory barrier.
4963         // Currently it is needed only on this path since other
4964         // paths have stub or runtime calls as raw memory barriers.
4965         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4966                                                        Compile::AliasIdxRaw,
4967                                                        top())->as_Initialize();
4968         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4969       }
4970     }
4971 
4972     // Present the results of the fast call.
4973     result_region->init_req(zero_path, control());
4974     result_i_o   ->init_req(zero_path, i_o());
4975     result_memory->init_req(zero_path, memory(adr_type));
4976   }
4977 
4978   if (!stopped() && dest_uninitialized) {
4979     // We have to initialize the *uncopied* part of the array to zero.
4980     // The copy destination is the slice dest[off..off+len].  The other slices
4981     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4982     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4983     Node* dest_length = alloc->in(AllocateNode::ALength);
4984     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4985                                                           copy_length));
4986 
4987     // If there is a head section that needs zeroing, do it now.
4988     if (find_int_con(dest_offset, -1) != 0) {
4989       generate_clear_array(adr_type, dest, basic_elem_type,
4990                            intcon(0), dest_offset,
4991                            NULL);
4992     }
4993 
4994     // Next, perform a dynamic check on the tail length.
4995     // It is often zero, and we can win big if we prove this.
4996     // There are two wins:  Avoid generating the ClearArray
4997     // with its attendant messy index arithmetic, and upgrade
4998     // the copy to a more hardware-friendly word size of 64 bits.
4999     Node* tail_ctl = NULL;
5000     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5001       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5002       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5003       tail_ctl = generate_slow_guard(bol_lt, NULL);
5004       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5005     }
5006 
5007     // At this point, let's assume there is no tail.
5008     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5009       // There is no tail.  Try an upgrade to a 64-bit copy.
5010       bool didit = false;
5011       { PreserveJVMState pjvms(this);
5012         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5013                                          src, src_offset, dest, dest_offset,
5014                                          dest_size, dest_uninitialized);
5015         if (didit) {
5016           // Present the results of the block-copying fast call.
5017           result_region->init_req(bcopy_path, control());
5018           result_i_o   ->init_req(bcopy_path, i_o());
5019           result_memory->init_req(bcopy_path, memory(adr_type));
5020         }
5021       }
5022       if (didit)
5023         set_control(top());     // no regular fast path
5024     }
5025 
5026     // Clear the tail, if any.
5027     if (tail_ctl != NULL) {
5028       Node* notail_ctl = stopped() ? NULL : control();
5029       set_control(tail_ctl);
5030       if (notail_ctl == NULL) {
5031         generate_clear_array(adr_type, dest, basic_elem_type,
5032                              dest_tail, NULL,
5033                              dest_size);
5034       } else {
5035         // Make a local merge.
5036         Node* done_ctl = new(C) RegionNode(3);
5037         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5038         done_ctl->init_req(1, notail_ctl);
5039         done_mem->init_req(1, memory(adr_type));
5040         generate_clear_array(adr_type, dest, basic_elem_type,
5041                              dest_tail, NULL,
5042                              dest_size);
5043         done_ctl->init_req(2, control());
5044         done_mem->init_req(2, memory(adr_type));
5045         set_control( _gvn.transform(done_ctl));
5046         set_memory(  _gvn.transform(done_mem), adr_type );
5047       }
5048     }
5049   }
5050 
5051   BasicType copy_type = basic_elem_type;
5052   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5053   if (!stopped() && copy_type == T_OBJECT) {
5054     // If src and dest have compatible element types, we can copy bits.
5055     // Types S[] and D[] are compatible if D is a supertype of S.
5056     //
5057     // If they are not, we will use checked_oop_disjoint_arraycopy,
5058     // which performs a fast optimistic per-oop check, and backs off
5059     // further to JVM_ArrayCopy on the first per-oop check that fails.
5060     // (Actually, we don't move raw bits only; the GC requires card marks.)
5061 
5062     // Get the Klass* for both src and dest
5063     Node* src_klass  = load_object_klass(src);
5064     Node* dest_klass = load_object_klass(dest);
5065 
5066     // Generate the subtype check.
5067     // This might fold up statically, or then again it might not.
5068     //
5069     // Non-static example:  Copying List<String>.elements to a new String[].
5070     // The backing store for a List<String> is always an Object[],
5071     // but its elements are always type String, if the generic types
5072     // are correct at the source level.
5073     //
5074     // Test S[] against D[], not S against D, because (probably)
5075     // the secondary supertype cache is less busy for S[] than S.
5076     // This usually only matters when D is an interface.
5077     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5078     // Plug failing path into checked_oop_disjoint_arraycopy
5079     if (not_subtype_ctrl != top()) {
5080       PreserveJVMState pjvms(this);
5081       set_control(not_subtype_ctrl);
5082       // (At this point we can assume disjoint_bases, since types differ.)
5083       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5084       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5085       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5086       Node* dest_elem_klass = _gvn.transform(n1);
5087       Node* cv = generate_checkcast_arraycopy(adr_type,
5088                                               dest_elem_klass,
5089                                               src, src_offset, dest, dest_offset,
5090                                               ConvI2X(copy_length), dest_uninitialized);
5091       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5092       checked_control = control();
5093       checked_i_o     = i_o();
5094       checked_mem     = memory(adr_type);
5095       checked_value   = cv;
5096     }
5097     // At this point we know we do not need type checks on oop stores.
5098 
5099     // Let's see if we need card marks:
5100     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5101       // If we do not need card marks, copy using the jint or jlong stub.
5102       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5103       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5104              "sizes agree");
5105     }
5106   }
5107 
5108   if (!stopped()) {
5109     // Generate the fast path, if possible.
5110     PreserveJVMState pjvms(this);
5111     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5112                                  src, src_offset, dest, dest_offset,
5113                                  ConvI2X(copy_length), dest_uninitialized);
5114 
5115     // Present the results of the fast call.
5116     result_region->init_req(fast_path, control());
5117     result_i_o   ->init_req(fast_path, i_o());
5118     result_memory->init_req(fast_path, memory(adr_type));
5119   }
5120 
5121   // Here are all the slow paths up to this point, in one bundle:
5122   slow_control = top();
5123   if (slow_region != NULL)
5124     slow_control = _gvn.transform(slow_region);
5125   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5126 
5127   set_control(checked_control);
5128   if (!stopped()) {
5129     // Clean up after the checked call.
5130     // The returned value is either 0 or -1^K,
5131     // where K = number of partially transferred array elements.
5132     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5133     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5134     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5135 
5136     // If it is 0, we are done, so transfer to the end.
5137     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5138     result_region->init_req(checked_path, checks_done);
5139     result_i_o   ->init_req(checked_path, checked_i_o);
5140     result_memory->init_req(checked_path, checked_mem);
5141 
5142     // If it is not zero, merge into the slow call.
5143     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5144     RegionNode* slow_reg2 = new(C) RegionNode(3);
5145     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5146     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5147     record_for_igvn(slow_reg2);
5148     slow_reg2  ->init_req(1, slow_control);
5149     slow_i_o2  ->init_req(1, slow_i_o);
5150     slow_mem2  ->init_req(1, slow_mem);
5151     slow_reg2  ->init_req(2, control());
5152     slow_i_o2  ->init_req(2, checked_i_o);
5153     slow_mem2  ->init_req(2, checked_mem);
5154 
5155     slow_control = _gvn.transform(slow_reg2);
5156     slow_i_o     = _gvn.transform(slow_i_o2);
5157     slow_mem     = _gvn.transform(slow_mem2);
5158 
5159     if (alloc != NULL) {
5160       // We'll restart from the very beginning, after zeroing the whole thing.
5161       // This can cause double writes, but that's OK since dest is brand new.
5162       // So we ignore the low 31 bits of the value returned from the stub.
5163     } else {
5164       // We must continue the copy exactly where it failed, or else
5165       // another thread might see the wrong number of writes to dest.
5166       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5167       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5168       slow_offset->init_req(1, intcon(0));
5169       slow_offset->init_req(2, checked_offset);
5170       slow_offset  = _gvn.transform(slow_offset);
5171 
5172       // Adjust the arguments by the conditionally incoming offset.
5173       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5174       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5175       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5176 
5177       // Tweak the node variables to adjust the code produced below:
5178       src_offset  = src_off_plus;
5179       dest_offset = dest_off_plus;
5180       copy_length = length_minus;
5181     }
5182   }
5183 
5184   set_control(slow_control);
5185   if (!stopped()) {
5186     // Generate the slow path, if needed.
5187     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5188 
5189     set_memory(slow_mem, adr_type);
5190     set_i_o(slow_i_o);
5191 
5192     if (dest_uninitialized) {
5193       generate_clear_array(adr_type, dest, basic_elem_type,
5194                            intcon(0), NULL,
5195                            alloc->in(AllocateNode::AllocSize));
5196     }
5197 
5198     generate_slow_arraycopy(adr_type,
5199                             src, src_offset, dest, dest_offset,
5200                             copy_length, /*dest_uninitialized*/false);
5201 
5202     result_region->init_req(slow_call_path, control());
5203     result_i_o   ->init_req(slow_call_path, i_o());
5204     result_memory->init_req(slow_call_path, memory(adr_type));
5205   }
5206 
5207   // Remove unused edges.
5208   for (uint i = 1; i < result_region->req(); i++) {
5209     if (result_region->in(i) == NULL)
5210       result_region->init_req(i, top());
5211   }
5212 
5213   // Finished; return the combined state.
5214   set_control( _gvn.transform(result_region));
5215   set_i_o(     _gvn.transform(result_i_o)    );
5216   set_memory(  _gvn.transform(result_memory), adr_type );
5217 
5218   // The memory edges above are precise in order to model effects around
5219   // array copies accurately to allow value numbering of field loads around
5220   // arraycopy.  Such field loads, both before and after, are common in Java
5221   // collections and similar classes involving header/array data structures.
5222   //
5223   // But with low number of register or when some registers are used or killed
5224   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5225   // The next memory barrier is added to avoid it. If the arraycopy can be
5226   // optimized away (which it can, sometimes) then we can manually remove
5227   // the membar also.
5228   //
5229   // Do not let reads from the cloned object float above the arraycopy.
5230   if (alloc != NULL) {
5231     // Do not let stores that initialize this object be reordered with
5232     // a subsequent store that would make this object accessible by
5233     // other threads.
5234     // Record what AllocateNode this StoreStore protects so that
5235     // escape analysis can go from the MemBarStoreStoreNode to the
5236     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5237     // based on the escape status of the AllocateNode.
5238     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5239   } else if (InsertMemBarAfterArraycopy)
5240     insert_mem_bar(Op_MemBarCPUOrder);
5241 }
5242 
5243 
5244 // Helper function which determines if an arraycopy immediately follows
5245 // an allocation, with no intervening tests or other escapes for the object.
5246 AllocateArrayNode*
5247 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5248                                            RegionNode* slow_region) {
5249   if (stopped())             return NULL;  // no fast path
5250   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5251 
5252   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5253   if (alloc == NULL)  return NULL;
5254 
5255   Node* rawmem = memory(Compile::AliasIdxRaw);
5256   // Is the allocation's memory state untouched?
5257   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5258     // Bail out if there have been raw-memory effects since the allocation.
5259     // (Example:  There might have been a call or safepoint.)
5260     return NULL;
5261   }
5262   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5263   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5264     return NULL;
5265   }
5266 
5267   // There must be no unexpected observers of this allocation.
5268   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5269     Node* obs = ptr->fast_out(i);
5270     if (obs != this->map()) {
5271       return NULL;
5272     }
5273   }
5274 
5275   // This arraycopy must unconditionally follow the allocation of the ptr.
5276   Node* alloc_ctl = ptr->in(0);
5277   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5278 
5279   Node* ctl = control();
5280   while (ctl != alloc_ctl) {
5281     // There may be guards which feed into the slow_region.
5282     // Any other control flow means that we might not get a chance
5283     // to finish initializing the allocated object.
5284     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5285       IfNode* iff = ctl->in(0)->as_If();
5286       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5287       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5288       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5289         ctl = iff->in(0);       // This test feeds the known slow_region.
5290         continue;
5291       }
5292       // One more try:  Various low-level checks bottom out in
5293       // uncommon traps.  If the debug-info of the trap omits
5294       // any reference to the allocation, as we've already
5295       // observed, then there can be no objection to the trap.
5296       bool found_trap = false;
5297       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5298         Node* obs = not_ctl->fast_out(j);
5299         if (obs->in(0) == not_ctl && obs->is_Call() &&
5300             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5301           found_trap = true; break;
5302         }
5303       }
5304       if (found_trap) {
5305         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5306         continue;
5307       }
5308     }
5309     return NULL;
5310   }
5311 
5312   // If we get this far, we have an allocation which immediately
5313   // precedes the arraycopy, and we can take over zeroing the new object.
5314   // The arraycopy will finish the initialization, and provide
5315   // a new control state to which we will anchor the destination pointer.
5316 
5317   return alloc;
5318 }
5319 
5320 // Helper for initialization of arrays, creating a ClearArray.
5321 // It writes zero bits in [start..end), within the body of an array object.
5322 // The memory effects are all chained onto the 'adr_type' alias category.
5323 //
5324 // Since the object is otherwise uninitialized, we are free
5325 // to put a little "slop" around the edges of the cleared area,
5326 // as long as it does not go back into the array's header,
5327 // or beyond the array end within the heap.
5328 //
5329 // The lower edge can be rounded down to the nearest jint and the
5330 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5331 //
5332 // Arguments:
5333 //   adr_type           memory slice where writes are generated
5334 //   dest               oop of the destination array
5335 //   basic_elem_type    element type of the destination
5336 //   slice_idx          array index of first element to store
5337 //   slice_len          number of elements to store (or NULL)
5338 //   dest_size          total size in bytes of the array object
5339 //
5340 // Exactly one of slice_len or dest_size must be non-NULL.
5341 // If dest_size is non-NULL, zeroing extends to the end of the object.
5342 // If slice_len is non-NULL, the slice_idx value must be a constant.
5343 void
5344 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5345                                      Node* dest,
5346                                      BasicType basic_elem_type,
5347                                      Node* slice_idx,
5348                                      Node* slice_len,
5349                                      Node* dest_size) {
5350   // one or the other but not both of slice_len and dest_size:
5351   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5352   if (slice_len == NULL)  slice_len = top();
5353   if (dest_size == NULL)  dest_size = top();
5354 
5355   // operate on this memory slice:
5356   Node* mem = memory(adr_type); // memory slice to operate on
5357 
5358   // scaling and rounding of indexes:
5359   int scale = exact_log2(type2aelembytes(basic_elem_type));
5360   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5361   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5362   int bump_bit  = (-1 << scale) & BytesPerInt;
5363 
5364   // determine constant starts and ends
5365   const intptr_t BIG_NEG = -128;
5366   assert(BIG_NEG + 2*abase < 0, "neg enough");
5367   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5368   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5369   if (slice_len_con == 0) {
5370     return;                     // nothing to do here
5371   }
5372   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5373   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5374   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5375     assert(end_con < 0, "not two cons");
5376     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5377                        BytesPerLong);
5378   }
5379 
5380   if (start_con >= 0 && end_con >= 0) {
5381     // Constant start and end.  Simple.
5382     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5383                                        start_con, end_con, &_gvn);
5384   } else if (start_con >= 0 && dest_size != top()) {
5385     // Constant start, pre-rounded end after the tail of the array.
5386     Node* end = dest_size;
5387     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5388                                        start_con, end, &_gvn);
5389   } else if (start_con >= 0 && slice_len != top()) {
5390     // Constant start, non-constant end.  End needs rounding up.
5391     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5392     intptr_t end_base  = abase + (slice_idx_con << scale);
5393     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5394     Node*    end       = ConvI2X(slice_len);
5395     if (scale != 0)
5396       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5397     end_base += end_round;
5398     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5399     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5400     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5401                                        start_con, end, &_gvn);
5402   } else if (start_con < 0 && dest_size != top()) {
5403     // Non-constant start, pre-rounded end after the tail of the array.
5404     // This is almost certainly a "round-to-end" operation.
5405     Node* start = slice_idx;
5406     start = ConvI2X(start);
5407     if (scale != 0)
5408       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5409     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5410     if ((bump_bit | clear_low) != 0) {
5411       int to_clear = (bump_bit | clear_low);
5412       // Align up mod 8, then store a jint zero unconditionally
5413       // just before the mod-8 boundary.
5414       if (((abase + bump_bit) & ~to_clear) - bump_bit
5415           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5416         bump_bit = 0;
5417         assert((abase & to_clear) == 0, "array base must be long-aligned");
5418       } else {
5419         // Bump 'start' up to (or past) the next jint boundary:
5420         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5421         assert((abase & clear_low) == 0, "array base must be int-aligned");
5422       }
5423       // Round bumped 'start' down to jlong boundary in body of array.
5424       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5425       if (bump_bit != 0) {
5426         // Store a zero to the immediately preceding jint:
5427         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5428         Node* p1 = basic_plus_adr(dest, x1);
5429         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5430         mem = _gvn.transform(mem);
5431       }
5432     }
5433     Node* end = dest_size; // pre-rounded
5434     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5435                                        start, end, &_gvn);
5436   } else {
5437     // Non-constant start, unrounded non-constant end.
5438     // (Nobody zeroes a random midsection of an array using this routine.)
5439     ShouldNotReachHere();       // fix caller
5440   }
5441 
5442   // Done.
5443   set_memory(mem, adr_type);
5444 }
5445 
5446 
5447 bool
5448 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5449                                          BasicType basic_elem_type,
5450                                          AllocateNode* alloc,
5451                                          Node* src,  Node* src_offset,
5452                                          Node* dest, Node* dest_offset,
5453                                          Node* dest_size, bool dest_uninitialized) {
5454   // See if there is an advantage from block transfer.
5455   int scale = exact_log2(type2aelembytes(basic_elem_type));
5456   if (scale >= LogBytesPerLong)
5457     return false;               // it is already a block transfer
5458 
5459   // Look at the alignment of the starting offsets.
5460   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5461 
5462   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5463   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5464   if (src_off_con < 0 || dest_off_con < 0)
5465     // At present, we can only understand constants.
5466     return false;
5467 
5468   intptr_t src_off  = abase + (src_off_con  << scale);
5469   intptr_t dest_off = abase + (dest_off_con << scale);
5470 
5471   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5472     // Non-aligned; too bad.
5473     // One more chance:  Pick off an initial 32-bit word.
5474     // This is a common case, since abase can be odd mod 8.
5475     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5476         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5477       Node* sptr = basic_plus_adr(src,  src_off);
5478       Node* dptr = basic_plus_adr(dest, dest_off);
5479       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5480       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5481       src_off += BytesPerInt;
5482       dest_off += BytesPerInt;
5483     } else {
5484       return false;
5485     }
5486   }
5487   assert(src_off % BytesPerLong == 0, "");
5488   assert(dest_off % BytesPerLong == 0, "");
5489 
5490   // Do this copy by giant steps.
5491   Node* sptr  = basic_plus_adr(src,  src_off);
5492   Node* dptr  = basic_plus_adr(dest, dest_off);
5493   Node* countx = dest_size;
5494   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5495   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5496 
5497   bool disjoint_bases = true;   // since alloc != NULL
5498   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5499                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5500 
5501   return true;
5502 }
5503 
5504 
5505 // Helper function; generates code for the slow case.
5506 // We make a call to a runtime method which emulates the native method,
5507 // but without the native wrapper overhead.
5508 void
5509 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5510                                         Node* src,  Node* src_offset,
5511                                         Node* dest, Node* dest_offset,
5512                                         Node* copy_length, bool dest_uninitialized) {
5513   assert(!dest_uninitialized, "Invariant");
5514   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5515                                  OptoRuntime::slow_arraycopy_Type(),
5516                                  OptoRuntime::slow_arraycopy_Java(),
5517                                  "slow_arraycopy", adr_type,
5518                                  src, src_offset, dest, dest_offset,
5519                                  copy_length);
5520 
5521   // Handle exceptions thrown by this fellow:
5522   make_slow_call_ex(call, env()->Throwable_klass(), false);
5523 }
5524 
5525 // Helper function; generates code for cases requiring runtime checks.
5526 Node*
5527 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5528                                              Node* dest_elem_klass,
5529                                              Node* src,  Node* src_offset,
5530                                              Node* dest, Node* dest_offset,
5531                                              Node* copy_length, bool dest_uninitialized) {
5532   if (stopped())  return NULL;
5533 
5534   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5535   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5536     return NULL;
5537   }
5538 
5539   // Pick out the parameters required to perform a store-check
5540   // for the target array.  This is an optimistic check.  It will
5541   // look in each non-null element's class, at the desired klass's
5542   // super_check_offset, for the desired klass.
5543   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5544   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5545   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5546   Node* check_offset = ConvI2X(_gvn.transform(n3));
5547   Node* check_value  = dest_elem_klass;
5548 
5549   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5550   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5551 
5552   // (We know the arrays are never conjoint, because their types differ.)
5553   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5554                                  OptoRuntime::checkcast_arraycopy_Type(),
5555                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5556                                  // five arguments, of which two are
5557                                  // intptr_t (jlong in LP64)
5558                                  src_start, dest_start,
5559                                  copy_length XTOP,
5560                                  check_offset XTOP,
5561                                  check_value);
5562 
5563   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5564 }
5565 
5566 
5567 // Helper function; generates code for cases requiring runtime checks.
5568 Node*
5569 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5570                                            Node* src,  Node* src_offset,
5571                                            Node* dest, Node* dest_offset,
5572                                            Node* copy_length, bool dest_uninitialized) {
5573   assert(!dest_uninitialized, "Invariant");
5574   if (stopped())  return NULL;
5575   address copyfunc_addr = StubRoutines::generic_arraycopy();
5576   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5577     return NULL;
5578   }
5579 
5580   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5581                     OptoRuntime::generic_arraycopy_Type(),
5582                     copyfunc_addr, "generic_arraycopy", adr_type,
5583                     src, src_offset, dest, dest_offset, copy_length);
5584 
5585   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5586 }
5587 
5588 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5589 void
5590 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5591                                              BasicType basic_elem_type,
5592                                              bool disjoint_bases,
5593                                              Node* src,  Node* src_offset,
5594                                              Node* dest, Node* dest_offset,
5595                                              Node* copy_length, bool dest_uninitialized) {
5596   if (stopped())  return;               // nothing to do
5597 
5598   Node* src_start  = src;
5599   Node* dest_start = dest;
5600   if (src_offset != NULL || dest_offset != NULL) {
5601     assert(src_offset != NULL && dest_offset != NULL, "");
5602     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5603     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5604   }
5605 
5606   // Figure out which arraycopy runtime method to call.
5607   const char* copyfunc_name = "arraycopy";
5608   address     copyfunc_addr =
5609       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5610                           disjoint_bases, copyfunc_name, dest_uninitialized);
5611 
5612   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5613   make_runtime_call(RC_LEAF|RC_NO_FP,
5614                     OptoRuntime::fast_arraycopy_Type(),
5615                     copyfunc_addr, copyfunc_name, adr_type,
5616                     src_start, dest_start, copy_length XTOP);
5617 }
5618 
5619 //-------------inline_encodeISOArray-----------------------------------
5620 // encode char[] to byte[] in ISO_8859_1
5621 bool LibraryCallKit::inline_encodeISOArray() {
5622   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5623   // no receiver since it is static method
5624   Node *src         = argument(0);
5625   Node *src_offset  = argument(1);
5626   Node *dst         = argument(2);
5627   Node *dst_offset  = argument(3);
5628   Node *length      = argument(4);
5629 
5630   const Type* src_type = src->Value(&_gvn);
5631   const Type* dst_type = dst->Value(&_gvn);
5632   const TypeAryPtr* top_src = src_type->isa_aryptr();
5633   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5634   if (top_src  == NULL || top_src->klass()  == NULL ||
5635       top_dest == NULL || top_dest->klass() == NULL) {
5636     // failed array check
5637     return false;
5638   }
5639 
5640   // Figure out the size and type of the elements we will be copying.
5641   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5642   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5643   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5644     return false;
5645   }
5646   Node* src_start = array_element_address(src, src_offset, src_elem);
5647   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5648   // 'src_start' points to src array + scaled offset
5649   // 'dst_start' points to dst array + scaled offset
5650 
5651   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5652   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5653   enc = _gvn.transform(enc);
5654   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5655   set_memory(res_mem, mtype);
5656   set_result(enc);
5657   return true;
5658 }
5659 
5660 /**
5661  * Calculate CRC32 for byte.
5662  * int java.util.zip.CRC32.update(int crc, int b)
5663  */
5664 bool LibraryCallKit::inline_updateCRC32() {
5665   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5666   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5667   // no receiver since it is static method
5668   Node* crc  = argument(0); // type: int
5669   Node* b    = argument(1); // type: int
5670 
5671   /*
5672    *    int c = ~ crc;
5673    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5674    *    b = b ^ (c >>> 8);
5675    *    crc = ~b;
5676    */
5677 
5678   Node* M1 = intcon(-1);
5679   crc = _gvn.transform(new (C) XorINode(crc, M1));
5680   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5681   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5682 
5683   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5684   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5685   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5686   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5687 
5688   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5689   result = _gvn.transform(new (C) XorINode(crc, result));
5690   result = _gvn.transform(new (C) XorINode(result, M1));
5691   set_result(result);
5692   return true;
5693 }
5694 
5695 /**
5696  * Calculate CRC32 for byte[] array.
5697  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5698  */
5699 bool LibraryCallKit::inline_updateBytesCRC32() {
5700   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5701   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5702   // no receiver since it is static method
5703   Node* crc     = argument(0); // type: int
5704   Node* src     = argument(1); // type: oop
5705   Node* offset  = argument(2); // type: int
5706   Node* length  = argument(3); // type: int
5707 
5708   const Type* src_type = src->Value(&_gvn);
5709   const TypeAryPtr* top_src = src_type->isa_aryptr();
5710   if (top_src  == NULL || top_src->klass()  == NULL) {
5711     // failed array check
5712     return false;
5713   }
5714 
5715   // Figure out the size and type of the elements we will be copying.
5716   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5717   if (src_elem != T_BYTE) {
5718     return false;
5719   }
5720 
5721   // 'src_start' points to src array + scaled offset
5722   Node* src_start = array_element_address(src, offset, src_elem);
5723 
5724   // We assume that range check is done by caller.
5725   // TODO: generate range check (offset+length < src.length) in debug VM.
5726 
5727   // Call the stub.
5728   address stubAddr = StubRoutines::updateBytesCRC32();
5729   const char *stubName = "updateBytesCRC32";
5730 
5731   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5732                                  stubAddr, stubName, TypePtr::BOTTOM,
5733                                  crc, src_start, length);
5734   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5735   set_result(result);
5736   return true;
5737 }
5738 
5739 /**
5740  * Calculate CRC32 for ByteBuffer.
5741  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5742  */
5743 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5744   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5745   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5746   // no receiver since it is static method
5747   Node* crc     = argument(0); // type: int
5748   Node* src     = argument(1); // type: long
5749   Node* offset  = argument(3); // type: int
5750   Node* length  = argument(4); // type: int
5751 
5752   src = ConvL2X(src);  // adjust Java long to machine word
5753   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5754   offset = ConvI2X(offset);
5755 
5756   // 'src_start' points to src array + scaled offset
5757   Node* src_start = basic_plus_adr(top(), base, offset);
5758 
5759   // Call the stub.
5760   address stubAddr = StubRoutines::updateBytesCRC32();
5761   const char *stubName = "updateBytesCRC32";
5762 
5763   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5764                                  stubAddr, stubName, TypePtr::BOTTOM,
5765                                  crc, src_start, length);
5766   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5767   set_result(result);
5768   return true;
5769 }
5770 
5771 //----------------------------inline_reference_get----------------------------
5772 // public T java.lang.ref.Reference.get();
5773 bool LibraryCallKit::inline_reference_get() {
5774   const int referent_offset = java_lang_ref_Reference::referent_offset;
5775   guarantee(referent_offset > 0, "should have already been set");
5776 
5777   // Get the argument:
5778   Node* reference_obj = null_check_receiver();
5779   if (stopped()) return true;
5780 
5781   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5782 
5783   ciInstanceKlass* klass = env()->Object_klass();
5784   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5785 
5786   Node* no_ctrl = NULL;
5787   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5788 
5789   // Use the pre-barrier to record the value in the referent field
5790   pre_barrier(false /* do_load */,
5791               control(),
5792               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5793               result /* pre_val */,
5794               T_OBJECT);
5795 
5796   // Add memory barrier to prevent commoning reads from this field
5797   // across safepoint since GC can change its value.
5798   insert_mem_bar(Op_MemBarCPUOrder);
5799 
5800   set_result(result);
5801   return true;
5802 }
5803 
5804 
5805 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5806                                               bool is_exact=true, bool is_static=false) {
5807 
5808   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5809   assert(tinst != NULL, "obj is null");
5810   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5811   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5812 
5813   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5814                                                                           ciSymbol::make(fieldTypeString),
5815                                                                           is_static);
5816   if (field == NULL) return (Node *) NULL;
5817   assert (field != NULL, "undefined field");
5818 
5819   // Next code  copied from Parse::do_get_xxx():
5820 
5821   // Compute address and memory type.
5822   int offset  = field->offset_in_bytes();
5823   bool is_vol = field->is_volatile();
5824   ciType* field_klass = field->type();
5825   assert(field_klass->is_loaded(), "should be loaded");
5826   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5827   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5828   BasicType bt = field->layout_type();
5829 
5830   // Build the resultant type of the load
5831   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5832 
5833   // Build the load.
5834   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5835   return loadedField;
5836 }
5837 
5838 
5839 //------------------------------inline_aescrypt_Block-----------------------
5840 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5841   address stubAddr;
5842   const char *stubName;
5843   assert(UseAES, "need AES instruction support");
5844 
5845   switch(id) {
5846   case vmIntrinsics::_aescrypt_encryptBlock:
5847     stubAddr = StubRoutines::aescrypt_encryptBlock();
5848     stubName = "aescrypt_encryptBlock";
5849     break;
5850   case vmIntrinsics::_aescrypt_decryptBlock:
5851     stubAddr = StubRoutines::aescrypt_decryptBlock();
5852     stubName = "aescrypt_decryptBlock";
5853     break;
5854   }
5855   if (stubAddr == NULL) return false;
5856 
5857   Node* aescrypt_object = argument(0);
5858   Node* src             = argument(1);
5859   Node* src_offset      = argument(2);
5860   Node* dest            = argument(3);
5861   Node* dest_offset     = argument(4);
5862 
5863   // (1) src and dest are arrays.
5864   const Type* src_type = src->Value(&_gvn);
5865   const Type* dest_type = dest->Value(&_gvn);
5866   const TypeAryPtr* top_src = src_type->isa_aryptr();
5867   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5868   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5869 
5870   // for the quick and dirty code we will skip all the checks.
5871   // we are just trying to get the call to be generated.
5872   Node* src_start  = src;
5873   Node* dest_start = dest;
5874   if (src_offset != NULL || dest_offset != NULL) {
5875     assert(src_offset != NULL && dest_offset != NULL, "");
5876     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5877     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5878   }
5879 
5880   // now need to get the start of its expanded key array
5881   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5882   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5883   if (k_start == NULL) return false;
5884 
5885   if (Matcher::pass_original_key_for_aes()) {
5886     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5887     // compatibility issues between Java key expansion and SPARC crypto instructions
5888     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5889     if (original_k_start == NULL) return false;
5890 
5891     // Call the stub.
5892     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5893                       stubAddr, stubName, TypePtr::BOTTOM,
5894                       src_start, dest_start, k_start, original_k_start);
5895   } else {
5896     // Call the stub.
5897     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5898                       stubAddr, stubName, TypePtr::BOTTOM,
5899                       src_start, dest_start, k_start);
5900   }
5901 
5902   return true;
5903 }
5904 
5905 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5906 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5907   address stubAddr;
5908   const char *stubName;
5909 
5910   assert(UseAES, "need AES instruction support");
5911 
5912   switch(id) {
5913   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5914     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5915     stubName = "cipherBlockChaining_encryptAESCrypt";
5916     break;
5917   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5918     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5919     stubName = "cipherBlockChaining_decryptAESCrypt";
5920     break;
5921   }
5922   if (stubAddr == NULL) return false;
5923 
5924   Node* cipherBlockChaining_object = argument(0);
5925   Node* src                        = argument(1);
5926   Node* src_offset                 = argument(2);
5927   Node* len                        = argument(3);
5928   Node* dest                       = argument(4);
5929   Node* dest_offset                = argument(5);
5930 
5931   // (1) src and dest are arrays.
5932   const Type* src_type = src->Value(&_gvn);
5933   const Type* dest_type = dest->Value(&_gvn);
5934   const TypeAryPtr* top_src = src_type->isa_aryptr();
5935   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5936   assert (top_src  != NULL && top_src->klass()  != NULL
5937           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5938 
5939   // checks are the responsibility of the caller
5940   Node* src_start  = src;
5941   Node* dest_start = dest;
5942   if (src_offset != NULL || dest_offset != NULL) {
5943     assert(src_offset != NULL && dest_offset != NULL, "");
5944     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5945     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5946   }
5947 
5948   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5949   // (because of the predicated logic executed earlier).
5950   // so we cast it here safely.
5951   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5952 
5953   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5954   if (embeddedCipherObj == NULL) return false;
5955 
5956   // cast it to what we know it will be at runtime
5957   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5958   assert(tinst != NULL, "CBC obj is null");
5959   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5960   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5961   if (!klass_AESCrypt->is_loaded()) return false;
5962 
5963   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5964   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5965   const TypeOopPtr* xtype = aklass->as_instance_type();
5966   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5967   aescrypt_object = _gvn.transform(aescrypt_object);
5968 
5969   // we need to get the start of the aescrypt_object's expanded key array
5970   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5971   if (k_start == NULL) return false;
5972 
5973   // similarly, get the start address of the r vector
5974   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5975   if (objRvec == NULL) return false;
5976   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5977 
5978   Node* cbcCrypt;
5979   if (Matcher::pass_original_key_for_aes()) {
5980     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5981     // compatibility issues between Java key expansion and SPARC crypto instructions
5982     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5983     if (original_k_start == NULL) return false;
5984 
5985     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5986     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5987                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5988                                  stubAddr, stubName, TypePtr::BOTTOM,
5989                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5990   } else {
5991     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5992     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5993                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5994                                  stubAddr, stubName, TypePtr::BOTTOM,
5995                                  src_start, dest_start, k_start, r_start, len);
5996   }
5997 
5998   // return cipher length (int)
5999   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6000   set_result(retvalue);
6001   return true;
6002 }
6003 
6004 //------------------------------get_key_start_from_aescrypt_object-----------------------
6005 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6006   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6007   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6008   if (objAESCryptKey == NULL) return (Node *) NULL;
6009 
6010   // now have the array, need to get the start address of the K array
6011   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6012   return k_start;
6013 }
6014 
6015 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6016 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6017   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6018   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6019   if (objAESCryptKey == NULL) return (Node *) NULL;
6020 
6021   // now have the array, need to get the start address of the lastKey array
6022   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6023   return original_k_start;
6024 }
6025 
6026 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6027 // Return node representing slow path of predicate check.
6028 // the pseudo code we want to emulate with this predicate is:
6029 // for encryption:
6030 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6031 // for decryption:
6032 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6033 //    note cipher==plain is more conservative than the original java code but that's OK
6034 //
6035 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6036   // First, check receiver for NULL since it is virtual method.
6037   Node* objCBC = argument(0);
6038   objCBC = null_check(objCBC);
6039 
6040   if (stopped()) return NULL; // Always NULL
6041 
6042   // Load embeddedCipher field of CipherBlockChaining object.
6043   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6044 
6045   // get AESCrypt klass for instanceOf check
6046   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6047   // will have same classloader as CipherBlockChaining object
6048   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6049   assert(tinst != NULL, "CBCobj is null");
6050   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6051 
6052   // we want to do an instanceof comparison against the AESCrypt class
6053   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6054   if (!klass_AESCrypt->is_loaded()) {
6055     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6056     Node* ctrl = control();
6057     set_control(top()); // no regular fast path
6058     return ctrl;
6059   }
6060   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6061 
6062   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6063   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6064   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6065 
6066   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6067 
6068   // for encryption, we are done
6069   if (!decrypting)
6070     return instof_false;  // even if it is NULL
6071 
6072   // for decryption, we need to add a further check to avoid
6073   // taking the intrinsic path when cipher and plain are the same
6074   // see the original java code for why.
6075   RegionNode* region = new(C) RegionNode(3);
6076   region->init_req(1, instof_false);
6077   Node* src = argument(1);
6078   Node* dest = argument(4);
6079   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6080   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6081   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6082   region->init_req(2, src_dest_conjoint);
6083 
6084   record_for_igvn(region);
6085   return _gvn.transform(region);
6086 }