src/share/vm/opto/mathexactnode.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File hotspot Sdiff src/share/vm/opto

src/share/vm/opto/mathexactnode.cpp

Print this page
rev 5902 : 8027754: Enable loop optimizations for loops with MathExact inside


  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/machnode.hpp"
  30 #include "opto/matcher.hpp"
  31 #include "opto/mathexactnode.hpp"
  32 #include "opto/subnode.hpp"
  33 
  34 MathExactNode::MathExactNode(Node* ctrl, Node* in1) : MultiNode(2) {
  35   init_class_id(Class_MathExact);
  36   init_req(0, ctrl);
  37   init_req(1, in1);
  38 }
  39 
  40 MathExactNode::MathExactNode(Node* ctrl, Node* in1, Node* in2) : MultiNode(3) {
  41   init_class_id(Class_MathExact);
  42   init_req(0, ctrl);
  43   init_req(1, in1);
  44   init_req(2, in2);
  45 }
  46 
  47 BoolNode* MathExactNode::bool_node() const {
  48   Node* flags = flags_node();
  49   BoolNode* boolnode = flags->unique_out()->as_Bool();
  50   assert(boolnode != NULL, "must have BoolNode");
  51   return boolnode;
  52 }
  53 
  54 IfNode* MathExactNode::if_node() const {
  55   BoolNode* boolnode = bool_node();
  56   IfNode* ifnode = boolnode->unique_out()->as_If();
  57   assert(ifnode != NULL, "must have IfNode");
  58   return ifnode;
  59 }
  60 
  61 Node* MathExactNode::control_node() const {
  62   IfNode* ifnode = if_node();
  63   return ifnode->in(0);
  64 }
  65 
  66 Node* MathExactNode::non_throwing_branch() const {
  67   IfNode* ifnode = if_node();
  68   if (bool_node()->_test._test == BoolTest::overflow) {
  69     return ifnode->proj_out(0);
  70   }
  71   return ifnode->proj_out(1);
  72 }
  73 
  74 // If the MathExactNode won't overflow we have to replace the
  75 // FlagsProjNode and ProjNode that is generated by the MathExactNode
  76 Node* MathExactNode::no_overflow(PhaseGVN* phase, Node* new_result) {
  77   PhaseIterGVN* igvn = phase->is_IterGVN();
  78   if (igvn) {
  79     ProjNode* result = result_node();
  80     ProjNode* flags = flags_node();
  81 
  82     if (result != NULL) {
  83       igvn->replace_node(result, new_result);
  84     }
  85 
  86     if (flags != NULL) {
  87       BoolNode* boolnode = bool_node();
  88       switch (boolnode->_test._test) {
  89         case BoolTest::overflow:
  90           // if the check is for overflow - never taken
  91           igvn->replace_node(boolnode, phase->intcon(0));
  92           break;
  93         case BoolTest::no_overflow:
  94           // if the check is for no overflow - always taken
  95           igvn->replace_node(boolnode, phase->intcon(1));
  96           break;
  97         default:
  98           fatal("Unexpected value of BoolTest");
  99           break;
 100       }
 101       flags->del_req(0);
 102     }
 103   }
 104   return new_result;
 105 }
 106 
 107 Node* MathExactINode::match(const ProjNode* proj, const Matcher* m) {
 108   uint ideal_reg = proj->ideal_reg();
 109   RegMask rm;
 110   if (proj->_con == result_proj_node) {
 111     rm = m->mathExactI_result_proj_mask();
 112   } else {
 113     assert(proj->_con == flags_proj_node, "must be result or flags");
 114     assert(ideal_reg == Op_RegFlags, "sanity");
 115     rm = m->mathExactI_flags_proj_mask();
 116   }
 117   return new (m->C) MachProjNode(this, proj->_con, rm, ideal_reg);
 118 }
 119 
 120 Node* MathExactLNode::match(const ProjNode* proj, const Matcher* m) {
 121   uint ideal_reg = proj->ideal_reg();
 122   RegMask rm;
 123   if (proj->_con == result_proj_node) {
 124     rm = m->mathExactL_result_proj_mask();
 125   } else {
 126     assert(proj->_con == flags_proj_node, "must be result or flags");
 127     assert(ideal_reg == Op_RegFlags, "sanity");
 128     rm = m->mathExactI_flags_proj_mask();
 129   }
 130   return new (m->C) MachProjNode(this, proj->_con, rm, ideal_reg);
 131 }
 132 
 133 Node* AddExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 134   Node* arg1 = in(1);
 135   Node* arg2 = in(2);
 136 
 137   const Type* type1 = phase->type(arg1);
 138   const Type* type2 = phase->type(arg2);
 139 
 140   if (type1 != Type::TOP && type1->singleton() &&
 141       type2 != Type::TOP && type2->singleton()) {
 142     jint val1 = arg1->get_int();
 143     jint val2 = arg2->get_int();
 144     jint result = val1 + val2;
 145     // Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
 146     if ( (((val1 ^ result) & (val2 ^ result)) >= 0)) {
 147       Node* con_result = ConINode::make(phase->C, result);
 148       return no_overflow(phase, con_result);
 149     }
 150     return NULL;
 151   }
 152 
 153   if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) { // (Add 0 x) == x
 154     Node* add_result = new (phase->C) AddINode(arg1, arg2);
 155     return no_overflow(phase, add_result);
 156   }
 157 
 158   if (type2->singleton()) {
 159     return NULL; // no change - keep constant on the right

 160   }
 161 
 162   if (type1->singleton()) {
 163     // Make it x + Constant - move constant to the right
 164     swap_edges(1, 2);
 165     return this;
 166   }

 167 
 168   if (arg2->is_Load()) {
 169     return NULL; // no change - keep load on the right
 170   }


 171 
 172   if (arg1->is_Load()) {
 173     // Make it x + Load - move load to the right
 174     swap_edges(1, 2);
 175     return this;


 176   }
 177 
 178   if (arg1->_idx > arg2->_idx) {
 179     // Sort the edges
 180     swap_edges(1, 2);
 181     return this;
 182   }
 183 
 184   return NULL;
 185 }
 186 
 187 Node* AddExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 188   Node* arg1 = in(1);
 189   Node* arg2 = in(2);
 190 
 191   const Type* type1 = phase->type(arg1);
 192   const Type* type2 = phase->type(arg2);
 193 
 194   if (type1 != Type::TOP && type1->singleton() &&
 195       type2 != Type::TOP && type2->singleton()) {
 196     jlong val1 = arg1->get_long();
 197     jlong val2 = arg2->get_long();
 198     jlong result = val1 + val2;
 199     // Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
 200     if ( (((val1 ^ result) & (val2 ^ result)) >= 0)) {
 201       Node* con_result = ConLNode::make(phase->C, result);
 202       return no_overflow(phase, con_result);
 203     }
 204     return NULL;
 205   }

 206 
 207   if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) { // (Add 0 x) == x
 208     Node* add_result = new (phase->C) AddLNode(arg1, arg2);
 209     return no_overflow(phase, add_result);
 210   }
 211 
 212   if (type2->singleton()) {
 213     return NULL; // no change - keep constant on the right



 214   }
 215 
 216   if (type1->singleton()) {
 217     // Make it x + Constant - move constant to the right
 218     swap_edges(1, 2);
 219     return this;
 220   }

 221 
 222   if (arg2->is_Load()) {
 223     return NULL; // no change - keep load on the right
 224   }
 225 
 226   if (arg1->is_Load()) {
 227     // Make it x + Load - move load to the right
 228     swap_edges(1, 2);
 229     return this;
 230   }
 231 
 232   if (arg1->_idx > arg2->_idx) {
 233     // Sort the edges
 234     swap_edges(1, 2);
 235     return this;
 236   }
 237 
 238   return NULL;
 239 }
 240 
 241 Node* SubExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 242   Node* arg1 = in(1);
 243   Node* arg2 = in(2);
 244 
 245   const Type* type1 = phase->type(arg1);
 246   const Type* type2 = phase->type(arg2);

 247 
 248   if (type1 != Type::TOP && type1->singleton() &&
 249       type2 != Type::TOP && type2->singleton()) {
 250     jint val1 = arg1->get_int();
 251     jint val2 = arg2->get_int();
 252     jint result = val1 - val2;
 253 
 254     // Hacker's Delight 2-12 Overflow iff the arguments have different signs and
 255     // the sign of the result is different than the sign of arg1
 256     if (((val1 ^ val2) & (val1 ^ result)) >= 0) {
 257       Node* con_result = ConINode::make(phase->C, result);
 258       return no_overflow(phase, con_result);
 259     }
 260     return NULL;

 261   }
 262 
 263   if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) {
 264     // Sub with zero is the same as add with zero
 265     Node* add_result = new (phase->C) AddINode(arg1, arg2);
 266     return no_overflow(phase, add_result);
 267   }
 268 
 269   return NULL;
 270 }
 271 
 272 Node* SubExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 273   Node* arg1 = in(1);
 274   Node* arg2 = in(2);

 275 



 276   const Type* type1 = phase->type(arg1);
 277   const Type* type2 = phase->type(arg2);
 278 
 279   if (type1 != Type::TOP && type1->singleton() &&
 280       type2 != Type::TOP && type2->singleton()) {
 281     jlong val1 = arg1->get_long();
 282     jlong val2 = arg2->get_long();
 283     jlong result = val1 - val2;
 284 
 285     // Hacker's Delight 2-12 Overflow iff the arguments have different signs and
 286     // the sign of the result is different than the sign of arg1
 287     if (((val1 ^ val2) & (val1 ^ result)) >= 0) {
 288       Node* con_result = ConLNode::make(phase->C, result);
 289       return no_overflow(phase, con_result);
 290     }
 291     return NULL;
 292   }
 293 
 294   if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) {
 295     // Sub with zero is the same as add with zero
 296     Node* add_result = new (phase->C) AddLNode(arg1, arg2);
 297     return no_overflow(phase, add_result);
 298   }
 299 
 300   return NULL;
 301 }
 302 
 303 Node* NegExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 304   Node *arg = in(1);
 305 
 306   const Type* type = phase->type(arg);
 307   if (type != Type::TOP && type->singleton()) {
 308     jint value = arg->get_int();
 309     if (value != min_jint) {
 310       Node* neg_result = ConINode::make(phase->C, -value);
 311       return no_overflow(phase, neg_result);
 312     }
 313   }
 314   return NULL;
 315 }
 316 
 317 Node* NegExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 318   Node *arg = in(1);



 319 
 320   const Type* type = phase->type(arg);
 321   if (type != Type::TOP && type->singleton()) {
 322     jlong value = arg->get_long();
 323     if (value != min_jlong) {
 324       Node* neg_result = ConLNode::make(phase->C, -value);
 325       return no_overflow(phase, neg_result);
 326     }
 327   }
 328   return NULL;
 329 }
 330 
 331 Node* MulExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 332   Node* arg1 = in(1);
 333   Node* arg2 = in(2);
 334 
 335   const Type* type1 = phase->type(arg1);
 336   const Type* type2 = phase->type(arg2);
 337 
 338   if (type1 != Type::TOP && type1->singleton() &&
 339       type2 != Type::TOP && type2->singleton()) {
 340     jint val1 = arg1->get_int();
 341     jint val2 = arg2->get_int();
 342     jlong result = (jlong) val1 * (jlong) val2;
 343     if ((jint) result == result) {
 344       // no overflow
 345       Node* mul_result = ConINode::make(phase->C, result);
 346       return no_overflow(phase, mul_result);
 347     }
 348   }
 349 
 350   if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) {
 351     return no_overflow(phase, ConINode::make(phase->C, 0));


 352   }
 353 
 354   if (type1 == TypeInt::ONE) {
 355     Node* mul_result = new (phase->C) AddINode(arg2, phase->intcon(0));
 356     return no_overflow(phase, mul_result);






 357   }
 358   if (type2 == TypeInt::ONE) {
 359     Node* mul_result = new (phase->C) AddINode(arg1, phase->intcon(0));
 360     return no_overflow(phase, mul_result);
 361   }
 362 
 363   if (type1 == TypeInt::MINUS_1) {
 364     return new (phase->C) NegExactINode(NULL, arg2);
 365   }
 366 
 367   if (type2 == TypeInt::MINUS_1) {
 368     return new (phase->C) NegExactINode(NULL, arg1);
 369   }

 370 
 371   return NULL;

 372 }
 373 
 374 Node* MulExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 375   Node* arg1 = in(1);
 376   Node* arg2 = in(2);
 377 
 378   const Type* type1 = phase->type(arg1);
 379   const Type* type2 = phase->type(arg2);
 380 
 381   if (type1 != Type::TOP && type1->singleton() &&
 382       type2 != Type::TOP && type2->singleton()) {
 383     jlong val1 = arg1->get_long();
 384     jlong val2 = arg2->get_long();
 385 
 386     jlong result = val1 * val2;
 387     jlong ax = (val1 < 0 ? -val1 : val1);
 388     jlong ay = (val2 < 0 ? -val2 : val2);
 389 
 390     bool overflow = false;
 391     if ((ax | ay) & CONST64(0xFFFFFFFF00000000)) {
 392       // potential overflow if any bit in upper 32 bits are set
 393       if ((val1 == min_jlong && val2 == -1) || (val2 == min_jlong && val1 == -1)) {
 394         // -1 * Long.MIN_VALUE will overflow
 395         overflow = true;
 396       } else if (val2 != 0 && (result / val2 != val1)) {
 397         overflow = true;
 398       }
 399     }
 400 
 401     if (!overflow) {
 402       Node* mul_result = ConLNode::make(phase->C, result);
 403       return no_overflow(phase, mul_result);
 404     }
 405   }
 406 
 407   if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) {
 408     return no_overflow(phase, ConLNode::make(phase->C, 0));

 409   }


 410 
 411   if (type1 == TypeLong::ONE) {
 412     Node* mul_result = new (phase->C) AddLNode(arg2, phase->longcon(0));
 413     return no_overflow(phase, mul_result);
 414   }
 415   if (type2 == TypeLong::ONE) {
 416     Node* mul_result = new (phase->C) AddLNode(arg1, phase->longcon(0));
 417     return no_overflow(phase, mul_result);
 418   }
 419 
 420   if (type1 == TypeLong::MINUS_1) {
 421     return new (phase->C) NegExactLNode(NULL, arg2);
 422   }
 423 
 424   if (type2 == TypeLong::MINUS_1) {
 425     return new (phase->C) NegExactLNode(NULL, arg1);
 426   }
 427 
 428   return NULL;

 429 }
 430 






  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/machnode.hpp"
  30 #include "opto/matcher.hpp"
  31 #include "opto/mathexactnode.hpp"
  32 #include "opto/subnode.hpp"
  33 
  34 OverflowNode::OverflowNode(Node* in1, Node* in2) : CmpNode(in1, in2) {



  35 }
  36 
  37 template <typename OverflowOp>
  38 class AddHelper {
  39 public:
  40   typedef typename OverflowOp::TypeClass TypeClass;
  41   typedef typename TypeClass::NativeType NativeType;





























































  42 
  43   static bool will_overflow(NativeType value1, NativeType value2) {
  44     NativeType result = value1 + value2;




































  45     // Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
  46     if ( (((value1 ^ result) & (value2 ^ result)) >= 0)) {
  47       return false;



  48     }
  49     return true;



  50   }
  51 
  52   static bool can_overflow(const Type* type1, const Type* type2) {
  53     if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) {
  54       return false;
  55     }
  56     return true;




  57   }
  58 };
  59 
  60 template <typename OverflowOp>
  61 class SubHelper {
  62 public:
  63   typedef typename OverflowOp::TypeClass TypeClass;
  64   typedef typename TypeClass::NativeType NativeType;
  65 
  66   static bool will_overflow(NativeType value1, NativeType value2) {
  67     NativeType result = value1 - value2;
  68     // hacker's delight 2-12 overflow iff the arguments have different signs and
  69     // the sign of the result is different than the sign of arg1
  70     if (((value1 ^ value2) & (value1 ^ result)) >= 0) {
  71       return false;
  72     }
  73     return true;




  74   }
  75 
  76   static bool can_overflow(const Type* type1, const Type* type2) {
  77     if (type2 == TypeClass::ZERO) {
  78       return false;
















  79     }
  80     return true;
  81   }
  82 };
  83 
  84 template <typename OverflowOp>
  85 class MulHelper {
  86 public:
  87   typedef typename OverflowOp::TypeClass TypeClass;
  88 
  89   static bool can_overflow(const Type* type1, const Type* type2) {
  90     if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) {
  91       return false;
  92     } else if (type1 == TypeClass::ONE || type2 == TypeClass::ONE) {
  93       return false;
  94     }
  95     return true;




  96   }
  97 };
  98 
  99 bool OverflowAddINode::will_overflow(jint v1, jint v2) const {
 100   return AddHelper<OverflowAddINode>::will_overflow(v1, v2);
 101 }
 102 
 103 bool OverflowSubINode::will_overflow(jint v1, jint v2) const {
 104   return SubHelper<OverflowSubINode>::will_overflow(v1, v2);
 105 }


 106 
 107 bool OverflowMulINode::will_overflow(jint v1, jint v2) const {
 108     jlong result = (jlong) v1 * (jlong) v2;
 109     if ((jint) result == result) {
 110       return false;
 111     }
 112     return true;

 113 }
 114 
 115 bool OverflowAddLNode::will_overflow(jlong v1, jlong v2) const {
 116   return AddHelper<OverflowAddLNode>::will_overflow(v1, v2);
 117 }
 118 
 119 bool OverflowSubLNode::will_overflow(jlong v1, jlong v2) const {
 120   return SubHelper<OverflowSubLNode>::will_overflow(v1, v2);
 121 }
 122 
 123 bool OverflowMulLNode::will_overflow(jlong val1, jlong val2) const {
 124     jlong result = val1 * val2;
 125     jlong ax = (val1 < 0 ? -val1 : val1);
 126     jlong ay = (val2 < 0 ? -val2 : val2);

 127 
 128     bool overflow = false;
 129     if ((ax | ay) & CONST64(0xFFFFFFFF00000000)) {
 130       // potential overflow if any bit in upper 32 bits are set
 131       if ((val1 == min_jlong && val2 == -1) || (val2 == min_jlong && val1 == -1)) {
 132         // -1 * Long.MIN_VALUE will overflow
 133         overflow = true;
 134       } else if (val2 != 0 && (result / val2 != val1)) {
 135         overflow = true;
 136       }





 137     }
 138 
 139     return overflow;
 140 }
 141 
 142 template <typename OverflowOp>
 143 struct IdealHelper {
 144   typedef typename OverflowOp::TypeClass TypeClass; // TypeInt, TypeLong
 145   typedef typename TypeClass::NativeType NativeType;
 146 
 147   static Node* Ideal(const OverflowOp* node, PhaseGVN* phase, bool can_reshape) {
 148     Node* arg1 = node->in(1);
 149     Node* arg2 = node->in(2);
 150     const Type* type1 = phase->type(arg1);
 151     const Type* type2 = phase->type(arg2);
 152 
 153     if (type1 != Type::TOP && type1->singleton() &&
 154         type2 != Type::TOP && type2->singleton()) {
 155       NativeType val1 = TypeClass::as_self(type1)->get_con();
 156       NativeType val2 = TypeClass::as_self(type2)->get_con();
 157       if (node->will_overflow(val1, val2) == false) {
 158         Node* con_result = ConINode::make(phase->C, 0);
 159         return con_result;




 160       }
 161       return NULL;
 162     }







 163     return NULL;












 164   }


 165 
 166   static const Type* Value(const OverflowOp* node, PhaseTransform* phase) {
 167     const Type *t1 = phase->type( node->in(1) );
 168     const Type *t2 = phase->type( node->in(2) );
 169     if( t1 == Type::TOP ) return Type::TOP;
 170     if( t2 == Type::TOP ) return Type::TOP;
 171 
 172     const TypeClass* i1 = TypeClass::as_self(t1);
 173     const TypeClass* i2 = TypeClass::as_self(t2);












 174 
 175     if (t1->singleton() && t2->singleton()) {
 176       if (i1 == NULL || i2 == NULL) {
 177         return TypeInt::CC;










 178       }
 179 
 180       NativeType val1 = i1->get_con();
 181       NativeType val2 = i2->get_con();
 182       if (node->will_overflow(val1, val2)) {
 183         return TypeInt::CC;
 184       }
 185       return TypeInt::ZERO;
 186     } else if (i1 != TypeClass::bottom() && i2 != TypeClass::bottom()) {
 187       if (node->will_overflow(i1->_lo, i2->_lo)) {
 188         return TypeInt::CC;
 189       } else if (node->will_overflow(i1->_lo, i2->_hi)) {
 190         return TypeInt::CC;
 191       } else if (node->will_overflow(i1->_hi, i2->_lo)) {
 192         return TypeInt::CC;
 193       } else if (node->will_overflow(i1->_hi, i2->_hi)) {
 194         return TypeInt::CC;
 195       }
 196       return TypeInt::ZERO;


 197     }
 198 
 199     if (!node->can_overflow(t1, t2)) {
 200       return TypeInt::ZERO;
 201     }
 202     return TypeInt::CC;


 203   }
 204 };
 205 
 206 Node* OverflowINode::Ideal(PhaseGVN* phase, bool can_reshape) {
 207   return IdealHelper<OverflowINode>::Ideal(this, phase, can_reshape);
 208 }
 209 
 210 Node* OverflowLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 211   return IdealHelper<OverflowLNode>::Ideal(this, phase, can_reshape);
 212 }








 213 
 214 const Type* OverflowINode::Value(PhaseTransform* phase) const {
 215   return IdealHelper<OverflowINode>::Value(this, phase);
 216 }
 217 
 218 const Type* OverflowLNode::Value(PhaseTransform* phase) const {
 219   return IdealHelper<OverflowLNode>::Value(this, phase);
 220 }







 221 
 222 bool OverflowAddINode::can_overflow(const Type* t1, const Type* t2) const {
 223   return AddHelper<OverflowAddINode>::can_overflow(t1, t2);
 224 }


 225 
 226 bool OverflowSubINode::can_overflow(const Type* t1, const Type* t2) const {
 227   if (in(1) == in(2)) {
 228     return false;
 229   }
 230   return SubHelper<OverflowSubINode>::can_overflow(t1, t2);
 231 }
 232 
 233 bool OverflowMulINode::can_overflow(const Type* t1, const Type* t2) const {
 234   return MulHelper<OverflowMulINode>::can_overflow(t1, t2);
 235 }





 236 
 237 bool OverflowAddLNode::can_overflow(const Type* t1, const Type* t2) const {
 238   return AddHelper<OverflowAddLNode>::can_overflow(t1, t2);
 239 }
 240 
 241 bool OverflowSubLNode::can_overflow(const Type* t1, const Type* t2) const {
 242   return SubHelper<OverflowSubLNode>::can_overflow(t1, t2);
 243 }
 244 
 245 bool OverflowMulLNode::can_overflow(const Type* t1, const Type* t2) const {
 246   return MulHelper<OverflowMulLNode>::can_overflow(t1, t2);
 247 }
 248 
 249 const Type* OverflowNode::sub(const Type* t1, const Type* t2) const {
 250   ShouldNotReachHere();
 251   return TypeInt::CC;
 252 }
src/share/vm/opto/mathexactnode.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File