1 /*
   2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/machnode.hpp"
  30 #include "opto/matcher.hpp"
  31 #include "opto/mathexactnode.hpp"
  32 #include "opto/subnode.hpp"
  33 
  34 OverflowNode::OverflowNode(Node* in1, Node* in2) : CmpNode(in1, in2) {
  35 }
  36 
  37 template <typename OverflowOp>
  38 class AddHelper {
  39 public:
  40   typedef typename OverflowOp::TypeClass TypeClass;
  41   typedef typename TypeClass::NativeType NativeType;
  42 
  43   static bool will_overflow(NativeType value1, NativeType value2) {
  44     NativeType result = value1 + value2;
  45     // Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
  46     if ( (((value1 ^ result) & (value2 ^ result)) >= 0)) {
  47       return false;
  48     }
  49     return true;
  50   }
  51 
  52   static bool can_overflow(const Type* type1, const Type* type2) {
  53     if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) {
  54       return false;
  55     }
  56     return true;
  57   }
  58 };
  59 
  60 template <typename OverflowOp>
  61 class SubHelper {
  62 public:
  63   typedef typename OverflowOp::TypeClass TypeClass;
  64   typedef typename TypeClass::NativeType NativeType;
  65 
  66   static bool will_overflow(NativeType value1, NativeType value2) {
  67     NativeType result = value1 - value2;
  68     // hacker's delight 2-12 overflow iff the arguments have different signs and
  69     // the sign of the result is different than the sign of arg1
  70     if (((value1 ^ value2) & (value1 ^ result)) >= 0) {
  71       return false;
  72     }
  73     return true;
  74   }
  75 
  76   static bool can_overflow(const Type* type1, const Type* type2) {
  77     if (type2 == TypeClass::ZERO) {
  78       return false;
  79     }
  80     return true;
  81   }
  82 };
  83 
  84 template <typename OverflowOp>
  85 class MulHelper {
  86 public:
  87   typedef typename OverflowOp::TypeClass TypeClass;
  88 
  89   static bool can_overflow(const Type* type1, const Type* type2) {
  90     if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) {
  91       return false;
  92     } else if (type1 == TypeClass::ONE || type2 == TypeClass::ONE) {
  93       return false;
  94     }
  95     return true;
  96   }
  97 };
  98 
  99 bool OverflowAddINode::will_overflow(jint v1, jint v2) const {
 100   return AddHelper<OverflowAddINode>::will_overflow(v1, v2);
 101 }
 102 
 103 bool OverflowSubINode::will_overflow(jint v1, jint v2) const {
 104   return SubHelper<OverflowSubINode>::will_overflow(v1, v2);
 105 }
 106 
 107 bool OverflowMulINode::will_overflow(jint v1, jint v2) const {
 108     jlong result = (jlong) v1 * (jlong) v2;
 109     if ((jint) result == result) {
 110       return false;
 111     }
 112     return true;
 113 }
 114 
 115 bool OverflowAddLNode::will_overflow(jlong v1, jlong v2) const {
 116   return AddHelper<OverflowAddLNode>::will_overflow(v1, v2);
 117 }
 118 
 119 bool OverflowSubLNode::will_overflow(jlong v1, jlong v2) const {
 120   return SubHelper<OverflowSubLNode>::will_overflow(v1, v2);
 121 }
 122 
 123 bool OverflowMulLNode::will_overflow(jlong val1, jlong val2) const {
 124     jlong result = val1 * val2;
 125     jlong ax = (val1 < 0 ? -val1 : val1);
 126     jlong ay = (val2 < 0 ? -val2 : val2);
 127 
 128     bool overflow = false;
 129     if ((ax | ay) & CONST64(0xFFFFFFFF00000000)) {
 130       // potential overflow if any bit in upper 32 bits are set
 131       if ((val1 == min_jlong && val2 == -1) || (val2 == min_jlong && val1 == -1)) {
 132         // -1 * Long.MIN_VALUE will overflow
 133         overflow = true;
 134       } else if (val2 != 0 && (result / val2 != val1)) {
 135         overflow = true;
 136       }
 137     }
 138 
 139     return overflow;
 140 }
 141 
 142 template <typename OverflowOp>
 143 struct IdealHelper {
 144   typedef typename OverflowOp::TypeClass TypeClass; // TypeInt, TypeLong
 145   typedef typename TypeClass::NativeType NativeType;
 146 
 147   static Node* Ideal(const OverflowOp* node, PhaseGVN* phase, bool can_reshape) {
 148     Node* arg1 = node->in(1);
 149     Node* arg2 = node->in(2);
 150     const Type* type1 = phase->type(arg1);
 151     const Type* type2 = phase->type(arg2);
 152 
 153     if (type1 != Type::TOP && type1->singleton() &&
 154         type2 != Type::TOP && type2->singleton()) {
 155       NativeType val1 = TypeClass::as_self(type1)->get_con();
 156       NativeType val2 = TypeClass::as_self(type2)->get_con();
 157       if (node->will_overflow(val1, val2) == false) {
 158         Node* con_result = ConINode::make(phase->C, 0);
 159         return con_result;
 160       }
 161       return NULL;
 162     }
 163     return NULL;
 164   }
 165 
 166   static const Type* Value(const OverflowOp* node, PhaseTransform* phase) {
 167     const Type *t1 = phase->type( node->in(1) );
 168     const Type *t2 = phase->type( node->in(2) );
 169     if( t1 == Type::TOP ) return Type::TOP;
 170     if( t2 == Type::TOP ) return Type::TOP;
 171 
 172     const TypeClass* i1 = TypeClass::as_self(t1);
 173     const TypeClass* i2 = TypeClass::as_self(t2);
 174 
 175     if (t1->singleton() && t2->singleton()) {
 176       if (i1 == NULL || i2 == NULL) {
 177         return TypeInt::CC;
 178       }
 179 
 180       NativeType val1 = i1->get_con();
 181       NativeType val2 = i2->get_con();
 182       if (node->will_overflow(val1, val2)) {
 183         return TypeInt::CC;
 184       }
 185       return TypeInt::ZERO;
 186     } else if (i1 != TypeClass::bottom() && i2 != TypeClass::bottom()) {
 187       if (node->will_overflow(i1->_lo, i2->_lo)) {
 188         return TypeInt::CC;
 189       } else if (node->will_overflow(i1->_lo, i2->_hi)) {
 190         return TypeInt::CC;
 191       } else if (node->will_overflow(i1->_hi, i2->_lo)) {
 192         return TypeInt::CC;
 193       } else if (node->will_overflow(i1->_hi, i2->_hi)) {
 194         return TypeInt::CC;
 195       }
 196       return TypeInt::ZERO;
 197     }
 198 
 199     if (!node->can_overflow(t1, t2)) {
 200       return TypeInt::ZERO;
 201     }
 202     return TypeInt::CC;
 203   }
 204 };
 205 
 206 Node* OverflowINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 207   return IdealHelper<OverflowINode>::Ideal(this, phase, can_reshape);
 208 }
 209 
 210 Node* OverflowLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 211   return IdealHelper<OverflowLNode>::Ideal(this, phase, can_reshape);
 212 }
 213 
 214 const Type* OverflowINode::Value(PhaseTransform* phase) const {
 215   return IdealHelper<OverflowINode>::Value(this, phase);
 216 }
 217 
 218 const Type* OverflowLNode::Value(PhaseTransform* phase) const {
 219   return IdealHelper<OverflowLNode>::Value(this, phase);
 220 }
 221 
 222 bool OverflowAddINode::can_overflow(const Type* t1, const Type* t2) const {
 223   return AddHelper<OverflowAddINode>::can_overflow(t1, t2);
 224 }
 225 
 226 bool OverflowSubINode::can_overflow(const Type* t1, const Type* t2) const {
 227   if (in(1) == in(2)) {
 228     return false;
 229   }
 230   return SubHelper<OverflowSubINode>::can_overflow(t1, t2);
 231 }
 232 
 233 bool OverflowMulINode::can_overflow(const Type* t1, const Type* t2) const {
 234   return MulHelper<OverflowMulINode>::can_overflow(t1, t2);
 235 }
 236 
 237 bool OverflowAddLNode::can_overflow(const Type* t1, const Type* t2) const {
 238   return AddHelper<OverflowAddLNode>::can_overflow(t1, t2);
 239 }
 240 
 241 bool OverflowSubLNode::can_overflow(const Type* t1, const Type* t2) const {
 242   return SubHelper<OverflowSubLNode>::can_overflow(t1, t2);
 243 }
 244 
 245 bool OverflowMulLNode::can_overflow(const Type* t1, const Type* t2) const {
 246   return MulHelper<OverflowMulLNode>::can_overflow(t1, t2);
 247 }
 248 
 249 const Type* OverflowNode::sub(const Type* t1, const Type* t2) const {
 250   ShouldNotReachHere();
 251   return TypeInt::CC;
 252 }