1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/node.hpp"
  55 #include "opto/opcodes.hpp"
  56 #include "opto/output.hpp"
  57 #include "opto/parse.hpp"
  58 #include "opto/phaseX.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/stringopts.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/timer.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #ifdef TARGET_ARCH_MODEL_x86_32
  71 # include "adfiles/ad_x86_32.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_MODEL_x86_64
  74 # include "adfiles/ad_x86_64.hpp"
  75 #endif
  76 #ifdef TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_MODEL_zero
  80 # include "adfiles/ad_zero.hpp"
  81 #endif
  82 #ifdef TARGET_ARCH_MODEL_arm
  83 # include "adfiles/ad_arm.hpp"
  84 #endif
  85 #ifdef TARGET_ARCH_MODEL_ppc_32
  86 # include "adfiles/ad_ppc_32.hpp"
  87 #endif
  88 #ifdef TARGET_ARCH_MODEL_ppc_64
  89 # include "adfiles/ad_ppc_64.hpp"
  90 #endif
  91 
  92 
  93 // -------------------- Compile::mach_constant_base_node -----------------------
  94 // Constant table base node singleton.
  95 MachConstantBaseNode* Compile::mach_constant_base_node() {
  96   if (_mach_constant_base_node == NULL) {
  97     _mach_constant_base_node = new (C) MachConstantBaseNode();
  98     _mach_constant_base_node->add_req(C->root());
  99   }
 100   return _mach_constant_base_node;
 101 }
 102 
 103 
 104 /// Support for intrinsics.
 105 
 106 // Return the index at which m must be inserted (or already exists).
 107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 108 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 109 #ifdef ASSERT
 110   for (int i = 1; i < _intrinsics->length(); i++) {
 111     CallGenerator* cg1 = _intrinsics->at(i-1);
 112     CallGenerator* cg2 = _intrinsics->at(i);
 113     assert(cg1->method() != cg2->method()
 114            ? cg1->method()     < cg2->method()
 115            : cg1->is_virtual() < cg2->is_virtual(),
 116            "compiler intrinsics list must stay sorted");
 117   }
 118 #endif
 119   // Binary search sorted list, in decreasing intervals [lo, hi].
 120   int lo = 0, hi = _intrinsics->length()-1;
 121   while (lo <= hi) {
 122     int mid = (uint)(hi + lo) / 2;
 123     ciMethod* mid_m = _intrinsics->at(mid)->method();
 124     if (m < mid_m) {
 125       hi = mid-1;
 126     } else if (m > mid_m) {
 127       lo = mid+1;
 128     } else {
 129       // look at minor sort key
 130       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 131       if (is_virtual < mid_virt) {
 132         hi = mid-1;
 133       } else if (is_virtual > mid_virt) {
 134         lo = mid+1;
 135       } else {
 136         return mid;  // exact match
 137       }
 138     }
 139   }
 140   return lo;  // inexact match
 141 }
 142 
 143 void Compile::register_intrinsic(CallGenerator* cg) {
 144   if (_intrinsics == NULL) {
 145     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 146   }
 147   // This code is stolen from ciObjectFactory::insert.
 148   // Really, GrowableArray should have methods for
 149   // insert_at, remove_at, and binary_search.
 150   int len = _intrinsics->length();
 151   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 152   if (index == len) {
 153     _intrinsics->append(cg);
 154   } else {
 155 #ifdef ASSERT
 156     CallGenerator* oldcg = _intrinsics->at(index);
 157     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 158 #endif
 159     _intrinsics->append(_intrinsics->at(len-1));
 160     int pos;
 161     for (pos = len-2; pos >= index; pos--) {
 162       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 163     }
 164     _intrinsics->at_put(index, cg);
 165   }
 166   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 167 }
 168 
 169 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 170   assert(m->is_loaded(), "don't try this on unloaded methods");
 171   if (_intrinsics != NULL) {
 172     int index = intrinsic_insertion_index(m, is_virtual);
 173     if (index < _intrinsics->length()
 174         && _intrinsics->at(index)->method() == m
 175         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 176       return _intrinsics->at(index);
 177     }
 178   }
 179   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 180   if (m->intrinsic_id() != vmIntrinsics::_none &&
 181       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 182     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 183     if (cg != NULL) {
 184       // Save it for next time:
 185       register_intrinsic(cg);
 186       return cg;
 187     } else {
 188       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 189     }
 190   }
 191   return NULL;
 192 }
 193 
 194 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 195 // in library_call.cpp.
 196 
 197 
 198 #ifndef PRODUCT
 199 // statistics gathering...
 200 
 201 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 202 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 203 
 204 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 205   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 206   int oflags = _intrinsic_hist_flags[id];
 207   assert(flags != 0, "what happened?");
 208   if (is_virtual) {
 209     flags |= _intrinsic_virtual;
 210   }
 211   bool changed = (flags != oflags);
 212   if ((flags & _intrinsic_worked) != 0) {
 213     juint count = (_intrinsic_hist_count[id] += 1);
 214     if (count == 1) {
 215       changed = true;           // first time
 216     }
 217     // increment the overall count also:
 218     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 219   }
 220   if (changed) {
 221     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 222       // Something changed about the intrinsic's virtuality.
 223       if ((flags & _intrinsic_virtual) != 0) {
 224         // This is the first use of this intrinsic as a virtual call.
 225         if (oflags != 0) {
 226           // We already saw it as a non-virtual, so note both cases.
 227           flags |= _intrinsic_both;
 228         }
 229       } else if ((oflags & _intrinsic_both) == 0) {
 230         // This is the first use of this intrinsic as a non-virtual
 231         flags |= _intrinsic_both;
 232       }
 233     }
 234     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 235   }
 236   // update the overall flags also:
 237   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 238   return changed;
 239 }
 240 
 241 static char* format_flags(int flags, char* buf) {
 242   buf[0] = 0;
 243   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 244   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 245   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 246   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 247   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 248   if (buf[0] == 0)  strcat(buf, ",");
 249   assert(buf[0] == ',', "must be");
 250   return &buf[1];
 251 }
 252 
 253 void Compile::print_intrinsic_statistics() {
 254   char flagsbuf[100];
 255   ttyLocker ttyl;
 256   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 257   tty->print_cr("Compiler intrinsic usage:");
 258   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 259   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 260   #define PRINT_STAT_LINE(name, c, f) \
 261     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 262   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 263     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 264     int   flags = _intrinsic_hist_flags[id];
 265     juint count = _intrinsic_hist_count[id];
 266     if ((flags | count) != 0) {
 267       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 268     }
 269   }
 270   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 271   if (xtty != NULL)  xtty->tail("statistics");
 272 }
 273 
 274 void Compile::print_statistics() {
 275   { ttyLocker ttyl;
 276     if (xtty != NULL)  xtty->head("statistics type='opto'");
 277     Parse::print_statistics();
 278     PhaseCCP::print_statistics();
 279     PhaseRegAlloc::print_statistics();
 280     Scheduling::print_statistics();
 281     PhasePeephole::print_statistics();
 282     PhaseIdealLoop::print_statistics();
 283     if (xtty != NULL)  xtty->tail("statistics");
 284   }
 285   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 286     // put this under its own <statistics> element.
 287     print_intrinsic_statistics();
 288   }
 289 }
 290 #endif //PRODUCT
 291 
 292 // Support for bundling info
 293 Bundle* Compile::node_bundling(const Node *n) {
 294   assert(valid_bundle_info(n), "oob");
 295   return &_node_bundling_base[n->_idx];
 296 }
 297 
 298 bool Compile::valid_bundle_info(const Node *n) {
 299   return (_node_bundling_limit > n->_idx);
 300 }
 301 
 302 
 303 void Compile::gvn_replace_by(Node* n, Node* nn) {
 304   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 305     Node* use = n->last_out(i);
 306     bool is_in_table = initial_gvn()->hash_delete(use);
 307     uint uses_found = 0;
 308     for (uint j = 0; j < use->len(); j++) {
 309       if (use->in(j) == n) {
 310         if (j < use->req())
 311           use->set_req(j, nn);
 312         else
 313           use->set_prec(j, nn);
 314         uses_found++;
 315       }
 316     }
 317     if (is_in_table) {
 318       // reinsert into table
 319       initial_gvn()->hash_find_insert(use);
 320     }
 321     record_for_igvn(use);
 322     i -= uses_found;    // we deleted 1 or more copies of this edge
 323   }
 324 }
 325 
 326 
 327 static inline bool not_a_node(const Node* n) {
 328   if (n == NULL)                   return true;
 329   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 330   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 331   return false;
 332 }
 333 
 334 // Identify all nodes that are reachable from below, useful.
 335 // Use breadth-first pass that records state in a Unique_Node_List,
 336 // recursive traversal is slower.
 337 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 338   int estimated_worklist_size = unique();
 339   useful.map( estimated_worklist_size, NULL );  // preallocate space
 340 
 341   // Initialize worklist
 342   if (root() != NULL)     { useful.push(root()); }
 343   // If 'top' is cached, declare it useful to preserve cached node
 344   if( cached_top_node() ) { useful.push(cached_top_node()); }
 345 
 346   // Push all useful nodes onto the list, breadthfirst
 347   for( uint next = 0; next < useful.size(); ++next ) {
 348     assert( next < unique(), "Unique useful nodes < total nodes");
 349     Node *n  = useful.at(next);
 350     uint max = n->len();
 351     for( uint i = 0; i < max; ++i ) {
 352       Node *m = n->in(i);
 353       if (not_a_node(m))  continue;
 354       useful.push(m);
 355     }
 356   }
 357 }
 358 
 359 // Update dead_node_list with any missing dead nodes using useful
 360 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 361 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 362   uint max_idx = unique();
 363   VectorSet& useful_node_set = useful.member_set();
 364 
 365   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 366     // If node with index node_idx is not in useful set,
 367     // mark it as dead in dead node list.
 368     if (! useful_node_set.test(node_idx) ) {
 369       record_dead_node(node_idx);
 370     }
 371   }
 372 }
 373 
 374 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 375   int shift = 0;
 376   for (int i = 0; i < inlines->length(); i++) {
 377     CallGenerator* cg = inlines->at(i);
 378     CallNode* call = cg->call_node();
 379     if (shift > 0) {
 380       inlines->at_put(i-shift, cg);
 381     }
 382     if (!useful.member(call)) {
 383       shift++;
 384     }
 385   }
 386   inlines->trunc_to(inlines->length()-shift);
 387 }
 388 
 389 // Disconnect all useless nodes by disconnecting those at the boundary.
 390 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 391   uint next = 0;
 392   while (next < useful.size()) {
 393     Node *n = useful.at(next++);
 394     // Use raw traversal of out edges since this code removes out edges
 395     int max = n->outcnt();
 396     for (int j = 0; j < max; ++j) {
 397       Node* child = n->raw_out(j);
 398       if (! useful.member(child)) {
 399         assert(!child->is_top() || child != top(),
 400                "If top is cached in Compile object it is in useful list");
 401         // Only need to remove this out-edge to the useless node
 402         n->raw_del_out(j);
 403         --j;
 404         --max;
 405       }
 406     }
 407     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 408       record_for_igvn(n->unique_out());
 409     }
 410   }
 411   // Remove useless macro and predicate opaq nodes
 412   for (int i = C->macro_count()-1; i >= 0; i--) {
 413     Node* n = C->macro_node(i);
 414     if (!useful.member(n)) {
 415       remove_macro_node(n);
 416     }
 417   }
 418   // Remove useless expensive node
 419   for (int i = C->expensive_count()-1; i >= 0; i--) {
 420     Node* n = C->expensive_node(i);
 421     if (!useful.member(n)) {
 422       remove_expensive_node(n);
 423     }
 424   }
 425   // clean up the late inline lists
 426   remove_useless_late_inlines(&_string_late_inlines, useful);
 427   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 428   remove_useless_late_inlines(&_late_inlines, useful);
 429   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 430 }
 431 
 432 //------------------------------frame_size_in_words-----------------------------
 433 // frame_slots in units of words
 434 int Compile::frame_size_in_words() const {
 435   // shift is 0 in LP32 and 1 in LP64
 436   const int shift = (LogBytesPerWord - LogBytesPerInt);
 437   int words = _frame_slots >> shift;
 438   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 439   return words;
 440 }
 441 
 442 // ============================================================================
 443 //------------------------------CompileWrapper---------------------------------
 444 class CompileWrapper : public StackObj {
 445   Compile *const _compile;
 446  public:
 447   CompileWrapper(Compile* compile);
 448 
 449   ~CompileWrapper();
 450 };
 451 
 452 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 453   // the Compile* pointer is stored in the current ciEnv:
 454   ciEnv* env = compile->env();
 455   assert(env == ciEnv::current(), "must already be a ciEnv active");
 456   assert(env->compiler_data() == NULL, "compile already active?");
 457   env->set_compiler_data(compile);
 458   assert(compile == Compile::current(), "sanity");
 459 
 460   compile->set_type_dict(NULL);
 461   compile->set_type_hwm(NULL);
 462   compile->set_type_last_size(0);
 463   compile->set_last_tf(NULL, NULL);
 464   compile->set_indexSet_arena(NULL);
 465   compile->set_indexSet_free_block_list(NULL);
 466   compile->init_type_arena();
 467   Type::Initialize(compile);
 468   _compile->set_scratch_buffer_blob(NULL);
 469   _compile->begin_method();
 470 }
 471 CompileWrapper::~CompileWrapper() {
 472   _compile->end_method();
 473   if (_compile->scratch_buffer_blob() != NULL)
 474     BufferBlob::free(_compile->scratch_buffer_blob());
 475   _compile->env()->set_compiler_data(NULL);
 476 }
 477 
 478 
 479 //----------------------------print_compile_messages---------------------------
 480 void Compile::print_compile_messages() {
 481 #ifndef PRODUCT
 482   // Check if recompiling
 483   if (_subsume_loads == false && PrintOpto) {
 484     // Recompiling without allowing machine instructions to subsume loads
 485     tty->print_cr("*********************************************************");
 486     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 487     tty->print_cr("*********************************************************");
 488   }
 489   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 490     // Recompiling without escape analysis
 491     tty->print_cr("*********************************************************");
 492     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 493     tty->print_cr("*********************************************************");
 494   }
 495   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 496     // Recompiling without boxing elimination
 497     tty->print_cr("*********************************************************");
 498     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 499     tty->print_cr("*********************************************************");
 500   }
 501   if (env()->break_at_compile()) {
 502     // Open the debugger when compiling this method.
 503     tty->print("### Breaking when compiling: ");
 504     method()->print_short_name();
 505     tty->cr();
 506     BREAKPOINT;
 507   }
 508 
 509   if( PrintOpto ) {
 510     if (is_osr_compilation()) {
 511       tty->print("[OSR]%3d", _compile_id);
 512     } else {
 513       tty->print("%3d", _compile_id);
 514     }
 515   }
 516 #endif
 517 }
 518 
 519 
 520 //-----------------------init_scratch_buffer_blob------------------------------
 521 // Construct a temporary BufferBlob and cache it for this compile.
 522 void Compile::init_scratch_buffer_blob(int const_size) {
 523   // If there is already a scratch buffer blob allocated and the
 524   // constant section is big enough, use it.  Otherwise free the
 525   // current and allocate a new one.
 526   BufferBlob* blob = scratch_buffer_blob();
 527   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 528     // Use the current blob.
 529   } else {
 530     if (blob != NULL) {
 531       BufferBlob::free(blob);
 532     }
 533 
 534     ResourceMark rm;
 535     _scratch_const_size = const_size;
 536     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 537     blob = BufferBlob::create("Compile::scratch_buffer", size);
 538     // Record the buffer blob for next time.
 539     set_scratch_buffer_blob(blob);
 540     // Have we run out of code space?
 541     if (scratch_buffer_blob() == NULL) {
 542       // Let CompilerBroker disable further compilations.
 543       record_failure("Not enough space for scratch buffer in CodeCache");
 544       return;
 545     }
 546   }
 547 
 548   // Initialize the relocation buffers
 549   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 550   set_scratch_locs_memory(locs_buf);
 551 }
 552 
 553 
 554 //-----------------------scratch_emit_size-------------------------------------
 555 // Helper function that computes size by emitting code
 556 uint Compile::scratch_emit_size(const Node* n) {
 557   // Start scratch_emit_size section.
 558   set_in_scratch_emit_size(true);
 559 
 560   // Emit into a trash buffer and count bytes emitted.
 561   // This is a pretty expensive way to compute a size,
 562   // but it works well enough if seldom used.
 563   // All common fixed-size instructions are given a size
 564   // method by the AD file.
 565   // Note that the scratch buffer blob and locs memory are
 566   // allocated at the beginning of the compile task, and
 567   // may be shared by several calls to scratch_emit_size.
 568   // The allocation of the scratch buffer blob is particularly
 569   // expensive, since it has to grab the code cache lock.
 570   BufferBlob* blob = this->scratch_buffer_blob();
 571   assert(blob != NULL, "Initialize BufferBlob at start");
 572   assert(blob->size() > MAX_inst_size, "sanity");
 573   relocInfo* locs_buf = scratch_locs_memory();
 574   address blob_begin = blob->content_begin();
 575   address blob_end   = (address)locs_buf;
 576   assert(blob->content_contains(blob_end), "sanity");
 577   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 578   buf.initialize_consts_size(_scratch_const_size);
 579   buf.initialize_stubs_size(MAX_stubs_size);
 580   assert(locs_buf != NULL, "sanity");
 581   int lsize = MAX_locs_size / 3;
 582   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 583   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 584   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 585 
 586   // Do the emission.
 587 
 588   Label fakeL; // Fake label for branch instructions.
 589   Label*   saveL = NULL;
 590   uint save_bnum = 0;
 591   bool is_branch = n->is_MachBranch();
 592   if (is_branch) {
 593     MacroAssembler masm(&buf);
 594     masm.bind(fakeL);
 595     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 596     n->as_MachBranch()->label_set(&fakeL, 0);
 597   }
 598   n->emit(buf, this->regalloc());
 599   if (is_branch) // Restore label.
 600     n->as_MachBranch()->label_set(saveL, save_bnum);
 601 
 602   // End scratch_emit_size section.
 603   set_in_scratch_emit_size(false);
 604 
 605   return buf.insts_size();
 606 }
 607 
 608 
 609 // ============================================================================
 610 //------------------------------Compile standard-------------------------------
 611 debug_only( int Compile::_debug_idx = 100000; )
 612 
 613 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 614 // the continuation bci for on stack replacement.
 615 
 616 
 617 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 618                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 619                 : Phase(Compiler),
 620                   _env(ci_env),
 621                   _log(ci_env->log()),
 622                   _compile_id(ci_env->compile_id()),
 623                   _save_argument_registers(false),
 624                   _stub_name(NULL),
 625                   _stub_function(NULL),
 626                   _stub_entry_point(NULL),
 627                   _method(target),
 628                   _entry_bci(osr_bci),
 629                   _initial_gvn(NULL),
 630                   _for_igvn(NULL),
 631                   _warm_calls(NULL),
 632                   _subsume_loads(subsume_loads),
 633                   _do_escape_analysis(do_escape_analysis),
 634                   _eliminate_boxing(eliminate_boxing),
 635                   _failure_reason(NULL),
 636                   _code_buffer("Compile::Fill_buffer"),
 637                   _orig_pc_slot(0),
 638                   _orig_pc_slot_offset_in_bytes(0),
 639                   _has_method_handle_invokes(false),
 640                   _mach_constant_base_node(NULL),
 641                   _node_bundling_limit(0),
 642                   _node_bundling_base(NULL),
 643                   _java_calls(0),
 644                   _inner_loops(0),
 645                   _scratch_const_size(-1),
 646                   _in_scratch_emit_size(false),
 647                   _dead_node_list(comp_arena()),
 648                   _dead_node_count(0),
 649 #ifndef PRODUCT
 650                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 651                   _in_dump_cnt(0),
 652                   _printer(IdealGraphPrinter::printer()),
 653 #endif
 654                   _congraph(NULL),
 655                   _replay_inline_data(NULL),
 656                   _late_inlines(comp_arena(), 2, 0, NULL),
 657                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 658                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 659                   _late_inlines_pos(0),
 660                   _number_of_mh_late_inlines(0),
 661                   _inlining_progress(false),
 662                   _inlining_incrementally(false),
 663                   _print_inlining_list(NULL),
 664                   _print_inlining_idx(0),
 665                   _preserve_jvm_state(0) {
 666   C = this;
 667 
 668   CompileWrapper cw(this);
 669 #ifndef PRODUCT
 670   if (TimeCompiler2) {
 671     tty->print(" ");
 672     target->holder()->name()->print();
 673     tty->print(".");
 674     target->print_short_name();
 675     tty->print("  ");
 676   }
 677   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 678   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 679   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 680   if (!print_opto_assembly) {
 681     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 682     if (print_assembly && !Disassembler::can_decode()) {
 683       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 684       print_opto_assembly = true;
 685     }
 686   }
 687   set_print_assembly(print_opto_assembly);
 688   set_parsed_irreducible_loop(false);
 689 
 690   if (method()->has_option("ReplayInline")) {
 691     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 692   }
 693 #endif
 694   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 695   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 696 
 697   if (ProfileTraps) {
 698     // Make sure the method being compiled gets its own MDO,
 699     // so we can at least track the decompile_count().
 700     method()->ensure_method_data();
 701   }
 702 
 703   Init(::AliasLevel);
 704 
 705 
 706   print_compile_messages();
 707 
 708   _ilt = InlineTree::build_inline_tree_root();
 709 
 710   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 711   assert(num_alias_types() >= AliasIdxRaw, "");
 712 
 713 #define MINIMUM_NODE_HASH  1023
 714   // Node list that Iterative GVN will start with
 715   Unique_Node_List for_igvn(comp_arena());
 716   set_for_igvn(&for_igvn);
 717 
 718   // GVN that will be run immediately on new nodes
 719   uint estimated_size = method()->code_size()*4+64;
 720   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 721   PhaseGVN gvn(node_arena(), estimated_size);
 722   set_initial_gvn(&gvn);
 723 
 724   if (print_inlining() || print_intrinsics()) {
 725     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 726   }
 727   { // Scope for timing the parser
 728     TracePhase t3("parse", &_t_parser, true);
 729 
 730     // Put top into the hash table ASAP.
 731     initial_gvn()->transform_no_reclaim(top());
 732 
 733     // Set up tf(), start(), and find a CallGenerator.
 734     CallGenerator* cg = NULL;
 735     if (is_osr_compilation()) {
 736       const TypeTuple *domain = StartOSRNode::osr_domain();
 737       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 738       init_tf(TypeFunc::make(domain, range));
 739       StartNode* s = new (this) StartOSRNode(root(), domain);
 740       initial_gvn()->set_type_bottom(s);
 741       init_start(s);
 742       cg = CallGenerator::for_osr(method(), entry_bci());
 743     } else {
 744       // Normal case.
 745       init_tf(TypeFunc::make(method()));
 746       StartNode* s = new (this) StartNode(root(), tf()->domain());
 747       initial_gvn()->set_type_bottom(s);
 748       init_start(s);
 749       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 750         // With java.lang.ref.reference.get() we must go through the
 751         // intrinsic when G1 is enabled - even when get() is the root
 752         // method of the compile - so that, if necessary, the value in
 753         // the referent field of the reference object gets recorded by
 754         // the pre-barrier code.
 755         // Specifically, if G1 is enabled, the value in the referent
 756         // field is recorded by the G1 SATB pre barrier. This will
 757         // result in the referent being marked live and the reference
 758         // object removed from the list of discovered references during
 759         // reference processing.
 760         cg = find_intrinsic(method(), false);
 761       }
 762       if (cg == NULL) {
 763         float past_uses = method()->interpreter_invocation_count();
 764         float expected_uses = past_uses;
 765         cg = CallGenerator::for_inline(method(), expected_uses);
 766       }
 767     }
 768     if (failing())  return;
 769     if (cg == NULL) {
 770       record_method_not_compilable_all_tiers("cannot parse method");
 771       return;
 772     }
 773     JVMState* jvms = build_start_state(start(), tf());
 774     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 775       record_method_not_compilable("method parse failed");
 776       return;
 777     }
 778     GraphKit kit(jvms);
 779 
 780     if (!kit.stopped()) {
 781       // Accept return values, and transfer control we know not where.
 782       // This is done by a special, unique ReturnNode bound to root.
 783       return_values(kit.jvms());
 784     }
 785 
 786     if (kit.has_exceptions()) {
 787       // Any exceptions that escape from this call must be rethrown
 788       // to whatever caller is dynamically above us on the stack.
 789       // This is done by a special, unique RethrowNode bound to root.
 790       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 791     }
 792 
 793     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 794 
 795     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 796       inline_string_calls(true);
 797     }
 798 
 799     if (failing())  return;
 800 
 801     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 802 
 803     // Remove clutter produced by parsing.
 804     if (!failing()) {
 805       ResourceMark rm;
 806       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 807     }
 808   }
 809 
 810   // Note:  Large methods are capped off in do_one_bytecode().
 811   if (failing())  return;
 812 
 813   // After parsing, node notes are no longer automagic.
 814   // They must be propagated by register_new_node_with_optimizer(),
 815   // clone(), or the like.
 816   set_default_node_notes(NULL);
 817 
 818   for (;;) {
 819     int successes = Inline_Warm();
 820     if (failing())  return;
 821     if (successes == 0)  break;
 822   }
 823 
 824   // Drain the list.
 825   Finish_Warm();
 826 #ifndef PRODUCT
 827   if (_printer) {
 828     _printer->print_inlining(this);
 829   }
 830 #endif
 831 
 832   if (failing())  return;
 833   NOT_PRODUCT( verify_graph_edges(); )
 834 
 835   // Now optimize
 836   Optimize();
 837   if (failing())  return;
 838   NOT_PRODUCT( verify_graph_edges(); )
 839 
 840 #ifndef PRODUCT
 841   if (PrintIdeal) {
 842     ttyLocker ttyl;  // keep the following output all in one block
 843     // This output goes directly to the tty, not the compiler log.
 844     // To enable tools to match it up with the compilation activity,
 845     // be sure to tag this tty output with the compile ID.
 846     if (xtty != NULL) {
 847       xtty->head("ideal compile_id='%d'%s", compile_id(),
 848                  is_osr_compilation()    ? " compile_kind='osr'" :
 849                  "");
 850     }
 851     root()->dump(9999);
 852     if (xtty != NULL) {
 853       xtty->tail("ideal");
 854     }
 855   }
 856 #endif
 857 
 858   NOT_PRODUCT( verify_barriers(); )
 859 
 860   // Dump compilation data to replay it.
 861   if (method()->has_option("DumpReplay")) {
 862     env()->dump_replay_data(_compile_id);
 863   }
 864   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 865     env()->dump_inline_data(_compile_id);
 866   }
 867 
 868   // Now that we know the size of all the monitors we can add a fixed slot
 869   // for the original deopt pc.
 870 
 871   _orig_pc_slot =  fixed_slots();
 872   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 873   set_fixed_slots(next_slot);
 874 
 875   // Compute when to use implicit null checks. Used by matching trap based
 876   // nodes and NullCheck optimization.
 877   set_allowed_deopt_reasons();
 878 
 879   // Now generate code
 880   Code_Gen();
 881   if (failing())  return;
 882 
 883   // Check if we want to skip execution of all compiled code.
 884   {
 885 #ifndef PRODUCT
 886     if (OptoNoExecute) {
 887       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 888       return;
 889     }
 890     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 891 #endif
 892 
 893     if (is_osr_compilation()) {
 894       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 895       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 896     } else {
 897       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 898       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 899     }
 900 
 901     env()->register_method(_method, _entry_bci,
 902                            &_code_offsets,
 903                            _orig_pc_slot_offset_in_bytes,
 904                            code_buffer(),
 905                            frame_size_in_words(), _oop_map_set,
 906                            &_handler_table, &_inc_table,
 907                            compiler,
 908                            env()->comp_level(),
 909                            has_unsafe_access(),
 910                            SharedRuntime::is_wide_vector(max_vector_size())
 911                            );
 912 
 913     if (log() != NULL) // Print code cache state into compiler log
 914       log()->code_cache_state();
 915   }
 916 }
 917 
 918 //------------------------------Compile----------------------------------------
 919 // Compile a runtime stub
 920 Compile::Compile( ciEnv* ci_env,
 921                   TypeFunc_generator generator,
 922                   address stub_function,
 923                   const char *stub_name,
 924                   int is_fancy_jump,
 925                   bool pass_tls,
 926                   bool save_arg_registers,
 927                   bool return_pc )
 928   : Phase(Compiler),
 929     _env(ci_env),
 930     _log(ci_env->log()),
 931     _compile_id(0),
 932     _save_argument_registers(save_arg_registers),
 933     _method(NULL),
 934     _stub_name(stub_name),
 935     _stub_function(stub_function),
 936     _stub_entry_point(NULL),
 937     _entry_bci(InvocationEntryBci),
 938     _initial_gvn(NULL),
 939     _for_igvn(NULL),
 940     _warm_calls(NULL),
 941     _orig_pc_slot(0),
 942     _orig_pc_slot_offset_in_bytes(0),
 943     _subsume_loads(true),
 944     _do_escape_analysis(false),
 945     _eliminate_boxing(false),
 946     _failure_reason(NULL),
 947     _code_buffer("Compile::Fill_buffer"),
 948     _has_method_handle_invokes(false),
 949     _mach_constant_base_node(NULL),
 950     _node_bundling_limit(0),
 951     _node_bundling_base(NULL),
 952     _java_calls(0),
 953     _inner_loops(0),
 954 #ifndef PRODUCT
 955     _trace_opto_output(TraceOptoOutput),
 956     _in_dump_cnt(0),
 957     _printer(NULL),
 958 #endif
 959     _dead_node_list(comp_arena()),
 960     _dead_node_count(0),
 961     _congraph(NULL),
 962     _replay_inline_data(NULL),
 963     _number_of_mh_late_inlines(0),
 964     _inlining_progress(false),
 965     _inlining_incrementally(false),
 966     _print_inlining_list(NULL),
 967     _print_inlining_idx(0),
 968     _preserve_jvm_state(0),
 969     _allowed_reasons(0) {
 970   C = this;
 971 
 972 #ifndef PRODUCT
 973   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 974   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 975   set_print_assembly(PrintFrameConverterAssembly);
 976   set_parsed_irreducible_loop(false);
 977 #endif
 978   CompileWrapper cw(this);
 979   Init(/*AliasLevel=*/ 0);
 980   init_tf((*generator)());
 981 
 982   {
 983     // The following is a dummy for the sake of GraphKit::gen_stub
 984     Unique_Node_List for_igvn(comp_arena());
 985     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 986     PhaseGVN gvn(Thread::current()->resource_area(),255);
 987     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 988     gvn.transform_no_reclaim(top());
 989 
 990     GraphKit kit;
 991     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 992   }
 993 
 994   NOT_PRODUCT( verify_graph_edges(); )
 995   Code_Gen();
 996   if (failing())  return;
 997 
 998 
 999   // Entry point will be accessed using compile->stub_entry_point();
1000   if (code_buffer() == NULL) {
1001     Matcher::soft_match_failure();
1002   } else {
1003     if (PrintAssembly && (WizardMode || Verbose))
1004       tty->print_cr("### Stub::%s", stub_name);
1005 
1006     if (!failing()) {
1007       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1008 
1009       // Make the NMethod
1010       // For now we mark the frame as never safe for profile stackwalking
1011       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1012                                                       code_buffer(),
1013                                                       CodeOffsets::frame_never_safe,
1014                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1015                                                       frame_size_in_words(),
1016                                                       _oop_map_set,
1017                                                       save_arg_registers);
1018       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1019 
1020       _stub_entry_point = rs->entry_point();
1021     }
1022   }
1023 }
1024 
1025 //------------------------------Init-------------------------------------------
1026 // Prepare for a single compilation
1027 void Compile::Init(int aliaslevel) {
1028   _unique  = 0;
1029   _regalloc = NULL;
1030 
1031   _tf      = NULL;  // filled in later
1032   _top     = NULL;  // cached later
1033   _matcher = NULL;  // filled in later
1034   _cfg     = NULL;  // filled in later
1035 
1036   set_24_bit_selection_and_mode(Use24BitFP, false);
1037 
1038   _node_note_array = NULL;
1039   _default_node_notes = NULL;
1040 
1041   _immutable_memory = NULL; // filled in at first inquiry
1042 
1043   // Globally visible Nodes
1044   // First set TOP to NULL to give safe behavior during creation of RootNode
1045   set_cached_top_node(NULL);
1046   set_root(new (this) RootNode());
1047   // Now that you have a Root to point to, create the real TOP
1048   set_cached_top_node( new (this) ConNode(Type::TOP) );
1049   set_recent_alloc(NULL, NULL);
1050 
1051   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1052   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1053   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1054   env()->set_dependencies(new Dependencies(env()));
1055 
1056   _fixed_slots = 0;
1057   set_has_split_ifs(false);
1058   set_has_loops(has_method() && method()->has_loops()); // first approximation
1059   set_has_stringbuilder(false);
1060   set_has_boxed_value(false);
1061   _trap_can_recompile = false;  // no traps emitted yet
1062   _major_progress = true; // start out assuming good things will happen
1063   set_has_unsafe_access(false);
1064   set_max_vector_size(0);
1065   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1066   set_decompile_count(0);
1067 
1068   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1069   set_num_loop_opts(LoopOptsCount);
1070   set_do_inlining(Inline);
1071   set_max_inline_size(MaxInlineSize);
1072   set_freq_inline_size(FreqInlineSize);
1073   set_do_scheduling(OptoScheduling);
1074   set_do_count_invocations(false);
1075   set_do_method_data_update(false);
1076 
1077   if (debug_info()->recording_non_safepoints()) {
1078     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1079                         (comp_arena(), 8, 0, NULL));
1080     set_default_node_notes(Node_Notes::make(this));
1081   }
1082 
1083   // // -- Initialize types before each compile --
1084   // // Update cached type information
1085   // if( _method && _method->constants() )
1086   //   Type::update_loaded_types(_method, _method->constants());
1087 
1088   // Init alias_type map.
1089   if (!_do_escape_analysis && aliaslevel == 3)
1090     aliaslevel = 2;  // No unique types without escape analysis
1091   _AliasLevel = aliaslevel;
1092   const int grow_ats = 16;
1093   _max_alias_types = grow_ats;
1094   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1095   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1096   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1097   {
1098     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1099   }
1100   // Initialize the first few types.
1101   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1102   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1103   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1104   _num_alias_types = AliasIdxRaw+1;
1105   // Zero out the alias type cache.
1106   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1107   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1108   probe_alias_cache(NULL)->_index = AliasIdxTop;
1109 
1110   _intrinsics = NULL;
1111   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1112   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1113   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1114   register_library_intrinsics();
1115 }
1116 
1117 //---------------------------init_start----------------------------------------
1118 // Install the StartNode on this compile object.
1119 void Compile::init_start(StartNode* s) {
1120   if (failing())
1121     return; // already failing
1122   assert(s == start(), "");
1123 }
1124 
1125 StartNode* Compile::start() const {
1126   assert(!failing(), "");
1127   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1128     Node* start = root()->fast_out(i);
1129     if( start->is_Start() )
1130       return start->as_Start();
1131   }
1132   ShouldNotReachHere();
1133   return NULL;
1134 }
1135 
1136 //-------------------------------immutable_memory-------------------------------------
1137 // Access immutable memory
1138 Node* Compile::immutable_memory() {
1139   if (_immutable_memory != NULL) {
1140     return _immutable_memory;
1141   }
1142   StartNode* s = start();
1143   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1144     Node *p = s->fast_out(i);
1145     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1146       _immutable_memory = p;
1147       return _immutable_memory;
1148     }
1149   }
1150   ShouldNotReachHere();
1151   return NULL;
1152 }
1153 
1154 //----------------------set_cached_top_node------------------------------------
1155 // Install the cached top node, and make sure Node::is_top works correctly.
1156 void Compile::set_cached_top_node(Node* tn) {
1157   if (tn != NULL)  verify_top(tn);
1158   Node* old_top = _top;
1159   _top = tn;
1160   // Calling Node::setup_is_top allows the nodes the chance to adjust
1161   // their _out arrays.
1162   if (_top != NULL)     _top->setup_is_top();
1163   if (old_top != NULL)  old_top->setup_is_top();
1164   assert(_top == NULL || top()->is_top(), "");
1165 }
1166 
1167 #ifdef ASSERT
1168 uint Compile::count_live_nodes_by_graph_walk() {
1169   Unique_Node_List useful(comp_arena());
1170   // Get useful node list by walking the graph.
1171   identify_useful_nodes(useful);
1172   return useful.size();
1173 }
1174 
1175 void Compile::print_missing_nodes() {
1176 
1177   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1178   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1179     return;
1180   }
1181 
1182   // This is an expensive function. It is executed only when the user
1183   // specifies VerifyIdealNodeCount option or otherwise knows the
1184   // additional work that needs to be done to identify reachable nodes
1185   // by walking the flow graph and find the missing ones using
1186   // _dead_node_list.
1187 
1188   Unique_Node_List useful(comp_arena());
1189   // Get useful node list by walking the graph.
1190   identify_useful_nodes(useful);
1191 
1192   uint l_nodes = C->live_nodes();
1193   uint l_nodes_by_walk = useful.size();
1194 
1195   if (l_nodes != l_nodes_by_walk) {
1196     if (_log != NULL) {
1197       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1198       _log->stamp();
1199       _log->end_head();
1200     }
1201     VectorSet& useful_member_set = useful.member_set();
1202     int last_idx = l_nodes_by_walk;
1203     for (int i = 0; i < last_idx; i++) {
1204       if (useful_member_set.test(i)) {
1205         if (_dead_node_list.test(i)) {
1206           if (_log != NULL) {
1207             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1208           }
1209           if (PrintIdealNodeCount) {
1210             // Print the log message to tty
1211               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1212               useful.at(i)->dump();
1213           }
1214         }
1215       }
1216       else if (! _dead_node_list.test(i)) {
1217         if (_log != NULL) {
1218           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1219         }
1220         if (PrintIdealNodeCount) {
1221           // Print the log message to tty
1222           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1223         }
1224       }
1225     }
1226     if (_log != NULL) {
1227       _log->tail("mismatched_nodes");
1228     }
1229   }
1230 }
1231 #endif
1232 
1233 #ifndef PRODUCT
1234 void Compile::verify_top(Node* tn) const {
1235   if (tn != NULL) {
1236     assert(tn->is_Con(), "top node must be a constant");
1237     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1238     assert(tn->in(0) != NULL, "must have live top node");
1239   }
1240 }
1241 #endif
1242 
1243 
1244 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1245 
1246 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1247   guarantee(arr != NULL, "");
1248   int num_blocks = arr->length();
1249   if (grow_by < num_blocks)  grow_by = num_blocks;
1250   int num_notes = grow_by * _node_notes_block_size;
1251   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1252   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1253   while (num_notes > 0) {
1254     arr->append(notes);
1255     notes     += _node_notes_block_size;
1256     num_notes -= _node_notes_block_size;
1257   }
1258   assert(num_notes == 0, "exact multiple, please");
1259 }
1260 
1261 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1262   if (source == NULL || dest == NULL)  return false;
1263 
1264   if (dest->is_Con())
1265     return false;               // Do not push debug info onto constants.
1266 
1267 #ifdef ASSERT
1268   // Leave a bread crumb trail pointing to the original node:
1269   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1270     dest->set_debug_orig(source);
1271   }
1272 #endif
1273 
1274   if (node_note_array() == NULL)
1275     return false;               // Not collecting any notes now.
1276 
1277   // This is a copy onto a pre-existing node, which may already have notes.
1278   // If both nodes have notes, do not overwrite any pre-existing notes.
1279   Node_Notes* source_notes = node_notes_at(source->_idx);
1280   if (source_notes == NULL || source_notes->is_clear())  return false;
1281   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1282   if (dest_notes == NULL || dest_notes->is_clear()) {
1283     return set_node_notes_at(dest->_idx, source_notes);
1284   }
1285 
1286   Node_Notes merged_notes = (*source_notes);
1287   // The order of operations here ensures that dest notes will win...
1288   merged_notes.update_from(dest_notes);
1289   return set_node_notes_at(dest->_idx, &merged_notes);
1290 }
1291 
1292 
1293 //--------------------------allow_range_check_smearing-------------------------
1294 // Gating condition for coalescing similar range checks.
1295 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1296 // single covering check that is at least as strong as any of them.
1297 // If the optimization succeeds, the simplified (strengthened) range check
1298 // will always succeed.  If it fails, we will deopt, and then give up
1299 // on the optimization.
1300 bool Compile::allow_range_check_smearing() const {
1301   // If this method has already thrown a range-check,
1302   // assume it was because we already tried range smearing
1303   // and it failed.
1304   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1305   return !already_trapped;
1306 }
1307 
1308 
1309 //------------------------------flatten_alias_type-----------------------------
1310 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1311   int offset = tj->offset();
1312   TypePtr::PTR ptr = tj->ptr();
1313 
1314   // Known instance (scalarizable allocation) alias only with itself.
1315   bool is_known_inst = tj->isa_oopptr() != NULL &&
1316                        tj->is_oopptr()->is_known_instance();
1317 
1318   // Process weird unsafe references.
1319   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1320     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1321     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1322     tj = TypeOopPtr::BOTTOM;
1323     ptr = tj->ptr();
1324     offset = tj->offset();
1325   }
1326 
1327   // Array pointers need some flattening
1328   const TypeAryPtr *ta = tj->isa_aryptr();
1329   if (ta && ta->is_stable()) {
1330     // Erase stability property for alias analysis.
1331     tj = ta = ta->cast_to_stable(false);
1332   }
1333   if( ta && is_known_inst ) {
1334     if ( offset != Type::OffsetBot &&
1335          offset > arrayOopDesc::length_offset_in_bytes() ) {
1336       offset = Type::OffsetBot; // Flatten constant access into array body only
1337       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1338     }
1339   } else if( ta && _AliasLevel >= 2 ) {
1340     // For arrays indexed by constant indices, we flatten the alias
1341     // space to include all of the array body.  Only the header, klass
1342     // and array length can be accessed un-aliased.
1343     if( offset != Type::OffsetBot ) {
1344       if( ta->const_oop() ) { // MethodData* or Method*
1345         offset = Type::OffsetBot;   // Flatten constant access into array body
1346         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1347       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1348         // range is OK as-is.
1349         tj = ta = TypeAryPtr::RANGE;
1350       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1351         tj = TypeInstPtr::KLASS; // all klass loads look alike
1352         ta = TypeAryPtr::RANGE; // generic ignored junk
1353         ptr = TypePtr::BotPTR;
1354       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1355         tj = TypeInstPtr::MARK;
1356         ta = TypeAryPtr::RANGE; // generic ignored junk
1357         ptr = TypePtr::BotPTR;
1358       } else {                  // Random constant offset into array body
1359         offset = Type::OffsetBot;   // Flatten constant access into array body
1360         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1361       }
1362     }
1363     // Arrays of fixed size alias with arrays of unknown size.
1364     if (ta->size() != TypeInt::POS) {
1365       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1366       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1367     }
1368     // Arrays of known objects become arrays of unknown objects.
1369     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1370       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1371       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1372     }
1373     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1374       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1375       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1376     }
1377     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1378     // cannot be distinguished by bytecode alone.
1379     if (ta->elem() == TypeInt::BOOL) {
1380       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1381       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1382       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1383     }
1384     // During the 2nd round of IterGVN, NotNull castings are removed.
1385     // Make sure the Bottom and NotNull variants alias the same.
1386     // Also, make sure exact and non-exact variants alias the same.
1387     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1388       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1389     }
1390   }
1391 
1392   // Oop pointers need some flattening
1393   const TypeInstPtr *to = tj->isa_instptr();
1394   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1395     ciInstanceKlass *k = to->klass()->as_instance_klass();
1396     if( ptr == TypePtr::Constant ) {
1397       if (to->klass() != ciEnv::current()->Class_klass() ||
1398           offset < k->size_helper() * wordSize) {
1399         // No constant oop pointers (such as Strings); they alias with
1400         // unknown strings.
1401         assert(!is_known_inst, "not scalarizable allocation");
1402         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1403       }
1404     } else if( is_known_inst ) {
1405       tj = to; // Keep NotNull and klass_is_exact for instance type
1406     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1407       // During the 2nd round of IterGVN, NotNull castings are removed.
1408       // Make sure the Bottom and NotNull variants alias the same.
1409       // Also, make sure exact and non-exact variants alias the same.
1410       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1411     }
1412     if (to->speculative() != NULL) {
1413       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1414     }
1415     // Canonicalize the holder of this field
1416     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1417       // First handle header references such as a LoadKlassNode, even if the
1418       // object's klass is unloaded at compile time (4965979).
1419       if (!is_known_inst) { // Do it only for non-instance types
1420         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1421       }
1422     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1423       // Static fields are in the space above the normal instance
1424       // fields in the java.lang.Class instance.
1425       if (to->klass() != ciEnv::current()->Class_klass()) {
1426         to = NULL;
1427         tj = TypeOopPtr::BOTTOM;
1428         offset = tj->offset();
1429       }
1430     } else {
1431       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1432       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1433         if( is_known_inst ) {
1434           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1435         } else {
1436           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1437         }
1438       }
1439     }
1440   }
1441 
1442   // Klass pointers to object array klasses need some flattening
1443   const TypeKlassPtr *tk = tj->isa_klassptr();
1444   if( tk ) {
1445     // If we are referencing a field within a Klass, we need
1446     // to assume the worst case of an Object.  Both exact and
1447     // inexact types must flatten to the same alias class so
1448     // use NotNull as the PTR.
1449     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1450 
1451       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1452                                    TypeKlassPtr::OBJECT->klass(),
1453                                    offset);
1454     }
1455 
1456     ciKlass* klass = tk->klass();
1457     if( klass->is_obj_array_klass() ) {
1458       ciKlass* k = TypeAryPtr::OOPS->klass();
1459       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1460         k = TypeInstPtr::BOTTOM->klass();
1461       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1462     }
1463 
1464     // Check for precise loads from the primary supertype array and force them
1465     // to the supertype cache alias index.  Check for generic array loads from
1466     // the primary supertype array and also force them to the supertype cache
1467     // alias index.  Since the same load can reach both, we need to merge
1468     // these 2 disparate memories into the same alias class.  Since the
1469     // primary supertype array is read-only, there's no chance of confusion
1470     // where we bypass an array load and an array store.
1471     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1472     if (offset == Type::OffsetBot ||
1473         (offset >= primary_supers_offset &&
1474          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1475         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1476       offset = in_bytes(Klass::secondary_super_cache_offset());
1477       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1478     }
1479   }
1480 
1481   // Flatten all Raw pointers together.
1482   if (tj->base() == Type::RawPtr)
1483     tj = TypeRawPtr::BOTTOM;
1484 
1485   if (tj->base() == Type::AnyPtr)
1486     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1487 
1488   // Flatten all to bottom for now
1489   switch( _AliasLevel ) {
1490   case 0:
1491     tj = TypePtr::BOTTOM;
1492     break;
1493   case 1:                       // Flatten to: oop, static, field or array
1494     switch (tj->base()) {
1495     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1496     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1497     case Type::AryPtr:   // do not distinguish arrays at all
1498     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1499     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1500     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1501     default: ShouldNotReachHere();
1502     }
1503     break;
1504   case 2:                       // No collapsing at level 2; keep all splits
1505   case 3:                       // No collapsing at level 3; keep all splits
1506     break;
1507   default:
1508     Unimplemented();
1509   }
1510 
1511   offset = tj->offset();
1512   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1513 
1514   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1515           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1516           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1517           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1518           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1519           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1520           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1521           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1522   assert( tj->ptr() != TypePtr::TopPTR &&
1523           tj->ptr() != TypePtr::AnyNull &&
1524           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1525 //    assert( tj->ptr() != TypePtr::Constant ||
1526 //            tj->base() == Type::RawPtr ||
1527 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1528 
1529   return tj;
1530 }
1531 
1532 void Compile::AliasType::Init(int i, const TypePtr* at) {
1533   _index = i;
1534   _adr_type = at;
1535   _field = NULL;
1536   _element = NULL;
1537   _is_rewritable = true; // default
1538   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1539   if (atoop != NULL && atoop->is_known_instance()) {
1540     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1541     _general_index = Compile::current()->get_alias_index(gt);
1542   } else {
1543     _general_index = 0;
1544   }
1545 }
1546 
1547 //---------------------------------print_on------------------------------------
1548 #ifndef PRODUCT
1549 void Compile::AliasType::print_on(outputStream* st) {
1550   if (index() < 10)
1551         st->print("@ <%d> ", index());
1552   else  st->print("@ <%d>",  index());
1553   st->print(is_rewritable() ? "   " : " RO");
1554   int offset = adr_type()->offset();
1555   if (offset == Type::OffsetBot)
1556         st->print(" +any");
1557   else  st->print(" +%-3d", offset);
1558   st->print(" in ");
1559   adr_type()->dump_on(st);
1560   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1561   if (field() != NULL && tjp) {
1562     if (tjp->klass()  != field()->holder() ||
1563         tjp->offset() != field()->offset_in_bytes()) {
1564       st->print(" != ");
1565       field()->print();
1566       st->print(" ***");
1567     }
1568   }
1569 }
1570 
1571 void print_alias_types() {
1572   Compile* C = Compile::current();
1573   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1574   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1575     C->alias_type(idx)->print_on(tty);
1576     tty->cr();
1577   }
1578 }
1579 #endif
1580 
1581 
1582 //----------------------------probe_alias_cache--------------------------------
1583 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1584   intptr_t key = (intptr_t) adr_type;
1585   key ^= key >> logAliasCacheSize;
1586   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1587 }
1588 
1589 
1590 //-----------------------------grow_alias_types--------------------------------
1591 void Compile::grow_alias_types() {
1592   const int old_ats  = _max_alias_types; // how many before?
1593   const int new_ats  = old_ats;          // how many more?
1594   const int grow_ats = old_ats+new_ats;  // how many now?
1595   _max_alias_types = grow_ats;
1596   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1597   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1598   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1599   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1600 }
1601 
1602 
1603 //--------------------------------find_alias_type------------------------------
1604 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1605   if (_AliasLevel == 0)
1606     return alias_type(AliasIdxBot);
1607 
1608   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1609   if (ace->_adr_type == adr_type) {
1610     return alias_type(ace->_index);
1611   }
1612 
1613   // Handle special cases.
1614   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1615   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1616 
1617   // Do it the slow way.
1618   const TypePtr* flat = flatten_alias_type(adr_type);
1619 
1620 #ifdef ASSERT
1621   assert(flat == flatten_alias_type(flat), "idempotent");
1622   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1623   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1624     const TypeOopPtr* foop = flat->is_oopptr();
1625     // Scalarizable allocations have exact klass always.
1626     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1627     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1628     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1629   }
1630   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1631 #endif
1632 
1633   int idx = AliasIdxTop;
1634   for (int i = 0; i < num_alias_types(); i++) {
1635     if (alias_type(i)->adr_type() == flat) {
1636       idx = i;
1637       break;
1638     }
1639   }
1640 
1641   if (idx == AliasIdxTop) {
1642     if (no_create)  return NULL;
1643     // Grow the array if necessary.
1644     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1645     // Add a new alias type.
1646     idx = _num_alias_types++;
1647     _alias_types[idx]->Init(idx, flat);
1648     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1649     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1650     if (flat->isa_instptr()) {
1651       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1652           && flat->is_instptr()->klass() == env()->Class_klass())
1653         alias_type(idx)->set_rewritable(false);
1654     }
1655     if (flat->isa_aryptr()) {
1656 #ifdef ASSERT
1657       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1658       // (T_BYTE has the weakest alignment and size restrictions...)
1659       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1660 #endif
1661       if (flat->offset() == TypePtr::OffsetBot) {
1662         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1663       }
1664     }
1665     if (flat->isa_klassptr()) {
1666       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1667         alias_type(idx)->set_rewritable(false);
1668       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1669         alias_type(idx)->set_rewritable(false);
1670       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1671         alias_type(idx)->set_rewritable(false);
1672       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1673         alias_type(idx)->set_rewritable(false);
1674     }
1675     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1676     // but the base pointer type is not distinctive enough to identify
1677     // references into JavaThread.)
1678 
1679     // Check for final fields.
1680     const TypeInstPtr* tinst = flat->isa_instptr();
1681     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1682       ciField* field;
1683       if (tinst->const_oop() != NULL &&
1684           tinst->klass() == ciEnv::current()->Class_klass() &&
1685           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1686         // static field
1687         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1688         field = k->get_field_by_offset(tinst->offset(), true);
1689       } else {
1690         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1691         field = k->get_field_by_offset(tinst->offset(), false);
1692       }
1693       assert(field == NULL ||
1694              original_field == NULL ||
1695              (field->holder() == original_field->holder() &&
1696               field->offset() == original_field->offset() &&
1697               field->is_static() == original_field->is_static()), "wrong field?");
1698       // Set field() and is_rewritable() attributes.
1699       if (field != NULL)  alias_type(idx)->set_field(field);
1700     }
1701   }
1702 
1703   // Fill the cache for next time.
1704   ace->_adr_type = adr_type;
1705   ace->_index    = idx;
1706   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1707 
1708   // Might as well try to fill the cache for the flattened version, too.
1709   AliasCacheEntry* face = probe_alias_cache(flat);
1710   if (face->_adr_type == NULL) {
1711     face->_adr_type = flat;
1712     face->_index    = idx;
1713     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1714   }
1715 
1716   return alias_type(idx);
1717 }
1718 
1719 
1720 Compile::AliasType* Compile::alias_type(ciField* field) {
1721   const TypeOopPtr* t;
1722   if (field->is_static())
1723     t = TypeInstPtr::make(field->holder()->java_mirror());
1724   else
1725     t = TypeOopPtr::make_from_klass_raw(field->holder());
1726   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1727   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1728   return atp;
1729 }
1730 
1731 
1732 //------------------------------have_alias_type--------------------------------
1733 bool Compile::have_alias_type(const TypePtr* adr_type) {
1734   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1735   if (ace->_adr_type == adr_type) {
1736     return true;
1737   }
1738 
1739   // Handle special cases.
1740   if (adr_type == NULL)             return true;
1741   if (adr_type == TypePtr::BOTTOM)  return true;
1742 
1743   return find_alias_type(adr_type, true, NULL) != NULL;
1744 }
1745 
1746 //-----------------------------must_alias--------------------------------------
1747 // True if all values of the given address type are in the given alias category.
1748 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1749   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1750   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1751   if (alias_idx == AliasIdxTop)         return false; // the empty category
1752   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1753 
1754   // the only remaining possible overlap is identity
1755   int adr_idx = get_alias_index(adr_type);
1756   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1757   assert(adr_idx == alias_idx ||
1758          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1759           && adr_type                       != TypeOopPtr::BOTTOM),
1760          "should not be testing for overlap with an unsafe pointer");
1761   return adr_idx == alias_idx;
1762 }
1763 
1764 //------------------------------can_alias--------------------------------------
1765 // True if any values of the given address type are in the given alias category.
1766 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1767   if (alias_idx == AliasIdxTop)         return false; // the empty category
1768   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1769   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1770   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1771 
1772   // the only remaining possible overlap is identity
1773   int adr_idx = get_alias_index(adr_type);
1774   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1775   return adr_idx == alias_idx;
1776 }
1777 
1778 
1779 
1780 //---------------------------pop_warm_call-------------------------------------
1781 WarmCallInfo* Compile::pop_warm_call() {
1782   WarmCallInfo* wci = _warm_calls;
1783   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1784   return wci;
1785 }
1786 
1787 //----------------------------Inline_Warm--------------------------------------
1788 int Compile::Inline_Warm() {
1789   // If there is room, try to inline some more warm call sites.
1790   // %%% Do a graph index compaction pass when we think we're out of space?
1791   if (!InlineWarmCalls)  return 0;
1792 
1793   int calls_made_hot = 0;
1794   int room_to_grow   = NodeCountInliningCutoff - unique();
1795   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1796   int amount_grown   = 0;
1797   WarmCallInfo* call;
1798   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1799     int est_size = (int)call->size();
1800     if (est_size > (room_to_grow - amount_grown)) {
1801       // This one won't fit anyway.  Get rid of it.
1802       call->make_cold();
1803       continue;
1804     }
1805     call->make_hot();
1806     calls_made_hot++;
1807     amount_grown   += est_size;
1808     amount_to_grow -= est_size;
1809   }
1810 
1811   if (calls_made_hot > 0)  set_major_progress();
1812   return calls_made_hot;
1813 }
1814 
1815 
1816 //----------------------------Finish_Warm--------------------------------------
1817 void Compile::Finish_Warm() {
1818   if (!InlineWarmCalls)  return;
1819   if (failing())  return;
1820   if (warm_calls() == NULL)  return;
1821 
1822   // Clean up loose ends, if we are out of space for inlining.
1823   WarmCallInfo* call;
1824   while ((call = pop_warm_call()) != NULL) {
1825     call->make_cold();
1826   }
1827 }
1828 
1829 //---------------------cleanup_loop_predicates-----------------------
1830 // Remove the opaque nodes that protect the predicates so that all unused
1831 // checks and uncommon_traps will be eliminated from the ideal graph
1832 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1833   if (predicate_count()==0) return;
1834   for (int i = predicate_count(); i > 0; i--) {
1835     Node * n = predicate_opaque1_node(i-1);
1836     assert(n->Opcode() == Op_Opaque1, "must be");
1837     igvn.replace_node(n, n->in(1));
1838   }
1839   assert(predicate_count()==0, "should be clean!");
1840 }
1841 
1842 // StringOpts and late inlining of string methods
1843 void Compile::inline_string_calls(bool parse_time) {
1844   {
1845     // remove useless nodes to make the usage analysis simpler
1846     ResourceMark rm;
1847     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1848   }
1849 
1850   {
1851     ResourceMark rm;
1852     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1853     PhaseStringOpts pso(initial_gvn(), for_igvn());
1854     print_method(PHASE_AFTER_STRINGOPTS, 3);
1855   }
1856 
1857   // now inline anything that we skipped the first time around
1858   if (!parse_time) {
1859     _late_inlines_pos = _late_inlines.length();
1860   }
1861 
1862   while (_string_late_inlines.length() > 0) {
1863     CallGenerator* cg = _string_late_inlines.pop();
1864     cg->do_late_inline();
1865     if (failing())  return;
1866   }
1867   _string_late_inlines.trunc_to(0);
1868 }
1869 
1870 // Late inlining of boxing methods
1871 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1872   if (_boxing_late_inlines.length() > 0) {
1873     assert(has_boxed_value(), "inconsistent");
1874 
1875     PhaseGVN* gvn = initial_gvn();
1876     set_inlining_incrementally(true);
1877 
1878     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1879     for_igvn()->clear();
1880     gvn->replace_with(&igvn);
1881 
1882     while (_boxing_late_inlines.length() > 0) {
1883       CallGenerator* cg = _boxing_late_inlines.pop();
1884       cg->do_late_inline();
1885       if (failing())  return;
1886     }
1887     _boxing_late_inlines.trunc_to(0);
1888 
1889     {
1890       ResourceMark rm;
1891       PhaseRemoveUseless pru(gvn, for_igvn());
1892     }
1893 
1894     igvn = PhaseIterGVN(gvn);
1895     igvn.optimize();
1896 
1897     set_inlining_progress(false);
1898     set_inlining_incrementally(false);
1899   }
1900 }
1901 
1902 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1903   assert(IncrementalInline, "incremental inlining should be on");
1904   PhaseGVN* gvn = initial_gvn();
1905 
1906   set_inlining_progress(false);
1907   for_igvn()->clear();
1908   gvn->replace_with(&igvn);
1909 
1910   int i = 0;
1911 
1912   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1913     CallGenerator* cg = _late_inlines.at(i);
1914     _late_inlines_pos = i+1;
1915     cg->do_late_inline();
1916     if (failing())  return;
1917   }
1918   int j = 0;
1919   for (; i < _late_inlines.length(); i++, j++) {
1920     _late_inlines.at_put(j, _late_inlines.at(i));
1921   }
1922   _late_inlines.trunc_to(j);
1923 
1924   {
1925     ResourceMark rm;
1926     PhaseRemoveUseless pru(gvn, for_igvn());
1927   }
1928 
1929   igvn = PhaseIterGVN(gvn);
1930 }
1931 
1932 // Perform incremental inlining until bound on number of live nodes is reached
1933 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1934   PhaseGVN* gvn = initial_gvn();
1935 
1936   set_inlining_incrementally(true);
1937   set_inlining_progress(true);
1938   uint low_live_nodes = 0;
1939 
1940   while(inlining_progress() && _late_inlines.length() > 0) {
1941 
1942     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1943       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1944         // PhaseIdealLoop is expensive so we only try it once we are
1945         // out of loop and we only try it again if the previous helped
1946         // got the number of nodes down significantly
1947         PhaseIdealLoop ideal_loop( igvn, false, true );
1948         if (failing())  return;
1949         low_live_nodes = live_nodes();
1950         _major_progress = true;
1951       }
1952 
1953       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1954         break;
1955       }
1956     }
1957 
1958     inline_incrementally_one(igvn);
1959 
1960     if (failing())  return;
1961 
1962     igvn.optimize();
1963 
1964     if (failing())  return;
1965   }
1966 
1967   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1968 
1969   if (_string_late_inlines.length() > 0) {
1970     assert(has_stringbuilder(), "inconsistent");
1971     for_igvn()->clear();
1972     initial_gvn()->replace_with(&igvn);
1973 
1974     inline_string_calls(false);
1975 
1976     if (failing())  return;
1977 
1978     {
1979       ResourceMark rm;
1980       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1981     }
1982 
1983     igvn = PhaseIterGVN(gvn);
1984 
1985     igvn.optimize();
1986   }
1987 
1988   set_inlining_incrementally(false);
1989 }
1990 
1991 
1992 //------------------------------Optimize---------------------------------------
1993 // Given a graph, optimize it.
1994 void Compile::Optimize() {
1995   TracePhase t1("optimizer", &_t_optimizer, true);
1996 
1997 #ifndef PRODUCT
1998   if (env()->break_at_compile()) {
1999     BREAKPOINT;
2000   }
2001 
2002 #endif
2003 
2004   ResourceMark rm;
2005   int          loop_opts_cnt;
2006 
2007   NOT_PRODUCT( verify_graph_edges(); )
2008 
2009   print_method(PHASE_AFTER_PARSING);
2010 
2011  {
2012   // Iterative Global Value Numbering, including ideal transforms
2013   // Initialize IterGVN with types and values from parse-time GVN
2014   PhaseIterGVN igvn(initial_gvn());
2015   {
2016     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2017     igvn.optimize();
2018   }
2019 
2020   print_method(PHASE_ITER_GVN1, 2);
2021 
2022   if (failing())  return;
2023 
2024   {
2025     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2026     inline_incrementally(igvn);
2027   }
2028 
2029   print_method(PHASE_INCREMENTAL_INLINE, 2);
2030 
2031   if (failing())  return;
2032 
2033   if (eliminate_boxing()) {
2034     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2035     // Inline valueOf() methods now.
2036     inline_boxing_calls(igvn);
2037 
2038     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2039 
2040     if (failing())  return;
2041   }
2042 
2043   // Remove the speculative part of types and clean up the graph from
2044   // the extra CastPP nodes whose only purpose is to carry them. Do
2045   // that early so that optimizations are not disrupted by the extra
2046   // CastPP nodes.
2047   remove_speculative_types(igvn);
2048 
2049   // No more new expensive nodes will be added to the list from here
2050   // so keep only the actual candidates for optimizations.
2051   cleanup_expensive_nodes(igvn);
2052 
2053   // Perform escape analysis
2054   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2055     if (has_loops()) {
2056       // Cleanup graph (remove dead nodes).
2057       TracePhase t2("idealLoop", &_t_idealLoop, true);
2058       PhaseIdealLoop ideal_loop( igvn, false, true );
2059       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2060       if (failing())  return;
2061     }
2062     ConnectionGraph::do_analysis(this, &igvn);
2063 
2064     if (failing())  return;
2065 
2066     // Optimize out fields loads from scalar replaceable allocations.
2067     igvn.optimize();
2068     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2069 
2070     if (failing())  return;
2071 
2072     if (congraph() != NULL && macro_count() > 0) {
2073       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2074       PhaseMacroExpand mexp(igvn);
2075       mexp.eliminate_macro_nodes();
2076       igvn.set_delay_transform(false);
2077 
2078       igvn.optimize();
2079       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2080 
2081       if (failing())  return;
2082     }
2083   }
2084 
2085   // Loop transforms on the ideal graph.  Range Check Elimination,
2086   // peeling, unrolling, etc.
2087 
2088   // Set loop opts counter
2089   loop_opts_cnt = num_loop_opts();
2090   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2091     {
2092       TracePhase t2("idealLoop", &_t_idealLoop, true);
2093       PhaseIdealLoop ideal_loop( igvn, true );
2094       loop_opts_cnt--;
2095       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2096       if (failing())  return;
2097     }
2098     // Loop opts pass if partial peeling occurred in previous pass
2099     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2100       TracePhase t3("idealLoop", &_t_idealLoop, true);
2101       PhaseIdealLoop ideal_loop( igvn, false );
2102       loop_opts_cnt--;
2103       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2104       if (failing())  return;
2105     }
2106     // Loop opts pass for loop-unrolling before CCP
2107     if(major_progress() && (loop_opts_cnt > 0)) {
2108       TracePhase t4("idealLoop", &_t_idealLoop, true);
2109       PhaseIdealLoop ideal_loop( igvn, false );
2110       loop_opts_cnt--;
2111       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2112     }
2113     if (!failing()) {
2114       // Verify that last round of loop opts produced a valid graph
2115       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2116       PhaseIdealLoop::verify(igvn);
2117     }
2118   }
2119   if (failing())  return;
2120 
2121   // Conditional Constant Propagation;
2122   PhaseCCP ccp( &igvn );
2123   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2124   {
2125     TracePhase t2("ccp", &_t_ccp, true);
2126     ccp.do_transform();
2127   }
2128   print_method(PHASE_CPP1, 2);
2129 
2130   assert( true, "Break here to ccp.dump_old2new_map()");
2131 
2132   // Iterative Global Value Numbering, including ideal transforms
2133   {
2134     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2135     igvn = ccp;
2136     igvn.optimize();
2137   }
2138 
2139   print_method(PHASE_ITER_GVN2, 2);
2140 
2141   if (failing())  return;
2142 
2143   // Loop transforms on the ideal graph.  Range Check Elimination,
2144   // peeling, unrolling, etc.
2145   if(loop_opts_cnt > 0) {
2146     debug_only( int cnt = 0; );
2147     while(major_progress() && (loop_opts_cnt > 0)) {
2148       TracePhase t2("idealLoop", &_t_idealLoop, true);
2149       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2150       PhaseIdealLoop ideal_loop( igvn, true);
2151       loop_opts_cnt--;
2152       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2153       if (failing())  return;
2154     }
2155   }
2156 
2157   {
2158     // Verify that all previous optimizations produced a valid graph
2159     // at least to this point, even if no loop optimizations were done.
2160     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2161     PhaseIdealLoop::verify(igvn);
2162   }
2163 
2164   {
2165     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2166     PhaseMacroExpand  mex(igvn);
2167     if (mex.expand_macro_nodes()) {
2168       assert(failing(), "must bail out w/ explicit message");
2169       return;
2170     }
2171   }
2172 
2173  } // (End scope of igvn; run destructor if necessary for asserts.)
2174 
2175   dump_inlining();
2176   // A method with only infinite loops has no edges entering loops from root
2177   {
2178     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2179     if (final_graph_reshaping()) {
2180       assert(failing(), "must bail out w/ explicit message");
2181       return;
2182     }
2183   }
2184 
2185   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2186 }
2187 
2188 
2189 //------------------------------Code_Gen---------------------------------------
2190 // Given a graph, generate code for it
2191 void Compile::Code_Gen() {
2192   if (failing()) {
2193     return;
2194   }
2195 
2196   // Perform instruction selection.  You might think we could reclaim Matcher
2197   // memory PDQ, but actually the Matcher is used in generating spill code.
2198   // Internals of the Matcher (including some VectorSets) must remain live
2199   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2200   // set a bit in reclaimed memory.
2201 
2202   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2203   // nodes.  Mapping is only valid at the root of each matched subtree.
2204   NOT_PRODUCT( verify_graph_edges(); )
2205 
2206   Matcher matcher;
2207   _matcher = &matcher;
2208   {
2209     TracePhase t2("matcher", &_t_matcher, true);
2210     matcher.match();
2211   }
2212   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2213   // nodes.  Mapping is only valid at the root of each matched subtree.
2214   NOT_PRODUCT( verify_graph_edges(); )
2215 
2216   // If you have too many nodes, or if matching has failed, bail out
2217   check_node_count(0, "out of nodes matching instructions");
2218   if (failing()) {
2219     return;
2220   }
2221 
2222   // Build a proper-looking CFG
2223   PhaseCFG cfg(node_arena(), root(), matcher);
2224   _cfg = &cfg;
2225   {
2226     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2227     bool success = cfg.do_global_code_motion();
2228     if (!success) {
2229       return;
2230     }
2231 
2232     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2233     NOT_PRODUCT( verify_graph_edges(); )
2234     debug_only( cfg.verify(); )
2235   }
2236 
2237   PhaseChaitin regalloc(unique(), cfg, matcher);
2238   _regalloc = &regalloc;
2239   {
2240     TracePhase t2("regalloc", &_t_registerAllocation, true);
2241     // Perform register allocation.  After Chaitin, use-def chains are
2242     // no longer accurate (at spill code) and so must be ignored.
2243     // Node->LRG->reg mappings are still accurate.
2244     _regalloc->Register_Allocate();
2245 
2246     // Bail out if the allocator builds too many nodes
2247     if (failing()) {
2248       return;
2249     }
2250   }
2251 
2252   // Prior to register allocation we kept empty basic blocks in case the
2253   // the allocator needed a place to spill.  After register allocation we
2254   // are not adding any new instructions.  If any basic block is empty, we
2255   // can now safely remove it.
2256   {
2257     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2258     cfg.remove_empty_blocks();
2259     if (do_freq_based_layout()) {
2260       PhaseBlockLayout layout(cfg);
2261     } else {
2262       cfg.set_loop_alignment();
2263     }
2264     cfg.fixup_flow();
2265   }
2266 
2267   // Apply peephole optimizations
2268   if( OptoPeephole ) {
2269     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2270     PhasePeephole peep( _regalloc, cfg);
2271     peep.do_transform();
2272   }
2273 
2274   // Do late expand if CPU requires this.
2275   if (Matcher::require_postalloc_expand) {
2276     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2277     cfg.postalloc_expand(_regalloc);
2278   }
2279 
2280   // Convert Nodes to instruction bits in a buffer
2281   {
2282     // %%%% workspace merge brought two timers together for one job
2283     TracePhase t2a("output", &_t_output, true);
2284     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2285     Output();
2286   }
2287 
2288   print_method(PHASE_FINAL_CODE);
2289 
2290   // He's dead, Jim.
2291   _cfg     = (PhaseCFG*)0xdeadbeef;
2292   _regalloc = (PhaseChaitin*)0xdeadbeef;
2293 }
2294 
2295 
2296 //------------------------------dump_asm---------------------------------------
2297 // Dump formatted assembly
2298 #ifndef PRODUCT
2299 void Compile::dump_asm(int *pcs, uint pc_limit) {
2300   bool cut_short = false;
2301   tty->print_cr("#");
2302   tty->print("#  ");  _tf->dump();  tty->cr();
2303   tty->print_cr("#");
2304 
2305   // For all blocks
2306   int pc = 0x0;                 // Program counter
2307   char starts_bundle = ' ';
2308   _regalloc->dump_frame();
2309 
2310   Node *n = NULL;
2311   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2312     if (VMThread::should_terminate()) {
2313       cut_short = true;
2314       break;
2315     }
2316     Block* block = _cfg->get_block(i);
2317     if (block->is_connector() && !Verbose) {
2318       continue;
2319     }
2320     n = block->head();
2321     if (pcs && n->_idx < pc_limit) {
2322       tty->print("%3.3x   ", pcs[n->_idx]);
2323     } else {
2324       tty->print("      ");
2325     }
2326     block->dump_head(_cfg);
2327     if (block->is_connector()) {
2328       tty->print_cr("        # Empty connector block");
2329     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2330       tty->print_cr("        # Block is sole successor of call");
2331     }
2332 
2333     // For all instructions
2334     Node *delay = NULL;
2335     for (uint j = 0; j < block->number_of_nodes(); j++) {
2336       if (VMThread::should_terminate()) {
2337         cut_short = true;
2338         break;
2339       }
2340       n = block->get_node(j);
2341       if (valid_bundle_info(n)) {
2342         Bundle* bundle = node_bundling(n);
2343         if (bundle->used_in_unconditional_delay()) {
2344           delay = n;
2345           continue;
2346         }
2347         if (bundle->starts_bundle()) {
2348           starts_bundle = '+';
2349         }
2350       }
2351 
2352       if (WizardMode) {
2353         n->dump();
2354       }
2355 
2356       if( !n->is_Region() &&    // Dont print in the Assembly
2357           !n->is_Phi() &&       // a few noisely useless nodes
2358           !n->is_Proj() &&
2359           !n->is_MachTemp() &&
2360           !n->is_SafePointScalarObject() &&
2361           !n->is_Catch() &&     // Would be nice to print exception table targets
2362           !n->is_MergeMem() &&  // Not very interesting
2363           !n->is_top() &&       // Debug info table constants
2364           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2365           ) {
2366         if (pcs && n->_idx < pc_limit)
2367           tty->print("%3.3x", pcs[n->_idx]);
2368         else
2369           tty->print("   ");
2370         tty->print(" %c ", starts_bundle);
2371         starts_bundle = ' ';
2372         tty->print("\t");
2373         n->format(_regalloc, tty);
2374         tty->cr();
2375       }
2376 
2377       // If we have an instruction with a delay slot, and have seen a delay,
2378       // then back up and print it
2379       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2380         assert(delay != NULL, "no unconditional delay instruction");
2381         if (WizardMode) delay->dump();
2382 
2383         if (node_bundling(delay)->starts_bundle())
2384           starts_bundle = '+';
2385         if (pcs && n->_idx < pc_limit)
2386           tty->print("%3.3x", pcs[n->_idx]);
2387         else
2388           tty->print("   ");
2389         tty->print(" %c ", starts_bundle);
2390         starts_bundle = ' ';
2391         tty->print("\t");
2392         delay->format(_regalloc, tty);
2393         tty->print_cr("");
2394         delay = NULL;
2395       }
2396 
2397       // Dump the exception table as well
2398       if( n->is_Catch() && (Verbose || WizardMode) ) {
2399         // Print the exception table for this offset
2400         _handler_table.print_subtable_for(pc);
2401       }
2402     }
2403 
2404     if (pcs && n->_idx < pc_limit)
2405       tty->print_cr("%3.3x", pcs[n->_idx]);
2406     else
2407       tty->print_cr("");
2408 
2409     assert(cut_short || delay == NULL, "no unconditional delay branch");
2410 
2411   } // End of per-block dump
2412   tty->print_cr("");
2413 
2414   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2415 }
2416 #endif
2417 
2418 //------------------------------Final_Reshape_Counts---------------------------
2419 // This class defines counters to help identify when a method
2420 // may/must be executed using hardware with only 24-bit precision.
2421 struct Final_Reshape_Counts : public StackObj {
2422   int  _call_count;             // count non-inlined 'common' calls
2423   int  _float_count;            // count float ops requiring 24-bit precision
2424   int  _double_count;           // count double ops requiring more precision
2425   int  _java_call_count;        // count non-inlined 'java' calls
2426   int  _inner_loop_count;       // count loops which need alignment
2427   VectorSet _visited;           // Visitation flags
2428   Node_List _tests;             // Set of IfNodes & PCTableNodes
2429 
2430   Final_Reshape_Counts() :
2431     _call_count(0), _float_count(0), _double_count(0),
2432     _java_call_count(0), _inner_loop_count(0),
2433     _visited( Thread::current()->resource_area() ) { }
2434 
2435   void inc_call_count  () { _call_count  ++; }
2436   void inc_float_count () { _float_count ++; }
2437   void inc_double_count() { _double_count++; }
2438   void inc_java_call_count() { _java_call_count++; }
2439   void inc_inner_loop_count() { _inner_loop_count++; }
2440 
2441   int  get_call_count  () const { return _call_count  ; }
2442   int  get_float_count () const { return _float_count ; }
2443   int  get_double_count() const { return _double_count; }
2444   int  get_java_call_count() const { return _java_call_count; }
2445   int  get_inner_loop_count() const { return _inner_loop_count; }
2446 };
2447 
2448 #ifdef ASSERT
2449 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2450   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2451   // Make sure the offset goes inside the instance layout.
2452   return k->contains_field_offset(tp->offset());
2453   // Note that OffsetBot and OffsetTop are very negative.
2454 }
2455 #endif
2456 
2457 // Eliminate trivially redundant StoreCMs and accumulate their
2458 // precedence edges.
2459 void Compile::eliminate_redundant_card_marks(Node* n) {
2460   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2461   if (n->in(MemNode::Address)->outcnt() > 1) {
2462     // There are multiple users of the same address so it might be
2463     // possible to eliminate some of the StoreCMs
2464     Node* mem = n->in(MemNode::Memory);
2465     Node* adr = n->in(MemNode::Address);
2466     Node* val = n->in(MemNode::ValueIn);
2467     Node* prev = n;
2468     bool done = false;
2469     // Walk the chain of StoreCMs eliminating ones that match.  As
2470     // long as it's a chain of single users then the optimization is
2471     // safe.  Eliminating partially redundant StoreCMs would require
2472     // cloning copies down the other paths.
2473     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2474       if (adr == mem->in(MemNode::Address) &&
2475           val == mem->in(MemNode::ValueIn)) {
2476         // redundant StoreCM
2477         if (mem->req() > MemNode::OopStore) {
2478           // Hasn't been processed by this code yet.
2479           n->add_prec(mem->in(MemNode::OopStore));
2480         } else {
2481           // Already converted to precedence edge
2482           for (uint i = mem->req(); i < mem->len(); i++) {
2483             // Accumulate any precedence edges
2484             if (mem->in(i) != NULL) {
2485               n->add_prec(mem->in(i));
2486             }
2487           }
2488           // Everything above this point has been processed.
2489           done = true;
2490         }
2491         // Eliminate the previous StoreCM
2492         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2493         assert(mem->outcnt() == 0, "should be dead");
2494         mem->disconnect_inputs(NULL, this);
2495       } else {
2496         prev = mem;
2497       }
2498       mem = prev->in(MemNode::Memory);
2499     }
2500   }
2501 }
2502 
2503 //------------------------------final_graph_reshaping_impl----------------------
2504 // Implement items 1-5 from final_graph_reshaping below.
2505 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2506 
2507   if ( n->outcnt() == 0 ) return; // dead node
2508   uint nop = n->Opcode();
2509 
2510   // Check for 2-input instruction with "last use" on right input.
2511   // Swap to left input.  Implements item (2).
2512   if( n->req() == 3 &&          // two-input instruction
2513       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2514       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2515       n->in(2)->outcnt() == 1 &&// right use IS a last use
2516       !n->in(2)->is_Con() ) {   // right use is not a constant
2517     // Check for commutative opcode
2518     switch( nop ) {
2519     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2520     case Op_MaxI:  case Op_MinI:
2521     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2522     case Op_AndL:  case Op_XorL:  case Op_OrL:
2523     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2524       // Move "last use" input to left by swapping inputs
2525       n->swap_edges(1, 2);
2526       break;
2527     }
2528     default:
2529       break;
2530     }
2531   }
2532 
2533 #ifdef ASSERT
2534   if( n->is_Mem() ) {
2535     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2536     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2537             // oop will be recorded in oop map if load crosses safepoint
2538             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2539                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2540             "raw memory operations should have control edge");
2541   }
2542 #endif
2543   // Count FPU ops and common calls, implements item (3)
2544   switch( nop ) {
2545   // Count all float operations that may use FPU
2546   case Op_AddF:
2547   case Op_SubF:
2548   case Op_MulF:
2549   case Op_DivF:
2550   case Op_NegF:
2551   case Op_ModF:
2552   case Op_ConvI2F:
2553   case Op_ConF:
2554   case Op_CmpF:
2555   case Op_CmpF3:
2556   // case Op_ConvL2F: // longs are split into 32-bit halves
2557     frc.inc_float_count();
2558     break;
2559 
2560   case Op_ConvF2D:
2561   case Op_ConvD2F:
2562     frc.inc_float_count();
2563     frc.inc_double_count();
2564     break;
2565 
2566   // Count all double operations that may use FPU
2567   case Op_AddD:
2568   case Op_SubD:
2569   case Op_MulD:
2570   case Op_DivD:
2571   case Op_NegD:
2572   case Op_ModD:
2573   case Op_ConvI2D:
2574   case Op_ConvD2I:
2575   // case Op_ConvL2D: // handled by leaf call
2576   // case Op_ConvD2L: // handled by leaf call
2577   case Op_ConD:
2578   case Op_CmpD:
2579   case Op_CmpD3:
2580     frc.inc_double_count();
2581     break;
2582   case Op_Opaque1:              // Remove Opaque Nodes before matching
2583   case Op_Opaque2:              // Remove Opaque Nodes before matching
2584     n->subsume_by(n->in(1), this);
2585     break;
2586   case Op_CallStaticJava:
2587   case Op_CallJava:
2588   case Op_CallDynamicJava:
2589     frc.inc_java_call_count(); // Count java call site;
2590   case Op_CallRuntime:
2591   case Op_CallLeaf:
2592   case Op_CallLeafNoFP: {
2593     assert( n->is_Call(), "" );
2594     CallNode *call = n->as_Call();
2595     // Count call sites where the FP mode bit would have to be flipped.
2596     // Do not count uncommon runtime calls:
2597     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2598     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2599     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2600       frc.inc_call_count();   // Count the call site
2601     } else {                  // See if uncommon argument is shared
2602       Node *n = call->in(TypeFunc::Parms);
2603       int nop = n->Opcode();
2604       // Clone shared simple arguments to uncommon calls, item (1).
2605       if( n->outcnt() > 1 &&
2606           !n->is_Proj() &&
2607           nop != Op_CreateEx &&
2608           nop != Op_CheckCastPP &&
2609           nop != Op_DecodeN &&
2610           nop != Op_DecodeNKlass &&
2611           !n->is_Mem() ) {
2612         Node *x = n->clone();
2613         call->set_req( TypeFunc::Parms, x );
2614       }
2615     }
2616     break;
2617   }
2618 
2619   case Op_StoreD:
2620   case Op_LoadD:
2621   case Op_LoadD_unaligned:
2622     frc.inc_double_count();
2623     goto handle_mem;
2624   case Op_StoreF:
2625   case Op_LoadF:
2626     frc.inc_float_count();
2627     goto handle_mem;
2628 
2629   case Op_StoreCM:
2630     {
2631       // Convert OopStore dependence into precedence edge
2632       Node* prec = n->in(MemNode::OopStore);
2633       n->del_req(MemNode::OopStore);
2634       n->add_prec(prec);
2635       eliminate_redundant_card_marks(n);
2636     }
2637 
2638     // fall through
2639 
2640   case Op_StoreB:
2641   case Op_StoreC:
2642   case Op_StorePConditional:
2643   case Op_StoreI:
2644   case Op_StoreL:
2645   case Op_StoreIConditional:
2646   case Op_StoreLConditional:
2647   case Op_CompareAndSwapI:
2648   case Op_CompareAndSwapL:
2649   case Op_CompareAndSwapP:
2650   case Op_CompareAndSwapN:
2651   case Op_GetAndAddI:
2652   case Op_GetAndAddL:
2653   case Op_GetAndSetI:
2654   case Op_GetAndSetL:
2655   case Op_GetAndSetP:
2656   case Op_GetAndSetN:
2657   case Op_StoreP:
2658   case Op_StoreN:
2659   case Op_StoreNKlass:
2660   case Op_LoadB:
2661   case Op_LoadUB:
2662   case Op_LoadUS:
2663   case Op_LoadI:
2664   case Op_LoadKlass:
2665   case Op_LoadNKlass:
2666   case Op_LoadL:
2667   case Op_LoadL_unaligned:
2668   case Op_LoadPLocked:
2669   case Op_LoadP:
2670   case Op_LoadN:
2671   case Op_LoadRange:
2672   case Op_LoadS: {
2673   handle_mem:
2674 #ifdef ASSERT
2675     if( VerifyOptoOopOffsets ) {
2676       assert( n->is_Mem(), "" );
2677       MemNode *mem  = (MemNode*)n;
2678       // Check to see if address types have grounded out somehow.
2679       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2680       assert( !tp || oop_offset_is_sane(tp), "" );
2681     }
2682 #endif
2683     break;
2684   }
2685 
2686   case Op_AddP: {               // Assert sane base pointers
2687     Node *addp = n->in(AddPNode::Address);
2688     assert( !addp->is_AddP() ||
2689             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2690             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2691             "Base pointers must match" );
2692 #ifdef _LP64
2693     if ((UseCompressedOops || UseCompressedClassPointers) &&
2694         addp->Opcode() == Op_ConP &&
2695         addp == n->in(AddPNode::Base) &&
2696         n->in(AddPNode::Offset)->is_Con()) {
2697       // Use addressing with narrow klass to load with offset on x86.
2698       // On sparc loading 32-bits constant and decoding it have less
2699       // instructions (4) then load 64-bits constant (7).
2700       // Do this transformation here since IGVN will convert ConN back to ConP.
2701       const Type* t = addp->bottom_type();
2702       if (t->isa_oopptr() || t->isa_klassptr()) {
2703         Node* nn = NULL;
2704 
2705         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2706 
2707         // Look for existing ConN node of the same exact type.
2708         Node* r  = root();
2709         uint cnt = r->outcnt();
2710         for (uint i = 0; i < cnt; i++) {
2711           Node* m = r->raw_out(i);
2712           if (m!= NULL && m->Opcode() == op &&
2713               m->bottom_type()->make_ptr() == t) {
2714             nn = m;
2715             break;
2716           }
2717         }
2718         if (nn != NULL) {
2719           // Decode a narrow oop to match address
2720           // [R12 + narrow_oop_reg<<3 + offset]
2721           if (t->isa_oopptr()) {
2722             nn = new (this) DecodeNNode(nn, t);
2723           } else {
2724             nn = new (this) DecodeNKlassNode(nn, t);
2725           }
2726           n->set_req(AddPNode::Base, nn);
2727           n->set_req(AddPNode::Address, nn);
2728           if (addp->outcnt() == 0) {
2729             addp->disconnect_inputs(NULL, this);
2730           }
2731         }
2732       }
2733     }
2734 #endif
2735     break;
2736   }
2737 
2738 #ifdef _LP64
2739   case Op_CastPP:
2740     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2741       Node* in1 = n->in(1);
2742       const Type* t = n->bottom_type();
2743       Node* new_in1 = in1->clone();
2744       new_in1->as_DecodeN()->set_type(t);
2745 
2746       if (!Matcher::narrow_oop_use_complex_address()) {
2747         //
2748         // x86, ARM and friends can handle 2 adds in addressing mode
2749         // and Matcher can fold a DecodeN node into address by using
2750         // a narrow oop directly and do implicit NULL check in address:
2751         //
2752         // [R12 + narrow_oop_reg<<3 + offset]
2753         // NullCheck narrow_oop_reg
2754         //
2755         // On other platforms (Sparc) we have to keep new DecodeN node and
2756         // use it to do implicit NULL check in address:
2757         //
2758         // decode_not_null narrow_oop_reg, base_reg
2759         // [base_reg + offset]
2760         // NullCheck base_reg
2761         //
2762         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2763         // to keep the information to which NULL check the new DecodeN node
2764         // corresponds to use it as value in implicit_null_check().
2765         //
2766         new_in1->set_req(0, n->in(0));
2767       }
2768 
2769       n->subsume_by(new_in1, this);
2770       if (in1->outcnt() == 0) {
2771         in1->disconnect_inputs(NULL, this);
2772       }
2773     }
2774     break;
2775 
2776   case Op_CmpP:
2777     // Do this transformation here to preserve CmpPNode::sub() and
2778     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2779     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2780       Node* in1 = n->in(1);
2781       Node* in2 = n->in(2);
2782       if (!in1->is_DecodeNarrowPtr()) {
2783         in2 = in1;
2784         in1 = n->in(2);
2785       }
2786       assert(in1->is_DecodeNarrowPtr(), "sanity");
2787 
2788       Node* new_in2 = NULL;
2789       if (in2->is_DecodeNarrowPtr()) {
2790         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2791         new_in2 = in2->in(1);
2792       } else if (in2->Opcode() == Op_ConP) {
2793         const Type* t = in2->bottom_type();
2794         if (t == TypePtr::NULL_PTR) {
2795           assert(in1->is_DecodeN(), "compare klass to null?");
2796           // Don't convert CmpP null check into CmpN if compressed
2797           // oops implicit null check is not generated.
2798           // This will allow to generate normal oop implicit null check.
2799           if (Matcher::gen_narrow_oop_implicit_null_checks())
2800             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2801           //
2802           // This transformation together with CastPP transformation above
2803           // will generated code for implicit NULL checks for compressed oops.
2804           //
2805           // The original code after Optimize()
2806           //
2807           //    LoadN memory, narrow_oop_reg
2808           //    decode narrow_oop_reg, base_reg
2809           //    CmpP base_reg, NULL
2810           //    CastPP base_reg // NotNull
2811           //    Load [base_reg + offset], val_reg
2812           //
2813           // after these transformations will be
2814           //
2815           //    LoadN memory, narrow_oop_reg
2816           //    CmpN narrow_oop_reg, NULL
2817           //    decode_not_null narrow_oop_reg, base_reg
2818           //    Load [base_reg + offset], val_reg
2819           //
2820           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2821           // since narrow oops can be used in debug info now (see the code in
2822           // final_graph_reshaping_walk()).
2823           //
2824           // At the end the code will be matched to
2825           // on x86:
2826           //
2827           //    Load_narrow_oop memory, narrow_oop_reg
2828           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2829           //    NullCheck narrow_oop_reg
2830           //
2831           // and on sparc:
2832           //
2833           //    Load_narrow_oop memory, narrow_oop_reg
2834           //    decode_not_null narrow_oop_reg, base_reg
2835           //    Load [base_reg + offset], val_reg
2836           //    NullCheck base_reg
2837           //
2838         } else if (t->isa_oopptr()) {
2839           new_in2 = ConNode::make(this, t->make_narrowoop());
2840         } else if (t->isa_klassptr()) {
2841           new_in2 = ConNode::make(this, t->make_narrowklass());
2842         }
2843       }
2844       if (new_in2 != NULL) {
2845         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2846         n->subsume_by(cmpN, this);
2847         if (in1->outcnt() == 0) {
2848           in1->disconnect_inputs(NULL, this);
2849         }
2850         if (in2->outcnt() == 0) {
2851           in2->disconnect_inputs(NULL, this);
2852         }
2853       }
2854     }
2855     break;
2856 
2857   case Op_DecodeN:
2858   case Op_DecodeNKlass:
2859     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2860     // DecodeN could be pinned when it can't be fold into
2861     // an address expression, see the code for Op_CastPP above.
2862     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2863     break;
2864 
2865   case Op_EncodeP:
2866   case Op_EncodePKlass: {
2867     Node* in1 = n->in(1);
2868     if (in1->is_DecodeNarrowPtr()) {
2869       n->subsume_by(in1->in(1), this);
2870     } else if (in1->Opcode() == Op_ConP) {
2871       const Type* t = in1->bottom_type();
2872       if (t == TypePtr::NULL_PTR) {
2873         assert(t->isa_oopptr(), "null klass?");
2874         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2875       } else if (t->isa_oopptr()) {
2876         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2877       } else if (t->isa_klassptr()) {
2878         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2879       }
2880     }
2881     if (in1->outcnt() == 0) {
2882       in1->disconnect_inputs(NULL, this);
2883     }
2884     break;
2885   }
2886 
2887   case Op_Proj: {
2888     if (OptimizeStringConcat) {
2889       ProjNode* p = n->as_Proj();
2890       if (p->_is_io_use) {
2891         // Separate projections were used for the exception path which
2892         // are normally removed by a late inline.  If it wasn't inlined
2893         // then they will hang around and should just be replaced with
2894         // the original one.
2895         Node* proj = NULL;
2896         // Replace with just one
2897         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2898           Node *use = i.get();
2899           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2900             proj = use;
2901             break;
2902           }
2903         }
2904         assert(proj != NULL, "must be found");
2905         p->subsume_by(proj, this);
2906       }
2907     }
2908     break;
2909   }
2910 
2911   case Op_Phi:
2912     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2913       // The EncodeP optimization may create Phi with the same edges
2914       // for all paths. It is not handled well by Register Allocator.
2915       Node* unique_in = n->in(1);
2916       assert(unique_in != NULL, "");
2917       uint cnt = n->req();
2918       for (uint i = 2; i < cnt; i++) {
2919         Node* m = n->in(i);
2920         assert(m != NULL, "");
2921         if (unique_in != m)
2922           unique_in = NULL;
2923       }
2924       if (unique_in != NULL) {
2925         n->subsume_by(unique_in, this);
2926       }
2927     }
2928     break;
2929 
2930 #endif
2931 
2932   case Op_ModI:
2933     if (UseDivMod) {
2934       // Check if a%b and a/b both exist
2935       Node* d = n->find_similar(Op_DivI);
2936       if (d) {
2937         // Replace them with a fused divmod if supported
2938         if (Matcher::has_match_rule(Op_DivModI)) {
2939           DivModINode* divmod = DivModINode::make(this, n);
2940           d->subsume_by(divmod->div_proj(), this);
2941           n->subsume_by(divmod->mod_proj(), this);
2942         } else {
2943           // replace a%b with a-((a/b)*b)
2944           Node* mult = new (this) MulINode(d, d->in(2));
2945           Node* sub  = new (this) SubINode(d->in(1), mult);
2946           n->subsume_by(sub, this);
2947         }
2948       }
2949     }
2950     break;
2951 
2952   case Op_ModL:
2953     if (UseDivMod) {
2954       // Check if a%b and a/b both exist
2955       Node* d = n->find_similar(Op_DivL);
2956       if (d) {
2957         // Replace them with a fused divmod if supported
2958         if (Matcher::has_match_rule(Op_DivModL)) {
2959           DivModLNode* divmod = DivModLNode::make(this, n);
2960           d->subsume_by(divmod->div_proj(), this);
2961           n->subsume_by(divmod->mod_proj(), this);
2962         } else {
2963           // replace a%b with a-((a/b)*b)
2964           Node* mult = new (this) MulLNode(d, d->in(2));
2965           Node* sub  = new (this) SubLNode(d->in(1), mult);
2966           n->subsume_by(sub, this);
2967         }
2968       }
2969     }
2970     break;
2971 
2972   case Op_LoadVector:
2973   case Op_StoreVector:
2974     break;
2975 
2976   case Op_PackB:
2977   case Op_PackS:
2978   case Op_PackI:
2979   case Op_PackF:
2980   case Op_PackL:
2981   case Op_PackD:
2982     if (n->req()-1 > 2) {
2983       // Replace many operand PackNodes with a binary tree for matching
2984       PackNode* p = (PackNode*) n;
2985       Node* btp = p->binary_tree_pack(this, 1, n->req());
2986       n->subsume_by(btp, this);
2987     }
2988     break;
2989   case Op_Loop:
2990   case Op_CountedLoop:
2991     if (n->as_Loop()->is_inner_loop()) {
2992       frc.inc_inner_loop_count();
2993     }
2994     break;
2995   case Op_LShiftI:
2996   case Op_RShiftI:
2997   case Op_URShiftI:
2998   case Op_LShiftL:
2999   case Op_RShiftL:
3000   case Op_URShiftL:
3001     if (Matcher::need_masked_shift_count) {
3002       // The cpu's shift instructions don't restrict the count to the
3003       // lower 5/6 bits. We need to do the masking ourselves.
3004       Node* in2 = n->in(2);
3005       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3006       const TypeInt* t = in2->find_int_type();
3007       if (t != NULL && t->is_con()) {
3008         juint shift = t->get_con();
3009         if (shift > mask) { // Unsigned cmp
3010           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3011         }
3012       } else {
3013         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3014           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3015           n->set_req(2, shift);
3016         }
3017       }
3018       if (in2->outcnt() == 0) { // Remove dead node
3019         in2->disconnect_inputs(NULL, this);
3020       }
3021     }
3022     break;
3023   case Op_MemBarStoreStore:
3024   case Op_MemBarRelease:
3025     // Break the link with AllocateNode: it is no longer useful and
3026     // confuses register allocation.
3027     if (n->req() > MemBarNode::Precedent) {
3028       n->set_req(MemBarNode::Precedent, top());
3029     }
3030     break;
3031   default:
3032     assert( !n->is_Call(), "" );
3033     assert( !n->is_Mem(), "" );
3034     break;
3035   }
3036 
3037   // Collect CFG split points
3038   if (n->is_MultiBranch())
3039     frc._tests.push(n);
3040 }
3041 
3042 //------------------------------final_graph_reshaping_walk---------------------
3043 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3044 // requires that the walk visits a node's inputs before visiting the node.
3045 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3046   ResourceArea *area = Thread::current()->resource_area();
3047   Unique_Node_List sfpt(area);
3048 
3049   frc._visited.set(root->_idx); // first, mark node as visited
3050   uint cnt = root->req();
3051   Node *n = root;
3052   uint  i = 0;
3053   while (true) {
3054     if (i < cnt) {
3055       // Place all non-visited non-null inputs onto stack
3056       Node* m = n->in(i);
3057       ++i;
3058       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3059         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3060           sfpt.push(m);
3061         cnt = m->req();
3062         nstack.push(n, i); // put on stack parent and next input's index
3063         n = m;
3064         i = 0;
3065       }
3066     } else {
3067       // Now do post-visit work
3068       final_graph_reshaping_impl( n, frc );
3069       if (nstack.is_empty())
3070         break;             // finished
3071       n = nstack.node();   // Get node from stack
3072       cnt = n->req();
3073       i = nstack.index();
3074       nstack.pop();        // Shift to the next node on stack
3075     }
3076   }
3077 
3078   // Skip next transformation if compressed oops are not used.
3079   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3080       (!UseCompressedOops && !UseCompressedClassPointers))
3081     return;
3082 
3083   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3084   // It could be done for an uncommon traps or any safepoints/calls
3085   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3086   while (sfpt.size() > 0) {
3087     n = sfpt.pop();
3088     JVMState *jvms = n->as_SafePoint()->jvms();
3089     assert(jvms != NULL, "sanity");
3090     int start = jvms->debug_start();
3091     int end   = n->req();
3092     bool is_uncommon = (n->is_CallStaticJava() &&
3093                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3094     for (int j = start; j < end; j++) {
3095       Node* in = n->in(j);
3096       if (in->is_DecodeNarrowPtr()) {
3097         bool safe_to_skip = true;
3098         if (!is_uncommon ) {
3099           // Is it safe to skip?
3100           for (uint i = 0; i < in->outcnt(); i++) {
3101             Node* u = in->raw_out(i);
3102             if (!u->is_SafePoint() ||
3103                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3104               safe_to_skip = false;
3105             }
3106           }
3107         }
3108         if (safe_to_skip) {
3109           n->set_req(j, in->in(1));
3110         }
3111         if (in->outcnt() == 0) {
3112           in->disconnect_inputs(NULL, this);
3113         }
3114       }
3115     }
3116   }
3117 }
3118 
3119 //------------------------------final_graph_reshaping--------------------------
3120 // Final Graph Reshaping.
3121 //
3122 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3123 //     and not commoned up and forced early.  Must come after regular
3124 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3125 //     inputs to Loop Phis; these will be split by the allocator anyways.
3126 //     Remove Opaque nodes.
3127 // (2) Move last-uses by commutative operations to the left input to encourage
3128 //     Intel update-in-place two-address operations and better register usage
3129 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3130 //     calls canonicalizing them back.
3131 // (3) Count the number of double-precision FP ops, single-precision FP ops
3132 //     and call sites.  On Intel, we can get correct rounding either by
3133 //     forcing singles to memory (requires extra stores and loads after each
3134 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3135 //     clearing the mode bit around call sites).  The mode bit is only used
3136 //     if the relative frequency of single FP ops to calls is low enough.
3137 //     This is a key transform for SPEC mpeg_audio.
3138 // (4) Detect infinite loops; blobs of code reachable from above but not
3139 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3140 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3141 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3142 //     Detection is by looking for IfNodes where only 1 projection is
3143 //     reachable from below or CatchNodes missing some targets.
3144 // (5) Assert for insane oop offsets in debug mode.
3145 
3146 bool Compile::final_graph_reshaping() {
3147   // an infinite loop may have been eliminated by the optimizer,
3148   // in which case the graph will be empty.
3149   if (root()->req() == 1) {
3150     record_method_not_compilable("trivial infinite loop");
3151     return true;
3152   }
3153 
3154   // Expensive nodes have their control input set to prevent the GVN
3155   // from freely commoning them. There's no GVN beyond this point so
3156   // no need to keep the control input. We want the expensive nodes to
3157   // be freely moved to the least frequent code path by gcm.
3158   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3159   for (int i = 0; i < expensive_count(); i++) {
3160     _expensive_nodes->at(i)->set_req(0, NULL);
3161   }
3162 
3163   Final_Reshape_Counts frc;
3164 
3165   // Visit everybody reachable!
3166   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3167   Node_Stack nstack(unique() >> 1);
3168   final_graph_reshaping_walk(nstack, root(), frc);
3169 
3170   // Check for unreachable (from below) code (i.e., infinite loops).
3171   for( uint i = 0; i < frc._tests.size(); i++ ) {
3172     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3173     // Get number of CFG targets.
3174     // Note that PCTables include exception targets after calls.
3175     uint required_outcnt = n->required_outcnt();
3176     if (n->outcnt() != required_outcnt) {
3177       // Check for a few special cases.  Rethrow Nodes never take the
3178       // 'fall-thru' path, so expected kids is 1 less.
3179       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3180         if (n->in(0)->in(0)->is_Call()) {
3181           CallNode *call = n->in(0)->in(0)->as_Call();
3182           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3183             required_outcnt--;      // Rethrow always has 1 less kid
3184           } else if (call->req() > TypeFunc::Parms &&
3185                      call->is_CallDynamicJava()) {
3186             // Check for null receiver. In such case, the optimizer has
3187             // detected that the virtual call will always result in a null
3188             // pointer exception. The fall-through projection of this CatchNode
3189             // will not be populated.
3190             Node *arg0 = call->in(TypeFunc::Parms);
3191             if (arg0->is_Type() &&
3192                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3193               required_outcnt--;
3194             }
3195           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3196                      call->req() > TypeFunc::Parms+1 &&
3197                      call->is_CallStaticJava()) {
3198             // Check for negative array length. In such case, the optimizer has
3199             // detected that the allocation attempt will always result in an
3200             // exception. There is no fall-through projection of this CatchNode .
3201             Node *arg1 = call->in(TypeFunc::Parms+1);
3202             if (arg1->is_Type() &&
3203                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3204               required_outcnt--;
3205             }
3206           }
3207         }
3208       }
3209       // Recheck with a better notion of 'required_outcnt'
3210       if (n->outcnt() != required_outcnt) {
3211         record_method_not_compilable("malformed control flow");
3212         return true;            // Not all targets reachable!
3213       }
3214     }
3215     // Check that I actually visited all kids.  Unreached kids
3216     // must be infinite loops.
3217     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3218       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3219         record_method_not_compilable("infinite loop");
3220         return true;            // Found unvisited kid; must be unreach
3221       }
3222   }
3223 
3224   // If original bytecodes contained a mixture of floats and doubles
3225   // check if the optimizer has made it homogenous, item (3).
3226   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3227       frc.get_float_count() > 32 &&
3228       frc.get_double_count() == 0 &&
3229       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3230     set_24_bit_selection_and_mode( false,  true );
3231   }
3232 
3233   set_java_calls(frc.get_java_call_count());
3234   set_inner_loops(frc.get_inner_loop_count());
3235 
3236   // No infinite loops, no reason to bail out.
3237   return false;
3238 }
3239 
3240 //-----------------------------too_many_traps----------------------------------
3241 // Report if there are too many traps at the current method and bci.
3242 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3243 bool Compile::too_many_traps(ciMethod* method,
3244                              int bci,
3245                              Deoptimization::DeoptReason reason) {
3246   ciMethodData* md = method->method_data();
3247   if (md->is_empty()) {
3248     // Assume the trap has not occurred, or that it occurred only
3249     // because of a transient condition during start-up in the interpreter.
3250     return false;
3251   }
3252   if (md->has_trap_at(bci, reason) != 0) {
3253     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3254     // Also, if there are multiple reasons, or if there is no per-BCI record,
3255     // assume the worst.
3256     if (log())
3257       log()->elem("observe trap='%s' count='%d'",
3258                   Deoptimization::trap_reason_name(reason),
3259                   md->trap_count(reason));
3260     return true;
3261   } else {
3262     // Ignore method/bci and see if there have been too many globally.
3263     return too_many_traps(reason, md);
3264   }
3265 }
3266 
3267 // Less-accurate variant which does not require a method and bci.
3268 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3269                              ciMethodData* logmd) {
3270  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3271     // Too many traps globally.
3272     // Note that we use cumulative trap_count, not just md->trap_count.
3273     if (log()) {
3274       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3275       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3276                   Deoptimization::trap_reason_name(reason),
3277                   mcount, trap_count(reason));
3278     }
3279     return true;
3280   } else {
3281     // The coast is clear.
3282     return false;
3283   }
3284 }
3285 
3286 //--------------------------too_many_recompiles--------------------------------
3287 // Report if there are too many recompiles at the current method and bci.
3288 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3289 // Is not eager to return true, since this will cause the compiler to use
3290 // Action_none for a trap point, to avoid too many recompilations.
3291 bool Compile::too_many_recompiles(ciMethod* method,
3292                                   int bci,
3293                                   Deoptimization::DeoptReason reason) {
3294   ciMethodData* md = method->method_data();
3295   if (md->is_empty()) {
3296     // Assume the trap has not occurred, or that it occurred only
3297     // because of a transient condition during start-up in the interpreter.
3298     return false;
3299   }
3300   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3301   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3302   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3303   Deoptimization::DeoptReason per_bc_reason
3304     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3305   if ((per_bc_reason == Deoptimization::Reason_none
3306        || md->has_trap_at(bci, reason) != 0)
3307       // The trap frequency measure we care about is the recompile count:
3308       && md->trap_recompiled_at(bci)
3309       && md->overflow_recompile_count() >= bc_cutoff) {
3310     // Do not emit a trap here if it has already caused recompilations.
3311     // Also, if there are multiple reasons, or if there is no per-BCI record,
3312     // assume the worst.
3313     if (log())
3314       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3315                   Deoptimization::trap_reason_name(reason),
3316                   md->trap_count(reason),
3317                   md->overflow_recompile_count());
3318     return true;
3319   } else if (trap_count(reason) != 0
3320              && decompile_count() >= m_cutoff) {
3321     // Too many recompiles globally, and we have seen this sort of trap.
3322     // Use cumulative decompile_count, not just md->decompile_count.
3323     if (log())
3324       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3325                   Deoptimization::trap_reason_name(reason),
3326                   md->trap_count(reason), trap_count(reason),
3327                   md->decompile_count(), decompile_count());
3328     return true;
3329   } else {
3330     // The coast is clear.
3331     return false;
3332   }
3333 }
3334 
3335 // Compute when not to trap. Used by matching trap based nodes and
3336 // NullCheck optimization.
3337 void Compile::set_allowed_deopt_reasons() {
3338   _allowed_reasons = 0;
3339   if (is_method_compilation()) {
3340     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3341       assert(rs < BitsPerInt, "recode bit map");
3342       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3343         _allowed_reasons |= nth_bit(rs);
3344       }
3345     }
3346   }
3347 }
3348 
3349 #ifndef PRODUCT
3350 //------------------------------verify_graph_edges---------------------------
3351 // Walk the Graph and verify that there is a one-to-one correspondence
3352 // between Use-Def edges and Def-Use edges in the graph.
3353 void Compile::verify_graph_edges(bool no_dead_code) {
3354   if (VerifyGraphEdges) {
3355     ResourceArea *area = Thread::current()->resource_area();
3356     Unique_Node_List visited(area);
3357     // Call recursive graph walk to check edges
3358     _root->verify_edges(visited);
3359     if (no_dead_code) {
3360       // Now make sure that no visited node is used by an unvisited node.
3361       bool dead_nodes = 0;
3362       Unique_Node_List checked(area);
3363       while (visited.size() > 0) {
3364         Node* n = visited.pop();
3365         checked.push(n);
3366         for (uint i = 0; i < n->outcnt(); i++) {
3367           Node* use = n->raw_out(i);
3368           if (checked.member(use))  continue;  // already checked
3369           if (visited.member(use))  continue;  // already in the graph
3370           if (use->is_Con())        continue;  // a dead ConNode is OK
3371           // At this point, we have found a dead node which is DU-reachable.
3372           if (dead_nodes++ == 0)
3373             tty->print_cr("*** Dead nodes reachable via DU edges:");
3374           use->dump(2);
3375           tty->print_cr("---");
3376           checked.push(use);  // No repeats; pretend it is now checked.
3377         }
3378       }
3379       assert(dead_nodes == 0, "using nodes must be reachable from root");
3380     }
3381   }
3382 }
3383 
3384 // Verify GC barriers consistency
3385 // Currently supported:
3386 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3387 void Compile::verify_barriers() {
3388   if (UseG1GC) {
3389     // Verify G1 pre-barriers
3390     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3391 
3392     ResourceArea *area = Thread::current()->resource_area();
3393     Unique_Node_List visited(area);
3394     Node_List worklist(area);
3395     // We're going to walk control flow backwards starting from the Root
3396     worklist.push(_root);
3397     while (worklist.size() > 0) {
3398       Node* x = worklist.pop();
3399       if (x == NULL || x == top()) continue;
3400       if (visited.member(x)) {
3401         continue;
3402       } else {
3403         visited.push(x);
3404       }
3405 
3406       if (x->is_Region()) {
3407         for (uint i = 1; i < x->req(); i++) {
3408           worklist.push(x->in(i));
3409         }
3410       } else {
3411         worklist.push(x->in(0));
3412         // We are looking for the pattern:
3413         //                            /->ThreadLocal
3414         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3415         //              \->ConI(0)
3416         // We want to verify that the If and the LoadB have the same control
3417         // See GraphKit::g1_write_barrier_pre()
3418         if (x->is_If()) {
3419           IfNode *iff = x->as_If();
3420           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3421             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3422             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3423                 && cmp->in(1)->is_Load()) {
3424               LoadNode* load = cmp->in(1)->as_Load();
3425               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3426                   && load->in(2)->in(3)->is_Con()
3427                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3428 
3429                 Node* if_ctrl = iff->in(0);
3430                 Node* load_ctrl = load->in(0);
3431 
3432                 if (if_ctrl != load_ctrl) {
3433                   // Skip possible CProj->NeverBranch in infinite loops
3434                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3435                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3436                     if_ctrl = if_ctrl->in(0)->in(0);
3437                   }
3438                 }
3439                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3440               }
3441             }
3442           }
3443         }
3444       }
3445     }
3446   }
3447 }
3448 
3449 #endif
3450 
3451 // The Compile object keeps track of failure reasons separately from the ciEnv.
3452 // This is required because there is not quite a 1-1 relation between the
3453 // ciEnv and its compilation task and the Compile object.  Note that one
3454 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3455 // to backtrack and retry without subsuming loads.  Other than this backtracking
3456 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3457 // by the logic in C2Compiler.
3458 void Compile::record_failure(const char* reason) {
3459   if (log() != NULL) {
3460     log()->elem("failure reason='%s' phase='compile'", reason);
3461   }
3462   if (_failure_reason == NULL) {
3463     // Record the first failure reason.
3464     _failure_reason = reason;
3465   }
3466 
3467   EventCompilerFailure event;
3468   if (event.should_commit()) {
3469     event.set_compileID(Compile::compile_id());
3470     event.set_failure(reason);
3471     event.commit();
3472   }
3473 
3474   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3475     C->print_method(PHASE_FAILURE);
3476   }
3477   _root = NULL;  // flush the graph, too
3478 }
3479 
3480 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3481   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3482     _phase_name(name), _dolog(dolog)
3483 {
3484   if (dolog) {
3485     C = Compile::current();
3486     _log = C->log();
3487   } else {
3488     C = NULL;
3489     _log = NULL;
3490   }
3491   if (_log != NULL) {
3492     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3493     _log->stamp();
3494     _log->end_head();
3495   }
3496 }
3497 
3498 Compile::TracePhase::~TracePhase() {
3499 
3500   C = Compile::current();
3501   if (_dolog) {
3502     _log = C->log();
3503   } else {
3504     _log = NULL;
3505   }
3506 
3507 #ifdef ASSERT
3508   if (PrintIdealNodeCount) {
3509     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3510                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3511   }
3512 
3513   if (VerifyIdealNodeCount) {
3514     Compile::current()->print_missing_nodes();
3515   }
3516 #endif
3517 
3518   if (_log != NULL) {
3519     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3520   }
3521 }
3522 
3523 //=============================================================================
3524 // Two Constant's are equal when the type and the value are equal.
3525 bool Compile::Constant::operator==(const Constant& other) {
3526   if (type()          != other.type()         )  return false;
3527   if (can_be_reused() != other.can_be_reused())  return false;
3528   // For floating point values we compare the bit pattern.
3529   switch (type()) {
3530   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3531   case T_LONG:
3532   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3533   case T_OBJECT:
3534   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3535   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3536   case T_METADATA: return (_v._metadata == other._v._metadata);
3537   default: ShouldNotReachHere();
3538   }
3539   return false;
3540 }
3541 
3542 static int type_to_size_in_bytes(BasicType t) {
3543   switch (t) {
3544   case T_LONG:    return sizeof(jlong  );
3545   case T_FLOAT:   return sizeof(jfloat );
3546   case T_DOUBLE:  return sizeof(jdouble);
3547   case T_METADATA: return sizeof(Metadata*);
3548     // We use T_VOID as marker for jump-table entries (labels) which
3549     // need an internal word relocation.
3550   case T_VOID:
3551   case T_ADDRESS:
3552   case T_OBJECT:  return sizeof(jobject);
3553   }
3554 
3555   ShouldNotReachHere();
3556   return -1;
3557 }
3558 
3559 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3560   // sort descending
3561   if (a->freq() > b->freq())  return -1;
3562   if (a->freq() < b->freq())  return  1;
3563   return 0;
3564 }
3565 
3566 void Compile::ConstantTable::calculate_offsets_and_size() {
3567   // First, sort the array by frequencies.
3568   _constants.sort(qsort_comparator);
3569 
3570 #ifdef ASSERT
3571   // Make sure all jump-table entries were sorted to the end of the
3572   // array (they have a negative frequency).
3573   bool found_void = false;
3574   for (int i = 0; i < _constants.length(); i++) {
3575     Constant con = _constants.at(i);
3576     if (con.type() == T_VOID)
3577       found_void = true;  // jump-tables
3578     else
3579       assert(!found_void, "wrong sorting");
3580   }
3581 #endif
3582 
3583   int offset = 0;
3584   for (int i = 0; i < _constants.length(); i++) {
3585     Constant* con = _constants.adr_at(i);
3586 
3587     // Align offset for type.
3588     int typesize = type_to_size_in_bytes(con->type());
3589     offset = align_size_up(offset, typesize);
3590     con->set_offset(offset);   // set constant's offset
3591 
3592     if (con->type() == T_VOID) {
3593       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3594       offset = offset + typesize * n->outcnt();  // expand jump-table
3595     } else {
3596       offset = offset + typesize;
3597     }
3598   }
3599 
3600   // Align size up to the next section start (which is insts; see
3601   // CodeBuffer::align_at_start).
3602   assert(_size == -1, "already set?");
3603   _size = align_size_up(offset, CodeEntryAlignment);
3604 }
3605 
3606 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3607   MacroAssembler _masm(&cb);
3608   for (int i = 0; i < _constants.length(); i++) {
3609     Constant con = _constants.at(i);
3610     address constant_addr;
3611     switch (con.type()) {
3612     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3613     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3614     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3615     case T_OBJECT: {
3616       jobject obj = con.get_jobject();
3617       int oop_index = _masm.oop_recorder()->find_index(obj);
3618       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3619       break;
3620     }
3621     case T_ADDRESS: {
3622       address addr = (address) con.get_jobject();
3623       constant_addr = _masm.address_constant(addr);
3624       break;
3625     }
3626     // We use T_VOID as marker for jump-table entries (labels) which
3627     // need an internal word relocation.
3628     case T_VOID: {
3629       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3630       // Fill the jump-table with a dummy word.  The real value is
3631       // filled in later in fill_jump_table.
3632       address dummy = (address) n;
3633       constant_addr = _masm.address_constant(dummy);
3634       // Expand jump-table
3635       for (uint i = 1; i < n->outcnt(); i++) {
3636         address temp_addr = _masm.address_constant(dummy + i);
3637         assert(temp_addr, "consts section too small");
3638       }
3639       break;
3640     }
3641     case T_METADATA: {
3642       Metadata* obj = con.get_metadata();
3643       int metadata_index = _masm.oop_recorder()->find_index(obj);
3644       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3645       break;
3646     }
3647     default: ShouldNotReachHere();
3648     }
3649     assert(constant_addr, "consts section too small");
3650     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3651   }
3652 }
3653 
3654 int Compile::ConstantTable::find_offset(Constant& con) const {
3655   int idx = _constants.find(con);
3656   assert(idx != -1, "constant must be in constant table");
3657   int offset = _constants.at(idx).offset();
3658   assert(offset != -1, "constant table not emitted yet?");
3659   return offset;
3660 }
3661 
3662 void Compile::ConstantTable::add(Constant& con) {
3663   if (con.can_be_reused()) {
3664     int idx = _constants.find(con);
3665     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3666       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3667       return;
3668     }
3669   }
3670   (void) _constants.append(con);
3671 }
3672 
3673 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3674   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3675   Constant con(type, value, b->_freq);
3676   add(con);
3677   return con;
3678 }
3679 
3680 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3681   Constant con(metadata);
3682   add(con);
3683   return con;
3684 }
3685 
3686 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3687   jvalue value;
3688   BasicType type = oper->type()->basic_type();
3689   switch (type) {
3690   case T_LONG:    value.j = oper->constantL(); break;
3691   case T_FLOAT:   value.f = oper->constantF(); break;
3692   case T_DOUBLE:  value.d = oper->constantD(); break;
3693   case T_OBJECT:
3694   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3695   case T_METADATA: return add((Metadata*)oper->constant()); break;
3696   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3697   }
3698   return add(n, type, value);
3699 }
3700 
3701 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3702   jvalue value;
3703   // We can use the node pointer here to identify the right jump-table
3704   // as this method is called from Compile::Fill_buffer right before
3705   // the MachNodes are emitted and the jump-table is filled (means the
3706   // MachNode pointers do not change anymore).
3707   value.l = (jobject) n;
3708   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3709   add(con);
3710   return con;
3711 }
3712 
3713 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3714   // If called from Compile::scratch_emit_size do nothing.
3715   if (Compile::current()->in_scratch_emit_size())  return;
3716 
3717   assert(labels.is_nonempty(), "must be");
3718   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3719 
3720   // Since MachConstantNode::constant_offset() also contains
3721   // table_base_offset() we need to subtract the table_base_offset()
3722   // to get the plain offset into the constant table.
3723   int offset = n->constant_offset() - table_base_offset();
3724 
3725   MacroAssembler _masm(&cb);
3726   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3727 
3728   for (uint i = 0; i < n->outcnt(); i++) {
3729     address* constant_addr = &jump_table_base[i];
3730     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3731     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3732     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3733   }
3734 }
3735 
3736 void Compile::dump_inlining() {
3737   if (print_inlining() || print_intrinsics()) {
3738     // Print inlining message for candidates that we couldn't inline
3739     // for lack of space or non constant receiver
3740     for (int i = 0; i < _late_inlines.length(); i++) {
3741       CallGenerator* cg = _late_inlines.at(i);
3742       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3743     }
3744     Unique_Node_List useful;
3745     useful.push(root());
3746     for (uint next = 0; next < useful.size(); ++next) {
3747       Node* n  = useful.at(next);
3748       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3749         CallNode* call = n->as_Call();
3750         CallGenerator* cg = call->generator();
3751         cg->print_inlining_late("receiver not constant");
3752       }
3753       uint max = n->len();
3754       for ( uint i = 0; i < max; ++i ) {
3755         Node *m = n->in(i);
3756         if ( m == NULL ) continue;
3757         useful.push(m);
3758       }
3759     }
3760     for (int i = 0; i < _print_inlining_list->length(); i++) {
3761       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3762     }
3763   }
3764 }
3765 
3766 // Dump inlining replay data to the stream.
3767 // Don't change thread state and acquire any locks.
3768 void Compile::dump_inline_data(outputStream* out) {
3769   InlineTree* inl_tree = ilt();
3770   if (inl_tree != NULL) {
3771     out->print(" inline %d", inl_tree->count());
3772     inl_tree->dump_replay_data(out);
3773   }
3774 }
3775 
3776 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3777   if (n1->Opcode() < n2->Opcode())      return -1;
3778   else if (n1->Opcode() > n2->Opcode()) return 1;
3779 
3780   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3781   for (uint i = 1; i < n1->req(); i++) {
3782     if (n1->in(i) < n2->in(i))      return -1;
3783     else if (n1->in(i) > n2->in(i)) return 1;
3784   }
3785 
3786   return 0;
3787 }
3788 
3789 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3790   Node* n1 = *n1p;
3791   Node* n2 = *n2p;
3792 
3793   return cmp_expensive_nodes(n1, n2);
3794 }
3795 
3796 void Compile::sort_expensive_nodes() {
3797   if (!expensive_nodes_sorted()) {
3798     _expensive_nodes->sort(cmp_expensive_nodes);
3799   }
3800 }
3801 
3802 bool Compile::expensive_nodes_sorted() const {
3803   for (int i = 1; i < _expensive_nodes->length(); i++) {
3804     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3805       return false;
3806     }
3807   }
3808   return true;
3809 }
3810 
3811 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3812   if (_expensive_nodes->length() == 0) {
3813     return false;
3814   }
3815 
3816   assert(OptimizeExpensiveOps, "optimization off?");
3817 
3818   // Take this opportunity to remove dead nodes from the list
3819   int j = 0;
3820   for (int i = 0; i < _expensive_nodes->length(); i++) {
3821     Node* n = _expensive_nodes->at(i);
3822     if (!n->is_unreachable(igvn)) {
3823       assert(n->is_expensive(), "should be expensive");
3824       _expensive_nodes->at_put(j, n);
3825       j++;
3826     }
3827   }
3828   _expensive_nodes->trunc_to(j);
3829 
3830   // Then sort the list so that similar nodes are next to each other
3831   // and check for at least two nodes of identical kind with same data
3832   // inputs.
3833   sort_expensive_nodes();
3834 
3835   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3836     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3837       return true;
3838     }
3839   }
3840 
3841   return false;
3842 }
3843 
3844 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3845   if (_expensive_nodes->length() == 0) {
3846     return;
3847   }
3848 
3849   assert(OptimizeExpensiveOps, "optimization off?");
3850 
3851   // Sort to bring similar nodes next to each other and clear the
3852   // control input of nodes for which there's only a single copy.
3853   sort_expensive_nodes();
3854 
3855   int j = 0;
3856   int identical = 0;
3857   int i = 0;
3858   for (; i < _expensive_nodes->length()-1; i++) {
3859     assert(j <= i, "can't write beyond current index");
3860     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3861       identical++;
3862       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3863       continue;
3864     }
3865     if (identical > 0) {
3866       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3867       identical = 0;
3868     } else {
3869       Node* n = _expensive_nodes->at(i);
3870       igvn.hash_delete(n);
3871       n->set_req(0, NULL);
3872       igvn.hash_insert(n);
3873     }
3874   }
3875   if (identical > 0) {
3876     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3877   } else if (_expensive_nodes->length() >= 1) {
3878     Node* n = _expensive_nodes->at(i);
3879     igvn.hash_delete(n);
3880     n->set_req(0, NULL);
3881     igvn.hash_insert(n);
3882   }
3883   _expensive_nodes->trunc_to(j);
3884 }
3885 
3886 void Compile::add_expensive_node(Node * n) {
3887   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3888   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3889   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3890   if (OptimizeExpensiveOps) {
3891     _expensive_nodes->append(n);
3892   } else {
3893     // Clear control input and let IGVN optimize expensive nodes if
3894     // OptimizeExpensiveOps is off.
3895     n->set_req(0, NULL);
3896   }
3897 }
3898 
3899 /**
3900  * Remove the speculative part of types and clean up the graph
3901  */
3902 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3903   if (UseTypeSpeculation) {
3904     Unique_Node_List worklist;
3905     worklist.push(root());
3906     int modified = 0;
3907     // Go over all type nodes that carry a speculative type, drop the
3908     // speculative part of the type and enqueue the node for an igvn
3909     // which may optimize it out.
3910     for (uint next = 0; next < worklist.size(); ++next) {
3911       Node *n  = worklist.at(next);
3912       if (n->is_Type()) {
3913         TypeNode* tn = n->as_Type();
3914         const Type* t = tn->type();
3915         const Type* t_no_spec = t->remove_speculative();
3916         if (t_no_spec != t) {
3917           bool in_hash = igvn.hash_delete(n);
3918           assert(in_hash, "node should be in igvn hash table");
3919           tn->set_type(t_no_spec);
3920           igvn.hash_insert(n);
3921           igvn._worklist.push(n); // give it a chance to go away
3922           modified++;
3923         }
3924       }
3925       uint max = n->len();
3926       for( uint i = 0; i < max; ++i ) {
3927         Node *m = n->in(i);
3928         if (not_a_node(m))  continue;
3929         worklist.push(m);
3930       }
3931     }
3932     // Drop the speculative part of all types in the igvn's type table
3933     igvn.remove_speculative_types();
3934     if (modified > 0) {
3935       igvn.optimize();
3936     }
3937 #ifdef ASSERT
3938     // Verify that after the IGVN is over no speculative type has resurfaced
3939     worklist.clear();
3940     worklist.push(root());
3941     for (uint next = 0; next < worklist.size(); ++next) {
3942       Node *n  = worklist.at(next);
3943       const Type* t = igvn.type(n);
3944       assert(t == t->remove_speculative(), "no more speculative types");
3945       if (n->is_Type()) {
3946         t = n->as_Type()->type();
3947         assert(t == t->remove_speculative(), "no more speculative types");
3948       }
3949       uint max = n->len();
3950       for( uint i = 0; i < max; ++i ) {
3951         Node *m = n->in(i);
3952         if (not_a_node(m))  continue;
3953         worklist.push(m);
3954       }
3955     }
3956     igvn.check_no_speculative_types();
3957 #endif
3958   }
3959 }
3960 
3961 // Auxiliary method to support randomized stressing/fuzzing.
3962 //
3963 // This method can be called the arbitrary number of times, with current count
3964 // as the argument. The logic allows selecting a single candidate from the
3965 // running list of candidates as follows:
3966 //    int count = 0;
3967 //    Cand* selected = null;
3968 //    while(cand = cand->next()) {
3969 //      if (randomized_select(++count)) {
3970 //        selected = cand;
3971 //      }
3972 //    }
3973 //
3974 // Including count equalizes the chances any candidate is "selected".
3975 // This is useful when we don't have the complete list of candidates to choose
3976 // from uniformly. In this case, we need to adjust the randomicity of the
3977 // selection, or else we will end up biasing the selection towards the latter
3978 // candidates.
3979 //
3980 // Quick back-envelope calculation shows that for the list of n candidates
3981 // the equal probability for the candidate to persist as "best" can be
3982 // achieved by replacing it with "next" k-th candidate with the probability
3983 // of 1/k. It can be easily shown that by the end of the run, the
3984 // probability for any candidate is converged to 1/n, thus giving the
3985 // uniform distribution among all the candidates.
3986 //
3987 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3988 #define RANDOMIZED_DOMAIN_POW 29
3989 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3990 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3991 bool Compile::randomized_select(int count) {
3992   assert(count > 0, "only positive");
3993   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3994 }