1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 #ifdef ASSERT
 163   // One type is interface, the other is oop
 164   virtual bool interface_vs_oop_helper(const Type *t) const;
 165 #endif
 166 
 167   const Type *meet_helper(const Type *t, bool include_speculative) const;
 168 
 169 protected:
 170   // Each class of type is also identified by its base.
 171   const TYPES _base;            // Enum of Types type
 172 
 173   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 174   // ~Type();                   // Use fast deallocation
 175   const Type *hashcons();       // Hash-cons the type
 176   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 177   const Type *join_helper(const Type *t, bool include_speculative) const {
 178     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 179   }
 180 
 181 public:
 182 
 183   inline void* operator new( size_t x ) throw() {
 184     Compile* compile = Compile::current();
 185     compile->set_type_last_size(x);
 186     void *temp = compile->type_arena()->Amalloc_D(x);
 187     compile->set_type_hwm(temp);
 188     return temp;
 189   }
 190   inline void operator delete( void* ptr ) {
 191     Compile* compile = Compile::current();
 192     compile->type_arena()->Afree(ptr,compile->type_last_size());
 193   }
 194 
 195   // Initialize the type system for a particular compilation.
 196   static void Initialize(Compile* compile);
 197 
 198   // Initialize the types shared by all compilations.
 199   static void Initialize_shared(Compile* compile);
 200 
 201   TYPES base() const {
 202     assert(_base > Bad && _base < lastype, "sanity");
 203     return _base;
 204   }
 205 
 206   // Create a new hash-consd type
 207   static const Type *make(enum TYPES);
 208   // Test for equivalence of types
 209   static int cmp( const Type *const t1, const Type *const t2 );
 210   // Test for higher or equal in lattice
 211   // Variant that drops the speculative part of the types
 212   int higher_equal(const Type *t) const {
 213     return !cmp(meet(t),t->remove_speculative());
 214   }
 215   // Variant that keeps the speculative part of the types
 216   int higher_equal_speculative(const Type *t) const {
 217     return !cmp(meet_speculative(t),t);
 218   }
 219 
 220   // MEET operation; lower in lattice.
 221   // Variant that drops the speculative part of the types
 222   const Type *meet(const Type *t) const {
 223     return meet_helper(t, false);
 224   }
 225   // Variant that keeps the speculative part of the types
 226   const Type *meet_speculative(const Type *t) const {
 227     return meet_helper(t, true);
 228   }
 229   // WIDEN: 'widens' for Ints and other range types
 230   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 231   // NARROW: complement for widen, used by pessimistic phases
 232   virtual const Type *narrow( const Type *old ) const { return this; }
 233 
 234   // DUAL operation: reflect around lattice centerline.  Used instead of
 235   // join to ensure my lattice is symmetric up and down.
 236   const Type *dual() const { return _dual; }
 237 
 238   // Compute meet dependent on base type
 239   virtual const Type *xmeet( const Type *t ) const;
 240   virtual const Type *xdual() const;    // Compute dual right now.
 241 
 242   // JOIN operation; higher in lattice.  Done by finding the dual of the
 243   // meet of the dual of the 2 inputs.
 244   // Variant that drops the speculative part of the types
 245   const Type *join(const Type *t) const {
 246     return join_helper(t, false);
 247   }
 248   // Variant that keeps the speculative part of the types
 249   const Type *join_speculative(const Type *t) const {
 250     return join_helper(t, true);
 251   }
 252 
 253   // Modified version of JOIN adapted to the needs Node::Value.
 254   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 255   // Currently, it also works around limitations involving interface types.
 256   // Variant that drops the speculative part of the types
 257   const Type *filter(const Type *kills) const {
 258     return filter_helper(kills, false);
 259   }
 260   // Variant that keeps the speculative part of the types
 261   const Type *filter_speculative(const Type *kills) const {
 262     return filter_helper(kills, true);
 263   }
 264 
 265 #ifdef ASSERT
 266   // One type is interface, the other is oop
 267   virtual bool interface_vs_oop(const Type *t) const;
 268 #endif
 269 
 270   // Returns true if this pointer points at memory which contains a
 271   // compressed oop references.
 272   bool is_ptr_to_narrowoop() const;
 273   bool is_ptr_to_narrowklass() const;
 274 
 275   bool is_ptr_to_boxing_obj() const;
 276 
 277 
 278   // Convenience access
 279   float getf() const;
 280   double getd() const;
 281 
 282   const TypeInt    *is_int() const;
 283   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 284   const TypeLong   *is_long() const;
 285   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 286   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 287   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 288   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 289   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 290   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 291   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 292   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 293   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 294   const TypeVect   *is_vect() const;             // Vector
 295   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 296   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 297   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 298   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 299   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 300   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 301   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 302   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 303   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 304   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 305   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 306   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 307   const TypeInstPtr  *is_instptr() const;        // Instance
 308   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 309   const TypeAryPtr   *is_aryptr() const;         // Array oop
 310 
 311   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 312   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 313   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 314   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 315 
 316   virtual bool      is_finite() const;           // Has a finite value
 317   virtual bool      is_nan()    const;           // Is not a number (NaN)
 318 
 319   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 320   const TypePtr* make_ptr() const;
 321 
 322   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 323   // Asserts if the underlying type is not an oopptr or narrowoop.
 324   const TypeOopPtr* make_oopptr() const;
 325 
 326   // Returns this compressed pointer or the equivalent compressed version
 327   // of this pointer type.
 328   const TypeNarrowOop* make_narrowoop() const;
 329 
 330   // Returns this compressed klass pointer or the equivalent
 331   // compressed version of this pointer type.
 332   const TypeNarrowKlass* make_narrowklass() const;
 333 
 334   // Special test for register pressure heuristic
 335   bool is_floatingpoint() const;        // True if Float or Double base type
 336 
 337   // Do you have memory, directly or through a tuple?
 338   bool has_memory( ) const;
 339 
 340   // TRUE if type is a singleton
 341   virtual bool singleton(void) const;
 342 
 343   // TRUE if type is above the lattice centerline, and is therefore vacuous
 344   virtual bool empty(void) const;
 345 
 346   // Return a hash for this type.  The hash function is public so ConNode
 347   // (constants) can hash on their constant, which is represented by a Type.
 348   virtual int hash() const;
 349 
 350   // Map ideal registers (machine types) to ideal types
 351   static const Type *mreg2type[];
 352 
 353   // Printing, statistics
 354 #ifndef PRODUCT
 355   void         dump_on(outputStream *st) const;
 356   void         dump() const {
 357     dump_on(tty);
 358   }
 359   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 360   static  void dump_stats();
 361 #endif
 362   void typerr(const Type *t) const; // Mixing types error
 363 
 364   // Create basic type
 365   static const Type* get_const_basic_type(BasicType type) {
 366     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 367     return _const_basic_type[type];
 368   }
 369 
 370   // Mapping to the array element's basic type.
 371   BasicType array_element_basic_type() const;
 372 
 373   // Create standard type for a ciType:
 374   static const Type* get_const_type(ciType* type);
 375 
 376   // Create standard zero value:
 377   static const Type* get_zero_type(BasicType type) {
 378     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 379     return _zero_type[type];
 380   }
 381 
 382   // Report if this is a zero value (not top).
 383   bool is_zero_type() const {
 384     BasicType type = basic_type();
 385     if (type == T_VOID || type >= T_CONFLICT)
 386       return false;
 387     else
 388       return (this == _zero_type[type]);
 389   }
 390 
 391   // Convenience common pre-built types.
 392   static const Type *ABIO;
 393   static const Type *BOTTOM;
 394   static const Type *CONTROL;
 395   static const Type *DOUBLE;
 396   static const Type *FLOAT;
 397   static const Type *HALF;
 398   static const Type *MEMORY;
 399   static const Type *MULTI;
 400   static const Type *RETURN_ADDRESS;
 401   static const Type *TOP;
 402 
 403   // Mapping from compiler type to VM BasicType
 404   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 405   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 406   const char* msg() const            { return _type_info[_base].msg; }
 407   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 408   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 409 
 410   // Mapping from CI type system to compiler type:
 411   static const Type* get_typeflow_type(ciType* type);
 412 
 413   static const Type* make_from_constant(ciConstant constant,
 414                                         bool require_constant = false,
 415                                         bool is_autobox_cache = false);
 416 
 417   // Speculative type. See TypeInstPtr
 418   virtual ciKlass* speculative_type() const { return NULL; }
 419   const Type* maybe_remove_speculative(bool include_speculative) const;
 420   virtual const Type* remove_speculative() const { return this; }
 421 
 422 private:
 423   // support arrays
 424   static const BasicType _basic_type[];
 425   static const Type*        _zero_type[T_CONFLICT+1];
 426   static const Type* _const_basic_type[T_CONFLICT+1];
 427 };
 428 
 429 //------------------------------TypeF------------------------------------------
 430 // Class of Float-Constant Types.
 431 class TypeF : public Type {
 432   TypeF( float f ) : Type(FloatCon), _f(f) {};
 433 public:
 434   virtual bool eq( const Type *t ) const;
 435   virtual int  hash() const;             // Type specific hashing
 436   virtual bool singleton(void) const;    // TRUE if type is a singleton
 437   virtual bool empty(void) const;        // TRUE if type is vacuous
 438 public:
 439   const float _f;               // Float constant
 440 
 441   static const TypeF *make(float f);
 442 
 443   virtual bool        is_finite() const;  // Has a finite value
 444   virtual bool        is_nan()    const;  // Is not a number (NaN)
 445 
 446   virtual const Type *xmeet( const Type *t ) const;
 447   virtual const Type *xdual() const;    // Compute dual right now.
 448   // Convenience common pre-built types.
 449   static const TypeF *ZERO; // positive zero only
 450   static const TypeF *ONE;
 451 #ifndef PRODUCT
 452   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 453 #endif
 454 };
 455 
 456 //------------------------------TypeD------------------------------------------
 457 // Class of Double-Constant Types.
 458 class TypeD : public Type {
 459   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 460 public:
 461   virtual bool eq( const Type *t ) const;
 462   virtual int  hash() const;             // Type specific hashing
 463   virtual bool singleton(void) const;    // TRUE if type is a singleton
 464   virtual bool empty(void) const;        // TRUE if type is vacuous
 465 public:
 466   const double _d;              // Double constant
 467 
 468   static const TypeD *make(double d);
 469 
 470   virtual bool        is_finite() const;  // Has a finite value
 471   virtual bool        is_nan()    const;  // Is not a number (NaN)
 472 
 473   virtual const Type *xmeet( const Type *t ) const;
 474   virtual const Type *xdual() const;    // Compute dual right now.
 475   // Convenience common pre-built types.
 476   static const TypeD *ZERO; // positive zero only
 477   static const TypeD *ONE;
 478 #ifndef PRODUCT
 479   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 480 #endif
 481 };
 482 
 483 //------------------------------TypeInt----------------------------------------
 484 // Class of integer ranges, the set of integers between a lower bound and an
 485 // upper bound, inclusive.
 486 class TypeInt : public Type {
 487   TypeInt( jint lo, jint hi, int w );
 488 protected:
 489   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 490 
 491 public:
 492   virtual bool eq( const Type *t ) const;
 493   virtual int  hash() const;             // Type specific hashing
 494   virtual bool singleton(void) const;    // TRUE if type is a singleton
 495   virtual bool empty(void) const;        // TRUE if type is vacuous
 496   const jint _lo, _hi;          // Lower bound, upper bound
 497   const short _widen;           // Limit on times we widen this sucker
 498 
 499   static const TypeInt *make(jint lo);
 500   // must always specify w
 501   static const TypeInt *make(jint lo, jint hi, int w);
 502 
 503   // Check for single integer
 504   int is_con() const { return _lo==_hi; }
 505   bool is_con(int i) const { return is_con() && _lo == i; }
 506   jint get_con() const { assert( is_con(), "" );  return _lo; }
 507 
 508   virtual bool        is_finite() const;  // Has a finite value
 509 
 510   virtual const Type *xmeet( const Type *t ) const;
 511   virtual const Type *xdual() const;    // Compute dual right now.
 512   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 513   virtual const Type *narrow( const Type *t ) const;
 514   // Do not kill _widen bits.
 515   // Convenience common pre-built types.
 516   static const TypeInt *MINUS_1;
 517   static const TypeInt *ZERO;
 518   static const TypeInt *ONE;
 519   static const TypeInt *BOOL;
 520   static const TypeInt *CC;
 521   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 522   static const TypeInt *CC_GT;  // [1]   == ONE
 523   static const TypeInt *CC_EQ;  // [0]   == ZERO
 524   static const TypeInt *CC_LE;  // [-1,0]
 525   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 526   static const TypeInt *BYTE;
 527   static const TypeInt *UBYTE;
 528   static const TypeInt *CHAR;
 529   static const TypeInt *SHORT;
 530   static const TypeInt *POS;
 531   static const TypeInt *POS1;
 532   static const TypeInt *INT;
 533   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 534 #ifndef PRODUCT
 535   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 536 #endif
 537 };
 538 
 539 
 540 //------------------------------TypeLong---------------------------------------
 541 // Class of long integer ranges, the set of integers between a lower bound and
 542 // an upper bound, inclusive.
 543 class TypeLong : public Type {
 544   TypeLong( jlong lo, jlong hi, int w );
 545 protected:
 546   // Do not kill _widen bits.
 547   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 548 public:
 549   virtual bool eq( const Type *t ) const;
 550   virtual int  hash() const;             // Type specific hashing
 551   virtual bool singleton(void) const;    // TRUE if type is a singleton
 552   virtual bool empty(void) const;        // TRUE if type is vacuous
 553 public:
 554   const jlong _lo, _hi;         // Lower bound, upper bound
 555   const short _widen;           // Limit on times we widen this sucker
 556 
 557   static const TypeLong *make(jlong lo);
 558   // must always specify w
 559   static const TypeLong *make(jlong lo, jlong hi, int w);
 560 
 561   // Check for single integer
 562   int is_con() const { return _lo==_hi; }
 563   bool is_con(int i) const { return is_con() && _lo == i; }
 564   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 565 
 566   // Check for positive 32-bit value.
 567   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 568 
 569   virtual bool        is_finite() const;  // Has a finite value
 570 
 571   virtual const Type *xmeet( const Type *t ) const;
 572   virtual const Type *xdual() const;    // Compute dual right now.
 573   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 574   virtual const Type *narrow( const Type *t ) const;
 575   // Convenience common pre-built types.
 576   static const TypeLong *MINUS_1;
 577   static const TypeLong *ZERO;
 578   static const TypeLong *ONE;
 579   static const TypeLong *POS;
 580   static const TypeLong *LONG;
 581   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 582   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 583 #ifndef PRODUCT
 584   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 585 #endif
 586 };
 587 
 588 //------------------------------TypeTuple--------------------------------------
 589 // Class of Tuple Types, essentially type collections for function signatures
 590 // and class layouts.  It happens to also be a fast cache for the HotSpot
 591 // signature types.
 592 class TypeTuple : public Type {
 593   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 594 public:
 595   virtual bool eq( const Type *t ) const;
 596   virtual int  hash() const;             // Type specific hashing
 597   virtual bool singleton(void) const;    // TRUE if type is a singleton
 598   virtual bool empty(void) const;        // TRUE if type is vacuous
 599 
 600 public:
 601   const uint          _cnt;              // Count of fields
 602   const Type ** const _fields;           // Array of field types
 603 
 604   // Accessors:
 605   uint cnt() const { return _cnt; }
 606   const Type* field_at(uint i) const {
 607     assert(i < _cnt, "oob");
 608     return _fields[i];
 609   }
 610   void set_field_at(uint i, const Type* t) {
 611     assert(i < _cnt, "oob");
 612     _fields[i] = t;
 613   }
 614 
 615   static const TypeTuple *make( uint cnt, const Type **fields );
 616   static const TypeTuple *make_range(ciSignature *sig);
 617   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 618 
 619   // Subroutine call type with space allocated for argument types
 620   static const Type **fields( uint arg_cnt );
 621 
 622   virtual const Type *xmeet( const Type *t ) const;
 623   virtual const Type *xdual() const;    // Compute dual right now.
 624   // Convenience common pre-built types.
 625   static const TypeTuple *IFBOTH;
 626   static const TypeTuple *IFFALSE;
 627   static const TypeTuple *IFTRUE;
 628   static const TypeTuple *IFNEITHER;
 629   static const TypeTuple *LOOPBODY;
 630   static const TypeTuple *MEMBAR;
 631   static const TypeTuple *STORECONDITIONAL;
 632   static const TypeTuple *START_I2C;
 633   static const TypeTuple *INT_PAIR;
 634   static const TypeTuple *LONG_PAIR;
 635   static const TypeTuple *INT_CC_PAIR;
 636   static const TypeTuple *LONG_CC_PAIR;
 637 #ifndef PRODUCT
 638   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 639 #endif
 640 };
 641 
 642 //------------------------------TypeAry----------------------------------------
 643 // Class of Array Types
 644 class TypeAry : public Type {
 645   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 646       _elem(elem), _size(size), _stable(stable) {}
 647 public:
 648   virtual bool eq( const Type *t ) const;
 649   virtual int  hash() const;             // Type specific hashing
 650   virtual bool singleton(void) const;    // TRUE if type is a singleton
 651   virtual bool empty(void) const;        // TRUE if type is vacuous
 652 
 653 private:
 654   const Type *_elem;            // Element type of array
 655   const TypeInt *_size;         // Elements in array
 656   const bool _stable;           // Are elements @Stable?
 657   friend class TypeAryPtr;
 658 
 659 public:
 660   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 661 
 662   virtual const Type *xmeet( const Type *t ) const;
 663   virtual const Type *xdual() const;    // Compute dual right now.
 664   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 665   virtual const Type* remove_speculative() const;
 666 #ifdef ASSERT
 667   // One type is interface, the other is oop
 668   virtual bool interface_vs_oop(const Type *t) const;
 669 #endif
 670 #ifndef PRODUCT
 671   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 672 #endif
 673 };
 674 
 675 //------------------------------TypeVect---------------------------------------
 676 // Class of Vector Types
 677 class TypeVect : public Type {
 678   const Type*   _elem;  // Vector's element type
 679   const uint  _length;  // Elements in vector (power of 2)
 680 
 681 protected:
 682   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 683     _elem(elem), _length(length) {}
 684 
 685 public:
 686   const Type* element_type() const { return _elem; }
 687   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 688   uint length() const { return _length; }
 689   uint length_in_bytes() const {
 690    return _length * type2aelembytes(element_basic_type());
 691   }
 692 
 693   virtual bool eq(const Type *t) const;
 694   virtual int  hash() const;             // Type specific hashing
 695   virtual bool singleton(void) const;    // TRUE if type is a singleton
 696   virtual bool empty(void) const;        // TRUE if type is vacuous
 697 
 698   static const TypeVect *make(const BasicType elem_bt, uint length) {
 699     // Use bottom primitive type.
 700     return make(get_const_basic_type(elem_bt), length);
 701   }
 702   // Used directly by Replicate nodes to construct singleton vector.
 703   static const TypeVect *make(const Type* elem, uint length);
 704 
 705   virtual const Type *xmeet( const Type *t) const;
 706   virtual const Type *xdual() const;     // Compute dual right now.
 707 
 708   static const TypeVect *VECTS;
 709   static const TypeVect *VECTD;
 710   static const TypeVect *VECTX;
 711   static const TypeVect *VECTY;
 712 
 713 #ifndef PRODUCT
 714   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 715 #endif
 716 };
 717 
 718 class TypeVectS : public TypeVect {
 719   friend class TypeVect;
 720   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 721 };
 722 
 723 class TypeVectD : public TypeVect {
 724   friend class TypeVect;
 725   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 726 };
 727 
 728 class TypeVectX : public TypeVect {
 729   friend class TypeVect;
 730   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 731 };
 732 
 733 class TypeVectY : public TypeVect {
 734   friend class TypeVect;
 735   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 736 };
 737 
 738 //------------------------------TypePtr----------------------------------------
 739 // Class of machine Pointer Types: raw data, instances or arrays.
 740 // If the _base enum is AnyPtr, then this refers to all of the above.
 741 // Otherwise the _base will indicate which subset of pointers is affected,
 742 // and the class will be inherited from.
 743 class TypePtr : public Type {
 744   friend class TypeNarrowPtr;
 745 public:
 746   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 747 protected:
 748   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 749   virtual bool eq( const Type *t ) const;
 750   virtual int  hash() const;             // Type specific hashing
 751   static const PTR ptr_meet[lastPTR][lastPTR];
 752   static const PTR ptr_dual[lastPTR];
 753   static const char * const ptr_msg[lastPTR];
 754 
 755 public:
 756   const int _offset;            // Offset into oop, with TOP & BOT
 757   const PTR _ptr;               // Pointer equivalence class
 758 
 759   const int offset() const { return _offset; }
 760   const PTR ptr()    const { return _ptr; }
 761 
 762   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 763 
 764   // Return a 'ptr' version of this type
 765   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 766 
 767   virtual intptr_t get_con() const;
 768 
 769   int xadd_offset( intptr_t offset ) const;
 770   virtual const TypePtr *add_offset( intptr_t offset ) const;
 771 
 772   virtual bool singleton(void) const;    // TRUE if type is a singleton
 773   virtual bool empty(void) const;        // TRUE if type is vacuous
 774   virtual const Type *xmeet( const Type *t ) const;
 775   int meet_offset( int offset ) const;
 776   int dual_offset( ) const;
 777   virtual const Type *xdual() const;    // Compute dual right now.
 778 
 779   // meet, dual and join over pointer equivalence sets
 780   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 781   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 782 
 783   // This is textually confusing unless one recalls that
 784   // join(t) == dual()->meet(t->dual())->dual().
 785   PTR join_ptr( const PTR in_ptr ) const {
 786     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 787   }
 788 
 789   // Tests for relation to centerline of type lattice:
 790   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 791   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 792   // Convenience common pre-built types.
 793   static const TypePtr *NULL_PTR;
 794   static const TypePtr *NOTNULL;
 795   static const TypePtr *BOTTOM;
 796 #ifndef PRODUCT
 797   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 798 #endif
 799 };
 800 
 801 //------------------------------TypeRawPtr-------------------------------------
 802 // Class of raw pointers, pointers to things other than Oops.  Examples
 803 // include the stack pointer, top of heap, card-marking area, handles, etc.
 804 class TypeRawPtr : public TypePtr {
 805 protected:
 806   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 807 public:
 808   virtual bool eq( const Type *t ) const;
 809   virtual int  hash() const;     // Type specific hashing
 810 
 811   const address _bits;          // Constant value, if applicable
 812 
 813   static const TypeRawPtr *make( PTR ptr );
 814   static const TypeRawPtr *make( address bits );
 815 
 816   // Return a 'ptr' version of this type
 817   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 818 
 819   virtual intptr_t get_con() const;
 820 
 821   virtual const TypePtr *add_offset( intptr_t offset ) const;
 822 
 823   virtual const Type *xmeet( const Type *t ) const;
 824   virtual const Type *xdual() const;    // Compute dual right now.
 825   // Convenience common pre-built types.
 826   static const TypeRawPtr *BOTTOM;
 827   static const TypeRawPtr *NOTNULL;
 828 #ifndef PRODUCT
 829   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 830 #endif
 831 };
 832 
 833 //------------------------------TypeOopPtr-------------------------------------
 834 // Some kind of oop (Java pointer), either klass or instance or array.
 835 class TypeOopPtr : public TypePtr {
 836 protected:
 837   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
 838 public:
 839   virtual bool eq( const Type *t ) const;
 840   virtual int  hash() const;             // Type specific hashing
 841   virtual bool singleton(void) const;    // TRUE if type is a singleton
 842   enum {
 843    InstanceTop = -1,   // undefined instance
 844    InstanceBot = 0     // any possible instance
 845   };
 846 protected:
 847 
 848   // Oop is NULL, unless this is a constant oop.
 849   ciObject*     _const_oop;   // Constant oop
 850   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 851   ciKlass*      _klass;       // Klass object
 852   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 853   bool          _klass_is_exact;
 854   bool          _is_ptr_to_narrowoop;
 855   bool          _is_ptr_to_narrowklass;
 856   bool          _is_ptr_to_boxed_value;
 857 
 858   // If not InstanceTop or InstanceBot, indicates that this is
 859   // a particular instance of this type which is distinct.
 860   // This is the the node index of the allocation node creating this instance.
 861   int           _instance_id;
 862 
 863   // Extra type information profiling gave us. We propagate it the
 864   // same way the rest of the type info is propagated. If we want to
 865   // use it, then we have to emit a guard: this part of the type is
 866   // not something we know but something we speculate about the type.
 867   const TypeOopPtr*   _speculative;
 868 
 869   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 870 
 871   int dual_instance_id() const;
 872   int meet_instance_id(int uid) const;
 873 
 874   // utility methods to work on the speculative part of the type
 875   const TypeOopPtr* dual_speculative() const;
 876   const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
 877   bool eq_speculative(const TypeOopPtr* other) const;
 878   int hash_speculative() const;
 879   const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
 880 #ifndef PRODUCT
 881   void dump_speculative(outputStream *st) const;
 882 #endif
 883 
 884   // Do not allow interface-vs.-noninterface joins to collapse to top.
 885   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 886 
 887 public:
 888   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 889   // Respects UseUniqueSubclasses.
 890   // If the klass is final, the resulting type will be exact.
 891   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 892     return make_from_klass_common(klass, true, false);
 893   }
 894   // Same as before, but will produce an exact type, even if
 895   // the klass is not final, as long as it has exactly one implementation.
 896   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 897     return make_from_klass_common(klass, true, true);
 898   }
 899   // Same as before, but does not respects UseUniqueSubclasses.
 900   // Use this only for creating array element types.
 901   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 902     return make_from_klass_common(klass, false, false);
 903   }
 904   // Creates a singleton type given an object.
 905   // If the object cannot be rendered as a constant,
 906   // may return a non-singleton type.
 907   // If require_constant, produce a NULL if a singleton is not possible.
 908   static const TypeOopPtr* make_from_constant(ciObject* o,
 909                                               bool require_constant = false,
 910                                               bool not_null_elements = false);
 911 
 912   // Make a generic (unclassed) pointer to an oop.
 913   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative);
 914 
 915   ciObject* const_oop()    const { return _const_oop; }
 916   virtual ciKlass* klass() const { return _klass;     }
 917   bool klass_is_exact()    const { return _klass_is_exact; }
 918 
 919   // Returns true if this pointer points at memory which contains a
 920   // compressed oop references.
 921   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 922   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 923   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
 924   bool is_known_instance()       const { return _instance_id > 0; }
 925   int  instance_id()             const { return _instance_id; }
 926   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 927   const TypeOopPtr* speculative() const { return _speculative; }
 928 
 929   virtual intptr_t get_con() const;
 930 
 931   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 932 
 933   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 934 
 935   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 936 
 937   // corresponding pointer to klass, for a given instance
 938   const TypeKlassPtr* as_klass_type() const;
 939 
 940   virtual const TypePtr *add_offset( intptr_t offset ) const;
 941   // Return same type without a speculative part
 942   virtual const Type* remove_speculative() const;
 943 
 944   virtual const Type *xmeet(const Type *t) const;
 945   virtual const Type *xdual() const;    // Compute dual right now.
 946   // the core of the computation of the meet for TypeOopPtr and for its subclasses
 947   virtual const Type *xmeet_helper(const Type *t) const;
 948 
 949   // Convenience common pre-built type.
 950   static const TypeOopPtr *BOTTOM;
 951 #ifndef PRODUCT
 952   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 953 #endif
 954 
 955   // Return the speculative type if any
 956   ciKlass* speculative_type() const {
 957     if (_speculative != NULL) {
 958       const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
 959       if (speculative->klass_is_exact()) {
 960        return speculative->klass();
 961       }
 962     }
 963     return NULL;
 964   }
 965 };
 966 
 967 //------------------------------TypeInstPtr------------------------------------
 968 // Class of Java object pointers, pointing either to non-array Java instances
 969 // or to a Klass* (including array klasses).
 970 class TypeInstPtr : public TypeOopPtr {
 971   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
 972   virtual bool eq( const Type *t ) const;
 973   virtual int  hash() const;             // Type specific hashing
 974 
 975   ciSymbol*  _name;        // class name
 976 
 977  public:
 978   ciSymbol* name()         const { return _name; }
 979 
 980   bool  is_loaded() const { return _klass->is_loaded(); }
 981 
 982   // Make a pointer to a constant oop.
 983   static const TypeInstPtr *make(ciObject* o) {
 984     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
 985   }
 986   // Make a pointer to a constant oop with offset.
 987   static const TypeInstPtr *make(ciObject* o, int offset) {
 988     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
 989   }
 990 
 991   // Make a pointer to some value of type klass.
 992   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
 993     return make(ptr, klass, false, NULL, 0, InstanceBot);
 994   }
 995 
 996   // Make a pointer to some non-polymorphic value of exactly type klass.
 997   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
 998     return make(ptr, klass, true, NULL, 0, InstanceBot);
 999   }
1000 
1001   // Make a pointer to some value of type klass with offset.
1002   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1003     return make(ptr, klass, false, NULL, offset, InstanceBot);
1004   }
1005 
1006   // Make a pointer to an oop.
1007   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
1008 
1009   /** Create constant type for a constant boxed value */
1010   const Type* get_const_boxed_value() const;
1011 
1012   // If this is a java.lang.Class constant, return the type for it or NULL.
1013   // Pass to Type::get_const_type to turn it to a type, which will usually
1014   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1015   ciType* java_mirror_type() const;
1016 
1017   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1018 
1019   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1020 
1021   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1022 
1023   virtual const TypePtr *add_offset( intptr_t offset ) const;
1024   // Return same type without a speculative part
1025   virtual const Type* remove_speculative() const;
1026 
1027   // the core of the computation of the meet of 2 types
1028   virtual const Type *xmeet_helper(const Type *t) const;
1029   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1030   virtual const Type *xdual() const;    // Compute dual right now.
1031 
1032   // Convenience common pre-built types.
1033   static const TypeInstPtr *NOTNULL;
1034   static const TypeInstPtr *BOTTOM;
1035   static const TypeInstPtr *MIRROR;
1036   static const TypeInstPtr *MARK;
1037   static const TypeInstPtr *KLASS;
1038 #ifndef PRODUCT
1039   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1040 #endif
1041 };
1042 
1043 //------------------------------TypeAryPtr-------------------------------------
1044 // Class of Java array pointers
1045 class TypeAryPtr : public TypeOopPtr {
1046   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1047               int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative)
1048     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative),
1049     _ary(ary),
1050     _is_autobox_cache(is_autobox_cache)
1051  {
1052 #ifdef ASSERT
1053     if (k != NULL) {
1054       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1055       ciKlass* ck = compute_klass(true);
1056       if (k != ck) {
1057         this->dump(); tty->cr();
1058         tty->print(" k: ");
1059         k->print(); tty->cr();
1060         tty->print("ck: ");
1061         if (ck != NULL) ck->print();
1062         else tty->print("<NULL>");
1063         tty->cr();
1064         assert(false, "unexpected TypeAryPtr::_klass");
1065       }
1066     }
1067 #endif
1068   }
1069   virtual bool eq( const Type *t ) const;
1070   virtual int hash() const;     // Type specific hashing
1071   const TypeAry *_ary;          // Array we point into
1072   const bool     _is_autobox_cache;
1073 
1074   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1075 
1076 public:
1077   // Accessors
1078   ciKlass* klass() const;
1079   const TypeAry* ary() const  { return _ary; }
1080   const Type*    elem() const { return _ary->_elem; }
1081   const TypeInt* size() const { return _ary->_size; }
1082   bool      is_stable() const { return _ary->_stable; }
1083 
1084   bool is_autobox_cache() const { return _is_autobox_cache; }
1085 
1086   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
1087   // Constant pointer to array
1088   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, bool is_autobox_cache = false);
1089 
1090   // Return a 'ptr' version of this type
1091   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1092 
1093   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1094 
1095   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1096 
1097   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1098   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1099 
1100   virtual bool empty(void) const;        // TRUE if type is vacuous
1101   virtual const TypePtr *add_offset( intptr_t offset ) const;
1102   // Return same type without a speculative part
1103   virtual const Type* remove_speculative() const;
1104 
1105   // the core of the computation of the meet of 2 types
1106   virtual const Type *xmeet_helper(const Type *t) const;
1107   virtual const Type *xdual() const;    // Compute dual right now.
1108 
1109   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1110   int stable_dimension() const;
1111 
1112   // Convenience common pre-built types.
1113   static const TypeAryPtr *RANGE;
1114   static const TypeAryPtr *OOPS;
1115   static const TypeAryPtr *NARROWOOPS;
1116   static const TypeAryPtr *BYTES;
1117   static const TypeAryPtr *SHORTS;
1118   static const TypeAryPtr *CHARS;
1119   static const TypeAryPtr *INTS;
1120   static const TypeAryPtr *LONGS;
1121   static const TypeAryPtr *FLOATS;
1122   static const TypeAryPtr *DOUBLES;
1123   // selects one of the above:
1124   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1125     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1126     return _array_body_type[elem];
1127   }
1128   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1129   // sharpen the type of an int which is used as an array size
1130 #ifdef ASSERT
1131   // One type is interface, the other is oop
1132   virtual bool interface_vs_oop(const Type *t) const;
1133 #endif
1134 #ifndef PRODUCT
1135   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1136 #endif
1137 };
1138 
1139 //------------------------------TypeMetadataPtr-------------------------------------
1140 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1141 class TypeMetadataPtr : public TypePtr {
1142 protected:
1143   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1144   // Do not allow interface-vs.-noninterface joins to collapse to top.
1145   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1146 public:
1147   virtual bool eq( const Type *t ) const;
1148   virtual int  hash() const;             // Type specific hashing
1149   virtual bool singleton(void) const;    // TRUE if type is a singleton
1150 
1151 private:
1152   ciMetadata*   _metadata;
1153 
1154 public:
1155   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1156 
1157   static const TypeMetadataPtr* make(ciMethod* m);
1158   static const TypeMetadataPtr* make(ciMethodData* m);
1159 
1160   ciMetadata* metadata() const { return _metadata; }
1161 
1162   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1163 
1164   virtual const TypePtr *add_offset( intptr_t offset ) const;
1165 
1166   virtual const Type *xmeet( const Type *t ) const;
1167   virtual const Type *xdual() const;    // Compute dual right now.
1168 
1169   virtual intptr_t get_con() const;
1170 
1171   // Convenience common pre-built types.
1172   static const TypeMetadataPtr *BOTTOM;
1173 
1174 #ifndef PRODUCT
1175   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1176 #endif
1177 };
1178 
1179 //------------------------------TypeKlassPtr-----------------------------------
1180 // Class of Java Klass pointers
1181 class TypeKlassPtr : public TypePtr {
1182   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1183 
1184 protected:
1185   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1186  public:
1187   virtual bool eq( const Type *t ) const;
1188   virtual int hash() const;             // Type specific hashing
1189   virtual bool singleton(void) const;    // TRUE if type is a singleton
1190  private:
1191 
1192   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1193 
1194   ciKlass* _klass;
1195 
1196   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1197   bool          _klass_is_exact;
1198 
1199 public:
1200   ciSymbol* name()  const { return klass()->name(); }
1201 
1202   ciKlass* klass() const { return  _klass; }
1203   bool klass_is_exact()    const { return _klass_is_exact; }
1204 
1205   bool  is_loaded() const { return klass()->is_loaded(); }
1206 
1207   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1208   // Respects UseUniqueSubclasses.
1209   // If the klass is final, the resulting type will be exact.
1210   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1211     return make_from_klass_common(klass, true, false);
1212   }
1213   // Same as before, but will produce an exact type, even if
1214   // the klass is not final, as long as it has exactly one implementation.
1215   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1216     return make_from_klass_common(klass, true, true);
1217   }
1218   // Same as before, but does not respects UseUniqueSubclasses.
1219   // Use this only for creating array element types.
1220   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1221     return make_from_klass_common(klass, false, false);
1222   }
1223 
1224   // Make a generic (unclassed) pointer to metadata.
1225   static const TypeKlassPtr* make(PTR ptr, int offset);
1226 
1227   // ptr to klass 'k'
1228   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1229   // ptr to klass 'k' with offset
1230   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1231   // ptr to klass 'k' or sub-klass
1232   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1233 
1234   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1235 
1236   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1237 
1238   // corresponding pointer to instance, for a given class
1239   const TypeOopPtr* as_instance_type() const;
1240 
1241   virtual const TypePtr *add_offset( intptr_t offset ) const;
1242   virtual const Type    *xmeet( const Type *t ) const;
1243   virtual const Type    *xdual() const;      // Compute dual right now.
1244 
1245   virtual intptr_t get_con() const;
1246 
1247   // Convenience common pre-built types.
1248   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1249   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1250 #ifndef PRODUCT
1251   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1252 #endif
1253 };
1254 
1255 class TypeNarrowPtr : public Type {
1256 protected:
1257   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1258 
1259   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1260                                                   Type(t) {
1261     assert(ptrtype->offset() == 0 ||
1262            ptrtype->offset() == OffsetBot ||
1263            ptrtype->offset() == OffsetTop, "no real offsets");
1264   }
1265 
1266   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1267   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1268   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1269   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1270   // Do not allow interface-vs.-noninterface joins to collapse to top.
1271   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1272 public:
1273   virtual bool eq( const Type *t ) const;
1274   virtual int  hash() const;             // Type specific hashing
1275   virtual bool singleton(void) const;    // TRUE if type is a singleton
1276 
1277   virtual const Type *xmeet( const Type *t ) const;
1278   virtual const Type *xdual() const;    // Compute dual right now.
1279 
1280   virtual intptr_t get_con() const;
1281 
1282   virtual bool empty(void) const;        // TRUE if type is vacuous
1283 
1284   // returns the equivalent ptr type for this compressed pointer
1285   const TypePtr *get_ptrtype() const {
1286     return _ptrtype;
1287   }
1288 
1289 #ifndef PRODUCT
1290   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1291 #endif
1292 };
1293 
1294 //------------------------------TypeNarrowOop----------------------------------
1295 // A compressed reference to some kind of Oop.  This type wraps around
1296 // a preexisting TypeOopPtr and forwards most of it's operations to
1297 // the underlying type.  It's only real purpose is to track the
1298 // oopness of the compressed oop value when we expose the conversion
1299 // between the normal and the compressed form.
1300 class TypeNarrowOop : public TypeNarrowPtr {
1301 protected:
1302   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1303   }
1304 
1305   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1306     return t->isa_narrowoop();
1307   }
1308 
1309   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1310     return t->is_narrowoop();
1311   }
1312 
1313   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1314     return new TypeNarrowOop(t);
1315   }
1316 
1317   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1318     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1319   }
1320 
1321 public:
1322 
1323   static const TypeNarrowOop *make( const TypePtr* type);
1324 
1325   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1326     return make(TypeOopPtr::make_from_constant(con, require_constant));
1327   }
1328 
1329   static const TypeNarrowOop *BOTTOM;
1330   static const TypeNarrowOop *NULL_PTR;
1331 
1332   virtual const Type* remove_speculative() const {
1333     return make(_ptrtype->remove_speculative()->is_ptr());
1334   }
1335 
1336 #ifndef PRODUCT
1337   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1338 #endif
1339 };
1340 
1341 //------------------------------TypeNarrowKlass----------------------------------
1342 // A compressed reference to klass pointer.  This type wraps around a
1343 // preexisting TypeKlassPtr and forwards most of it's operations to
1344 // the underlying type.
1345 class TypeNarrowKlass : public TypeNarrowPtr {
1346 protected:
1347   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1348   }
1349 
1350   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1351     return t->isa_narrowklass();
1352   }
1353 
1354   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1355     return t->is_narrowklass();
1356   }
1357 
1358   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1359     return new TypeNarrowKlass(t);
1360   }
1361 
1362   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1363     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1364   }
1365 
1366 public:
1367   static const TypeNarrowKlass *make( const TypePtr* type);
1368 
1369   // static const TypeNarrowKlass *BOTTOM;
1370   static const TypeNarrowKlass *NULL_PTR;
1371 
1372 #ifndef PRODUCT
1373   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1374 #endif
1375 };
1376 
1377 //------------------------------TypeFunc---------------------------------------
1378 // Class of Array Types
1379 class TypeFunc : public Type {
1380   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1381   virtual bool eq( const Type *t ) const;
1382   virtual int  hash() const;             // Type specific hashing
1383   virtual bool singleton(void) const;    // TRUE if type is a singleton
1384   virtual bool empty(void) const;        // TRUE if type is vacuous
1385 public:
1386   // Constants are shared among ADLC and VM
1387   enum { Control    = AdlcVMDeps::Control,
1388          I_O        = AdlcVMDeps::I_O,
1389          Memory     = AdlcVMDeps::Memory,
1390          FramePtr   = AdlcVMDeps::FramePtr,
1391          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1392          Parms      = AdlcVMDeps::Parms
1393   };
1394 
1395   const TypeTuple* const _domain;     // Domain of inputs
1396   const TypeTuple* const _range;      // Range of results
1397 
1398   // Accessors:
1399   const TypeTuple* domain() const { return _domain; }
1400   const TypeTuple* range()  const { return _range; }
1401 
1402   static const TypeFunc *make(ciMethod* method);
1403   static const TypeFunc *make(ciSignature signature, const Type* extra);
1404   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1405 
1406   virtual const Type *xmeet( const Type *t ) const;
1407   virtual const Type *xdual() const;    // Compute dual right now.
1408 
1409   BasicType return_type() const;
1410 
1411 #ifndef PRODUCT
1412   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1413 #endif
1414   // Convenience common pre-built types.
1415 };
1416 
1417 //------------------------------accessors--------------------------------------
1418 inline bool Type::is_ptr_to_narrowoop() const {
1419 #ifdef _LP64
1420   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1421 #else
1422   return false;
1423 #endif
1424 }
1425 
1426 inline bool Type::is_ptr_to_narrowklass() const {
1427 #ifdef _LP64
1428   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1429 #else
1430   return false;
1431 #endif
1432 }
1433 
1434 inline float Type::getf() const {
1435   assert( _base == FloatCon, "Not a FloatCon" );
1436   return ((TypeF*)this)->_f;
1437 }
1438 
1439 inline double Type::getd() const {
1440   assert( _base == DoubleCon, "Not a DoubleCon" );
1441   return ((TypeD*)this)->_d;
1442 }
1443 
1444 inline const TypeInt *Type::is_int() const {
1445   assert( _base == Int, "Not an Int" );
1446   return (TypeInt*)this;
1447 }
1448 
1449 inline const TypeInt *Type::isa_int() const {
1450   return ( _base == Int ? (TypeInt*)this : NULL);
1451 }
1452 
1453 inline const TypeLong *Type::is_long() const {
1454   assert( _base == Long, "Not a Long" );
1455   return (TypeLong*)this;
1456 }
1457 
1458 inline const TypeLong *Type::isa_long() const {
1459   return ( _base == Long ? (TypeLong*)this : NULL);
1460 }
1461 
1462 inline const TypeF *Type::isa_float() const {
1463   return ((_base == FloatTop ||
1464            _base == FloatCon ||
1465            _base == FloatBot) ? (TypeF*)this : NULL);
1466 }
1467 
1468 inline const TypeF *Type::is_float_constant() const {
1469   assert( _base == FloatCon, "Not a Float" );
1470   return (TypeF*)this;
1471 }
1472 
1473 inline const TypeF *Type::isa_float_constant() const {
1474   return ( _base == FloatCon ? (TypeF*)this : NULL);
1475 }
1476 
1477 inline const TypeD *Type::isa_double() const {
1478   return ((_base == DoubleTop ||
1479            _base == DoubleCon ||
1480            _base == DoubleBot) ? (TypeD*)this : NULL);
1481 }
1482 
1483 inline const TypeD *Type::is_double_constant() const {
1484   assert( _base == DoubleCon, "Not a Double" );
1485   return (TypeD*)this;
1486 }
1487 
1488 inline const TypeD *Type::isa_double_constant() const {
1489   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1490 }
1491 
1492 inline const TypeTuple *Type::is_tuple() const {
1493   assert( _base == Tuple, "Not a Tuple" );
1494   return (TypeTuple*)this;
1495 }
1496 
1497 inline const TypeAry *Type::is_ary() const {
1498   assert( _base == Array , "Not an Array" );
1499   return (TypeAry*)this;
1500 }
1501 
1502 inline const TypeVect *Type::is_vect() const {
1503   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1504   return (TypeVect*)this;
1505 }
1506 
1507 inline const TypeVect *Type::isa_vect() const {
1508   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1509 }
1510 
1511 inline const TypePtr *Type::is_ptr() const {
1512   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1513   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1514   return (TypePtr*)this;
1515 }
1516 
1517 inline const TypePtr *Type::isa_ptr() const {
1518   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1519   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1520 }
1521 
1522 inline const TypeOopPtr *Type::is_oopptr() const {
1523   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1524   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1525   return (TypeOopPtr*)this;
1526 }
1527 
1528 inline const TypeOopPtr *Type::isa_oopptr() const {
1529   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1530   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1531 }
1532 
1533 inline const TypeRawPtr *Type::isa_rawptr() const {
1534   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1535 }
1536 
1537 inline const TypeRawPtr *Type::is_rawptr() const {
1538   assert( _base == RawPtr, "Not a raw pointer" );
1539   return (TypeRawPtr*)this;
1540 }
1541 
1542 inline const TypeInstPtr *Type::isa_instptr() const {
1543   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1544 }
1545 
1546 inline const TypeInstPtr *Type::is_instptr() const {
1547   assert( _base == InstPtr, "Not an object pointer" );
1548   return (TypeInstPtr*)this;
1549 }
1550 
1551 inline const TypeAryPtr *Type::isa_aryptr() const {
1552   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1553 }
1554 
1555 inline const TypeAryPtr *Type::is_aryptr() const {
1556   assert( _base == AryPtr, "Not an array pointer" );
1557   return (TypeAryPtr*)this;
1558 }
1559 
1560 inline const TypeNarrowOop *Type::is_narrowoop() const {
1561   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1562   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1563   return (TypeNarrowOop*)this;
1564 }
1565 
1566 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1567   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1568   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1569 }
1570 
1571 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1572   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1573   return (TypeNarrowKlass*)this;
1574 }
1575 
1576 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1577   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1578 }
1579 
1580 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1581   // MetadataPtr is the first and CPCachePtr the last
1582   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1583   return (TypeMetadataPtr*)this;
1584 }
1585 
1586 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1587   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1588 }
1589 
1590 inline const TypeKlassPtr *Type::isa_klassptr() const {
1591   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1592 }
1593 
1594 inline const TypeKlassPtr *Type::is_klassptr() const {
1595   assert( _base == KlassPtr, "Not a klass pointer" );
1596   return (TypeKlassPtr*)this;
1597 }
1598 
1599 inline const TypePtr* Type::make_ptr() const {
1600   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1601     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1602      (isa_ptr() ? is_ptr() : NULL));
1603 }
1604 
1605 inline const TypeOopPtr* Type::make_oopptr() const {
1606   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1607 }
1608 
1609 inline const TypeNarrowOop* Type::make_narrowoop() const {
1610   return (_base == NarrowOop) ? is_narrowoop() :
1611                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1612 }
1613 
1614 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1615   return (_base == NarrowKlass) ? is_narrowklass() :
1616                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1617 }
1618 
1619 inline bool Type::is_floatingpoint() const {
1620   if( (_base == FloatCon)  || (_base == FloatBot) ||
1621       (_base == DoubleCon) || (_base == DoubleBot) )
1622     return true;
1623   return false;
1624 }
1625 
1626 inline bool Type::is_ptr_to_boxing_obj() const {
1627   const TypeInstPtr* tp = isa_instptr();
1628   return (tp != NULL) && (tp->offset() == 0) &&
1629          tp->klass()->is_instance_klass()  &&
1630          tp->klass()->as_instance_klass()->is_box_klass();
1631 }
1632 
1633 
1634 // ===============================================================
1635 // Things that need to be 64-bits in the 64-bit build but
1636 // 32-bits in the 32-bit build.  Done this way to get full
1637 // optimization AND strong typing.
1638 #ifdef _LP64
1639 
1640 // For type queries and asserts
1641 #define is_intptr_t  is_long
1642 #define isa_intptr_t isa_long
1643 #define find_intptr_t_type find_long_type
1644 #define find_intptr_t_con  find_long_con
1645 #define TypeX        TypeLong
1646 #define Type_X       Type::Long
1647 #define TypeX_X      TypeLong::LONG
1648 #define TypeX_ZERO   TypeLong::ZERO
1649 // For 'ideal_reg' machine registers
1650 #define Op_RegX      Op_RegL
1651 // For phase->intcon variants
1652 #define MakeConX     longcon
1653 #define ConXNode     ConLNode
1654 // For array index arithmetic
1655 #define MulXNode     MulLNode
1656 #define AndXNode     AndLNode
1657 #define OrXNode      OrLNode
1658 #define CmpXNode     CmpLNode
1659 #define SubXNode     SubLNode
1660 #define LShiftXNode  LShiftLNode
1661 // For object size computation:
1662 #define AddXNode     AddLNode
1663 #define RShiftXNode  RShiftLNode
1664 // For card marks and hashcodes
1665 #define URShiftXNode URShiftLNode
1666 // UseOptoBiasInlining
1667 #define XorXNode     XorLNode
1668 #define StoreXConditionalNode StoreLConditionalNode
1669 // Opcodes
1670 #define Op_LShiftX   Op_LShiftL
1671 #define Op_AndX      Op_AndL
1672 #define Op_AddX      Op_AddL
1673 #define Op_SubX      Op_SubL
1674 #define Op_XorX      Op_XorL
1675 #define Op_URShiftX  Op_URShiftL
1676 // conversions
1677 #define ConvI2X(x)   ConvI2L(x)
1678 #define ConvL2X(x)   (x)
1679 #define ConvX2I(x)   ConvL2I(x)
1680 #define ConvX2L(x)   (x)
1681 
1682 #else
1683 
1684 // For type queries and asserts
1685 #define is_intptr_t  is_int
1686 #define isa_intptr_t isa_int
1687 #define find_intptr_t_type find_int_type
1688 #define find_intptr_t_con  find_int_con
1689 #define TypeX        TypeInt
1690 #define Type_X       Type::Int
1691 #define TypeX_X      TypeInt::INT
1692 #define TypeX_ZERO   TypeInt::ZERO
1693 // For 'ideal_reg' machine registers
1694 #define Op_RegX      Op_RegI
1695 // For phase->intcon variants
1696 #define MakeConX     intcon
1697 #define ConXNode     ConINode
1698 // For array index arithmetic
1699 #define MulXNode     MulINode
1700 #define AndXNode     AndINode
1701 #define OrXNode      OrINode
1702 #define CmpXNode     CmpINode
1703 #define SubXNode     SubINode
1704 #define LShiftXNode  LShiftINode
1705 // For object size computation:
1706 #define AddXNode     AddINode
1707 #define RShiftXNode  RShiftINode
1708 // For card marks and hashcodes
1709 #define URShiftXNode URShiftINode
1710 // UseOptoBiasInlining
1711 #define XorXNode     XorINode
1712 #define StoreXConditionalNode StoreIConditionalNode
1713 // Opcodes
1714 #define Op_LShiftX   Op_LShiftI
1715 #define Op_AndX      Op_AndI
1716 #define Op_AddX      Op_AddI
1717 #define Op_SubX      Op_SubI
1718 #define Op_XorX      Op_XorI
1719 #define Op_URShiftX  Op_URShiftI
1720 // conversions
1721 #define ConvI2X(x)   (x)
1722 #define ConvL2X(x)   ConvL2I(x)
1723 #define ConvX2I(x)   (x)
1724 #define ConvX2L(x)   ConvI2L(x)
1725 
1726 #endif
1727 
1728 #endif // SHARE_VM_OPTO_TYPE_HPP