1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifdef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69 #elif defined(PPC64)
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #else // all other
  75   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  76   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  77   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  78   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  79 #endif
  80   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  81   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  82   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  83   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  84   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  85   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  86   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  87   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  88   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  89   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  90   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  91   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  92   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  93   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  94   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  95   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  96   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  97   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  98 };
  99 
 100 // Map ideal registers (machine types) to ideal types
 101 const Type *Type::mreg2type[_last_machine_leaf];
 102 
 103 // Map basic types to canonical Type* pointers.
 104 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 105 
 106 // Map basic types to constant-zero Types.
 107 const Type* Type::            _zero_type[T_CONFLICT+1];
 108 
 109 // Map basic types to array-body alias types.
 110 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 111 
 112 //=============================================================================
 113 // Convenience common pre-built types.
 114 const Type *Type::ABIO;         // State-of-machine only
 115 const Type *Type::BOTTOM;       // All values
 116 const Type *Type::CONTROL;      // Control only
 117 const Type *Type::DOUBLE;       // All doubles
 118 const Type *Type::FLOAT;        // All floats
 119 const Type *Type::HALF;         // Placeholder half of doublewide type
 120 const Type *Type::MEMORY;       // Abstract store only
 121 const Type *Type::RETURN_ADDRESS;
 122 const Type *Type::TOP;          // No values in set
 123 
 124 //------------------------------get_const_type---------------------------
 125 const Type* Type::get_const_type(ciType* type) {
 126   if (type == NULL) {
 127     return NULL;
 128   } else if (type->is_primitive_type()) {
 129     return get_const_basic_type(type->basic_type());
 130   } else {
 131     return TypeOopPtr::make_from_klass(type->as_klass());
 132   }
 133 }
 134 
 135 //---------------------------array_element_basic_type---------------------------------
 136 // Mapping to the array element's basic type.
 137 BasicType Type::array_element_basic_type() const {
 138   BasicType bt = basic_type();
 139   if (bt == T_INT) {
 140     if (this == TypeInt::INT)   return T_INT;
 141     if (this == TypeInt::CHAR)  return T_CHAR;
 142     if (this == TypeInt::BYTE)  return T_BYTE;
 143     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 144     if (this == TypeInt::SHORT) return T_SHORT;
 145     return T_VOID;
 146   }
 147   return bt;
 148 }
 149 
 150 //---------------------------get_typeflow_type---------------------------------
 151 // Import a type produced by ciTypeFlow.
 152 const Type* Type::get_typeflow_type(ciType* type) {
 153   switch (type->basic_type()) {
 154 
 155   case ciTypeFlow::StateVector::T_BOTTOM:
 156     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 157     return Type::BOTTOM;
 158 
 159   case ciTypeFlow::StateVector::T_TOP:
 160     assert(type == ciTypeFlow::StateVector::top_type(), "");
 161     return Type::TOP;
 162 
 163   case ciTypeFlow::StateVector::T_NULL:
 164     assert(type == ciTypeFlow::StateVector::null_type(), "");
 165     return TypePtr::NULL_PTR;
 166 
 167   case ciTypeFlow::StateVector::T_LONG2:
 168     // The ciTypeFlow pass pushes a long, then the half.
 169     // We do the same.
 170     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 171     return TypeInt::TOP;
 172 
 173   case ciTypeFlow::StateVector::T_DOUBLE2:
 174     // The ciTypeFlow pass pushes double, then the half.
 175     // Our convention is the same.
 176     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 177     return Type::TOP;
 178 
 179   case T_ADDRESS:
 180     assert(type->is_return_address(), "");
 181     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 182 
 183   default:
 184     // make sure we did not mix up the cases:
 185     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 186     assert(type != ciTypeFlow::StateVector::top_type(), "");
 187     assert(type != ciTypeFlow::StateVector::null_type(), "");
 188     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 189     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 190     assert(!type->is_return_address(), "");
 191 
 192     return Type::get_const_type(type);
 193   }
 194 }
 195 
 196 
 197 //-----------------------make_from_constant------------------------------------
 198 const Type* Type::make_from_constant(ciConstant constant,
 199                                      bool require_constant, bool is_autobox_cache) {
 200   switch (constant.basic_type()) {
 201   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 202   case T_CHAR:     return TypeInt::make(constant.as_char());
 203   case T_BYTE:     return TypeInt::make(constant.as_byte());
 204   case T_SHORT:    return TypeInt::make(constant.as_short());
 205   case T_INT:      return TypeInt::make(constant.as_int());
 206   case T_LONG:     return TypeLong::make(constant.as_long());
 207   case T_FLOAT:    return TypeF::make(constant.as_float());
 208   case T_DOUBLE:   return TypeD::make(constant.as_double());
 209   case T_ARRAY:
 210   case T_OBJECT:
 211     {
 212       // cases:
 213       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 214       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 215       // An oop is not scavengable if it is in the perm gen.
 216       ciObject* oop_constant = constant.as_object();
 217       if (oop_constant->is_null_object()) {
 218         return Type::get_zero_type(T_OBJECT);
 219       } else if (require_constant || oop_constant->should_be_constant()) {
 220         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 221       }
 222     }
 223   }
 224   // Fall through to failure
 225   return NULL;
 226 }
 227 
 228 
 229 //------------------------------make-------------------------------------------
 230 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 231 // and look for an existing copy in the type dictionary.
 232 const Type *Type::make( enum TYPES t ) {
 233   return (new Type(t))->hashcons();
 234 }
 235 
 236 //------------------------------cmp--------------------------------------------
 237 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 238   if( t1->_base != t2->_base )
 239     return 1;                   // Missed badly
 240   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 241   return !t1->eq(t2);           // Return ZERO if equal
 242 }
 243 
 244 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 245   if (!include_speculative) {
 246     return remove_speculative();
 247   }
 248   return this;
 249 }
 250 
 251 //------------------------------hash-------------------------------------------
 252 int Type::uhash( const Type *const t ) {
 253   return t->hash();
 254 }
 255 
 256 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 257 
 258 //--------------------------Initialize_shared----------------------------------
 259 void Type::Initialize_shared(Compile* current) {
 260   // This method does not need to be locked because the first system
 261   // compilations (stub compilations) occur serially.  If they are
 262   // changed to proceed in parallel, then this section will need
 263   // locking.
 264 
 265   Arena* save = current->type_arena();
 266   Arena* shared_type_arena = new (mtCompiler)Arena();
 267 
 268   current->set_type_arena(shared_type_arena);
 269   _shared_type_dict =
 270     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 271                                   shared_type_arena, 128 );
 272   current->set_type_dict(_shared_type_dict);
 273 
 274   // Make shared pre-built types.
 275   CONTROL = make(Control);      // Control only
 276   TOP     = make(Top);          // No values in set
 277   MEMORY  = make(Memory);       // Abstract store only
 278   ABIO    = make(Abio);         // State-of-machine only
 279   RETURN_ADDRESS=make(Return_Address);
 280   FLOAT   = make(FloatBot);     // All floats
 281   DOUBLE  = make(DoubleBot);    // All doubles
 282   BOTTOM  = make(Bottom);       // Everything
 283   HALF    = make(Half);         // Placeholder half of doublewide type
 284 
 285   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 286   TypeF::ONE  = TypeF::make(1.0); // Float 1
 287 
 288   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 289   TypeD::ONE  = TypeD::make(1.0); // Double 1
 290 
 291   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 292   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 293   TypeInt::ONE     = TypeInt::make( 1);  //  1
 294   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 295   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 296   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 297   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 298   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 299   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 300   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 301   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 302   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 303   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 304   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 305   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 306   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 307   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 308   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 309   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 310   // CmpL is overloaded both as the bytecode computation returning
 311   // a trinary (-1,0,+1) integer result AND as an efficient long
 312   // compare returning optimizer ideal-type flags.
 313   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 314   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 315   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 316   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 317   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 318 
 319   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 320   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 321   TypeLong::ONE     = TypeLong::make( 1);        //  1
 322   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 323   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 324   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 325   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 326   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 327 
 328   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 329   fboth[0] = Type::CONTROL;
 330   fboth[1] = Type::CONTROL;
 331   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 332 
 333   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 334   ffalse[0] = Type::CONTROL;
 335   ffalse[1] = Type::TOP;
 336   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 337 
 338   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 339   fneither[0] = Type::TOP;
 340   fneither[1] = Type::TOP;
 341   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 342 
 343   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 344   ftrue[0] = Type::TOP;
 345   ftrue[1] = Type::CONTROL;
 346   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 347 
 348   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 349   floop[0] = Type::CONTROL;
 350   floop[1] = TypeInt::INT;
 351   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 352 
 353   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 354   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 355   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 356 
 357   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 358   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 359 
 360   const Type **fmembar = TypeTuple::fields(0);
 361   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 362 
 363   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 364   fsc[0] = TypeInt::CC;
 365   fsc[1] = Type::MEMORY;
 366   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 367 
 368   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 369   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 370   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 371   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 372                                            false, 0, oopDesc::mark_offset_in_bytes());
 373   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 374                                            false, 0, oopDesc::klass_offset_in_bytes());
 375   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
 376 
 377   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 378 
 379   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 380   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 381 
 382   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 383 
 384   mreg2type[Op_Node] = Type::BOTTOM;
 385   mreg2type[Op_Set ] = 0;
 386   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 387   mreg2type[Op_RegI] = TypeInt::INT;
 388   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 389   mreg2type[Op_RegF] = Type::FLOAT;
 390   mreg2type[Op_RegD] = Type::DOUBLE;
 391   mreg2type[Op_RegL] = TypeLong::LONG;
 392   mreg2type[Op_RegFlags] = TypeInt::CC;
 393 
 394   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 395 
 396   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 397 
 398 #ifdef _LP64
 399   if (UseCompressedOops) {
 400     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 401     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 402   } else
 403 #endif
 404   {
 405     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 406     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 407   }
 408   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 409   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 410   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 411   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 412   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 413   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 414   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 415 
 416   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 417   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 418   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 419   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 420   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 421   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 422   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 423   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 424   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 425   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 426   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 427   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 428 
 429   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 430   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 431 
 432   const Type **fi2c = TypeTuple::fields(2);
 433   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 434   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 435   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 436 
 437   const Type **intpair = TypeTuple::fields(2);
 438   intpair[0] = TypeInt::INT;
 439   intpair[1] = TypeInt::INT;
 440   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 441 
 442   const Type **longpair = TypeTuple::fields(2);
 443   longpair[0] = TypeLong::LONG;
 444   longpair[1] = TypeLong::LONG;
 445   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 446 
 447   const Type **intccpair = TypeTuple::fields(2);
 448   intccpair[0] = TypeInt::INT;
 449   intccpair[1] = TypeInt::CC;
 450   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 451 
 452   const Type **longccpair = TypeTuple::fields(2);
 453   longccpair[0] = TypeLong::LONG;
 454   longccpair[1] = TypeInt::CC;
 455   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 456 
 457   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 458   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 459   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 460   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 461   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 462   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 463   _const_basic_type[T_INT]         = TypeInt::INT;
 464   _const_basic_type[T_LONG]        = TypeLong::LONG;
 465   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 466   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 467   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 468   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 469   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 470   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 471   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 472 
 473   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 474   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 475   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 476   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 477   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 478   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 479   _zero_type[T_INT]         = TypeInt::ZERO;
 480   _zero_type[T_LONG]        = TypeLong::ZERO;
 481   _zero_type[T_FLOAT]       = TypeF::ZERO;
 482   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 483   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 484   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 485   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 486   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 487 
 488   // get_zero_type() should not happen for T_CONFLICT
 489   _zero_type[T_CONFLICT]= NULL;
 490 
 491   // Vector predefined types, it needs initialized _const_basic_type[].
 492   if (Matcher::vector_size_supported(T_BYTE,4)) {
 493     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 494   }
 495   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 496     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 497   }
 498   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 499     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 500   }
 501   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 502     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 503   }
 504   mreg2type[Op_VecS] = TypeVect::VECTS;
 505   mreg2type[Op_VecD] = TypeVect::VECTD;
 506   mreg2type[Op_VecX] = TypeVect::VECTX;
 507   mreg2type[Op_VecY] = TypeVect::VECTY;
 508 
 509   // Restore working type arena.
 510   current->set_type_arena(save);
 511   current->set_type_dict(NULL);
 512 }
 513 
 514 //------------------------------Initialize-------------------------------------
 515 void Type::Initialize(Compile* current) {
 516   assert(current->type_arena() != NULL, "must have created type arena");
 517 
 518   if (_shared_type_dict == NULL) {
 519     Initialize_shared(current);
 520   }
 521 
 522   Arena* type_arena = current->type_arena();
 523 
 524   // Create the hash-cons'ing dictionary with top-level storage allocation
 525   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 526   current->set_type_dict(tdic);
 527 
 528   // Transfer the shared types.
 529   DictI i(_shared_type_dict);
 530   for( ; i.test(); ++i ) {
 531     Type* t = (Type*)i._value;
 532     tdic->Insert(t,t);  // New Type, insert into Type table
 533   }
 534 }
 535 
 536 //------------------------------hashcons---------------------------------------
 537 // Do the hash-cons trick.  If the Type already exists in the type table,
 538 // delete the current Type and return the existing Type.  Otherwise stick the
 539 // current Type in the Type table.
 540 const Type *Type::hashcons(void) {
 541   debug_only(base());           // Check the assertion in Type::base().
 542   // Look up the Type in the Type dictionary
 543   Dict *tdic = type_dict();
 544   Type* old = (Type*)(tdic->Insert(this, this, false));
 545   if( old ) {                   // Pre-existing Type?
 546     if( old != this )           // Yes, this guy is not the pre-existing?
 547       delete this;              // Yes, Nuke this guy
 548     assert( old->_dual, "" );
 549     return old;                 // Return pre-existing
 550   }
 551 
 552   // Every type has a dual (to make my lattice symmetric).
 553   // Since we just discovered a new Type, compute its dual right now.
 554   assert( !_dual, "" );         // No dual yet
 555   _dual = xdual();              // Compute the dual
 556   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 557     _dual = this;
 558     return this;
 559   }
 560   assert( !_dual->_dual, "" );  // No reverse dual yet
 561   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 562   // New Type, insert into Type table
 563   tdic->Insert((void*)_dual,(void*)_dual);
 564   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 565 #ifdef ASSERT
 566   Type *dual_dual = (Type*)_dual->xdual();
 567   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 568   delete dual_dual;
 569 #endif
 570   return this;                  // Return new Type
 571 }
 572 
 573 //------------------------------eq---------------------------------------------
 574 // Structural equality check for Type representations
 575 bool Type::eq( const Type * ) const {
 576   return true;                  // Nothing else can go wrong
 577 }
 578 
 579 //------------------------------hash-------------------------------------------
 580 // Type-specific hashing function.
 581 int Type::hash(void) const {
 582   return _base;
 583 }
 584 
 585 //------------------------------is_finite--------------------------------------
 586 // Has a finite value
 587 bool Type::is_finite() const {
 588   return false;
 589 }
 590 
 591 //------------------------------is_nan-----------------------------------------
 592 // Is not a number (NaN)
 593 bool Type::is_nan()    const {
 594   return false;
 595 }
 596 
 597 //----------------------interface_vs_oop---------------------------------------
 598 #ifdef ASSERT
 599 bool Type::interface_vs_oop_helper(const Type *t) const {
 600   bool result = false;
 601 
 602   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 603   const TypePtr*    t_ptr =    t->make_ptr();
 604   if( this_ptr == NULL || t_ptr == NULL )
 605     return result;
 606 
 607   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 608   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 609   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 610     bool this_interface = this_inst->klass()->is_interface();
 611     bool    t_interface =    t_inst->klass()->is_interface();
 612     result = this_interface ^ t_interface;
 613   }
 614 
 615   return result;
 616 }
 617 
 618 bool Type::interface_vs_oop(const Type *t) const {
 619   if (interface_vs_oop_helper(t)) {
 620     return true;
 621   }
 622   // Now check the speculative parts as well
 623   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
 624   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
 625   if (this_spec != NULL && t_spec != NULL) {
 626     if (this_spec->interface_vs_oop_helper(t_spec)) {
 627       return true;
 628     }
 629     return false;
 630   }
 631   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 632     return true;
 633   }
 634   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 635     return true;
 636   }
 637   return false;
 638 }
 639 
 640 #endif
 641 
 642 //------------------------------meet-------------------------------------------
 643 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 644 // commutative and the lattice is symmetric.
 645 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 646   if (isa_narrowoop() && t->isa_narrowoop()) {
 647     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 648     return result->make_narrowoop();
 649   }
 650   if (isa_narrowklass() && t->isa_narrowklass()) {
 651     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 652     return result->make_narrowklass();
 653   }
 654 
 655   const Type *this_t = maybe_remove_speculative(include_speculative);
 656   t = t->maybe_remove_speculative(include_speculative);
 657 
 658   const Type *mt = this_t->xmeet(t);
 659   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 660   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 661 #ifdef ASSERT
 662   assert(mt == t->xmeet(this_t), "meet not commutative");
 663   const Type* dual_join = mt->_dual;
 664   const Type *t2t    = dual_join->xmeet(t->_dual);
 665   const Type *t2this = dual_join->xmeet(this_t->_dual);
 666 
 667   // Interface meet Oop is Not Symmetric:
 668   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 669   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 670 
 671   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 672     tty->print_cr("=== Meet Not Symmetric ===");
 673     tty->print("t   =                   ");              t->dump(); tty->cr();
 674     tty->print("this=                   ");         this_t->dump(); tty->cr();
 675     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 676 
 677     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 678     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 679     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 680 
 681     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 682     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 683 
 684     fatal("meet not symmetric" );
 685   }
 686 #endif
 687   return mt;
 688 }
 689 
 690 //------------------------------xmeet------------------------------------------
 691 // Compute the MEET of two types.  It returns a new Type object.
 692 const Type *Type::xmeet( const Type *t ) const {
 693   // Perform a fast test for common case; meeting the same types together.
 694   if( this == t ) return this;  // Meeting same type-rep?
 695 
 696   // Meeting TOP with anything?
 697   if( _base == Top ) return t;
 698 
 699   // Meeting BOTTOM with anything?
 700   if( _base == Bottom ) return BOTTOM;
 701 
 702   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 703   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 704   switch (t->base()) {  // Switch on original type
 705 
 706   // Cut in half the number of cases I must handle.  Only need cases for when
 707   // the given enum "t->type" is less than or equal to the local enum "type".
 708   case FloatCon:
 709   case DoubleCon:
 710   case Int:
 711   case Long:
 712     return t->xmeet(this);
 713 
 714   case OopPtr:
 715     return t->xmeet(this);
 716 
 717   case InstPtr:
 718     return t->xmeet(this);
 719 
 720   case MetadataPtr:
 721   case KlassPtr:
 722     return t->xmeet(this);
 723 
 724   case AryPtr:
 725     return t->xmeet(this);
 726 
 727   case NarrowOop:
 728     return t->xmeet(this);
 729 
 730   case NarrowKlass:
 731     return t->xmeet(this);
 732 
 733   case Bad:                     // Type check
 734   default:                      // Bogus type not in lattice
 735     typerr(t);
 736     return Type::BOTTOM;
 737 
 738   case Bottom:                  // Ye Olde Default
 739     return t;
 740 
 741   case FloatTop:
 742     if( _base == FloatTop ) return this;
 743   case FloatBot:                // Float
 744     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 745     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 746     typerr(t);
 747     return Type::BOTTOM;
 748 
 749   case DoubleTop:
 750     if( _base == DoubleTop ) return this;
 751   case DoubleBot:               // Double
 752     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 753     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 754     typerr(t);
 755     return Type::BOTTOM;
 756 
 757   // These next few cases must match exactly or it is a compile-time error.
 758   case Control:                 // Control of code
 759   case Abio:                    // State of world outside of program
 760   case Memory:
 761     if( _base == t->_base )  return this;
 762     typerr(t);
 763     return Type::BOTTOM;
 764 
 765   case Top:                     // Top of the lattice
 766     return this;
 767   }
 768 
 769   // The type is unchanged
 770   return this;
 771 }
 772 
 773 //-----------------------------filter------------------------------------------
 774 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 775   const Type* ft = join_helper(kills, include_speculative);
 776   if (ft->empty())
 777     return Type::TOP;           // Canonical empty value
 778   return ft;
 779 }
 780 
 781 //------------------------------xdual------------------------------------------
 782 // Compute dual right now.
 783 const Type::TYPES Type::dual_type[Type::lastype] = {
 784   Bad,          // Bad
 785   Control,      // Control
 786   Bottom,       // Top
 787   Bad,          // Int - handled in v-call
 788   Bad,          // Long - handled in v-call
 789   Half,         // Half
 790   Bad,          // NarrowOop - handled in v-call
 791   Bad,          // NarrowKlass - handled in v-call
 792 
 793   Bad,          // Tuple - handled in v-call
 794   Bad,          // Array - handled in v-call
 795   Bad,          // VectorS - handled in v-call
 796   Bad,          // VectorD - handled in v-call
 797   Bad,          // VectorX - handled in v-call
 798   Bad,          // VectorY - handled in v-call
 799 
 800   Bad,          // AnyPtr - handled in v-call
 801   Bad,          // RawPtr - handled in v-call
 802   Bad,          // OopPtr - handled in v-call
 803   Bad,          // InstPtr - handled in v-call
 804   Bad,          // AryPtr - handled in v-call
 805 
 806   Bad,          //  MetadataPtr - handled in v-call
 807   Bad,          // KlassPtr - handled in v-call
 808 
 809   Bad,          // Function - handled in v-call
 810   Abio,         // Abio
 811   Return_Address,// Return_Address
 812   Memory,       // Memory
 813   FloatBot,     // FloatTop
 814   FloatCon,     // FloatCon
 815   FloatTop,     // FloatBot
 816   DoubleBot,    // DoubleTop
 817   DoubleCon,    // DoubleCon
 818   DoubleTop,    // DoubleBot
 819   Top           // Bottom
 820 };
 821 
 822 const Type *Type::xdual() const {
 823   // Note: the base() accessor asserts the sanity of _base.
 824   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 825   return new Type(_type_info[_base].dual_type);
 826 }
 827 
 828 //------------------------------has_memory-------------------------------------
 829 bool Type::has_memory() const {
 830   Type::TYPES tx = base();
 831   if (tx == Memory) return true;
 832   if (tx == Tuple) {
 833     const TypeTuple *t = is_tuple();
 834     for (uint i=0; i < t->cnt(); i++) {
 835       tx = t->field_at(i)->base();
 836       if (tx == Memory)  return true;
 837     }
 838   }
 839   return false;
 840 }
 841 
 842 #ifndef PRODUCT
 843 //------------------------------dump2------------------------------------------
 844 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 845   st->print(_type_info[_base].msg);
 846 }
 847 
 848 //------------------------------dump-------------------------------------------
 849 void Type::dump_on(outputStream *st) const {
 850   ResourceMark rm;
 851   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 852   dump2(d,1, st);
 853   if (is_ptr_to_narrowoop()) {
 854     st->print(" [narrow]");
 855   } else if (is_ptr_to_narrowklass()) {
 856     st->print(" [narrowklass]");
 857   }
 858 }
 859 #endif
 860 
 861 //------------------------------singleton--------------------------------------
 862 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 863 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 864 bool Type::singleton(void) const {
 865   return _base == Top || _base == Half;
 866 }
 867 
 868 //------------------------------empty------------------------------------------
 869 // TRUE if Type is a type with no values, FALSE otherwise.
 870 bool Type::empty(void) const {
 871   switch (_base) {
 872   case DoubleTop:
 873   case FloatTop:
 874   case Top:
 875     return true;
 876 
 877   case Half:
 878   case Abio:
 879   case Return_Address:
 880   case Memory:
 881   case Bottom:
 882   case FloatBot:
 883   case DoubleBot:
 884     return false;  // never a singleton, therefore never empty
 885   }
 886 
 887   ShouldNotReachHere();
 888   return false;
 889 }
 890 
 891 //------------------------------dump_stats-------------------------------------
 892 // Dump collected statistics to stderr
 893 #ifndef PRODUCT
 894 void Type::dump_stats() {
 895   tty->print("Types made: %d\n", type_dict()->Size());
 896 }
 897 #endif
 898 
 899 //------------------------------typerr-----------------------------------------
 900 void Type::typerr( const Type *t ) const {
 901 #ifndef PRODUCT
 902   tty->print("\nError mixing types: ");
 903   dump();
 904   tty->print(" and ");
 905   t->dump();
 906   tty->print("\n");
 907 #endif
 908   ShouldNotReachHere();
 909 }
 910 
 911 
 912 //=============================================================================
 913 // Convenience common pre-built types.
 914 const TypeF *TypeF::ZERO;       // Floating point zero
 915 const TypeF *TypeF::ONE;        // Floating point one
 916 
 917 //------------------------------make-------------------------------------------
 918 // Create a float constant
 919 const TypeF *TypeF::make(float f) {
 920   return (TypeF*)(new TypeF(f))->hashcons();
 921 }
 922 
 923 //------------------------------meet-------------------------------------------
 924 // Compute the MEET of two types.  It returns a new Type object.
 925 const Type *TypeF::xmeet( const Type *t ) const {
 926   // Perform a fast test for common case; meeting the same types together.
 927   if( this == t ) return this;  // Meeting same type-rep?
 928 
 929   // Current "this->_base" is FloatCon
 930   switch (t->base()) {          // Switch on original type
 931   case AnyPtr:                  // Mixing with oops happens when javac
 932   case RawPtr:                  // reuses local variables
 933   case OopPtr:
 934   case InstPtr:
 935   case AryPtr:
 936   case MetadataPtr:
 937   case KlassPtr:
 938   case NarrowOop:
 939   case NarrowKlass:
 940   case Int:
 941   case Long:
 942   case DoubleTop:
 943   case DoubleCon:
 944   case DoubleBot:
 945   case Bottom:                  // Ye Olde Default
 946     return Type::BOTTOM;
 947 
 948   case FloatBot:
 949     return t;
 950 
 951   default:                      // All else is a mistake
 952     typerr(t);
 953 
 954   case FloatCon:                // Float-constant vs Float-constant?
 955     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 956                                 // must compare bitwise as positive zero, negative zero and NaN have
 957                                 // all the same representation in C++
 958       return FLOAT;             // Return generic float
 959                                 // Equal constants
 960   case Top:
 961   case FloatTop:
 962     break;                      // Return the float constant
 963   }
 964   return this;                  // Return the float constant
 965 }
 966 
 967 //------------------------------xdual------------------------------------------
 968 // Dual: symmetric
 969 const Type *TypeF::xdual() const {
 970   return this;
 971 }
 972 
 973 //------------------------------eq---------------------------------------------
 974 // Structural equality check for Type representations
 975 bool TypeF::eq( const Type *t ) const {
 976   if( g_isnan(_f) ||
 977       g_isnan(t->getf()) ) {
 978     // One or both are NANs.  If both are NANs return true, else false.
 979     return (g_isnan(_f) && g_isnan(t->getf()));
 980   }
 981   if (_f == t->getf()) {
 982     // (NaN is impossible at this point, since it is not equal even to itself)
 983     if (_f == 0.0) {
 984       // difference between positive and negative zero
 985       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 986     }
 987     return true;
 988   }
 989   return false;
 990 }
 991 
 992 //------------------------------hash-------------------------------------------
 993 // Type-specific hashing function.
 994 int TypeF::hash(void) const {
 995   return *(int*)(&_f);
 996 }
 997 
 998 //------------------------------is_finite--------------------------------------
 999 // Has a finite value
1000 bool TypeF::is_finite() const {
1001   return g_isfinite(getf()) != 0;
1002 }
1003 
1004 //------------------------------is_nan-----------------------------------------
1005 // Is not a number (NaN)
1006 bool TypeF::is_nan()    const {
1007   return g_isnan(getf()) != 0;
1008 }
1009 
1010 //------------------------------dump2------------------------------------------
1011 // Dump float constant Type
1012 #ifndef PRODUCT
1013 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1014   Type::dump2(d,depth, st);
1015   st->print("%f", _f);
1016 }
1017 #endif
1018 
1019 //------------------------------singleton--------------------------------------
1020 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1021 // constants (Ldi nodes).  Singletons are integer, float or double constants
1022 // or a single symbol.
1023 bool TypeF::singleton(void) const {
1024   return true;                  // Always a singleton
1025 }
1026 
1027 bool TypeF::empty(void) const {
1028   return false;                 // always exactly a singleton
1029 }
1030 
1031 //=============================================================================
1032 // Convenience common pre-built types.
1033 const TypeD *TypeD::ZERO;       // Floating point zero
1034 const TypeD *TypeD::ONE;        // Floating point one
1035 
1036 //------------------------------make-------------------------------------------
1037 const TypeD *TypeD::make(double d) {
1038   return (TypeD*)(new TypeD(d))->hashcons();
1039 }
1040 
1041 //------------------------------meet-------------------------------------------
1042 // Compute the MEET of two types.  It returns a new Type object.
1043 const Type *TypeD::xmeet( const Type *t ) const {
1044   // Perform a fast test for common case; meeting the same types together.
1045   if( this == t ) return this;  // Meeting same type-rep?
1046 
1047   // Current "this->_base" is DoubleCon
1048   switch (t->base()) {          // Switch on original type
1049   case AnyPtr:                  // Mixing with oops happens when javac
1050   case RawPtr:                  // reuses local variables
1051   case OopPtr:
1052   case InstPtr:
1053   case AryPtr:
1054   case MetadataPtr:
1055   case KlassPtr:
1056   case NarrowOop:
1057   case NarrowKlass:
1058   case Int:
1059   case Long:
1060   case FloatTop:
1061   case FloatCon:
1062   case FloatBot:
1063   case Bottom:                  // Ye Olde Default
1064     return Type::BOTTOM;
1065 
1066   case DoubleBot:
1067     return t;
1068 
1069   default:                      // All else is a mistake
1070     typerr(t);
1071 
1072   case DoubleCon:               // Double-constant vs Double-constant?
1073     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1074       return DOUBLE;            // Return generic double
1075   case Top:
1076   case DoubleTop:
1077     break;
1078   }
1079   return this;                  // Return the double constant
1080 }
1081 
1082 //------------------------------xdual------------------------------------------
1083 // Dual: symmetric
1084 const Type *TypeD::xdual() const {
1085   return this;
1086 }
1087 
1088 //------------------------------eq---------------------------------------------
1089 // Structural equality check for Type representations
1090 bool TypeD::eq( const Type *t ) const {
1091   if( g_isnan(_d) ||
1092       g_isnan(t->getd()) ) {
1093     // One or both are NANs.  If both are NANs return true, else false.
1094     return (g_isnan(_d) && g_isnan(t->getd()));
1095   }
1096   if (_d == t->getd()) {
1097     // (NaN is impossible at this point, since it is not equal even to itself)
1098     if (_d == 0.0) {
1099       // difference between positive and negative zero
1100       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1101     }
1102     return true;
1103   }
1104   return false;
1105 }
1106 
1107 //------------------------------hash-------------------------------------------
1108 // Type-specific hashing function.
1109 int TypeD::hash(void) const {
1110   return *(int*)(&_d);
1111 }
1112 
1113 //------------------------------is_finite--------------------------------------
1114 // Has a finite value
1115 bool TypeD::is_finite() const {
1116   return g_isfinite(getd()) != 0;
1117 }
1118 
1119 //------------------------------is_nan-----------------------------------------
1120 // Is not a number (NaN)
1121 bool TypeD::is_nan()    const {
1122   return g_isnan(getd()) != 0;
1123 }
1124 
1125 //------------------------------dump2------------------------------------------
1126 // Dump double constant Type
1127 #ifndef PRODUCT
1128 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1129   Type::dump2(d,depth,st);
1130   st->print("%f", _d);
1131 }
1132 #endif
1133 
1134 //------------------------------singleton--------------------------------------
1135 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1136 // constants (Ldi nodes).  Singletons are integer, float or double constants
1137 // or a single symbol.
1138 bool TypeD::singleton(void) const {
1139   return true;                  // Always a singleton
1140 }
1141 
1142 bool TypeD::empty(void) const {
1143   return false;                 // always exactly a singleton
1144 }
1145 
1146 //=============================================================================
1147 // Convience common pre-built types.
1148 const TypeInt *TypeInt::MINUS_1;// -1
1149 const TypeInt *TypeInt::ZERO;   // 0
1150 const TypeInt *TypeInt::ONE;    // 1
1151 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1152 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1153 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1154 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1155 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1156 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1157 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1158 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1159 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1160 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1161 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1162 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1163 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1164 const TypeInt *TypeInt::INT;    // 32-bit integers
1165 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1166 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1167 
1168 //------------------------------TypeInt----------------------------------------
1169 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1170 }
1171 
1172 //------------------------------make-------------------------------------------
1173 const TypeInt *TypeInt::make( jint lo ) {
1174   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1175 }
1176 
1177 static int normalize_int_widen( jint lo, jint hi, int w ) {
1178   // Certain normalizations keep us sane when comparing types.
1179   // The 'SMALLINT' covers constants and also CC and its relatives.
1180   if (lo <= hi) {
1181     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1182     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1183   } else {
1184     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1185     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1186   }
1187   return w;
1188 }
1189 
1190 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1191   w = normalize_int_widen(lo, hi, w);
1192   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1193 }
1194 
1195 //------------------------------meet-------------------------------------------
1196 // Compute the MEET of two types.  It returns a new Type representation object
1197 // with reference count equal to the number of Types pointing at it.
1198 // Caller should wrap a Types around it.
1199 const Type *TypeInt::xmeet( const Type *t ) const {
1200   // Perform a fast test for common case; meeting the same types together.
1201   if( this == t ) return this;  // Meeting same type?
1202 
1203   // Currently "this->_base" is a TypeInt
1204   switch (t->base()) {          // Switch on original type
1205   case AnyPtr:                  // Mixing with oops happens when javac
1206   case RawPtr:                  // reuses local variables
1207   case OopPtr:
1208   case InstPtr:
1209   case AryPtr:
1210   case MetadataPtr:
1211   case KlassPtr:
1212   case NarrowOop:
1213   case NarrowKlass:
1214   case Long:
1215   case FloatTop:
1216   case FloatCon:
1217   case FloatBot:
1218   case DoubleTop:
1219   case DoubleCon:
1220   case DoubleBot:
1221   case Bottom:                  // Ye Olde Default
1222     return Type::BOTTOM;
1223   default:                      // All else is a mistake
1224     typerr(t);
1225   case Top:                     // No change
1226     return this;
1227   case Int:                     // Int vs Int?
1228     break;
1229   }
1230 
1231   // Expand covered set
1232   const TypeInt *r = t->is_int();
1233   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1234 }
1235 
1236 //------------------------------xdual------------------------------------------
1237 // Dual: reverse hi & lo; flip widen
1238 const Type *TypeInt::xdual() const {
1239   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1240   return new TypeInt(_hi,_lo,w);
1241 }
1242 
1243 //------------------------------widen------------------------------------------
1244 // Only happens for optimistic top-down optimizations.
1245 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1246   // Coming from TOP or such; no widening
1247   if( old->base() != Int ) return this;
1248   const TypeInt *ot = old->is_int();
1249 
1250   // If new guy is equal to old guy, no widening
1251   if( _lo == ot->_lo && _hi == ot->_hi )
1252     return old;
1253 
1254   // If new guy contains old, then we widened
1255   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1256     // New contains old
1257     // If new guy is already wider than old, no widening
1258     if( _widen > ot->_widen ) return this;
1259     // If old guy was a constant, do not bother
1260     if (ot->_lo == ot->_hi)  return this;
1261     // Now widen new guy.
1262     // Check for widening too far
1263     if (_widen == WidenMax) {
1264       int max = max_jint;
1265       int min = min_jint;
1266       if (limit->isa_int()) {
1267         max = limit->is_int()->_hi;
1268         min = limit->is_int()->_lo;
1269       }
1270       if (min < _lo && _hi < max) {
1271         // If neither endpoint is extremal yet, push out the endpoint
1272         // which is closer to its respective limit.
1273         if (_lo >= 0 ||                 // easy common case
1274             (juint)(_lo - min) >= (juint)(max - _hi)) {
1275           // Try to widen to an unsigned range type of 31 bits:
1276           return make(_lo, max, WidenMax);
1277         } else {
1278           return make(min, _hi, WidenMax);
1279         }
1280       }
1281       return TypeInt::INT;
1282     }
1283     // Returned widened new guy
1284     return make(_lo,_hi,_widen+1);
1285   }
1286 
1287   // If old guy contains new, then we probably widened too far & dropped to
1288   // bottom.  Return the wider fellow.
1289   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1290     return old;
1291 
1292   //fatal("Integer value range is not subset");
1293   //return this;
1294   return TypeInt::INT;
1295 }
1296 
1297 //------------------------------narrow---------------------------------------
1298 // Only happens for pessimistic optimizations.
1299 const Type *TypeInt::narrow( const Type *old ) const {
1300   if (_lo >= _hi)  return this;   // already narrow enough
1301   if (old == NULL)  return this;
1302   const TypeInt* ot = old->isa_int();
1303   if (ot == NULL)  return this;
1304   jint olo = ot->_lo;
1305   jint ohi = ot->_hi;
1306 
1307   // If new guy is equal to old guy, no narrowing
1308   if (_lo == olo && _hi == ohi)  return old;
1309 
1310   // If old guy was maximum range, allow the narrowing
1311   if (olo == min_jint && ohi == max_jint)  return this;
1312 
1313   if (_lo < olo || _hi > ohi)
1314     return this;                // doesn't narrow; pretty wierd
1315 
1316   // The new type narrows the old type, so look for a "death march".
1317   // See comments on PhaseTransform::saturate.
1318   juint nrange = _hi - _lo;
1319   juint orange = ohi - olo;
1320   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1321     // Use the new type only if the range shrinks a lot.
1322     // We do not want the optimizer computing 2^31 point by point.
1323     return old;
1324   }
1325 
1326   return this;
1327 }
1328 
1329 //-----------------------------filter------------------------------------------
1330 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1331   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1332   if (ft == NULL || ft->empty())
1333     return Type::TOP;           // Canonical empty value
1334   if (ft->_widen < this->_widen) {
1335     // Do not allow the value of kill->_widen to affect the outcome.
1336     // The widen bits must be allowed to run freely through the graph.
1337     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1338   }
1339   return ft;
1340 }
1341 
1342 //------------------------------eq---------------------------------------------
1343 // Structural equality check for Type representations
1344 bool TypeInt::eq( const Type *t ) const {
1345   const TypeInt *r = t->is_int(); // Handy access
1346   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1347 }
1348 
1349 //------------------------------hash-------------------------------------------
1350 // Type-specific hashing function.
1351 int TypeInt::hash(void) const {
1352   return _lo+_hi+_widen+(int)Type::Int;
1353 }
1354 
1355 //------------------------------is_finite--------------------------------------
1356 // Has a finite value
1357 bool TypeInt::is_finite() const {
1358   return true;
1359 }
1360 
1361 //------------------------------dump2------------------------------------------
1362 // Dump TypeInt
1363 #ifndef PRODUCT
1364 static const char* intname(char* buf, jint n) {
1365   if (n == min_jint)
1366     return "min";
1367   else if (n < min_jint + 10000)
1368     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1369   else if (n == max_jint)
1370     return "max";
1371   else if (n > max_jint - 10000)
1372     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1373   else
1374     sprintf(buf, INT32_FORMAT, n);
1375   return buf;
1376 }
1377 
1378 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1379   char buf[40], buf2[40];
1380   if (_lo == min_jint && _hi == max_jint)
1381     st->print("int");
1382   else if (is_con())
1383     st->print("int:%s", intname(buf, get_con()));
1384   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1385     st->print("bool");
1386   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1387     st->print("byte");
1388   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1389     st->print("char");
1390   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1391     st->print("short");
1392   else if (_hi == max_jint)
1393     st->print("int:>=%s", intname(buf, _lo));
1394   else if (_lo == min_jint)
1395     st->print("int:<=%s", intname(buf, _hi));
1396   else
1397     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1398 
1399   if (_widen != 0 && this != TypeInt::INT)
1400     st->print(":%.*s", _widen, "wwww");
1401 }
1402 #endif
1403 
1404 //------------------------------singleton--------------------------------------
1405 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1406 // constants.
1407 bool TypeInt::singleton(void) const {
1408   return _lo >= _hi;
1409 }
1410 
1411 bool TypeInt::empty(void) const {
1412   return _lo > _hi;
1413 }
1414 
1415 //=============================================================================
1416 // Convenience common pre-built types.
1417 const TypeLong *TypeLong::MINUS_1;// -1
1418 const TypeLong *TypeLong::ZERO; // 0
1419 const TypeLong *TypeLong::ONE;  // 1
1420 const TypeLong *TypeLong::POS;  // >=0
1421 const TypeLong *TypeLong::LONG; // 64-bit integers
1422 const TypeLong *TypeLong::INT;  // 32-bit subrange
1423 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1424 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1425 
1426 //------------------------------TypeLong---------------------------------------
1427 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1428 }
1429 
1430 //------------------------------make-------------------------------------------
1431 const TypeLong *TypeLong::make( jlong lo ) {
1432   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1433 }
1434 
1435 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1436   // Certain normalizations keep us sane when comparing types.
1437   // The 'SMALLINT' covers constants.
1438   if (lo <= hi) {
1439     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1440     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1441   } else {
1442     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1443     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1444   }
1445   return w;
1446 }
1447 
1448 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1449   w = normalize_long_widen(lo, hi, w);
1450   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1451 }
1452 
1453 
1454 //------------------------------meet-------------------------------------------
1455 // Compute the MEET of two types.  It returns a new Type representation object
1456 // with reference count equal to the number of Types pointing at it.
1457 // Caller should wrap a Types around it.
1458 const Type *TypeLong::xmeet( const Type *t ) const {
1459   // Perform a fast test for common case; meeting the same types together.
1460   if( this == t ) return this;  // Meeting same type?
1461 
1462   // Currently "this->_base" is a TypeLong
1463   switch (t->base()) {          // Switch on original type
1464   case AnyPtr:                  // Mixing with oops happens when javac
1465   case RawPtr:                  // reuses local variables
1466   case OopPtr:
1467   case InstPtr:
1468   case AryPtr:
1469   case MetadataPtr:
1470   case KlassPtr:
1471   case NarrowOop:
1472   case NarrowKlass:
1473   case Int:
1474   case FloatTop:
1475   case FloatCon:
1476   case FloatBot:
1477   case DoubleTop:
1478   case DoubleCon:
1479   case DoubleBot:
1480   case Bottom:                  // Ye Olde Default
1481     return Type::BOTTOM;
1482   default:                      // All else is a mistake
1483     typerr(t);
1484   case Top:                     // No change
1485     return this;
1486   case Long:                    // Long vs Long?
1487     break;
1488   }
1489 
1490   // Expand covered set
1491   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1492   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1493 }
1494 
1495 //------------------------------xdual------------------------------------------
1496 // Dual: reverse hi & lo; flip widen
1497 const Type *TypeLong::xdual() const {
1498   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1499   return new TypeLong(_hi,_lo,w);
1500 }
1501 
1502 //------------------------------widen------------------------------------------
1503 // Only happens for optimistic top-down optimizations.
1504 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1505   // Coming from TOP or such; no widening
1506   if( old->base() != Long ) return this;
1507   const TypeLong *ot = old->is_long();
1508 
1509   // If new guy is equal to old guy, no widening
1510   if( _lo == ot->_lo && _hi == ot->_hi )
1511     return old;
1512 
1513   // If new guy contains old, then we widened
1514   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1515     // New contains old
1516     // If new guy is already wider than old, no widening
1517     if( _widen > ot->_widen ) return this;
1518     // If old guy was a constant, do not bother
1519     if (ot->_lo == ot->_hi)  return this;
1520     // Now widen new guy.
1521     // Check for widening too far
1522     if (_widen == WidenMax) {
1523       jlong max = max_jlong;
1524       jlong min = min_jlong;
1525       if (limit->isa_long()) {
1526         max = limit->is_long()->_hi;
1527         min = limit->is_long()->_lo;
1528       }
1529       if (min < _lo && _hi < max) {
1530         // If neither endpoint is extremal yet, push out the endpoint
1531         // which is closer to its respective limit.
1532         if (_lo >= 0 ||                 // easy common case
1533             (julong)(_lo - min) >= (julong)(max - _hi)) {
1534           // Try to widen to an unsigned range type of 32/63 bits:
1535           if (max >= max_juint && _hi < max_juint)
1536             return make(_lo, max_juint, WidenMax);
1537           else
1538             return make(_lo, max, WidenMax);
1539         } else {
1540           return make(min, _hi, WidenMax);
1541         }
1542       }
1543       return TypeLong::LONG;
1544     }
1545     // Returned widened new guy
1546     return make(_lo,_hi,_widen+1);
1547   }
1548 
1549   // If old guy contains new, then we probably widened too far & dropped to
1550   // bottom.  Return the wider fellow.
1551   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1552     return old;
1553 
1554   //  fatal("Long value range is not subset");
1555   // return this;
1556   return TypeLong::LONG;
1557 }
1558 
1559 //------------------------------narrow----------------------------------------
1560 // Only happens for pessimistic optimizations.
1561 const Type *TypeLong::narrow( const Type *old ) const {
1562   if (_lo >= _hi)  return this;   // already narrow enough
1563   if (old == NULL)  return this;
1564   const TypeLong* ot = old->isa_long();
1565   if (ot == NULL)  return this;
1566   jlong olo = ot->_lo;
1567   jlong ohi = ot->_hi;
1568 
1569   // If new guy is equal to old guy, no narrowing
1570   if (_lo == olo && _hi == ohi)  return old;
1571 
1572   // If old guy was maximum range, allow the narrowing
1573   if (olo == min_jlong && ohi == max_jlong)  return this;
1574 
1575   if (_lo < olo || _hi > ohi)
1576     return this;                // doesn't narrow; pretty wierd
1577 
1578   // The new type narrows the old type, so look for a "death march".
1579   // See comments on PhaseTransform::saturate.
1580   julong nrange = _hi - _lo;
1581   julong orange = ohi - olo;
1582   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1583     // Use the new type only if the range shrinks a lot.
1584     // We do not want the optimizer computing 2^31 point by point.
1585     return old;
1586   }
1587 
1588   return this;
1589 }
1590 
1591 //-----------------------------filter------------------------------------------
1592 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1593   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1594   if (ft == NULL || ft->empty())
1595     return Type::TOP;           // Canonical empty value
1596   if (ft->_widen < this->_widen) {
1597     // Do not allow the value of kill->_widen to affect the outcome.
1598     // The widen bits must be allowed to run freely through the graph.
1599     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1600   }
1601   return ft;
1602 }
1603 
1604 //------------------------------eq---------------------------------------------
1605 // Structural equality check for Type representations
1606 bool TypeLong::eq( const Type *t ) const {
1607   const TypeLong *r = t->is_long(); // Handy access
1608   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1609 }
1610 
1611 //------------------------------hash-------------------------------------------
1612 // Type-specific hashing function.
1613 int TypeLong::hash(void) const {
1614   return (int)(_lo+_hi+_widen+(int)Type::Long);
1615 }
1616 
1617 //------------------------------is_finite--------------------------------------
1618 // Has a finite value
1619 bool TypeLong::is_finite() const {
1620   return true;
1621 }
1622 
1623 //------------------------------dump2------------------------------------------
1624 // Dump TypeLong
1625 #ifndef PRODUCT
1626 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1627   if (n > x) {
1628     if (n >= x + 10000)  return NULL;
1629     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1630   } else if (n < x) {
1631     if (n <= x - 10000)  return NULL;
1632     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1633   } else {
1634     return xname;
1635   }
1636   return buf;
1637 }
1638 
1639 static const char* longname(char* buf, jlong n) {
1640   const char* str;
1641   if (n == min_jlong)
1642     return "min";
1643   else if (n < min_jlong + 10000)
1644     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1645   else if (n == max_jlong)
1646     return "max";
1647   else if (n > max_jlong - 10000)
1648     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1649   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1650     return str;
1651   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1652     return str;
1653   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1654     return str;
1655   else
1656     sprintf(buf, JLONG_FORMAT, n);
1657   return buf;
1658 }
1659 
1660 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1661   char buf[80], buf2[80];
1662   if (_lo == min_jlong && _hi == max_jlong)
1663     st->print("long");
1664   else if (is_con())
1665     st->print("long:%s", longname(buf, get_con()));
1666   else if (_hi == max_jlong)
1667     st->print("long:>=%s", longname(buf, _lo));
1668   else if (_lo == min_jlong)
1669     st->print("long:<=%s", longname(buf, _hi));
1670   else
1671     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1672 
1673   if (_widen != 0 && this != TypeLong::LONG)
1674     st->print(":%.*s", _widen, "wwww");
1675 }
1676 #endif
1677 
1678 //------------------------------singleton--------------------------------------
1679 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1680 // constants
1681 bool TypeLong::singleton(void) const {
1682   return _lo >= _hi;
1683 }
1684 
1685 bool TypeLong::empty(void) const {
1686   return _lo > _hi;
1687 }
1688 
1689 //=============================================================================
1690 // Convenience common pre-built types.
1691 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1692 const TypeTuple *TypeTuple::IFFALSE;
1693 const TypeTuple *TypeTuple::IFTRUE;
1694 const TypeTuple *TypeTuple::IFNEITHER;
1695 const TypeTuple *TypeTuple::LOOPBODY;
1696 const TypeTuple *TypeTuple::MEMBAR;
1697 const TypeTuple *TypeTuple::STORECONDITIONAL;
1698 const TypeTuple *TypeTuple::START_I2C;
1699 const TypeTuple *TypeTuple::INT_PAIR;
1700 const TypeTuple *TypeTuple::LONG_PAIR;
1701 const TypeTuple *TypeTuple::INT_CC_PAIR;
1702 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1703 
1704 
1705 //------------------------------make-------------------------------------------
1706 // Make a TypeTuple from the range of a method signature
1707 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1708   ciType* return_type = sig->return_type();
1709   uint total_fields = TypeFunc::Parms + return_type->size();
1710   const Type **field_array = fields(total_fields);
1711   switch (return_type->basic_type()) {
1712   case T_LONG:
1713     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1714     field_array[TypeFunc::Parms+1] = Type::HALF;
1715     break;
1716   case T_DOUBLE:
1717     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1718     field_array[TypeFunc::Parms+1] = Type::HALF;
1719     break;
1720   case T_OBJECT:
1721   case T_ARRAY:
1722   case T_BOOLEAN:
1723   case T_CHAR:
1724   case T_FLOAT:
1725   case T_BYTE:
1726   case T_SHORT:
1727   case T_INT:
1728     field_array[TypeFunc::Parms] = get_const_type(return_type);
1729     break;
1730   case T_VOID:
1731     break;
1732   default:
1733     ShouldNotReachHere();
1734   }
1735   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1736 }
1737 
1738 // Make a TypeTuple from the domain of a method signature
1739 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1740   uint total_fields = TypeFunc::Parms + sig->size();
1741 
1742   uint pos = TypeFunc::Parms;
1743   const Type **field_array;
1744   if (recv != NULL) {
1745     total_fields++;
1746     field_array = fields(total_fields);
1747     // Use get_const_type here because it respects UseUniqueSubclasses:
1748     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1749   } else {
1750     field_array = fields(total_fields);
1751   }
1752 
1753   int i = 0;
1754   while (pos < total_fields) {
1755     ciType* type = sig->type_at(i);
1756 
1757     switch (type->basic_type()) {
1758     case T_LONG:
1759       field_array[pos++] = TypeLong::LONG;
1760       field_array[pos++] = Type::HALF;
1761       break;
1762     case T_DOUBLE:
1763       field_array[pos++] = Type::DOUBLE;
1764       field_array[pos++] = Type::HALF;
1765       break;
1766     case T_OBJECT:
1767     case T_ARRAY:
1768     case T_BOOLEAN:
1769     case T_CHAR:
1770     case T_FLOAT:
1771     case T_BYTE:
1772     case T_SHORT:
1773     case T_INT:
1774       field_array[pos++] = get_const_type(type);
1775       break;
1776     default:
1777       ShouldNotReachHere();
1778     }
1779     i++;
1780   }
1781   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1782 }
1783 
1784 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1785   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1786 }
1787 
1788 //------------------------------fields-----------------------------------------
1789 // Subroutine call type with space allocated for argument types
1790 const Type **TypeTuple::fields( uint arg_cnt ) {
1791   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1792   flds[TypeFunc::Control  ] = Type::CONTROL;
1793   flds[TypeFunc::I_O      ] = Type::ABIO;
1794   flds[TypeFunc::Memory   ] = Type::MEMORY;
1795   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1796   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1797 
1798   return flds;
1799 }
1800 
1801 //------------------------------meet-------------------------------------------
1802 // Compute the MEET of two types.  It returns a new Type object.
1803 const Type *TypeTuple::xmeet( const Type *t ) const {
1804   // Perform a fast test for common case; meeting the same types together.
1805   if( this == t ) return this;  // Meeting same type-rep?
1806 
1807   // Current "this->_base" is Tuple
1808   switch (t->base()) {          // switch on original type
1809 
1810   case Bottom:                  // Ye Olde Default
1811     return t;
1812 
1813   default:                      // All else is a mistake
1814     typerr(t);
1815 
1816   case Tuple: {                 // Meeting 2 signatures?
1817     const TypeTuple *x = t->is_tuple();
1818     assert( _cnt == x->_cnt, "" );
1819     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1820     for( uint i=0; i<_cnt; i++ )
1821       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1822     return TypeTuple::make(_cnt,fields);
1823   }
1824   case Top:
1825     break;
1826   }
1827   return this;                  // Return the double constant
1828 }
1829 
1830 //------------------------------xdual------------------------------------------
1831 // Dual: compute field-by-field dual
1832 const Type *TypeTuple::xdual() const {
1833   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1834   for( uint i=0; i<_cnt; i++ )
1835     fields[i] = _fields[i]->dual();
1836   return new TypeTuple(_cnt,fields);
1837 }
1838 
1839 //------------------------------eq---------------------------------------------
1840 // Structural equality check for Type representations
1841 bool TypeTuple::eq( const Type *t ) const {
1842   const TypeTuple *s = (const TypeTuple *)t;
1843   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1844   for (uint i = 0; i < _cnt; i++)
1845     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1846       return false;             // Missed
1847   return true;
1848 }
1849 
1850 //------------------------------hash-------------------------------------------
1851 // Type-specific hashing function.
1852 int TypeTuple::hash(void) const {
1853   intptr_t sum = _cnt;
1854   for( uint i=0; i<_cnt; i++ )
1855     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1856   return sum;
1857 }
1858 
1859 //------------------------------dump2------------------------------------------
1860 // Dump signature Type
1861 #ifndef PRODUCT
1862 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1863   st->print("{");
1864   if( !depth || d[this] ) {     // Check for recursive print
1865     st->print("...}");
1866     return;
1867   }
1868   d.Insert((void*)this, (void*)this);   // Stop recursion
1869   if( _cnt ) {
1870     uint i;
1871     for( i=0; i<_cnt-1; i++ ) {
1872       st->print("%d:", i);
1873       _fields[i]->dump2(d, depth-1, st);
1874       st->print(", ");
1875     }
1876     st->print("%d:", i);
1877     _fields[i]->dump2(d, depth-1, st);
1878   }
1879   st->print("}");
1880 }
1881 #endif
1882 
1883 //------------------------------singleton--------------------------------------
1884 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1885 // constants (Ldi nodes).  Singletons are integer, float or double constants
1886 // or a single symbol.
1887 bool TypeTuple::singleton(void) const {
1888   return false;                 // Never a singleton
1889 }
1890 
1891 bool TypeTuple::empty(void) const {
1892   for( uint i=0; i<_cnt; i++ ) {
1893     if (_fields[i]->empty())  return true;
1894   }
1895   return false;
1896 }
1897 
1898 //=============================================================================
1899 // Convenience common pre-built types.
1900 
1901 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1902   // Certain normalizations keep us sane when comparing types.
1903   // We do not want arrayOop variables to differ only by the wideness
1904   // of their index types.  Pick minimum wideness, since that is the
1905   // forced wideness of small ranges anyway.
1906   if (size->_widen != Type::WidenMin)
1907     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1908   else
1909     return size;
1910 }
1911 
1912 //------------------------------make-------------------------------------------
1913 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1914   if (UseCompressedOops && elem->isa_oopptr()) {
1915     elem = elem->make_narrowoop();
1916   }
1917   size = normalize_array_size(size);
1918   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1919 }
1920 
1921 //------------------------------meet-------------------------------------------
1922 // Compute the MEET of two types.  It returns a new Type object.
1923 const Type *TypeAry::xmeet( const Type *t ) const {
1924   // Perform a fast test for common case; meeting the same types together.
1925   if( this == t ) return this;  // Meeting same type-rep?
1926 
1927   // Current "this->_base" is Ary
1928   switch (t->base()) {          // switch on original type
1929 
1930   case Bottom:                  // Ye Olde Default
1931     return t;
1932 
1933   default:                      // All else is a mistake
1934     typerr(t);
1935 
1936   case Array: {                 // Meeting 2 arrays?
1937     const TypeAry *a = t->is_ary();
1938     return TypeAry::make(_elem->meet_speculative(a->_elem),
1939                          _size->xmeet(a->_size)->is_int(),
1940                          _stable & a->_stable);
1941   }
1942   case Top:
1943     break;
1944   }
1945   return this;                  // Return the double constant
1946 }
1947 
1948 //------------------------------xdual------------------------------------------
1949 // Dual: compute field-by-field dual
1950 const Type *TypeAry::xdual() const {
1951   const TypeInt* size_dual = _size->dual()->is_int();
1952   size_dual = normalize_array_size(size_dual);
1953   return new TypeAry(_elem->dual(), size_dual, !_stable);
1954 }
1955 
1956 //------------------------------eq---------------------------------------------
1957 // Structural equality check for Type representations
1958 bool TypeAry::eq( const Type *t ) const {
1959   const TypeAry *a = (const TypeAry*)t;
1960   return _elem == a->_elem &&
1961     _stable == a->_stable &&
1962     _size == a->_size;
1963 }
1964 
1965 //------------------------------hash-------------------------------------------
1966 // Type-specific hashing function.
1967 int TypeAry::hash(void) const {
1968   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1969 }
1970 
1971 /**
1972  * Return same type without a speculative part in the element
1973  */
1974 const Type* TypeAry::remove_speculative() const {
1975   return make(_elem->remove_speculative(), _size, _stable);
1976 }
1977 
1978 //----------------------interface_vs_oop---------------------------------------
1979 #ifdef ASSERT
1980 bool TypeAry::interface_vs_oop(const Type *t) const {
1981   const TypeAry* t_ary = t->is_ary();
1982   if (t_ary) {
1983     return _elem->interface_vs_oop(t_ary->_elem);
1984   }
1985   return false;
1986 }
1987 #endif
1988 
1989 //------------------------------dump2------------------------------------------
1990 #ifndef PRODUCT
1991 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1992   if (_stable)  st->print("stable:");
1993   _elem->dump2(d, depth, st);
1994   st->print("[");
1995   _size->dump2(d, depth, st);
1996   st->print("]");
1997 }
1998 #endif
1999 
2000 //------------------------------singleton--------------------------------------
2001 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2002 // constants (Ldi nodes).  Singletons are integer, float or double constants
2003 // or a single symbol.
2004 bool TypeAry::singleton(void) const {
2005   return false;                 // Never a singleton
2006 }
2007 
2008 bool TypeAry::empty(void) const {
2009   return _elem->empty() || _size->empty();
2010 }
2011 
2012 //--------------------------ary_must_be_exact----------------------------------
2013 bool TypeAry::ary_must_be_exact() const {
2014   if (!UseExactTypes)       return false;
2015   // This logic looks at the element type of an array, and returns true
2016   // if the element type is either a primitive or a final instance class.
2017   // In such cases, an array built on this ary must have no subclasses.
2018   if (_elem == BOTTOM)      return false;  // general array not exact
2019   if (_elem == TOP   )      return false;  // inverted general array not exact
2020   const TypeOopPtr*  toop = NULL;
2021   if (UseCompressedOops && _elem->isa_narrowoop()) {
2022     toop = _elem->make_ptr()->isa_oopptr();
2023   } else {
2024     toop = _elem->isa_oopptr();
2025   }
2026   if (!toop)                return true;   // a primitive type, like int
2027   ciKlass* tklass = toop->klass();
2028   if (tklass == NULL)       return false;  // unloaded class
2029   if (!tklass->is_loaded()) return false;  // unloaded class
2030   const TypeInstPtr* tinst;
2031   if (_elem->isa_narrowoop())
2032     tinst = _elem->make_ptr()->isa_instptr();
2033   else
2034     tinst = _elem->isa_instptr();
2035   if (tinst)
2036     return tklass->as_instance_klass()->is_final();
2037   const TypeAryPtr*  tap;
2038   if (_elem->isa_narrowoop())
2039     tap = _elem->make_ptr()->isa_aryptr();
2040   else
2041     tap = _elem->isa_aryptr();
2042   if (tap)
2043     return tap->ary()->ary_must_be_exact();
2044   return false;
2045 }
2046 
2047 //==============================TypeVect=======================================
2048 // Convenience common pre-built types.
2049 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2050 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2051 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2052 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2053 
2054 //------------------------------make-------------------------------------------
2055 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2056   BasicType elem_bt = elem->array_element_basic_type();
2057   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2058   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2059   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2060   int size = length * type2aelembytes(elem_bt);
2061   switch (Matcher::vector_ideal_reg(size)) {
2062   case Op_VecS:
2063     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2064   case Op_RegL:
2065   case Op_VecD:
2066   case Op_RegD:
2067     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2068   case Op_VecX:
2069     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2070   case Op_VecY:
2071     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2072   }
2073  ShouldNotReachHere();
2074   return NULL;
2075 }
2076 
2077 //------------------------------meet-------------------------------------------
2078 // Compute the MEET of two types.  It returns a new Type object.
2079 const Type *TypeVect::xmeet( const Type *t ) const {
2080   // Perform a fast test for common case; meeting the same types together.
2081   if( this == t ) return this;  // Meeting same type-rep?
2082 
2083   // Current "this->_base" is Vector
2084   switch (t->base()) {          // switch on original type
2085 
2086   case Bottom:                  // Ye Olde Default
2087     return t;
2088 
2089   default:                      // All else is a mistake
2090     typerr(t);
2091 
2092   case VectorS:
2093   case VectorD:
2094   case VectorX:
2095   case VectorY: {                // Meeting 2 vectors?
2096     const TypeVect* v = t->is_vect();
2097     assert(  base() == v->base(), "");
2098     assert(length() == v->length(), "");
2099     assert(element_basic_type() == v->element_basic_type(), "");
2100     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2101   }
2102   case Top:
2103     break;
2104   }
2105   return this;
2106 }
2107 
2108 //------------------------------xdual------------------------------------------
2109 // Dual: compute field-by-field dual
2110 const Type *TypeVect::xdual() const {
2111   return new TypeVect(base(), _elem->dual(), _length);
2112 }
2113 
2114 //------------------------------eq---------------------------------------------
2115 // Structural equality check for Type representations
2116 bool TypeVect::eq(const Type *t) const {
2117   const TypeVect *v = t->is_vect();
2118   return (_elem == v->_elem) && (_length == v->_length);
2119 }
2120 
2121 //------------------------------hash-------------------------------------------
2122 // Type-specific hashing function.
2123 int TypeVect::hash(void) const {
2124   return (intptr_t)_elem + (intptr_t)_length;
2125 }
2126 
2127 //------------------------------singleton--------------------------------------
2128 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2129 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2130 // constant value (when vector is created with Replicate code).
2131 bool TypeVect::singleton(void) const {
2132 // There is no Con node for vectors yet.
2133 //  return _elem->singleton();
2134   return false;
2135 }
2136 
2137 bool TypeVect::empty(void) const {
2138   return _elem->empty();
2139 }
2140 
2141 //------------------------------dump2------------------------------------------
2142 #ifndef PRODUCT
2143 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2144   switch (base()) {
2145   case VectorS:
2146     st->print("vectors["); break;
2147   case VectorD:
2148     st->print("vectord["); break;
2149   case VectorX:
2150     st->print("vectorx["); break;
2151   case VectorY:
2152     st->print("vectory["); break;
2153   default:
2154     ShouldNotReachHere();
2155   }
2156   st->print("%d]:{", _length);
2157   _elem->dump2(d, depth, st);
2158   st->print("}");
2159 }
2160 #endif
2161 
2162 
2163 //=============================================================================
2164 // Convenience common pre-built types.
2165 const TypePtr *TypePtr::NULL_PTR;
2166 const TypePtr *TypePtr::NOTNULL;
2167 const TypePtr *TypePtr::BOTTOM;
2168 
2169 //------------------------------meet-------------------------------------------
2170 // Meet over the PTR enum
2171 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2172   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2173   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2174   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2175   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2176   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2177   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2178   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2179 };
2180 
2181 //------------------------------make-------------------------------------------
2182 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2183   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2184 }
2185 
2186 //------------------------------cast_to_ptr_type-------------------------------
2187 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2188   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2189   if( ptr == _ptr ) return this;
2190   return make(_base, ptr, _offset);
2191 }
2192 
2193 //------------------------------get_con----------------------------------------
2194 intptr_t TypePtr::get_con() const {
2195   assert( _ptr == Null, "" );
2196   return _offset;
2197 }
2198 
2199 //------------------------------meet-------------------------------------------
2200 // Compute the MEET of two types.  It returns a new Type object.
2201 const Type *TypePtr::xmeet( const Type *t ) const {
2202   // Perform a fast test for common case; meeting the same types together.
2203   if( this == t ) return this;  // Meeting same type-rep?
2204 
2205   // Current "this->_base" is AnyPtr
2206   switch (t->base()) {          // switch on original type
2207   case Int:                     // Mixing ints & oops happens when javac
2208   case Long:                    // reuses local variables
2209   case FloatTop:
2210   case FloatCon:
2211   case FloatBot:
2212   case DoubleTop:
2213   case DoubleCon:
2214   case DoubleBot:
2215   case NarrowOop:
2216   case NarrowKlass:
2217   case Bottom:                  // Ye Olde Default
2218     return Type::BOTTOM;
2219   case Top:
2220     return this;
2221 
2222   case AnyPtr: {                // Meeting to AnyPtrs
2223     const TypePtr *tp = t->is_ptr();
2224     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2225   }
2226   case RawPtr:                  // For these, flip the call around to cut down
2227   case OopPtr:
2228   case InstPtr:                 // on the cases I have to handle.
2229   case AryPtr:
2230   case MetadataPtr:
2231   case KlassPtr:
2232     return t->xmeet(this);      // Call in reverse direction
2233   default:                      // All else is a mistake
2234     typerr(t);
2235 
2236   }
2237   return this;
2238 }
2239 
2240 //------------------------------meet_offset------------------------------------
2241 int TypePtr::meet_offset( int offset ) const {
2242   // Either is 'TOP' offset?  Return the other offset!
2243   if( _offset == OffsetTop ) return offset;
2244   if( offset == OffsetTop ) return _offset;
2245   // If either is different, return 'BOTTOM' offset
2246   if( _offset != offset ) return OffsetBot;
2247   return _offset;
2248 }
2249 
2250 //------------------------------dual_offset------------------------------------
2251 int TypePtr::dual_offset( ) const {
2252   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2253   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2254   return _offset;               // Map everything else into self
2255 }
2256 
2257 //------------------------------xdual------------------------------------------
2258 // Dual: compute field-by-field dual
2259 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2260   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2261 };
2262 const Type *TypePtr::xdual() const {
2263   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2264 }
2265 
2266 //------------------------------xadd_offset------------------------------------
2267 int TypePtr::xadd_offset( intptr_t offset ) const {
2268   // Adding to 'TOP' offset?  Return 'TOP'!
2269   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2270   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2271   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2272   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2273   offset += (intptr_t)_offset;
2274   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2275 
2276   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2277   // It is possible to construct a negative offset during PhaseCCP
2278 
2279   return (int)offset;        // Sum valid offsets
2280 }
2281 
2282 //------------------------------add_offset-------------------------------------
2283 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2284   return make( AnyPtr, _ptr, xadd_offset(offset) );
2285 }
2286 
2287 //------------------------------eq---------------------------------------------
2288 // Structural equality check for Type representations
2289 bool TypePtr::eq( const Type *t ) const {
2290   const TypePtr *a = (const TypePtr*)t;
2291   return _ptr == a->ptr() && _offset == a->offset();
2292 }
2293 
2294 //------------------------------hash-------------------------------------------
2295 // Type-specific hashing function.
2296 int TypePtr::hash(void) const {
2297   return _ptr + _offset;
2298 }
2299 
2300 //------------------------------dump2------------------------------------------
2301 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2302   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2303 };
2304 
2305 #ifndef PRODUCT
2306 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2307   if( _ptr == Null ) st->print("NULL");
2308   else st->print("%s *", ptr_msg[_ptr]);
2309   if( _offset == OffsetTop ) st->print("+top");
2310   else if( _offset == OffsetBot ) st->print("+bot");
2311   else if( _offset ) st->print("+%d", _offset);
2312 }
2313 #endif
2314 
2315 //------------------------------singleton--------------------------------------
2316 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2317 // constants
2318 bool TypePtr::singleton(void) const {
2319   // TopPTR, Null, AnyNull, Constant are all singletons
2320   return (_offset != OffsetBot) && !below_centerline(_ptr);
2321 }
2322 
2323 bool TypePtr::empty(void) const {
2324   return (_offset == OffsetTop) || above_centerline(_ptr);
2325 }
2326 
2327 //=============================================================================
2328 // Convenience common pre-built types.
2329 const TypeRawPtr *TypeRawPtr::BOTTOM;
2330 const TypeRawPtr *TypeRawPtr::NOTNULL;
2331 
2332 //------------------------------make-------------------------------------------
2333 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2334   assert( ptr != Constant, "what is the constant?" );
2335   assert( ptr != Null, "Use TypePtr for NULL" );
2336   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2337 }
2338 
2339 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2340   assert( bits, "Use TypePtr for NULL" );
2341   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2342 }
2343 
2344 //------------------------------cast_to_ptr_type-------------------------------
2345 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2346   assert( ptr != Constant, "what is the constant?" );
2347   assert( ptr != Null, "Use TypePtr for NULL" );
2348   assert( _bits==0, "Why cast a constant address?");
2349   if( ptr == _ptr ) return this;
2350   return make(ptr);
2351 }
2352 
2353 //------------------------------get_con----------------------------------------
2354 intptr_t TypeRawPtr::get_con() const {
2355   assert( _ptr == Null || _ptr == Constant, "" );
2356   return (intptr_t)_bits;
2357 }
2358 
2359 //------------------------------meet-------------------------------------------
2360 // Compute the MEET of two types.  It returns a new Type object.
2361 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2362   // Perform a fast test for common case; meeting the same types together.
2363   if( this == t ) return this;  // Meeting same type-rep?
2364 
2365   // Current "this->_base" is RawPtr
2366   switch( t->base() ) {         // switch on original type
2367   case Bottom:                  // Ye Olde Default
2368     return t;
2369   case Top:
2370     return this;
2371   case AnyPtr:                  // Meeting to AnyPtrs
2372     break;
2373   case RawPtr: {                // might be top, bot, any/not or constant
2374     enum PTR tptr = t->is_ptr()->ptr();
2375     enum PTR ptr = meet_ptr( tptr );
2376     if( ptr == Constant ) {     // Cannot be equal constants, so...
2377       if( tptr == Constant && _ptr != Constant)  return t;
2378       if( _ptr == Constant && tptr != Constant)  return this;
2379       ptr = NotNull;            // Fall down in lattice
2380     }
2381     return make( ptr );
2382   }
2383 
2384   case OopPtr:
2385   case InstPtr:
2386   case AryPtr:
2387   case MetadataPtr:
2388   case KlassPtr:
2389     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2390   default:                      // All else is a mistake
2391     typerr(t);
2392   }
2393 
2394   // Found an AnyPtr type vs self-RawPtr type
2395   const TypePtr *tp = t->is_ptr();
2396   switch (tp->ptr()) {
2397   case TypePtr::TopPTR:  return this;
2398   case TypePtr::BotPTR:  return t;
2399   case TypePtr::Null:
2400     if( _ptr == TypePtr::TopPTR ) return t;
2401     return TypeRawPtr::BOTTOM;
2402   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2403   case TypePtr::AnyNull:
2404     if( _ptr == TypePtr::Constant) return this;
2405     return make( meet_ptr(TypePtr::AnyNull) );
2406   default: ShouldNotReachHere();
2407   }
2408   return this;
2409 }
2410 
2411 //------------------------------xdual------------------------------------------
2412 // Dual: compute field-by-field dual
2413 const Type *TypeRawPtr::xdual() const {
2414   return new TypeRawPtr( dual_ptr(), _bits );
2415 }
2416 
2417 //------------------------------add_offset-------------------------------------
2418 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2419   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2420   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2421   if( offset == 0 ) return this; // No change
2422   switch (_ptr) {
2423   case TypePtr::TopPTR:
2424   case TypePtr::BotPTR:
2425   case TypePtr::NotNull:
2426     return this;
2427   case TypePtr::Null:
2428   case TypePtr::Constant: {
2429     address bits = _bits+offset;
2430     if ( bits == 0 ) return TypePtr::NULL_PTR;
2431     return make( bits );
2432   }
2433   default:  ShouldNotReachHere();
2434   }
2435   return NULL;                  // Lint noise
2436 }
2437 
2438 //------------------------------eq---------------------------------------------
2439 // Structural equality check for Type representations
2440 bool TypeRawPtr::eq( const Type *t ) const {
2441   const TypeRawPtr *a = (const TypeRawPtr*)t;
2442   return _bits == a->_bits && TypePtr::eq(t);
2443 }
2444 
2445 //------------------------------hash-------------------------------------------
2446 // Type-specific hashing function.
2447 int TypeRawPtr::hash(void) const {
2448   return (intptr_t)_bits + TypePtr::hash();
2449 }
2450 
2451 //------------------------------dump2------------------------------------------
2452 #ifndef PRODUCT
2453 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2454   if( _ptr == Constant )
2455     st->print(INTPTR_FORMAT, _bits);
2456   else
2457     st->print("rawptr:%s", ptr_msg[_ptr]);
2458 }
2459 #endif
2460 
2461 //=============================================================================
2462 // Convenience common pre-built type.
2463 const TypeOopPtr *TypeOopPtr::BOTTOM;
2464 
2465 //------------------------------TypeOopPtr-------------------------------------
2466 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
2467   : TypePtr(t, ptr, offset),
2468     _const_oop(o), _klass(k),
2469     _klass_is_exact(xk),
2470     _is_ptr_to_narrowoop(false),
2471     _is_ptr_to_narrowklass(false),
2472     _is_ptr_to_boxed_value(false),
2473     _instance_id(instance_id),
2474     _speculative(speculative) {
2475   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2476       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2477     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2478   }
2479 #ifdef _LP64
2480   if (_offset != 0) {
2481     if (_offset == oopDesc::klass_offset_in_bytes()) {
2482       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2483     } else if (klass() == NULL) {
2484       // Array with unknown body type
2485       assert(this->isa_aryptr(), "only arrays without klass");
2486       _is_ptr_to_narrowoop = UseCompressedOops;
2487     } else if (this->isa_aryptr()) {
2488       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2489                              _offset != arrayOopDesc::length_offset_in_bytes());
2490     } else if (klass()->is_instance_klass()) {
2491       ciInstanceKlass* ik = klass()->as_instance_klass();
2492       ciField* field = NULL;
2493       if (this->isa_klassptr()) {
2494         // Perm objects don't use compressed references
2495       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2496         // unsafe access
2497         _is_ptr_to_narrowoop = UseCompressedOops;
2498       } else { // exclude unsafe ops
2499         assert(this->isa_instptr(), "must be an instance ptr.");
2500 
2501         if (klass() == ciEnv::current()->Class_klass() &&
2502             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2503              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2504           // Special hidden fields from the Class.
2505           assert(this->isa_instptr(), "must be an instance ptr.");
2506           _is_ptr_to_narrowoop = false;
2507         } else if (klass() == ciEnv::current()->Class_klass() &&
2508                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2509           // Static fields
2510           assert(o != NULL, "must be constant");
2511           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2512           ciField* field = k->get_field_by_offset(_offset, true);
2513           assert(field != NULL, "missing field");
2514           BasicType basic_elem_type = field->layout_type();
2515           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2516                                                        basic_elem_type == T_ARRAY);
2517         } else {
2518           // Instance fields which contains a compressed oop references.
2519           field = ik->get_field_by_offset(_offset, false);
2520           if (field != NULL) {
2521             BasicType basic_elem_type = field->layout_type();
2522             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2523                                                          basic_elem_type == T_ARRAY);
2524           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2525             // Compile::find_alias_type() cast exactness on all types to verify
2526             // that it does not affect alias type.
2527             _is_ptr_to_narrowoop = UseCompressedOops;
2528           } else {
2529             // Type for the copy start in LibraryCallKit::inline_native_clone().
2530             _is_ptr_to_narrowoop = UseCompressedOops;
2531           }
2532         }
2533       }
2534     }
2535   }
2536 #endif
2537 }
2538 
2539 //------------------------------make-------------------------------------------
2540 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2541                                    int offset, int instance_id, const TypeOopPtr* speculative) {
2542   assert(ptr != Constant, "no constant generic pointers");
2543   ciKlass*  k = Compile::current()->env()->Object_klass();
2544   bool      xk = false;
2545   ciObject* o = NULL;
2546   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
2547 }
2548 
2549 
2550 //------------------------------cast_to_ptr_type-------------------------------
2551 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2552   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2553   if( ptr == _ptr ) return this;
2554   return make(ptr, _offset, _instance_id, _speculative);
2555 }
2556 
2557 //-----------------------------cast_to_instance_id----------------------------
2558 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2559   // There are no instances of a general oop.
2560   // Return self unchanged.
2561   return this;
2562 }
2563 
2564 //-----------------------------cast_to_exactness-------------------------------
2565 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2566   // There is no such thing as an exact general oop.
2567   // Return self unchanged.
2568   return this;
2569 }
2570 
2571 
2572 //------------------------------as_klass_type----------------------------------
2573 // Return the klass type corresponding to this instance or array type.
2574 // It is the type that is loaded from an object of this type.
2575 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2576   ciKlass* k = klass();
2577   bool    xk = klass_is_exact();
2578   if (k == NULL)
2579     return TypeKlassPtr::OBJECT;
2580   else
2581     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2582 }
2583 
2584 const Type *TypeOopPtr::xmeet(const Type *t) const {
2585   const Type* res = xmeet_helper(t);
2586   if (res->isa_oopptr() == NULL) {
2587     return res;
2588   }
2589 
2590   const TypeOopPtr* res_oopptr = res->is_oopptr();
2591   if (res_oopptr->speculative() != NULL) {
2592     // type->speculative() == NULL means that speculation is no better
2593     // than type, i.e. type->speculative() == type. So there are 2
2594     // ways to represent the fact that we have no useful speculative
2595     // data and we should use a single one to be able to test for
2596     // equality between types. Check whether type->speculative() ==
2597     // type and set speculative to NULL if it is the case.
2598     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
2599       return res_oopptr->remove_speculative();
2600     }
2601   }
2602 
2603   return res;
2604 }
2605 
2606 //------------------------------meet-------------------------------------------
2607 // Compute the MEET of two types.  It returns a new Type object.
2608 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2609   // Perform a fast test for common case; meeting the same types together.
2610   if( this == t ) return this;  // Meeting same type-rep?
2611 
2612   // Current "this->_base" is OopPtr
2613   switch (t->base()) {          // switch on original type
2614 
2615   case Int:                     // Mixing ints & oops happens when javac
2616   case Long:                    // reuses local variables
2617   case FloatTop:
2618   case FloatCon:
2619   case FloatBot:
2620   case DoubleTop:
2621   case DoubleCon:
2622   case DoubleBot:
2623   case NarrowOop:
2624   case NarrowKlass:
2625   case Bottom:                  // Ye Olde Default
2626     return Type::BOTTOM;
2627   case Top:
2628     return this;
2629 
2630   default:                      // All else is a mistake
2631     typerr(t);
2632 
2633   case RawPtr:
2634   case MetadataPtr:
2635   case KlassPtr:
2636     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2637 
2638   case AnyPtr: {
2639     // Found an AnyPtr type vs self-OopPtr type
2640     const TypePtr *tp = t->is_ptr();
2641     int offset = meet_offset(tp->offset());
2642     PTR ptr = meet_ptr(tp->ptr());
2643     switch (tp->ptr()) {
2644     case Null:
2645       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2646       // else fall through:
2647     case TopPTR:
2648     case AnyNull: {
2649       int instance_id = meet_instance_id(InstanceTop);
2650       const TypeOopPtr* speculative = _speculative;
2651       return make(ptr, offset, instance_id, speculative);
2652     }
2653     case BotPTR:
2654     case NotNull:
2655       return TypePtr::make(AnyPtr, ptr, offset);
2656     default: typerr(t);
2657     }
2658   }
2659 
2660   case OopPtr: {                 // Meeting to other OopPtrs
2661     const TypeOopPtr *tp = t->is_oopptr();
2662     int instance_id = meet_instance_id(tp->instance_id());
2663     const TypeOopPtr* speculative = xmeet_speculative(tp);
2664     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
2665   }
2666 
2667   case InstPtr:                  // For these, flip the call around to cut down
2668   case AryPtr:
2669     return t->xmeet(this);      // Call in reverse direction
2670 
2671   } // End of switch
2672   return this;                  // Return the double constant
2673 }
2674 
2675 
2676 //------------------------------xdual------------------------------------------
2677 // Dual of a pure heap pointer.  No relevant klass or oop information.
2678 const Type *TypeOopPtr::xdual() const {
2679   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2680   assert(const_oop() == NULL,             "no constants here");
2681   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
2682 }
2683 
2684 //--------------------------make_from_klass_common-----------------------------
2685 // Computes the element-type given a klass.
2686 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2687   if (klass->is_instance_klass()) {
2688     Compile* C = Compile::current();
2689     Dependencies* deps = C->dependencies();
2690     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2691     // Element is an instance
2692     bool klass_is_exact = false;
2693     if (klass->is_loaded()) {
2694       // Try to set klass_is_exact.
2695       ciInstanceKlass* ik = klass->as_instance_klass();
2696       klass_is_exact = ik->is_final();
2697       if (!klass_is_exact && klass_change
2698           && deps != NULL && UseUniqueSubclasses) {
2699         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2700         if (sub != NULL) {
2701           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2702           klass = ik = sub;
2703           klass_is_exact = sub->is_final();
2704         }
2705       }
2706       if (!klass_is_exact && try_for_exact
2707           && deps != NULL && UseExactTypes) {
2708         if (!ik->is_interface() && !ik->has_subklass()) {
2709           // Add a dependence; if concrete subclass added we need to recompile
2710           deps->assert_leaf_type(ik);
2711           klass_is_exact = true;
2712         }
2713       }
2714     }
2715     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2716   } else if (klass->is_obj_array_klass()) {
2717     // Element is an object array. Recursively call ourself.
2718     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2719     bool xk = etype->klass_is_exact();
2720     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2721     // We used to pass NotNull in here, asserting that the sub-arrays
2722     // are all not-null.  This is not true in generally, as code can
2723     // slam NULLs down in the subarrays.
2724     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2725     return arr;
2726   } else if (klass->is_type_array_klass()) {
2727     // Element is an typeArray
2728     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2729     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2730     // We used to pass NotNull in here, asserting that the array pointer
2731     // is not-null. That was not true in general.
2732     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2733     return arr;
2734   } else {
2735     ShouldNotReachHere();
2736     return NULL;
2737   }
2738 }
2739 
2740 //------------------------------make_from_constant-----------------------------
2741 // Make a java pointer from an oop constant
2742 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2743                                                  bool require_constant,
2744                                                  bool is_autobox_cache) {
2745   assert(!o->is_null_object(), "null object not yet handled here.");
2746   ciKlass* klass = o->klass();
2747   if (klass->is_instance_klass()) {
2748     // Element is an instance
2749     if (require_constant) {
2750       if (!o->can_be_constant())  return NULL;
2751     } else if (!o->should_be_constant()) {
2752       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2753     }
2754     return TypeInstPtr::make(o);
2755   } else if (klass->is_obj_array_klass()) {
2756     // Element is an object array. Recursively call ourself.
2757     const TypeOopPtr *etype =
2758       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2759     if (is_autobox_cache) {
2760       // The pointers in the autobox arrays are always non-null.
2761       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2762     }
2763     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2764     // We used to pass NotNull in here, asserting that the sub-arrays
2765     // are all not-null.  This is not true in generally, as code can
2766     // slam NULLs down in the subarrays.
2767     if (require_constant) {
2768       if (!o->can_be_constant())  return NULL;
2769     } else if (!o->should_be_constant()) {
2770       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2771     }
2772     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
2773     return arr;
2774   } else if (klass->is_type_array_klass()) {
2775     // Element is an typeArray
2776     const Type* etype =
2777       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2778     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2779     // We used to pass NotNull in here, asserting that the array pointer
2780     // is not-null. That was not true in general.
2781     if (require_constant) {
2782       if (!o->can_be_constant())  return NULL;
2783     } else if (!o->should_be_constant()) {
2784       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2785     }
2786     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2787     return arr;
2788   }
2789 
2790   fatal("unhandled object type");
2791   return NULL;
2792 }
2793 
2794 //------------------------------get_con----------------------------------------
2795 intptr_t TypeOopPtr::get_con() const {
2796   assert( _ptr == Null || _ptr == Constant, "" );
2797   assert( _offset >= 0, "" );
2798 
2799   if (_offset != 0) {
2800     // After being ported to the compiler interface, the compiler no longer
2801     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2802     // to a handle at compile time.  This handle is embedded in the generated
2803     // code and dereferenced at the time the nmethod is made.  Until that time,
2804     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2805     // have access to the addresses!).  This does not seem to currently happen,
2806     // but this assertion here is to help prevent its occurence.
2807     tty->print_cr("Found oop constant with non-zero offset");
2808     ShouldNotReachHere();
2809   }
2810 
2811   return (intptr_t)const_oop()->constant_encoding();
2812 }
2813 
2814 
2815 //-----------------------------filter------------------------------------------
2816 // Do not allow interface-vs.-noninterface joins to collapse to top.
2817 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
2818 
2819   const Type* ft = join_helper(kills, include_speculative);
2820   const TypeInstPtr* ftip = ft->isa_instptr();
2821   const TypeInstPtr* ktip = kills->isa_instptr();
2822 
2823   if (ft->empty()) {
2824     // Check for evil case of 'this' being a class and 'kills' expecting an
2825     // interface.  This can happen because the bytecodes do not contain
2826     // enough type info to distinguish a Java-level interface variable
2827     // from a Java-level object variable.  If we meet 2 classes which
2828     // both implement interface I, but their meet is at 'j/l/O' which
2829     // doesn't implement I, we have no way to tell if the result should
2830     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2831     // into a Phi which "knows" it's an Interface type we'll have to
2832     // uplift the type.
2833     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2834       return kills;             // Uplift to interface
2835 
2836     return Type::TOP;           // Canonical empty value
2837   }
2838 
2839   // If we have an interface-typed Phi or cast and we narrow to a class type,
2840   // the join should report back the class.  However, if we have a J/L/Object
2841   // class-typed Phi and an interface flows in, it's possible that the meet &
2842   // join report an interface back out.  This isn't possible but happens
2843   // because the type system doesn't interact well with interfaces.
2844   if (ftip != NULL && ktip != NULL &&
2845       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2846       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2847     // Happens in a CTW of rt.jar, 320-341, no extra flags
2848     assert(!ftip->klass_is_exact(), "interface could not be exact");
2849     return ktip->cast_to_ptr_type(ftip->ptr());
2850   }
2851 
2852   return ft;
2853 }
2854 
2855 //------------------------------eq---------------------------------------------
2856 // Structural equality check for Type representations
2857 bool TypeOopPtr::eq( const Type *t ) const {
2858   const TypeOopPtr *a = (const TypeOopPtr*)t;
2859   if (_klass_is_exact != a->_klass_is_exact ||
2860       _instance_id != a->_instance_id ||
2861       !eq_speculative(a))  return false;
2862   ciObject* one = const_oop();
2863   ciObject* two = a->const_oop();
2864   if (one == NULL || two == NULL) {
2865     return (one == two) && TypePtr::eq(t);
2866   } else {
2867     return one->equals(two) && TypePtr::eq(t);
2868   }
2869 }
2870 
2871 //------------------------------hash-------------------------------------------
2872 // Type-specific hashing function.
2873 int TypeOopPtr::hash(void) const {
2874   return
2875     (const_oop() ? const_oop()->hash() : 0) +
2876     _klass_is_exact +
2877     _instance_id +
2878     hash_speculative() +
2879     TypePtr::hash();
2880 }
2881 
2882 //------------------------------dump2------------------------------------------
2883 #ifndef PRODUCT
2884 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2885   st->print("oopptr:%s", ptr_msg[_ptr]);
2886   if( _klass_is_exact ) st->print(":exact");
2887   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2888   switch( _offset ) {
2889   case OffsetTop: st->print("+top"); break;
2890   case OffsetBot: st->print("+any"); break;
2891   case         0: break;
2892   default:        st->print("+%d",_offset); break;
2893   }
2894   if (_instance_id == InstanceTop)
2895     st->print(",iid=top");
2896   else if (_instance_id != InstanceBot)
2897     st->print(",iid=%d",_instance_id);
2898 
2899   dump_speculative(st);
2900 }
2901 
2902 /**
2903  *dump the speculative part of the type
2904  */
2905 void TypeOopPtr::dump_speculative(outputStream *st) const {
2906   if (_speculative != NULL) {
2907     st->print(" (speculative=");
2908     _speculative->dump_on(st);
2909     st->print(")");
2910   }
2911 }
2912 #endif
2913 
2914 //------------------------------singleton--------------------------------------
2915 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2916 // constants
2917 bool TypeOopPtr::singleton(void) const {
2918   // detune optimizer to not generate constant oop + constant offset as a constant!
2919   // TopPTR, Null, AnyNull, Constant are all singletons
2920   return (_offset == 0) && !below_centerline(_ptr);
2921 }
2922 
2923 //------------------------------add_offset-------------------------------------
2924 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
2925   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
2926 }
2927 
2928 /**
2929  * Return same type without a speculative part
2930  */
2931 const Type* TypeOopPtr::remove_speculative() const {
2932   if (_speculative == NULL) {
2933     return this;
2934   }
2935   return make(_ptr, _offset, _instance_id, NULL);
2936 }
2937 
2938 //------------------------------meet_instance_id--------------------------------
2939 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2940   // Either is 'TOP' instance?  Return the other instance!
2941   if( _instance_id == InstanceTop ) return  instance_id;
2942   if(  instance_id == InstanceTop ) return _instance_id;
2943   // If either is different, return 'BOTTOM' instance
2944   if( _instance_id != instance_id ) return InstanceBot;
2945   return _instance_id;
2946 }
2947 
2948 //------------------------------dual_instance_id--------------------------------
2949 int TypeOopPtr::dual_instance_id( ) const {
2950   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2951   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2952   return _instance_id;              // Map everything else into self
2953 }
2954 
2955 /**
2956  * meet of the speculative parts of 2 types
2957  *
2958  * @param other  type to meet with
2959  */
2960 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
2961   bool this_has_spec = (_speculative != NULL);
2962   bool other_has_spec = (other->speculative() != NULL);
2963 
2964   if (!this_has_spec && !other_has_spec) {
2965     return NULL;
2966   }
2967 
2968   // If we are at a point where control flow meets and one branch has
2969   // a speculative type and the other has not, we meet the speculative
2970   // type of one branch with the actual type of the other. If the
2971   // actual type is exact and the speculative is as well, then the
2972   // result is a speculative type which is exact and we can continue
2973   // speculation further.
2974   const TypeOopPtr* this_spec = _speculative;
2975   const TypeOopPtr* other_spec = other->speculative();
2976 
2977   if (!this_has_spec) {
2978     this_spec = this;
2979   }
2980 
2981   if (!other_has_spec) {
2982     other_spec = other;
2983   }
2984 
2985   return this_spec->meet_speculative(other_spec)->is_oopptr();
2986 }
2987 
2988 /**
2989  * dual of the speculative part of the type
2990  */
2991 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
2992   if (_speculative == NULL) {
2993     return NULL;
2994   }
2995   return _speculative->dual()->is_oopptr();
2996 }
2997 
2998 /**
2999  * add offset to the speculative part of the type
3000  *
3001  * @param offset  offset to add
3002  */
3003 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
3004   if (_speculative == NULL) {
3005     return NULL;
3006   }
3007   return _speculative->add_offset(offset)->is_oopptr();
3008 }
3009 
3010 /**
3011  * Are the speculative parts of 2 types equal?
3012  *
3013  * @param other  type to compare this one to
3014  */
3015 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
3016   if (_speculative == NULL || other->speculative() == NULL) {
3017     return _speculative == other->speculative();
3018   }
3019 
3020   if (_speculative->base() != other->speculative()->base()) {
3021     return false;
3022   }
3023 
3024   return _speculative->eq(other->speculative());
3025 }
3026 
3027 /**
3028  * Hash of the speculative part of the type
3029  */
3030 int TypeOopPtr::hash_speculative() const {
3031   if (_speculative == NULL) {
3032     return 0;
3033   }
3034 
3035   return _speculative->hash();
3036 }
3037 
3038 
3039 //=============================================================================
3040 // Convenience common pre-built types.
3041 const TypeInstPtr *TypeInstPtr::NOTNULL;
3042 const TypeInstPtr *TypeInstPtr::BOTTOM;
3043 const TypeInstPtr *TypeInstPtr::MIRROR;
3044 const TypeInstPtr *TypeInstPtr::MARK;
3045 const TypeInstPtr *TypeInstPtr::KLASS;
3046 
3047 //------------------------------TypeInstPtr-------------------------------------
3048 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
3049   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
3050    assert(k != NULL &&
3051           (k->is_loaded() || o == NULL),
3052           "cannot have constants with non-loaded klass");
3053 };
3054 
3055 //------------------------------make-------------------------------------------
3056 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3057                                      ciKlass* k,
3058                                      bool xk,
3059                                      ciObject* o,
3060                                      int offset,
3061                                      int instance_id,
3062                                      const TypeOopPtr* speculative) {
3063   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3064   // Either const_oop() is NULL or else ptr is Constant
3065   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3066           "constant pointers must have a value supplied" );
3067   // Ptr is never Null
3068   assert( ptr != Null, "NULL pointers are not typed" );
3069 
3070   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3071   if (!UseExactTypes)  xk = false;
3072   if (ptr == Constant) {
3073     // Note:  This case includes meta-object constants, such as methods.
3074     xk = true;
3075   } else if (k->is_loaded()) {
3076     ciInstanceKlass* ik = k->as_instance_klass();
3077     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3078     if (xk && ik->is_interface())  xk = false;  // no exact interface
3079   }
3080 
3081   // Now hash this baby
3082   TypeInstPtr *result =
3083     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
3084 
3085   return result;
3086 }
3087 
3088 /**
3089  *  Create constant type for a constant boxed value
3090  */
3091 const Type* TypeInstPtr::get_const_boxed_value() const {
3092   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3093   assert((const_oop() != NULL), "should be called only for constant object");
3094   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3095   BasicType bt = constant.basic_type();
3096   switch (bt) {
3097     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3098     case T_INT:      return TypeInt::make(constant.as_int());
3099     case T_CHAR:     return TypeInt::make(constant.as_char());
3100     case T_BYTE:     return TypeInt::make(constant.as_byte());
3101     case T_SHORT:    return TypeInt::make(constant.as_short());
3102     case T_FLOAT:    return TypeF::make(constant.as_float());
3103     case T_DOUBLE:   return TypeD::make(constant.as_double());
3104     case T_LONG:     return TypeLong::make(constant.as_long());
3105     default:         break;
3106   }
3107   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3108   return NULL;
3109 }
3110 
3111 //------------------------------cast_to_ptr_type-------------------------------
3112 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3113   if( ptr == _ptr ) return this;
3114   // Reconstruct _sig info here since not a problem with later lazy
3115   // construction, _sig will show up on demand.
3116   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
3117 }
3118 
3119 
3120 //-----------------------------cast_to_exactness-------------------------------
3121 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3122   if( klass_is_exact == _klass_is_exact ) return this;
3123   if (!UseExactTypes)  return this;
3124   if (!_klass->is_loaded())  return this;
3125   ciInstanceKlass* ik = _klass->as_instance_klass();
3126   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3127   if( ik->is_interface() )              return this;  // cannot set xk
3128   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
3129 }
3130 
3131 //-----------------------------cast_to_instance_id----------------------------
3132 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3133   if( instance_id == _instance_id ) return this;
3134   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
3135 }
3136 
3137 //------------------------------xmeet_unloaded---------------------------------
3138 // Compute the MEET of two InstPtrs when at least one is unloaded.
3139 // Assume classes are different since called after check for same name/class-loader
3140 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3141     int off = meet_offset(tinst->offset());
3142     PTR ptr = meet_ptr(tinst->ptr());
3143     int instance_id = meet_instance_id(tinst->instance_id());
3144     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3145 
3146     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3147     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3148     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3149       //
3150       // Meet unloaded class with java/lang/Object
3151       //
3152       // Meet
3153       //          |                     Unloaded Class
3154       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3155       //  ===================================================================
3156       //   TOP    | ..........................Unloaded......................|
3157       //  AnyNull |  U-AN    |................Unloaded......................|
3158       // Constant | ... O-NN .................................. |   O-BOT   |
3159       //  NotNull | ... O-NN .................................. |   O-BOT   |
3160       //  BOTTOM  | ........................Object-BOTTOM ..................|
3161       //
3162       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3163       //
3164       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3165       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
3166       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3167       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3168         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3169         else                                      { return TypeInstPtr::NOTNULL; }
3170       }
3171       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3172 
3173       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3174     }
3175 
3176     // Both are unloaded, not the same class, not Object
3177     // Or meet unloaded with a different loaded class, not java/lang/Object
3178     if( ptr != TypePtr::BotPTR ) {
3179       return TypeInstPtr::NOTNULL;
3180     }
3181     return TypeInstPtr::BOTTOM;
3182 }
3183 
3184 
3185 //------------------------------meet-------------------------------------------
3186 // Compute the MEET of two types.  It returns a new Type object.
3187 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3188   // Perform a fast test for common case; meeting the same types together.
3189   if( this == t ) return this;  // Meeting same type-rep?
3190 
3191   // Current "this->_base" is Pointer
3192   switch (t->base()) {          // switch on original type
3193 
3194   case Int:                     // Mixing ints & oops happens when javac
3195   case Long:                    // reuses local variables
3196   case FloatTop:
3197   case FloatCon:
3198   case FloatBot:
3199   case DoubleTop:
3200   case DoubleCon:
3201   case DoubleBot:
3202   case NarrowOop:
3203   case NarrowKlass:
3204   case Bottom:                  // Ye Olde Default
3205     return Type::BOTTOM;
3206   case Top:
3207     return this;
3208 
3209   default:                      // All else is a mistake
3210     typerr(t);
3211 
3212   case MetadataPtr:
3213   case KlassPtr:
3214   case RawPtr: return TypePtr::BOTTOM;
3215 
3216   case AryPtr: {                // All arrays inherit from Object class
3217     const TypeAryPtr *tp = t->is_aryptr();
3218     int offset = meet_offset(tp->offset());
3219     PTR ptr = meet_ptr(tp->ptr());
3220     int instance_id = meet_instance_id(tp->instance_id());
3221     const TypeOopPtr* speculative = xmeet_speculative(tp);
3222     switch (ptr) {
3223     case TopPTR:
3224     case AnyNull:                // Fall 'down' to dual of object klass
3225       // For instances when a subclass meets a superclass we fall
3226       // below the centerline when the superclass is exact. We need to
3227       // do the same here.
3228       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3229         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
3230       } else {
3231         // cannot subclass, so the meet has to fall badly below the centerline
3232         ptr = NotNull;
3233         instance_id = InstanceBot;
3234         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
3235       }
3236     case Constant:
3237     case NotNull:
3238     case BotPTR:                // Fall down to object klass
3239       // LCA is object_klass, but if we subclass from the top we can do better
3240       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3241         // If 'this' (InstPtr) is above the centerline and it is Object class
3242         // then we can subclass in the Java class hierarchy.
3243         // For instances when a subclass meets a superclass we fall
3244         // below the centerline when the superclass is exact. We need
3245         // to do the same here.
3246         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3247           // that is, tp's array type is a subtype of my klass
3248           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3249                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
3250         }
3251       }
3252       // The other case cannot happen, since I cannot be a subtype of an array.
3253       // The meet falls down to Object class below centerline.
3254       if( ptr == Constant )
3255          ptr = NotNull;
3256       instance_id = InstanceBot;
3257       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
3258     default: typerr(t);
3259     }
3260   }
3261 
3262   case OopPtr: {                // Meeting to OopPtrs
3263     // Found a OopPtr type vs self-InstPtr type
3264     const TypeOopPtr *tp = t->is_oopptr();
3265     int offset = meet_offset(tp->offset());
3266     PTR ptr = meet_ptr(tp->ptr());
3267     switch (tp->ptr()) {
3268     case TopPTR:
3269     case AnyNull: {
3270       int instance_id = meet_instance_id(InstanceTop);
3271       const TypeOopPtr* speculative = xmeet_speculative(tp);
3272       return make(ptr, klass(), klass_is_exact(),
3273                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
3274     }
3275     case NotNull:
3276     case BotPTR: {
3277       int instance_id = meet_instance_id(tp->instance_id());
3278       const TypeOopPtr* speculative = xmeet_speculative(tp);
3279       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
3280     }
3281     default: typerr(t);
3282     }
3283   }
3284 
3285   case AnyPtr: {                // Meeting to AnyPtrs
3286     // Found an AnyPtr type vs self-InstPtr type
3287     const TypePtr *tp = t->is_ptr();
3288     int offset = meet_offset(tp->offset());
3289     PTR ptr = meet_ptr(tp->ptr());
3290     switch (tp->ptr()) {
3291     case Null:
3292       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3293       // else fall through to AnyNull
3294     case TopPTR:
3295     case AnyNull: {
3296       int instance_id = meet_instance_id(InstanceTop);
3297       const TypeOopPtr* speculative = _speculative;
3298       return make(ptr, klass(), klass_is_exact(),
3299                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
3300     }
3301     case NotNull:
3302     case BotPTR:
3303       return TypePtr::make(AnyPtr, ptr, offset);
3304     default: typerr(t);
3305     }
3306   }
3307 
3308   /*
3309                  A-top         }
3310                /   |   \       }  Tops
3311            B-top A-any C-top   }
3312               | /  |  \ |      }  Any-nulls
3313            B-any   |   C-any   }
3314               |    |    |
3315            B-con A-con C-con   } constants; not comparable across classes
3316               |    |    |
3317            B-not   |   C-not   }
3318               | \  |  / |      }  not-nulls
3319            B-bot A-not C-bot   }
3320                \   |   /       }  Bottoms
3321                  A-bot         }
3322   */
3323 
3324   case InstPtr: {                // Meeting 2 Oops?
3325     // Found an InstPtr sub-type vs self-InstPtr type
3326     const TypeInstPtr *tinst = t->is_instptr();
3327     int off = meet_offset( tinst->offset() );
3328     PTR ptr = meet_ptr( tinst->ptr() );
3329     int instance_id = meet_instance_id(tinst->instance_id());
3330     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3331 
3332     // Check for easy case; klasses are equal (and perhaps not loaded!)
3333     // If we have constants, then we created oops so classes are loaded
3334     // and we can handle the constants further down.  This case handles
3335     // both-not-loaded or both-loaded classes
3336     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3337       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
3338     }
3339 
3340     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3341     ciKlass* tinst_klass = tinst->klass();
3342     ciKlass* this_klass  = this->klass();
3343     bool tinst_xk = tinst->klass_is_exact();
3344     bool this_xk  = this->klass_is_exact();
3345     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3346       // One of these classes has not been loaded
3347       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3348 #ifndef PRODUCT
3349       if( PrintOpto && Verbose ) {
3350         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3351         tty->print("  this == "); this->dump(); tty->cr();
3352         tty->print(" tinst == "); tinst->dump(); tty->cr();
3353       }
3354 #endif
3355       return unloaded_meet;
3356     }
3357 
3358     // Handle mixing oops and interfaces first.
3359     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3360                                         tinst_klass == ciEnv::current()->Object_klass())) {
3361       ciKlass *tmp = tinst_klass; // Swap interface around
3362       tinst_klass = this_klass;
3363       this_klass = tmp;
3364       bool tmp2 = tinst_xk;
3365       tinst_xk = this_xk;
3366       this_xk = tmp2;
3367     }
3368     if (tinst_klass->is_interface() &&
3369         !(this_klass->is_interface() ||
3370           // Treat java/lang/Object as an honorary interface,
3371           // because we need a bottom for the interface hierarchy.
3372           this_klass == ciEnv::current()->Object_klass())) {
3373       // Oop meets interface!
3374 
3375       // See if the oop subtypes (implements) interface.
3376       ciKlass *k;
3377       bool xk;
3378       if( this_klass->is_subtype_of( tinst_klass ) ) {
3379         // Oop indeed subtypes.  Now keep oop or interface depending
3380         // on whether we are both above the centerline or either is
3381         // below the centerline.  If we are on the centerline
3382         // (e.g., Constant vs. AnyNull interface), use the constant.
3383         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3384         // If we are keeping this_klass, keep its exactness too.
3385         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3386       } else {                  // Does not implement, fall to Object
3387         // Oop does not implement interface, so mixing falls to Object
3388         // just like the verifier does (if both are above the
3389         // centerline fall to interface)
3390         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3391         xk = above_centerline(ptr) ? tinst_xk : false;
3392         // Watch out for Constant vs. AnyNull interface.
3393         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3394         instance_id = InstanceBot;
3395       }
3396       ciObject* o = NULL;  // the Constant value, if any
3397       if (ptr == Constant) {
3398         // Find out which constant.
3399         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3400       }
3401       return make(ptr, k, xk, o, off, instance_id, speculative);
3402     }
3403 
3404     // Either oop vs oop or interface vs interface or interface vs Object
3405 
3406     // !!! Here's how the symmetry requirement breaks down into invariants:
3407     // If we split one up & one down AND they subtype, take the down man.
3408     // If we split one up & one down AND they do NOT subtype, "fall hard".
3409     // If both are up and they subtype, take the subtype class.
3410     // If both are up and they do NOT subtype, "fall hard".
3411     // If both are down and they subtype, take the supertype class.
3412     // If both are down and they do NOT subtype, "fall hard".
3413     // Constants treated as down.
3414 
3415     // Now, reorder the above list; observe that both-down+subtype is also
3416     // "fall hard"; "fall hard" becomes the default case:
3417     // If we split one up & one down AND they subtype, take the down man.
3418     // If both are up and they subtype, take the subtype class.
3419 
3420     // If both are down and they subtype, "fall hard".
3421     // If both are down and they do NOT subtype, "fall hard".
3422     // If both are up and they do NOT subtype, "fall hard".
3423     // If we split one up & one down AND they do NOT subtype, "fall hard".
3424 
3425     // If a proper subtype is exact, and we return it, we return it exactly.
3426     // If a proper supertype is exact, there can be no subtyping relationship!
3427     // If both types are equal to the subtype, exactness is and-ed below the
3428     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3429 
3430     // Check for subtyping:
3431     ciKlass *subtype = NULL;
3432     bool subtype_exact = false;
3433     if( tinst_klass->equals(this_klass) ) {
3434       subtype = this_klass;
3435       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3436     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3437       subtype = this_klass;     // Pick subtyping class
3438       subtype_exact = this_xk;
3439     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3440       subtype = tinst_klass;    // Pick subtyping class
3441       subtype_exact = tinst_xk;
3442     }
3443 
3444     if( subtype ) {
3445       if( above_centerline(ptr) ) { // both are up?
3446         this_klass = tinst_klass = subtype;
3447         this_xk = tinst_xk = subtype_exact;
3448       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3449         this_klass = tinst_klass; // tinst is down; keep down man
3450         this_xk = tinst_xk;
3451       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3452         tinst_klass = this_klass; // this is down; keep down man
3453         tinst_xk = this_xk;
3454       } else {
3455         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3456       }
3457     }
3458 
3459     // Check for classes now being equal
3460     if (tinst_klass->equals(this_klass)) {
3461       // If the klasses are equal, the constants may still differ.  Fall to
3462       // NotNull if they do (neither constant is NULL; that is a special case
3463       // handled elsewhere).
3464       ciObject* o = NULL;             // Assume not constant when done
3465       ciObject* this_oop  = const_oop();
3466       ciObject* tinst_oop = tinst->const_oop();
3467       if( ptr == Constant ) {
3468         if (this_oop != NULL && tinst_oop != NULL &&
3469             this_oop->equals(tinst_oop) )
3470           o = this_oop;
3471         else if (above_centerline(this ->_ptr))
3472           o = tinst_oop;
3473         else if (above_centerline(tinst ->_ptr))
3474           o = this_oop;
3475         else
3476           ptr = NotNull;
3477       }
3478       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
3479     } // Else classes are not equal
3480 
3481     // Since klasses are different, we require a LCA in the Java
3482     // class hierarchy - which means we have to fall to at least NotNull.
3483     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3484       ptr = NotNull;
3485     instance_id = InstanceBot;
3486 
3487     // Now we find the LCA of Java classes
3488     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3489     return make(ptr, k, false, NULL, off, instance_id, speculative);
3490   } // End of case InstPtr
3491 
3492   } // End of switch
3493   return this;                  // Return the double constant
3494 }
3495 
3496 
3497 //------------------------java_mirror_type--------------------------------------
3498 ciType* TypeInstPtr::java_mirror_type() const {
3499   // must be a singleton type
3500   if( const_oop() == NULL )  return NULL;
3501 
3502   // must be of type java.lang.Class
3503   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3504 
3505   return const_oop()->as_instance()->java_mirror_type();
3506 }
3507 
3508 
3509 //------------------------------xdual------------------------------------------
3510 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3511 // inheritance mechanism.
3512 const Type *TypeInstPtr::xdual() const {
3513   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
3514 }
3515 
3516 //------------------------------eq---------------------------------------------
3517 // Structural equality check for Type representations
3518 bool TypeInstPtr::eq( const Type *t ) const {
3519   const TypeInstPtr *p = t->is_instptr();
3520   return
3521     klass()->equals(p->klass()) &&
3522     TypeOopPtr::eq(p);          // Check sub-type stuff
3523 }
3524 
3525 //------------------------------hash-------------------------------------------
3526 // Type-specific hashing function.
3527 int TypeInstPtr::hash(void) const {
3528   int hash = klass()->hash() + TypeOopPtr::hash();
3529   return hash;
3530 }
3531 
3532 //------------------------------dump2------------------------------------------
3533 // Dump oop Type
3534 #ifndef PRODUCT
3535 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3536   // Print the name of the klass.
3537   klass()->print_name_on(st);
3538 
3539   switch( _ptr ) {
3540   case Constant:
3541     // TO DO: Make CI print the hex address of the underlying oop.
3542     if (WizardMode || Verbose) {
3543       const_oop()->print_oop(st);
3544     }
3545   case BotPTR:
3546     if (!WizardMode && !Verbose) {
3547       if( _klass_is_exact ) st->print(":exact");
3548       break;
3549     }
3550   case TopPTR:
3551   case AnyNull:
3552   case NotNull:
3553     st->print(":%s", ptr_msg[_ptr]);
3554     if( _klass_is_exact ) st->print(":exact");
3555     break;
3556   }
3557 
3558   if( _offset ) {               // Dump offset, if any
3559     if( _offset == OffsetBot )      st->print("+any");
3560     else if( _offset == OffsetTop ) st->print("+unknown");
3561     else st->print("+%d", _offset);
3562   }
3563 
3564   st->print(" *");
3565   if (_instance_id == InstanceTop)
3566     st->print(",iid=top");
3567   else if (_instance_id != InstanceBot)
3568     st->print(",iid=%d",_instance_id);
3569 
3570   dump_speculative(st);
3571 }
3572 #endif
3573 
3574 //------------------------------add_offset-------------------------------------
3575 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3576   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
3577 }
3578 
3579 const Type *TypeInstPtr::remove_speculative() const {
3580   if (_speculative == NULL) {
3581     return this;
3582   }
3583   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
3584 }
3585 
3586 //=============================================================================
3587 // Convenience common pre-built types.
3588 const TypeAryPtr *TypeAryPtr::RANGE;
3589 const TypeAryPtr *TypeAryPtr::OOPS;
3590 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3591 const TypeAryPtr *TypeAryPtr::BYTES;
3592 const TypeAryPtr *TypeAryPtr::SHORTS;
3593 const TypeAryPtr *TypeAryPtr::CHARS;
3594 const TypeAryPtr *TypeAryPtr::INTS;
3595 const TypeAryPtr *TypeAryPtr::LONGS;
3596 const TypeAryPtr *TypeAryPtr::FLOATS;
3597 const TypeAryPtr *TypeAryPtr::DOUBLES;
3598 
3599 //------------------------------make-------------------------------------------
3600 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
3601   assert(!(k == NULL && ary->_elem->isa_int()),
3602          "integral arrays must be pre-equipped with a class");
3603   if (!xk)  xk = ary->ary_must_be_exact();
3604   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3605   if (!UseExactTypes)  xk = (ptr == Constant);
3606   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
3607 }
3608 
3609 //------------------------------make-------------------------------------------
3610 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
3611   assert(!(k == NULL && ary->_elem->isa_int()),
3612          "integral arrays must be pre-equipped with a class");
3613   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3614   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3615   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3616   if (!UseExactTypes)  xk = (ptr == Constant);
3617   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
3618 }
3619 
3620 //------------------------------cast_to_ptr_type-------------------------------
3621 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3622   if( ptr == _ptr ) return this;
3623   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
3624 }
3625 
3626 
3627 //-----------------------------cast_to_exactness-------------------------------
3628 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3629   if( klass_is_exact == _klass_is_exact ) return this;
3630   if (!UseExactTypes)  return this;
3631   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3632   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
3633 }
3634 
3635 //-----------------------------cast_to_instance_id----------------------------
3636 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3637   if( instance_id == _instance_id ) return this;
3638   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
3639 }
3640 
3641 //-----------------------------narrow_size_type-------------------------------
3642 // Local cache for arrayOopDesc::max_array_length(etype),
3643 // which is kind of slow (and cached elsewhere by other users).
3644 static jint max_array_length_cache[T_CONFLICT+1];
3645 static jint max_array_length(BasicType etype) {
3646   jint& cache = max_array_length_cache[etype];
3647   jint res = cache;
3648   if (res == 0) {
3649     switch (etype) {
3650     case T_NARROWOOP:
3651       etype = T_OBJECT;
3652       break;
3653     case T_NARROWKLASS:
3654     case T_CONFLICT:
3655     case T_ILLEGAL:
3656     case T_VOID:
3657       etype = T_BYTE;           // will produce conservatively high value
3658     }
3659     cache = res = arrayOopDesc::max_array_length(etype);
3660   }
3661   return res;
3662 }
3663 
3664 // Narrow the given size type to the index range for the given array base type.
3665 // Return NULL if the resulting int type becomes empty.
3666 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3667   jint hi = size->_hi;
3668   jint lo = size->_lo;
3669   jint min_lo = 0;
3670   jint max_hi = max_array_length(elem()->basic_type());
3671   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3672   bool chg = false;
3673   if (lo < min_lo) {
3674     lo = min_lo;
3675     if (size->is_con()) {
3676       hi = lo;
3677     }
3678     chg = true;
3679   }
3680   if (hi > max_hi) {
3681     hi = max_hi;
3682     if (size->is_con()) {
3683       lo = hi;
3684     }
3685     chg = true;
3686   }
3687   // Negative length arrays will produce weird intermediate dead fast-path code
3688   if (lo > hi)
3689     return TypeInt::ZERO;
3690   if (!chg)
3691     return size;
3692   return TypeInt::make(lo, hi, Type::WidenMin);
3693 }
3694 
3695 //-------------------------------cast_to_size----------------------------------
3696 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3697   assert(new_size != NULL, "");
3698   new_size = narrow_size_type(new_size);
3699   if (new_size == size())  return this;
3700   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3701   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
3702 }
3703 
3704 
3705 //------------------------------cast_to_stable---------------------------------
3706 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3707   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3708     return this;
3709 
3710   const Type* elem = this->elem();
3711   const TypePtr* elem_ptr = elem->make_ptr();
3712 
3713   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3714     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3715     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3716   }
3717 
3718   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3719 
3720   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3721 }
3722 
3723 //-----------------------------stable_dimension--------------------------------
3724 int TypeAryPtr::stable_dimension() const {
3725   if (!is_stable())  return 0;
3726   int dim = 1;
3727   const TypePtr* elem_ptr = elem()->make_ptr();
3728   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3729     dim += elem_ptr->is_aryptr()->stable_dimension();
3730   return dim;
3731 }
3732 
3733 //------------------------------eq---------------------------------------------
3734 // Structural equality check for Type representations
3735 bool TypeAryPtr::eq( const Type *t ) const {
3736   const TypeAryPtr *p = t->is_aryptr();
3737   return
3738     _ary == p->_ary &&  // Check array
3739     TypeOopPtr::eq(p);  // Check sub-parts
3740 }
3741 
3742 //------------------------------hash-------------------------------------------
3743 // Type-specific hashing function.
3744 int TypeAryPtr::hash(void) const {
3745   return (intptr_t)_ary + TypeOopPtr::hash();
3746 }
3747 
3748 //------------------------------meet-------------------------------------------
3749 // Compute the MEET of two types.  It returns a new Type object.
3750 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3751   // Perform a fast test for common case; meeting the same types together.
3752   if( this == t ) return this;  // Meeting same type-rep?
3753   // Current "this->_base" is Pointer
3754   switch (t->base()) {          // switch on original type
3755 
3756   // Mixing ints & oops happens when javac reuses local variables
3757   case Int:
3758   case Long:
3759   case FloatTop:
3760   case FloatCon:
3761   case FloatBot:
3762   case DoubleTop:
3763   case DoubleCon:
3764   case DoubleBot:
3765   case NarrowOop:
3766   case NarrowKlass:
3767   case Bottom:                  // Ye Olde Default
3768     return Type::BOTTOM;
3769   case Top:
3770     return this;
3771 
3772   default:                      // All else is a mistake
3773     typerr(t);
3774 
3775   case OopPtr: {                // Meeting to OopPtrs
3776     // Found a OopPtr type vs self-AryPtr type
3777     const TypeOopPtr *tp = t->is_oopptr();
3778     int offset = meet_offset(tp->offset());
3779     PTR ptr = meet_ptr(tp->ptr());
3780     switch (tp->ptr()) {
3781     case TopPTR:
3782     case AnyNull: {
3783       int instance_id = meet_instance_id(InstanceTop);
3784       const TypeOopPtr* speculative = xmeet_speculative(tp);
3785       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3786                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3787     }
3788     case BotPTR:
3789     case NotNull: {
3790       int instance_id = meet_instance_id(tp->instance_id());
3791       const TypeOopPtr* speculative = xmeet_speculative(tp);
3792       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
3793     }
3794     default: ShouldNotReachHere();
3795     }
3796   }
3797 
3798   case AnyPtr: {                // Meeting two AnyPtrs
3799     // Found an AnyPtr type vs self-AryPtr type
3800     const TypePtr *tp = t->is_ptr();
3801     int offset = meet_offset(tp->offset());
3802     PTR ptr = meet_ptr(tp->ptr());
3803     switch (tp->ptr()) {
3804     case TopPTR:
3805       return this;
3806     case BotPTR:
3807     case NotNull:
3808       return TypePtr::make(AnyPtr, ptr, offset);
3809     case Null:
3810       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3811       // else fall through to AnyNull
3812     case AnyNull: {
3813       int instance_id = meet_instance_id(InstanceTop);
3814       const TypeOopPtr* speculative = _speculative;
3815       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3816                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3817     }
3818     default: ShouldNotReachHere();
3819     }
3820   }
3821 
3822   case MetadataPtr:
3823   case KlassPtr:
3824   case RawPtr: return TypePtr::BOTTOM;
3825 
3826   case AryPtr: {                // Meeting 2 references?
3827     const TypeAryPtr *tap = t->is_aryptr();
3828     int off = meet_offset(tap->offset());
3829     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
3830     PTR ptr = meet_ptr(tap->ptr());
3831     int instance_id = meet_instance_id(tap->instance_id());
3832     const TypeOopPtr* speculative = xmeet_speculative(tap);
3833     ciKlass* lazy_klass = NULL;
3834     if (tary->_elem->isa_int()) {
3835       // Integral array element types have irrelevant lattice relations.
3836       // It is the klass that determines array layout, not the element type.
3837       if (_klass == NULL)
3838         lazy_klass = tap->_klass;
3839       else if (tap->_klass == NULL || tap->_klass == _klass) {
3840         lazy_klass = _klass;
3841       } else {
3842         // Something like byte[int+] meets char[int+].
3843         // This must fall to bottom, not (int[-128..65535])[int+].
3844         instance_id = InstanceBot;
3845         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3846       }
3847     } else // Non integral arrays.
3848       // Must fall to bottom if exact klasses in upper lattice
3849       // are not equal or super klass is exact.
3850       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
3851           // meet with top[] and bottom[] are processed further down:
3852           tap->_klass != NULL  && this->_klass != NULL   &&
3853           // both are exact and not equal:
3854           ((tap->_klass_is_exact && this->_klass_is_exact) ||
3855            // 'tap'  is exact and super or unrelated:
3856            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3857            // 'this' is exact and super or unrelated:
3858            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3859       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3860       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
3861     }
3862 
3863     bool xk = false;
3864     switch (tap->ptr()) {
3865     case AnyNull:
3866     case TopPTR:
3867       // Compute new klass on demand, do not use tap->_klass
3868       if (below_centerline(this->_ptr)) {
3869         xk = this->_klass_is_exact;
3870       } else {
3871         xk = (tap->_klass_is_exact | this->_klass_is_exact);
3872       }
3873       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
3874     case Constant: {
3875       ciObject* o = const_oop();
3876       if( _ptr == Constant ) {
3877         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3878           xk = (klass() == tap->klass());
3879           ptr = NotNull;
3880           o = NULL;
3881           instance_id = InstanceBot;
3882         } else {
3883           xk = true;
3884         }
3885       } else if(above_centerline(_ptr)) {
3886         o = tap->const_oop();
3887         xk = true;
3888       } else {
3889         // Only precise for identical arrays
3890         xk = this->_klass_is_exact && (klass() == tap->klass());
3891       }
3892       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
3893     }
3894     case NotNull:
3895     case BotPTR:
3896       // Compute new klass on demand, do not use tap->_klass
3897       if (above_centerline(this->_ptr))
3898             xk = tap->_klass_is_exact;
3899       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3900               (klass() == tap->klass()); // Only precise for identical arrays
3901       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
3902     default: ShouldNotReachHere();
3903     }
3904   }
3905 
3906   // All arrays inherit from Object class
3907   case InstPtr: {
3908     const TypeInstPtr *tp = t->is_instptr();
3909     int offset = meet_offset(tp->offset());
3910     PTR ptr = meet_ptr(tp->ptr());
3911     int instance_id = meet_instance_id(tp->instance_id());
3912     const TypeOopPtr* speculative = xmeet_speculative(tp);
3913     switch (ptr) {
3914     case TopPTR:
3915     case AnyNull:                // Fall 'down' to dual of object klass
3916       // For instances when a subclass meets a superclass we fall
3917       // below the centerline when the superclass is exact. We need to
3918       // do the same here.
3919       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
3920         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3921       } else {
3922         // cannot subclass, so the meet has to fall badly below the centerline
3923         ptr = NotNull;
3924         instance_id = InstanceBot;
3925         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
3926       }
3927     case Constant:
3928     case NotNull:
3929     case BotPTR:                // Fall down to object klass
3930       // LCA is object_klass, but if we subclass from the top we can do better
3931       if (above_centerline(tp->ptr())) {
3932         // If 'tp'  is above the centerline and it is Object class
3933         // then we can subclass in the Java class hierarchy.
3934         // For instances when a subclass meets a superclass we fall
3935         // below the centerline when the superclass is exact. We need
3936         // to do the same here.
3937         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
3938           // that is, my array type is a subtype of 'tp' klass
3939           return make(ptr, (ptr == Constant ? const_oop() : NULL),
3940                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3941         }
3942       }
3943       // The other case cannot happen, since t cannot be a subtype of an array.
3944       // The meet falls down to Object class below centerline.
3945       if( ptr == Constant )
3946          ptr = NotNull;
3947       instance_id = InstanceBot;
3948       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
3949     default: typerr(t);
3950     }
3951   }
3952   }
3953   return this;                  // Lint noise
3954 }
3955 
3956 //------------------------------xdual------------------------------------------
3957 // Dual: compute field-by-field dual
3958 const Type *TypeAryPtr::xdual() const {
3959   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
3960 }
3961 
3962 //----------------------interface_vs_oop---------------------------------------
3963 #ifdef ASSERT
3964 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3965   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3966   if (t_aryptr) {
3967     return _ary->interface_vs_oop(t_aryptr->_ary);
3968   }
3969   return false;
3970 }
3971 #endif
3972 
3973 //------------------------------dump2------------------------------------------
3974 #ifndef PRODUCT
3975 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3976   _ary->dump2(d,depth,st);
3977   switch( _ptr ) {
3978   case Constant:
3979     const_oop()->print(st);
3980     break;
3981   case BotPTR:
3982     if (!WizardMode && !Verbose) {
3983       if( _klass_is_exact ) st->print(":exact");
3984       break;
3985     }
3986   case TopPTR:
3987   case AnyNull:
3988   case NotNull:
3989     st->print(":%s", ptr_msg[_ptr]);
3990     if( _klass_is_exact ) st->print(":exact");
3991     break;
3992   }
3993 
3994   if( _offset != 0 ) {
3995     int header_size = objArrayOopDesc::header_size() * wordSize;
3996     if( _offset == OffsetTop )       st->print("+undefined");
3997     else if( _offset == OffsetBot )  st->print("+any");
3998     else if( _offset < header_size ) st->print("+%d", _offset);
3999     else {
4000       BasicType basic_elem_type = elem()->basic_type();
4001       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4002       int elem_size = type2aelembytes(basic_elem_type);
4003       st->print("[%d]", (_offset - array_base)/elem_size);
4004     }
4005   }
4006   st->print(" *");
4007   if (_instance_id == InstanceTop)
4008     st->print(",iid=top");
4009   else if (_instance_id != InstanceBot)
4010     st->print(",iid=%d",_instance_id);
4011 
4012   dump_speculative(st);
4013 }
4014 #endif
4015 
4016 bool TypeAryPtr::empty(void) const {
4017   if (_ary->empty())       return true;
4018   return TypeOopPtr::empty();
4019 }
4020 
4021 //------------------------------add_offset-------------------------------------
4022 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4023   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
4024 }
4025 
4026 const Type *TypeAryPtr::remove_speculative() const {
4027   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL);
4028 }
4029 
4030 //=============================================================================
4031 
4032 //------------------------------hash-------------------------------------------
4033 // Type-specific hashing function.
4034 int TypeNarrowPtr::hash(void) const {
4035   return _ptrtype->hash() + 7;
4036 }
4037 
4038 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4039   return _ptrtype->singleton();
4040 }
4041 
4042 bool TypeNarrowPtr::empty(void) const {
4043   return _ptrtype->empty();
4044 }
4045 
4046 intptr_t TypeNarrowPtr::get_con() const {
4047   return _ptrtype->get_con();
4048 }
4049 
4050 bool TypeNarrowPtr::eq( const Type *t ) const {
4051   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4052   if (tc != NULL) {
4053     if (_ptrtype->base() != tc->_ptrtype->base()) {
4054       return false;
4055     }
4056     return tc->_ptrtype->eq(_ptrtype);
4057   }
4058   return false;
4059 }
4060 
4061 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4062   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4063   return make_same_narrowptr(odual);
4064 }
4065 
4066 
4067 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4068   if (isa_same_narrowptr(kills)) {
4069     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4070     if (ft->empty())
4071       return Type::TOP;           // Canonical empty value
4072     if (ft->isa_ptr()) {
4073       return make_hash_same_narrowptr(ft->isa_ptr());
4074     }
4075     return ft;
4076   } else if (kills->isa_ptr()) {
4077     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4078     if (ft->empty())
4079       return Type::TOP;           // Canonical empty value
4080     return ft;
4081   } else {
4082     return Type::TOP;
4083   }
4084 }
4085 
4086 //------------------------------xmeet------------------------------------------
4087 // Compute the MEET of two types.  It returns a new Type object.
4088 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4089   // Perform a fast test for common case; meeting the same types together.
4090   if( this == t ) return this;  // Meeting same type-rep?
4091 
4092   if (t->base() == base()) {
4093     const Type* result = _ptrtype->xmeet(t->make_ptr());
4094     if (result->isa_ptr()) {
4095       return make_hash_same_narrowptr(result->is_ptr());
4096     }
4097     return result;
4098   }
4099 
4100   // Current "this->_base" is NarrowKlass or NarrowOop
4101   switch (t->base()) {          // switch on original type
4102 
4103   case Int:                     // Mixing ints & oops happens when javac
4104   case Long:                    // reuses local variables
4105   case FloatTop:
4106   case FloatCon:
4107   case FloatBot:
4108   case DoubleTop:
4109   case DoubleCon:
4110   case DoubleBot:
4111   case AnyPtr:
4112   case RawPtr:
4113   case OopPtr:
4114   case InstPtr:
4115   case AryPtr:
4116   case MetadataPtr:
4117   case KlassPtr:
4118   case NarrowOop:
4119   case NarrowKlass:
4120 
4121   case Bottom:                  // Ye Olde Default
4122     return Type::BOTTOM;
4123   case Top:
4124     return this;
4125 
4126   default:                      // All else is a mistake
4127     typerr(t);
4128 
4129   } // End of switch
4130 
4131   return this;
4132 }
4133 
4134 #ifndef PRODUCT
4135 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4136   _ptrtype->dump2(d, depth, st);
4137 }
4138 #endif
4139 
4140 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4141 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4142 
4143 
4144 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4145   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4146 }
4147 
4148 
4149 #ifndef PRODUCT
4150 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4151   st->print("narrowoop: ");
4152   TypeNarrowPtr::dump2(d, depth, st);
4153 }
4154 #endif
4155 
4156 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4157 
4158 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4159   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4160 }
4161 
4162 #ifndef PRODUCT
4163 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4164   st->print("narrowklass: ");
4165   TypeNarrowPtr::dump2(d, depth, st);
4166 }
4167 #endif
4168 
4169 
4170 //------------------------------eq---------------------------------------------
4171 // Structural equality check for Type representations
4172 bool TypeMetadataPtr::eq( const Type *t ) const {
4173   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4174   ciMetadata* one = metadata();
4175   ciMetadata* two = a->metadata();
4176   if (one == NULL || two == NULL) {
4177     return (one == two) && TypePtr::eq(t);
4178   } else {
4179     return one->equals(two) && TypePtr::eq(t);
4180   }
4181 }
4182 
4183 //------------------------------hash-------------------------------------------
4184 // Type-specific hashing function.
4185 int TypeMetadataPtr::hash(void) const {
4186   return
4187     (metadata() ? metadata()->hash() : 0) +
4188     TypePtr::hash();
4189 }
4190 
4191 //------------------------------singleton--------------------------------------
4192 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4193 // constants
4194 bool TypeMetadataPtr::singleton(void) const {
4195   // detune optimizer to not generate constant metadta + constant offset as a constant!
4196   // TopPTR, Null, AnyNull, Constant are all singletons
4197   return (_offset == 0) && !below_centerline(_ptr);
4198 }
4199 
4200 //------------------------------add_offset-------------------------------------
4201 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4202   return make( _ptr, _metadata, xadd_offset(offset));
4203 }
4204 
4205 //-----------------------------filter------------------------------------------
4206 // Do not allow interface-vs.-noninterface joins to collapse to top.
4207 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4208   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4209   if (ft == NULL || ft->empty())
4210     return Type::TOP;           // Canonical empty value
4211   return ft;
4212 }
4213 
4214  //------------------------------get_con----------------------------------------
4215 intptr_t TypeMetadataPtr::get_con() const {
4216   assert( _ptr == Null || _ptr == Constant, "" );
4217   assert( _offset >= 0, "" );
4218 
4219   if (_offset != 0) {
4220     // After being ported to the compiler interface, the compiler no longer
4221     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4222     // to a handle at compile time.  This handle is embedded in the generated
4223     // code and dereferenced at the time the nmethod is made.  Until that time,
4224     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4225     // have access to the addresses!).  This does not seem to currently happen,
4226     // but this assertion here is to help prevent its occurence.
4227     tty->print_cr("Found oop constant with non-zero offset");
4228     ShouldNotReachHere();
4229   }
4230 
4231   return (intptr_t)metadata()->constant_encoding();
4232 }
4233 
4234 //------------------------------cast_to_ptr_type-------------------------------
4235 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4236   if( ptr == _ptr ) return this;
4237   return make(ptr, metadata(), _offset);
4238 }
4239 
4240 //------------------------------meet-------------------------------------------
4241 // Compute the MEET of two types.  It returns a new Type object.
4242 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4243   // Perform a fast test for common case; meeting the same types together.
4244   if( this == t ) return this;  // Meeting same type-rep?
4245 
4246   // Current "this->_base" is OopPtr
4247   switch (t->base()) {          // switch on original type
4248 
4249   case Int:                     // Mixing ints & oops happens when javac
4250   case Long:                    // reuses local variables
4251   case FloatTop:
4252   case FloatCon:
4253   case FloatBot:
4254   case DoubleTop:
4255   case DoubleCon:
4256   case DoubleBot:
4257   case NarrowOop:
4258   case NarrowKlass:
4259   case Bottom:                  // Ye Olde Default
4260     return Type::BOTTOM;
4261   case Top:
4262     return this;
4263 
4264   default:                      // All else is a mistake
4265     typerr(t);
4266 
4267   case AnyPtr: {
4268     // Found an AnyPtr type vs self-OopPtr type
4269     const TypePtr *tp = t->is_ptr();
4270     int offset = meet_offset(tp->offset());
4271     PTR ptr = meet_ptr(tp->ptr());
4272     switch (tp->ptr()) {
4273     case Null:
4274       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4275       // else fall through:
4276     case TopPTR:
4277     case AnyNull: {
4278       return make(ptr, NULL, offset);
4279     }
4280     case BotPTR:
4281     case NotNull:
4282       return TypePtr::make(AnyPtr, ptr, offset);
4283     default: typerr(t);
4284     }
4285   }
4286 
4287   case RawPtr:
4288   case KlassPtr:
4289   case OopPtr:
4290   case InstPtr:
4291   case AryPtr:
4292     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4293 
4294   case MetadataPtr: {
4295     const TypeMetadataPtr *tp = t->is_metadataptr();
4296     int offset = meet_offset(tp->offset());
4297     PTR tptr = tp->ptr();
4298     PTR ptr = meet_ptr(tptr);
4299     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4300     if (tptr == TopPTR || _ptr == TopPTR ||
4301         metadata()->equals(tp->metadata())) {
4302       return make(ptr, md, offset);
4303     }
4304     // metadata is different
4305     if( ptr == Constant ) {  // Cannot be equal constants, so...
4306       if( tptr == Constant && _ptr != Constant)  return t;
4307       if( _ptr == Constant && tptr != Constant)  return this;
4308       ptr = NotNull;            // Fall down in lattice
4309     }
4310     return make(ptr, NULL, offset);
4311     break;
4312   }
4313   } // End of switch
4314   return this;                  // Return the double constant
4315 }
4316 
4317 
4318 //------------------------------xdual------------------------------------------
4319 // Dual of a pure metadata pointer.
4320 const Type *TypeMetadataPtr::xdual() const {
4321   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4322 }
4323 
4324 //------------------------------dump2------------------------------------------
4325 #ifndef PRODUCT
4326 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4327   st->print("metadataptr:%s", ptr_msg[_ptr]);
4328   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4329   switch( _offset ) {
4330   case OffsetTop: st->print("+top"); break;
4331   case OffsetBot: st->print("+any"); break;
4332   case         0: break;
4333   default:        st->print("+%d",_offset); break;
4334   }
4335 }
4336 #endif
4337 
4338 
4339 //=============================================================================
4340 // Convenience common pre-built type.
4341 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4342 
4343 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4344   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4345 }
4346 
4347 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4348   return make(Constant, m, 0);
4349 }
4350 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4351   return make(Constant, m, 0);
4352 }
4353 
4354 //------------------------------make-------------------------------------------
4355 // Create a meta data constant
4356 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4357   assert(m == NULL || !m->is_klass(), "wrong type");
4358   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4359 }
4360 
4361 
4362 //=============================================================================
4363 // Convenience common pre-built types.
4364 
4365 // Not-null object klass or below
4366 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4367 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4368 
4369 //------------------------------TypeKlassPtr-----------------------------------
4370 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4371   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4372 }
4373 
4374 //------------------------------make-------------------------------------------
4375 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4376 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4377   assert( k != NULL, "Expect a non-NULL klass");
4378   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4379   TypeKlassPtr *r =
4380     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4381 
4382   return r;
4383 }
4384 
4385 //------------------------------eq---------------------------------------------
4386 // Structural equality check for Type representations
4387 bool TypeKlassPtr::eq( const Type *t ) const {
4388   const TypeKlassPtr *p = t->is_klassptr();
4389   return
4390     klass()->equals(p->klass()) &&
4391     TypePtr::eq(p);
4392 }
4393 
4394 //------------------------------hash-------------------------------------------
4395 // Type-specific hashing function.
4396 int TypeKlassPtr::hash(void) const {
4397   return klass()->hash() + TypePtr::hash();
4398 }
4399 
4400 //------------------------------singleton--------------------------------------
4401 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4402 // constants
4403 bool TypeKlassPtr::singleton(void) const {
4404   // detune optimizer to not generate constant klass + constant offset as a constant!
4405   // TopPTR, Null, AnyNull, Constant are all singletons
4406   return (_offset == 0) && !below_centerline(_ptr);
4407 }
4408 
4409 // Do not allow interface-vs.-noninterface joins to collapse to top.
4410 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4411   // logic here mirrors the one from TypeOopPtr::filter. See comments
4412   // there.
4413   const Type* ft = join_helper(kills, include_speculative);
4414   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4415   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4416 
4417   if (ft->empty()) {
4418     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4419       return kills;             // Uplift to interface
4420 
4421     return Type::TOP;           // Canonical empty value
4422   }
4423 
4424   // Interface klass type could be exact in opposite to interface type,
4425   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4426   if (ftkp != NULL && ktkp != NULL &&
4427       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4428       !ftkp->klass_is_exact() && // Keep exact interface klass
4429       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4430     return ktkp->cast_to_ptr_type(ftkp->ptr());
4431   }
4432 
4433   return ft;
4434 }
4435 
4436 //----------------------compute_klass------------------------------------------
4437 // Compute the defining klass for this class
4438 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4439   // Compute _klass based on element type.
4440   ciKlass* k_ary = NULL;
4441   const TypeInstPtr *tinst;
4442   const TypeAryPtr *tary;
4443   const Type* el = elem();
4444   if (el->isa_narrowoop()) {
4445     el = el->make_ptr();
4446   }
4447 
4448   // Get element klass
4449   if ((tinst = el->isa_instptr()) != NULL) {
4450     // Compute array klass from element klass
4451     k_ary = ciObjArrayKlass::make(tinst->klass());
4452   } else if ((tary = el->isa_aryptr()) != NULL) {
4453     // Compute array klass from element klass
4454     ciKlass* k_elem = tary->klass();
4455     // If element type is something like bottom[], k_elem will be null.
4456     if (k_elem != NULL)
4457       k_ary = ciObjArrayKlass::make(k_elem);
4458   } else if ((el->base() == Type::Top) ||
4459              (el->base() == Type::Bottom)) {
4460     // element type of Bottom occurs from meet of basic type
4461     // and object; Top occurs when doing join on Bottom.
4462     // Leave k_ary at NULL.
4463   } else {
4464     // Cannot compute array klass directly from basic type,
4465     // since subtypes of TypeInt all have basic type T_INT.
4466 #ifdef ASSERT
4467     if (verify && el->isa_int()) {
4468       // Check simple cases when verifying klass.
4469       BasicType bt = T_ILLEGAL;
4470       if (el == TypeInt::BYTE) {
4471         bt = T_BYTE;
4472       } else if (el == TypeInt::SHORT) {
4473         bt = T_SHORT;
4474       } else if (el == TypeInt::CHAR) {
4475         bt = T_CHAR;
4476       } else if (el == TypeInt::INT) {
4477         bt = T_INT;
4478       } else {
4479         return _klass; // just return specified klass
4480       }
4481       return ciTypeArrayKlass::make(bt);
4482     }
4483 #endif
4484     assert(!el->isa_int(),
4485            "integral arrays must be pre-equipped with a class");
4486     // Compute array klass directly from basic type
4487     k_ary = ciTypeArrayKlass::make(el->basic_type());
4488   }
4489   return k_ary;
4490 }
4491 
4492 //------------------------------klass------------------------------------------
4493 // Return the defining klass for this class
4494 ciKlass* TypeAryPtr::klass() const {
4495   if( _klass ) return _klass;   // Return cached value, if possible
4496 
4497   // Oops, need to compute _klass and cache it
4498   ciKlass* k_ary = compute_klass();
4499 
4500   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4501     // The _klass field acts as a cache of the underlying
4502     // ciKlass for this array type.  In order to set the field,
4503     // we need to cast away const-ness.
4504     //
4505     // IMPORTANT NOTE: we *never* set the _klass field for the
4506     // type TypeAryPtr::OOPS.  This Type is shared between all
4507     // active compilations.  However, the ciKlass which represents
4508     // this Type is *not* shared between compilations, so caching
4509     // this value would result in fetching a dangling pointer.
4510     //
4511     // Recomputing the underlying ciKlass for each request is
4512     // a bit less efficient than caching, but calls to
4513     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4514     ((TypeAryPtr*)this)->_klass = k_ary;
4515     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4516         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4517       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4518     }
4519   }
4520   return k_ary;
4521 }
4522 
4523 
4524 //------------------------------add_offset-------------------------------------
4525 // Access internals of klass object
4526 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4527   return make( _ptr, klass(), xadd_offset(offset) );
4528 }
4529 
4530 //------------------------------cast_to_ptr_type-------------------------------
4531 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4532   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4533   if( ptr == _ptr ) return this;
4534   return make(ptr, _klass, _offset);
4535 }
4536 
4537 
4538 //-----------------------------cast_to_exactness-------------------------------
4539 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4540   if( klass_is_exact == _klass_is_exact ) return this;
4541   if (!UseExactTypes)  return this;
4542   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4543 }
4544 
4545 
4546 //-----------------------------as_instance_type--------------------------------
4547 // Corresponding type for an instance of the given class.
4548 // It will be NotNull, and exact if and only if the klass type is exact.
4549 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4550   ciKlass* k = klass();
4551   bool    xk = klass_is_exact();
4552   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4553   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4554   guarantee(toop != NULL, "need type for given klass");
4555   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4556   return toop->cast_to_exactness(xk)->is_oopptr();
4557 }
4558 
4559 
4560 //------------------------------xmeet------------------------------------------
4561 // Compute the MEET of two types, return a new Type object.
4562 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4563   // Perform a fast test for common case; meeting the same types together.
4564   if( this == t ) return this;  // Meeting same type-rep?
4565 
4566   // Current "this->_base" is Pointer
4567   switch (t->base()) {          // switch on original type
4568 
4569   case Int:                     // Mixing ints & oops happens when javac
4570   case Long:                    // reuses local variables
4571   case FloatTop:
4572   case FloatCon:
4573   case FloatBot:
4574   case DoubleTop:
4575   case DoubleCon:
4576   case DoubleBot:
4577   case NarrowOop:
4578   case NarrowKlass:
4579   case Bottom:                  // Ye Olde Default
4580     return Type::BOTTOM;
4581   case Top:
4582     return this;
4583 
4584   default:                      // All else is a mistake
4585     typerr(t);
4586 
4587   case AnyPtr: {                // Meeting to AnyPtrs
4588     // Found an AnyPtr type vs self-KlassPtr type
4589     const TypePtr *tp = t->is_ptr();
4590     int offset = meet_offset(tp->offset());
4591     PTR ptr = meet_ptr(tp->ptr());
4592     switch (tp->ptr()) {
4593     case TopPTR:
4594       return this;
4595     case Null:
4596       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4597     case AnyNull:
4598       return make( ptr, klass(), offset );
4599     case BotPTR:
4600     case NotNull:
4601       return TypePtr::make(AnyPtr, ptr, offset);
4602     default: typerr(t);
4603     }
4604   }
4605 
4606   case RawPtr:
4607   case MetadataPtr:
4608   case OopPtr:
4609   case AryPtr:                  // Meet with AryPtr
4610   case InstPtr:                 // Meet with InstPtr
4611     return TypePtr::BOTTOM;
4612 
4613   //
4614   //             A-top         }
4615   //           /   |   \       }  Tops
4616   //       B-top A-any C-top   }
4617   //          | /  |  \ |      }  Any-nulls
4618   //       B-any   |   C-any   }
4619   //          |    |    |
4620   //       B-con A-con C-con   } constants; not comparable across classes
4621   //          |    |    |
4622   //       B-not   |   C-not   }
4623   //          | \  |  / |      }  not-nulls
4624   //       B-bot A-not C-bot   }
4625   //           \   |   /       }  Bottoms
4626   //             A-bot         }
4627   //
4628 
4629   case KlassPtr: {  // Meet two KlassPtr types
4630     const TypeKlassPtr *tkls = t->is_klassptr();
4631     int  off     = meet_offset(tkls->offset());
4632     PTR  ptr     = meet_ptr(tkls->ptr());
4633 
4634     // Check for easy case; klasses are equal (and perhaps not loaded!)
4635     // If we have constants, then we created oops so classes are loaded
4636     // and we can handle the constants further down.  This case handles
4637     // not-loaded classes
4638     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4639       return make( ptr, klass(), off );
4640     }
4641 
4642     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4643     ciKlass* tkls_klass = tkls->klass();
4644     ciKlass* this_klass = this->klass();
4645     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4646     assert( this_klass->is_loaded(), "This class should have been loaded.");
4647 
4648     // If 'this' type is above the centerline and is a superclass of the
4649     // other, we can treat 'this' as having the same type as the other.
4650     if ((above_centerline(this->ptr())) &&
4651         tkls_klass->is_subtype_of(this_klass)) {
4652       this_klass = tkls_klass;
4653     }
4654     // If 'tinst' type is above the centerline and is a superclass of the
4655     // other, we can treat 'tinst' as having the same type as the other.
4656     if ((above_centerline(tkls->ptr())) &&
4657         this_klass->is_subtype_of(tkls_klass)) {
4658       tkls_klass = this_klass;
4659     }
4660 
4661     // Check for classes now being equal
4662     if (tkls_klass->equals(this_klass)) {
4663       // If the klasses are equal, the constants may still differ.  Fall to
4664       // NotNull if they do (neither constant is NULL; that is a special case
4665       // handled elsewhere).
4666       if( ptr == Constant ) {
4667         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4668             this->klass()->equals(tkls->klass()));
4669         else if (above_centerline(this->ptr()));
4670         else if (above_centerline(tkls->ptr()));
4671         else
4672           ptr = NotNull;
4673       }
4674       return make( ptr, this_klass, off );
4675     } // Else classes are not equal
4676 
4677     // Since klasses are different, we require the LCA in the Java
4678     // class hierarchy - which means we have to fall to at least NotNull.
4679     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4680       ptr = NotNull;
4681     // Now we find the LCA of Java classes
4682     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4683     return   make( ptr, k, off );
4684   } // End of case KlassPtr
4685 
4686   } // End of switch
4687   return this;                  // Return the double constant
4688 }
4689 
4690 //------------------------------xdual------------------------------------------
4691 // Dual: compute field-by-field dual
4692 const Type    *TypeKlassPtr::xdual() const {
4693   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4694 }
4695 
4696 //------------------------------get_con----------------------------------------
4697 intptr_t TypeKlassPtr::get_con() const {
4698   assert( _ptr == Null || _ptr == Constant, "" );
4699   assert( _offset >= 0, "" );
4700 
4701   if (_offset != 0) {
4702     // After being ported to the compiler interface, the compiler no longer
4703     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4704     // to a handle at compile time.  This handle is embedded in the generated
4705     // code and dereferenced at the time the nmethod is made.  Until that time,
4706     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4707     // have access to the addresses!).  This does not seem to currently happen,
4708     // but this assertion here is to help prevent its occurence.
4709     tty->print_cr("Found oop constant with non-zero offset");
4710     ShouldNotReachHere();
4711   }
4712 
4713   return (intptr_t)klass()->constant_encoding();
4714 }
4715 //------------------------------dump2------------------------------------------
4716 // Dump Klass Type
4717 #ifndef PRODUCT
4718 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4719   switch( _ptr ) {
4720   case Constant:
4721     st->print("precise ");
4722   case NotNull:
4723     {
4724       const char *name = klass()->name()->as_utf8();
4725       if( name ) {
4726         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4727       } else {
4728         ShouldNotReachHere();
4729       }
4730     }
4731   case BotPTR:
4732     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4733   case TopPTR:
4734   case AnyNull:
4735     st->print(":%s", ptr_msg[_ptr]);
4736     if( _klass_is_exact ) st->print(":exact");
4737     break;
4738   }
4739 
4740   if( _offset ) {               // Dump offset, if any
4741     if( _offset == OffsetBot )      { st->print("+any"); }
4742     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4743     else                            { st->print("+%d", _offset); }
4744   }
4745 
4746   st->print(" *");
4747 }
4748 #endif
4749 
4750 
4751 
4752 //=============================================================================
4753 // Convenience common pre-built types.
4754 
4755 //------------------------------make-------------------------------------------
4756 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4757   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4758 }
4759 
4760 //------------------------------make-------------------------------------------
4761 const TypeFunc *TypeFunc::make(ciMethod* method) {
4762   Compile* C = Compile::current();
4763   const TypeFunc* tf = C->last_tf(method); // check cache
4764   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4765   const TypeTuple *domain;
4766   if (method->is_static()) {
4767     domain = TypeTuple::make_domain(NULL, method->signature());
4768   } else {
4769     domain = TypeTuple::make_domain(method->holder(), method->signature());
4770   }
4771   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4772   tf = TypeFunc::make(domain, range);
4773   C->set_last_tf(method, tf);  // fill cache
4774   return tf;
4775 }
4776 
4777 //------------------------------meet-------------------------------------------
4778 // Compute the MEET of two types.  It returns a new Type object.
4779 const Type *TypeFunc::xmeet( const Type *t ) const {
4780   // Perform a fast test for common case; meeting the same types together.
4781   if( this == t ) return this;  // Meeting same type-rep?
4782 
4783   // Current "this->_base" is Func
4784   switch (t->base()) {          // switch on original type
4785 
4786   case Bottom:                  // Ye Olde Default
4787     return t;
4788 
4789   default:                      // All else is a mistake
4790     typerr(t);
4791 
4792   case Top:
4793     break;
4794   }
4795   return this;                  // Return the double constant
4796 }
4797 
4798 //------------------------------xdual------------------------------------------
4799 // Dual: compute field-by-field dual
4800 const Type *TypeFunc::xdual() const {
4801   return this;
4802 }
4803 
4804 //------------------------------eq---------------------------------------------
4805 // Structural equality check for Type representations
4806 bool TypeFunc::eq( const Type *t ) const {
4807   const TypeFunc *a = (const TypeFunc*)t;
4808   return _domain == a->_domain &&
4809     _range == a->_range;
4810 }
4811 
4812 //------------------------------hash-------------------------------------------
4813 // Type-specific hashing function.
4814 int TypeFunc::hash(void) const {
4815   return (intptr_t)_domain + (intptr_t)_range;
4816 }
4817 
4818 //------------------------------dump2------------------------------------------
4819 // Dump Function Type
4820 #ifndef PRODUCT
4821 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4822   if( _range->_cnt <= Parms )
4823     st->print("void");
4824   else {
4825     uint i;
4826     for (i = Parms; i < _range->_cnt-1; i++) {
4827       _range->field_at(i)->dump2(d,depth,st);
4828       st->print("/");
4829     }
4830     _range->field_at(i)->dump2(d,depth,st);
4831   }
4832   st->print(" ");
4833   st->print("( ");
4834   if( !depth || d[this] ) {     // Check for recursive dump
4835     st->print("...)");
4836     return;
4837   }
4838   d.Insert((void*)this,(void*)this);    // Stop recursion
4839   if (Parms < _domain->_cnt)
4840     _domain->field_at(Parms)->dump2(d,depth-1,st);
4841   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4842     st->print(", ");
4843     _domain->field_at(i)->dump2(d,depth-1,st);
4844   }
4845   st->print(" )");
4846 }
4847 #endif
4848 
4849 //------------------------------singleton--------------------------------------
4850 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4851 // constants (Ldi nodes).  Singletons are integer, float or double constants
4852 // or a single symbol.
4853 bool TypeFunc::singleton(void) const {
4854   return false;                 // Never a singleton
4855 }
4856 
4857 bool TypeFunc::empty(void) const {
4858   return false;                 // Never empty
4859 }
4860 
4861 
4862 BasicType TypeFunc::return_type() const{
4863   if (range()->cnt() == TypeFunc::Parms) {
4864     return T_VOID;
4865   }
4866   return range()->field_at(TypeFunc::Parms)->basic_type();
4867 }