1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _is_predicted;
  50   bool             _does_virtual_dispatch;
  51   vmIntrinsics::ID _intrinsic_id;
  52 
  53  public:
  54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  55     : InlineCallGenerator(m),
  56       _is_virtual(is_virtual),
  57       _is_predicted(is_predicted),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _intrinsic_id(id)
  60   {
  61   }
  62   virtual bool is_intrinsic() const { return true; }
  63   virtual bool is_virtual()   const { return _is_virtual; }
  64   virtual bool is_predicted()   const { return _is_predicted; }
  65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  67   virtual Node* generate_predicate(JVMState* jvms);
  68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  69 };
  70 
  71 
  72 // Local helper class for LibraryIntrinsic:
  73 class LibraryCallKit : public GraphKit {
  74  private:
  75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  76   Node*             _result;        // the result node, if any
  77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  78 
  79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  80 
  81  public:
  82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  83     : GraphKit(jvms),
  84       _intrinsic(intrinsic),
  85       _result(NULL)
  86   {
  87     // Check if this is a root compile.  In that case we don't have a caller.
  88     if (!jvms->has_method()) {
  89       _reexecute_sp = sp();
  90     } else {
  91       // Find out how many arguments the interpreter needs when deoptimizing
  92       // and save the stack pointer value so it can used by uncommon_trap.
  93       // We find the argument count by looking at the declared signature.
  94       bool ignored_will_link;
  95       ciSignature* declared_signature = NULL;
  96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  99     }
 100   }
 101 
 102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 103 
 104   ciMethod*         caller()    const    { return jvms()->method(); }
 105   int               bci()       const    { return jvms()->bci(); }
 106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 108   ciMethod*         callee()    const    { return _intrinsic->method(); }
 109 
 110   bool try_to_inline();
 111   Node* try_to_predicate();
 112 
 113   void push_result() {
 114     // Push the result onto the stack.
 115     if (!stopped() && result() != NULL) {
 116       BasicType bt = result()->bottom_type()->basic_type();
 117       push_node(bt, result());
 118     }
 119   }
 120 
 121  private:
 122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 124   }
 125 
 126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 127   void  set_result(RegionNode* region, PhiNode* value);
 128   Node*     result() { return _result; }
 129 
 130   virtual int reexecute_sp() { return _reexecute_sp; }
 131 
 132   // Helper functions to inline natives
 133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 134   Node* generate_slow_guard(Node* test, RegionNode* region);
 135   Node* generate_fair_guard(Node* test, RegionNode* region);
 136   Node* generate_negative_guard(Node* index, RegionNode* region,
 137                                 // resulting CastII of index:
 138                                 Node* *pos_index = NULL);
 139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 140                                    // resulting CastII of index:
 141                                    Node* *pos_index = NULL);
 142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 143                              Node* array_length,
 144                              RegionNode* region);
 145   Node* generate_current_thread(Node* &tls_output);
 146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 148   Node* load_mirror_from_klass(Node* klass);
 149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 150                                       RegionNode* region, int null_path,
 151                                       int offset);
 152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 153                                RegionNode* region, int null_path) {
 154     int offset = java_lang_Class::klass_offset_in_bytes();
 155     return load_klass_from_mirror_common(mirror, never_see_null,
 156                                          region, null_path,
 157                                          offset);
 158   }
 159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                      RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::array_klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* generate_access_flags_guard(Node* kls,
 167                                     int modifier_mask, int modifier_bits,
 168                                     RegionNode* region);
 169   Node* generate_interface_guard(Node* kls, RegionNode* region);
 170   Node* generate_array_guard(Node* kls, RegionNode* region) {
 171     return generate_array_guard_common(kls, region, false, false);
 172   }
 173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, true);
 175   }
 176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, true, false);
 178   }
 179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, true);
 181   }
 182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 183                                     bool obj_array, bool not_array);
 184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 186                                      bool is_virtual = false, bool is_static = false);
 187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 188     return generate_method_call(method_id, false, true);
 189   }
 190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, true, false);
 192   }
 193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 194 
 195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 197   bool inline_string_compareTo();
 198   bool inline_string_indexOf();
 199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 200   bool inline_string_equals();
 201   Node* round_double_node(Node* n);
 202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 203   bool inline_math_native(vmIntrinsics::ID id);
 204   bool inline_trig(vmIntrinsics::ID id);
 205   bool inline_math(vmIntrinsics::ID id);
 206   template <typename OverflowOp>
 207   bool inline_math_overflow(Node* arg1, Node* arg2);
 208   void inline_math_mathExact(Node* math, Node* test);
 209   bool inline_math_addExactI(bool is_increment);
 210   bool inline_math_addExactL(bool is_increment);
 211   bool inline_math_multiplyExactI();
 212   bool inline_math_multiplyExactL();
 213   bool inline_math_negateExactI();
 214   bool inline_math_negateExactL();
 215   bool inline_math_subtractExactI(bool is_decrement);
 216   bool inline_math_subtractExactL(bool is_decrement);
 217   bool inline_exp();
 218   bool inline_pow();
 219   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 220   bool inline_min_max(vmIntrinsics::ID id);
 221   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 222   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 223   int classify_unsafe_addr(Node* &base, Node* &offset);
 224   Node* make_unsafe_address(Node* base, Node* offset);
 225   // Helper for inline_unsafe_access.
 226   // Generates the guards that check whether the result of
 227   // Unsafe.getObject should be recorded in an SATB log buffer.
 228   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 229   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 230   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 231   static bool klass_needs_init_guard(Node* kls);
 232   bool inline_unsafe_allocate();
 233   bool inline_unsafe_copyMemory();
 234   bool inline_native_currentThread();
 235 #ifdef TRACE_HAVE_INTRINSICS
 236   bool inline_native_classID();
 237   bool inline_native_threadID();
 238 #endif
 239   bool inline_native_time_funcs(address method, const char* funcName);
 240   bool inline_native_isInterrupted();
 241   bool inline_native_Class_query(vmIntrinsics::ID id);
 242   bool inline_native_subtype_check();
 243 
 244   bool inline_native_newArray();
 245   bool inline_native_getLength();
 246   bool inline_array_copyOf(bool is_copyOfRange);
 247   bool inline_array_equals();
 248   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 249   bool inline_native_clone(bool is_virtual);
 250   bool inline_native_Reflection_getCallerClass();
 251   // Helper function for inlining native object hash method
 252   bool inline_native_hashcode(bool is_virtual, bool is_static);
 253   bool inline_native_getClass();
 254 
 255   // Helper functions for inlining arraycopy
 256   bool inline_arraycopy();
 257   void generate_arraycopy(const TypePtr* adr_type,
 258                           BasicType basic_elem_type,
 259                           Node* src,  Node* src_offset,
 260                           Node* dest, Node* dest_offset,
 261                           Node* copy_length,
 262                           bool disjoint_bases = false,
 263                           bool length_never_negative = false,
 264                           RegionNode* slow_region = NULL);
 265   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 266                                                 RegionNode* slow_region);
 267   void generate_clear_array(const TypePtr* adr_type,
 268                             Node* dest,
 269                             BasicType basic_elem_type,
 270                             Node* slice_off,
 271                             Node* slice_len,
 272                             Node* slice_end);
 273   bool generate_block_arraycopy(const TypePtr* adr_type,
 274                                 BasicType basic_elem_type,
 275                                 AllocateNode* alloc,
 276                                 Node* src,  Node* src_offset,
 277                                 Node* dest, Node* dest_offset,
 278                                 Node* dest_size, bool dest_uninitialized);
 279   void generate_slow_arraycopy(const TypePtr* adr_type,
 280                                Node* src,  Node* src_offset,
 281                                Node* dest, Node* dest_offset,
 282                                Node* copy_length, bool dest_uninitialized);
 283   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 284                                      Node* dest_elem_klass,
 285                                      Node* src,  Node* src_offset,
 286                                      Node* dest, Node* dest_offset,
 287                                      Node* copy_length, bool dest_uninitialized);
 288   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 289                                    Node* src,  Node* src_offset,
 290                                    Node* dest, Node* dest_offset,
 291                                    Node* copy_length, bool dest_uninitialized);
 292   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 293                                     BasicType basic_elem_type,
 294                                     bool disjoint_bases,
 295                                     Node* src,  Node* src_offset,
 296                                     Node* dest, Node* dest_offset,
 297                                     Node* copy_length, bool dest_uninitialized);
 298   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 299   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 300   bool inline_unsafe_ordered_store(BasicType type);
 301   bool inline_unsafe_fence(vmIntrinsics::ID id);
 302   bool inline_fp_conversions(vmIntrinsics::ID id);
 303   bool inline_number_methods(vmIntrinsics::ID id);
 304   bool inline_reference_get();
 305   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 306   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 307   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 308   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 309   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 310   bool inline_encodeISOArray();
 311   bool inline_updateCRC32();
 312   bool inline_updateBytesCRC32();
 313   bool inline_updateByteBufferCRC32();
 314 };
 315 
 316 
 317 //---------------------------make_vm_intrinsic----------------------------
 318 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 319   vmIntrinsics::ID id = m->intrinsic_id();
 320   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 321 
 322   if (DisableIntrinsic[0] != '\0'
 323       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 324     // disabled by a user request on the command line:
 325     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 326     return NULL;
 327   }
 328 
 329   if (!m->is_loaded()) {
 330     // do not attempt to inline unloaded methods
 331     return NULL;
 332   }
 333 
 334   // Only a few intrinsics implement a virtual dispatch.
 335   // They are expensive calls which are also frequently overridden.
 336   if (is_virtual) {
 337     switch (id) {
 338     case vmIntrinsics::_hashCode:
 339     case vmIntrinsics::_clone:
 340       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 341       break;
 342     default:
 343       return NULL;
 344     }
 345   }
 346 
 347   // -XX:-InlineNatives disables nearly all intrinsics:
 348   if (!InlineNatives) {
 349     switch (id) {
 350     case vmIntrinsics::_indexOf:
 351     case vmIntrinsics::_compareTo:
 352     case vmIntrinsics::_equals:
 353     case vmIntrinsics::_equalsC:
 354     case vmIntrinsics::_getAndAddInt:
 355     case vmIntrinsics::_getAndAddLong:
 356     case vmIntrinsics::_getAndSetInt:
 357     case vmIntrinsics::_getAndSetLong:
 358     case vmIntrinsics::_getAndSetObject:
 359     case vmIntrinsics::_loadFence:
 360     case vmIntrinsics::_storeFence:
 361     case vmIntrinsics::_fullFence:
 362       break;  // InlineNatives does not control String.compareTo
 363     case vmIntrinsics::_Reference_get:
 364       break;  // InlineNatives does not control Reference.get
 365     default:
 366       return NULL;
 367     }
 368   }
 369 
 370   bool is_predicted = false;
 371   bool does_virtual_dispatch = false;
 372 
 373   switch (id) {
 374   case vmIntrinsics::_compareTo:
 375     if (!SpecialStringCompareTo)  return NULL;
 376     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 377     break;
 378   case vmIntrinsics::_indexOf:
 379     if (!SpecialStringIndexOf)  return NULL;
 380     break;
 381   case vmIntrinsics::_equals:
 382     if (!SpecialStringEquals)  return NULL;
 383     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 384     break;
 385   case vmIntrinsics::_equalsC:
 386     if (!SpecialArraysEquals)  return NULL;
 387     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 388     break;
 389   case vmIntrinsics::_arraycopy:
 390     if (!InlineArrayCopy)  return NULL;
 391     break;
 392   case vmIntrinsics::_copyMemory:
 393     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 394     if (!InlineArrayCopy)  return NULL;
 395     break;
 396   case vmIntrinsics::_hashCode:
 397     if (!InlineObjectHash)  return NULL;
 398     does_virtual_dispatch = true;
 399     break;
 400   case vmIntrinsics::_clone:
 401     does_virtual_dispatch = true;
 402   case vmIntrinsics::_copyOf:
 403   case vmIntrinsics::_copyOfRange:
 404     if (!InlineObjectCopy)  return NULL;
 405     // These also use the arraycopy intrinsic mechanism:
 406     if (!InlineArrayCopy)  return NULL;
 407     break;
 408   case vmIntrinsics::_encodeISOArray:
 409     if (!SpecialEncodeISOArray)  return NULL;
 410     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 411     break;
 412   case vmIntrinsics::_checkIndex:
 413     // We do not intrinsify this.  The optimizer does fine with it.
 414     return NULL;
 415 
 416   case vmIntrinsics::_getCallerClass:
 417     if (!UseNewReflection)  return NULL;
 418     if (!InlineReflectionGetCallerClass)  return NULL;
 419     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 420     break;
 421 
 422   case vmIntrinsics::_bitCount_i:
 423     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 424     break;
 425 
 426   case vmIntrinsics::_bitCount_l:
 427     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 428     break;
 429 
 430   case vmIntrinsics::_numberOfLeadingZeros_i:
 431     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 432     break;
 433 
 434   case vmIntrinsics::_numberOfLeadingZeros_l:
 435     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 436     break;
 437 
 438   case vmIntrinsics::_numberOfTrailingZeros_i:
 439     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 440     break;
 441 
 442   case vmIntrinsics::_numberOfTrailingZeros_l:
 443     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 444     break;
 445 
 446   case vmIntrinsics::_reverseBytes_c:
 447     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 448     break;
 449   case vmIntrinsics::_reverseBytes_s:
 450     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 451     break;
 452   case vmIntrinsics::_reverseBytes_i:
 453     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 454     break;
 455   case vmIntrinsics::_reverseBytes_l:
 456     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 457     break;
 458 
 459   case vmIntrinsics::_Reference_get:
 460     // Use the intrinsic version of Reference.get() so that the value in
 461     // the referent field can be registered by the G1 pre-barrier code.
 462     // Also add memory barrier to prevent commoning reads from this field
 463     // across safepoint since GC can change it value.
 464     break;
 465 
 466   case vmIntrinsics::_compareAndSwapObject:
 467 #ifdef _LP64
 468     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 469 #endif
 470     break;
 471 
 472   case vmIntrinsics::_compareAndSwapLong:
 473     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 474     break;
 475 
 476   case vmIntrinsics::_getAndAddInt:
 477     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 478     break;
 479 
 480   case vmIntrinsics::_getAndAddLong:
 481     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 482     break;
 483 
 484   case vmIntrinsics::_getAndSetInt:
 485     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 486     break;
 487 
 488   case vmIntrinsics::_getAndSetLong:
 489     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 490     break;
 491 
 492   case vmIntrinsics::_getAndSetObject:
 493 #ifdef _LP64
 494     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 495     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 496     break;
 497 #else
 498     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 499     break;
 500 #endif
 501 
 502   case vmIntrinsics::_aescrypt_encryptBlock:
 503   case vmIntrinsics::_aescrypt_decryptBlock:
 504     if (!UseAESIntrinsics) return NULL;
 505     break;
 506 
 507   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 508   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 509     if (!UseAESIntrinsics) return NULL;
 510     // these two require the predicated logic
 511     is_predicted = true;
 512     break;
 513 
 514   case vmIntrinsics::_updateCRC32:
 515   case vmIntrinsics::_updateBytesCRC32:
 516   case vmIntrinsics::_updateByteBufferCRC32:
 517     if (!UseCRC32Intrinsics) return NULL;
 518     break;
 519 
 520   case vmIntrinsics::_incrementExactI:
 521   case vmIntrinsics::_addExactI:
 522     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 523     break;
 524   case vmIntrinsics::_incrementExactL:
 525   case vmIntrinsics::_addExactL:
 526     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 527     break;
 528   case vmIntrinsics::_decrementExactI:
 529   case vmIntrinsics::_subtractExactI:
 530     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 531     break;
 532   case vmIntrinsics::_decrementExactL:
 533   case vmIntrinsics::_subtractExactL:
 534     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 535     break;
 536   case vmIntrinsics::_negateExactI:
 537     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 538     break;
 539   case vmIntrinsics::_negateExactL:
 540     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 541     break;
 542   case vmIntrinsics::_multiplyExactI:
 543     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 544     break;
 545   case vmIntrinsics::_multiplyExactL:
 546     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 547     break;
 548 
 549  default:
 550     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 551     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 552     break;
 553   }
 554 
 555   // -XX:-InlineClassNatives disables natives from the Class class.
 556   // The flag applies to all reflective calls, notably Array.newArray
 557   // (visible to Java programmers as Array.newInstance).
 558   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 559       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 560     if (!InlineClassNatives)  return NULL;
 561   }
 562 
 563   // -XX:-InlineThreadNatives disables natives from the Thread class.
 564   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 565     if (!InlineThreadNatives)  return NULL;
 566   }
 567 
 568   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 569   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 570       m->holder()->name() == ciSymbol::java_lang_Float() ||
 571       m->holder()->name() == ciSymbol::java_lang_Double()) {
 572     if (!InlineMathNatives)  return NULL;
 573   }
 574 
 575   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 576   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 577     if (!InlineUnsafeOps)  return NULL;
 578   }
 579 
 580   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 581 }
 582 
 583 //----------------------register_library_intrinsics-----------------------
 584 // Initialize this file's data structures, for each Compile instance.
 585 void Compile::register_library_intrinsics() {
 586   // Nothing to do here.
 587 }
 588 
 589 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 590   LibraryCallKit kit(jvms, this);
 591   Compile* C = kit.C;
 592   int nodes = C->unique();
 593 #ifndef PRODUCT
 594   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 595     char buf[1000];
 596     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 597     tty->print_cr("Intrinsic %s", str);
 598   }
 599 #endif
 600   ciMethod* callee = kit.callee();
 601   const int bci    = kit.bci();
 602 
 603   // Try to inline the intrinsic.
 604   if (kit.try_to_inline()) {
 605     if (C->print_intrinsics() || C->print_inlining()) {
 606       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 607     }
 608     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 609     if (C->log()) {
 610       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 611                      vmIntrinsics::name_at(intrinsic_id()),
 612                      (is_virtual() ? " virtual='1'" : ""),
 613                      C->unique() - nodes);
 614     }
 615     // Push the result from the inlined method onto the stack.
 616     kit.push_result();
 617     return kit.transfer_exceptions_into_jvms();
 618   }
 619 
 620   // The intrinsic bailed out
 621   if (C->print_intrinsics() || C->print_inlining()) {
 622     if (jvms->has_method()) {
 623       // Not a root compile.
 624       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 625       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 626     } else {
 627       // Root compile
 628       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 629                vmIntrinsics::name_at(intrinsic_id()),
 630                (is_virtual() ? " (virtual)" : ""), bci);
 631     }
 632   }
 633   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 634   return NULL;
 635 }
 636 
 637 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 638   LibraryCallKit kit(jvms, this);
 639   Compile* C = kit.C;
 640   int nodes = C->unique();
 641 #ifndef PRODUCT
 642   assert(is_predicted(), "sanity");
 643   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 644     char buf[1000];
 645     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 646     tty->print_cr("Predicate for intrinsic %s", str);
 647   }
 648 #endif
 649   ciMethod* callee = kit.callee();
 650   const int bci    = kit.bci();
 651 
 652   Node* slow_ctl = kit.try_to_predicate();
 653   if (!kit.failing()) {
 654     if (C->print_intrinsics() || C->print_inlining()) {
 655       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 656     }
 657     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 658     if (C->log()) {
 659       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 660                      vmIntrinsics::name_at(intrinsic_id()),
 661                      (is_virtual() ? " virtual='1'" : ""),
 662                      C->unique() - nodes);
 663     }
 664     return slow_ctl; // Could be NULL if the check folds.
 665   }
 666 
 667   // The intrinsic bailed out
 668   if (C->print_intrinsics() || C->print_inlining()) {
 669     if (jvms->has_method()) {
 670       // Not a root compile.
 671       const char* msg = "failed to generate predicate for intrinsic";
 672       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 673     } else {
 674       // Root compile
 675       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 676                                         vmIntrinsics::name_at(intrinsic_id()),
 677                                         (is_virtual() ? " (virtual)" : ""), bci);
 678     }
 679   }
 680   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 681   return NULL;
 682 }
 683 
 684 bool LibraryCallKit::try_to_inline() {
 685   // Handle symbolic names for otherwise undistinguished boolean switches:
 686   const bool is_store       = true;
 687   const bool is_native_ptr  = true;
 688   const bool is_static      = true;
 689   const bool is_volatile    = true;
 690 
 691   if (!jvms()->has_method()) {
 692     // Root JVMState has a null method.
 693     assert(map()->memory()->Opcode() == Op_Parm, "");
 694     // Insert the memory aliasing node
 695     set_all_memory(reset_memory());
 696   }
 697   assert(merged_memory(), "");
 698 
 699 
 700   switch (intrinsic_id()) {
 701   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 702   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 703   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 704 
 705   case vmIntrinsics::_dsin:
 706   case vmIntrinsics::_dcos:
 707   case vmIntrinsics::_dtan:
 708   case vmIntrinsics::_dabs:
 709   case vmIntrinsics::_datan2:
 710   case vmIntrinsics::_dsqrt:
 711   case vmIntrinsics::_dexp:
 712   case vmIntrinsics::_dlog:
 713   case vmIntrinsics::_dlog10:
 714   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 715 
 716   case vmIntrinsics::_min:
 717   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 718 
 719   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 720   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 721   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 722   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 723   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 724   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 725   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 726   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 727   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 728   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 729   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 730   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 731 
 732   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 733 
 734   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 735   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 736   case vmIntrinsics::_equals:                   return inline_string_equals();
 737 
 738   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 739   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 740   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 741   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 742   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 743   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 744   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 745   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 746   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 747 
 748   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 749   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 750   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 751   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 752   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 753   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 754   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 755   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 756   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 757 
 758   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 759   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 760   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 761   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 762   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 763   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 764   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 765   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 766 
 767   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 768   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 769   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 770   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 771   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 772   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 773   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 774   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 775 
 776   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 777   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 778   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 779   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 780   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 781   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 782   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 783   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 784   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 785 
 786   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 787   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 788   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 789   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 790   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 791   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 792   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 793   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 794   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 795 
 796   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 797   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 798   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 799   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 800 
 801   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 802   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 803   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 804 
 805   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 806   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 807   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 808 
 809   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 810   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 811   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 812   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 813   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 814 
 815   case vmIntrinsics::_loadFence:
 816   case vmIntrinsics::_storeFence:
 817   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 818 
 819   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 820   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 821 
 822 #ifdef TRACE_HAVE_INTRINSICS
 823   case vmIntrinsics::_classID:                  return inline_native_classID();
 824   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 825   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 826 #endif
 827   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 828   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 829   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 830   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 831   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 832   case vmIntrinsics::_getLength:                return inline_native_getLength();
 833   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 834   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 835   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 836   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 837 
 838   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 839 
 840   case vmIntrinsics::_isInstance:
 841   case vmIntrinsics::_getModifiers:
 842   case vmIntrinsics::_isInterface:
 843   case vmIntrinsics::_isArray:
 844   case vmIntrinsics::_isPrimitive:
 845   case vmIntrinsics::_getSuperclass:
 846   case vmIntrinsics::_getComponentType:
 847   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 848 
 849   case vmIntrinsics::_floatToRawIntBits:
 850   case vmIntrinsics::_floatToIntBits:
 851   case vmIntrinsics::_intBitsToFloat:
 852   case vmIntrinsics::_doubleToRawLongBits:
 853   case vmIntrinsics::_doubleToLongBits:
 854   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 855 
 856   case vmIntrinsics::_numberOfLeadingZeros_i:
 857   case vmIntrinsics::_numberOfLeadingZeros_l:
 858   case vmIntrinsics::_numberOfTrailingZeros_i:
 859   case vmIntrinsics::_numberOfTrailingZeros_l:
 860   case vmIntrinsics::_bitCount_i:
 861   case vmIntrinsics::_bitCount_l:
 862   case vmIntrinsics::_reverseBytes_i:
 863   case vmIntrinsics::_reverseBytes_l:
 864   case vmIntrinsics::_reverseBytes_s:
 865   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 866 
 867   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 868 
 869   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 870 
 871   case vmIntrinsics::_aescrypt_encryptBlock:
 872   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 873 
 874   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 875   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 876     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 877 
 878   case vmIntrinsics::_encodeISOArray:
 879     return inline_encodeISOArray();
 880 
 881   case vmIntrinsics::_updateCRC32:
 882     return inline_updateCRC32();
 883   case vmIntrinsics::_updateBytesCRC32:
 884     return inline_updateBytesCRC32();
 885   case vmIntrinsics::_updateByteBufferCRC32:
 886     return inline_updateByteBufferCRC32();
 887 
 888   default:
 889     // If you get here, it may be that someone has added a new intrinsic
 890     // to the list in vmSymbols.hpp without implementing it here.
 891 #ifndef PRODUCT
 892     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 893       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 894                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 895     }
 896 #endif
 897     return false;
 898   }
 899 }
 900 
 901 Node* LibraryCallKit::try_to_predicate() {
 902   if (!jvms()->has_method()) {
 903     // Root JVMState has a null method.
 904     assert(map()->memory()->Opcode() == Op_Parm, "");
 905     // Insert the memory aliasing node
 906     set_all_memory(reset_memory());
 907   }
 908   assert(merged_memory(), "");
 909 
 910   switch (intrinsic_id()) {
 911   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 912     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 913   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 914     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 915 
 916   default:
 917     // If you get here, it may be that someone has added a new intrinsic
 918     // to the list in vmSymbols.hpp without implementing it here.
 919 #ifndef PRODUCT
 920     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 921       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 922                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 923     }
 924 #endif
 925     Node* slow_ctl = control();
 926     set_control(top()); // No fast path instrinsic
 927     return slow_ctl;
 928   }
 929 }
 930 
 931 //------------------------------set_result-------------------------------
 932 // Helper function for finishing intrinsics.
 933 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 934   record_for_igvn(region);
 935   set_control(_gvn.transform(region));
 936   set_result( _gvn.transform(value));
 937   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 938 }
 939 
 940 //------------------------------generate_guard---------------------------
 941 // Helper function for generating guarded fast-slow graph structures.
 942 // The given 'test', if true, guards a slow path.  If the test fails
 943 // then a fast path can be taken.  (We generally hope it fails.)
 944 // In all cases, GraphKit::control() is updated to the fast path.
 945 // The returned value represents the control for the slow path.
 946 // The return value is never 'top'; it is either a valid control
 947 // or NULL if it is obvious that the slow path can never be taken.
 948 // Also, if region and the slow control are not NULL, the slow edge
 949 // is appended to the region.
 950 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 951   if (stopped()) {
 952     // Already short circuited.
 953     return NULL;
 954   }
 955 
 956   // Build an if node and its projections.
 957   // If test is true we take the slow path, which we assume is uncommon.
 958   if (_gvn.type(test) == TypeInt::ZERO) {
 959     // The slow branch is never taken.  No need to build this guard.
 960     return NULL;
 961   }
 962 
 963   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 964 
 965   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 966   if (if_slow == top()) {
 967     // The slow branch is never taken.  No need to build this guard.
 968     return NULL;
 969   }
 970 
 971   if (region != NULL)
 972     region->add_req(if_slow);
 973 
 974   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 975   set_control(if_fast);
 976 
 977   return if_slow;
 978 }
 979 
 980 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 981   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 982 }
 983 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 984   return generate_guard(test, region, PROB_FAIR);
 985 }
 986 
 987 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 988                                                      Node* *pos_index) {
 989   if (stopped())
 990     return NULL;                // already stopped
 991   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 992     return NULL;                // index is already adequately typed
 993   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 994   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 995   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 996   if (is_neg != NULL && pos_index != NULL) {
 997     // Emulate effect of Parse::adjust_map_after_if.
 998     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 999     ccast->set_req(0, control());
1000     (*pos_index) = _gvn.transform(ccast);
1001   }
1002   return is_neg;
1003 }
1004 
1005 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1006                                                         Node* *pos_index) {
1007   if (stopped())
1008     return NULL;                // already stopped
1009   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1010     return NULL;                // index is already adequately typed
1011   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1012   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1013   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1014   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1015   if (is_notp != NULL && pos_index != NULL) {
1016     // Emulate effect of Parse::adjust_map_after_if.
1017     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1018     ccast->set_req(0, control());
1019     (*pos_index) = _gvn.transform(ccast);
1020   }
1021   return is_notp;
1022 }
1023 
1024 // Make sure that 'position' is a valid limit index, in [0..length].
1025 // There are two equivalent plans for checking this:
1026 //   A. (offset + copyLength)  unsigned<=  arrayLength
1027 //   B. offset  <=  (arrayLength - copyLength)
1028 // We require that all of the values above, except for the sum and
1029 // difference, are already known to be non-negative.
1030 // Plan A is robust in the face of overflow, if offset and copyLength
1031 // are both hugely positive.
1032 //
1033 // Plan B is less direct and intuitive, but it does not overflow at
1034 // all, since the difference of two non-negatives is always
1035 // representable.  Whenever Java methods must perform the equivalent
1036 // check they generally use Plan B instead of Plan A.
1037 // For the moment we use Plan A.
1038 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1039                                                   Node* subseq_length,
1040                                                   Node* array_length,
1041                                                   RegionNode* region) {
1042   if (stopped())
1043     return NULL;                // already stopped
1044   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1045   if (zero_offset && subseq_length->eqv_uncast(array_length))
1046     return NULL;                // common case of whole-array copy
1047   Node* last = subseq_length;
1048   if (!zero_offset)             // last += offset
1049     last = _gvn.transform(new (C) AddINode(last, offset));
1050   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1051   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1052   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1053   return is_over;
1054 }
1055 
1056 
1057 //--------------------------generate_current_thread--------------------
1058 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1059   ciKlass*    thread_klass = env()->Thread_klass();
1060   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1061   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1062   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1063   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1064   tls_output = thread;
1065   return threadObj;
1066 }
1067 
1068 
1069 //------------------------------make_string_method_node------------------------
1070 // Helper method for String intrinsic functions. This version is called
1071 // with str1 and str2 pointing to String object nodes.
1072 //
1073 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1074   Node* no_ctrl = NULL;
1075 
1076   // Get start addr of string
1077   Node* str1_value   = load_String_value(no_ctrl, str1);
1078   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1079   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1080 
1081   // Get length of string 1
1082   Node* str1_len  = load_String_length(no_ctrl, str1);
1083 
1084   Node* str2_value   = load_String_value(no_ctrl, str2);
1085   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1086   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1087 
1088   Node* str2_len = NULL;
1089   Node* result = NULL;
1090 
1091   switch (opcode) {
1092   case Op_StrIndexOf:
1093     // Get length of string 2
1094     str2_len = load_String_length(no_ctrl, str2);
1095 
1096     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1097                                  str1_start, str1_len, str2_start, str2_len);
1098     break;
1099   case Op_StrComp:
1100     // Get length of string 2
1101     str2_len = load_String_length(no_ctrl, str2);
1102 
1103     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1104                                  str1_start, str1_len, str2_start, str2_len);
1105     break;
1106   case Op_StrEquals:
1107     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1108                                str1_start, str2_start, str1_len);
1109     break;
1110   default:
1111     ShouldNotReachHere();
1112     return NULL;
1113   }
1114 
1115   // All these intrinsics have checks.
1116   C->set_has_split_ifs(true); // Has chance for split-if optimization
1117 
1118   return _gvn.transform(result);
1119 }
1120 
1121 // Helper method for String intrinsic functions. This version is called
1122 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1123 // to Int nodes containing the lenghts of str1 and str2.
1124 //
1125 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1126   Node* result = NULL;
1127   switch (opcode) {
1128   case Op_StrIndexOf:
1129     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1130                                  str1_start, cnt1, str2_start, cnt2);
1131     break;
1132   case Op_StrComp:
1133     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1134                                  str1_start, cnt1, str2_start, cnt2);
1135     break;
1136   case Op_StrEquals:
1137     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1138                                  str1_start, str2_start, cnt1);
1139     break;
1140   default:
1141     ShouldNotReachHere();
1142     return NULL;
1143   }
1144 
1145   // All these intrinsics have checks.
1146   C->set_has_split_ifs(true); // Has chance for split-if optimization
1147 
1148   return _gvn.transform(result);
1149 }
1150 
1151 //------------------------------inline_string_compareTo------------------------
1152 // public int java.lang.String.compareTo(String anotherString);
1153 bool LibraryCallKit::inline_string_compareTo() {
1154   Node* receiver = null_check(argument(0));
1155   Node* arg      = null_check(argument(1));
1156   if (stopped()) {
1157     return true;
1158   }
1159   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1160   return true;
1161 }
1162 
1163 //------------------------------inline_string_equals------------------------
1164 bool LibraryCallKit::inline_string_equals() {
1165   Node* receiver = null_check_receiver();
1166   // NOTE: Do not null check argument for String.equals() because spec
1167   // allows to specify NULL as argument.
1168   Node* argument = this->argument(1);
1169   if (stopped()) {
1170     return true;
1171   }
1172 
1173   // paths (plus control) merge
1174   RegionNode* region = new (C) RegionNode(5);
1175   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1176 
1177   // does source == target string?
1178   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1179   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1180 
1181   Node* if_eq = generate_slow_guard(bol, NULL);
1182   if (if_eq != NULL) {
1183     // receiver == argument
1184     phi->init_req(2, intcon(1));
1185     region->init_req(2, if_eq);
1186   }
1187 
1188   // get String klass for instanceOf
1189   ciInstanceKlass* klass = env()->String_klass();
1190 
1191   if (!stopped()) {
1192     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1193     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1194     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1195 
1196     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1197     //instanceOf == true, fallthrough
1198 
1199     if (inst_false != NULL) {
1200       phi->init_req(3, intcon(0));
1201       region->init_req(3, inst_false);
1202     }
1203   }
1204 
1205   if (!stopped()) {
1206     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1207 
1208     // Properly cast the argument to String
1209     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1210     // This path is taken only when argument's type is String:NotNull.
1211     argument = cast_not_null(argument, false);
1212 
1213     Node* no_ctrl = NULL;
1214 
1215     // Get start addr of receiver
1216     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1217     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1218     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1219 
1220     // Get length of receiver
1221     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1222 
1223     // Get start addr of argument
1224     Node* argument_val    = load_String_value(no_ctrl, argument);
1225     Node* argument_offset = load_String_offset(no_ctrl, argument);
1226     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1227 
1228     // Get length of argument
1229     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1230 
1231     // Check for receiver count != argument count
1232     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1233     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1234     Node* if_ne = generate_slow_guard(bol, NULL);
1235     if (if_ne != NULL) {
1236       phi->init_req(4, intcon(0));
1237       region->init_req(4, if_ne);
1238     }
1239 
1240     // Check for count == 0 is done by assembler code for StrEquals.
1241 
1242     if (!stopped()) {
1243       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1244       phi->init_req(1, equals);
1245       region->init_req(1, control());
1246     }
1247   }
1248 
1249   // post merge
1250   set_control(_gvn.transform(region));
1251   record_for_igvn(region);
1252 
1253   set_result(_gvn.transform(phi));
1254   return true;
1255 }
1256 
1257 //------------------------------inline_array_equals----------------------------
1258 bool LibraryCallKit::inline_array_equals() {
1259   Node* arg1 = argument(0);
1260   Node* arg2 = argument(1);
1261   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1262   return true;
1263 }
1264 
1265 // Java version of String.indexOf(constant string)
1266 // class StringDecl {
1267 //   StringDecl(char[] ca) {
1268 //     offset = 0;
1269 //     count = ca.length;
1270 //     value = ca;
1271 //   }
1272 //   int offset;
1273 //   int count;
1274 //   char[] value;
1275 // }
1276 //
1277 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1278 //                             int targetOffset, int cache_i, int md2) {
1279 //   int cache = cache_i;
1280 //   int sourceOffset = string_object.offset;
1281 //   int sourceCount = string_object.count;
1282 //   int targetCount = target_object.length;
1283 //
1284 //   int targetCountLess1 = targetCount - 1;
1285 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1286 //
1287 //   char[] source = string_object.value;
1288 //   char[] target = target_object;
1289 //   int lastChar = target[targetCountLess1];
1290 //
1291 //  outer_loop:
1292 //   for (int i = sourceOffset; i < sourceEnd; ) {
1293 //     int src = source[i + targetCountLess1];
1294 //     if (src == lastChar) {
1295 //       // With random strings and a 4-character alphabet,
1296 //       // reverse matching at this point sets up 0.8% fewer
1297 //       // frames, but (paradoxically) makes 0.3% more probes.
1298 //       // Since those probes are nearer the lastChar probe,
1299 //       // there is may be a net D$ win with reverse matching.
1300 //       // But, reversing loop inhibits unroll of inner loop
1301 //       // for unknown reason.  So, does running outer loop from
1302 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1303 //       for (int j = 0; j < targetCountLess1; j++) {
1304 //         if (target[targetOffset + j] != source[i+j]) {
1305 //           if ((cache & (1 << source[i+j])) == 0) {
1306 //             if (md2 < j+1) {
1307 //               i += j+1;
1308 //               continue outer_loop;
1309 //             }
1310 //           }
1311 //           i += md2;
1312 //           continue outer_loop;
1313 //         }
1314 //       }
1315 //       return i - sourceOffset;
1316 //     }
1317 //     if ((cache & (1 << src)) == 0) {
1318 //       i += targetCountLess1;
1319 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1320 //     i++;
1321 //   }
1322 //   return -1;
1323 // }
1324 
1325 //------------------------------string_indexOf------------------------
1326 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1327                                      jint cache_i, jint md2_i) {
1328 
1329   Node* no_ctrl  = NULL;
1330   float likely   = PROB_LIKELY(0.9);
1331   float unlikely = PROB_UNLIKELY(0.9);
1332 
1333   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1334 
1335   Node* source        = load_String_value(no_ctrl, string_object);
1336   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1337   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1338 
1339   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1340   jint target_length = target_array->length();
1341   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1342   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1343 
1344   // String.value field is known to be @Stable.
1345   if (UseImplicitStableValues) {
1346     target = cast_array_to_stable(target, target_type);
1347   }
1348 
1349   IdealKit kit(this, false, true);
1350 #define __ kit.
1351   Node* zero             = __ ConI(0);
1352   Node* one              = __ ConI(1);
1353   Node* cache            = __ ConI(cache_i);
1354   Node* md2              = __ ConI(md2_i);
1355   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1356   Node* targetCount      = __ ConI(target_length);
1357   Node* targetCountLess1 = __ ConI(target_length - 1);
1358   Node* targetOffset     = __ ConI(targetOffset_i);
1359   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1360 
1361   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1362   Node* outer_loop = __ make_label(2 /* goto */);
1363   Node* return_    = __ make_label(1);
1364 
1365   __ set(rtn,__ ConI(-1));
1366   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1367        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1368        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1369        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1370        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1371          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1372               Node* tpj = __ AddI(targetOffset, __ value(j));
1373               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1374               Node* ipj  = __ AddI(__ value(i), __ value(j));
1375               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1376               __ if_then(targ, BoolTest::ne, src2); {
1377                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1378                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1379                     __ increment(i, __ AddI(__ value(j), one));
1380                     __ goto_(outer_loop);
1381                   } __ end_if(); __ dead(j);
1382                 }__ end_if(); __ dead(j);
1383                 __ increment(i, md2);
1384                 __ goto_(outer_loop);
1385               }__ end_if();
1386               __ increment(j, one);
1387          }__ end_loop(); __ dead(j);
1388          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1389          __ goto_(return_);
1390        }__ end_if();
1391        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1392          __ increment(i, targetCountLess1);
1393        }__ end_if();
1394        __ increment(i, one);
1395        __ bind(outer_loop);
1396   }__ end_loop(); __ dead(i);
1397   __ bind(return_);
1398 
1399   // Final sync IdealKit and GraphKit.
1400   final_sync(kit);
1401   Node* result = __ value(rtn);
1402 #undef __
1403   C->set_has_loops(true);
1404   return result;
1405 }
1406 
1407 //------------------------------inline_string_indexOf------------------------
1408 bool LibraryCallKit::inline_string_indexOf() {
1409   Node* receiver = argument(0);
1410   Node* arg      = argument(1);
1411 
1412   Node* result;
1413   // Disable the use of pcmpestri until it can be guaranteed that
1414   // the load doesn't cross into the uncommited space.
1415   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1416       UseSSE42Intrinsics) {
1417     // Generate SSE4.2 version of indexOf
1418     // We currently only have match rules that use SSE4.2
1419 
1420     receiver = null_check(receiver);
1421     arg      = null_check(arg);
1422     if (stopped()) {
1423       return true;
1424     }
1425 
1426     ciInstanceKlass* str_klass = env()->String_klass();
1427     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1428 
1429     // Make the merge point
1430     RegionNode* result_rgn = new (C) RegionNode(4);
1431     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1432     Node* no_ctrl  = NULL;
1433 
1434     // Get start addr of source string
1435     Node* source = load_String_value(no_ctrl, receiver);
1436     Node* source_offset = load_String_offset(no_ctrl, receiver);
1437     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1438 
1439     // Get length of source string
1440     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1441 
1442     // Get start addr of substring
1443     Node* substr = load_String_value(no_ctrl, arg);
1444     Node* substr_offset = load_String_offset(no_ctrl, arg);
1445     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1446 
1447     // Get length of source string
1448     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1449 
1450     // Check for substr count > string count
1451     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1452     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1453     Node* if_gt = generate_slow_guard(bol, NULL);
1454     if (if_gt != NULL) {
1455       result_phi->init_req(2, intcon(-1));
1456       result_rgn->init_req(2, if_gt);
1457     }
1458 
1459     if (!stopped()) {
1460       // Check for substr count == 0
1461       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1462       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1463       Node* if_zero = generate_slow_guard(bol, NULL);
1464       if (if_zero != NULL) {
1465         result_phi->init_req(3, intcon(0));
1466         result_rgn->init_req(3, if_zero);
1467       }
1468     }
1469 
1470     if (!stopped()) {
1471       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1472       result_phi->init_req(1, result);
1473       result_rgn->init_req(1, control());
1474     }
1475     set_control(_gvn.transform(result_rgn));
1476     record_for_igvn(result_rgn);
1477     result = _gvn.transform(result_phi);
1478 
1479   } else { // Use LibraryCallKit::string_indexOf
1480     // don't intrinsify if argument isn't a constant string.
1481     if (!arg->is_Con()) {
1482      return false;
1483     }
1484     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1485     if (str_type == NULL) {
1486       return false;
1487     }
1488     ciInstanceKlass* klass = env()->String_klass();
1489     ciObject* str_const = str_type->const_oop();
1490     if (str_const == NULL || str_const->klass() != klass) {
1491       return false;
1492     }
1493     ciInstance* str = str_const->as_instance();
1494     assert(str != NULL, "must be instance");
1495 
1496     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1497     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1498 
1499     int o;
1500     int c;
1501     if (java_lang_String::has_offset_field()) {
1502       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1503       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1504     } else {
1505       o = 0;
1506       c = pat->length();
1507     }
1508 
1509     // constant strings have no offset and count == length which
1510     // simplifies the resulting code somewhat so lets optimize for that.
1511     if (o != 0 || c != pat->length()) {
1512      return false;
1513     }
1514 
1515     receiver = null_check(receiver, T_OBJECT);
1516     // NOTE: No null check on the argument is needed since it's a constant String oop.
1517     if (stopped()) {
1518       return true;
1519     }
1520 
1521     // The null string as a pattern always returns 0 (match at beginning of string)
1522     if (c == 0) {
1523       set_result(intcon(0));
1524       return true;
1525     }
1526 
1527     // Generate default indexOf
1528     jchar lastChar = pat->char_at(o + (c - 1));
1529     int cache = 0;
1530     int i;
1531     for (i = 0; i < c - 1; i++) {
1532       assert(i < pat->length(), "out of range");
1533       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1534     }
1535 
1536     int md2 = c;
1537     for (i = 0; i < c - 1; i++) {
1538       assert(i < pat->length(), "out of range");
1539       if (pat->char_at(o + i) == lastChar) {
1540         md2 = (c - 1) - i;
1541       }
1542     }
1543 
1544     result = string_indexOf(receiver, pat, o, cache, md2);
1545   }
1546   set_result(result);
1547   return true;
1548 }
1549 
1550 //--------------------------round_double_node--------------------------------
1551 // Round a double node if necessary.
1552 Node* LibraryCallKit::round_double_node(Node* n) {
1553   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1554     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1555   return n;
1556 }
1557 
1558 //------------------------------inline_math-----------------------------------
1559 // public static double Math.abs(double)
1560 // public static double Math.sqrt(double)
1561 // public static double Math.log(double)
1562 // public static double Math.log10(double)
1563 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1564   Node* arg = round_double_node(argument(0));
1565   Node* n;
1566   switch (id) {
1567   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1568   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1569   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1570   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1571   default:  fatal_unexpected_iid(id);  break;
1572   }
1573   set_result(_gvn.transform(n));
1574   return true;
1575 }
1576 
1577 //------------------------------inline_trig----------------------------------
1578 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1579 // argument reduction which will turn into a fast/slow diamond.
1580 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1581   Node* arg = round_double_node(argument(0));
1582   Node* n = NULL;
1583 
1584   switch (id) {
1585   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1586   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1587   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1588   default:  fatal_unexpected_iid(id);  break;
1589   }
1590   n = _gvn.transform(n);
1591 
1592   // Rounding required?  Check for argument reduction!
1593   if (Matcher::strict_fp_requires_explicit_rounding) {
1594     static const double     pi_4 =  0.7853981633974483;
1595     static const double neg_pi_4 = -0.7853981633974483;
1596     // pi/2 in 80-bit extended precision
1597     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1598     // -pi/2 in 80-bit extended precision
1599     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1600     // Cutoff value for using this argument reduction technique
1601     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1602     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1603 
1604     // Pseudocode for sin:
1605     // if (x <= Math.PI / 4.0) {
1606     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1607     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1608     // } else {
1609     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1610     // }
1611     // return StrictMath.sin(x);
1612 
1613     // Pseudocode for cos:
1614     // if (x <= Math.PI / 4.0) {
1615     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1616     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1617     // } else {
1618     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1619     // }
1620     // return StrictMath.cos(x);
1621 
1622     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1623     // requires a special machine instruction to load it.  Instead we'll try
1624     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1625     // probably do the math inside the SIN encoding.
1626 
1627     // Make the merge point
1628     RegionNode* r = new (C) RegionNode(3);
1629     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1630 
1631     // Flatten arg so we need only 1 test
1632     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1633     // Node for PI/4 constant
1634     Node *pi4 = makecon(TypeD::make(pi_4));
1635     // Check PI/4 : abs(arg)
1636     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1637     // Check: If PI/4 < abs(arg) then go slow
1638     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1639     // Branch either way
1640     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1641     set_control(opt_iff(r,iff));
1642 
1643     // Set fast path result
1644     phi->init_req(2, n);
1645 
1646     // Slow path - non-blocking leaf call
1647     Node* call = NULL;
1648     switch (id) {
1649     case vmIntrinsics::_dsin:
1650       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1651                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1652                                "Sin", NULL, arg, top());
1653       break;
1654     case vmIntrinsics::_dcos:
1655       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1656                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1657                                "Cos", NULL, arg, top());
1658       break;
1659     case vmIntrinsics::_dtan:
1660       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1661                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1662                                "Tan", NULL, arg, top());
1663       break;
1664     }
1665     assert(control()->in(0) == call, "");
1666     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1667     r->init_req(1, control());
1668     phi->init_req(1, slow_result);
1669 
1670     // Post-merge
1671     set_control(_gvn.transform(r));
1672     record_for_igvn(r);
1673     n = _gvn.transform(phi);
1674 
1675     C->set_has_split_ifs(true); // Has chance for split-if optimization
1676   }
1677   set_result(n);
1678   return true;
1679 }
1680 
1681 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1682   //-------------------
1683   //result=(result.isNaN())? funcAddr():result;
1684   // Check: If isNaN() by checking result!=result? then either trap
1685   // or go to runtime
1686   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1687   // Build the boolean node
1688   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1689 
1690   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1691     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1692       // The pow or exp intrinsic returned a NaN, which requires a call
1693       // to the runtime.  Recompile with the runtime call.
1694       uncommon_trap(Deoptimization::Reason_intrinsic,
1695                     Deoptimization::Action_make_not_entrant);
1696     }
1697     set_result(result);
1698   } else {
1699     // If this inlining ever returned NaN in the past, we compile a call
1700     // to the runtime to properly handle corner cases
1701 
1702     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1703     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1704     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1705 
1706     if (!if_slow->is_top()) {
1707       RegionNode* result_region = new (C) RegionNode(3);
1708       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1709 
1710       result_region->init_req(1, if_fast);
1711       result_val->init_req(1, result);
1712 
1713       set_control(if_slow);
1714 
1715       const TypePtr* no_memory_effects = NULL;
1716       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1717                                    no_memory_effects,
1718                                    x, top(), y, y ? top() : NULL);
1719       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1720 #ifdef ASSERT
1721       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1722       assert(value_top == top(), "second value must be top");
1723 #endif
1724 
1725       result_region->init_req(2, control());
1726       result_val->init_req(2, value);
1727       set_result(result_region, result_val);
1728     } else {
1729       set_result(result);
1730     }
1731   }
1732 }
1733 
1734 //------------------------------inline_exp-------------------------------------
1735 // Inline exp instructions, if possible.  The Intel hardware only misses
1736 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1737 bool LibraryCallKit::inline_exp() {
1738   Node* arg = round_double_node(argument(0));
1739   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1740 
1741   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1742 
1743   C->set_has_split_ifs(true); // Has chance for split-if optimization
1744   return true;
1745 }
1746 
1747 //------------------------------inline_pow-------------------------------------
1748 // Inline power instructions, if possible.
1749 bool LibraryCallKit::inline_pow() {
1750   // Pseudocode for pow
1751   // if (x <= 0.0) {
1752   //   long longy = (long)y;
1753   //   if ((double)longy == y) { // if y is long
1754   //     if (y + 1 == y) longy = 0; // huge number: even
1755   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1756   //   } else {
1757   //     result = NaN;
1758   //   }
1759   // } else {
1760   //   result = DPow(x,y);
1761   // }
1762   // if (result != result)?  {
1763   //   result = uncommon_trap() or runtime_call();
1764   // }
1765   // return result;
1766 
1767   Node* x = round_double_node(argument(0));
1768   Node* y = round_double_node(argument(2));
1769 
1770   Node* result = NULL;
1771 
1772   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1773     // Short form: skip the fancy tests and just check for NaN result.
1774     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1775   } else {
1776     // If this inlining ever returned NaN in the past, include all
1777     // checks + call to the runtime.
1778 
1779     // Set the merge point for If node with condition of (x <= 0.0)
1780     // There are four possible paths to region node and phi node
1781     RegionNode *r = new (C) RegionNode(4);
1782     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1783 
1784     // Build the first if node: if (x <= 0.0)
1785     // Node for 0 constant
1786     Node *zeronode = makecon(TypeD::ZERO);
1787     // Check x:0
1788     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1789     // Check: If (x<=0) then go complex path
1790     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1791     // Branch either way
1792     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1793     // Fast path taken; set region slot 3
1794     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1795     r->init_req(3,fast_taken); // Capture fast-control
1796 
1797     // Fast path not-taken, i.e. slow path
1798     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1799 
1800     // Set fast path result
1801     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1802     phi->init_req(3, fast_result);
1803 
1804     // Complex path
1805     // Build the second if node (if y is long)
1806     // Node for (long)y
1807     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1808     // Node for (double)((long) y)
1809     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1810     // Check (double)((long) y) : y
1811     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1812     // Check if (y isn't long) then go to slow path
1813 
1814     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1815     // Branch either way
1816     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1817     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1818 
1819     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1820 
1821     // Calculate DPow(abs(x), y)*(1 & (long)y)
1822     // Node for constant 1
1823     Node *conone = longcon(1);
1824     // 1& (long)y
1825     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1826 
1827     // A huge number is always even. Detect a huge number by checking
1828     // if y + 1 == y and set integer to be tested for parity to 0.
1829     // Required for corner case:
1830     // (long)9.223372036854776E18 = max_jlong
1831     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1832     // max_jlong is odd but 9.223372036854776E18 is even
1833     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1834     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1835     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1836     Node* correctedsign = NULL;
1837     if (ConditionalMoveLimit != 0) {
1838       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1839     } else {
1840       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1841       RegionNode *r = new (C) RegionNode(3);
1842       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1843       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1844       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1845       phi->init_req(1, signnode);
1846       phi->init_req(2, longcon(0));
1847       correctedsign = _gvn.transform(phi);
1848       ylong_path = _gvn.transform(r);
1849       record_for_igvn(r);
1850     }
1851 
1852     // zero node
1853     Node *conzero = longcon(0);
1854     // Check (1&(long)y)==0?
1855     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1856     // Check if (1&(long)y)!=0?, if so the result is negative
1857     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1858     // abs(x)
1859     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1860     // abs(x)^y
1861     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1862     // -abs(x)^y
1863     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1864     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1865     Node *signresult = NULL;
1866     if (ConditionalMoveLimit != 0) {
1867       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1868     } else {
1869       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1870       RegionNode *r = new (C) RegionNode(3);
1871       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1872       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1873       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1874       phi->init_req(1, absxpowy);
1875       phi->init_req(2, negabsxpowy);
1876       signresult = _gvn.transform(phi);
1877       ylong_path = _gvn.transform(r);
1878       record_for_igvn(r);
1879     }
1880     // Set complex path fast result
1881     r->init_req(2, ylong_path);
1882     phi->init_req(2, signresult);
1883 
1884     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1885     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1886     r->init_req(1,slow_path);
1887     phi->init_req(1,slow_result);
1888 
1889     // Post merge
1890     set_control(_gvn.transform(r));
1891     record_for_igvn(r);
1892     result = _gvn.transform(phi);
1893   }
1894 
1895   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1896 
1897   C->set_has_split_ifs(true); // Has chance for split-if optimization
1898   return true;
1899 }
1900 
1901 //------------------------------runtime_math-----------------------------
1902 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1903   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1904          "must be (DD)D or (D)D type");
1905 
1906   // Inputs
1907   Node* a = round_double_node(argument(0));
1908   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1909 
1910   const TypePtr* no_memory_effects = NULL;
1911   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1912                                  no_memory_effects,
1913                                  a, top(), b, b ? top() : NULL);
1914   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1915 #ifdef ASSERT
1916   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1917   assert(value_top == top(), "second value must be top");
1918 #endif
1919 
1920   set_result(value);
1921   return true;
1922 }
1923 
1924 //------------------------------inline_math_native-----------------------------
1925 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1926 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1927   switch (id) {
1928     // These intrinsics are not properly supported on all hardware
1929   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1930     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1931   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1932     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1933   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1934     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1935 
1936   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1937     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1938   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1939     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1940 
1941     // These intrinsics are supported on all hardware
1942   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1943   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1944 
1945   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1946     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1947   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1948     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1949 #undef FN_PTR
1950 
1951    // These intrinsics are not yet correctly implemented
1952   case vmIntrinsics::_datan2:
1953     return false;
1954 
1955   default:
1956     fatal_unexpected_iid(id);
1957     return false;
1958   }
1959 }
1960 
1961 static bool is_simple_name(Node* n) {
1962   return (n->req() == 1         // constant
1963           || (n->is_Type() && n->as_Type()->type()->singleton())
1964           || n->is_Proj()       // parameter or return value
1965           || n->is_Phi()        // local of some sort
1966           );
1967 }
1968 
1969 //----------------------------inline_min_max-----------------------------------
1970 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1971   set_result(generate_min_max(id, argument(0), argument(1)));
1972   return true;
1973 }
1974 
1975 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1976   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
1977   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1978   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1979   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1980 
1981   {
1982     PreserveJVMState pjvms(this);
1983     PreserveReexecuteState preexecs(this);
1984     jvms()->set_should_reexecute(true);
1985 
1986     set_control(slow_path);
1987     set_i_o(i_o());
1988 
1989     uncommon_trap(Deoptimization::Reason_intrinsic,
1990                   Deoptimization::Action_none);
1991   }
1992 
1993   set_control(fast_path);
1994   set_result(math);
1995 }
1996 
1997 template <typename OverflowOp>
1998 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1999   typedef typename OverflowOp::MathOp MathOp;
2000 
2001   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2002   Node* operation = _gvn.transform( mathOp );
2003   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2004   inline_math_mathExact(operation, ofcheck);
2005   return true;
2006 }
2007 
2008 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2009   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2010 }
2011 
2012 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2013   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2014 }
2015 
2016 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2017   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2018 }
2019 
2020 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2021   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2022 }
2023 
2024 bool LibraryCallKit::inline_math_negateExactI() {
2025   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2026 }
2027 
2028 bool LibraryCallKit::inline_math_negateExactL() {
2029   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2030 }
2031 
2032 bool LibraryCallKit::inline_math_multiplyExactI() {
2033   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2034 }
2035 
2036 bool LibraryCallKit::inline_math_multiplyExactL() {
2037   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2038 }
2039 
2040 Node*
2041 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2042   // These are the candidate return value:
2043   Node* xvalue = x0;
2044   Node* yvalue = y0;
2045 
2046   if (xvalue == yvalue) {
2047     return xvalue;
2048   }
2049 
2050   bool want_max = (id == vmIntrinsics::_max);
2051 
2052   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2053   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2054   if (txvalue == NULL || tyvalue == NULL)  return top();
2055   // This is not really necessary, but it is consistent with a
2056   // hypothetical MaxINode::Value method:
2057   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2058 
2059   // %%% This folding logic should (ideally) be in a different place.
2060   // Some should be inside IfNode, and there to be a more reliable
2061   // transformation of ?: style patterns into cmoves.  We also want
2062   // more powerful optimizations around cmove and min/max.
2063 
2064   // Try to find a dominating comparison of these guys.
2065   // It can simplify the index computation for Arrays.copyOf
2066   // and similar uses of System.arraycopy.
2067   // First, compute the normalized version of CmpI(x, y).
2068   int   cmp_op = Op_CmpI;
2069   Node* xkey = xvalue;
2070   Node* ykey = yvalue;
2071   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2072   if (ideal_cmpxy->is_Cmp()) {
2073     // E.g., if we have CmpI(length - offset, count),
2074     // it might idealize to CmpI(length, count + offset)
2075     cmp_op = ideal_cmpxy->Opcode();
2076     xkey = ideal_cmpxy->in(1);
2077     ykey = ideal_cmpxy->in(2);
2078   }
2079 
2080   // Start by locating any relevant comparisons.
2081   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2082   Node* cmpxy = NULL;
2083   Node* cmpyx = NULL;
2084   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2085     Node* cmp = start_from->fast_out(k);
2086     if (cmp->outcnt() > 0 &&            // must have prior uses
2087         cmp->in(0) == NULL &&           // must be context-independent
2088         cmp->Opcode() == cmp_op) {      // right kind of compare
2089       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2090       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2091     }
2092   }
2093 
2094   const int NCMPS = 2;
2095   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2096   int cmpn;
2097   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2098     if (cmps[cmpn] != NULL)  break;     // find a result
2099   }
2100   if (cmpn < NCMPS) {
2101     // Look for a dominating test that tells us the min and max.
2102     int depth = 0;                // Limit search depth for speed
2103     Node* dom = control();
2104     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2105       if (++depth >= 100)  break;
2106       Node* ifproj = dom;
2107       if (!ifproj->is_Proj())  continue;
2108       Node* iff = ifproj->in(0);
2109       if (!iff->is_If())  continue;
2110       Node* bol = iff->in(1);
2111       if (!bol->is_Bool())  continue;
2112       Node* cmp = bol->in(1);
2113       if (cmp == NULL)  continue;
2114       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2115         if (cmps[cmpn] == cmp)  break;
2116       if (cmpn == NCMPS)  continue;
2117       BoolTest::mask btest = bol->as_Bool()->_test._test;
2118       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2119       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2120       // At this point, we know that 'x btest y' is true.
2121       switch (btest) {
2122       case BoolTest::eq:
2123         // They are proven equal, so we can collapse the min/max.
2124         // Either value is the answer.  Choose the simpler.
2125         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2126           return yvalue;
2127         return xvalue;
2128       case BoolTest::lt:          // x < y
2129       case BoolTest::le:          // x <= y
2130         return (want_max ? yvalue : xvalue);
2131       case BoolTest::gt:          // x > y
2132       case BoolTest::ge:          // x >= y
2133         return (want_max ? xvalue : yvalue);
2134       }
2135     }
2136   }
2137 
2138   // We failed to find a dominating test.
2139   // Let's pick a test that might GVN with prior tests.
2140   Node*          best_bol   = NULL;
2141   BoolTest::mask best_btest = BoolTest::illegal;
2142   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2143     Node* cmp = cmps[cmpn];
2144     if (cmp == NULL)  continue;
2145     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2146       Node* bol = cmp->fast_out(j);
2147       if (!bol->is_Bool())  continue;
2148       BoolTest::mask btest = bol->as_Bool()->_test._test;
2149       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2150       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2151       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2152         best_bol   = bol->as_Bool();
2153         best_btest = btest;
2154       }
2155     }
2156   }
2157 
2158   Node* answer_if_true  = NULL;
2159   Node* answer_if_false = NULL;
2160   switch (best_btest) {
2161   default:
2162     if (cmpxy == NULL)
2163       cmpxy = ideal_cmpxy;
2164     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2165     // and fall through:
2166   case BoolTest::lt:          // x < y
2167   case BoolTest::le:          // x <= y
2168     answer_if_true  = (want_max ? yvalue : xvalue);
2169     answer_if_false = (want_max ? xvalue : yvalue);
2170     break;
2171   case BoolTest::gt:          // x > y
2172   case BoolTest::ge:          // x >= y
2173     answer_if_true  = (want_max ? xvalue : yvalue);
2174     answer_if_false = (want_max ? yvalue : xvalue);
2175     break;
2176   }
2177 
2178   jint hi, lo;
2179   if (want_max) {
2180     // We can sharpen the minimum.
2181     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2182     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2183   } else {
2184     // We can sharpen the maximum.
2185     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2186     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2187   }
2188 
2189   // Use a flow-free graph structure, to avoid creating excess control edges
2190   // which could hinder other optimizations.
2191   // Since Math.min/max is often used with arraycopy, we want
2192   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2193   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2194                                answer_if_false, answer_if_true,
2195                                TypeInt::make(lo, hi, widen));
2196 
2197   return _gvn.transform(cmov);
2198 
2199   /*
2200   // This is not as desirable as it may seem, since Min and Max
2201   // nodes do not have a full set of optimizations.
2202   // And they would interfere, anyway, with 'if' optimizations
2203   // and with CMoveI canonical forms.
2204   switch (id) {
2205   case vmIntrinsics::_min:
2206     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2207   case vmIntrinsics::_max:
2208     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2209   default:
2210     ShouldNotReachHere();
2211   }
2212   */
2213 }
2214 
2215 inline int
2216 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2217   const TypePtr* base_type = TypePtr::NULL_PTR;
2218   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2219   if (base_type == NULL) {
2220     // Unknown type.
2221     return Type::AnyPtr;
2222   } else if (base_type == TypePtr::NULL_PTR) {
2223     // Since this is a NULL+long form, we have to switch to a rawptr.
2224     base   = _gvn.transform(new (C) CastX2PNode(offset));
2225     offset = MakeConX(0);
2226     return Type::RawPtr;
2227   } else if (base_type->base() == Type::RawPtr) {
2228     return Type::RawPtr;
2229   } else if (base_type->isa_oopptr()) {
2230     // Base is never null => always a heap address.
2231     if (base_type->ptr() == TypePtr::NotNull) {
2232       return Type::OopPtr;
2233     }
2234     // Offset is small => always a heap address.
2235     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2236     if (offset_type != NULL &&
2237         base_type->offset() == 0 &&     // (should always be?)
2238         offset_type->_lo >= 0 &&
2239         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2240       return Type::OopPtr;
2241     }
2242     // Otherwise, it might either be oop+off or NULL+addr.
2243     return Type::AnyPtr;
2244   } else {
2245     // No information:
2246     return Type::AnyPtr;
2247   }
2248 }
2249 
2250 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2251   int kind = classify_unsafe_addr(base, offset);
2252   if (kind == Type::RawPtr) {
2253     return basic_plus_adr(top(), base, offset);
2254   } else {
2255     return basic_plus_adr(base, offset);
2256   }
2257 }
2258 
2259 //--------------------------inline_number_methods-----------------------------
2260 // inline int     Integer.numberOfLeadingZeros(int)
2261 // inline int        Long.numberOfLeadingZeros(long)
2262 //
2263 // inline int     Integer.numberOfTrailingZeros(int)
2264 // inline int        Long.numberOfTrailingZeros(long)
2265 //
2266 // inline int     Integer.bitCount(int)
2267 // inline int        Long.bitCount(long)
2268 //
2269 // inline char  Character.reverseBytes(char)
2270 // inline short     Short.reverseBytes(short)
2271 // inline int     Integer.reverseBytes(int)
2272 // inline long       Long.reverseBytes(long)
2273 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2274   Node* arg = argument(0);
2275   Node* n;
2276   switch (id) {
2277   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2278   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2279   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2280   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2281   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2282   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2283   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2284   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2285   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2286   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2287   default:  fatal_unexpected_iid(id);  break;
2288   }
2289   set_result(_gvn.transform(n));
2290   return true;
2291 }
2292 
2293 //----------------------------inline_unsafe_access----------------------------
2294 
2295 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2296 
2297 // Helper that guards and inserts a pre-barrier.
2298 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2299                                         Node* pre_val, bool need_mem_bar) {
2300   // We could be accessing the referent field of a reference object. If so, when G1
2301   // is enabled, we need to log the value in the referent field in an SATB buffer.
2302   // This routine performs some compile time filters and generates suitable
2303   // runtime filters that guard the pre-barrier code.
2304   // Also add memory barrier for non volatile load from the referent field
2305   // to prevent commoning of loads across safepoint.
2306   if (!UseG1GC && !need_mem_bar)
2307     return;
2308 
2309   // Some compile time checks.
2310 
2311   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2312   const TypeX* otype = offset->find_intptr_t_type();
2313   if (otype != NULL && otype->is_con() &&
2314       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2315     // Constant offset but not the reference_offset so just return
2316     return;
2317   }
2318 
2319   // We only need to generate the runtime guards for instances.
2320   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2321   if (btype != NULL) {
2322     if (btype->isa_aryptr()) {
2323       // Array type so nothing to do
2324       return;
2325     }
2326 
2327     const TypeInstPtr* itype = btype->isa_instptr();
2328     if (itype != NULL) {
2329       // Can the klass of base_oop be statically determined to be
2330       // _not_ a sub-class of Reference and _not_ Object?
2331       ciKlass* klass = itype->klass();
2332       if ( klass->is_loaded() &&
2333           !klass->is_subtype_of(env()->Reference_klass()) &&
2334           !env()->Object_klass()->is_subtype_of(klass)) {
2335         return;
2336       }
2337     }
2338   }
2339 
2340   // The compile time filters did not reject base_oop/offset so
2341   // we need to generate the following runtime filters
2342   //
2343   // if (offset == java_lang_ref_Reference::_reference_offset) {
2344   //   if (instance_of(base, java.lang.ref.Reference)) {
2345   //     pre_barrier(_, pre_val, ...);
2346   //   }
2347   // }
2348 
2349   float likely   = PROB_LIKELY(  0.999);
2350   float unlikely = PROB_UNLIKELY(0.999);
2351 
2352   IdealKit ideal(this);
2353 #define __ ideal.
2354 
2355   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2356 
2357   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2358       // Update graphKit memory and control from IdealKit.
2359       sync_kit(ideal);
2360 
2361       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2362       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2363 
2364       // Update IdealKit memory and control from graphKit.
2365       __ sync_kit(this);
2366 
2367       Node* one = __ ConI(1);
2368       // is_instof == 0 if base_oop == NULL
2369       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2370 
2371         // Update graphKit from IdeakKit.
2372         sync_kit(ideal);
2373 
2374         // Use the pre-barrier to record the value in the referent field
2375         pre_barrier(false /* do_load */,
2376                     __ ctrl(),
2377                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2378                     pre_val /* pre_val */,
2379                     T_OBJECT);
2380         if (need_mem_bar) {
2381           // Add memory barrier to prevent commoning reads from this field
2382           // across safepoint since GC can change its value.
2383           insert_mem_bar(Op_MemBarCPUOrder);
2384         }
2385         // Update IdealKit from graphKit.
2386         __ sync_kit(this);
2387 
2388       } __ end_if(); // _ref_type != ref_none
2389   } __ end_if(); // offset == referent_offset
2390 
2391   // Final sync IdealKit and GraphKit.
2392   final_sync(ideal);
2393 #undef __
2394 }
2395 
2396 
2397 // Interpret Unsafe.fieldOffset cookies correctly:
2398 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2399 
2400 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2401   // Attempt to infer a sharper value type from the offset and base type.
2402   ciKlass* sharpened_klass = NULL;
2403 
2404   // See if it is an instance field, with an object type.
2405   if (alias_type->field() != NULL) {
2406     assert(!is_native_ptr, "native pointer op cannot use a java address");
2407     if (alias_type->field()->type()->is_klass()) {
2408       sharpened_klass = alias_type->field()->type()->as_klass();
2409     }
2410   }
2411 
2412   // See if it is a narrow oop array.
2413   if (adr_type->isa_aryptr()) {
2414     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2415       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2416       if (elem_type != NULL) {
2417         sharpened_klass = elem_type->klass();
2418       }
2419     }
2420   }
2421 
2422   // The sharpened class might be unloaded if there is no class loader
2423   // contraint in place.
2424   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2425     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2426 
2427 #ifndef PRODUCT
2428     if (C->print_intrinsics() || C->print_inlining()) {
2429       tty->print("  from base type: ");  adr_type->dump();
2430       tty->print("  sharpened value: ");  tjp->dump();
2431     }
2432 #endif
2433     // Sharpen the value type.
2434     return tjp;
2435   }
2436   return NULL;
2437 }
2438 
2439 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2440   if (callee()->is_static())  return false;  // caller must have the capability!
2441 
2442 #ifndef PRODUCT
2443   {
2444     ResourceMark rm;
2445     // Check the signatures.
2446     ciSignature* sig = callee()->signature();
2447 #ifdef ASSERT
2448     if (!is_store) {
2449       // Object getObject(Object base, int/long offset), etc.
2450       BasicType rtype = sig->return_type()->basic_type();
2451       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2452           rtype = T_ADDRESS;  // it is really a C void*
2453       assert(rtype == type, "getter must return the expected value");
2454       if (!is_native_ptr) {
2455         assert(sig->count() == 2, "oop getter has 2 arguments");
2456         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2457         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2458       } else {
2459         assert(sig->count() == 1, "native getter has 1 argument");
2460         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2461       }
2462     } else {
2463       // void putObject(Object base, int/long offset, Object x), etc.
2464       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2465       if (!is_native_ptr) {
2466         assert(sig->count() == 3, "oop putter has 3 arguments");
2467         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2468         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2469       } else {
2470         assert(sig->count() == 2, "native putter has 2 arguments");
2471         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2472       }
2473       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2474       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2475         vtype = T_ADDRESS;  // it is really a C void*
2476       assert(vtype == type, "putter must accept the expected value");
2477     }
2478 #endif // ASSERT
2479  }
2480 #endif //PRODUCT
2481 
2482   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2483 
2484   Node* receiver = argument(0);  // type: oop
2485 
2486   // Build address expression.  See the code in inline_unsafe_prefetch.
2487   Node* adr;
2488   Node* heap_base_oop = top();
2489   Node* offset = top();
2490   Node* val;
2491 
2492   if (!is_native_ptr) {
2493     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2494     Node* base = argument(1);  // type: oop
2495     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2496     offset = argument(2);  // type: long
2497     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2498     // to be plain byte offsets, which are also the same as those accepted
2499     // by oopDesc::field_base.
2500     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2501            "fieldOffset must be byte-scaled");
2502     // 32-bit machines ignore the high half!
2503     offset = ConvL2X(offset);
2504     adr = make_unsafe_address(base, offset);
2505     heap_base_oop = base;
2506     val = is_store ? argument(4) : NULL;
2507   } else {
2508     Node* ptr = argument(1);  // type: long
2509     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2510     adr = make_unsafe_address(NULL, ptr);
2511     val = is_store ? argument(3) : NULL;
2512   }
2513 
2514   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2515 
2516   // First guess at the value type.
2517   const Type *value_type = Type::get_const_basic_type(type);
2518 
2519   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2520   // there was not enough information to nail it down.
2521   Compile::AliasType* alias_type = C->alias_type(adr_type);
2522   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2523 
2524   // We will need memory barriers unless we can determine a unique
2525   // alias category for this reference.  (Note:  If for some reason
2526   // the barriers get omitted and the unsafe reference begins to "pollute"
2527   // the alias analysis of the rest of the graph, either Compile::can_alias
2528   // or Compile::must_alias will throw a diagnostic assert.)
2529   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2530 
2531   // If we are reading the value of the referent field of a Reference
2532   // object (either by using Unsafe directly or through reflection)
2533   // then, if G1 is enabled, we need to record the referent in an
2534   // SATB log buffer using the pre-barrier mechanism.
2535   // Also we need to add memory barrier to prevent commoning reads
2536   // from this field across safepoint since GC can change its value.
2537   bool need_read_barrier = !is_native_ptr && !is_store &&
2538                            offset != top() && heap_base_oop != top();
2539 
2540   if (!is_store && type == T_OBJECT) {
2541     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2542     if (tjp != NULL) {
2543       value_type = tjp;
2544     }
2545   }
2546 
2547   receiver = null_check(receiver);
2548   if (stopped()) {
2549     return true;
2550   }
2551   // Heap pointers get a null-check from the interpreter,
2552   // as a courtesy.  However, this is not guaranteed by Unsafe,
2553   // and it is not possible to fully distinguish unintended nulls
2554   // from intended ones in this API.
2555 
2556   if (is_volatile) {
2557     // We need to emit leading and trailing CPU membars (see below) in
2558     // addition to memory membars when is_volatile. This is a little
2559     // too strong, but avoids the need to insert per-alias-type
2560     // volatile membars (for stores; compare Parse::do_put_xxx), which
2561     // we cannot do effectively here because we probably only have a
2562     // rough approximation of type.
2563     need_mem_bar = true;
2564     // For Stores, place a memory ordering barrier now.
2565     if (is_store) {
2566       insert_mem_bar(Op_MemBarRelease);
2567     } else {
2568       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2569         insert_mem_bar(Op_MemBarVolatile);
2570       }
2571     }
2572   }
2573 
2574   // Memory barrier to prevent normal and 'unsafe' accesses from
2575   // bypassing each other.  Happens after null checks, so the
2576   // exception paths do not take memory state from the memory barrier,
2577   // so there's no problems making a strong assert about mixing users
2578   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2579   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2580   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2581 
2582   if (!is_store) {
2583     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2584     // load value
2585     switch (type) {
2586     case T_BOOLEAN:
2587     case T_CHAR:
2588     case T_BYTE:
2589     case T_SHORT:
2590     case T_INT:
2591     case T_LONG:
2592     case T_FLOAT:
2593     case T_DOUBLE:
2594       break;
2595     case T_OBJECT:
2596       if (need_read_barrier) {
2597         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2598       }
2599       break;
2600     case T_ADDRESS:
2601       // Cast to an int type.
2602       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2603       p = ConvX2L(p);
2604       break;
2605     default:
2606       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2607       break;
2608     }
2609     // The load node has the control of the preceding MemBarCPUOrder.  All
2610     // following nodes will have the control of the MemBarCPUOrder inserted at
2611     // the end of this method.  So, pushing the load onto the stack at a later
2612     // point is fine.
2613     set_result(p);
2614   } else {
2615     // place effect of store into memory
2616     switch (type) {
2617     case T_DOUBLE:
2618       val = dstore_rounding(val);
2619       break;
2620     case T_ADDRESS:
2621       // Repackage the long as a pointer.
2622       val = ConvL2X(val);
2623       val = _gvn.transform(new (C) CastX2PNode(val));
2624       break;
2625     }
2626 
2627     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2628     if (type != T_OBJECT ) {
2629       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2630     } else {
2631       // Possibly an oop being stored to Java heap or native memory
2632       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2633         // oop to Java heap.
2634         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2635       } else {
2636         // We can't tell at compile time if we are storing in the Java heap or outside
2637         // of it. So we need to emit code to conditionally do the proper type of
2638         // store.
2639 
2640         IdealKit ideal(this);
2641 #define __ ideal.
2642         // QQQ who knows what probability is here??
2643         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2644           // Sync IdealKit and graphKit.
2645           sync_kit(ideal);
2646           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2647           // Update IdealKit memory.
2648           __ sync_kit(this);
2649         } __ else_(); {
2650           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2651         } __ end_if();
2652         // Final sync IdealKit and GraphKit.
2653         final_sync(ideal);
2654 #undef __
2655       }
2656     }
2657   }
2658 
2659   if (is_volatile) {
2660     if (!is_store) {
2661       insert_mem_bar(Op_MemBarAcquire);
2662     } else {
2663       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2664         insert_mem_bar(Op_MemBarVolatile);
2665       }
2666     }
2667   }
2668 
2669   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2670 
2671   return true;
2672 }
2673 
2674 //----------------------------inline_unsafe_prefetch----------------------------
2675 
2676 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2677 #ifndef PRODUCT
2678   {
2679     ResourceMark rm;
2680     // Check the signatures.
2681     ciSignature* sig = callee()->signature();
2682 #ifdef ASSERT
2683     // Object getObject(Object base, int/long offset), etc.
2684     BasicType rtype = sig->return_type()->basic_type();
2685     if (!is_native_ptr) {
2686       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2687       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2688       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2689     } else {
2690       assert(sig->count() == 1, "native prefetch has 1 argument");
2691       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2692     }
2693 #endif // ASSERT
2694   }
2695 #endif // !PRODUCT
2696 
2697   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2698 
2699   const int idx = is_static ? 0 : 1;
2700   if (!is_static) {
2701     null_check_receiver();
2702     if (stopped()) {
2703       return true;
2704     }
2705   }
2706 
2707   // Build address expression.  See the code in inline_unsafe_access.
2708   Node *adr;
2709   if (!is_native_ptr) {
2710     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2711     Node* base   = argument(idx + 0);  // type: oop
2712     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2713     Node* offset = argument(idx + 1);  // type: long
2714     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2715     // to be plain byte offsets, which are also the same as those accepted
2716     // by oopDesc::field_base.
2717     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2718            "fieldOffset must be byte-scaled");
2719     // 32-bit machines ignore the high half!
2720     offset = ConvL2X(offset);
2721     adr = make_unsafe_address(base, offset);
2722   } else {
2723     Node* ptr = argument(idx + 0);  // type: long
2724     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2725     adr = make_unsafe_address(NULL, ptr);
2726   }
2727 
2728   // Generate the read or write prefetch
2729   Node *prefetch;
2730   if (is_store) {
2731     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2732   } else {
2733     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2734   }
2735   prefetch->init_req(0, control());
2736   set_i_o(_gvn.transform(prefetch));
2737 
2738   return true;
2739 }
2740 
2741 //----------------------------inline_unsafe_load_store----------------------------
2742 // This method serves a couple of different customers (depending on LoadStoreKind):
2743 //
2744 // LS_cmpxchg:
2745 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2746 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2747 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2748 //
2749 // LS_xadd:
2750 //   public int  getAndAddInt( Object o, long offset, int  delta)
2751 //   public long getAndAddLong(Object o, long offset, long delta)
2752 //
2753 // LS_xchg:
2754 //   int    getAndSet(Object o, long offset, int    newValue)
2755 //   long   getAndSet(Object o, long offset, long   newValue)
2756 //   Object getAndSet(Object o, long offset, Object newValue)
2757 //
2758 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2759   // This basic scheme here is the same as inline_unsafe_access, but
2760   // differs in enough details that combining them would make the code
2761   // overly confusing.  (This is a true fact! I originally combined
2762   // them, but even I was confused by it!) As much code/comments as
2763   // possible are retained from inline_unsafe_access though to make
2764   // the correspondences clearer. - dl
2765 
2766   if (callee()->is_static())  return false;  // caller must have the capability!
2767 
2768 #ifndef PRODUCT
2769   BasicType rtype;
2770   {
2771     ResourceMark rm;
2772     // Check the signatures.
2773     ciSignature* sig = callee()->signature();
2774     rtype = sig->return_type()->basic_type();
2775     if (kind == LS_xadd || kind == LS_xchg) {
2776       // Check the signatures.
2777 #ifdef ASSERT
2778       assert(rtype == type, "get and set must return the expected type");
2779       assert(sig->count() == 3, "get and set has 3 arguments");
2780       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2781       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2782       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2783 #endif // ASSERT
2784     } else if (kind == LS_cmpxchg) {
2785       // Check the signatures.
2786 #ifdef ASSERT
2787       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2788       assert(sig->count() == 4, "CAS has 4 arguments");
2789       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2790       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2791 #endif // ASSERT
2792     } else {
2793       ShouldNotReachHere();
2794     }
2795   }
2796 #endif //PRODUCT
2797 
2798   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2799 
2800   // Get arguments:
2801   Node* receiver = NULL;
2802   Node* base     = NULL;
2803   Node* offset   = NULL;
2804   Node* oldval   = NULL;
2805   Node* newval   = NULL;
2806   if (kind == LS_cmpxchg) {
2807     const bool two_slot_type = type2size[type] == 2;
2808     receiver = argument(0);  // type: oop
2809     base     = argument(1);  // type: oop
2810     offset   = argument(2);  // type: long
2811     oldval   = argument(4);  // type: oop, int, or long
2812     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2813   } else if (kind == LS_xadd || kind == LS_xchg){
2814     receiver = argument(0);  // type: oop
2815     base     = argument(1);  // type: oop
2816     offset   = argument(2);  // type: long
2817     oldval   = NULL;
2818     newval   = argument(4);  // type: oop, int, or long
2819   }
2820 
2821   // Null check receiver.
2822   receiver = null_check(receiver);
2823   if (stopped()) {
2824     return true;
2825   }
2826 
2827   // Build field offset expression.
2828   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2829   // to be plain byte offsets, which are also the same as those accepted
2830   // by oopDesc::field_base.
2831   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2832   // 32-bit machines ignore the high half of long offsets
2833   offset = ConvL2X(offset);
2834   Node* adr = make_unsafe_address(base, offset);
2835   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2836 
2837   // For CAS, unlike inline_unsafe_access, there seems no point in
2838   // trying to refine types. Just use the coarse types here.
2839   const Type *value_type = Type::get_const_basic_type(type);
2840   Compile::AliasType* alias_type = C->alias_type(adr_type);
2841   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2842 
2843   if (kind == LS_xchg && type == T_OBJECT) {
2844     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2845     if (tjp != NULL) {
2846       value_type = tjp;
2847     }
2848   }
2849 
2850   int alias_idx = C->get_alias_index(adr_type);
2851 
2852   // Memory-model-wise, a LoadStore acts like a little synchronized
2853   // block, so needs barriers on each side.  These don't translate
2854   // into actual barriers on most machines, but we still need rest of
2855   // compiler to respect ordering.
2856 
2857   insert_mem_bar(Op_MemBarRelease);
2858   insert_mem_bar(Op_MemBarCPUOrder);
2859 
2860   // 4984716: MemBars must be inserted before this
2861   //          memory node in order to avoid a false
2862   //          dependency which will confuse the scheduler.
2863   Node *mem = memory(alias_idx);
2864 
2865   // For now, we handle only those cases that actually exist: ints,
2866   // longs, and Object. Adding others should be straightforward.
2867   Node* load_store;
2868   switch(type) {
2869   case T_INT:
2870     if (kind == LS_xadd) {
2871       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2872     } else if (kind == LS_xchg) {
2873       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2874     } else if (kind == LS_cmpxchg) {
2875       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2876     } else {
2877       ShouldNotReachHere();
2878     }
2879     break;
2880   case T_LONG:
2881     if (kind == LS_xadd) {
2882       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2883     } else if (kind == LS_xchg) {
2884       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2885     } else if (kind == LS_cmpxchg) {
2886       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2887     } else {
2888       ShouldNotReachHere();
2889     }
2890     break;
2891   case T_OBJECT:
2892     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2893     // could be delayed during Parse (for example, in adjust_map_after_if()).
2894     // Execute transformation here to avoid barrier generation in such case.
2895     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2896       newval = _gvn.makecon(TypePtr::NULL_PTR);
2897 
2898     // Reference stores need a store barrier.
2899     if (kind == LS_xchg) {
2900       // If pre-barrier must execute before the oop store, old value will require do_load here.
2901       if (!can_move_pre_barrier()) {
2902         pre_barrier(true /* do_load*/,
2903                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2904                     NULL /* pre_val*/,
2905                     T_OBJECT);
2906       } // Else move pre_barrier to use load_store value, see below.
2907     } else if (kind == LS_cmpxchg) {
2908       // Same as for newval above:
2909       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2910         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2911       }
2912       // The only known value which might get overwritten is oldval.
2913       pre_barrier(false /* do_load */,
2914                   control(), NULL, NULL, max_juint, NULL, NULL,
2915                   oldval /* pre_val */,
2916                   T_OBJECT);
2917     } else {
2918       ShouldNotReachHere();
2919     }
2920 
2921 #ifdef _LP64
2922     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2923       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2924       if (kind == LS_xchg) {
2925         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2926                                                            newval_enc, adr_type, value_type->make_narrowoop()));
2927       } else {
2928         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2929         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2930         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2931                                                                 newval_enc, oldval_enc));
2932       }
2933     } else
2934 #endif
2935     {
2936       if (kind == LS_xchg) {
2937         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2938       } else {
2939         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2940         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2941       }
2942     }
2943     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2944     break;
2945   default:
2946     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2947     break;
2948   }
2949 
2950   // SCMemProjNodes represent the memory state of a LoadStore. Their
2951   // main role is to prevent LoadStore nodes from being optimized away
2952   // when their results aren't used.
2953   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2954   set_memory(proj, alias_idx);
2955 
2956   if (type == T_OBJECT && kind == LS_xchg) {
2957 #ifdef _LP64
2958     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2959       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2960     }
2961 #endif
2962     if (can_move_pre_barrier()) {
2963       // Don't need to load pre_val. The old value is returned by load_store.
2964       // The pre_barrier can execute after the xchg as long as no safepoint
2965       // gets inserted between them.
2966       pre_barrier(false /* do_load */,
2967                   control(), NULL, NULL, max_juint, NULL, NULL,
2968                   load_store /* pre_val */,
2969                   T_OBJECT);
2970     }
2971   }
2972 
2973   // Add the trailing membar surrounding the access
2974   insert_mem_bar(Op_MemBarCPUOrder);
2975   insert_mem_bar(Op_MemBarAcquire);
2976 
2977   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2978   set_result(load_store);
2979   return true;
2980 }
2981 
2982 //----------------------------inline_unsafe_ordered_store----------------------
2983 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2984 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2985 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2986 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2987   // This is another variant of inline_unsafe_access, differing in
2988   // that it always issues store-store ("release") barrier and ensures
2989   // store-atomicity (which only matters for "long").
2990 
2991   if (callee()->is_static())  return false;  // caller must have the capability!
2992 
2993 #ifndef PRODUCT
2994   {
2995     ResourceMark rm;
2996     // Check the signatures.
2997     ciSignature* sig = callee()->signature();
2998 #ifdef ASSERT
2999     BasicType rtype = sig->return_type()->basic_type();
3000     assert(rtype == T_VOID, "must return void");
3001     assert(sig->count() == 3, "has 3 arguments");
3002     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3003     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3004 #endif // ASSERT
3005   }
3006 #endif //PRODUCT
3007 
3008   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3009 
3010   // Get arguments:
3011   Node* receiver = argument(0);  // type: oop
3012   Node* base     = argument(1);  // type: oop
3013   Node* offset   = argument(2);  // type: long
3014   Node* val      = argument(4);  // type: oop, int, or long
3015 
3016   // Null check receiver.
3017   receiver = null_check(receiver);
3018   if (stopped()) {
3019     return true;
3020   }
3021 
3022   // Build field offset expression.
3023   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3024   // 32-bit machines ignore the high half of long offsets
3025   offset = ConvL2X(offset);
3026   Node* adr = make_unsafe_address(base, offset);
3027   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3028   const Type *value_type = Type::get_const_basic_type(type);
3029   Compile::AliasType* alias_type = C->alias_type(adr_type);
3030 
3031   insert_mem_bar(Op_MemBarRelease);
3032   insert_mem_bar(Op_MemBarCPUOrder);
3033   // Ensure that the store is atomic for longs:
3034   const bool require_atomic_access = true;
3035   Node* store;
3036   if (type == T_OBJECT) // reference stores need a store barrier.
3037     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3038   else {
3039     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3040   }
3041   insert_mem_bar(Op_MemBarCPUOrder);
3042   return true;
3043 }
3044 
3045 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3046   // Regardless of form, don't allow previous ld/st to move down,
3047   // then issue acquire, release, or volatile mem_bar.
3048   insert_mem_bar(Op_MemBarCPUOrder);
3049   switch(id) {
3050     case vmIntrinsics::_loadFence:
3051       insert_mem_bar(Op_LoadFence);
3052       return true;
3053     case vmIntrinsics::_storeFence:
3054       insert_mem_bar(Op_StoreFence);
3055       return true;
3056     case vmIntrinsics::_fullFence:
3057       insert_mem_bar(Op_MemBarVolatile);
3058       return true;
3059     default:
3060       fatal_unexpected_iid(id);
3061       return false;
3062   }
3063 }
3064 
3065 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3066   if (!kls->is_Con()) {
3067     return true;
3068   }
3069   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3070   if (klsptr == NULL) {
3071     return true;
3072   }
3073   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3074   // don't need a guard for a klass that is already initialized
3075   return !ik->is_initialized();
3076 }
3077 
3078 //----------------------------inline_unsafe_allocate---------------------------
3079 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3080 bool LibraryCallKit::inline_unsafe_allocate() {
3081   if (callee()->is_static())  return false;  // caller must have the capability!
3082 
3083   null_check_receiver();  // null-check, then ignore
3084   Node* cls = null_check(argument(1));
3085   if (stopped())  return true;
3086 
3087   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3088   kls = null_check(kls);
3089   if (stopped())  return true;  // argument was like int.class
3090 
3091   Node* test = NULL;
3092   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3093     // Note:  The argument might still be an illegal value like
3094     // Serializable.class or Object[].class.   The runtime will handle it.
3095     // But we must make an explicit check for initialization.
3096     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3097     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3098     // can generate code to load it as unsigned byte.
3099     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3100     Node* bits = intcon(InstanceKlass::fully_initialized);
3101     test = _gvn.transform(new (C) SubINode(inst, bits));
3102     // The 'test' is non-zero if we need to take a slow path.
3103   }
3104 
3105   Node* obj = new_instance(kls, test);
3106   set_result(obj);
3107   return true;
3108 }
3109 
3110 #ifdef TRACE_HAVE_INTRINSICS
3111 /*
3112  * oop -> myklass
3113  * myklass->trace_id |= USED
3114  * return myklass->trace_id & ~0x3
3115  */
3116 bool LibraryCallKit::inline_native_classID() {
3117   null_check_receiver();  // null-check, then ignore
3118   Node* cls = null_check(argument(1), T_OBJECT);
3119   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3120   kls = null_check(kls, T_OBJECT);
3121   ByteSize offset = TRACE_ID_OFFSET;
3122   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3123   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3124   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3125   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3126   Node* clsused = longcon(0x01l); // set the class bit
3127   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3128 
3129   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3130   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3131   set_result(andl);
3132   return true;
3133 }
3134 
3135 bool LibraryCallKit::inline_native_threadID() {
3136   Node* tls_ptr = NULL;
3137   Node* cur_thr = generate_current_thread(tls_ptr);
3138   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3139   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3140   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3141 
3142   Node* threadid = NULL;
3143   size_t thread_id_size = OSThread::thread_id_size();
3144   if (thread_id_size == (size_t) BytesPerLong) {
3145     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3146   } else if (thread_id_size == (size_t) BytesPerInt) {
3147     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3148   } else {
3149     ShouldNotReachHere();
3150   }
3151   set_result(threadid);
3152   return true;
3153 }
3154 #endif
3155 
3156 //------------------------inline_native_time_funcs--------------
3157 // inline code for System.currentTimeMillis() and System.nanoTime()
3158 // these have the same type and signature
3159 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3160   const TypeFunc* tf = OptoRuntime::void_long_Type();
3161   const TypePtr* no_memory_effects = NULL;
3162   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3163   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3164 #ifdef ASSERT
3165   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3166   assert(value_top == top(), "second value must be top");
3167 #endif
3168   set_result(value);
3169   return true;
3170 }
3171 
3172 //------------------------inline_native_currentThread------------------
3173 bool LibraryCallKit::inline_native_currentThread() {
3174   Node* junk = NULL;
3175   set_result(generate_current_thread(junk));
3176   return true;
3177 }
3178 
3179 //------------------------inline_native_isInterrupted------------------
3180 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3181 bool LibraryCallKit::inline_native_isInterrupted() {
3182   // Add a fast path to t.isInterrupted(clear_int):
3183   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3184   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3185   // So, in the common case that the interrupt bit is false,
3186   // we avoid making a call into the VM.  Even if the interrupt bit
3187   // is true, if the clear_int argument is false, we avoid the VM call.
3188   // However, if the receiver is not currentThread, we must call the VM,
3189   // because there must be some locking done around the operation.
3190 
3191   // We only go to the fast case code if we pass two guards.
3192   // Paths which do not pass are accumulated in the slow_region.
3193 
3194   enum {
3195     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3196     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3197     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3198     PATH_LIMIT
3199   };
3200 
3201   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3202   // out of the function.
3203   insert_mem_bar(Op_MemBarCPUOrder);
3204 
3205   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3206   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3207 
3208   RegionNode* slow_region = new (C) RegionNode(1);
3209   record_for_igvn(slow_region);
3210 
3211   // (a) Receiving thread must be the current thread.
3212   Node* rec_thr = argument(0);
3213   Node* tls_ptr = NULL;
3214   Node* cur_thr = generate_current_thread(tls_ptr);
3215   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3216   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3217 
3218   generate_slow_guard(bol_thr, slow_region);
3219 
3220   // (b) Interrupt bit on TLS must be false.
3221   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3222   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3223   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3224 
3225   // Set the control input on the field _interrupted read to prevent it floating up.
3226   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3227   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3228   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3229 
3230   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3231 
3232   // First fast path:  if (!TLS._interrupted) return false;
3233   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3234   result_rgn->init_req(no_int_result_path, false_bit);
3235   result_val->init_req(no_int_result_path, intcon(0));
3236 
3237   // drop through to next case
3238   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3239 
3240   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3241   Node* clr_arg = argument(1);
3242   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3243   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3244   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3245 
3246   // Second fast path:  ... else if (!clear_int) return true;
3247   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3248   result_rgn->init_req(no_clear_result_path, false_arg);
3249   result_val->init_req(no_clear_result_path, intcon(1));
3250 
3251   // drop through to next case
3252   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3253 
3254   // (d) Otherwise, go to the slow path.
3255   slow_region->add_req(control());
3256   set_control( _gvn.transform(slow_region));
3257 
3258   if (stopped()) {
3259     // There is no slow path.
3260     result_rgn->init_req(slow_result_path, top());
3261     result_val->init_req(slow_result_path, top());
3262   } else {
3263     // non-virtual because it is a private non-static
3264     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3265 
3266     Node* slow_val = set_results_for_java_call(slow_call);
3267     // this->control() comes from set_results_for_java_call
3268 
3269     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3270     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3271 
3272     // These two phis are pre-filled with copies of of the fast IO and Memory
3273     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3274     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3275 
3276     result_rgn->init_req(slow_result_path, control());
3277     result_io ->init_req(slow_result_path, i_o());
3278     result_mem->init_req(slow_result_path, reset_memory());
3279     result_val->init_req(slow_result_path, slow_val);
3280 
3281     set_all_memory(_gvn.transform(result_mem));
3282     set_i_o(       _gvn.transform(result_io));
3283   }
3284 
3285   C->set_has_split_ifs(true); // Has chance for split-if optimization
3286   set_result(result_rgn, result_val);
3287   return true;
3288 }
3289 
3290 //---------------------------load_mirror_from_klass----------------------------
3291 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3292 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3293   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3294   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3295 }
3296 
3297 //-----------------------load_klass_from_mirror_common-------------------------
3298 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3299 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3300 // and branch to the given path on the region.
3301 // If never_see_null, take an uncommon trap on null, so we can optimistically
3302 // compile for the non-null case.
3303 // If the region is NULL, force never_see_null = true.
3304 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3305                                                     bool never_see_null,
3306                                                     RegionNode* region,
3307                                                     int null_path,
3308                                                     int offset) {
3309   if (region == NULL)  never_see_null = true;
3310   Node* p = basic_plus_adr(mirror, offset);
3311   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3312   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3313   Node* null_ctl = top();
3314   kls = null_check_oop(kls, &null_ctl, never_see_null);
3315   if (region != NULL) {
3316     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3317     region->init_req(null_path, null_ctl);
3318   } else {
3319     assert(null_ctl == top(), "no loose ends");
3320   }
3321   return kls;
3322 }
3323 
3324 //--------------------(inline_native_Class_query helpers)---------------------
3325 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3326 // Fall through if (mods & mask) == bits, take the guard otherwise.
3327 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3328   // Branch around if the given klass has the given modifier bit set.
3329   // Like generate_guard, adds a new path onto the region.
3330   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3331   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3332   Node* mask = intcon(modifier_mask);
3333   Node* bits = intcon(modifier_bits);
3334   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3335   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3336   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3337   return generate_fair_guard(bol, region);
3338 }
3339 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3340   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3341 }
3342 
3343 //-------------------------inline_native_Class_query-------------------
3344 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3345   const Type* return_type = TypeInt::BOOL;
3346   Node* prim_return_value = top();  // what happens if it's a primitive class?
3347   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3348   bool expect_prim = false;     // most of these guys expect to work on refs
3349 
3350   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3351 
3352   Node* mirror = argument(0);
3353   Node* obj    = top();
3354 
3355   switch (id) {
3356   case vmIntrinsics::_isInstance:
3357     // nothing is an instance of a primitive type
3358     prim_return_value = intcon(0);
3359     obj = argument(1);
3360     break;
3361   case vmIntrinsics::_getModifiers:
3362     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3363     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3364     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3365     break;
3366   case vmIntrinsics::_isInterface:
3367     prim_return_value = intcon(0);
3368     break;
3369   case vmIntrinsics::_isArray:
3370     prim_return_value = intcon(0);
3371     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3372     break;
3373   case vmIntrinsics::_isPrimitive:
3374     prim_return_value = intcon(1);
3375     expect_prim = true;  // obviously
3376     break;
3377   case vmIntrinsics::_getSuperclass:
3378     prim_return_value = null();
3379     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3380     break;
3381   case vmIntrinsics::_getComponentType:
3382     prim_return_value = null();
3383     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3384     break;
3385   case vmIntrinsics::_getClassAccessFlags:
3386     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3387     return_type = TypeInt::INT;  // not bool!  6297094
3388     break;
3389   default:
3390     fatal_unexpected_iid(id);
3391     break;
3392   }
3393 
3394   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3395   if (mirror_con == NULL)  return false;  // cannot happen?
3396 
3397 #ifndef PRODUCT
3398   if (C->print_intrinsics() || C->print_inlining()) {
3399     ciType* k = mirror_con->java_mirror_type();
3400     if (k) {
3401       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3402       k->print_name();
3403       tty->cr();
3404     }
3405   }
3406 #endif
3407 
3408   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3409   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3410   record_for_igvn(region);
3411   PhiNode* phi = new (C) PhiNode(region, return_type);
3412 
3413   // The mirror will never be null of Reflection.getClassAccessFlags, however
3414   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3415   // if it is. See bug 4774291.
3416 
3417   // For Reflection.getClassAccessFlags(), the null check occurs in
3418   // the wrong place; see inline_unsafe_access(), above, for a similar
3419   // situation.
3420   mirror = null_check(mirror);
3421   // If mirror or obj is dead, only null-path is taken.
3422   if (stopped())  return true;
3423 
3424   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3425 
3426   // Now load the mirror's klass metaobject, and null-check it.
3427   // Side-effects region with the control path if the klass is null.
3428   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3429   // If kls is null, we have a primitive mirror.
3430   phi->init_req(_prim_path, prim_return_value);
3431   if (stopped()) { set_result(region, phi); return true; }
3432   bool safe_for_replace = (region->in(_prim_path) == top());
3433 
3434   Node* p;  // handy temp
3435   Node* null_ctl;
3436 
3437   // Now that we have the non-null klass, we can perform the real query.
3438   // For constant classes, the query will constant-fold in LoadNode::Value.
3439   Node* query_value = top();
3440   switch (id) {
3441   case vmIntrinsics::_isInstance:
3442     // nothing is an instance of a primitive type
3443     query_value = gen_instanceof(obj, kls, safe_for_replace);
3444     break;
3445 
3446   case vmIntrinsics::_getModifiers:
3447     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3448     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3449     break;
3450 
3451   case vmIntrinsics::_isInterface:
3452     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3453     if (generate_interface_guard(kls, region) != NULL)
3454       // A guard was added.  If the guard is taken, it was an interface.
3455       phi->add_req(intcon(1));
3456     // If we fall through, it's a plain class.
3457     query_value = intcon(0);
3458     break;
3459 
3460   case vmIntrinsics::_isArray:
3461     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3462     if (generate_array_guard(kls, region) != NULL)
3463       // A guard was added.  If the guard is taken, it was an array.
3464       phi->add_req(intcon(1));
3465     // If we fall through, it's a plain class.
3466     query_value = intcon(0);
3467     break;
3468 
3469   case vmIntrinsics::_isPrimitive:
3470     query_value = intcon(0); // "normal" path produces false
3471     break;
3472 
3473   case vmIntrinsics::_getSuperclass:
3474     // The rules here are somewhat unfortunate, but we can still do better
3475     // with random logic than with a JNI call.
3476     // Interfaces store null or Object as _super, but must report null.
3477     // Arrays store an intermediate super as _super, but must report Object.
3478     // Other types can report the actual _super.
3479     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3480     if (generate_interface_guard(kls, region) != NULL)
3481       // A guard was added.  If the guard is taken, it was an interface.
3482       phi->add_req(null());
3483     if (generate_array_guard(kls, region) != NULL)
3484       // A guard was added.  If the guard is taken, it was an array.
3485       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3486     // If we fall through, it's a plain class.  Get its _super.
3487     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3488     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3489     null_ctl = top();
3490     kls = null_check_oop(kls, &null_ctl);
3491     if (null_ctl != top()) {
3492       // If the guard is taken, Object.superClass is null (both klass and mirror).
3493       region->add_req(null_ctl);
3494       phi   ->add_req(null());
3495     }
3496     if (!stopped()) {
3497       query_value = load_mirror_from_klass(kls);
3498     }
3499     break;
3500 
3501   case vmIntrinsics::_getComponentType:
3502     if (generate_array_guard(kls, region) != NULL) {
3503       // Be sure to pin the oop load to the guard edge just created:
3504       Node* is_array_ctrl = region->in(region->req()-1);
3505       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3506       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3507       phi->add_req(cmo);
3508     }
3509     query_value = null();  // non-array case is null
3510     break;
3511 
3512   case vmIntrinsics::_getClassAccessFlags:
3513     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3514     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3515     break;
3516 
3517   default:
3518     fatal_unexpected_iid(id);
3519     break;
3520   }
3521 
3522   // Fall-through is the normal case of a query to a real class.
3523   phi->init_req(1, query_value);
3524   region->init_req(1, control());
3525 
3526   C->set_has_split_ifs(true); // Has chance for split-if optimization
3527   set_result(region, phi);
3528   return true;
3529 }
3530 
3531 //--------------------------inline_native_subtype_check------------------------
3532 // This intrinsic takes the JNI calls out of the heart of
3533 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3534 bool LibraryCallKit::inline_native_subtype_check() {
3535   // Pull both arguments off the stack.
3536   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3537   args[0] = argument(0);
3538   args[1] = argument(1);
3539   Node* klasses[2];             // corresponding Klasses: superk, subk
3540   klasses[0] = klasses[1] = top();
3541 
3542   enum {
3543     // A full decision tree on {superc is prim, subc is prim}:
3544     _prim_0_path = 1,           // {P,N} => false
3545                                 // {P,P} & superc!=subc => false
3546     _prim_same_path,            // {P,P} & superc==subc => true
3547     _prim_1_path,               // {N,P} => false
3548     _ref_subtype_path,          // {N,N} & subtype check wins => true
3549     _both_ref_path,             // {N,N} & subtype check loses => false
3550     PATH_LIMIT
3551   };
3552 
3553   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3554   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3555   record_for_igvn(region);
3556 
3557   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3558   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3559   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3560 
3561   // First null-check both mirrors and load each mirror's klass metaobject.
3562   int which_arg;
3563   for (which_arg = 0; which_arg <= 1; which_arg++) {
3564     Node* arg = args[which_arg];
3565     arg = null_check(arg);
3566     if (stopped())  break;
3567     args[which_arg] = arg;
3568 
3569     Node* p = basic_plus_adr(arg, class_klass_offset);
3570     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3571     klasses[which_arg] = _gvn.transform(kls);
3572   }
3573 
3574   // Having loaded both klasses, test each for null.
3575   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3576   for (which_arg = 0; which_arg <= 1; which_arg++) {
3577     Node* kls = klasses[which_arg];
3578     Node* null_ctl = top();
3579     kls = null_check_oop(kls, &null_ctl, never_see_null);
3580     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3581     region->init_req(prim_path, null_ctl);
3582     if (stopped())  break;
3583     klasses[which_arg] = kls;
3584   }
3585 
3586   if (!stopped()) {
3587     // now we have two reference types, in klasses[0..1]
3588     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3589     Node* superk = klasses[0];  // the receiver
3590     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3591     // now we have a successful reference subtype check
3592     region->set_req(_ref_subtype_path, control());
3593   }
3594 
3595   // If both operands are primitive (both klasses null), then
3596   // we must return true when they are identical primitives.
3597   // It is convenient to test this after the first null klass check.
3598   set_control(region->in(_prim_0_path)); // go back to first null check
3599   if (!stopped()) {
3600     // Since superc is primitive, make a guard for the superc==subc case.
3601     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3602     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3603     generate_guard(bol_eq, region, PROB_FAIR);
3604     if (region->req() == PATH_LIMIT+1) {
3605       // A guard was added.  If the added guard is taken, superc==subc.
3606       region->swap_edges(PATH_LIMIT, _prim_same_path);
3607       region->del_req(PATH_LIMIT);
3608     }
3609     region->set_req(_prim_0_path, control()); // Not equal after all.
3610   }
3611 
3612   // these are the only paths that produce 'true':
3613   phi->set_req(_prim_same_path,   intcon(1));
3614   phi->set_req(_ref_subtype_path, intcon(1));
3615 
3616   // pull together the cases:
3617   assert(region->req() == PATH_LIMIT, "sane region");
3618   for (uint i = 1; i < region->req(); i++) {
3619     Node* ctl = region->in(i);
3620     if (ctl == NULL || ctl == top()) {
3621       region->set_req(i, top());
3622       phi   ->set_req(i, top());
3623     } else if (phi->in(i) == NULL) {
3624       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3625     }
3626   }
3627 
3628   set_control(_gvn.transform(region));
3629   set_result(_gvn.transform(phi));
3630   return true;
3631 }
3632 
3633 //---------------------generate_array_guard_common------------------------
3634 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3635                                                   bool obj_array, bool not_array) {
3636   // If obj_array/non_array==false/false:
3637   // Branch around if the given klass is in fact an array (either obj or prim).
3638   // If obj_array/non_array==false/true:
3639   // Branch around if the given klass is not an array klass of any kind.
3640   // If obj_array/non_array==true/true:
3641   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3642   // If obj_array/non_array==true/false:
3643   // Branch around if the kls is an oop array (Object[] or subtype)
3644   //
3645   // Like generate_guard, adds a new path onto the region.
3646   jint  layout_con = 0;
3647   Node* layout_val = get_layout_helper(kls, layout_con);
3648   if (layout_val == NULL) {
3649     bool query = (obj_array
3650                   ? Klass::layout_helper_is_objArray(layout_con)
3651                   : Klass::layout_helper_is_array(layout_con));
3652     if (query == not_array) {
3653       return NULL;                       // never a branch
3654     } else {                             // always a branch
3655       Node* always_branch = control();
3656       if (region != NULL)
3657         region->add_req(always_branch);
3658       set_control(top());
3659       return always_branch;
3660     }
3661   }
3662   // Now test the correct condition.
3663   jint  nval = (obj_array
3664                 ? ((jint)Klass::_lh_array_tag_type_value
3665                    <<    Klass::_lh_array_tag_shift)
3666                 : Klass::_lh_neutral_value);
3667   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3668   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3669   // invert the test if we are looking for a non-array
3670   if (not_array)  btest = BoolTest(btest).negate();
3671   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3672   return generate_fair_guard(bol, region);
3673 }
3674 
3675 
3676 //-----------------------inline_native_newArray--------------------------
3677 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3678 bool LibraryCallKit::inline_native_newArray() {
3679   Node* mirror    = argument(0);
3680   Node* count_val = argument(1);
3681 
3682   mirror = null_check(mirror);
3683   // If mirror or obj is dead, only null-path is taken.
3684   if (stopped())  return true;
3685 
3686   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3687   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3688   PhiNode*    result_val = new(C) PhiNode(result_reg,
3689                                           TypeInstPtr::NOTNULL);
3690   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3691   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3692                                           TypePtr::BOTTOM);
3693 
3694   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3695   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3696                                                   result_reg, _slow_path);
3697   Node* normal_ctl   = control();
3698   Node* no_array_ctl = result_reg->in(_slow_path);
3699 
3700   // Generate code for the slow case.  We make a call to newArray().
3701   set_control(no_array_ctl);
3702   if (!stopped()) {
3703     // Either the input type is void.class, or else the
3704     // array klass has not yet been cached.  Either the
3705     // ensuing call will throw an exception, or else it
3706     // will cache the array klass for next time.
3707     PreserveJVMState pjvms(this);
3708     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3709     Node* slow_result = set_results_for_java_call(slow_call);
3710     // this->control() comes from set_results_for_java_call
3711     result_reg->set_req(_slow_path, control());
3712     result_val->set_req(_slow_path, slow_result);
3713     result_io ->set_req(_slow_path, i_o());
3714     result_mem->set_req(_slow_path, reset_memory());
3715   }
3716 
3717   set_control(normal_ctl);
3718   if (!stopped()) {
3719     // Normal case:  The array type has been cached in the java.lang.Class.
3720     // The following call works fine even if the array type is polymorphic.
3721     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3722     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3723     result_reg->init_req(_normal_path, control());
3724     result_val->init_req(_normal_path, obj);
3725     result_io ->init_req(_normal_path, i_o());
3726     result_mem->init_req(_normal_path, reset_memory());
3727   }
3728 
3729   // Return the combined state.
3730   set_i_o(        _gvn.transform(result_io)  );
3731   set_all_memory( _gvn.transform(result_mem));
3732 
3733   C->set_has_split_ifs(true); // Has chance for split-if optimization
3734   set_result(result_reg, result_val);
3735   return true;
3736 }
3737 
3738 //----------------------inline_native_getLength--------------------------
3739 // public static native int java.lang.reflect.Array.getLength(Object array);
3740 bool LibraryCallKit::inline_native_getLength() {
3741   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3742 
3743   Node* array = null_check(argument(0));
3744   // If array is dead, only null-path is taken.
3745   if (stopped())  return true;
3746 
3747   // Deoptimize if it is a non-array.
3748   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3749 
3750   if (non_array != NULL) {
3751     PreserveJVMState pjvms(this);
3752     set_control(non_array);
3753     uncommon_trap(Deoptimization::Reason_intrinsic,
3754                   Deoptimization::Action_maybe_recompile);
3755   }
3756 
3757   // If control is dead, only non-array-path is taken.
3758   if (stopped())  return true;
3759 
3760   // The works fine even if the array type is polymorphic.
3761   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3762   Node* result = load_array_length(array);
3763 
3764   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3765   set_result(result);
3766   return true;
3767 }
3768 
3769 //------------------------inline_array_copyOf----------------------------
3770 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3771 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3772 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3773   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3774 
3775   // Get the arguments.
3776   Node* original          = argument(0);
3777   Node* start             = is_copyOfRange? argument(1): intcon(0);
3778   Node* end               = is_copyOfRange? argument(2): argument(1);
3779   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3780 
3781   Node* newcopy;
3782 
3783   // Set the original stack and the reexecute bit for the interpreter to reexecute
3784   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3785   { PreserveReexecuteState preexecs(this);
3786     jvms()->set_should_reexecute(true);
3787 
3788     array_type_mirror = null_check(array_type_mirror);
3789     original          = null_check(original);
3790 
3791     // Check if a null path was taken unconditionally.
3792     if (stopped())  return true;
3793 
3794     Node* orig_length = load_array_length(original);
3795 
3796     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3797     klass_node = null_check(klass_node);
3798 
3799     RegionNode* bailout = new (C) RegionNode(1);
3800     record_for_igvn(bailout);
3801 
3802     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3803     // Bail out if that is so.
3804     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3805     if (not_objArray != NULL) {
3806       // Improve the klass node's type from the new optimistic assumption:
3807       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3808       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3809       Node* cast = new (C) CastPPNode(klass_node, akls);
3810       cast->init_req(0, control());
3811       klass_node = _gvn.transform(cast);
3812     }
3813 
3814     // Bail out if either start or end is negative.
3815     generate_negative_guard(start, bailout, &start);
3816     generate_negative_guard(end,   bailout, &end);
3817 
3818     Node* length = end;
3819     if (_gvn.type(start) != TypeInt::ZERO) {
3820       length = _gvn.transform(new (C) SubINode(end, start));
3821     }
3822 
3823     // Bail out if length is negative.
3824     // Without this the new_array would throw
3825     // NegativeArraySizeException but IllegalArgumentException is what
3826     // should be thrown
3827     generate_negative_guard(length, bailout, &length);
3828 
3829     if (bailout->req() > 1) {
3830       PreserveJVMState pjvms(this);
3831       set_control(_gvn.transform(bailout));
3832       uncommon_trap(Deoptimization::Reason_intrinsic,
3833                     Deoptimization::Action_maybe_recompile);
3834     }
3835 
3836     if (!stopped()) {
3837       // How many elements will we copy from the original?
3838       // The answer is MinI(orig_length - start, length).
3839       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3840       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3841 
3842       newcopy = new_array(klass_node, length, 0);  // no argments to push
3843 
3844       // Generate a direct call to the right arraycopy function(s).
3845       // We know the copy is disjoint but we might not know if the
3846       // oop stores need checking.
3847       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3848       // This will fail a store-check if x contains any non-nulls.
3849       bool disjoint_bases = true;
3850       // if start > orig_length then the length of the copy may be
3851       // negative.
3852       bool length_never_negative = !is_copyOfRange;
3853       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3854                          original, start, newcopy, intcon(0), moved,
3855                          disjoint_bases, length_never_negative);
3856     }
3857   } // original reexecute is set back here
3858 
3859   C->set_has_split_ifs(true); // Has chance for split-if optimization
3860   if (!stopped()) {
3861     set_result(newcopy);
3862   }
3863   return true;
3864 }
3865 
3866 
3867 //----------------------generate_virtual_guard---------------------------
3868 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3869 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3870                                              RegionNode* slow_region) {
3871   ciMethod* method = callee();
3872   int vtable_index = method->vtable_index();
3873   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3874          err_msg_res("bad index %d", vtable_index));
3875   // Get the Method* out of the appropriate vtable entry.
3876   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3877                      vtable_index*vtableEntry::size()) * wordSize +
3878                      vtableEntry::method_offset_in_bytes();
3879   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3880   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3881 
3882   // Compare the target method with the expected method (e.g., Object.hashCode).
3883   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3884 
3885   Node* native_call = makecon(native_call_addr);
3886   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3887   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3888 
3889   return generate_slow_guard(test_native, slow_region);
3890 }
3891 
3892 //-----------------------generate_method_call----------------------------
3893 // Use generate_method_call to make a slow-call to the real
3894 // method if the fast path fails.  An alternative would be to
3895 // use a stub like OptoRuntime::slow_arraycopy_Java.
3896 // This only works for expanding the current library call,
3897 // not another intrinsic.  (E.g., don't use this for making an
3898 // arraycopy call inside of the copyOf intrinsic.)
3899 CallJavaNode*
3900 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3901   // When compiling the intrinsic method itself, do not use this technique.
3902   guarantee(callee() != C->method(), "cannot make slow-call to self");
3903 
3904   ciMethod* method = callee();
3905   // ensure the JVMS we have will be correct for this call
3906   guarantee(method_id == method->intrinsic_id(), "must match");
3907 
3908   const TypeFunc* tf = TypeFunc::make(method);
3909   CallJavaNode* slow_call;
3910   if (is_static) {
3911     assert(!is_virtual, "");
3912     slow_call = new(C) CallStaticJavaNode(C, tf,
3913                            SharedRuntime::get_resolve_static_call_stub(),
3914                            method, bci());
3915   } else if (is_virtual) {
3916     null_check_receiver();
3917     int vtable_index = Method::invalid_vtable_index;
3918     if (UseInlineCaches) {
3919       // Suppress the vtable call
3920     } else {
3921       // hashCode and clone are not a miranda methods,
3922       // so the vtable index is fixed.
3923       // No need to use the linkResolver to get it.
3924        vtable_index = method->vtable_index();
3925        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3926               err_msg_res("bad index %d", vtable_index));
3927     }
3928     slow_call = new(C) CallDynamicJavaNode(tf,
3929                           SharedRuntime::get_resolve_virtual_call_stub(),
3930                           method, vtable_index, bci());
3931   } else {  // neither virtual nor static:  opt_virtual
3932     null_check_receiver();
3933     slow_call = new(C) CallStaticJavaNode(C, tf,
3934                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3935                                 method, bci());
3936     slow_call->set_optimized_virtual(true);
3937   }
3938   set_arguments_for_java_call(slow_call);
3939   set_edges_for_java_call(slow_call);
3940   return slow_call;
3941 }
3942 
3943 
3944 //------------------------------inline_native_hashcode--------------------
3945 // Build special case code for calls to hashCode on an object.
3946 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3947   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3948   assert(!(is_virtual && is_static), "either virtual, special, or static");
3949 
3950   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3951 
3952   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3953   PhiNode*    result_val = new(C) PhiNode(result_reg,
3954                                           TypeInt::INT);
3955   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3956   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3957                                           TypePtr::BOTTOM);
3958   Node* obj = NULL;
3959   if (!is_static) {
3960     // Check for hashing null object
3961     obj = null_check_receiver();
3962     if (stopped())  return true;        // unconditionally null
3963     result_reg->init_req(_null_path, top());
3964     result_val->init_req(_null_path, top());
3965   } else {
3966     // Do a null check, and return zero if null.
3967     // System.identityHashCode(null) == 0
3968     obj = argument(0);
3969     Node* null_ctl = top();
3970     obj = null_check_oop(obj, &null_ctl);
3971     result_reg->init_req(_null_path, null_ctl);
3972     result_val->init_req(_null_path, _gvn.intcon(0));
3973   }
3974 
3975   // Unconditionally null?  Then return right away.
3976   if (stopped()) {
3977     set_control( result_reg->in(_null_path));
3978     if (!stopped())
3979       set_result(result_val->in(_null_path));
3980     return true;
3981   }
3982 
3983   // After null check, get the object's klass.
3984   Node* obj_klass = load_object_klass(obj);
3985 
3986   // This call may be virtual (invokevirtual) or bound (invokespecial).
3987   // For each case we generate slightly different code.
3988 
3989   // We only go to the fast case code if we pass a number of guards.  The
3990   // paths which do not pass are accumulated in the slow_region.
3991   RegionNode* slow_region = new (C) RegionNode(1);
3992   record_for_igvn(slow_region);
3993 
3994   // If this is a virtual call, we generate a funny guard.  We pull out
3995   // the vtable entry corresponding to hashCode() from the target object.
3996   // If the target method which we are calling happens to be the native
3997   // Object hashCode() method, we pass the guard.  We do not need this
3998   // guard for non-virtual calls -- the caller is known to be the native
3999   // Object hashCode().
4000   if (is_virtual) {
4001     generate_virtual_guard(obj_klass, slow_region);
4002   }
4003 
4004   // Get the header out of the object, use LoadMarkNode when available
4005   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4006   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4007 
4008   // Test the header to see if it is unlocked.
4009   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4010   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4011   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4012   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4013   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4014 
4015   generate_slow_guard(test_unlocked, slow_region);
4016 
4017   // Get the hash value and check to see that it has been properly assigned.
4018   // We depend on hash_mask being at most 32 bits and avoid the use of
4019   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4020   // vm: see markOop.hpp.
4021   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4022   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4023   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4024   // This hack lets the hash bits live anywhere in the mark object now, as long
4025   // as the shift drops the relevant bits into the low 32 bits.  Note that
4026   // Java spec says that HashCode is an int so there's no point in capturing
4027   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4028   hshifted_header      = ConvX2I(hshifted_header);
4029   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4030 
4031   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4032   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4033   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4034 
4035   generate_slow_guard(test_assigned, slow_region);
4036 
4037   Node* init_mem = reset_memory();
4038   // fill in the rest of the null path:
4039   result_io ->init_req(_null_path, i_o());
4040   result_mem->init_req(_null_path, init_mem);
4041 
4042   result_val->init_req(_fast_path, hash_val);
4043   result_reg->init_req(_fast_path, control());
4044   result_io ->init_req(_fast_path, i_o());
4045   result_mem->init_req(_fast_path, init_mem);
4046 
4047   // Generate code for the slow case.  We make a call to hashCode().
4048   set_control(_gvn.transform(slow_region));
4049   if (!stopped()) {
4050     // No need for PreserveJVMState, because we're using up the present state.
4051     set_all_memory(init_mem);
4052     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4053     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4054     Node* slow_result = set_results_for_java_call(slow_call);
4055     // this->control() comes from set_results_for_java_call
4056     result_reg->init_req(_slow_path, control());
4057     result_val->init_req(_slow_path, slow_result);
4058     result_io  ->set_req(_slow_path, i_o());
4059     result_mem ->set_req(_slow_path, reset_memory());
4060   }
4061 
4062   // Return the combined state.
4063   set_i_o(        _gvn.transform(result_io)  );
4064   set_all_memory( _gvn.transform(result_mem));
4065 
4066   set_result(result_reg, result_val);
4067   return true;
4068 }
4069 
4070 //---------------------------inline_native_getClass----------------------------
4071 // public final native Class<?> java.lang.Object.getClass();
4072 //
4073 // Build special case code for calls to getClass on an object.
4074 bool LibraryCallKit::inline_native_getClass() {
4075   Node* obj = null_check_receiver();
4076   if (stopped())  return true;
4077   set_result(load_mirror_from_klass(load_object_klass(obj)));
4078   return true;
4079 }
4080 
4081 //-----------------inline_native_Reflection_getCallerClass---------------------
4082 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4083 //
4084 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4085 //
4086 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4087 // in that it must skip particular security frames and checks for
4088 // caller sensitive methods.
4089 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4090 #ifndef PRODUCT
4091   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4092     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4093   }
4094 #endif
4095 
4096   if (!jvms()->has_method()) {
4097 #ifndef PRODUCT
4098     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4099       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4100     }
4101 #endif
4102     return false;
4103   }
4104 
4105   // Walk back up the JVM state to find the caller at the required
4106   // depth.
4107   JVMState* caller_jvms = jvms();
4108 
4109   // Cf. JVM_GetCallerClass
4110   // NOTE: Start the loop at depth 1 because the current JVM state does
4111   // not include the Reflection.getCallerClass() frame.
4112   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4113     ciMethod* m = caller_jvms->method();
4114     switch (n) {
4115     case 0:
4116       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4117       break;
4118     case 1:
4119       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4120       if (!m->caller_sensitive()) {
4121 #ifndef PRODUCT
4122         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4123           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4124         }
4125 #endif
4126         return false;  // bail-out; let JVM_GetCallerClass do the work
4127       }
4128       break;
4129     default:
4130       if (!m->is_ignored_by_security_stack_walk()) {
4131         // We have reached the desired frame; return the holder class.
4132         // Acquire method holder as java.lang.Class and push as constant.
4133         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4134         ciInstance* caller_mirror = caller_klass->java_mirror();
4135         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4136 
4137 #ifndef PRODUCT
4138         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4139           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4140           tty->print_cr("  JVM state at this point:");
4141           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4142             ciMethod* m = jvms()->of_depth(i)->method();
4143             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4144           }
4145         }
4146 #endif
4147         return true;
4148       }
4149       break;
4150     }
4151   }
4152 
4153 #ifndef PRODUCT
4154   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4155     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4156     tty->print_cr("  JVM state at this point:");
4157     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4158       ciMethod* m = jvms()->of_depth(i)->method();
4159       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4160     }
4161   }
4162 #endif
4163 
4164   return false;  // bail-out; let JVM_GetCallerClass do the work
4165 }
4166 
4167 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4168   Node* arg = argument(0);
4169   Node* result;
4170 
4171   switch (id) {
4172   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4173   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4174   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4175   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4176 
4177   case vmIntrinsics::_doubleToLongBits: {
4178     // two paths (plus control) merge in a wood
4179     RegionNode *r = new (C) RegionNode(3);
4180     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4181 
4182     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4183     // Build the boolean node
4184     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4185 
4186     // Branch either way.
4187     // NaN case is less traveled, which makes all the difference.
4188     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4189     Node *opt_isnan = _gvn.transform(ifisnan);
4190     assert( opt_isnan->is_If(), "Expect an IfNode");
4191     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4192     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4193 
4194     set_control(iftrue);
4195 
4196     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4197     Node *slow_result = longcon(nan_bits); // return NaN
4198     phi->init_req(1, _gvn.transform( slow_result ));
4199     r->init_req(1, iftrue);
4200 
4201     // Else fall through
4202     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4203     set_control(iffalse);
4204 
4205     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4206     r->init_req(2, iffalse);
4207 
4208     // Post merge
4209     set_control(_gvn.transform(r));
4210     record_for_igvn(r);
4211 
4212     C->set_has_split_ifs(true); // Has chance for split-if optimization
4213     result = phi;
4214     assert(result->bottom_type()->isa_long(), "must be");
4215     break;
4216   }
4217 
4218   case vmIntrinsics::_floatToIntBits: {
4219     // two paths (plus control) merge in a wood
4220     RegionNode *r = new (C) RegionNode(3);
4221     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4222 
4223     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4224     // Build the boolean node
4225     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4226 
4227     // Branch either way.
4228     // NaN case is less traveled, which makes all the difference.
4229     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4230     Node *opt_isnan = _gvn.transform(ifisnan);
4231     assert( opt_isnan->is_If(), "Expect an IfNode");
4232     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4233     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4234 
4235     set_control(iftrue);
4236 
4237     static const jint nan_bits = 0x7fc00000;
4238     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4239     phi->init_req(1, _gvn.transform( slow_result ));
4240     r->init_req(1, iftrue);
4241 
4242     // Else fall through
4243     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4244     set_control(iffalse);
4245 
4246     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4247     r->init_req(2, iffalse);
4248 
4249     // Post merge
4250     set_control(_gvn.transform(r));
4251     record_for_igvn(r);
4252 
4253     C->set_has_split_ifs(true); // Has chance for split-if optimization
4254     result = phi;
4255     assert(result->bottom_type()->isa_int(), "must be");
4256     break;
4257   }
4258 
4259   default:
4260     fatal_unexpected_iid(id);
4261     break;
4262   }
4263   set_result(_gvn.transform(result));
4264   return true;
4265 }
4266 
4267 #ifdef _LP64
4268 #define XTOP ,top() /*additional argument*/
4269 #else  //_LP64
4270 #define XTOP        /*no additional argument*/
4271 #endif //_LP64
4272 
4273 //----------------------inline_unsafe_copyMemory-------------------------
4274 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4275 bool LibraryCallKit::inline_unsafe_copyMemory() {
4276   if (callee()->is_static())  return false;  // caller must have the capability!
4277   null_check_receiver();  // null-check receiver
4278   if (stopped())  return true;
4279 
4280   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4281 
4282   Node* src_ptr =         argument(1);   // type: oop
4283   Node* src_off = ConvL2X(argument(2));  // type: long
4284   Node* dst_ptr =         argument(4);   // type: oop
4285   Node* dst_off = ConvL2X(argument(5));  // type: long
4286   Node* size    = ConvL2X(argument(7));  // type: long
4287 
4288   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4289          "fieldOffset must be byte-scaled");
4290 
4291   Node* src = make_unsafe_address(src_ptr, src_off);
4292   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4293 
4294   // Conservatively insert a memory barrier on all memory slices.
4295   // Do not let writes of the copy source or destination float below the copy.
4296   insert_mem_bar(Op_MemBarCPUOrder);
4297 
4298   // Call it.  Note that the length argument is not scaled.
4299   make_runtime_call(RC_LEAF|RC_NO_FP,
4300                     OptoRuntime::fast_arraycopy_Type(),
4301                     StubRoutines::unsafe_arraycopy(),
4302                     "unsafe_arraycopy",
4303                     TypeRawPtr::BOTTOM,
4304                     src, dst, size XTOP);
4305 
4306   // Do not let reads of the copy destination float above the copy.
4307   insert_mem_bar(Op_MemBarCPUOrder);
4308 
4309   return true;
4310 }
4311 
4312 //------------------------clone_coping-----------------------------------
4313 // Helper function for inline_native_clone.
4314 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4315   assert(obj_size != NULL, "");
4316   Node* raw_obj = alloc_obj->in(1);
4317   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4318 
4319   AllocateNode* alloc = NULL;
4320   if (ReduceBulkZeroing) {
4321     // We will be completely responsible for initializing this object -
4322     // mark Initialize node as complete.
4323     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4324     // The object was just allocated - there should be no any stores!
4325     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4326     // Mark as complete_with_arraycopy so that on AllocateNode
4327     // expansion, we know this AllocateNode is initialized by an array
4328     // copy and a StoreStore barrier exists after the array copy.
4329     alloc->initialization()->set_complete_with_arraycopy();
4330   }
4331 
4332   // Copy the fastest available way.
4333   // TODO: generate fields copies for small objects instead.
4334   Node* src  = obj;
4335   Node* dest = alloc_obj;
4336   Node* size = _gvn.transform(obj_size);
4337 
4338   // Exclude the header but include array length to copy by 8 bytes words.
4339   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4340   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4341                             instanceOopDesc::base_offset_in_bytes();
4342   // base_off:
4343   // 8  - 32-bit VM
4344   // 12 - 64-bit VM, compressed klass
4345   // 16 - 64-bit VM, normal klass
4346   if (base_off % BytesPerLong != 0) {
4347     assert(UseCompressedClassPointers, "");
4348     if (is_array) {
4349       // Exclude length to copy by 8 bytes words.
4350       base_off += sizeof(int);
4351     } else {
4352       // Include klass to copy by 8 bytes words.
4353       base_off = instanceOopDesc::klass_offset_in_bytes();
4354     }
4355     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4356   }
4357   src  = basic_plus_adr(src,  base_off);
4358   dest = basic_plus_adr(dest, base_off);
4359 
4360   // Compute the length also, if needed:
4361   Node* countx = size;
4362   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4363   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4364 
4365   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4366   bool disjoint_bases = true;
4367   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4368                                src, NULL, dest, NULL, countx,
4369                                /*dest_uninitialized*/true);
4370 
4371   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4372   if (card_mark) {
4373     assert(!is_array, "");
4374     // Put in store barrier for any and all oops we are sticking
4375     // into this object.  (We could avoid this if we could prove
4376     // that the object type contains no oop fields at all.)
4377     Node* no_particular_value = NULL;
4378     Node* no_particular_field = NULL;
4379     int raw_adr_idx = Compile::AliasIdxRaw;
4380     post_barrier(control(),
4381                  memory(raw_adr_type),
4382                  alloc_obj,
4383                  no_particular_field,
4384                  raw_adr_idx,
4385                  no_particular_value,
4386                  T_OBJECT,
4387                  false);
4388   }
4389 
4390   // Do not let reads from the cloned object float above the arraycopy.
4391   if (alloc != NULL) {
4392     // Do not let stores that initialize this object be reordered with
4393     // a subsequent store that would make this object accessible by
4394     // other threads.
4395     // Record what AllocateNode this StoreStore protects so that
4396     // escape analysis can go from the MemBarStoreStoreNode to the
4397     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4398     // based on the escape status of the AllocateNode.
4399     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4400   } else {
4401     insert_mem_bar(Op_MemBarCPUOrder);
4402   }
4403 }
4404 
4405 //------------------------inline_native_clone----------------------------
4406 // protected native Object java.lang.Object.clone();
4407 //
4408 // Here are the simple edge cases:
4409 //  null receiver => normal trap
4410 //  virtual and clone was overridden => slow path to out-of-line clone
4411 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4412 //
4413 // The general case has two steps, allocation and copying.
4414 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4415 //
4416 // Copying also has two cases, oop arrays and everything else.
4417 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4418 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4419 //
4420 // These steps fold up nicely if and when the cloned object's klass
4421 // can be sharply typed as an object array, a type array, or an instance.
4422 //
4423 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4424   PhiNode* result_val;
4425 
4426   // Set the reexecute bit for the interpreter to reexecute
4427   // the bytecode that invokes Object.clone if deoptimization happens.
4428   { PreserveReexecuteState preexecs(this);
4429     jvms()->set_should_reexecute(true);
4430 
4431     Node* obj = null_check_receiver();
4432     if (stopped())  return true;
4433 
4434     Node* obj_klass = load_object_klass(obj);
4435     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4436     const TypeOopPtr*   toop   = ((tklass != NULL)
4437                                 ? tklass->as_instance_type()
4438                                 : TypeInstPtr::NOTNULL);
4439 
4440     // Conservatively insert a memory barrier on all memory slices.
4441     // Do not let writes into the original float below the clone.
4442     insert_mem_bar(Op_MemBarCPUOrder);
4443 
4444     // paths into result_reg:
4445     enum {
4446       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4447       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4448       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4449       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4450       PATH_LIMIT
4451     };
4452     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4453     result_val             = new(C) PhiNode(result_reg,
4454                                             TypeInstPtr::NOTNULL);
4455     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4456     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4457                                             TypePtr::BOTTOM);
4458     record_for_igvn(result_reg);
4459 
4460     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4461     int raw_adr_idx = Compile::AliasIdxRaw;
4462 
4463     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4464     if (array_ctl != NULL) {
4465       // It's an array.
4466       PreserveJVMState pjvms(this);
4467       set_control(array_ctl);
4468       Node* obj_length = load_array_length(obj);
4469       Node* obj_size  = NULL;
4470       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4471 
4472       if (!use_ReduceInitialCardMarks()) {
4473         // If it is an oop array, it requires very special treatment,
4474         // because card marking is required on each card of the array.
4475         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4476         if (is_obja != NULL) {
4477           PreserveJVMState pjvms2(this);
4478           set_control(is_obja);
4479           // Generate a direct call to the right arraycopy function(s).
4480           bool disjoint_bases = true;
4481           bool length_never_negative = true;
4482           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4483                              obj, intcon(0), alloc_obj, intcon(0),
4484                              obj_length,
4485                              disjoint_bases, length_never_negative);
4486           result_reg->init_req(_objArray_path, control());
4487           result_val->init_req(_objArray_path, alloc_obj);
4488           result_i_o ->set_req(_objArray_path, i_o());
4489           result_mem ->set_req(_objArray_path, reset_memory());
4490         }
4491       }
4492       // Otherwise, there are no card marks to worry about.
4493       // (We can dispense with card marks if we know the allocation
4494       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4495       //  causes the non-eden paths to take compensating steps to
4496       //  simulate a fresh allocation, so that no further
4497       //  card marks are required in compiled code to initialize
4498       //  the object.)
4499 
4500       if (!stopped()) {
4501         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4502 
4503         // Present the results of the copy.
4504         result_reg->init_req(_array_path, control());
4505         result_val->init_req(_array_path, alloc_obj);
4506         result_i_o ->set_req(_array_path, i_o());
4507         result_mem ->set_req(_array_path, reset_memory());
4508       }
4509     }
4510 
4511     // We only go to the instance fast case code if we pass a number of guards.
4512     // The paths which do not pass are accumulated in the slow_region.
4513     RegionNode* slow_region = new (C) RegionNode(1);
4514     record_for_igvn(slow_region);
4515     if (!stopped()) {
4516       // It's an instance (we did array above).  Make the slow-path tests.
4517       // If this is a virtual call, we generate a funny guard.  We grab
4518       // the vtable entry corresponding to clone() from the target object.
4519       // If the target method which we are calling happens to be the
4520       // Object clone() method, we pass the guard.  We do not need this
4521       // guard for non-virtual calls; the caller is known to be the native
4522       // Object clone().
4523       if (is_virtual) {
4524         generate_virtual_guard(obj_klass, slow_region);
4525       }
4526 
4527       // The object must be cloneable and must not have a finalizer.
4528       // Both of these conditions may be checked in a single test.
4529       // We could optimize the cloneable test further, but we don't care.
4530       generate_access_flags_guard(obj_klass,
4531                                   // Test both conditions:
4532                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4533                                   // Must be cloneable but not finalizer:
4534                                   JVM_ACC_IS_CLONEABLE,
4535                                   slow_region);
4536     }
4537 
4538     if (!stopped()) {
4539       // It's an instance, and it passed the slow-path tests.
4540       PreserveJVMState pjvms(this);
4541       Node* obj_size  = NULL;
4542       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4543 
4544       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4545 
4546       // Present the results of the slow call.
4547       result_reg->init_req(_instance_path, control());
4548       result_val->init_req(_instance_path, alloc_obj);
4549       result_i_o ->set_req(_instance_path, i_o());
4550       result_mem ->set_req(_instance_path, reset_memory());
4551     }
4552 
4553     // Generate code for the slow case.  We make a call to clone().
4554     set_control(_gvn.transform(slow_region));
4555     if (!stopped()) {
4556       PreserveJVMState pjvms(this);
4557       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4558       Node* slow_result = set_results_for_java_call(slow_call);
4559       // this->control() comes from set_results_for_java_call
4560       result_reg->init_req(_slow_path, control());
4561       result_val->init_req(_slow_path, slow_result);
4562       result_i_o ->set_req(_slow_path, i_o());
4563       result_mem ->set_req(_slow_path, reset_memory());
4564     }
4565 
4566     // Return the combined state.
4567     set_control(    _gvn.transform(result_reg));
4568     set_i_o(        _gvn.transform(result_i_o));
4569     set_all_memory( _gvn.transform(result_mem));
4570   } // original reexecute is set back here
4571 
4572   set_result(_gvn.transform(result_val));
4573   return true;
4574 }
4575 
4576 //------------------------------basictype2arraycopy----------------------------
4577 address LibraryCallKit::basictype2arraycopy(BasicType t,
4578                                             Node* src_offset,
4579                                             Node* dest_offset,
4580                                             bool disjoint_bases,
4581                                             const char* &name,
4582                                             bool dest_uninitialized) {
4583   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4584   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4585 
4586   bool aligned = false;
4587   bool disjoint = disjoint_bases;
4588 
4589   // if the offsets are the same, we can treat the memory regions as
4590   // disjoint, because either the memory regions are in different arrays,
4591   // or they are identical (which we can treat as disjoint.)  We can also
4592   // treat a copy with a destination index  less that the source index
4593   // as disjoint since a low->high copy will work correctly in this case.
4594   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4595       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4596     // both indices are constants
4597     int s_offs = src_offset_inttype->get_con();
4598     int d_offs = dest_offset_inttype->get_con();
4599     int element_size = type2aelembytes(t);
4600     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4601               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4602     if (s_offs >= d_offs)  disjoint = true;
4603   } else if (src_offset == dest_offset && src_offset != NULL) {
4604     // This can occur if the offsets are identical non-constants.
4605     disjoint = true;
4606   }
4607 
4608   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4609 }
4610 
4611 
4612 //------------------------------inline_arraycopy-----------------------
4613 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4614 //                                                      Object dest, int destPos,
4615 //                                                      int length);
4616 bool LibraryCallKit::inline_arraycopy() {
4617   // Get the arguments.
4618   Node* src         = argument(0);  // type: oop
4619   Node* src_offset  = argument(1);  // type: int
4620   Node* dest        = argument(2);  // type: oop
4621   Node* dest_offset = argument(3);  // type: int
4622   Node* length      = argument(4);  // type: int
4623 
4624   // Compile time checks.  If any of these checks cannot be verified at compile time,
4625   // we do not make a fast path for this call.  Instead, we let the call remain as it
4626   // is.  The checks we choose to mandate at compile time are:
4627   //
4628   // (1) src and dest are arrays.
4629   const Type* src_type  = src->Value(&_gvn);
4630   const Type* dest_type = dest->Value(&_gvn);
4631   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4632   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4633 
4634   // Do we have the type of src?
4635   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4636   // Do we have the type of dest?
4637   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4638   // Is the type for src from speculation?
4639   bool src_spec = false;
4640   // Is the type for dest from speculation?
4641   bool dest_spec = false;
4642 
4643   if (!has_src || !has_dest) {
4644     // We don't have sufficient type information, let's see if
4645     // speculative types can help. We need to have types for both src
4646     // and dest so that it pays off.
4647 
4648     // Do we already have or could we have type information for src
4649     bool could_have_src = has_src;
4650     // Do we already have or could we have type information for dest
4651     bool could_have_dest = has_dest;
4652 
4653     ciKlass* src_k = NULL;
4654     if (!has_src) {
4655       src_k = src_type->speculative_type();
4656       if (src_k != NULL && src_k->is_array_klass()) {
4657         could_have_src = true;
4658       }
4659     }
4660 
4661     ciKlass* dest_k = NULL;
4662     if (!has_dest) {
4663       dest_k = dest_type->speculative_type();
4664       if (dest_k != NULL && dest_k->is_array_klass()) {
4665         could_have_dest = true;
4666       }
4667     }
4668 
4669     if (could_have_src && could_have_dest) {
4670       // This is going to pay off so emit the required guards
4671       if (!has_src) {
4672         src = maybe_cast_profiled_obj(src, src_k);
4673         src_type  = _gvn.type(src);
4674         top_src  = src_type->isa_aryptr();
4675         has_src = (top_src != NULL && top_src->klass() != NULL);
4676         src_spec = true;
4677       }
4678       if (!has_dest) {
4679         dest = maybe_cast_profiled_obj(dest, dest_k);
4680         dest_type  = _gvn.type(dest);
4681         top_dest  = dest_type->isa_aryptr();
4682         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4683         dest_spec = true;
4684       }
4685     }
4686   }
4687 
4688   if (!has_src || !has_dest) {
4689     // Conservatively insert a memory barrier on all memory slices.
4690     // Do not let writes into the source float below the arraycopy.
4691     insert_mem_bar(Op_MemBarCPUOrder);
4692 
4693     // Call StubRoutines::generic_arraycopy stub.
4694     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4695                        src, src_offset, dest, dest_offset, length);
4696 
4697     // Do not let reads from the destination float above the arraycopy.
4698     // Since we cannot type the arrays, we don't know which slices
4699     // might be affected.  We could restrict this barrier only to those
4700     // memory slices which pertain to array elements--but don't bother.
4701     if (!InsertMemBarAfterArraycopy)
4702       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4703       insert_mem_bar(Op_MemBarCPUOrder);
4704     return true;
4705   }
4706 
4707   // (2) src and dest arrays must have elements of the same BasicType
4708   // Figure out the size and type of the elements we will be copying.
4709   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4710   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4711   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4712   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4713 
4714   if (src_elem != dest_elem || dest_elem == T_VOID) {
4715     // The component types are not the same or are not recognized.  Punt.
4716     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4717     generate_slow_arraycopy(TypePtr::BOTTOM,
4718                             src, src_offset, dest, dest_offset, length,
4719                             /*dest_uninitialized*/false);
4720     return true;
4721   }
4722 
4723   if (src_elem == T_OBJECT) {
4724     // If both arrays are object arrays then having the exact types
4725     // for both will remove the need for a subtype check at runtime
4726     // before the call and may make it possible to pick a faster copy
4727     // routine (without a subtype check on every element)
4728     // Do we have the exact type of src?
4729     bool could_have_src = src_spec;
4730     // Do we have the exact type of dest?
4731     bool could_have_dest = dest_spec;
4732     ciKlass* src_k = top_src->klass();
4733     ciKlass* dest_k = top_dest->klass();
4734     if (!src_spec) {
4735       src_k = src_type->speculative_type();
4736       if (src_k != NULL && src_k->is_array_klass()) {
4737           could_have_src = true;
4738       }
4739     }
4740     if (!dest_spec) {
4741       dest_k = dest_type->speculative_type();
4742       if (dest_k != NULL && dest_k->is_array_klass()) {
4743         could_have_dest = true;
4744       }
4745     }
4746     if (could_have_src && could_have_dest) {
4747       // If we can have both exact types, emit the missing guards
4748       if (could_have_src && !src_spec) {
4749         src = maybe_cast_profiled_obj(src, src_k);
4750       }
4751       if (could_have_dest && !dest_spec) {
4752         dest = maybe_cast_profiled_obj(dest, dest_k);
4753       }
4754     }
4755   }
4756 
4757   //---------------------------------------------------------------------------
4758   // We will make a fast path for this call to arraycopy.
4759 
4760   // We have the following tests left to perform:
4761   //
4762   // (3) src and dest must not be null.
4763   // (4) src_offset must not be negative.
4764   // (5) dest_offset must not be negative.
4765   // (6) length must not be negative.
4766   // (7) src_offset + length must not exceed length of src.
4767   // (8) dest_offset + length must not exceed length of dest.
4768   // (9) each element of an oop array must be assignable
4769 
4770   RegionNode* slow_region = new (C) RegionNode(1);
4771   record_for_igvn(slow_region);
4772 
4773   // (3) operands must not be null
4774   // We currently perform our null checks with the null_check routine.
4775   // This means that the null exceptions will be reported in the caller
4776   // rather than (correctly) reported inside of the native arraycopy call.
4777   // This should be corrected, given time.  We do our null check with the
4778   // stack pointer restored.
4779   src  = null_check(src,  T_ARRAY);
4780   dest = null_check(dest, T_ARRAY);
4781 
4782   // (4) src_offset must not be negative.
4783   generate_negative_guard(src_offset, slow_region);
4784 
4785   // (5) dest_offset must not be negative.
4786   generate_negative_guard(dest_offset, slow_region);
4787 
4788   // (6) length must not be negative (moved to generate_arraycopy()).
4789   // generate_negative_guard(length, slow_region);
4790 
4791   // (7) src_offset + length must not exceed length of src.
4792   generate_limit_guard(src_offset, length,
4793                        load_array_length(src),
4794                        slow_region);
4795 
4796   // (8) dest_offset + length must not exceed length of dest.
4797   generate_limit_guard(dest_offset, length,
4798                        load_array_length(dest),
4799                        slow_region);
4800 
4801   // (9) each element of an oop array must be assignable
4802   // The generate_arraycopy subroutine checks this.
4803 
4804   // This is where the memory effects are placed:
4805   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4806   generate_arraycopy(adr_type, dest_elem,
4807                      src, src_offset, dest, dest_offset, length,
4808                      false, false, slow_region);
4809 
4810   return true;
4811 }
4812 
4813 //-----------------------------generate_arraycopy----------------------
4814 // Generate an optimized call to arraycopy.
4815 // Caller must guard against non-arrays.
4816 // Caller must determine a common array basic-type for both arrays.
4817 // Caller must validate offsets against array bounds.
4818 // The slow_region has already collected guard failure paths
4819 // (such as out of bounds length or non-conformable array types).
4820 // The generated code has this shape, in general:
4821 //
4822 //     if (length == 0)  return   // via zero_path
4823 //     slowval = -1
4824 //     if (types unknown) {
4825 //       slowval = call generic copy loop
4826 //       if (slowval == 0)  return  // via checked_path
4827 //     } else if (indexes in bounds) {
4828 //       if ((is object array) && !(array type check)) {
4829 //         slowval = call checked copy loop
4830 //         if (slowval == 0)  return  // via checked_path
4831 //       } else {
4832 //         call bulk copy loop
4833 //         return  // via fast_path
4834 //       }
4835 //     }
4836 //     // adjust params for remaining work:
4837 //     if (slowval != -1) {
4838 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4839 //     }
4840 //   slow_region:
4841 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4842 //     return  // via slow_call_path
4843 //
4844 // This routine is used from several intrinsics:  System.arraycopy,
4845 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4846 //
4847 void
4848 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4849                                    BasicType basic_elem_type,
4850                                    Node* src,  Node* src_offset,
4851                                    Node* dest, Node* dest_offset,
4852                                    Node* copy_length,
4853                                    bool disjoint_bases,
4854                                    bool length_never_negative,
4855                                    RegionNode* slow_region) {
4856 
4857   if (slow_region == NULL) {
4858     slow_region = new(C) RegionNode(1);
4859     record_for_igvn(slow_region);
4860   }
4861 
4862   Node* original_dest      = dest;
4863   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4864   bool  dest_uninitialized = false;
4865 
4866   // See if this is the initialization of a newly-allocated array.
4867   // If so, we will take responsibility here for initializing it to zero.
4868   // (Note:  Because tightly_coupled_allocation performs checks on the
4869   // out-edges of the dest, we need to avoid making derived pointers
4870   // from it until we have checked its uses.)
4871   if (ReduceBulkZeroing
4872       && !ZeroTLAB              // pointless if already zeroed
4873       && basic_elem_type != T_CONFLICT // avoid corner case
4874       && !src->eqv_uncast(dest)
4875       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4876           != NULL)
4877       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4878       && alloc->maybe_set_complete(&_gvn)) {
4879     // "You break it, you buy it."
4880     InitializeNode* init = alloc->initialization();
4881     assert(init->is_complete(), "we just did this");
4882     init->set_complete_with_arraycopy();
4883     assert(dest->is_CheckCastPP(), "sanity");
4884     assert(dest->in(0)->in(0) == init, "dest pinned");
4885     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4886     // From this point on, every exit path is responsible for
4887     // initializing any non-copied parts of the object to zero.
4888     // Also, if this flag is set we make sure that arraycopy interacts properly
4889     // with G1, eliding pre-barriers. See CR 6627983.
4890     dest_uninitialized = true;
4891   } else {
4892     // No zeroing elimination here.
4893     alloc             = NULL;
4894     //original_dest   = dest;
4895     //dest_uninitialized = false;
4896   }
4897 
4898   // Results are placed here:
4899   enum { fast_path        = 1,  // normal void-returning assembly stub
4900          checked_path     = 2,  // special assembly stub with cleanup
4901          slow_call_path   = 3,  // something went wrong; call the VM
4902          zero_path        = 4,  // bypass when length of copy is zero
4903          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4904          PATH_LIMIT       = 6
4905   };
4906   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4907   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4908   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4909   record_for_igvn(result_region);
4910   _gvn.set_type_bottom(result_i_o);
4911   _gvn.set_type_bottom(result_memory);
4912   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4913 
4914   // The slow_control path:
4915   Node* slow_control;
4916   Node* slow_i_o = i_o();
4917   Node* slow_mem = memory(adr_type);
4918   debug_only(slow_control = (Node*) badAddress);
4919 
4920   // Checked control path:
4921   Node* checked_control = top();
4922   Node* checked_mem     = NULL;
4923   Node* checked_i_o     = NULL;
4924   Node* checked_value   = NULL;
4925 
4926   if (basic_elem_type == T_CONFLICT) {
4927     assert(!dest_uninitialized, "");
4928     Node* cv = generate_generic_arraycopy(adr_type,
4929                                           src, src_offset, dest, dest_offset,
4930                                           copy_length, dest_uninitialized);
4931     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4932     checked_control = control();
4933     checked_i_o     = i_o();
4934     checked_mem     = memory(adr_type);
4935     checked_value   = cv;
4936     set_control(top());         // no fast path
4937   }
4938 
4939   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4940   if (not_pos != NULL) {
4941     PreserveJVMState pjvms(this);
4942     set_control(not_pos);
4943 
4944     // (6) length must not be negative.
4945     if (!length_never_negative) {
4946       generate_negative_guard(copy_length, slow_region);
4947     }
4948 
4949     // copy_length is 0.
4950     if (!stopped() && dest_uninitialized) {
4951       Node* dest_length = alloc->in(AllocateNode::ALength);
4952       if (copy_length->eqv_uncast(dest_length)
4953           || _gvn.find_int_con(dest_length, 1) <= 0) {
4954         // There is no zeroing to do. No need for a secondary raw memory barrier.
4955       } else {
4956         // Clear the whole thing since there are no source elements to copy.
4957         generate_clear_array(adr_type, dest, basic_elem_type,
4958                              intcon(0), NULL,
4959                              alloc->in(AllocateNode::AllocSize));
4960         // Use a secondary InitializeNode as raw memory barrier.
4961         // Currently it is needed only on this path since other
4962         // paths have stub or runtime calls as raw memory barriers.
4963         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4964                                                        Compile::AliasIdxRaw,
4965                                                        top())->as_Initialize();
4966         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4967       }
4968     }
4969 
4970     // Present the results of the fast call.
4971     result_region->init_req(zero_path, control());
4972     result_i_o   ->init_req(zero_path, i_o());
4973     result_memory->init_req(zero_path, memory(adr_type));
4974   }
4975 
4976   if (!stopped() && dest_uninitialized) {
4977     // We have to initialize the *uncopied* part of the array to zero.
4978     // The copy destination is the slice dest[off..off+len].  The other slices
4979     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4980     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4981     Node* dest_length = alloc->in(AllocateNode::ALength);
4982     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4983                                                           copy_length));
4984 
4985     // If there is a head section that needs zeroing, do it now.
4986     if (find_int_con(dest_offset, -1) != 0) {
4987       generate_clear_array(adr_type, dest, basic_elem_type,
4988                            intcon(0), dest_offset,
4989                            NULL);
4990     }
4991 
4992     // Next, perform a dynamic check on the tail length.
4993     // It is often zero, and we can win big if we prove this.
4994     // There are two wins:  Avoid generating the ClearArray
4995     // with its attendant messy index arithmetic, and upgrade
4996     // the copy to a more hardware-friendly word size of 64 bits.
4997     Node* tail_ctl = NULL;
4998     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4999       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5000       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5001       tail_ctl = generate_slow_guard(bol_lt, NULL);
5002       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5003     }
5004 
5005     // At this point, let's assume there is no tail.
5006     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5007       // There is no tail.  Try an upgrade to a 64-bit copy.
5008       bool didit = false;
5009       { PreserveJVMState pjvms(this);
5010         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5011                                          src, src_offset, dest, dest_offset,
5012                                          dest_size, dest_uninitialized);
5013         if (didit) {
5014           // Present the results of the block-copying fast call.
5015           result_region->init_req(bcopy_path, control());
5016           result_i_o   ->init_req(bcopy_path, i_o());
5017           result_memory->init_req(bcopy_path, memory(adr_type));
5018         }
5019       }
5020       if (didit)
5021         set_control(top());     // no regular fast path
5022     }
5023 
5024     // Clear the tail, if any.
5025     if (tail_ctl != NULL) {
5026       Node* notail_ctl = stopped() ? NULL : control();
5027       set_control(tail_ctl);
5028       if (notail_ctl == NULL) {
5029         generate_clear_array(adr_type, dest, basic_elem_type,
5030                              dest_tail, NULL,
5031                              dest_size);
5032       } else {
5033         // Make a local merge.
5034         Node* done_ctl = new(C) RegionNode(3);
5035         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5036         done_ctl->init_req(1, notail_ctl);
5037         done_mem->init_req(1, memory(adr_type));
5038         generate_clear_array(adr_type, dest, basic_elem_type,
5039                              dest_tail, NULL,
5040                              dest_size);
5041         done_ctl->init_req(2, control());
5042         done_mem->init_req(2, memory(adr_type));
5043         set_control( _gvn.transform(done_ctl));
5044         set_memory(  _gvn.transform(done_mem), adr_type );
5045       }
5046     }
5047   }
5048 
5049   BasicType copy_type = basic_elem_type;
5050   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5051   if (!stopped() && copy_type == T_OBJECT) {
5052     // If src and dest have compatible element types, we can copy bits.
5053     // Types S[] and D[] are compatible if D is a supertype of S.
5054     //
5055     // If they are not, we will use checked_oop_disjoint_arraycopy,
5056     // which performs a fast optimistic per-oop check, and backs off
5057     // further to JVM_ArrayCopy on the first per-oop check that fails.
5058     // (Actually, we don't move raw bits only; the GC requires card marks.)
5059 
5060     // Get the Klass* for both src and dest
5061     Node* src_klass  = load_object_klass(src);
5062     Node* dest_klass = load_object_klass(dest);
5063 
5064     // Generate the subtype check.
5065     // This might fold up statically, or then again it might not.
5066     //
5067     // Non-static example:  Copying List<String>.elements to a new String[].
5068     // The backing store for a List<String> is always an Object[],
5069     // but its elements are always type String, if the generic types
5070     // are correct at the source level.
5071     //
5072     // Test S[] against D[], not S against D, because (probably)
5073     // the secondary supertype cache is less busy for S[] than S.
5074     // This usually only matters when D is an interface.
5075     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5076     // Plug failing path into checked_oop_disjoint_arraycopy
5077     if (not_subtype_ctrl != top()) {
5078       PreserveJVMState pjvms(this);
5079       set_control(not_subtype_ctrl);
5080       // (At this point we can assume disjoint_bases, since types differ.)
5081       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5082       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5083       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5084       Node* dest_elem_klass = _gvn.transform(n1);
5085       Node* cv = generate_checkcast_arraycopy(adr_type,
5086                                               dest_elem_klass,
5087                                               src, src_offset, dest, dest_offset,
5088                                               ConvI2X(copy_length), dest_uninitialized);
5089       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5090       checked_control = control();
5091       checked_i_o     = i_o();
5092       checked_mem     = memory(adr_type);
5093       checked_value   = cv;
5094     }
5095     // At this point we know we do not need type checks on oop stores.
5096 
5097     // Let's see if we need card marks:
5098     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5099       // If we do not need card marks, copy using the jint or jlong stub.
5100       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5101       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5102              "sizes agree");
5103     }
5104   }
5105 
5106   if (!stopped()) {
5107     // Generate the fast path, if possible.
5108     PreserveJVMState pjvms(this);
5109     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5110                                  src, src_offset, dest, dest_offset,
5111                                  ConvI2X(copy_length), dest_uninitialized);
5112 
5113     // Present the results of the fast call.
5114     result_region->init_req(fast_path, control());
5115     result_i_o   ->init_req(fast_path, i_o());
5116     result_memory->init_req(fast_path, memory(adr_type));
5117   }
5118 
5119   // Here are all the slow paths up to this point, in one bundle:
5120   slow_control = top();
5121   if (slow_region != NULL)
5122     slow_control = _gvn.transform(slow_region);
5123   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5124 
5125   set_control(checked_control);
5126   if (!stopped()) {
5127     // Clean up after the checked call.
5128     // The returned value is either 0 or -1^K,
5129     // where K = number of partially transferred array elements.
5130     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5131     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5132     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5133 
5134     // If it is 0, we are done, so transfer to the end.
5135     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5136     result_region->init_req(checked_path, checks_done);
5137     result_i_o   ->init_req(checked_path, checked_i_o);
5138     result_memory->init_req(checked_path, checked_mem);
5139 
5140     // If it is not zero, merge into the slow call.
5141     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5142     RegionNode* slow_reg2 = new(C) RegionNode(3);
5143     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5144     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5145     record_for_igvn(slow_reg2);
5146     slow_reg2  ->init_req(1, slow_control);
5147     slow_i_o2  ->init_req(1, slow_i_o);
5148     slow_mem2  ->init_req(1, slow_mem);
5149     slow_reg2  ->init_req(2, control());
5150     slow_i_o2  ->init_req(2, checked_i_o);
5151     slow_mem2  ->init_req(2, checked_mem);
5152 
5153     slow_control = _gvn.transform(slow_reg2);
5154     slow_i_o     = _gvn.transform(slow_i_o2);
5155     slow_mem     = _gvn.transform(slow_mem2);
5156 
5157     if (alloc != NULL) {
5158       // We'll restart from the very beginning, after zeroing the whole thing.
5159       // This can cause double writes, but that's OK since dest is brand new.
5160       // So we ignore the low 31 bits of the value returned from the stub.
5161     } else {
5162       // We must continue the copy exactly where it failed, or else
5163       // another thread might see the wrong number of writes to dest.
5164       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5165       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5166       slow_offset->init_req(1, intcon(0));
5167       slow_offset->init_req(2, checked_offset);
5168       slow_offset  = _gvn.transform(slow_offset);
5169 
5170       // Adjust the arguments by the conditionally incoming offset.
5171       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5172       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5173       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5174 
5175       // Tweak the node variables to adjust the code produced below:
5176       src_offset  = src_off_plus;
5177       dest_offset = dest_off_plus;
5178       copy_length = length_minus;
5179     }
5180   }
5181 
5182   set_control(slow_control);
5183   if (!stopped()) {
5184     // Generate the slow path, if needed.
5185     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5186 
5187     set_memory(slow_mem, adr_type);
5188     set_i_o(slow_i_o);
5189 
5190     if (dest_uninitialized) {
5191       generate_clear_array(adr_type, dest, basic_elem_type,
5192                            intcon(0), NULL,
5193                            alloc->in(AllocateNode::AllocSize));
5194     }
5195 
5196     generate_slow_arraycopy(adr_type,
5197                             src, src_offset, dest, dest_offset,
5198                             copy_length, /*dest_uninitialized*/false);
5199 
5200     result_region->init_req(slow_call_path, control());
5201     result_i_o   ->init_req(slow_call_path, i_o());
5202     result_memory->init_req(slow_call_path, memory(adr_type));
5203   }
5204 
5205   // Remove unused edges.
5206   for (uint i = 1; i < result_region->req(); i++) {
5207     if (result_region->in(i) == NULL)
5208       result_region->init_req(i, top());
5209   }
5210 
5211   // Finished; return the combined state.
5212   set_control( _gvn.transform(result_region));
5213   set_i_o(     _gvn.transform(result_i_o)    );
5214   set_memory(  _gvn.transform(result_memory), adr_type );
5215 
5216   // The memory edges above are precise in order to model effects around
5217   // array copies accurately to allow value numbering of field loads around
5218   // arraycopy.  Such field loads, both before and after, are common in Java
5219   // collections and similar classes involving header/array data structures.
5220   //
5221   // But with low number of register or when some registers are used or killed
5222   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5223   // The next memory barrier is added to avoid it. If the arraycopy can be
5224   // optimized away (which it can, sometimes) then we can manually remove
5225   // the membar also.
5226   //
5227   // Do not let reads from the cloned object float above the arraycopy.
5228   if (alloc != NULL) {
5229     // Do not let stores that initialize this object be reordered with
5230     // a subsequent store that would make this object accessible by
5231     // other threads.
5232     // Record what AllocateNode this StoreStore protects so that
5233     // escape analysis can go from the MemBarStoreStoreNode to the
5234     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5235     // based on the escape status of the AllocateNode.
5236     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5237   } else if (InsertMemBarAfterArraycopy)
5238     insert_mem_bar(Op_MemBarCPUOrder);
5239 }
5240 
5241 
5242 // Helper function which determines if an arraycopy immediately follows
5243 // an allocation, with no intervening tests or other escapes for the object.
5244 AllocateArrayNode*
5245 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5246                                            RegionNode* slow_region) {
5247   if (stopped())             return NULL;  // no fast path
5248   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5249 
5250   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5251   if (alloc == NULL)  return NULL;
5252 
5253   Node* rawmem = memory(Compile::AliasIdxRaw);
5254   // Is the allocation's memory state untouched?
5255   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5256     // Bail out if there have been raw-memory effects since the allocation.
5257     // (Example:  There might have been a call or safepoint.)
5258     return NULL;
5259   }
5260   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5261   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5262     return NULL;
5263   }
5264 
5265   // There must be no unexpected observers of this allocation.
5266   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5267     Node* obs = ptr->fast_out(i);
5268     if (obs != this->map()) {
5269       return NULL;
5270     }
5271   }
5272 
5273   // This arraycopy must unconditionally follow the allocation of the ptr.
5274   Node* alloc_ctl = ptr->in(0);
5275   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5276 
5277   Node* ctl = control();
5278   while (ctl != alloc_ctl) {
5279     // There may be guards which feed into the slow_region.
5280     // Any other control flow means that we might not get a chance
5281     // to finish initializing the allocated object.
5282     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5283       IfNode* iff = ctl->in(0)->as_If();
5284       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5285       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5286       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5287         ctl = iff->in(0);       // This test feeds the known slow_region.
5288         continue;
5289       }
5290       // One more try:  Various low-level checks bottom out in
5291       // uncommon traps.  If the debug-info of the trap omits
5292       // any reference to the allocation, as we've already
5293       // observed, then there can be no objection to the trap.
5294       bool found_trap = false;
5295       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5296         Node* obs = not_ctl->fast_out(j);
5297         if (obs->in(0) == not_ctl && obs->is_Call() &&
5298             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5299           found_trap = true; break;
5300         }
5301       }
5302       if (found_trap) {
5303         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5304         continue;
5305       }
5306     }
5307     return NULL;
5308   }
5309 
5310   // If we get this far, we have an allocation which immediately
5311   // precedes the arraycopy, and we can take over zeroing the new object.
5312   // The arraycopy will finish the initialization, and provide
5313   // a new control state to which we will anchor the destination pointer.
5314 
5315   return alloc;
5316 }
5317 
5318 // Helper for initialization of arrays, creating a ClearArray.
5319 // It writes zero bits in [start..end), within the body of an array object.
5320 // The memory effects are all chained onto the 'adr_type' alias category.
5321 //
5322 // Since the object is otherwise uninitialized, we are free
5323 // to put a little "slop" around the edges of the cleared area,
5324 // as long as it does not go back into the array's header,
5325 // or beyond the array end within the heap.
5326 //
5327 // The lower edge can be rounded down to the nearest jint and the
5328 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5329 //
5330 // Arguments:
5331 //   adr_type           memory slice where writes are generated
5332 //   dest               oop of the destination array
5333 //   basic_elem_type    element type of the destination
5334 //   slice_idx          array index of first element to store
5335 //   slice_len          number of elements to store (or NULL)
5336 //   dest_size          total size in bytes of the array object
5337 //
5338 // Exactly one of slice_len or dest_size must be non-NULL.
5339 // If dest_size is non-NULL, zeroing extends to the end of the object.
5340 // If slice_len is non-NULL, the slice_idx value must be a constant.
5341 void
5342 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5343                                      Node* dest,
5344                                      BasicType basic_elem_type,
5345                                      Node* slice_idx,
5346                                      Node* slice_len,
5347                                      Node* dest_size) {
5348   // one or the other but not both of slice_len and dest_size:
5349   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5350   if (slice_len == NULL)  slice_len = top();
5351   if (dest_size == NULL)  dest_size = top();
5352 
5353   // operate on this memory slice:
5354   Node* mem = memory(adr_type); // memory slice to operate on
5355 
5356   // scaling and rounding of indexes:
5357   int scale = exact_log2(type2aelembytes(basic_elem_type));
5358   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5359   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5360   int bump_bit  = (-1 << scale) & BytesPerInt;
5361 
5362   // determine constant starts and ends
5363   const intptr_t BIG_NEG = -128;
5364   assert(BIG_NEG + 2*abase < 0, "neg enough");
5365   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5366   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5367   if (slice_len_con == 0) {
5368     return;                     // nothing to do here
5369   }
5370   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5371   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5372   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5373     assert(end_con < 0, "not two cons");
5374     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5375                        BytesPerLong);
5376   }
5377 
5378   if (start_con >= 0 && end_con >= 0) {
5379     // Constant start and end.  Simple.
5380     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5381                                        start_con, end_con, &_gvn);
5382   } else if (start_con >= 0 && dest_size != top()) {
5383     // Constant start, pre-rounded end after the tail of the array.
5384     Node* end = dest_size;
5385     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5386                                        start_con, end, &_gvn);
5387   } else if (start_con >= 0 && slice_len != top()) {
5388     // Constant start, non-constant end.  End needs rounding up.
5389     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5390     intptr_t end_base  = abase + (slice_idx_con << scale);
5391     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5392     Node*    end       = ConvI2X(slice_len);
5393     if (scale != 0)
5394       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5395     end_base += end_round;
5396     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5397     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5398     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5399                                        start_con, end, &_gvn);
5400   } else if (start_con < 0 && dest_size != top()) {
5401     // Non-constant start, pre-rounded end after the tail of the array.
5402     // This is almost certainly a "round-to-end" operation.
5403     Node* start = slice_idx;
5404     start = ConvI2X(start);
5405     if (scale != 0)
5406       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5407     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5408     if ((bump_bit | clear_low) != 0) {
5409       int to_clear = (bump_bit | clear_low);
5410       // Align up mod 8, then store a jint zero unconditionally
5411       // just before the mod-8 boundary.
5412       if (((abase + bump_bit) & ~to_clear) - bump_bit
5413           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5414         bump_bit = 0;
5415         assert((abase & to_clear) == 0, "array base must be long-aligned");
5416       } else {
5417         // Bump 'start' up to (or past) the next jint boundary:
5418         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5419         assert((abase & clear_low) == 0, "array base must be int-aligned");
5420       }
5421       // Round bumped 'start' down to jlong boundary in body of array.
5422       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5423       if (bump_bit != 0) {
5424         // Store a zero to the immediately preceding jint:
5425         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5426         Node* p1 = basic_plus_adr(dest, x1);
5427         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5428         mem = _gvn.transform(mem);
5429       }
5430     }
5431     Node* end = dest_size; // pre-rounded
5432     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5433                                        start, end, &_gvn);
5434   } else {
5435     // Non-constant start, unrounded non-constant end.
5436     // (Nobody zeroes a random midsection of an array using this routine.)
5437     ShouldNotReachHere();       // fix caller
5438   }
5439 
5440   // Done.
5441   set_memory(mem, adr_type);
5442 }
5443 
5444 
5445 bool
5446 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5447                                          BasicType basic_elem_type,
5448                                          AllocateNode* alloc,
5449                                          Node* src,  Node* src_offset,
5450                                          Node* dest, Node* dest_offset,
5451                                          Node* dest_size, bool dest_uninitialized) {
5452   // See if there is an advantage from block transfer.
5453   int scale = exact_log2(type2aelembytes(basic_elem_type));
5454   if (scale >= LogBytesPerLong)
5455     return false;               // it is already a block transfer
5456 
5457   // Look at the alignment of the starting offsets.
5458   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5459 
5460   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5461   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5462   if (src_off_con < 0 || dest_off_con < 0)
5463     // At present, we can only understand constants.
5464     return false;
5465 
5466   intptr_t src_off  = abase + (src_off_con  << scale);
5467   intptr_t dest_off = abase + (dest_off_con << scale);
5468 
5469   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5470     // Non-aligned; too bad.
5471     // One more chance:  Pick off an initial 32-bit word.
5472     // This is a common case, since abase can be odd mod 8.
5473     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5474         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5475       Node* sptr = basic_plus_adr(src,  src_off);
5476       Node* dptr = basic_plus_adr(dest, dest_off);
5477       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5478       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5479       src_off += BytesPerInt;
5480       dest_off += BytesPerInt;
5481     } else {
5482       return false;
5483     }
5484   }
5485   assert(src_off % BytesPerLong == 0, "");
5486   assert(dest_off % BytesPerLong == 0, "");
5487 
5488   // Do this copy by giant steps.
5489   Node* sptr  = basic_plus_adr(src,  src_off);
5490   Node* dptr  = basic_plus_adr(dest, dest_off);
5491   Node* countx = dest_size;
5492   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5493   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5494 
5495   bool disjoint_bases = true;   // since alloc != NULL
5496   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5497                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5498 
5499   return true;
5500 }
5501 
5502 
5503 // Helper function; generates code for the slow case.
5504 // We make a call to a runtime method which emulates the native method,
5505 // but without the native wrapper overhead.
5506 void
5507 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5508                                         Node* src,  Node* src_offset,
5509                                         Node* dest, Node* dest_offset,
5510                                         Node* copy_length, bool dest_uninitialized) {
5511   assert(!dest_uninitialized, "Invariant");
5512   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5513                                  OptoRuntime::slow_arraycopy_Type(),
5514                                  OptoRuntime::slow_arraycopy_Java(),
5515                                  "slow_arraycopy", adr_type,
5516                                  src, src_offset, dest, dest_offset,
5517                                  copy_length);
5518 
5519   // Handle exceptions thrown by this fellow:
5520   make_slow_call_ex(call, env()->Throwable_klass(), false);
5521 }
5522 
5523 // Helper function; generates code for cases requiring runtime checks.
5524 Node*
5525 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5526                                              Node* dest_elem_klass,
5527                                              Node* src,  Node* src_offset,
5528                                              Node* dest, Node* dest_offset,
5529                                              Node* copy_length, bool dest_uninitialized) {
5530   if (stopped())  return NULL;
5531 
5532   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5533   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5534     return NULL;
5535   }
5536 
5537   // Pick out the parameters required to perform a store-check
5538   // for the target array.  This is an optimistic check.  It will
5539   // look in each non-null element's class, at the desired klass's
5540   // super_check_offset, for the desired klass.
5541   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5542   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5543   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5544   Node* check_offset = ConvI2X(_gvn.transform(n3));
5545   Node* check_value  = dest_elem_klass;
5546 
5547   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5548   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5549 
5550   // (We know the arrays are never conjoint, because their types differ.)
5551   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5552                                  OptoRuntime::checkcast_arraycopy_Type(),
5553                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5554                                  // five arguments, of which two are
5555                                  // intptr_t (jlong in LP64)
5556                                  src_start, dest_start,
5557                                  copy_length XTOP,
5558                                  check_offset XTOP,
5559                                  check_value);
5560 
5561   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5562 }
5563 
5564 
5565 // Helper function; generates code for cases requiring runtime checks.
5566 Node*
5567 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5568                                            Node* src,  Node* src_offset,
5569                                            Node* dest, Node* dest_offset,
5570                                            Node* copy_length, bool dest_uninitialized) {
5571   assert(!dest_uninitialized, "Invariant");
5572   if (stopped())  return NULL;
5573   address copyfunc_addr = StubRoutines::generic_arraycopy();
5574   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5575     return NULL;
5576   }
5577 
5578   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5579                     OptoRuntime::generic_arraycopy_Type(),
5580                     copyfunc_addr, "generic_arraycopy", adr_type,
5581                     src, src_offset, dest, dest_offset, copy_length);
5582 
5583   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5584 }
5585 
5586 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5587 void
5588 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5589                                              BasicType basic_elem_type,
5590                                              bool disjoint_bases,
5591                                              Node* src,  Node* src_offset,
5592                                              Node* dest, Node* dest_offset,
5593                                              Node* copy_length, bool dest_uninitialized) {
5594   if (stopped())  return;               // nothing to do
5595 
5596   Node* src_start  = src;
5597   Node* dest_start = dest;
5598   if (src_offset != NULL || dest_offset != NULL) {
5599     assert(src_offset != NULL && dest_offset != NULL, "");
5600     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5601     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5602   }
5603 
5604   // Figure out which arraycopy runtime method to call.
5605   const char* copyfunc_name = "arraycopy";
5606   address     copyfunc_addr =
5607       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5608                           disjoint_bases, copyfunc_name, dest_uninitialized);
5609 
5610   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5611   make_runtime_call(RC_LEAF|RC_NO_FP,
5612                     OptoRuntime::fast_arraycopy_Type(),
5613                     copyfunc_addr, copyfunc_name, adr_type,
5614                     src_start, dest_start, copy_length XTOP);
5615 }
5616 
5617 //-------------inline_encodeISOArray-----------------------------------
5618 // encode char[] to byte[] in ISO_8859_1
5619 bool LibraryCallKit::inline_encodeISOArray() {
5620   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5621   // no receiver since it is static method
5622   Node *src         = argument(0);
5623   Node *src_offset  = argument(1);
5624   Node *dst         = argument(2);
5625   Node *dst_offset  = argument(3);
5626   Node *length      = argument(4);
5627 
5628   const Type* src_type = src->Value(&_gvn);
5629   const Type* dst_type = dst->Value(&_gvn);
5630   const TypeAryPtr* top_src = src_type->isa_aryptr();
5631   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5632   if (top_src  == NULL || top_src->klass()  == NULL ||
5633       top_dest == NULL || top_dest->klass() == NULL) {
5634     // failed array check
5635     return false;
5636   }
5637 
5638   // Figure out the size and type of the elements we will be copying.
5639   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5640   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5641   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5642     return false;
5643   }
5644   Node* src_start = array_element_address(src, src_offset, src_elem);
5645   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5646   // 'src_start' points to src array + scaled offset
5647   // 'dst_start' points to dst array + scaled offset
5648 
5649   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5650   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5651   enc = _gvn.transform(enc);
5652   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5653   set_memory(res_mem, mtype);
5654   set_result(enc);
5655   return true;
5656 }
5657 
5658 /**
5659  * Calculate CRC32 for byte.
5660  * int java.util.zip.CRC32.update(int crc, int b)
5661  */
5662 bool LibraryCallKit::inline_updateCRC32() {
5663   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5664   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5665   // no receiver since it is static method
5666   Node* crc  = argument(0); // type: int
5667   Node* b    = argument(1); // type: int
5668 
5669   /*
5670    *    int c = ~ crc;
5671    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5672    *    b = b ^ (c >>> 8);
5673    *    crc = ~b;
5674    */
5675 
5676   Node* M1 = intcon(-1);
5677   crc = _gvn.transform(new (C) XorINode(crc, M1));
5678   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5679   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5680 
5681   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5682   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5683   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5684   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5685 
5686   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5687   result = _gvn.transform(new (C) XorINode(crc, result));
5688   result = _gvn.transform(new (C) XorINode(result, M1));
5689   set_result(result);
5690   return true;
5691 }
5692 
5693 /**
5694  * Calculate CRC32 for byte[] array.
5695  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5696  */
5697 bool LibraryCallKit::inline_updateBytesCRC32() {
5698   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5699   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5700   // no receiver since it is static method
5701   Node* crc     = argument(0); // type: int
5702   Node* src     = argument(1); // type: oop
5703   Node* offset  = argument(2); // type: int
5704   Node* length  = argument(3); // type: int
5705 
5706   const Type* src_type = src->Value(&_gvn);
5707   const TypeAryPtr* top_src = src_type->isa_aryptr();
5708   if (top_src  == NULL || top_src->klass()  == NULL) {
5709     // failed array check
5710     return false;
5711   }
5712 
5713   // Figure out the size and type of the elements we will be copying.
5714   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5715   if (src_elem != T_BYTE) {
5716     return false;
5717   }
5718 
5719   // 'src_start' points to src array + scaled offset
5720   Node* src_start = array_element_address(src, offset, src_elem);
5721 
5722   // We assume that range check is done by caller.
5723   // TODO: generate range check (offset+length < src.length) in debug VM.
5724 
5725   // Call the stub.
5726   address stubAddr = StubRoutines::updateBytesCRC32();
5727   const char *stubName = "updateBytesCRC32";
5728 
5729   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5730                                  stubAddr, stubName, TypePtr::BOTTOM,
5731                                  crc, src_start, length);
5732   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5733   set_result(result);
5734   return true;
5735 }
5736 
5737 /**
5738  * Calculate CRC32 for ByteBuffer.
5739  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5740  */
5741 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5742   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5743   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5744   // no receiver since it is static method
5745   Node* crc     = argument(0); // type: int
5746   Node* src     = argument(1); // type: long
5747   Node* offset  = argument(3); // type: int
5748   Node* length  = argument(4); // type: int
5749 
5750   src = ConvL2X(src);  // adjust Java long to machine word
5751   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5752   offset = ConvI2X(offset);
5753 
5754   // 'src_start' points to src array + scaled offset
5755   Node* src_start = basic_plus_adr(top(), base, offset);
5756 
5757   // Call the stub.
5758   address stubAddr = StubRoutines::updateBytesCRC32();
5759   const char *stubName = "updateBytesCRC32";
5760 
5761   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5762                                  stubAddr, stubName, TypePtr::BOTTOM,
5763                                  crc, src_start, length);
5764   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5765   set_result(result);
5766   return true;
5767 }
5768 
5769 //----------------------------inline_reference_get----------------------------
5770 // public T java.lang.ref.Reference.get();
5771 bool LibraryCallKit::inline_reference_get() {
5772   const int referent_offset = java_lang_ref_Reference::referent_offset;
5773   guarantee(referent_offset > 0, "should have already been set");
5774 
5775   // Get the argument:
5776   Node* reference_obj = null_check_receiver();
5777   if (stopped()) return true;
5778 
5779   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5780 
5781   ciInstanceKlass* klass = env()->Object_klass();
5782   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5783 
5784   Node* no_ctrl = NULL;
5785   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5786 
5787   // Use the pre-barrier to record the value in the referent field
5788   pre_barrier(false /* do_load */,
5789               control(),
5790               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5791               result /* pre_val */,
5792               T_OBJECT);
5793 
5794   // Add memory barrier to prevent commoning reads from this field
5795   // across safepoint since GC can change its value.
5796   insert_mem_bar(Op_MemBarCPUOrder);
5797 
5798   set_result(result);
5799   return true;
5800 }
5801 
5802 
5803 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5804                                               bool is_exact=true, bool is_static=false) {
5805 
5806   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5807   assert(tinst != NULL, "obj is null");
5808   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5809   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5810 
5811   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5812                                                                           ciSymbol::make(fieldTypeString),
5813                                                                           is_static);
5814   if (field == NULL) return (Node *) NULL;
5815   assert (field != NULL, "undefined field");
5816 
5817   // Next code  copied from Parse::do_get_xxx():
5818 
5819   // Compute address and memory type.
5820   int offset  = field->offset_in_bytes();
5821   bool is_vol = field->is_volatile();
5822   ciType* field_klass = field->type();
5823   assert(field_klass->is_loaded(), "should be loaded");
5824   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5825   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5826   BasicType bt = field->layout_type();
5827 
5828   // Build the resultant type of the load
5829   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5830 
5831   // Build the load.
5832   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5833   return loadedField;
5834 }
5835 
5836 
5837 //------------------------------inline_aescrypt_Block-----------------------
5838 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5839   address stubAddr;
5840   const char *stubName;
5841   assert(UseAES, "need AES instruction support");
5842 
5843   switch(id) {
5844   case vmIntrinsics::_aescrypt_encryptBlock:
5845     stubAddr = StubRoutines::aescrypt_encryptBlock();
5846     stubName = "aescrypt_encryptBlock";
5847     break;
5848   case vmIntrinsics::_aescrypt_decryptBlock:
5849     stubAddr = StubRoutines::aescrypt_decryptBlock();
5850     stubName = "aescrypt_decryptBlock";
5851     break;
5852   }
5853   if (stubAddr == NULL) return false;
5854 
5855   Node* aescrypt_object = argument(0);
5856   Node* src             = argument(1);
5857   Node* src_offset      = argument(2);
5858   Node* dest            = argument(3);
5859   Node* dest_offset     = argument(4);
5860 
5861   // (1) src and dest are arrays.
5862   const Type* src_type = src->Value(&_gvn);
5863   const Type* dest_type = dest->Value(&_gvn);
5864   const TypeAryPtr* top_src = src_type->isa_aryptr();
5865   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5866   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5867 
5868   // for the quick and dirty code we will skip all the checks.
5869   // we are just trying to get the call to be generated.
5870   Node* src_start  = src;
5871   Node* dest_start = dest;
5872   if (src_offset != NULL || dest_offset != NULL) {
5873     assert(src_offset != NULL && dest_offset != NULL, "");
5874     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5875     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5876   }
5877 
5878   // now need to get the start of its expanded key array
5879   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5880   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5881   if (k_start == NULL) return false;
5882 
5883   if (Matcher::pass_original_key_for_aes()) {
5884     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5885     // compatibility issues between Java key expansion and SPARC crypto instructions
5886     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5887     if (original_k_start == NULL) return false;
5888 
5889     // Call the stub.
5890     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5891                       stubAddr, stubName, TypePtr::BOTTOM,
5892                       src_start, dest_start, k_start, original_k_start);
5893   } else {
5894     // Call the stub.
5895     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5896                       stubAddr, stubName, TypePtr::BOTTOM,
5897                       src_start, dest_start, k_start);
5898   }
5899 
5900   return true;
5901 }
5902 
5903 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5904 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5905   address stubAddr;
5906   const char *stubName;
5907 
5908   assert(UseAES, "need AES instruction support");
5909 
5910   switch(id) {
5911   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5912     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5913     stubName = "cipherBlockChaining_encryptAESCrypt";
5914     break;
5915   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5916     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5917     stubName = "cipherBlockChaining_decryptAESCrypt";
5918     break;
5919   }
5920   if (stubAddr == NULL) return false;
5921 
5922   Node* cipherBlockChaining_object = argument(0);
5923   Node* src                        = argument(1);
5924   Node* src_offset                 = argument(2);
5925   Node* len                        = argument(3);
5926   Node* dest                       = argument(4);
5927   Node* dest_offset                = argument(5);
5928 
5929   // (1) src and dest are arrays.
5930   const Type* src_type = src->Value(&_gvn);
5931   const Type* dest_type = dest->Value(&_gvn);
5932   const TypeAryPtr* top_src = src_type->isa_aryptr();
5933   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5934   assert (top_src  != NULL && top_src->klass()  != NULL
5935           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5936 
5937   // checks are the responsibility of the caller
5938   Node* src_start  = src;
5939   Node* dest_start = dest;
5940   if (src_offset != NULL || dest_offset != NULL) {
5941     assert(src_offset != NULL && dest_offset != NULL, "");
5942     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5943     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5944   }
5945 
5946   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5947   // (because of the predicated logic executed earlier).
5948   // so we cast it here safely.
5949   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5950 
5951   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5952   if (embeddedCipherObj == NULL) return false;
5953 
5954   // cast it to what we know it will be at runtime
5955   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5956   assert(tinst != NULL, "CBC obj is null");
5957   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5958   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5959   if (!klass_AESCrypt->is_loaded()) return false;
5960 
5961   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5962   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5963   const TypeOopPtr* xtype = aklass->as_instance_type();
5964   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5965   aescrypt_object = _gvn.transform(aescrypt_object);
5966 
5967   // we need to get the start of the aescrypt_object's expanded key array
5968   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5969   if (k_start == NULL) return false;
5970 
5971   // similarly, get the start address of the r vector
5972   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5973   if (objRvec == NULL) return false;
5974   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5975 
5976   Node* cbcCrypt;
5977   if (Matcher::pass_original_key_for_aes()) {
5978     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5979     // compatibility issues between Java key expansion and SPARC crypto instructions
5980     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5981     if (original_k_start == NULL) return false;
5982 
5983     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5984     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5985                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5986                                  stubAddr, stubName, TypePtr::BOTTOM,
5987                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5988   } else {
5989     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5990     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5991                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5992                                  stubAddr, stubName, TypePtr::BOTTOM,
5993                                  src_start, dest_start, k_start, r_start, len);
5994   }
5995 
5996   // return cipher length (int)
5997   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
5998   set_result(retvalue);
5999   return true;
6000 }
6001 
6002 //------------------------------get_key_start_from_aescrypt_object-----------------------
6003 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6004   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6005   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6006   if (objAESCryptKey == NULL) return (Node *) NULL;
6007 
6008   // now have the array, need to get the start address of the K array
6009   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6010   return k_start;
6011 }
6012 
6013 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6014 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6015   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6016   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6017   if (objAESCryptKey == NULL) return (Node *) NULL;
6018 
6019   // now have the array, need to get the start address of the lastKey array
6020   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6021   return original_k_start;
6022 }
6023 
6024 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6025 // Return node representing slow path of predicate check.
6026 // the pseudo code we want to emulate with this predicate is:
6027 // for encryption:
6028 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6029 // for decryption:
6030 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6031 //    note cipher==plain is more conservative than the original java code but that's OK
6032 //
6033 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6034   // First, check receiver for NULL since it is virtual method.
6035   Node* objCBC = argument(0);
6036   objCBC = null_check(objCBC);
6037 
6038   if (stopped()) return NULL; // Always NULL
6039 
6040   // Load embeddedCipher field of CipherBlockChaining object.
6041   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6042 
6043   // get AESCrypt klass for instanceOf check
6044   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6045   // will have same classloader as CipherBlockChaining object
6046   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6047   assert(tinst != NULL, "CBCobj is null");
6048   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6049 
6050   // we want to do an instanceof comparison against the AESCrypt class
6051   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6052   if (!klass_AESCrypt->is_loaded()) {
6053     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6054     Node* ctrl = control();
6055     set_control(top()); // no regular fast path
6056     return ctrl;
6057   }
6058   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6059 
6060   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6061   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6062   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6063 
6064   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6065 
6066   // for encryption, we are done
6067   if (!decrypting)
6068     return instof_false;  // even if it is NULL
6069 
6070   // for decryption, we need to add a further check to avoid
6071   // taking the intrinsic path when cipher and plain are the same
6072   // see the original java code for why.
6073   RegionNode* region = new(C) RegionNode(3);
6074   region->init_req(1, instof_false);
6075   Node* src = argument(1);
6076   Node* dest = argument(4);
6077   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6078   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6079   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6080   region->init_req(2, src_dest_conjoint);
6081 
6082   record_for_igvn(region);
6083   return _gvn.transform(region);
6084 }