1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 #ifdef ASSERT
 163   // One type is interface, the other is oop
 164   virtual bool interface_vs_oop_helper(const Type *t) const;
 165 #endif
 166 
 167   const Type *meet_helper(const Type *t, bool include_speculative) const;
 168 
 169 protected:
 170   // Each class of type is also identified by its base.
 171   const TYPES _base;            // Enum of Types type
 172 
 173   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 174   // ~Type();                   // Use fast deallocation
 175   const Type *hashcons();       // Hash-cons the type
 176   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 177   const Type *join_helper(const Type *t, bool include_speculative) const {
 178     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 179   }
 180 
 181 public:
 182 
 183   inline void* operator new( size_t x ) throw() {
 184     Compile* compile = Compile::current();
 185     compile->set_type_last_size(x);
 186     void *temp = compile->type_arena()->Amalloc_D(x);
 187     compile->set_type_hwm(temp);
 188     return temp;
 189   }
 190   inline void operator delete( void* ptr ) {
 191     Compile* compile = Compile::current();
 192     compile->type_arena()->Afree(ptr,compile->type_last_size());
 193   }
 194 
 195   // Initialize the type system for a particular compilation.
 196   static void Initialize(Compile* compile);
 197 
 198   // Initialize the types shared by all compilations.
 199   static void Initialize_shared(Compile* compile);
 200 
 201   TYPES base() const {
 202     assert(_base > Bad && _base < lastype, "sanity");
 203     return _base;
 204   }
 205 
 206   // Create a new hash-consd type
 207   static const Type *make(enum TYPES);
 208   // Test for equivalence of types
 209   static int cmp( const Type *const t1, const Type *const t2 );
 210   // Test for higher or equal in lattice
 211   // Variant that drops the speculative part of the types
 212   int higher_equal(const Type *t) const {
 213     return !cmp(meet(t),t->remove_speculative());
 214   }
 215   // Variant that keeps the speculative part of the types
 216   int higher_equal_speculative(const Type *t) const {
 217     return !cmp(meet_speculative(t),t);
 218   }
 219 
 220   // MEET operation; lower in lattice.
 221   // Variant that drops the speculative part of the types
 222   const Type *meet(const Type *t) const {
 223     return meet_helper(t, false);
 224   }
 225   // Variant that keeps the speculative part of the types
 226   const Type *meet_speculative(const Type *t) const {
 227     return meet_helper(t, true);
 228   }
 229   // WIDEN: 'widens' for Ints and other range types
 230   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 231   // NARROW: complement for widen, used by pessimistic phases
 232   virtual const Type *narrow( const Type *old ) const { return this; }
 233 
 234   // DUAL operation: reflect around lattice centerline.  Used instead of
 235   // join to ensure my lattice is symmetric up and down.
 236   const Type *dual() const { return _dual; }
 237 
 238   // Compute meet dependent on base type
 239   virtual const Type *xmeet( const Type *t ) const;
 240   virtual const Type *xdual() const;    // Compute dual right now.
 241 
 242   // JOIN operation; higher in lattice.  Done by finding the dual of the
 243   // meet of the dual of the 2 inputs.
 244   // Variant that drops the speculative part of the types
 245   const Type *join(const Type *t) const {
 246     return join_helper(t, false);
 247   }
 248   // Variant that keeps the speculative part of the types
 249   const Type *join_speculative(const Type *t) const {
 250     return join_helper(t, true);
 251   }
 252 
 253   // Modified version of JOIN adapted to the needs Node::Value.
 254   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 255   // Currently, it also works around limitations involving interface types.
 256   // Variant that drops the speculative part of the types
 257   const Type *filter(const Type *kills) const {
 258     return filter_helper(kills, false);
 259   }
 260   // Variant that keeps the speculative part of the types
 261   const Type *filter_speculative(const Type *kills) const {
 262     return filter_helper(kills, true);
 263   }
 264 
 265 #ifdef ASSERT
 266   // One type is interface, the other is oop
 267   virtual bool interface_vs_oop(const Type *t) const;
 268 #endif
 269 
 270   // Returns true if this pointer points at memory which contains a
 271   // compressed oop references.
 272   bool is_ptr_to_narrowoop() const;
 273   bool is_ptr_to_narrowklass() const;
 274 
 275   bool is_ptr_to_boxing_obj() const;
 276 
 277 
 278   // Convenience access
 279   float getf() const;
 280   double getd() const;
 281 
 282   const TypeInt    *is_int() const;
 283   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 284   const TypeLong   *is_long() const;
 285   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 286   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 287   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 288   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 289   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 290   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 291   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 292   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 293   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 294   const TypeVect   *is_vect() const;             // Vector
 295   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 296   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 297   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 298   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 299   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 300   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 301   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 302   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 303   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 304   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 305   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 306   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 307   const TypeInstPtr  *is_instptr() const;        // Instance
 308   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 309   const TypeAryPtr   *is_aryptr() const;         // Array oop
 310 
 311   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 312   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 313   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 314   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 315 
 316   virtual bool      is_finite() const;           // Has a finite value
 317   virtual bool      is_nan()    const;           // Is not a number (NaN)
 318 
 319   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 320   const TypePtr* make_ptr() const;
 321 
 322   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 323   // Asserts if the underlying type is not an oopptr or narrowoop.
 324   const TypeOopPtr* make_oopptr() const;
 325 
 326   // Returns this compressed pointer or the equivalent compressed version
 327   // of this pointer type.
 328   const TypeNarrowOop* make_narrowoop() const;
 329 
 330   // Returns this compressed klass pointer or the equivalent
 331   // compressed version of this pointer type.
 332   const TypeNarrowKlass* make_narrowklass() const;
 333 
 334   // Special test for register pressure heuristic
 335   bool is_floatingpoint() const;        // True if Float or Double base type
 336 
 337   // Do you have memory, directly or through a tuple?
 338   bool has_memory( ) const;
 339 
 340   // TRUE if type is a singleton
 341   virtual bool singleton(void) const;
 342 
 343   // TRUE if type is above the lattice centerline, and is therefore vacuous
 344   virtual bool empty(void) const;
 345 
 346   // Return a hash for this type.  The hash function is public so ConNode
 347   // (constants) can hash on their constant, which is represented by a Type.
 348   virtual int hash() const;
 349 
 350   // Map ideal registers (machine types) to ideal types
 351   static const Type *mreg2type[];
 352 
 353   // Printing, statistics
 354 #ifndef PRODUCT
 355   void         dump_on(outputStream *st) const;
 356   void         dump() const {
 357     dump_on(tty);
 358   }
 359   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 360   static  void dump_stats();
 361 #endif
 362   void typerr(const Type *t) const; // Mixing types error
 363 
 364   // Create basic type
 365   static const Type* get_const_basic_type(BasicType type) {
 366     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 367     return _const_basic_type[type];
 368   }
 369 
 370   // Mapping to the array element's basic type.
 371   BasicType array_element_basic_type() const;
 372 
 373   // Create standard type for a ciType:
 374   static const Type* get_const_type(ciType* type);
 375 
 376   // Create standard zero value:
 377   static const Type* get_zero_type(BasicType type) {
 378     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 379     return _zero_type[type];
 380   }
 381 
 382   // Report if this is a zero value (not top).
 383   bool is_zero_type() const {
 384     BasicType type = basic_type();
 385     if (type == T_VOID || type >= T_CONFLICT)
 386       return false;
 387     else
 388       return (this == _zero_type[type]);
 389   }
 390 
 391   // Convenience common pre-built types.
 392   static const Type *ABIO;
 393   static const Type *BOTTOM;
 394   static const Type *CONTROL;
 395   static const Type *DOUBLE;
 396   static const Type *FLOAT;
 397   static const Type *HALF;
 398   static const Type *MEMORY;
 399   static const Type *MULTI;
 400   static const Type *RETURN_ADDRESS;
 401   static const Type *TOP;
 402 
 403   // Mapping from compiler type to VM BasicType
 404   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 405   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 406   const char* msg() const            { return _type_info[_base].msg; }
 407   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 408   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 409 
 410   // Mapping from CI type system to compiler type:
 411   static const Type* get_typeflow_type(ciType* type);
 412 
 413   static const Type* make_from_constant(ciConstant constant,
 414                                         bool require_constant = false,
 415                                         bool is_autobox_cache = false);
 416 
 417   // Speculative type. See TypeInstPtr
 418   virtual ciKlass* speculative_type() const { return NULL; }
 419   const Type* maybe_remove_speculative(bool include_speculative) const;
 420   virtual const Type* remove_speculative() const { return this; }
 421 
 422 private:
 423   // support arrays
 424   static const BasicType _basic_type[];
 425   static const Type*        _zero_type[T_CONFLICT+1];
 426   static const Type* _const_basic_type[T_CONFLICT+1];
 427 };
 428 
 429 //------------------------------TypeF------------------------------------------
 430 // Class of Float-Constant Types.
 431 class TypeF : public Type {
 432   TypeF( float f ) : Type(FloatCon), _f(f) {};
 433 public:
 434   virtual bool eq( const Type *t ) const;
 435   virtual int  hash() const;             // Type specific hashing
 436   virtual bool singleton(void) const;    // TRUE if type is a singleton
 437   virtual bool empty(void) const;        // TRUE if type is vacuous
 438 public:
 439   const float _f;               // Float constant
 440 
 441   static const TypeF *make(float f);
 442 
 443   virtual bool        is_finite() const;  // Has a finite value
 444   virtual bool        is_nan()    const;  // Is not a number (NaN)
 445 
 446   virtual const Type *xmeet( const Type *t ) const;
 447   virtual const Type *xdual() const;    // Compute dual right now.
 448   // Convenience common pre-built types.
 449   static const TypeF *ZERO; // positive zero only
 450   static const TypeF *ONE;
 451 #ifndef PRODUCT
 452   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 453 #endif
 454 };
 455 
 456 //------------------------------TypeD------------------------------------------
 457 // Class of Double-Constant Types.
 458 class TypeD : public Type {
 459   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 460 public:
 461   virtual bool eq( const Type *t ) const;
 462   virtual int  hash() const;             // Type specific hashing
 463   virtual bool singleton(void) const;    // TRUE if type is a singleton
 464   virtual bool empty(void) const;        // TRUE if type is vacuous
 465 public:
 466   const double _d;              // Double constant
 467 
 468   static const TypeD *make(double d);
 469 
 470   virtual bool        is_finite() const;  // Has a finite value
 471   virtual bool        is_nan()    const;  // Is not a number (NaN)
 472 
 473   virtual const Type *xmeet( const Type *t ) const;
 474   virtual const Type *xdual() const;    // Compute dual right now.
 475   // Convenience common pre-built types.
 476   static const TypeD *ZERO; // positive zero only
 477   static const TypeD *ONE;
 478 #ifndef PRODUCT
 479   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 480 #endif
 481 };
 482 
 483 //------------------------------TypeInt----------------------------------------
 484 // Class of integer ranges, the set of integers between a lower bound and an
 485 // upper bound, inclusive.
 486 class TypeInt : public Type {
 487   TypeInt( jint lo, jint hi, int w );
 488 protected:
 489   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 490 
 491 public:
 492   typedef jint NativeType;
 493   virtual bool eq( const Type *t ) const;
 494   virtual int  hash() const;             // Type specific hashing
 495   virtual bool singleton(void) const;    // TRUE if type is a singleton
 496   virtual bool empty(void) const;        // TRUE if type is vacuous
 497   const jint _lo, _hi;          // Lower bound, upper bound
 498   const short _widen;           // Limit on times we widen this sucker
 499 
 500   static const TypeInt *make(jint lo);
 501   // must always specify w
 502   static const TypeInt *make(jint lo, jint hi, int w);
 503 
 504   // Check for single integer
 505   int is_con() const { return _lo==_hi; }
 506   bool is_con(int i) const { return is_con() && _lo == i; }
 507   jint get_con() const { assert( is_con(), "" );  return _lo; }
 508 
 509   virtual bool        is_finite() const;  // Has a finite value
 510 
 511   virtual const Type *xmeet( const Type *t ) const;
 512   virtual const Type *xdual() const;    // Compute dual right now.
 513   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 514   virtual const Type *narrow( const Type *t ) const;
 515   // Do not kill _widen bits.
 516   // Convenience common pre-built types.
 517   static const TypeInt *MINUS_1;
 518   static const TypeInt *ZERO;
 519   static const TypeInt *ONE;
 520   static const TypeInt *BOOL;
 521   static const TypeInt *CC;
 522   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 523   static const TypeInt *CC_GT;  // [1]   == ONE
 524   static const TypeInt *CC_EQ;  // [0]   == ZERO
 525   static const TypeInt *CC_LE;  // [-1,0]
 526   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 527   static const TypeInt *BYTE;
 528   static const TypeInt *UBYTE;
 529   static const TypeInt *CHAR;
 530   static const TypeInt *SHORT;
 531   static const TypeInt *POS;
 532   static const TypeInt *POS1;
 533   static const TypeInt *INT;
 534   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 535 
 536   static const Type *bottom() { return TypeInt::INT; }
 537   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 538 #ifndef PRODUCT
 539   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 540 #endif
 541 };
 542 
 543 
 544 //------------------------------TypeLong---------------------------------------
 545 // Class of long integer ranges, the set of integers between a lower bound and
 546 // an upper bound, inclusive.
 547 class TypeLong : public Type {
 548   TypeLong( jlong lo, jlong hi, int w );
 549 protected:
 550   // Do not kill _widen bits.
 551   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 552 public:
 553   typedef jlong NativeType;
 554   virtual bool eq( const Type *t ) const;
 555   virtual int  hash() const;             // Type specific hashing
 556   virtual bool singleton(void) const;    // TRUE if type is a singleton
 557   virtual bool empty(void) const;        // TRUE if type is vacuous
 558 public:
 559   const jlong _lo, _hi;         // Lower bound, upper bound
 560   const short _widen;           // Limit on times we widen this sucker
 561 
 562   static const TypeLong *make(jlong lo);
 563   // must always specify w
 564   static const TypeLong *make(jlong lo, jlong hi, int w);
 565 
 566   // Check for single integer
 567   int is_con() const { return _lo==_hi; }
 568   bool is_con(int i) const { return is_con() && _lo == i; }
 569   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 570 
 571   // Check for positive 32-bit value.
 572   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 573 
 574   virtual bool        is_finite() const;  // Has a finite value
 575 
 576 
 577   virtual const Type *xmeet( const Type *t ) const;
 578   virtual const Type *xdual() const;    // Compute dual right now.
 579   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 580   virtual const Type *narrow( const Type *t ) const;
 581   // Convenience common pre-built types.
 582   static const TypeLong *MINUS_1;
 583   static const TypeLong *ZERO;
 584   static const TypeLong *ONE;
 585   static const TypeLong *POS;
 586   static const TypeLong *LONG;
 587   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 588   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 589 
 590   // static convenience methods.
 591   static const Type *bottom() { return TypeLong::LONG; }
 592   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 593 
 594 #ifndef PRODUCT
 595   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 596 #endif
 597 };
 598 
 599 //------------------------------TypeTuple--------------------------------------
 600 // Class of Tuple Types, essentially type collections for function signatures
 601 // and class layouts.  It happens to also be a fast cache for the HotSpot
 602 // signature types.
 603 class TypeTuple : public Type {
 604   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 605 public:
 606   virtual bool eq( const Type *t ) const;
 607   virtual int  hash() const;             // Type specific hashing
 608   virtual bool singleton(void) const;    // TRUE if type is a singleton
 609   virtual bool empty(void) const;        // TRUE if type is vacuous
 610 
 611 public:
 612   const uint          _cnt;              // Count of fields
 613   const Type ** const _fields;           // Array of field types
 614 
 615   // Accessors:
 616   uint cnt() const { return _cnt; }
 617   const Type* field_at(uint i) const {
 618     assert(i < _cnt, "oob");
 619     return _fields[i];
 620   }
 621   void set_field_at(uint i, const Type* t) {
 622     assert(i < _cnt, "oob");
 623     _fields[i] = t;
 624   }
 625 
 626   static const TypeTuple *make( uint cnt, const Type **fields );
 627   static const TypeTuple *make_range(ciSignature *sig);
 628   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 629 
 630   // Subroutine call type with space allocated for argument types
 631   static const Type **fields( uint arg_cnt );
 632 
 633   virtual const Type *xmeet( const Type *t ) const;
 634   virtual const Type *xdual() const;    // Compute dual right now.
 635   // Convenience common pre-built types.
 636   static const TypeTuple *IFBOTH;
 637   static const TypeTuple *IFFALSE;
 638   static const TypeTuple *IFTRUE;
 639   static const TypeTuple *IFNEITHER;
 640   static const TypeTuple *LOOPBODY;
 641   static const TypeTuple *MEMBAR;
 642   static const TypeTuple *STORECONDITIONAL;
 643   static const TypeTuple *START_I2C;
 644   static const TypeTuple *INT_PAIR;
 645   static const TypeTuple *LONG_PAIR;
 646   static const TypeTuple *INT_CC_PAIR;
 647   static const TypeTuple *LONG_CC_PAIR;
 648 #ifndef PRODUCT
 649   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 650 #endif
 651 };
 652 
 653 //------------------------------TypeAry----------------------------------------
 654 // Class of Array Types
 655 class TypeAry : public Type {
 656   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 657       _elem(elem), _size(size), _stable(stable) {}
 658 public:
 659   virtual bool eq( const Type *t ) const;
 660   virtual int  hash() const;             // Type specific hashing
 661   virtual bool singleton(void) const;    // TRUE if type is a singleton
 662   virtual bool empty(void) const;        // TRUE if type is vacuous
 663 
 664 private:
 665   const Type *_elem;            // Element type of array
 666   const TypeInt *_size;         // Elements in array
 667   const bool _stable;           // Are elements @Stable?
 668   friend class TypeAryPtr;
 669 
 670 public:
 671   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 672 
 673   virtual const Type *xmeet( const Type *t ) const;
 674   virtual const Type *xdual() const;    // Compute dual right now.
 675   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 676   virtual const Type* remove_speculative() const;
 677 #ifdef ASSERT
 678   // One type is interface, the other is oop
 679   virtual bool interface_vs_oop(const Type *t) const;
 680 #endif
 681 #ifndef PRODUCT
 682   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 683 #endif
 684 };
 685 
 686 //------------------------------TypeVect---------------------------------------
 687 // Class of Vector Types
 688 class TypeVect : public Type {
 689   const Type*   _elem;  // Vector's element type
 690   const uint  _length;  // Elements in vector (power of 2)
 691 
 692 protected:
 693   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 694     _elem(elem), _length(length) {}
 695 
 696 public:
 697   const Type* element_type() const { return _elem; }
 698   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 699   uint length() const { return _length; }
 700   uint length_in_bytes() const {
 701    return _length * type2aelembytes(element_basic_type());
 702   }
 703 
 704   virtual bool eq(const Type *t) const;
 705   virtual int  hash() const;             // Type specific hashing
 706   virtual bool singleton(void) const;    // TRUE if type is a singleton
 707   virtual bool empty(void) const;        // TRUE if type is vacuous
 708 
 709   static const TypeVect *make(const BasicType elem_bt, uint length) {
 710     // Use bottom primitive type.
 711     return make(get_const_basic_type(elem_bt), length);
 712   }
 713   // Used directly by Replicate nodes to construct singleton vector.
 714   static const TypeVect *make(const Type* elem, uint length);
 715 
 716   virtual const Type *xmeet( const Type *t) const;
 717   virtual const Type *xdual() const;     // Compute dual right now.
 718 
 719   static const TypeVect *VECTS;
 720   static const TypeVect *VECTD;
 721   static const TypeVect *VECTX;
 722   static const TypeVect *VECTY;
 723 
 724 #ifndef PRODUCT
 725   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 726 #endif
 727 };
 728 
 729 class TypeVectS : public TypeVect {
 730   friend class TypeVect;
 731   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 732 };
 733 
 734 class TypeVectD : public TypeVect {
 735   friend class TypeVect;
 736   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 737 };
 738 
 739 class TypeVectX : public TypeVect {
 740   friend class TypeVect;
 741   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 742 };
 743 
 744 class TypeVectY : public TypeVect {
 745   friend class TypeVect;
 746   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 747 };
 748 
 749 //------------------------------TypePtr----------------------------------------
 750 // Class of machine Pointer Types: raw data, instances or arrays.
 751 // If the _base enum is AnyPtr, then this refers to all of the above.
 752 // Otherwise the _base will indicate which subset of pointers is affected,
 753 // and the class will be inherited from.
 754 class TypePtr : public Type {
 755   friend class TypeNarrowPtr;
 756 public:
 757   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 758 protected:
 759   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 760   virtual bool eq( const Type *t ) const;
 761   virtual int  hash() const;             // Type specific hashing
 762   static const PTR ptr_meet[lastPTR][lastPTR];
 763   static const PTR ptr_dual[lastPTR];
 764   static const char * const ptr_msg[lastPTR];
 765 
 766 public:
 767   const int _offset;            // Offset into oop, with TOP & BOT
 768   const PTR _ptr;               // Pointer equivalence class
 769 
 770   const int offset() const { return _offset; }
 771   const PTR ptr()    const { return _ptr; }
 772 
 773   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 774 
 775   // Return a 'ptr' version of this type
 776   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 777 
 778   virtual intptr_t get_con() const;
 779 
 780   int xadd_offset( intptr_t offset ) const;
 781   virtual const TypePtr *add_offset( intptr_t offset ) const;
 782 
 783   virtual bool singleton(void) const;    // TRUE if type is a singleton
 784   virtual bool empty(void) const;        // TRUE if type is vacuous
 785   virtual const Type *xmeet( const Type *t ) const;
 786   int meet_offset( int offset ) const;
 787   int dual_offset( ) const;
 788   virtual const Type *xdual() const;    // Compute dual right now.
 789 
 790   // meet, dual and join over pointer equivalence sets
 791   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 792   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 793 
 794   // This is textually confusing unless one recalls that
 795   // join(t) == dual()->meet(t->dual())->dual().
 796   PTR join_ptr( const PTR in_ptr ) const {
 797     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 798   }
 799 
 800   // Tests for relation to centerline of type lattice:
 801   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 802   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 803   // Convenience common pre-built types.
 804   static const TypePtr *NULL_PTR;
 805   static const TypePtr *NOTNULL;
 806   static const TypePtr *BOTTOM;
 807 #ifndef PRODUCT
 808   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 809 #endif
 810 };
 811 
 812 //------------------------------TypeRawPtr-------------------------------------
 813 // Class of raw pointers, pointers to things other than Oops.  Examples
 814 // include the stack pointer, top of heap, card-marking area, handles, etc.
 815 class TypeRawPtr : public TypePtr {
 816 protected:
 817   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 818 public:
 819   virtual bool eq( const Type *t ) const;
 820   virtual int  hash() const;     // Type specific hashing
 821 
 822   const address _bits;          // Constant value, if applicable
 823 
 824   static const TypeRawPtr *make( PTR ptr );
 825   static const TypeRawPtr *make( address bits );
 826 
 827   // Return a 'ptr' version of this type
 828   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 829 
 830   virtual intptr_t get_con() const;
 831 
 832   virtual const TypePtr *add_offset( intptr_t offset ) const;
 833 
 834   virtual const Type *xmeet( const Type *t ) const;
 835   virtual const Type *xdual() const;    // Compute dual right now.
 836   // Convenience common pre-built types.
 837   static const TypeRawPtr *BOTTOM;
 838   static const TypeRawPtr *NOTNULL;
 839 #ifndef PRODUCT
 840   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 841 #endif
 842 };
 843 
 844 //------------------------------TypeOopPtr-------------------------------------
 845 // Some kind of oop (Java pointer), either klass or instance or array.
 846 class TypeOopPtr : public TypePtr {
 847 protected:
 848   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
 849 public:
 850   virtual bool eq( const Type *t ) const;
 851   virtual int  hash() const;             // Type specific hashing
 852   virtual bool singleton(void) const;    // TRUE if type is a singleton
 853   enum {
 854    InstanceTop = -1,   // undefined instance
 855    InstanceBot = 0     // any possible instance
 856   };
 857 protected:
 858 
 859   // Oop is NULL, unless this is a constant oop.
 860   ciObject*     _const_oop;   // Constant oop
 861   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 862   ciKlass*      _klass;       // Klass object
 863   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 864   bool          _klass_is_exact;
 865   bool          _is_ptr_to_narrowoop;
 866   bool          _is_ptr_to_narrowklass;
 867   bool          _is_ptr_to_boxed_value;
 868 
 869   // If not InstanceTop or InstanceBot, indicates that this is
 870   // a particular instance of this type which is distinct.
 871   // This is the the node index of the allocation node creating this instance.
 872   int           _instance_id;
 873 
 874   // Extra type information profiling gave us. We propagate it the
 875   // same way the rest of the type info is propagated. If we want to
 876   // use it, then we have to emit a guard: this part of the type is
 877   // not something we know but something we speculate about the type.
 878   const TypeOopPtr*   _speculative;
 879 
 880   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 881 
 882   int dual_instance_id() const;
 883   int meet_instance_id(int uid) const;
 884 
 885   // utility methods to work on the speculative part of the type
 886   const TypeOopPtr* dual_speculative() const;
 887   const TypeOopPtr* xmeet_speculative(const TypeOopPtr* other) const;
 888   bool eq_speculative(const TypeOopPtr* other) const;
 889   int hash_speculative() const;
 890   const TypeOopPtr* add_offset_speculative(intptr_t offset) const;
 891 #ifndef PRODUCT
 892   void dump_speculative(outputStream *st) const;
 893 #endif
 894 
 895   // Do not allow interface-vs.-noninterface joins to collapse to top.
 896   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 897 
 898 public:
 899   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 900   // Respects UseUniqueSubclasses.
 901   // If the klass is final, the resulting type will be exact.
 902   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 903     return make_from_klass_common(klass, true, false);
 904   }
 905   // Same as before, but will produce an exact type, even if
 906   // the klass is not final, as long as it has exactly one implementation.
 907   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 908     return make_from_klass_common(klass, true, true);
 909   }
 910   // Same as before, but does not respects UseUniqueSubclasses.
 911   // Use this only for creating array element types.
 912   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 913     return make_from_klass_common(klass, false, false);
 914   }
 915   // Creates a singleton type given an object.
 916   // If the object cannot be rendered as a constant,
 917   // may return a non-singleton type.
 918   // If require_constant, produce a NULL if a singleton is not possible.
 919   static const TypeOopPtr* make_from_constant(ciObject* o,
 920                                               bool require_constant = false,
 921                                               bool not_null_elements = false);
 922 
 923   // Make a generic (unclassed) pointer to an oop.
 924   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, const TypeOopPtr* speculative);
 925 
 926   ciObject* const_oop()    const { return _const_oop; }
 927   virtual ciKlass* klass() const { return _klass;     }
 928   bool klass_is_exact()    const { return _klass_is_exact; }
 929 
 930   // Returns true if this pointer points at memory which contains a
 931   // compressed oop references.
 932   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 933   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 934   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
 935   bool is_known_instance()       const { return _instance_id > 0; }
 936   int  instance_id()             const { return _instance_id; }
 937   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 938   const TypeOopPtr* speculative() const { return _speculative; }
 939 
 940   virtual intptr_t get_con() const;
 941 
 942   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 943 
 944   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 945 
 946   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 947 
 948   // corresponding pointer to klass, for a given instance
 949   const TypeKlassPtr* as_klass_type() const;
 950 
 951   virtual const TypePtr *add_offset( intptr_t offset ) const;
 952   // Return same type without a speculative part
 953   virtual const Type* remove_speculative() const;
 954 
 955   virtual const Type *xmeet(const Type *t) const;
 956   virtual const Type *xdual() const;    // Compute dual right now.
 957   // the core of the computation of the meet for TypeOopPtr and for its subclasses
 958   virtual const Type *xmeet_helper(const Type *t) const;
 959 
 960   // Convenience common pre-built type.
 961   static const TypeOopPtr *BOTTOM;
 962 #ifndef PRODUCT
 963   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 964 #endif
 965 
 966   // Return the speculative type if any
 967   ciKlass* speculative_type() const {
 968     if (_speculative != NULL) {
 969       const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
 970       if (speculative->klass_is_exact()) {
 971        return speculative->klass();
 972       }
 973     }
 974     return NULL;
 975   }
 976 };
 977 
 978 //------------------------------TypeInstPtr------------------------------------
 979 // Class of Java object pointers, pointing either to non-array Java instances
 980 // or to a Klass* (including array klasses).
 981 class TypeInstPtr : public TypeOopPtr {
 982   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative);
 983   virtual bool eq( const Type *t ) const;
 984   virtual int  hash() const;             // Type specific hashing
 985 
 986   ciSymbol*  _name;        // class name
 987 
 988  public:
 989   ciSymbol* name()         const { return _name; }
 990 
 991   bool  is_loaded() const { return _klass->is_loaded(); }
 992 
 993   // Make a pointer to a constant oop.
 994   static const TypeInstPtr *make(ciObject* o) {
 995     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
 996   }
 997   // Make a pointer to a constant oop with offset.
 998   static const TypeInstPtr *make(ciObject* o, int offset) {
 999     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1000   }
1001 
1002   // Make a pointer to some value of type klass.
1003   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1004     return make(ptr, klass, false, NULL, 0, InstanceBot);
1005   }
1006 
1007   // Make a pointer to some non-polymorphic value of exactly type klass.
1008   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1009     return make(ptr, klass, true, NULL, 0, InstanceBot);
1010   }
1011 
1012   // Make a pointer to some value of type klass with offset.
1013   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1014     return make(ptr, klass, false, NULL, offset, InstanceBot);
1015   }
1016 
1017   // Make a pointer to an oop.
1018   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
1019 
1020   /** Create constant type for a constant boxed value */
1021   const Type* get_const_boxed_value() const;
1022 
1023   // If this is a java.lang.Class constant, return the type for it or NULL.
1024   // Pass to Type::get_const_type to turn it to a type, which will usually
1025   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1026   ciType* java_mirror_type() const;
1027 
1028   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1029 
1030   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1031 
1032   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1033 
1034   virtual const TypePtr *add_offset( intptr_t offset ) const;
1035   // Return same type without a speculative part
1036   virtual const Type* remove_speculative() const;
1037 
1038   // the core of the computation of the meet of 2 types
1039   virtual const Type *xmeet_helper(const Type *t) const;
1040   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1041   virtual const Type *xdual() const;    // Compute dual right now.
1042 
1043   // Convenience common pre-built types.
1044   static const TypeInstPtr *NOTNULL;
1045   static const TypeInstPtr *BOTTOM;
1046   static const TypeInstPtr *MIRROR;
1047   static const TypeInstPtr *MARK;
1048   static const TypeInstPtr *KLASS;
1049 #ifndef PRODUCT
1050   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1051 #endif
1052 };
1053 
1054 //------------------------------TypeAryPtr-------------------------------------
1055 // Class of Java array pointers
1056 class TypeAryPtr : public TypeOopPtr {
1057   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1058               int offset, int instance_id, bool is_autobox_cache, const TypeOopPtr* speculative)
1059     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative),
1060     _ary(ary),
1061     _is_autobox_cache(is_autobox_cache)
1062  {
1063 #ifdef ASSERT
1064     if (k != NULL) {
1065       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1066       ciKlass* ck = compute_klass(true);
1067       if (k != ck) {
1068         this->dump(); tty->cr();
1069         tty->print(" k: ");
1070         k->print(); tty->cr();
1071         tty->print("ck: ");
1072         if (ck != NULL) ck->print();
1073         else tty->print("<NULL>");
1074         tty->cr();
1075         assert(false, "unexpected TypeAryPtr::_klass");
1076       }
1077     }
1078 #endif
1079   }
1080   virtual bool eq( const Type *t ) const;
1081   virtual int hash() const;     // Type specific hashing
1082   const TypeAry *_ary;          // Array we point into
1083   const bool     _is_autobox_cache;
1084 
1085   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1086 
1087 public:
1088   // Accessors
1089   ciKlass* klass() const;
1090   const TypeAry* ary() const  { return _ary; }
1091   const Type*    elem() const { return _ary->_elem; }
1092   const TypeInt* size() const { return _ary->_size; }
1093   bool      is_stable() const { return _ary->_stable; }
1094 
1095   bool is_autobox_cache() const { return _is_autobox_cache; }
1096 
1097   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL);
1098   // Constant pointer to array
1099   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot, const TypeOopPtr* speculative = NULL, bool is_autobox_cache = false);
1100 
1101   // Return a 'ptr' version of this type
1102   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1103 
1104   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1105 
1106   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1107 
1108   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1109   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1110 
1111   virtual bool empty(void) const;        // TRUE if type is vacuous
1112   virtual const TypePtr *add_offset( intptr_t offset ) const;
1113   // Return same type without a speculative part
1114   virtual const Type* remove_speculative() const;
1115 
1116   // the core of the computation of the meet of 2 types
1117   virtual const Type *xmeet_helper(const Type *t) const;
1118   virtual const Type *xdual() const;    // Compute dual right now.
1119 
1120   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1121   int stable_dimension() const;
1122 
1123   // Convenience common pre-built types.
1124   static const TypeAryPtr *RANGE;
1125   static const TypeAryPtr *OOPS;
1126   static const TypeAryPtr *NARROWOOPS;
1127   static const TypeAryPtr *BYTES;
1128   static const TypeAryPtr *SHORTS;
1129   static const TypeAryPtr *CHARS;
1130   static const TypeAryPtr *INTS;
1131   static const TypeAryPtr *LONGS;
1132   static const TypeAryPtr *FLOATS;
1133   static const TypeAryPtr *DOUBLES;
1134   // selects one of the above:
1135   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1136     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1137     return _array_body_type[elem];
1138   }
1139   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1140   // sharpen the type of an int which is used as an array size
1141 #ifdef ASSERT
1142   // One type is interface, the other is oop
1143   virtual bool interface_vs_oop(const Type *t) const;
1144 #endif
1145 #ifndef PRODUCT
1146   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1147 #endif
1148 };
1149 
1150 //------------------------------TypeMetadataPtr-------------------------------------
1151 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1152 class TypeMetadataPtr : public TypePtr {
1153 protected:
1154   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1155   // Do not allow interface-vs.-noninterface joins to collapse to top.
1156   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1157 public:
1158   virtual bool eq( const Type *t ) const;
1159   virtual int  hash() const;             // Type specific hashing
1160   virtual bool singleton(void) const;    // TRUE if type is a singleton
1161 
1162 private:
1163   ciMetadata*   _metadata;
1164 
1165 public:
1166   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1167 
1168   static const TypeMetadataPtr* make(ciMethod* m);
1169   static const TypeMetadataPtr* make(ciMethodData* m);
1170 
1171   ciMetadata* metadata() const { return _metadata; }
1172 
1173   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1174 
1175   virtual const TypePtr *add_offset( intptr_t offset ) const;
1176 
1177   virtual const Type *xmeet( const Type *t ) const;
1178   virtual const Type *xdual() const;    // Compute dual right now.
1179 
1180   virtual intptr_t get_con() const;
1181 
1182   // Convenience common pre-built types.
1183   static const TypeMetadataPtr *BOTTOM;
1184 
1185 #ifndef PRODUCT
1186   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1187 #endif
1188 };
1189 
1190 //------------------------------TypeKlassPtr-----------------------------------
1191 // Class of Java Klass pointers
1192 class TypeKlassPtr : public TypePtr {
1193   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1194 
1195 protected:
1196   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1197  public:
1198   virtual bool eq( const Type *t ) const;
1199   virtual int hash() const;             // Type specific hashing
1200   virtual bool singleton(void) const;    // TRUE if type is a singleton
1201  private:
1202 
1203   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1204 
1205   ciKlass* _klass;
1206 
1207   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1208   bool          _klass_is_exact;
1209 
1210 public:
1211   ciSymbol* name()  const { return klass()->name(); }
1212 
1213   ciKlass* klass() const { return  _klass; }
1214   bool klass_is_exact()    const { return _klass_is_exact; }
1215 
1216   bool  is_loaded() const { return klass()->is_loaded(); }
1217 
1218   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1219   // Respects UseUniqueSubclasses.
1220   // If the klass is final, the resulting type will be exact.
1221   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1222     return make_from_klass_common(klass, true, false);
1223   }
1224   // Same as before, but will produce an exact type, even if
1225   // the klass is not final, as long as it has exactly one implementation.
1226   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1227     return make_from_klass_common(klass, true, true);
1228   }
1229   // Same as before, but does not respects UseUniqueSubclasses.
1230   // Use this only for creating array element types.
1231   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1232     return make_from_klass_common(klass, false, false);
1233   }
1234 
1235   // Make a generic (unclassed) pointer to metadata.
1236   static const TypeKlassPtr* make(PTR ptr, int offset);
1237 
1238   // ptr to klass 'k'
1239   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1240   // ptr to klass 'k' with offset
1241   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1242   // ptr to klass 'k' or sub-klass
1243   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1244 
1245   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1246 
1247   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1248 
1249   // corresponding pointer to instance, for a given class
1250   const TypeOopPtr* as_instance_type() const;
1251 
1252   virtual const TypePtr *add_offset( intptr_t offset ) const;
1253   virtual const Type    *xmeet( const Type *t ) const;
1254   virtual const Type    *xdual() const;      // Compute dual right now.
1255 
1256   virtual intptr_t get_con() const;
1257 
1258   // Convenience common pre-built types.
1259   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1260   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1261 #ifndef PRODUCT
1262   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1263 #endif
1264 };
1265 
1266 class TypeNarrowPtr : public Type {
1267 protected:
1268   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1269 
1270   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1271                                                   Type(t) {
1272     assert(ptrtype->offset() == 0 ||
1273            ptrtype->offset() == OffsetBot ||
1274            ptrtype->offset() == OffsetTop, "no real offsets");
1275   }
1276 
1277   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1278   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1279   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1280   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1281   // Do not allow interface-vs.-noninterface joins to collapse to top.
1282   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1283 public:
1284   virtual bool eq( const Type *t ) const;
1285   virtual int  hash() const;             // Type specific hashing
1286   virtual bool singleton(void) const;    // TRUE if type is a singleton
1287 
1288   virtual const Type *xmeet( const Type *t ) const;
1289   virtual const Type *xdual() const;    // Compute dual right now.
1290 
1291   virtual intptr_t get_con() const;
1292 
1293   virtual bool empty(void) const;        // TRUE if type is vacuous
1294 
1295   // returns the equivalent ptr type for this compressed pointer
1296   const TypePtr *get_ptrtype() const {
1297     return _ptrtype;
1298   }
1299 
1300 #ifndef PRODUCT
1301   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1302 #endif
1303 };
1304 
1305 //------------------------------TypeNarrowOop----------------------------------
1306 // A compressed reference to some kind of Oop.  This type wraps around
1307 // a preexisting TypeOopPtr and forwards most of it's operations to
1308 // the underlying type.  It's only real purpose is to track the
1309 // oopness of the compressed oop value when we expose the conversion
1310 // between the normal and the compressed form.
1311 class TypeNarrowOop : public TypeNarrowPtr {
1312 protected:
1313   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1314   }
1315 
1316   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1317     return t->isa_narrowoop();
1318   }
1319 
1320   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1321     return t->is_narrowoop();
1322   }
1323 
1324   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1325     return new TypeNarrowOop(t);
1326   }
1327 
1328   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1329     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1330   }
1331 
1332 public:
1333 
1334   static const TypeNarrowOop *make( const TypePtr* type);
1335 
1336   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1337     return make(TypeOopPtr::make_from_constant(con, require_constant));
1338   }
1339 
1340   static const TypeNarrowOop *BOTTOM;
1341   static const TypeNarrowOop *NULL_PTR;
1342 
1343   virtual const Type* remove_speculative() const {
1344     return make(_ptrtype->remove_speculative()->is_ptr());
1345   }
1346 
1347 #ifndef PRODUCT
1348   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1349 #endif
1350 };
1351 
1352 //------------------------------TypeNarrowKlass----------------------------------
1353 // A compressed reference to klass pointer.  This type wraps around a
1354 // preexisting TypeKlassPtr and forwards most of it's operations to
1355 // the underlying type.
1356 class TypeNarrowKlass : public TypeNarrowPtr {
1357 protected:
1358   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1359   }
1360 
1361   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1362     return t->isa_narrowklass();
1363   }
1364 
1365   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1366     return t->is_narrowklass();
1367   }
1368 
1369   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1370     return new TypeNarrowKlass(t);
1371   }
1372 
1373   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1374     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1375   }
1376 
1377 public:
1378   static const TypeNarrowKlass *make( const TypePtr* type);
1379 
1380   // static const TypeNarrowKlass *BOTTOM;
1381   static const TypeNarrowKlass *NULL_PTR;
1382 
1383 #ifndef PRODUCT
1384   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1385 #endif
1386 };
1387 
1388 //------------------------------TypeFunc---------------------------------------
1389 // Class of Array Types
1390 class TypeFunc : public Type {
1391   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1392   virtual bool eq( const Type *t ) const;
1393   virtual int  hash() const;             // Type specific hashing
1394   virtual bool singleton(void) const;    // TRUE if type is a singleton
1395   virtual bool empty(void) const;        // TRUE if type is vacuous
1396 public:
1397   // Constants are shared among ADLC and VM
1398   enum { Control    = AdlcVMDeps::Control,
1399          I_O        = AdlcVMDeps::I_O,
1400          Memory     = AdlcVMDeps::Memory,
1401          FramePtr   = AdlcVMDeps::FramePtr,
1402          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1403          Parms      = AdlcVMDeps::Parms
1404   };
1405 
1406   const TypeTuple* const _domain;     // Domain of inputs
1407   const TypeTuple* const _range;      // Range of results
1408 
1409   // Accessors:
1410   const TypeTuple* domain() const { return _domain; }
1411   const TypeTuple* range()  const { return _range; }
1412 
1413   static const TypeFunc *make(ciMethod* method);
1414   static const TypeFunc *make(ciSignature signature, const Type* extra);
1415   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1416 
1417   virtual const Type *xmeet( const Type *t ) const;
1418   virtual const Type *xdual() const;    // Compute dual right now.
1419 
1420   BasicType return_type() const;
1421 
1422 #ifndef PRODUCT
1423   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1424 #endif
1425   // Convenience common pre-built types.
1426 };
1427 
1428 //------------------------------accessors--------------------------------------
1429 inline bool Type::is_ptr_to_narrowoop() const {
1430 #ifdef _LP64
1431   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1432 #else
1433   return false;
1434 #endif
1435 }
1436 
1437 inline bool Type::is_ptr_to_narrowklass() const {
1438 #ifdef _LP64
1439   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1440 #else
1441   return false;
1442 #endif
1443 }
1444 
1445 inline float Type::getf() const {
1446   assert( _base == FloatCon, "Not a FloatCon" );
1447   return ((TypeF*)this)->_f;
1448 }
1449 
1450 inline double Type::getd() const {
1451   assert( _base == DoubleCon, "Not a DoubleCon" );
1452   return ((TypeD*)this)->_d;
1453 }
1454 
1455 inline const TypeInt *Type::is_int() const {
1456   assert( _base == Int, "Not an Int" );
1457   return (TypeInt*)this;
1458 }
1459 
1460 inline const TypeInt *Type::isa_int() const {
1461   return ( _base == Int ? (TypeInt*)this : NULL);
1462 }
1463 
1464 inline const TypeLong *Type::is_long() const {
1465   assert( _base == Long, "Not a Long" );
1466   return (TypeLong*)this;
1467 }
1468 
1469 inline const TypeLong *Type::isa_long() const {
1470   return ( _base == Long ? (TypeLong*)this : NULL);
1471 }
1472 
1473 inline const TypeF *Type::isa_float() const {
1474   return ((_base == FloatTop ||
1475            _base == FloatCon ||
1476            _base == FloatBot) ? (TypeF*)this : NULL);
1477 }
1478 
1479 inline const TypeF *Type::is_float_constant() const {
1480   assert( _base == FloatCon, "Not a Float" );
1481   return (TypeF*)this;
1482 }
1483 
1484 inline const TypeF *Type::isa_float_constant() const {
1485   return ( _base == FloatCon ? (TypeF*)this : NULL);
1486 }
1487 
1488 inline const TypeD *Type::isa_double() const {
1489   return ((_base == DoubleTop ||
1490            _base == DoubleCon ||
1491            _base == DoubleBot) ? (TypeD*)this : NULL);
1492 }
1493 
1494 inline const TypeD *Type::is_double_constant() const {
1495   assert( _base == DoubleCon, "Not a Double" );
1496   return (TypeD*)this;
1497 }
1498 
1499 inline const TypeD *Type::isa_double_constant() const {
1500   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1501 }
1502 
1503 inline const TypeTuple *Type::is_tuple() const {
1504   assert( _base == Tuple, "Not a Tuple" );
1505   return (TypeTuple*)this;
1506 }
1507 
1508 inline const TypeAry *Type::is_ary() const {
1509   assert( _base == Array , "Not an Array" );
1510   return (TypeAry*)this;
1511 }
1512 
1513 inline const TypeVect *Type::is_vect() const {
1514   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1515   return (TypeVect*)this;
1516 }
1517 
1518 inline const TypeVect *Type::isa_vect() const {
1519   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1520 }
1521 
1522 inline const TypePtr *Type::is_ptr() const {
1523   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1524   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1525   return (TypePtr*)this;
1526 }
1527 
1528 inline const TypePtr *Type::isa_ptr() const {
1529   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1530   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1531 }
1532 
1533 inline const TypeOopPtr *Type::is_oopptr() const {
1534   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1535   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1536   return (TypeOopPtr*)this;
1537 }
1538 
1539 inline const TypeOopPtr *Type::isa_oopptr() const {
1540   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1541   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1542 }
1543 
1544 inline const TypeRawPtr *Type::isa_rawptr() const {
1545   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1546 }
1547 
1548 inline const TypeRawPtr *Type::is_rawptr() const {
1549   assert( _base == RawPtr, "Not a raw pointer" );
1550   return (TypeRawPtr*)this;
1551 }
1552 
1553 inline const TypeInstPtr *Type::isa_instptr() const {
1554   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1555 }
1556 
1557 inline const TypeInstPtr *Type::is_instptr() const {
1558   assert( _base == InstPtr, "Not an object pointer" );
1559   return (TypeInstPtr*)this;
1560 }
1561 
1562 inline const TypeAryPtr *Type::isa_aryptr() const {
1563   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1564 }
1565 
1566 inline const TypeAryPtr *Type::is_aryptr() const {
1567   assert( _base == AryPtr, "Not an array pointer" );
1568   return (TypeAryPtr*)this;
1569 }
1570 
1571 inline const TypeNarrowOop *Type::is_narrowoop() const {
1572   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1573   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1574   return (TypeNarrowOop*)this;
1575 }
1576 
1577 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1578   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1579   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1580 }
1581 
1582 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1583   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1584   return (TypeNarrowKlass*)this;
1585 }
1586 
1587 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1588   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1589 }
1590 
1591 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1592   // MetadataPtr is the first and CPCachePtr the last
1593   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1594   return (TypeMetadataPtr*)this;
1595 }
1596 
1597 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1598   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1599 }
1600 
1601 inline const TypeKlassPtr *Type::isa_klassptr() const {
1602   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1603 }
1604 
1605 inline const TypeKlassPtr *Type::is_klassptr() const {
1606   assert( _base == KlassPtr, "Not a klass pointer" );
1607   return (TypeKlassPtr*)this;
1608 }
1609 
1610 inline const TypePtr* Type::make_ptr() const {
1611   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1612     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1613      (isa_ptr() ? is_ptr() : NULL));
1614 }
1615 
1616 inline const TypeOopPtr* Type::make_oopptr() const {
1617   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1618 }
1619 
1620 inline const TypeNarrowOop* Type::make_narrowoop() const {
1621   return (_base == NarrowOop) ? is_narrowoop() :
1622                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1623 }
1624 
1625 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1626   return (_base == NarrowKlass) ? is_narrowklass() :
1627                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1628 }
1629 
1630 inline bool Type::is_floatingpoint() const {
1631   if( (_base == FloatCon)  || (_base == FloatBot) ||
1632       (_base == DoubleCon) || (_base == DoubleBot) )
1633     return true;
1634   return false;
1635 }
1636 
1637 inline bool Type::is_ptr_to_boxing_obj() const {
1638   const TypeInstPtr* tp = isa_instptr();
1639   return (tp != NULL) && (tp->offset() == 0) &&
1640          tp->klass()->is_instance_klass()  &&
1641          tp->klass()->as_instance_klass()->is_box_klass();
1642 }
1643 
1644 
1645 // ===============================================================
1646 // Things that need to be 64-bits in the 64-bit build but
1647 // 32-bits in the 32-bit build.  Done this way to get full
1648 // optimization AND strong typing.
1649 #ifdef _LP64
1650 
1651 // For type queries and asserts
1652 #define is_intptr_t  is_long
1653 #define isa_intptr_t isa_long
1654 #define find_intptr_t_type find_long_type
1655 #define find_intptr_t_con  find_long_con
1656 #define TypeX        TypeLong
1657 #define Type_X       Type::Long
1658 #define TypeX_X      TypeLong::LONG
1659 #define TypeX_ZERO   TypeLong::ZERO
1660 // For 'ideal_reg' machine registers
1661 #define Op_RegX      Op_RegL
1662 // For phase->intcon variants
1663 #define MakeConX     longcon
1664 #define ConXNode     ConLNode
1665 // For array index arithmetic
1666 #define MulXNode     MulLNode
1667 #define AndXNode     AndLNode
1668 #define OrXNode      OrLNode
1669 #define CmpXNode     CmpLNode
1670 #define SubXNode     SubLNode
1671 #define LShiftXNode  LShiftLNode
1672 // For object size computation:
1673 #define AddXNode     AddLNode
1674 #define RShiftXNode  RShiftLNode
1675 // For card marks and hashcodes
1676 #define URShiftXNode URShiftLNode
1677 // UseOptoBiasInlining
1678 #define XorXNode     XorLNode
1679 #define StoreXConditionalNode StoreLConditionalNode
1680 // Opcodes
1681 #define Op_LShiftX   Op_LShiftL
1682 #define Op_AndX      Op_AndL
1683 #define Op_AddX      Op_AddL
1684 #define Op_SubX      Op_SubL
1685 #define Op_XorX      Op_XorL
1686 #define Op_URShiftX  Op_URShiftL
1687 // conversions
1688 #define ConvI2X(x)   ConvI2L(x)
1689 #define ConvL2X(x)   (x)
1690 #define ConvX2I(x)   ConvL2I(x)
1691 #define ConvX2L(x)   (x)
1692 
1693 #else
1694 
1695 // For type queries and asserts
1696 #define is_intptr_t  is_int
1697 #define isa_intptr_t isa_int
1698 #define find_intptr_t_type find_int_type
1699 #define find_intptr_t_con  find_int_con
1700 #define TypeX        TypeInt
1701 #define Type_X       Type::Int
1702 #define TypeX_X      TypeInt::INT
1703 #define TypeX_ZERO   TypeInt::ZERO
1704 // For 'ideal_reg' machine registers
1705 #define Op_RegX      Op_RegI
1706 // For phase->intcon variants
1707 #define MakeConX     intcon
1708 #define ConXNode     ConINode
1709 // For array index arithmetic
1710 #define MulXNode     MulINode
1711 #define AndXNode     AndINode
1712 #define OrXNode      OrINode
1713 #define CmpXNode     CmpINode
1714 #define SubXNode     SubINode
1715 #define LShiftXNode  LShiftINode
1716 // For object size computation:
1717 #define AddXNode     AddINode
1718 #define RShiftXNode  RShiftINode
1719 // For card marks and hashcodes
1720 #define URShiftXNode URShiftINode
1721 // UseOptoBiasInlining
1722 #define XorXNode     XorINode
1723 #define StoreXConditionalNode StoreIConditionalNode
1724 // Opcodes
1725 #define Op_LShiftX   Op_LShiftI
1726 #define Op_AndX      Op_AndI
1727 #define Op_AddX      Op_AddI
1728 #define Op_SubX      Op_SubI
1729 #define Op_XorX      Op_XorI
1730 #define Op_URShiftX  Op_URShiftI
1731 // conversions
1732 #define ConvI2X(x)   (x)
1733 #define ConvL2X(x)   ConvL2I(x)
1734 #define ConvX2I(x)   (x)
1735 #define ConvX2L(x)   ConvI2L(x)
1736 
1737 #endif
1738 
1739 #endif // SHARE_VM_OPTO_TYPE_HPP