1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifdef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69 #elif defined(PPC64)
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74 #else // all other
  75   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  76   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  77   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  78   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  79 #endif
  80   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  81   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  82   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  83   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  84   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  85   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  86   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  87   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  88   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  89   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  90   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  91   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  92   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  93   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  94   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  95   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  96   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  97   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
  98 };
  99 
 100 // Map ideal registers (machine types) to ideal types
 101 const Type *Type::mreg2type[_last_machine_leaf];
 102 
 103 // Map basic types to canonical Type* pointers.
 104 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 105 
 106 // Map basic types to constant-zero Types.
 107 const Type* Type::            _zero_type[T_CONFLICT+1];
 108 
 109 // Map basic types to array-body alias types.
 110 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 111 
 112 //=============================================================================
 113 // Convenience common pre-built types.
 114 const Type *Type::ABIO;         // State-of-machine only
 115 const Type *Type::BOTTOM;       // All values
 116 const Type *Type::CONTROL;      // Control only
 117 const Type *Type::DOUBLE;       // All doubles
 118 const Type *Type::FLOAT;        // All floats
 119 const Type *Type::HALF;         // Placeholder half of doublewide type
 120 const Type *Type::MEMORY;       // Abstract store only
 121 const Type *Type::RETURN_ADDRESS;
 122 const Type *Type::TOP;          // No values in set
 123 
 124 //------------------------------get_const_type---------------------------
 125 const Type* Type::get_const_type(ciType* type) {
 126   if (type == NULL) {
 127     return NULL;
 128   } else if (type->is_primitive_type()) {
 129     return get_const_basic_type(type->basic_type());
 130   } else {
 131     return TypeOopPtr::make_from_klass(type->as_klass());
 132   }
 133 }
 134 
 135 //---------------------------array_element_basic_type---------------------------------
 136 // Mapping to the array element's basic type.
 137 BasicType Type::array_element_basic_type() const {
 138   BasicType bt = basic_type();
 139   if (bt == T_INT) {
 140     if (this == TypeInt::INT)   return T_INT;
 141     if (this == TypeInt::CHAR)  return T_CHAR;
 142     if (this == TypeInt::BYTE)  return T_BYTE;
 143     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 144     if (this == TypeInt::SHORT) return T_SHORT;
 145     return T_VOID;
 146   }
 147   return bt;
 148 }
 149 
 150 //---------------------------get_typeflow_type---------------------------------
 151 // Import a type produced by ciTypeFlow.
 152 const Type* Type::get_typeflow_type(ciType* type) {
 153   switch (type->basic_type()) {
 154 
 155   case ciTypeFlow::StateVector::T_BOTTOM:
 156     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 157     return Type::BOTTOM;
 158 
 159   case ciTypeFlow::StateVector::T_TOP:
 160     assert(type == ciTypeFlow::StateVector::top_type(), "");
 161     return Type::TOP;
 162 
 163   case ciTypeFlow::StateVector::T_NULL:
 164     assert(type == ciTypeFlow::StateVector::null_type(), "");
 165     return TypePtr::NULL_PTR;
 166 
 167   case ciTypeFlow::StateVector::T_LONG2:
 168     // The ciTypeFlow pass pushes a long, then the half.
 169     // We do the same.
 170     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 171     return TypeInt::TOP;
 172 
 173   case ciTypeFlow::StateVector::T_DOUBLE2:
 174     // The ciTypeFlow pass pushes double, then the half.
 175     // Our convention is the same.
 176     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 177     return Type::TOP;
 178 
 179   case T_ADDRESS:
 180     assert(type->is_return_address(), "");
 181     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 182 
 183   default:
 184     // make sure we did not mix up the cases:
 185     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 186     assert(type != ciTypeFlow::StateVector::top_type(), "");
 187     assert(type != ciTypeFlow::StateVector::null_type(), "");
 188     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 189     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 190     assert(!type->is_return_address(), "");
 191 
 192     return Type::get_const_type(type);
 193   }
 194 }
 195 
 196 
 197 //-----------------------make_from_constant------------------------------------
 198 const Type* Type::make_from_constant(ciConstant constant,
 199                                      bool require_constant, bool is_autobox_cache) {
 200   switch (constant.basic_type()) {
 201   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 202   case T_CHAR:     return TypeInt::make(constant.as_char());
 203   case T_BYTE:     return TypeInt::make(constant.as_byte());
 204   case T_SHORT:    return TypeInt::make(constant.as_short());
 205   case T_INT:      return TypeInt::make(constant.as_int());
 206   case T_LONG:     return TypeLong::make(constant.as_long());
 207   case T_FLOAT:    return TypeF::make(constant.as_float());
 208   case T_DOUBLE:   return TypeD::make(constant.as_double());
 209   case T_ARRAY:
 210   case T_OBJECT:
 211     {
 212       // cases:
 213       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 214       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 215       // An oop is not scavengable if it is in the perm gen.
 216       ciObject* oop_constant = constant.as_object();
 217       if (oop_constant->is_null_object()) {
 218         return Type::get_zero_type(T_OBJECT);
 219       } else if (require_constant || oop_constant->should_be_constant()) {
 220         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 221       }
 222     }
 223   }
 224   // Fall through to failure
 225   return NULL;
 226 }
 227 
 228 
 229 //------------------------------make-------------------------------------------
 230 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 231 // and look for an existing copy in the type dictionary.
 232 const Type *Type::make( enum TYPES t ) {
 233   return (new Type(t))->hashcons();
 234 }
 235 
 236 //------------------------------cmp--------------------------------------------
 237 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 238   if( t1->_base != t2->_base )
 239     return 1;                   // Missed badly
 240   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 241   return !t1->eq(t2);           // Return ZERO if equal
 242 }
 243 
 244 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 245   if (!include_speculative) {
 246     return remove_speculative();
 247   }
 248   return this;
 249 }
 250 
 251 //------------------------------hash-------------------------------------------
 252 int Type::uhash( const Type *const t ) {
 253   return t->hash();
 254 }
 255 
 256 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 257 
 258 //--------------------------Initialize_shared----------------------------------
 259 void Type::Initialize_shared(Compile* current) {
 260   // This method does not need to be locked because the first system
 261   // compilations (stub compilations) occur serially.  If they are
 262   // changed to proceed in parallel, then this section will need
 263   // locking.
 264 
 265   Arena* save = current->type_arena();
 266   Arena* shared_type_arena = new (mtCompiler)Arena();
 267 
 268   current->set_type_arena(shared_type_arena);
 269   _shared_type_dict =
 270     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 271                                   shared_type_arena, 128 );
 272   current->set_type_dict(_shared_type_dict);
 273 
 274   // Make shared pre-built types.
 275   CONTROL = make(Control);      // Control only
 276   TOP     = make(Top);          // No values in set
 277   MEMORY  = make(Memory);       // Abstract store only
 278   ABIO    = make(Abio);         // State-of-machine only
 279   RETURN_ADDRESS=make(Return_Address);
 280   FLOAT   = make(FloatBot);     // All floats
 281   DOUBLE  = make(DoubleBot);    // All doubles
 282   BOTTOM  = make(Bottom);       // Everything
 283   HALF    = make(Half);         // Placeholder half of doublewide type
 284 
 285   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 286   TypeF::ONE  = TypeF::make(1.0); // Float 1
 287 
 288   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 289   TypeD::ONE  = TypeD::make(1.0); // Double 1
 290 
 291   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 292   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 293   TypeInt::ONE     = TypeInt::make( 1);  //  1
 294   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 295   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 296   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 297   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 298   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 299   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 300   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 301   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 302   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 303   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 304   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 305   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 306   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 307   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 308   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 309   // CmpL is overloaded both as the bytecode computation returning
 310   // a trinary (-1,0,+1) integer result AND as an efficient long
 311   // compare returning optimizer ideal-type flags.
 312   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 313   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 314   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 315   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 316   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 317 
 318   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 319   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 320   TypeLong::ONE     = TypeLong::make( 1);        //  1
 321   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 322   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 323   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 324   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 325 
 326   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 327   fboth[0] = Type::CONTROL;
 328   fboth[1] = Type::CONTROL;
 329   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 330 
 331   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 332   ffalse[0] = Type::CONTROL;
 333   ffalse[1] = Type::TOP;
 334   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 335 
 336   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 337   fneither[0] = Type::TOP;
 338   fneither[1] = Type::TOP;
 339   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 340 
 341   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 342   ftrue[0] = Type::TOP;
 343   ftrue[1] = Type::CONTROL;
 344   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 345 
 346   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 347   floop[0] = Type::CONTROL;
 348   floop[1] = TypeInt::INT;
 349   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 350 
 351   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 352   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 353   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 354 
 355   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 356   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 357 
 358   const Type **fmembar = TypeTuple::fields(0);
 359   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 360 
 361   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 362   fsc[0] = TypeInt::CC;
 363   fsc[1] = Type::MEMORY;
 364   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 365 
 366   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 367   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 368   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 369   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 370                                            false, 0, oopDesc::mark_offset_in_bytes());
 371   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 372                                            false, 0, oopDesc::klass_offset_in_bytes());
 373   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);
 374 
 375   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 376 
 377   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 378   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 379 
 380   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 381 
 382   mreg2type[Op_Node] = Type::BOTTOM;
 383   mreg2type[Op_Set ] = 0;
 384   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 385   mreg2type[Op_RegI] = TypeInt::INT;
 386   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 387   mreg2type[Op_RegF] = Type::FLOAT;
 388   mreg2type[Op_RegD] = Type::DOUBLE;
 389   mreg2type[Op_RegL] = TypeLong::LONG;
 390   mreg2type[Op_RegFlags] = TypeInt::CC;
 391 
 392   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 393 
 394   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 395 
 396 #ifdef _LP64
 397   if (UseCompressedOops) {
 398     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 399     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 400   } else
 401 #endif
 402   {
 403     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 404     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 405   }
 406   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 407   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 408   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 409   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 410   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 411   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 412   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 413 
 414   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 415   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 416   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 417   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 418   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 419   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 420   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 421   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 422   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 423   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 424   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 425   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 426 
 427   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 428   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 429 
 430   const Type **fi2c = TypeTuple::fields(2);
 431   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 432   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 433   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 434 
 435   const Type **intpair = TypeTuple::fields(2);
 436   intpair[0] = TypeInt::INT;
 437   intpair[1] = TypeInt::INT;
 438   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 439 
 440   const Type **longpair = TypeTuple::fields(2);
 441   longpair[0] = TypeLong::LONG;
 442   longpair[1] = TypeLong::LONG;
 443   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 444 
 445   const Type **intccpair = TypeTuple::fields(2);
 446   intccpair[0] = TypeInt::INT;
 447   intccpair[1] = TypeInt::CC;
 448   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 449 
 450   const Type **longccpair = TypeTuple::fields(2);
 451   longccpair[0] = TypeLong::LONG;
 452   longccpair[1] = TypeInt::CC;
 453   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 454 
 455   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 456   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 457   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 458   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 459   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 460   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 461   _const_basic_type[T_INT]         = TypeInt::INT;
 462   _const_basic_type[T_LONG]        = TypeLong::LONG;
 463   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 464   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 465   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 466   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 467   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 468   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 469   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 470 
 471   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 472   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 473   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 474   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 475   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 476   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 477   _zero_type[T_INT]         = TypeInt::ZERO;
 478   _zero_type[T_LONG]        = TypeLong::ZERO;
 479   _zero_type[T_FLOAT]       = TypeF::ZERO;
 480   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 481   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 482   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 483   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 484   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 485 
 486   // get_zero_type() should not happen for T_CONFLICT
 487   _zero_type[T_CONFLICT]= NULL;
 488 
 489   // Vector predefined types, it needs initialized _const_basic_type[].
 490   if (Matcher::vector_size_supported(T_BYTE,4)) {
 491     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 492   }
 493   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 494     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 495   }
 496   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 497     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 498   }
 499   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 500     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 501   }
 502   mreg2type[Op_VecS] = TypeVect::VECTS;
 503   mreg2type[Op_VecD] = TypeVect::VECTD;
 504   mreg2type[Op_VecX] = TypeVect::VECTX;
 505   mreg2type[Op_VecY] = TypeVect::VECTY;
 506 
 507   // Restore working type arena.
 508   current->set_type_arena(save);
 509   current->set_type_dict(NULL);
 510 }
 511 
 512 //------------------------------Initialize-------------------------------------
 513 void Type::Initialize(Compile* current) {
 514   assert(current->type_arena() != NULL, "must have created type arena");
 515 
 516   if (_shared_type_dict == NULL) {
 517     Initialize_shared(current);
 518   }
 519 
 520   Arena* type_arena = current->type_arena();
 521 
 522   // Create the hash-cons'ing dictionary with top-level storage allocation
 523   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 524   current->set_type_dict(tdic);
 525 
 526   // Transfer the shared types.
 527   DictI i(_shared_type_dict);
 528   for( ; i.test(); ++i ) {
 529     Type* t = (Type*)i._value;
 530     tdic->Insert(t,t);  // New Type, insert into Type table
 531   }
 532 }
 533 
 534 //------------------------------hashcons---------------------------------------
 535 // Do the hash-cons trick.  If the Type already exists in the type table,
 536 // delete the current Type and return the existing Type.  Otherwise stick the
 537 // current Type in the Type table.
 538 const Type *Type::hashcons(void) {
 539   debug_only(base());           // Check the assertion in Type::base().
 540   // Look up the Type in the Type dictionary
 541   Dict *tdic = type_dict();
 542   Type* old = (Type*)(tdic->Insert(this, this, false));
 543   if( old ) {                   // Pre-existing Type?
 544     if( old != this )           // Yes, this guy is not the pre-existing?
 545       delete this;              // Yes, Nuke this guy
 546     assert( old->_dual, "" );
 547     return old;                 // Return pre-existing
 548   }
 549 
 550   // Every type has a dual (to make my lattice symmetric).
 551   // Since we just discovered a new Type, compute its dual right now.
 552   assert( !_dual, "" );         // No dual yet
 553   _dual = xdual();              // Compute the dual
 554   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 555     _dual = this;
 556     return this;
 557   }
 558   assert( !_dual->_dual, "" );  // No reverse dual yet
 559   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 560   // New Type, insert into Type table
 561   tdic->Insert((void*)_dual,(void*)_dual);
 562   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 563 #ifdef ASSERT
 564   Type *dual_dual = (Type*)_dual->xdual();
 565   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 566   delete dual_dual;
 567 #endif
 568   return this;                  // Return new Type
 569 }
 570 
 571 //------------------------------eq---------------------------------------------
 572 // Structural equality check for Type representations
 573 bool Type::eq( const Type * ) const {
 574   return true;                  // Nothing else can go wrong
 575 }
 576 
 577 //------------------------------hash-------------------------------------------
 578 // Type-specific hashing function.
 579 int Type::hash(void) const {
 580   return _base;
 581 }
 582 
 583 //------------------------------is_finite--------------------------------------
 584 // Has a finite value
 585 bool Type::is_finite() const {
 586   return false;
 587 }
 588 
 589 //------------------------------is_nan-----------------------------------------
 590 // Is not a number (NaN)
 591 bool Type::is_nan()    const {
 592   return false;
 593 }
 594 
 595 //----------------------interface_vs_oop---------------------------------------
 596 #ifdef ASSERT
 597 bool Type::interface_vs_oop_helper(const Type *t) const {
 598   bool result = false;
 599 
 600   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 601   const TypePtr*    t_ptr =    t->make_ptr();
 602   if( this_ptr == NULL || t_ptr == NULL )
 603     return result;
 604 
 605   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 606   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 607   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 608     bool this_interface = this_inst->klass()->is_interface();
 609     bool    t_interface =    t_inst->klass()->is_interface();
 610     result = this_interface ^ t_interface;
 611   }
 612 
 613   return result;
 614 }
 615 
 616 bool Type::interface_vs_oop(const Type *t) const {
 617   if (interface_vs_oop_helper(t)) {
 618     return true;
 619   }
 620   // Now check the speculative parts as well
 621   const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
 622   const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
 623   if (this_spec != NULL && t_spec != NULL) {
 624     if (this_spec->interface_vs_oop_helper(t_spec)) {
 625       return true;
 626     }
 627     return false;
 628   }
 629   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 630     return true;
 631   }
 632   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 633     return true;
 634   }
 635   return false;
 636 }
 637 
 638 #endif
 639 
 640 //------------------------------meet-------------------------------------------
 641 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 642 // commutative and the lattice is symmetric.
 643 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 644   if (isa_narrowoop() && t->isa_narrowoop()) {
 645     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 646     return result->make_narrowoop();
 647   }
 648   if (isa_narrowklass() && t->isa_narrowklass()) {
 649     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 650     return result->make_narrowklass();
 651   }
 652 
 653   const Type *this_t = maybe_remove_speculative(include_speculative);
 654   t = t->maybe_remove_speculative(include_speculative);
 655 
 656   const Type *mt = this_t->xmeet(t);
 657   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 658   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 659 #ifdef ASSERT
 660   assert(mt == t->xmeet(this_t), "meet not commutative");
 661   const Type* dual_join = mt->_dual;
 662   const Type *t2t    = dual_join->xmeet(t->_dual);
 663   const Type *t2this = dual_join->xmeet(this_t->_dual);
 664 
 665   // Interface meet Oop is Not Symmetric:
 666   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 667   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 668 
 669   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 670     tty->print_cr("=== Meet Not Symmetric ===");
 671     tty->print("t   =                   ");              t->dump(); tty->cr();
 672     tty->print("this=                   ");         this_t->dump(); tty->cr();
 673     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 674 
 675     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 676     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 677     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 678 
 679     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 680     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 681 
 682     fatal("meet not symmetric" );
 683   }
 684 #endif
 685   return mt;
 686 }
 687 
 688 //------------------------------xmeet------------------------------------------
 689 // Compute the MEET of two types.  It returns a new Type object.
 690 const Type *Type::xmeet( const Type *t ) const {
 691   // Perform a fast test for common case; meeting the same types together.
 692   if( this == t ) return this;  // Meeting same type-rep?
 693 
 694   // Meeting TOP with anything?
 695   if( _base == Top ) return t;
 696 
 697   // Meeting BOTTOM with anything?
 698   if( _base == Bottom ) return BOTTOM;
 699 
 700   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 701   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 702   switch (t->base()) {  // Switch on original type
 703 
 704   // Cut in half the number of cases I must handle.  Only need cases for when
 705   // the given enum "t->type" is less than or equal to the local enum "type".
 706   case FloatCon:
 707   case DoubleCon:
 708   case Int:
 709   case Long:
 710     return t->xmeet(this);
 711 
 712   case OopPtr:
 713     return t->xmeet(this);
 714 
 715   case InstPtr:
 716     return t->xmeet(this);
 717 
 718   case MetadataPtr:
 719   case KlassPtr:
 720     return t->xmeet(this);
 721 
 722   case AryPtr:
 723     return t->xmeet(this);
 724 
 725   case NarrowOop:
 726     return t->xmeet(this);
 727 
 728   case NarrowKlass:
 729     return t->xmeet(this);
 730 
 731   case Bad:                     // Type check
 732   default:                      // Bogus type not in lattice
 733     typerr(t);
 734     return Type::BOTTOM;
 735 
 736   case Bottom:                  // Ye Olde Default
 737     return t;
 738 
 739   case FloatTop:
 740     if( _base == FloatTop ) return this;
 741   case FloatBot:                // Float
 742     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 743     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 744     typerr(t);
 745     return Type::BOTTOM;
 746 
 747   case DoubleTop:
 748     if( _base == DoubleTop ) return this;
 749   case DoubleBot:               // Double
 750     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 751     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 752     typerr(t);
 753     return Type::BOTTOM;
 754 
 755   // These next few cases must match exactly or it is a compile-time error.
 756   case Control:                 // Control of code
 757   case Abio:                    // State of world outside of program
 758   case Memory:
 759     if( _base == t->_base )  return this;
 760     typerr(t);
 761     return Type::BOTTOM;
 762 
 763   case Top:                     // Top of the lattice
 764     return this;
 765   }
 766 
 767   // The type is unchanged
 768   return this;
 769 }
 770 
 771 //-----------------------------filter------------------------------------------
 772 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 773   const Type* ft = join_helper(kills, include_speculative);
 774   if (ft->empty())
 775     return Type::TOP;           // Canonical empty value
 776   return ft;
 777 }
 778 
 779 //------------------------------xdual------------------------------------------
 780 // Compute dual right now.
 781 const Type::TYPES Type::dual_type[Type::lastype] = {
 782   Bad,          // Bad
 783   Control,      // Control
 784   Bottom,       // Top
 785   Bad,          // Int - handled in v-call
 786   Bad,          // Long - handled in v-call
 787   Half,         // Half
 788   Bad,          // NarrowOop - handled in v-call
 789   Bad,          // NarrowKlass - handled in v-call
 790 
 791   Bad,          // Tuple - handled in v-call
 792   Bad,          // Array - handled in v-call
 793   Bad,          // VectorS - handled in v-call
 794   Bad,          // VectorD - handled in v-call
 795   Bad,          // VectorX - handled in v-call
 796   Bad,          // VectorY - handled in v-call
 797 
 798   Bad,          // AnyPtr - handled in v-call
 799   Bad,          // RawPtr - handled in v-call
 800   Bad,          // OopPtr - handled in v-call
 801   Bad,          // InstPtr - handled in v-call
 802   Bad,          // AryPtr - handled in v-call
 803 
 804   Bad,          //  MetadataPtr - handled in v-call
 805   Bad,          // KlassPtr - handled in v-call
 806 
 807   Bad,          // Function - handled in v-call
 808   Abio,         // Abio
 809   Return_Address,// Return_Address
 810   Memory,       // Memory
 811   FloatBot,     // FloatTop
 812   FloatCon,     // FloatCon
 813   FloatTop,     // FloatBot
 814   DoubleBot,    // DoubleTop
 815   DoubleCon,    // DoubleCon
 816   DoubleTop,    // DoubleBot
 817   Top           // Bottom
 818 };
 819 
 820 const Type *Type::xdual() const {
 821   // Note: the base() accessor asserts the sanity of _base.
 822   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 823   return new Type(_type_info[_base].dual_type);
 824 }
 825 
 826 //------------------------------has_memory-------------------------------------
 827 bool Type::has_memory() const {
 828   Type::TYPES tx = base();
 829   if (tx == Memory) return true;
 830   if (tx == Tuple) {
 831     const TypeTuple *t = is_tuple();
 832     for (uint i=0; i < t->cnt(); i++) {
 833       tx = t->field_at(i)->base();
 834       if (tx == Memory)  return true;
 835     }
 836   }
 837   return false;
 838 }
 839 
 840 #ifndef PRODUCT
 841 //------------------------------dump2------------------------------------------
 842 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 843   st->print(_type_info[_base].msg);
 844 }
 845 
 846 //------------------------------dump-------------------------------------------
 847 void Type::dump_on(outputStream *st) const {
 848   ResourceMark rm;
 849   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 850   dump2(d,1, st);
 851   if (is_ptr_to_narrowoop()) {
 852     st->print(" [narrow]");
 853   } else if (is_ptr_to_narrowklass()) {
 854     st->print(" [narrowklass]");
 855   }
 856 }
 857 #endif
 858 
 859 //------------------------------singleton--------------------------------------
 860 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 861 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 862 bool Type::singleton(void) const {
 863   return _base == Top || _base == Half;
 864 }
 865 
 866 //------------------------------empty------------------------------------------
 867 // TRUE if Type is a type with no values, FALSE otherwise.
 868 bool Type::empty(void) const {
 869   switch (_base) {
 870   case DoubleTop:
 871   case FloatTop:
 872   case Top:
 873     return true;
 874 
 875   case Half:
 876   case Abio:
 877   case Return_Address:
 878   case Memory:
 879   case Bottom:
 880   case FloatBot:
 881   case DoubleBot:
 882     return false;  // never a singleton, therefore never empty
 883   }
 884 
 885   ShouldNotReachHere();
 886   return false;
 887 }
 888 
 889 //------------------------------dump_stats-------------------------------------
 890 // Dump collected statistics to stderr
 891 #ifndef PRODUCT
 892 void Type::dump_stats() {
 893   tty->print("Types made: %d\n", type_dict()->Size());
 894 }
 895 #endif
 896 
 897 //------------------------------typerr-----------------------------------------
 898 void Type::typerr( const Type *t ) const {
 899 #ifndef PRODUCT
 900   tty->print("\nError mixing types: ");
 901   dump();
 902   tty->print(" and ");
 903   t->dump();
 904   tty->print("\n");
 905 #endif
 906   ShouldNotReachHere();
 907 }
 908 
 909 
 910 //=============================================================================
 911 // Convenience common pre-built types.
 912 const TypeF *TypeF::ZERO;       // Floating point zero
 913 const TypeF *TypeF::ONE;        // Floating point one
 914 
 915 //------------------------------make-------------------------------------------
 916 // Create a float constant
 917 const TypeF *TypeF::make(float f) {
 918   return (TypeF*)(new TypeF(f))->hashcons();
 919 }
 920 
 921 //------------------------------meet-------------------------------------------
 922 // Compute the MEET of two types.  It returns a new Type object.
 923 const Type *TypeF::xmeet( const Type *t ) const {
 924   // Perform a fast test for common case; meeting the same types together.
 925   if( this == t ) return this;  // Meeting same type-rep?
 926 
 927   // Current "this->_base" is FloatCon
 928   switch (t->base()) {          // Switch on original type
 929   case AnyPtr:                  // Mixing with oops happens when javac
 930   case RawPtr:                  // reuses local variables
 931   case OopPtr:
 932   case InstPtr:
 933   case AryPtr:
 934   case MetadataPtr:
 935   case KlassPtr:
 936   case NarrowOop:
 937   case NarrowKlass:
 938   case Int:
 939   case Long:
 940   case DoubleTop:
 941   case DoubleCon:
 942   case DoubleBot:
 943   case Bottom:                  // Ye Olde Default
 944     return Type::BOTTOM;
 945 
 946   case FloatBot:
 947     return t;
 948 
 949   default:                      // All else is a mistake
 950     typerr(t);
 951 
 952   case FloatCon:                // Float-constant vs Float-constant?
 953     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 954                                 // must compare bitwise as positive zero, negative zero and NaN have
 955                                 // all the same representation in C++
 956       return FLOAT;             // Return generic float
 957                                 // Equal constants
 958   case Top:
 959   case FloatTop:
 960     break;                      // Return the float constant
 961   }
 962   return this;                  // Return the float constant
 963 }
 964 
 965 //------------------------------xdual------------------------------------------
 966 // Dual: symmetric
 967 const Type *TypeF::xdual() const {
 968   return this;
 969 }
 970 
 971 //------------------------------eq---------------------------------------------
 972 // Structural equality check for Type representations
 973 bool TypeF::eq( const Type *t ) const {
 974   if( g_isnan(_f) ||
 975       g_isnan(t->getf()) ) {
 976     // One or both are NANs.  If both are NANs return true, else false.
 977     return (g_isnan(_f) && g_isnan(t->getf()));
 978   }
 979   if (_f == t->getf()) {
 980     // (NaN is impossible at this point, since it is not equal even to itself)
 981     if (_f == 0.0) {
 982       // difference between positive and negative zero
 983       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 984     }
 985     return true;
 986   }
 987   return false;
 988 }
 989 
 990 //------------------------------hash-------------------------------------------
 991 // Type-specific hashing function.
 992 int TypeF::hash(void) const {
 993   return *(int*)(&_f);
 994 }
 995 
 996 //------------------------------is_finite--------------------------------------
 997 // Has a finite value
 998 bool TypeF::is_finite() const {
 999   return g_isfinite(getf()) != 0;
1000 }
1001 
1002 //------------------------------is_nan-----------------------------------------
1003 // Is not a number (NaN)
1004 bool TypeF::is_nan()    const {
1005   return g_isnan(getf()) != 0;
1006 }
1007 
1008 //------------------------------dump2------------------------------------------
1009 // Dump float constant Type
1010 #ifndef PRODUCT
1011 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1012   Type::dump2(d,depth, st);
1013   st->print("%f", _f);
1014 }
1015 #endif
1016 
1017 //------------------------------singleton--------------------------------------
1018 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1019 // constants (Ldi nodes).  Singletons are integer, float or double constants
1020 // or a single symbol.
1021 bool TypeF::singleton(void) const {
1022   return true;                  // Always a singleton
1023 }
1024 
1025 bool TypeF::empty(void) const {
1026   return false;                 // always exactly a singleton
1027 }
1028 
1029 //=============================================================================
1030 // Convenience common pre-built types.
1031 const TypeD *TypeD::ZERO;       // Floating point zero
1032 const TypeD *TypeD::ONE;        // Floating point one
1033 
1034 //------------------------------make-------------------------------------------
1035 const TypeD *TypeD::make(double d) {
1036   return (TypeD*)(new TypeD(d))->hashcons();
1037 }
1038 
1039 //------------------------------meet-------------------------------------------
1040 // Compute the MEET of two types.  It returns a new Type object.
1041 const Type *TypeD::xmeet( const Type *t ) const {
1042   // Perform a fast test for common case; meeting the same types together.
1043   if( this == t ) return this;  // Meeting same type-rep?
1044 
1045   // Current "this->_base" is DoubleCon
1046   switch (t->base()) {          // Switch on original type
1047   case AnyPtr:                  // Mixing with oops happens when javac
1048   case RawPtr:                  // reuses local variables
1049   case OopPtr:
1050   case InstPtr:
1051   case AryPtr:
1052   case MetadataPtr:
1053   case KlassPtr:
1054   case NarrowOop:
1055   case NarrowKlass:
1056   case Int:
1057   case Long:
1058   case FloatTop:
1059   case FloatCon:
1060   case FloatBot:
1061   case Bottom:                  // Ye Olde Default
1062     return Type::BOTTOM;
1063 
1064   case DoubleBot:
1065     return t;
1066 
1067   default:                      // All else is a mistake
1068     typerr(t);
1069 
1070   case DoubleCon:               // Double-constant vs Double-constant?
1071     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1072       return DOUBLE;            // Return generic double
1073   case Top:
1074   case DoubleTop:
1075     break;
1076   }
1077   return this;                  // Return the double constant
1078 }
1079 
1080 //------------------------------xdual------------------------------------------
1081 // Dual: symmetric
1082 const Type *TypeD::xdual() const {
1083   return this;
1084 }
1085 
1086 //------------------------------eq---------------------------------------------
1087 // Structural equality check for Type representations
1088 bool TypeD::eq( const Type *t ) const {
1089   if( g_isnan(_d) ||
1090       g_isnan(t->getd()) ) {
1091     // One or both are NANs.  If both are NANs return true, else false.
1092     return (g_isnan(_d) && g_isnan(t->getd()));
1093   }
1094   if (_d == t->getd()) {
1095     // (NaN is impossible at this point, since it is not equal even to itself)
1096     if (_d == 0.0) {
1097       // difference between positive and negative zero
1098       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1099     }
1100     return true;
1101   }
1102   return false;
1103 }
1104 
1105 //------------------------------hash-------------------------------------------
1106 // Type-specific hashing function.
1107 int TypeD::hash(void) const {
1108   return *(int*)(&_d);
1109 }
1110 
1111 //------------------------------is_finite--------------------------------------
1112 // Has a finite value
1113 bool TypeD::is_finite() const {
1114   return g_isfinite(getd()) != 0;
1115 }
1116 
1117 //------------------------------is_nan-----------------------------------------
1118 // Is not a number (NaN)
1119 bool TypeD::is_nan()    const {
1120   return g_isnan(getd()) != 0;
1121 }
1122 
1123 //------------------------------dump2------------------------------------------
1124 // Dump double constant Type
1125 #ifndef PRODUCT
1126 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1127   Type::dump2(d,depth,st);
1128   st->print("%f", _d);
1129 }
1130 #endif
1131 
1132 //------------------------------singleton--------------------------------------
1133 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1134 // constants (Ldi nodes).  Singletons are integer, float or double constants
1135 // or a single symbol.
1136 bool TypeD::singleton(void) const {
1137   return true;                  // Always a singleton
1138 }
1139 
1140 bool TypeD::empty(void) const {
1141   return false;                 // always exactly a singleton
1142 }
1143 
1144 //=============================================================================
1145 // Convience common pre-built types.
1146 const TypeInt *TypeInt::MINUS_1;// -1
1147 const TypeInt *TypeInt::ZERO;   // 0
1148 const TypeInt *TypeInt::ONE;    // 1
1149 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1150 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1151 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1152 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1153 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1154 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1155 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1156 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1157 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1158 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1159 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1160 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1161 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1162 const TypeInt *TypeInt::INT;    // 32-bit integers
1163 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1164 
1165 //------------------------------TypeInt----------------------------------------
1166 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1167 }
1168 
1169 //------------------------------make-------------------------------------------
1170 const TypeInt *TypeInt::make( jint lo ) {
1171   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1172 }
1173 
1174 static int normalize_int_widen( jint lo, jint hi, int w ) {
1175   // Certain normalizations keep us sane when comparing types.
1176   // The 'SMALLINT' covers constants and also CC and its relatives.
1177   if (lo <= hi) {
1178     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1179     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1180   } else {
1181     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1182     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1183   }
1184   return w;
1185 }
1186 
1187 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1188   w = normalize_int_widen(lo, hi, w);
1189   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1190 }
1191 
1192 //------------------------------meet-------------------------------------------
1193 // Compute the MEET of two types.  It returns a new Type representation object
1194 // with reference count equal to the number of Types pointing at it.
1195 // Caller should wrap a Types around it.
1196 const Type *TypeInt::xmeet( const Type *t ) const {
1197   // Perform a fast test for common case; meeting the same types together.
1198   if( this == t ) return this;  // Meeting same type?
1199 
1200   // Currently "this->_base" is a TypeInt
1201   switch (t->base()) {          // Switch on original type
1202   case AnyPtr:                  // Mixing with oops happens when javac
1203   case RawPtr:                  // reuses local variables
1204   case OopPtr:
1205   case InstPtr:
1206   case AryPtr:
1207   case MetadataPtr:
1208   case KlassPtr:
1209   case NarrowOop:
1210   case NarrowKlass:
1211   case Long:
1212   case FloatTop:
1213   case FloatCon:
1214   case FloatBot:
1215   case DoubleTop:
1216   case DoubleCon:
1217   case DoubleBot:
1218   case Bottom:                  // Ye Olde Default
1219     return Type::BOTTOM;
1220   default:                      // All else is a mistake
1221     typerr(t);
1222   case Top:                     // No change
1223     return this;
1224   case Int:                     // Int vs Int?
1225     break;
1226   }
1227 
1228   // Expand covered set
1229   const TypeInt *r = t->is_int();
1230   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1231 }
1232 
1233 //------------------------------xdual------------------------------------------
1234 // Dual: reverse hi & lo; flip widen
1235 const Type *TypeInt::xdual() const {
1236   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1237   return new TypeInt(_hi,_lo,w);
1238 }
1239 
1240 //------------------------------widen------------------------------------------
1241 // Only happens for optimistic top-down optimizations.
1242 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1243   // Coming from TOP or such; no widening
1244   if( old->base() != Int ) return this;
1245   const TypeInt *ot = old->is_int();
1246 
1247   // If new guy is equal to old guy, no widening
1248   if( _lo == ot->_lo && _hi == ot->_hi )
1249     return old;
1250 
1251   // If new guy contains old, then we widened
1252   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1253     // New contains old
1254     // If new guy is already wider than old, no widening
1255     if( _widen > ot->_widen ) return this;
1256     // If old guy was a constant, do not bother
1257     if (ot->_lo == ot->_hi)  return this;
1258     // Now widen new guy.
1259     // Check for widening too far
1260     if (_widen == WidenMax) {
1261       int max = max_jint;
1262       int min = min_jint;
1263       if (limit->isa_int()) {
1264         max = limit->is_int()->_hi;
1265         min = limit->is_int()->_lo;
1266       }
1267       if (min < _lo && _hi < max) {
1268         // If neither endpoint is extremal yet, push out the endpoint
1269         // which is closer to its respective limit.
1270         if (_lo >= 0 ||                 // easy common case
1271             (juint)(_lo - min) >= (juint)(max - _hi)) {
1272           // Try to widen to an unsigned range type of 31 bits:
1273           return make(_lo, max, WidenMax);
1274         } else {
1275           return make(min, _hi, WidenMax);
1276         }
1277       }
1278       return TypeInt::INT;
1279     }
1280     // Returned widened new guy
1281     return make(_lo,_hi,_widen+1);
1282   }
1283 
1284   // If old guy contains new, then we probably widened too far & dropped to
1285   // bottom.  Return the wider fellow.
1286   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1287     return old;
1288 
1289   //fatal("Integer value range is not subset");
1290   //return this;
1291   return TypeInt::INT;
1292 }
1293 
1294 //------------------------------narrow---------------------------------------
1295 // Only happens for pessimistic optimizations.
1296 const Type *TypeInt::narrow( const Type *old ) const {
1297   if (_lo >= _hi)  return this;   // already narrow enough
1298   if (old == NULL)  return this;
1299   const TypeInt* ot = old->isa_int();
1300   if (ot == NULL)  return this;
1301   jint olo = ot->_lo;
1302   jint ohi = ot->_hi;
1303 
1304   // If new guy is equal to old guy, no narrowing
1305   if (_lo == olo && _hi == ohi)  return old;
1306 
1307   // If old guy was maximum range, allow the narrowing
1308   if (olo == min_jint && ohi == max_jint)  return this;
1309 
1310   if (_lo < olo || _hi > ohi)
1311     return this;                // doesn't narrow; pretty wierd
1312 
1313   // The new type narrows the old type, so look for a "death march".
1314   // See comments on PhaseTransform::saturate.
1315   juint nrange = _hi - _lo;
1316   juint orange = ohi - olo;
1317   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1318     // Use the new type only if the range shrinks a lot.
1319     // We do not want the optimizer computing 2^31 point by point.
1320     return old;
1321   }
1322 
1323   return this;
1324 }
1325 
1326 //-----------------------------filter------------------------------------------
1327 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1328   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1329   if (ft == NULL || ft->empty())
1330     return Type::TOP;           // Canonical empty value
1331   if (ft->_widen < this->_widen) {
1332     // Do not allow the value of kill->_widen to affect the outcome.
1333     // The widen bits must be allowed to run freely through the graph.
1334     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1335   }
1336   return ft;
1337 }
1338 
1339 //------------------------------eq---------------------------------------------
1340 // Structural equality check for Type representations
1341 bool TypeInt::eq( const Type *t ) const {
1342   const TypeInt *r = t->is_int(); // Handy access
1343   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1344 }
1345 
1346 //------------------------------hash-------------------------------------------
1347 // Type-specific hashing function.
1348 int TypeInt::hash(void) const {
1349   return _lo+_hi+_widen+(int)Type::Int;
1350 }
1351 
1352 //------------------------------is_finite--------------------------------------
1353 // Has a finite value
1354 bool TypeInt::is_finite() const {
1355   return true;
1356 }
1357 
1358 //------------------------------dump2------------------------------------------
1359 // Dump TypeInt
1360 #ifndef PRODUCT
1361 static const char* intname(char* buf, jint n) {
1362   if (n == min_jint)
1363     return "min";
1364   else if (n < min_jint + 10000)
1365     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1366   else if (n == max_jint)
1367     return "max";
1368   else if (n > max_jint - 10000)
1369     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1370   else
1371     sprintf(buf, INT32_FORMAT, n);
1372   return buf;
1373 }
1374 
1375 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1376   char buf[40], buf2[40];
1377   if (_lo == min_jint && _hi == max_jint)
1378     st->print("int");
1379   else if (is_con())
1380     st->print("int:%s", intname(buf, get_con()));
1381   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1382     st->print("bool");
1383   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1384     st->print("byte");
1385   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1386     st->print("char");
1387   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1388     st->print("short");
1389   else if (_hi == max_jint)
1390     st->print("int:>=%s", intname(buf, _lo));
1391   else if (_lo == min_jint)
1392     st->print("int:<=%s", intname(buf, _hi));
1393   else
1394     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1395 
1396   if (_widen != 0 && this != TypeInt::INT)
1397     st->print(":%.*s", _widen, "wwww");
1398 }
1399 #endif
1400 
1401 //------------------------------singleton--------------------------------------
1402 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1403 // constants.
1404 bool TypeInt::singleton(void) const {
1405   return _lo >= _hi;
1406 }
1407 
1408 bool TypeInt::empty(void) const {
1409   return _lo > _hi;
1410 }
1411 
1412 //=============================================================================
1413 // Convenience common pre-built types.
1414 const TypeLong *TypeLong::MINUS_1;// -1
1415 const TypeLong *TypeLong::ZERO; // 0
1416 const TypeLong *TypeLong::ONE;  // 1
1417 const TypeLong *TypeLong::POS;  // >=0
1418 const TypeLong *TypeLong::LONG; // 64-bit integers
1419 const TypeLong *TypeLong::INT;  // 32-bit subrange
1420 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1421 
1422 //------------------------------TypeLong---------------------------------------
1423 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1424 }
1425 
1426 //------------------------------make-------------------------------------------
1427 const TypeLong *TypeLong::make( jlong lo ) {
1428   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1429 }
1430 
1431 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1432   // Certain normalizations keep us sane when comparing types.
1433   // The 'SMALLINT' covers constants.
1434   if (lo <= hi) {
1435     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1436     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1437   } else {
1438     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1439     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1440   }
1441   return w;
1442 }
1443 
1444 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1445   w = normalize_long_widen(lo, hi, w);
1446   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1447 }
1448 
1449 
1450 //------------------------------meet-------------------------------------------
1451 // Compute the MEET of two types.  It returns a new Type representation object
1452 // with reference count equal to the number of Types pointing at it.
1453 // Caller should wrap a Types around it.
1454 const Type *TypeLong::xmeet( const Type *t ) const {
1455   // Perform a fast test for common case; meeting the same types together.
1456   if( this == t ) return this;  // Meeting same type?
1457 
1458   // Currently "this->_base" is a TypeLong
1459   switch (t->base()) {          // Switch on original type
1460   case AnyPtr:                  // Mixing with oops happens when javac
1461   case RawPtr:                  // reuses local variables
1462   case OopPtr:
1463   case InstPtr:
1464   case AryPtr:
1465   case MetadataPtr:
1466   case KlassPtr:
1467   case NarrowOop:
1468   case NarrowKlass:
1469   case Int:
1470   case FloatTop:
1471   case FloatCon:
1472   case FloatBot:
1473   case DoubleTop:
1474   case DoubleCon:
1475   case DoubleBot:
1476   case Bottom:                  // Ye Olde Default
1477     return Type::BOTTOM;
1478   default:                      // All else is a mistake
1479     typerr(t);
1480   case Top:                     // No change
1481     return this;
1482   case Long:                    // Long vs Long?
1483     break;
1484   }
1485 
1486   // Expand covered set
1487   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1488   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1489 }
1490 
1491 //------------------------------xdual------------------------------------------
1492 // Dual: reverse hi & lo; flip widen
1493 const Type *TypeLong::xdual() const {
1494   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1495   return new TypeLong(_hi,_lo,w);
1496 }
1497 
1498 //------------------------------widen------------------------------------------
1499 // Only happens for optimistic top-down optimizations.
1500 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1501   // Coming from TOP or such; no widening
1502   if( old->base() != Long ) return this;
1503   const TypeLong *ot = old->is_long();
1504 
1505   // If new guy is equal to old guy, no widening
1506   if( _lo == ot->_lo && _hi == ot->_hi )
1507     return old;
1508 
1509   // If new guy contains old, then we widened
1510   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1511     // New contains old
1512     // If new guy is already wider than old, no widening
1513     if( _widen > ot->_widen ) return this;
1514     // If old guy was a constant, do not bother
1515     if (ot->_lo == ot->_hi)  return this;
1516     // Now widen new guy.
1517     // Check for widening too far
1518     if (_widen == WidenMax) {
1519       jlong max = max_jlong;
1520       jlong min = min_jlong;
1521       if (limit->isa_long()) {
1522         max = limit->is_long()->_hi;
1523         min = limit->is_long()->_lo;
1524       }
1525       if (min < _lo && _hi < max) {
1526         // If neither endpoint is extremal yet, push out the endpoint
1527         // which is closer to its respective limit.
1528         if (_lo >= 0 ||                 // easy common case
1529             (julong)(_lo - min) >= (julong)(max - _hi)) {
1530           // Try to widen to an unsigned range type of 32/63 bits:
1531           if (max >= max_juint && _hi < max_juint)
1532             return make(_lo, max_juint, WidenMax);
1533           else
1534             return make(_lo, max, WidenMax);
1535         } else {
1536           return make(min, _hi, WidenMax);
1537         }
1538       }
1539       return TypeLong::LONG;
1540     }
1541     // Returned widened new guy
1542     return make(_lo,_hi,_widen+1);
1543   }
1544 
1545   // If old guy contains new, then we probably widened too far & dropped to
1546   // bottom.  Return the wider fellow.
1547   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1548     return old;
1549 
1550   //  fatal("Long value range is not subset");
1551   // return this;
1552   return TypeLong::LONG;
1553 }
1554 
1555 //------------------------------narrow----------------------------------------
1556 // Only happens for pessimistic optimizations.
1557 const Type *TypeLong::narrow( const Type *old ) const {
1558   if (_lo >= _hi)  return this;   // already narrow enough
1559   if (old == NULL)  return this;
1560   const TypeLong* ot = old->isa_long();
1561   if (ot == NULL)  return this;
1562   jlong olo = ot->_lo;
1563   jlong ohi = ot->_hi;
1564 
1565   // If new guy is equal to old guy, no narrowing
1566   if (_lo == olo && _hi == ohi)  return old;
1567 
1568   // If old guy was maximum range, allow the narrowing
1569   if (olo == min_jlong && ohi == max_jlong)  return this;
1570 
1571   if (_lo < olo || _hi > ohi)
1572     return this;                // doesn't narrow; pretty wierd
1573 
1574   // The new type narrows the old type, so look for a "death march".
1575   // See comments on PhaseTransform::saturate.
1576   julong nrange = _hi - _lo;
1577   julong orange = ohi - olo;
1578   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1579     // Use the new type only if the range shrinks a lot.
1580     // We do not want the optimizer computing 2^31 point by point.
1581     return old;
1582   }
1583 
1584   return this;
1585 }
1586 
1587 //-----------------------------filter------------------------------------------
1588 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1589   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1590   if (ft == NULL || ft->empty())
1591     return Type::TOP;           // Canonical empty value
1592   if (ft->_widen < this->_widen) {
1593     // Do not allow the value of kill->_widen to affect the outcome.
1594     // The widen bits must be allowed to run freely through the graph.
1595     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1596   }
1597   return ft;
1598 }
1599 
1600 //------------------------------eq---------------------------------------------
1601 // Structural equality check for Type representations
1602 bool TypeLong::eq( const Type *t ) const {
1603   const TypeLong *r = t->is_long(); // Handy access
1604   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1605 }
1606 
1607 //------------------------------hash-------------------------------------------
1608 // Type-specific hashing function.
1609 int TypeLong::hash(void) const {
1610   return (int)(_lo+_hi+_widen+(int)Type::Long);
1611 }
1612 
1613 //------------------------------is_finite--------------------------------------
1614 // Has a finite value
1615 bool TypeLong::is_finite() const {
1616   return true;
1617 }
1618 
1619 //------------------------------dump2------------------------------------------
1620 // Dump TypeLong
1621 #ifndef PRODUCT
1622 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1623   if (n > x) {
1624     if (n >= x + 10000)  return NULL;
1625     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1626   } else if (n < x) {
1627     if (n <= x - 10000)  return NULL;
1628     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1629   } else {
1630     return xname;
1631   }
1632   return buf;
1633 }
1634 
1635 static const char* longname(char* buf, jlong n) {
1636   const char* str;
1637   if (n == min_jlong)
1638     return "min";
1639   else if (n < min_jlong + 10000)
1640     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1641   else if (n == max_jlong)
1642     return "max";
1643   else if (n > max_jlong - 10000)
1644     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1645   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1646     return str;
1647   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1648     return str;
1649   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1650     return str;
1651   else
1652     sprintf(buf, JLONG_FORMAT, n);
1653   return buf;
1654 }
1655 
1656 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1657   char buf[80], buf2[80];
1658   if (_lo == min_jlong && _hi == max_jlong)
1659     st->print("long");
1660   else if (is_con())
1661     st->print("long:%s", longname(buf, get_con()));
1662   else if (_hi == max_jlong)
1663     st->print("long:>=%s", longname(buf, _lo));
1664   else if (_lo == min_jlong)
1665     st->print("long:<=%s", longname(buf, _hi));
1666   else
1667     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1668 
1669   if (_widen != 0 && this != TypeLong::LONG)
1670     st->print(":%.*s", _widen, "wwww");
1671 }
1672 #endif
1673 
1674 //------------------------------singleton--------------------------------------
1675 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1676 // constants
1677 bool TypeLong::singleton(void) const {
1678   return _lo >= _hi;
1679 }
1680 
1681 bool TypeLong::empty(void) const {
1682   return _lo > _hi;
1683 }
1684 
1685 //=============================================================================
1686 // Convenience common pre-built types.
1687 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1688 const TypeTuple *TypeTuple::IFFALSE;
1689 const TypeTuple *TypeTuple::IFTRUE;
1690 const TypeTuple *TypeTuple::IFNEITHER;
1691 const TypeTuple *TypeTuple::LOOPBODY;
1692 const TypeTuple *TypeTuple::MEMBAR;
1693 const TypeTuple *TypeTuple::STORECONDITIONAL;
1694 const TypeTuple *TypeTuple::START_I2C;
1695 const TypeTuple *TypeTuple::INT_PAIR;
1696 const TypeTuple *TypeTuple::LONG_PAIR;
1697 const TypeTuple *TypeTuple::INT_CC_PAIR;
1698 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1699 
1700 
1701 //------------------------------make-------------------------------------------
1702 // Make a TypeTuple from the range of a method signature
1703 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1704   ciType* return_type = sig->return_type();
1705   uint total_fields = TypeFunc::Parms + return_type->size();
1706   const Type **field_array = fields(total_fields);
1707   switch (return_type->basic_type()) {
1708   case T_LONG:
1709     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1710     field_array[TypeFunc::Parms+1] = Type::HALF;
1711     break;
1712   case T_DOUBLE:
1713     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1714     field_array[TypeFunc::Parms+1] = Type::HALF;
1715     break;
1716   case T_OBJECT:
1717   case T_ARRAY:
1718   case T_BOOLEAN:
1719   case T_CHAR:
1720   case T_FLOAT:
1721   case T_BYTE:
1722   case T_SHORT:
1723   case T_INT:
1724     field_array[TypeFunc::Parms] = get_const_type(return_type);
1725     break;
1726   case T_VOID:
1727     break;
1728   default:
1729     ShouldNotReachHere();
1730   }
1731   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1732 }
1733 
1734 // Make a TypeTuple from the domain of a method signature
1735 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1736   uint total_fields = TypeFunc::Parms + sig->size();
1737 
1738   uint pos = TypeFunc::Parms;
1739   const Type **field_array;
1740   if (recv != NULL) {
1741     total_fields++;
1742     field_array = fields(total_fields);
1743     // Use get_const_type here because it respects UseUniqueSubclasses:
1744     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1745   } else {
1746     field_array = fields(total_fields);
1747   }
1748 
1749   int i = 0;
1750   while (pos < total_fields) {
1751     ciType* type = sig->type_at(i);
1752 
1753     switch (type->basic_type()) {
1754     case T_LONG:
1755       field_array[pos++] = TypeLong::LONG;
1756       field_array[pos++] = Type::HALF;
1757       break;
1758     case T_DOUBLE:
1759       field_array[pos++] = Type::DOUBLE;
1760       field_array[pos++] = Type::HALF;
1761       break;
1762     case T_OBJECT:
1763     case T_ARRAY:
1764     case T_BOOLEAN:
1765     case T_CHAR:
1766     case T_FLOAT:
1767     case T_BYTE:
1768     case T_SHORT:
1769     case T_INT:
1770       field_array[pos++] = get_const_type(type);
1771       break;
1772     default:
1773       ShouldNotReachHere();
1774     }
1775     i++;
1776   }
1777   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1778 }
1779 
1780 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1781   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1782 }
1783 
1784 //------------------------------fields-----------------------------------------
1785 // Subroutine call type with space allocated for argument types
1786 const Type **TypeTuple::fields( uint arg_cnt ) {
1787   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1788   flds[TypeFunc::Control  ] = Type::CONTROL;
1789   flds[TypeFunc::I_O      ] = Type::ABIO;
1790   flds[TypeFunc::Memory   ] = Type::MEMORY;
1791   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1792   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1793 
1794   return flds;
1795 }
1796 
1797 //------------------------------meet-------------------------------------------
1798 // Compute the MEET of two types.  It returns a new Type object.
1799 const Type *TypeTuple::xmeet( const Type *t ) const {
1800   // Perform a fast test for common case; meeting the same types together.
1801   if( this == t ) return this;  // Meeting same type-rep?
1802 
1803   // Current "this->_base" is Tuple
1804   switch (t->base()) {          // switch on original type
1805 
1806   case Bottom:                  // Ye Olde Default
1807     return t;
1808 
1809   default:                      // All else is a mistake
1810     typerr(t);
1811 
1812   case Tuple: {                 // Meeting 2 signatures?
1813     const TypeTuple *x = t->is_tuple();
1814     assert( _cnt == x->_cnt, "" );
1815     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1816     for( uint i=0; i<_cnt; i++ )
1817       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1818     return TypeTuple::make(_cnt,fields);
1819   }
1820   case Top:
1821     break;
1822   }
1823   return this;                  // Return the double constant
1824 }
1825 
1826 //------------------------------xdual------------------------------------------
1827 // Dual: compute field-by-field dual
1828 const Type *TypeTuple::xdual() const {
1829   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1830   for( uint i=0; i<_cnt; i++ )
1831     fields[i] = _fields[i]->dual();
1832   return new TypeTuple(_cnt,fields);
1833 }
1834 
1835 //------------------------------eq---------------------------------------------
1836 // Structural equality check for Type representations
1837 bool TypeTuple::eq( const Type *t ) const {
1838   const TypeTuple *s = (const TypeTuple *)t;
1839   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1840   for (uint i = 0; i < _cnt; i++)
1841     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1842       return false;             // Missed
1843   return true;
1844 }
1845 
1846 //------------------------------hash-------------------------------------------
1847 // Type-specific hashing function.
1848 int TypeTuple::hash(void) const {
1849   intptr_t sum = _cnt;
1850   for( uint i=0; i<_cnt; i++ )
1851     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1852   return sum;
1853 }
1854 
1855 //------------------------------dump2------------------------------------------
1856 // Dump signature Type
1857 #ifndef PRODUCT
1858 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1859   st->print("{");
1860   if( !depth || d[this] ) {     // Check for recursive print
1861     st->print("...}");
1862     return;
1863   }
1864   d.Insert((void*)this, (void*)this);   // Stop recursion
1865   if( _cnt ) {
1866     uint i;
1867     for( i=0; i<_cnt-1; i++ ) {
1868       st->print("%d:", i);
1869       _fields[i]->dump2(d, depth-1, st);
1870       st->print(", ");
1871     }
1872     st->print("%d:", i);
1873     _fields[i]->dump2(d, depth-1, st);
1874   }
1875   st->print("}");
1876 }
1877 #endif
1878 
1879 //------------------------------singleton--------------------------------------
1880 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1881 // constants (Ldi nodes).  Singletons are integer, float or double constants
1882 // or a single symbol.
1883 bool TypeTuple::singleton(void) const {
1884   return false;                 // Never a singleton
1885 }
1886 
1887 bool TypeTuple::empty(void) const {
1888   for( uint i=0; i<_cnt; i++ ) {
1889     if (_fields[i]->empty())  return true;
1890   }
1891   return false;
1892 }
1893 
1894 //=============================================================================
1895 // Convenience common pre-built types.
1896 
1897 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1898   // Certain normalizations keep us sane when comparing types.
1899   // We do not want arrayOop variables to differ only by the wideness
1900   // of their index types.  Pick minimum wideness, since that is the
1901   // forced wideness of small ranges anyway.
1902   if (size->_widen != Type::WidenMin)
1903     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1904   else
1905     return size;
1906 }
1907 
1908 //------------------------------make-------------------------------------------
1909 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1910   if (UseCompressedOops && elem->isa_oopptr()) {
1911     elem = elem->make_narrowoop();
1912   }
1913   size = normalize_array_size(size);
1914   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1915 }
1916 
1917 //------------------------------meet-------------------------------------------
1918 // Compute the MEET of two types.  It returns a new Type object.
1919 const Type *TypeAry::xmeet( const Type *t ) const {
1920   // Perform a fast test for common case; meeting the same types together.
1921   if( this == t ) return this;  // Meeting same type-rep?
1922 
1923   // Current "this->_base" is Ary
1924   switch (t->base()) {          // switch on original type
1925 
1926   case Bottom:                  // Ye Olde Default
1927     return t;
1928 
1929   default:                      // All else is a mistake
1930     typerr(t);
1931 
1932   case Array: {                 // Meeting 2 arrays?
1933     const TypeAry *a = t->is_ary();
1934     return TypeAry::make(_elem->meet_speculative(a->_elem),
1935                          _size->xmeet(a->_size)->is_int(),
1936                          _stable & a->_stable);
1937   }
1938   case Top:
1939     break;
1940   }
1941   return this;                  // Return the double constant
1942 }
1943 
1944 //------------------------------xdual------------------------------------------
1945 // Dual: compute field-by-field dual
1946 const Type *TypeAry::xdual() const {
1947   const TypeInt* size_dual = _size->dual()->is_int();
1948   size_dual = normalize_array_size(size_dual);
1949   return new TypeAry(_elem->dual(), size_dual, !_stable);
1950 }
1951 
1952 //------------------------------eq---------------------------------------------
1953 // Structural equality check for Type representations
1954 bool TypeAry::eq( const Type *t ) const {
1955   const TypeAry *a = (const TypeAry*)t;
1956   return _elem == a->_elem &&
1957     _stable == a->_stable &&
1958     _size == a->_size;
1959 }
1960 
1961 //------------------------------hash-------------------------------------------
1962 // Type-specific hashing function.
1963 int TypeAry::hash(void) const {
1964   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1965 }
1966 
1967 /**
1968  * Return same type without a speculative part in the element
1969  */
1970 const Type* TypeAry::remove_speculative() const {
1971   return make(_elem->remove_speculative(), _size, _stable);
1972 }
1973 
1974 //----------------------interface_vs_oop---------------------------------------
1975 #ifdef ASSERT
1976 bool TypeAry::interface_vs_oop(const Type *t) const {
1977   const TypeAry* t_ary = t->is_ary();
1978   if (t_ary) {
1979     return _elem->interface_vs_oop(t_ary->_elem);
1980   }
1981   return false;
1982 }
1983 #endif
1984 
1985 //------------------------------dump2------------------------------------------
1986 #ifndef PRODUCT
1987 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1988   if (_stable)  st->print("stable:");
1989   _elem->dump2(d, depth, st);
1990   st->print("[");
1991   _size->dump2(d, depth, st);
1992   st->print("]");
1993 }
1994 #endif
1995 
1996 //------------------------------singleton--------------------------------------
1997 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1998 // constants (Ldi nodes).  Singletons are integer, float or double constants
1999 // or a single symbol.
2000 bool TypeAry::singleton(void) const {
2001   return false;                 // Never a singleton
2002 }
2003 
2004 bool TypeAry::empty(void) const {
2005   return _elem->empty() || _size->empty();
2006 }
2007 
2008 //--------------------------ary_must_be_exact----------------------------------
2009 bool TypeAry::ary_must_be_exact() const {
2010   if (!UseExactTypes)       return false;
2011   // This logic looks at the element type of an array, and returns true
2012   // if the element type is either a primitive or a final instance class.
2013   // In such cases, an array built on this ary must have no subclasses.
2014   if (_elem == BOTTOM)      return false;  // general array not exact
2015   if (_elem == TOP   )      return false;  // inverted general array not exact
2016   const TypeOopPtr*  toop = NULL;
2017   if (UseCompressedOops && _elem->isa_narrowoop()) {
2018     toop = _elem->make_ptr()->isa_oopptr();
2019   } else {
2020     toop = _elem->isa_oopptr();
2021   }
2022   if (!toop)                return true;   // a primitive type, like int
2023   ciKlass* tklass = toop->klass();
2024   if (tklass == NULL)       return false;  // unloaded class
2025   if (!tklass->is_loaded()) return false;  // unloaded class
2026   const TypeInstPtr* tinst;
2027   if (_elem->isa_narrowoop())
2028     tinst = _elem->make_ptr()->isa_instptr();
2029   else
2030     tinst = _elem->isa_instptr();
2031   if (tinst)
2032     return tklass->as_instance_klass()->is_final();
2033   const TypeAryPtr*  tap;
2034   if (_elem->isa_narrowoop())
2035     tap = _elem->make_ptr()->isa_aryptr();
2036   else
2037     tap = _elem->isa_aryptr();
2038   if (tap)
2039     return tap->ary()->ary_must_be_exact();
2040   return false;
2041 }
2042 
2043 //==============================TypeVect=======================================
2044 // Convenience common pre-built types.
2045 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2046 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2047 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2048 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2049 
2050 //------------------------------make-------------------------------------------
2051 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2052   BasicType elem_bt = elem->array_element_basic_type();
2053   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2054   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2055   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2056   int size = length * type2aelembytes(elem_bt);
2057   switch (Matcher::vector_ideal_reg(size)) {
2058   case Op_VecS:
2059     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2060   case Op_RegL:
2061   case Op_VecD:
2062   case Op_RegD:
2063     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2064   case Op_VecX:
2065     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2066   case Op_VecY:
2067     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2068   }
2069  ShouldNotReachHere();
2070   return NULL;
2071 }
2072 
2073 //------------------------------meet-------------------------------------------
2074 // Compute the MEET of two types.  It returns a new Type object.
2075 const Type *TypeVect::xmeet( const Type *t ) const {
2076   // Perform a fast test for common case; meeting the same types together.
2077   if( this == t ) return this;  // Meeting same type-rep?
2078 
2079   // Current "this->_base" is Vector
2080   switch (t->base()) {          // switch on original type
2081 
2082   case Bottom:                  // Ye Olde Default
2083     return t;
2084 
2085   default:                      // All else is a mistake
2086     typerr(t);
2087 
2088   case VectorS:
2089   case VectorD:
2090   case VectorX:
2091   case VectorY: {                // Meeting 2 vectors?
2092     const TypeVect* v = t->is_vect();
2093     assert(  base() == v->base(), "");
2094     assert(length() == v->length(), "");
2095     assert(element_basic_type() == v->element_basic_type(), "");
2096     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2097   }
2098   case Top:
2099     break;
2100   }
2101   return this;
2102 }
2103 
2104 //------------------------------xdual------------------------------------------
2105 // Dual: compute field-by-field dual
2106 const Type *TypeVect::xdual() const {
2107   return new TypeVect(base(), _elem->dual(), _length);
2108 }
2109 
2110 //------------------------------eq---------------------------------------------
2111 // Structural equality check for Type representations
2112 bool TypeVect::eq(const Type *t) const {
2113   const TypeVect *v = t->is_vect();
2114   return (_elem == v->_elem) && (_length == v->_length);
2115 }
2116 
2117 //------------------------------hash-------------------------------------------
2118 // Type-specific hashing function.
2119 int TypeVect::hash(void) const {
2120   return (intptr_t)_elem + (intptr_t)_length;
2121 }
2122 
2123 //------------------------------singleton--------------------------------------
2124 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2125 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2126 // constant value (when vector is created with Replicate code).
2127 bool TypeVect::singleton(void) const {
2128 // There is no Con node for vectors yet.
2129 //  return _elem->singleton();
2130   return false;
2131 }
2132 
2133 bool TypeVect::empty(void) const {
2134   return _elem->empty();
2135 }
2136 
2137 //------------------------------dump2------------------------------------------
2138 #ifndef PRODUCT
2139 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2140   switch (base()) {
2141   case VectorS:
2142     st->print("vectors["); break;
2143   case VectorD:
2144     st->print("vectord["); break;
2145   case VectorX:
2146     st->print("vectorx["); break;
2147   case VectorY:
2148     st->print("vectory["); break;
2149   default:
2150     ShouldNotReachHere();
2151   }
2152   st->print("%d]:{", _length);
2153   _elem->dump2(d, depth, st);
2154   st->print("}");
2155 }
2156 #endif
2157 
2158 
2159 //=============================================================================
2160 // Convenience common pre-built types.
2161 const TypePtr *TypePtr::NULL_PTR;
2162 const TypePtr *TypePtr::NOTNULL;
2163 const TypePtr *TypePtr::BOTTOM;
2164 
2165 //------------------------------meet-------------------------------------------
2166 // Meet over the PTR enum
2167 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2168   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2169   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2170   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2171   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2172   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2173   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2174   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2175 };
2176 
2177 //------------------------------make-------------------------------------------
2178 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2179   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2180 }
2181 
2182 //------------------------------cast_to_ptr_type-------------------------------
2183 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2184   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2185   if( ptr == _ptr ) return this;
2186   return make(_base, ptr, _offset);
2187 }
2188 
2189 //------------------------------get_con----------------------------------------
2190 intptr_t TypePtr::get_con() const {
2191   assert( _ptr == Null, "" );
2192   return _offset;
2193 }
2194 
2195 //------------------------------meet-------------------------------------------
2196 // Compute the MEET of two types.  It returns a new Type object.
2197 const Type *TypePtr::xmeet( const Type *t ) const {
2198   // Perform a fast test for common case; meeting the same types together.
2199   if( this == t ) return this;  // Meeting same type-rep?
2200 
2201   // Current "this->_base" is AnyPtr
2202   switch (t->base()) {          // switch on original type
2203   case Int:                     // Mixing ints & oops happens when javac
2204   case Long:                    // reuses local variables
2205   case FloatTop:
2206   case FloatCon:
2207   case FloatBot:
2208   case DoubleTop:
2209   case DoubleCon:
2210   case DoubleBot:
2211   case NarrowOop:
2212   case NarrowKlass:
2213   case Bottom:                  // Ye Olde Default
2214     return Type::BOTTOM;
2215   case Top:
2216     return this;
2217 
2218   case AnyPtr: {                // Meeting to AnyPtrs
2219     const TypePtr *tp = t->is_ptr();
2220     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2221   }
2222   case RawPtr:                  // For these, flip the call around to cut down
2223   case OopPtr:
2224   case InstPtr:                 // on the cases I have to handle.
2225   case AryPtr:
2226   case MetadataPtr:
2227   case KlassPtr:
2228     return t->xmeet(this);      // Call in reverse direction
2229   default:                      // All else is a mistake
2230     typerr(t);
2231 
2232   }
2233   return this;
2234 }
2235 
2236 //------------------------------meet_offset------------------------------------
2237 int TypePtr::meet_offset( int offset ) const {
2238   // Either is 'TOP' offset?  Return the other offset!
2239   if( _offset == OffsetTop ) return offset;
2240   if( offset == OffsetTop ) return _offset;
2241   // If either is different, return 'BOTTOM' offset
2242   if( _offset != offset ) return OffsetBot;
2243   return _offset;
2244 }
2245 
2246 //------------------------------dual_offset------------------------------------
2247 int TypePtr::dual_offset( ) const {
2248   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2249   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2250   return _offset;               // Map everything else into self
2251 }
2252 
2253 //------------------------------xdual------------------------------------------
2254 // Dual: compute field-by-field dual
2255 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2256   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2257 };
2258 const Type *TypePtr::xdual() const {
2259   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2260 }
2261 
2262 //------------------------------xadd_offset------------------------------------
2263 int TypePtr::xadd_offset( intptr_t offset ) const {
2264   // Adding to 'TOP' offset?  Return 'TOP'!
2265   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2266   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2267   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2268   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2269   offset += (intptr_t)_offset;
2270   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2271 
2272   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2273   // It is possible to construct a negative offset during PhaseCCP
2274 
2275   return (int)offset;        // Sum valid offsets
2276 }
2277 
2278 //------------------------------add_offset-------------------------------------
2279 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2280   return make( AnyPtr, _ptr, xadd_offset(offset) );
2281 }
2282 
2283 //------------------------------eq---------------------------------------------
2284 // Structural equality check for Type representations
2285 bool TypePtr::eq( const Type *t ) const {
2286   const TypePtr *a = (const TypePtr*)t;
2287   return _ptr == a->ptr() && _offset == a->offset();
2288 }
2289 
2290 //------------------------------hash-------------------------------------------
2291 // Type-specific hashing function.
2292 int TypePtr::hash(void) const {
2293   return _ptr + _offset;
2294 }
2295 
2296 //------------------------------dump2------------------------------------------
2297 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2298   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2299 };
2300 
2301 #ifndef PRODUCT
2302 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2303   if( _ptr == Null ) st->print("NULL");
2304   else st->print("%s *", ptr_msg[_ptr]);
2305   if( _offset == OffsetTop ) st->print("+top");
2306   else if( _offset == OffsetBot ) st->print("+bot");
2307   else if( _offset ) st->print("+%d", _offset);
2308 }
2309 #endif
2310 
2311 //------------------------------singleton--------------------------------------
2312 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2313 // constants
2314 bool TypePtr::singleton(void) const {
2315   // TopPTR, Null, AnyNull, Constant are all singletons
2316   return (_offset != OffsetBot) && !below_centerline(_ptr);
2317 }
2318 
2319 bool TypePtr::empty(void) const {
2320   return (_offset == OffsetTop) || above_centerline(_ptr);
2321 }
2322 
2323 //=============================================================================
2324 // Convenience common pre-built types.
2325 const TypeRawPtr *TypeRawPtr::BOTTOM;
2326 const TypeRawPtr *TypeRawPtr::NOTNULL;
2327 
2328 //------------------------------make-------------------------------------------
2329 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2330   assert( ptr != Constant, "what is the constant?" );
2331   assert( ptr != Null, "Use TypePtr for NULL" );
2332   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2333 }
2334 
2335 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2336   assert( bits, "Use TypePtr for NULL" );
2337   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2338 }
2339 
2340 //------------------------------cast_to_ptr_type-------------------------------
2341 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2342   assert( ptr != Constant, "what is the constant?" );
2343   assert( ptr != Null, "Use TypePtr for NULL" );
2344   assert( _bits==0, "Why cast a constant address?");
2345   if( ptr == _ptr ) return this;
2346   return make(ptr);
2347 }
2348 
2349 //------------------------------get_con----------------------------------------
2350 intptr_t TypeRawPtr::get_con() const {
2351   assert( _ptr == Null || _ptr == Constant, "" );
2352   return (intptr_t)_bits;
2353 }
2354 
2355 //------------------------------meet-------------------------------------------
2356 // Compute the MEET of two types.  It returns a new Type object.
2357 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2358   // Perform a fast test for common case; meeting the same types together.
2359   if( this == t ) return this;  // Meeting same type-rep?
2360 
2361   // Current "this->_base" is RawPtr
2362   switch( t->base() ) {         // switch on original type
2363   case Bottom:                  // Ye Olde Default
2364     return t;
2365   case Top:
2366     return this;
2367   case AnyPtr:                  // Meeting to AnyPtrs
2368     break;
2369   case RawPtr: {                // might be top, bot, any/not or constant
2370     enum PTR tptr = t->is_ptr()->ptr();
2371     enum PTR ptr = meet_ptr( tptr );
2372     if( ptr == Constant ) {     // Cannot be equal constants, so...
2373       if( tptr == Constant && _ptr != Constant)  return t;
2374       if( _ptr == Constant && tptr != Constant)  return this;
2375       ptr = NotNull;            // Fall down in lattice
2376     }
2377     return make( ptr );
2378   }
2379 
2380   case OopPtr:
2381   case InstPtr:
2382   case AryPtr:
2383   case MetadataPtr:
2384   case KlassPtr:
2385     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2386   default:                      // All else is a mistake
2387     typerr(t);
2388   }
2389 
2390   // Found an AnyPtr type vs self-RawPtr type
2391   const TypePtr *tp = t->is_ptr();
2392   switch (tp->ptr()) {
2393   case TypePtr::TopPTR:  return this;
2394   case TypePtr::BotPTR:  return t;
2395   case TypePtr::Null:
2396     if( _ptr == TypePtr::TopPTR ) return t;
2397     return TypeRawPtr::BOTTOM;
2398   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2399   case TypePtr::AnyNull:
2400     if( _ptr == TypePtr::Constant) return this;
2401     return make( meet_ptr(TypePtr::AnyNull) );
2402   default: ShouldNotReachHere();
2403   }
2404   return this;
2405 }
2406 
2407 //------------------------------xdual------------------------------------------
2408 // Dual: compute field-by-field dual
2409 const Type *TypeRawPtr::xdual() const {
2410   return new TypeRawPtr( dual_ptr(), _bits );
2411 }
2412 
2413 //------------------------------add_offset-------------------------------------
2414 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2415   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2416   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2417   if( offset == 0 ) return this; // No change
2418   switch (_ptr) {
2419   case TypePtr::TopPTR:
2420   case TypePtr::BotPTR:
2421   case TypePtr::NotNull:
2422     return this;
2423   case TypePtr::Null:
2424   case TypePtr::Constant: {
2425     address bits = _bits+offset;
2426     if ( bits == 0 ) return TypePtr::NULL_PTR;
2427     return make( bits );
2428   }
2429   default:  ShouldNotReachHere();
2430   }
2431   return NULL;                  // Lint noise
2432 }
2433 
2434 //------------------------------eq---------------------------------------------
2435 // Structural equality check for Type representations
2436 bool TypeRawPtr::eq( const Type *t ) const {
2437   const TypeRawPtr *a = (const TypeRawPtr*)t;
2438   return _bits == a->_bits && TypePtr::eq(t);
2439 }
2440 
2441 //------------------------------hash-------------------------------------------
2442 // Type-specific hashing function.
2443 int TypeRawPtr::hash(void) const {
2444   return (intptr_t)_bits + TypePtr::hash();
2445 }
2446 
2447 //------------------------------dump2------------------------------------------
2448 #ifndef PRODUCT
2449 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2450   if( _ptr == Constant )
2451     st->print(INTPTR_FORMAT, _bits);
2452   else
2453     st->print("rawptr:%s", ptr_msg[_ptr]);
2454 }
2455 #endif
2456 
2457 //=============================================================================
2458 // Convenience common pre-built type.
2459 const TypeOopPtr *TypeOopPtr::BOTTOM;
2460 
2461 //------------------------------TypeOopPtr-------------------------------------
2462 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
2463   : TypePtr(t, ptr, offset),
2464     _const_oop(o), _klass(k),
2465     _klass_is_exact(xk),
2466     _is_ptr_to_narrowoop(false),
2467     _is_ptr_to_narrowklass(false),
2468     _is_ptr_to_boxed_value(false),
2469     _instance_id(instance_id),
2470     _speculative(speculative) {
2471   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2472       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2473     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2474   }
2475 #ifdef _LP64
2476   if (_offset != 0) {
2477     if (_offset == oopDesc::klass_offset_in_bytes()) {
2478       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2479     } else if (klass() == NULL) {
2480       // Array with unknown body type
2481       assert(this->isa_aryptr(), "only arrays without klass");
2482       _is_ptr_to_narrowoop = UseCompressedOops;
2483     } else if (this->isa_aryptr()) {
2484       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2485                              _offset != arrayOopDesc::length_offset_in_bytes());
2486     } else if (klass()->is_instance_klass()) {
2487       ciInstanceKlass* ik = klass()->as_instance_klass();
2488       ciField* field = NULL;
2489       if (this->isa_klassptr()) {
2490         // Perm objects don't use compressed references
2491       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2492         // unsafe access
2493         _is_ptr_to_narrowoop = UseCompressedOops;
2494       } else { // exclude unsafe ops
2495         assert(this->isa_instptr(), "must be an instance ptr.");
2496 
2497         if (klass() == ciEnv::current()->Class_klass() &&
2498             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2499              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2500           // Special hidden fields from the Class.
2501           assert(this->isa_instptr(), "must be an instance ptr.");
2502           _is_ptr_to_narrowoop = false;
2503         } else if (klass() == ciEnv::current()->Class_klass() &&
2504                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2505           // Static fields
2506           assert(o != NULL, "must be constant");
2507           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2508           ciField* field = k->get_field_by_offset(_offset, true);
2509           assert(field != NULL, "missing field");
2510           BasicType basic_elem_type = field->layout_type();
2511           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2512                                                        basic_elem_type == T_ARRAY);
2513         } else {
2514           // Instance fields which contains a compressed oop references.
2515           field = ik->get_field_by_offset(_offset, false);
2516           if (field != NULL) {
2517             BasicType basic_elem_type = field->layout_type();
2518             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2519                                                          basic_elem_type == T_ARRAY);
2520           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2521             // Compile::find_alias_type() cast exactness on all types to verify
2522             // that it does not affect alias type.
2523             _is_ptr_to_narrowoop = UseCompressedOops;
2524           } else {
2525             // Type for the copy start in LibraryCallKit::inline_native_clone().
2526             _is_ptr_to_narrowoop = UseCompressedOops;
2527           }
2528         }
2529       }
2530     }
2531   }
2532 #endif
2533 }
2534 
2535 //------------------------------make-------------------------------------------
2536 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2537                                    int offset, int instance_id, const TypeOopPtr* speculative) {
2538   assert(ptr != Constant, "no constant generic pointers");
2539   ciKlass*  k = Compile::current()->env()->Object_klass();
2540   bool      xk = false;
2541   ciObject* o = NULL;
2542   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
2543 }
2544 
2545 
2546 //------------------------------cast_to_ptr_type-------------------------------
2547 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2548   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2549   if( ptr == _ptr ) return this;
2550   return make(ptr, _offset, _instance_id, _speculative);
2551 }
2552 
2553 //-----------------------------cast_to_instance_id----------------------------
2554 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2555   // There are no instances of a general oop.
2556   // Return self unchanged.
2557   return this;
2558 }
2559 
2560 //-----------------------------cast_to_exactness-------------------------------
2561 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2562   // There is no such thing as an exact general oop.
2563   // Return self unchanged.
2564   return this;
2565 }
2566 
2567 
2568 //------------------------------as_klass_type----------------------------------
2569 // Return the klass type corresponding to this instance or array type.
2570 // It is the type that is loaded from an object of this type.
2571 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2572   ciKlass* k = klass();
2573   bool    xk = klass_is_exact();
2574   if (k == NULL)
2575     return TypeKlassPtr::OBJECT;
2576   else
2577     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2578 }
2579 
2580 const Type *TypeOopPtr::xmeet(const Type *t) const {
2581   const Type* res = xmeet_helper(t);
2582   if (res->isa_oopptr() == NULL) {
2583     return res;
2584   }
2585 
2586   const TypeOopPtr* res_oopptr = res->is_oopptr();
2587   if (res_oopptr->speculative() != NULL) {
2588     // type->speculative() == NULL means that speculation is no better
2589     // than type, i.e. type->speculative() == type. So there are 2
2590     // ways to represent the fact that we have no useful speculative
2591     // data and we should use a single one to be able to test for
2592     // equality between types. Check whether type->speculative() ==
2593     // type and set speculative to NULL if it is the case.
2594     if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
2595       return res_oopptr->remove_speculative();
2596     }
2597   }
2598 
2599   return res;
2600 }
2601 
2602 //------------------------------meet-------------------------------------------
2603 // Compute the MEET of two types.  It returns a new Type object.
2604 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2605   // Perform a fast test for common case; meeting the same types together.
2606   if( this == t ) return this;  // Meeting same type-rep?
2607 
2608   // Current "this->_base" is OopPtr
2609   switch (t->base()) {          // switch on original type
2610 
2611   case Int:                     // Mixing ints & oops happens when javac
2612   case Long:                    // reuses local variables
2613   case FloatTop:
2614   case FloatCon:
2615   case FloatBot:
2616   case DoubleTop:
2617   case DoubleCon:
2618   case DoubleBot:
2619   case NarrowOop:
2620   case NarrowKlass:
2621   case Bottom:                  // Ye Olde Default
2622     return Type::BOTTOM;
2623   case Top:
2624     return this;
2625 
2626   default:                      // All else is a mistake
2627     typerr(t);
2628 
2629   case RawPtr:
2630   case MetadataPtr:
2631   case KlassPtr:
2632     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2633 
2634   case AnyPtr: {
2635     // Found an AnyPtr type vs self-OopPtr type
2636     const TypePtr *tp = t->is_ptr();
2637     int offset = meet_offset(tp->offset());
2638     PTR ptr = meet_ptr(tp->ptr());
2639     switch (tp->ptr()) {
2640     case Null:
2641       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2642       // else fall through:
2643     case TopPTR:
2644     case AnyNull: {
2645       int instance_id = meet_instance_id(InstanceTop);
2646       const TypeOopPtr* speculative = _speculative;
2647       return make(ptr, offset, instance_id, speculative);
2648     }
2649     case BotPTR:
2650     case NotNull:
2651       return TypePtr::make(AnyPtr, ptr, offset);
2652     default: typerr(t);
2653     }
2654   }
2655 
2656   case OopPtr: {                 // Meeting to other OopPtrs
2657     const TypeOopPtr *tp = t->is_oopptr();
2658     int instance_id = meet_instance_id(tp->instance_id());
2659     const TypeOopPtr* speculative = xmeet_speculative(tp);
2660     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
2661   }
2662 
2663   case InstPtr:                  // For these, flip the call around to cut down
2664   case AryPtr:
2665     return t->xmeet(this);      // Call in reverse direction
2666 
2667   } // End of switch
2668   return this;                  // Return the double constant
2669 }
2670 
2671 
2672 //------------------------------xdual------------------------------------------
2673 // Dual of a pure heap pointer.  No relevant klass or oop information.
2674 const Type *TypeOopPtr::xdual() const {
2675   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2676   assert(const_oop() == NULL,             "no constants here");
2677   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
2678 }
2679 
2680 //--------------------------make_from_klass_common-----------------------------
2681 // Computes the element-type given a klass.
2682 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2683   if (klass->is_instance_klass()) {
2684     Compile* C = Compile::current();
2685     Dependencies* deps = C->dependencies();
2686     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2687     // Element is an instance
2688     bool klass_is_exact = false;
2689     if (klass->is_loaded()) {
2690       // Try to set klass_is_exact.
2691       ciInstanceKlass* ik = klass->as_instance_klass();
2692       klass_is_exact = ik->is_final();
2693       if (!klass_is_exact && klass_change
2694           && deps != NULL && UseUniqueSubclasses) {
2695         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2696         if (sub != NULL) {
2697           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2698           klass = ik = sub;
2699           klass_is_exact = sub->is_final();
2700         }
2701       }
2702       if (!klass_is_exact && try_for_exact
2703           && deps != NULL && UseExactTypes) {
2704         if (!ik->is_interface() && !ik->has_subklass()) {
2705           // Add a dependence; if concrete subclass added we need to recompile
2706           deps->assert_leaf_type(ik);
2707           klass_is_exact = true;
2708         }
2709       }
2710     }
2711     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2712   } else if (klass->is_obj_array_klass()) {
2713     // Element is an object array. Recursively call ourself.
2714     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2715     bool xk = etype->klass_is_exact();
2716     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2717     // We used to pass NotNull in here, asserting that the sub-arrays
2718     // are all not-null.  This is not true in generally, as code can
2719     // slam NULLs down in the subarrays.
2720     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2721     return arr;
2722   } else if (klass->is_type_array_klass()) {
2723     // Element is an typeArray
2724     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2725     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2726     // We used to pass NotNull in here, asserting that the array pointer
2727     // is not-null. That was not true in general.
2728     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2729     return arr;
2730   } else {
2731     ShouldNotReachHere();
2732     return NULL;
2733   }
2734 }
2735 
2736 //------------------------------make_from_constant-----------------------------
2737 // Make a java pointer from an oop constant
2738 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2739                                                  bool require_constant,
2740                                                  bool is_autobox_cache) {
2741   assert(!o->is_null_object(), "null object not yet handled here.");
2742   ciKlass* klass = o->klass();
2743   if (klass->is_instance_klass()) {
2744     // Element is an instance
2745     if (require_constant) {
2746       if (!o->can_be_constant())  return NULL;
2747     } else if (!o->should_be_constant()) {
2748       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2749     }
2750     return TypeInstPtr::make(o);
2751   } else if (klass->is_obj_array_klass()) {
2752     // Element is an object array. Recursively call ourself.
2753     const TypeOopPtr *etype =
2754       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2755     if (is_autobox_cache) {
2756       // The pointers in the autobox arrays are always non-null.
2757       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
2758     }
2759     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2760     // We used to pass NotNull in here, asserting that the sub-arrays
2761     // are all not-null.  This is not true in generally, as code can
2762     // slam NULLs down in the subarrays.
2763     if (require_constant) {
2764       if (!o->can_be_constant())  return NULL;
2765     } else if (!o->should_be_constant()) {
2766       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2767     }
2768     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
2769     return arr;
2770   } else if (klass->is_type_array_klass()) {
2771     // Element is an typeArray
2772     const Type* etype =
2773       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2774     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2775     // We used to pass NotNull in here, asserting that the array pointer
2776     // is not-null. That was not true in general.
2777     if (require_constant) {
2778       if (!o->can_be_constant())  return NULL;
2779     } else if (!o->should_be_constant()) {
2780       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2781     }
2782     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2783     return arr;
2784   }
2785 
2786   fatal("unhandled object type");
2787   return NULL;
2788 }
2789 
2790 //------------------------------get_con----------------------------------------
2791 intptr_t TypeOopPtr::get_con() const {
2792   assert( _ptr == Null || _ptr == Constant, "" );
2793   assert( _offset >= 0, "" );
2794 
2795   if (_offset != 0) {
2796     // After being ported to the compiler interface, the compiler no longer
2797     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2798     // to a handle at compile time.  This handle is embedded in the generated
2799     // code and dereferenced at the time the nmethod is made.  Until that time,
2800     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2801     // have access to the addresses!).  This does not seem to currently happen,
2802     // but this assertion here is to help prevent its occurence.
2803     tty->print_cr("Found oop constant with non-zero offset");
2804     ShouldNotReachHere();
2805   }
2806 
2807   return (intptr_t)const_oop()->constant_encoding();
2808 }
2809 
2810 
2811 //-----------------------------filter------------------------------------------
2812 // Do not allow interface-vs.-noninterface joins to collapse to top.
2813 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
2814 
2815   const Type* ft = join_helper(kills, include_speculative);
2816   const TypeInstPtr* ftip = ft->isa_instptr();
2817   const TypeInstPtr* ktip = kills->isa_instptr();
2818 
2819   if (ft->empty()) {
2820     // Check for evil case of 'this' being a class and 'kills' expecting an
2821     // interface.  This can happen because the bytecodes do not contain
2822     // enough type info to distinguish a Java-level interface variable
2823     // from a Java-level object variable.  If we meet 2 classes which
2824     // both implement interface I, but their meet is at 'j/l/O' which
2825     // doesn't implement I, we have no way to tell if the result should
2826     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2827     // into a Phi which "knows" it's an Interface type we'll have to
2828     // uplift the type.
2829     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2830       return kills;             // Uplift to interface
2831 
2832     return Type::TOP;           // Canonical empty value
2833   }
2834 
2835   // If we have an interface-typed Phi or cast and we narrow to a class type,
2836   // the join should report back the class.  However, if we have a J/L/Object
2837   // class-typed Phi and an interface flows in, it's possible that the meet &
2838   // join report an interface back out.  This isn't possible but happens
2839   // because the type system doesn't interact well with interfaces.
2840   if (ftip != NULL && ktip != NULL &&
2841       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2842       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2843     // Happens in a CTW of rt.jar, 320-341, no extra flags
2844     assert(!ftip->klass_is_exact(), "interface could not be exact");
2845     return ktip->cast_to_ptr_type(ftip->ptr());
2846   }
2847 
2848   return ft;
2849 }
2850 
2851 //------------------------------eq---------------------------------------------
2852 // Structural equality check for Type representations
2853 bool TypeOopPtr::eq( const Type *t ) const {
2854   const TypeOopPtr *a = (const TypeOopPtr*)t;
2855   if (_klass_is_exact != a->_klass_is_exact ||
2856       _instance_id != a->_instance_id ||
2857       !eq_speculative(a))  return false;
2858   ciObject* one = const_oop();
2859   ciObject* two = a->const_oop();
2860   if (one == NULL || two == NULL) {
2861     return (one == two) && TypePtr::eq(t);
2862   } else {
2863     return one->equals(two) && TypePtr::eq(t);
2864   }
2865 }
2866 
2867 //------------------------------hash-------------------------------------------
2868 // Type-specific hashing function.
2869 int TypeOopPtr::hash(void) const {
2870   return
2871     (const_oop() ? const_oop()->hash() : 0) +
2872     _klass_is_exact +
2873     _instance_id +
2874     hash_speculative() +
2875     TypePtr::hash();
2876 }
2877 
2878 //------------------------------dump2------------------------------------------
2879 #ifndef PRODUCT
2880 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2881   st->print("oopptr:%s", ptr_msg[_ptr]);
2882   if( _klass_is_exact ) st->print(":exact");
2883   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2884   switch( _offset ) {
2885   case OffsetTop: st->print("+top"); break;
2886   case OffsetBot: st->print("+any"); break;
2887   case         0: break;
2888   default:        st->print("+%d",_offset); break;
2889   }
2890   if (_instance_id == InstanceTop)
2891     st->print(",iid=top");
2892   else if (_instance_id != InstanceBot)
2893     st->print(",iid=%d",_instance_id);
2894 
2895   dump_speculative(st);
2896 }
2897 
2898 /**
2899  *dump the speculative part of the type
2900  */
2901 void TypeOopPtr::dump_speculative(outputStream *st) const {
2902   if (_speculative != NULL) {
2903     st->print(" (speculative=");
2904     _speculative->dump_on(st);
2905     st->print(")");
2906   }
2907 }
2908 #endif
2909 
2910 //------------------------------singleton--------------------------------------
2911 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2912 // constants
2913 bool TypeOopPtr::singleton(void) const {
2914   // detune optimizer to not generate constant oop + constant offset as a constant!
2915   // TopPTR, Null, AnyNull, Constant are all singletons
2916   return (_offset == 0) && !below_centerline(_ptr);
2917 }
2918 
2919 //------------------------------add_offset-------------------------------------
2920 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
2921   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
2922 }
2923 
2924 /**
2925  * Return same type without a speculative part
2926  */
2927 const Type* TypeOopPtr::remove_speculative() const {
2928   if (_speculative == NULL) {
2929     return this;
2930   }
2931   return make(_ptr, _offset, _instance_id, NULL);
2932 }
2933 
2934 //------------------------------meet_instance_id--------------------------------
2935 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2936   // Either is 'TOP' instance?  Return the other instance!
2937   if( _instance_id == InstanceTop ) return  instance_id;
2938   if(  instance_id == InstanceTop ) return _instance_id;
2939   // If either is different, return 'BOTTOM' instance
2940   if( _instance_id != instance_id ) return InstanceBot;
2941   return _instance_id;
2942 }
2943 
2944 //------------------------------dual_instance_id--------------------------------
2945 int TypeOopPtr::dual_instance_id( ) const {
2946   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2947   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2948   return _instance_id;              // Map everything else into self
2949 }
2950 
2951 /**
2952  * meet of the speculative parts of 2 types
2953  *
2954  * @param other  type to meet with
2955  */
2956 const TypeOopPtr* TypeOopPtr::xmeet_speculative(const TypeOopPtr* other) const {
2957   bool this_has_spec = (_speculative != NULL);
2958   bool other_has_spec = (other->speculative() != NULL);
2959 
2960   if (!this_has_spec && !other_has_spec) {
2961     return NULL;
2962   }
2963 
2964   // If we are at a point where control flow meets and one branch has
2965   // a speculative type and the other has not, we meet the speculative
2966   // type of one branch with the actual type of the other. If the
2967   // actual type is exact and the speculative is as well, then the
2968   // result is a speculative type which is exact and we can continue
2969   // speculation further.
2970   const TypeOopPtr* this_spec = _speculative;
2971   const TypeOopPtr* other_spec = other->speculative();
2972 
2973   if (!this_has_spec) {
2974     this_spec = this;
2975   }
2976 
2977   if (!other_has_spec) {
2978     other_spec = other;
2979   }
2980 
2981   return this_spec->meet_speculative(other_spec)->is_oopptr();
2982 }
2983 
2984 /**
2985  * dual of the speculative part of the type
2986  */
2987 const TypeOopPtr* TypeOopPtr::dual_speculative() const {
2988   if (_speculative == NULL) {
2989     return NULL;
2990   }
2991   return _speculative->dual()->is_oopptr();
2992 }
2993 
2994 /**
2995  * add offset to the speculative part of the type
2996  *
2997  * @param offset  offset to add
2998  */
2999 const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
3000   if (_speculative == NULL) {
3001     return NULL;
3002   }
3003   return _speculative->add_offset(offset)->is_oopptr();
3004 }
3005 
3006 /**
3007  * Are the speculative parts of 2 types equal?
3008  *
3009  * @param other  type to compare this one to
3010  */
3011 bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
3012   if (_speculative == NULL || other->speculative() == NULL) {
3013     return _speculative == other->speculative();
3014   }
3015 
3016   if (_speculative->base() != other->speculative()->base()) {
3017     return false;
3018   }
3019 
3020   return _speculative->eq(other->speculative());
3021 }
3022 
3023 /**
3024  * Hash of the speculative part of the type
3025  */
3026 int TypeOopPtr::hash_speculative() const {
3027   if (_speculative == NULL) {
3028     return 0;
3029   }
3030 
3031   return _speculative->hash();
3032 }
3033 
3034 
3035 //=============================================================================
3036 // Convenience common pre-built types.
3037 const TypeInstPtr *TypeInstPtr::NOTNULL;
3038 const TypeInstPtr *TypeInstPtr::BOTTOM;
3039 const TypeInstPtr *TypeInstPtr::MIRROR;
3040 const TypeInstPtr *TypeInstPtr::MARK;
3041 const TypeInstPtr *TypeInstPtr::KLASS;
3042 
3043 //------------------------------TypeInstPtr-------------------------------------
3044 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
3045   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
3046    assert(k != NULL &&
3047           (k->is_loaded() || o == NULL),
3048           "cannot have constants with non-loaded klass");
3049 };
3050 
3051 //------------------------------make-------------------------------------------
3052 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3053                                      ciKlass* k,
3054                                      bool xk,
3055                                      ciObject* o,
3056                                      int offset,
3057                                      int instance_id,
3058                                      const TypeOopPtr* speculative) {
3059   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3060   // Either const_oop() is NULL or else ptr is Constant
3061   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3062           "constant pointers must have a value supplied" );
3063   // Ptr is never Null
3064   assert( ptr != Null, "NULL pointers are not typed" );
3065 
3066   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3067   if (!UseExactTypes)  xk = false;
3068   if (ptr == Constant) {
3069     // Note:  This case includes meta-object constants, such as methods.
3070     xk = true;
3071   } else if (k->is_loaded()) {
3072     ciInstanceKlass* ik = k->as_instance_klass();
3073     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3074     if (xk && ik->is_interface())  xk = false;  // no exact interface
3075   }
3076 
3077   // Now hash this baby
3078   TypeInstPtr *result =
3079     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();
3080 
3081   return result;
3082 }
3083 
3084 /**
3085  *  Create constant type for a constant boxed value
3086  */
3087 const Type* TypeInstPtr::get_const_boxed_value() const {
3088   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3089   assert((const_oop() != NULL), "should be called only for constant object");
3090   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3091   BasicType bt = constant.basic_type();
3092   switch (bt) {
3093     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3094     case T_INT:      return TypeInt::make(constant.as_int());
3095     case T_CHAR:     return TypeInt::make(constant.as_char());
3096     case T_BYTE:     return TypeInt::make(constant.as_byte());
3097     case T_SHORT:    return TypeInt::make(constant.as_short());
3098     case T_FLOAT:    return TypeF::make(constant.as_float());
3099     case T_DOUBLE:   return TypeD::make(constant.as_double());
3100     case T_LONG:     return TypeLong::make(constant.as_long());
3101     default:         break;
3102   }
3103   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3104   return NULL;
3105 }
3106 
3107 //------------------------------cast_to_ptr_type-------------------------------
3108 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3109   if( ptr == _ptr ) return this;
3110   // Reconstruct _sig info here since not a problem with later lazy
3111   // construction, _sig will show up on demand.
3112   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
3113 }
3114 
3115 
3116 //-----------------------------cast_to_exactness-------------------------------
3117 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3118   if( klass_is_exact == _klass_is_exact ) return this;
3119   if (!UseExactTypes)  return this;
3120   if (!_klass->is_loaded())  return this;
3121   ciInstanceKlass* ik = _klass->as_instance_klass();
3122   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3123   if( ik->is_interface() )              return this;  // cannot set xk
3124   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
3125 }
3126 
3127 //-----------------------------cast_to_instance_id----------------------------
3128 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3129   if( instance_id == _instance_id ) return this;
3130   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
3131 }
3132 
3133 //------------------------------xmeet_unloaded---------------------------------
3134 // Compute the MEET of two InstPtrs when at least one is unloaded.
3135 // Assume classes are different since called after check for same name/class-loader
3136 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3137     int off = meet_offset(tinst->offset());
3138     PTR ptr = meet_ptr(tinst->ptr());
3139     int instance_id = meet_instance_id(tinst->instance_id());
3140     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3141 
3142     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3143     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3144     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3145       //
3146       // Meet unloaded class with java/lang/Object
3147       //
3148       // Meet
3149       //          |                     Unloaded Class
3150       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3151       //  ===================================================================
3152       //   TOP    | ..........................Unloaded......................|
3153       //  AnyNull |  U-AN    |................Unloaded......................|
3154       // Constant | ... O-NN .................................. |   O-BOT   |
3155       //  NotNull | ... O-NN .................................. |   O-BOT   |
3156       //  BOTTOM  | ........................Object-BOTTOM ..................|
3157       //
3158       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3159       //
3160       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3161       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
3162       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3163       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3164         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3165         else                                      { return TypeInstPtr::NOTNULL; }
3166       }
3167       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3168 
3169       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3170     }
3171 
3172     // Both are unloaded, not the same class, not Object
3173     // Or meet unloaded with a different loaded class, not java/lang/Object
3174     if( ptr != TypePtr::BotPTR ) {
3175       return TypeInstPtr::NOTNULL;
3176     }
3177     return TypeInstPtr::BOTTOM;
3178 }
3179 
3180 
3181 //------------------------------meet-------------------------------------------
3182 // Compute the MEET of two types.  It returns a new Type object.
3183 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3184   // Perform a fast test for common case; meeting the same types together.
3185   if( this == t ) return this;  // Meeting same type-rep?
3186 
3187   // Current "this->_base" is Pointer
3188   switch (t->base()) {          // switch on original type
3189 
3190   case Int:                     // Mixing ints & oops happens when javac
3191   case Long:                    // reuses local variables
3192   case FloatTop:
3193   case FloatCon:
3194   case FloatBot:
3195   case DoubleTop:
3196   case DoubleCon:
3197   case DoubleBot:
3198   case NarrowOop:
3199   case NarrowKlass:
3200   case Bottom:                  // Ye Olde Default
3201     return Type::BOTTOM;
3202   case Top:
3203     return this;
3204 
3205   default:                      // All else is a mistake
3206     typerr(t);
3207 
3208   case MetadataPtr:
3209   case KlassPtr:
3210   case RawPtr: return TypePtr::BOTTOM;
3211 
3212   case AryPtr: {                // All arrays inherit from Object class
3213     const TypeAryPtr *tp = t->is_aryptr();
3214     int offset = meet_offset(tp->offset());
3215     PTR ptr = meet_ptr(tp->ptr());
3216     int instance_id = meet_instance_id(tp->instance_id());
3217     const TypeOopPtr* speculative = xmeet_speculative(tp);
3218     switch (ptr) {
3219     case TopPTR:
3220     case AnyNull:                // Fall 'down' to dual of object klass
3221       // For instances when a subclass meets a superclass we fall
3222       // below the centerline when the superclass is exact. We need to
3223       // do the same here.
3224       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3225         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
3226       } else {
3227         // cannot subclass, so the meet has to fall badly below the centerline
3228         ptr = NotNull;
3229         instance_id = InstanceBot;
3230         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
3231       }
3232     case Constant:
3233     case NotNull:
3234     case BotPTR:                // Fall down to object klass
3235       // LCA is object_klass, but if we subclass from the top we can do better
3236       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3237         // If 'this' (InstPtr) is above the centerline and it is Object class
3238         // then we can subclass in the Java class hierarchy.
3239         // For instances when a subclass meets a superclass we fall
3240         // below the centerline when the superclass is exact. We need
3241         // to do the same here.
3242         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3243           // that is, tp's array type is a subtype of my klass
3244           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3245                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
3246         }
3247       }
3248       // The other case cannot happen, since I cannot be a subtype of an array.
3249       // The meet falls down to Object class below centerline.
3250       if( ptr == Constant )
3251          ptr = NotNull;
3252       instance_id = InstanceBot;
3253       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
3254     default: typerr(t);
3255     }
3256   }
3257 
3258   case OopPtr: {                // Meeting to OopPtrs
3259     // Found a OopPtr type vs self-InstPtr type
3260     const TypeOopPtr *tp = t->is_oopptr();
3261     int offset = meet_offset(tp->offset());
3262     PTR ptr = meet_ptr(tp->ptr());
3263     switch (tp->ptr()) {
3264     case TopPTR:
3265     case AnyNull: {
3266       int instance_id = meet_instance_id(InstanceTop);
3267       const TypeOopPtr* speculative = xmeet_speculative(tp);
3268       return make(ptr, klass(), klass_is_exact(),
3269                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
3270     }
3271     case NotNull:
3272     case BotPTR: {
3273       int instance_id = meet_instance_id(tp->instance_id());
3274       const TypeOopPtr* speculative = xmeet_speculative(tp);
3275       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
3276     }
3277     default: typerr(t);
3278     }
3279   }
3280 
3281   case AnyPtr: {                // Meeting to AnyPtrs
3282     // Found an AnyPtr type vs self-InstPtr type
3283     const TypePtr *tp = t->is_ptr();
3284     int offset = meet_offset(tp->offset());
3285     PTR ptr = meet_ptr(tp->ptr());
3286     switch (tp->ptr()) {
3287     case Null:
3288       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3289       // else fall through to AnyNull
3290     case TopPTR:
3291     case AnyNull: {
3292       int instance_id = meet_instance_id(InstanceTop);
3293       const TypeOopPtr* speculative = _speculative;
3294       return make(ptr, klass(), klass_is_exact(),
3295                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
3296     }
3297     case NotNull:
3298     case BotPTR:
3299       return TypePtr::make(AnyPtr, ptr, offset);
3300     default: typerr(t);
3301     }
3302   }
3303 
3304   /*
3305                  A-top         }
3306                /   |   \       }  Tops
3307            B-top A-any C-top   }
3308               | /  |  \ |      }  Any-nulls
3309            B-any   |   C-any   }
3310               |    |    |
3311            B-con A-con C-con   } constants; not comparable across classes
3312               |    |    |
3313            B-not   |   C-not   }
3314               | \  |  / |      }  not-nulls
3315            B-bot A-not C-bot   }
3316                \   |   /       }  Bottoms
3317                  A-bot         }
3318   */
3319 
3320   case InstPtr: {                // Meeting 2 Oops?
3321     // Found an InstPtr sub-type vs self-InstPtr type
3322     const TypeInstPtr *tinst = t->is_instptr();
3323     int off = meet_offset( tinst->offset() );
3324     PTR ptr = meet_ptr( tinst->ptr() );
3325     int instance_id = meet_instance_id(tinst->instance_id());
3326     const TypeOopPtr* speculative = xmeet_speculative(tinst);
3327 
3328     // Check for easy case; klasses are equal (and perhaps not loaded!)
3329     // If we have constants, then we created oops so classes are loaded
3330     // and we can handle the constants further down.  This case handles
3331     // both-not-loaded or both-loaded classes
3332     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3333       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
3334     }
3335 
3336     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3337     ciKlass* tinst_klass = tinst->klass();
3338     ciKlass* this_klass  = this->klass();
3339     bool tinst_xk = tinst->klass_is_exact();
3340     bool this_xk  = this->klass_is_exact();
3341     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3342       // One of these classes has not been loaded
3343       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3344 #ifndef PRODUCT
3345       if( PrintOpto && Verbose ) {
3346         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3347         tty->print("  this == "); this->dump(); tty->cr();
3348         tty->print(" tinst == "); tinst->dump(); tty->cr();
3349       }
3350 #endif
3351       return unloaded_meet;
3352     }
3353 
3354     // Handle mixing oops and interfaces first.
3355     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3356                                         tinst_klass == ciEnv::current()->Object_klass())) {
3357       ciKlass *tmp = tinst_klass; // Swap interface around
3358       tinst_klass = this_klass;
3359       this_klass = tmp;
3360       bool tmp2 = tinst_xk;
3361       tinst_xk = this_xk;
3362       this_xk = tmp2;
3363     }
3364     if (tinst_klass->is_interface() &&
3365         !(this_klass->is_interface() ||
3366           // Treat java/lang/Object as an honorary interface,
3367           // because we need a bottom for the interface hierarchy.
3368           this_klass == ciEnv::current()->Object_klass())) {
3369       // Oop meets interface!
3370 
3371       // See if the oop subtypes (implements) interface.
3372       ciKlass *k;
3373       bool xk;
3374       if( this_klass->is_subtype_of( tinst_klass ) ) {
3375         // Oop indeed subtypes.  Now keep oop or interface depending
3376         // on whether we are both above the centerline or either is
3377         // below the centerline.  If we are on the centerline
3378         // (e.g., Constant vs. AnyNull interface), use the constant.
3379         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3380         // If we are keeping this_klass, keep its exactness too.
3381         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3382       } else {                  // Does not implement, fall to Object
3383         // Oop does not implement interface, so mixing falls to Object
3384         // just like the verifier does (if both are above the
3385         // centerline fall to interface)
3386         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3387         xk = above_centerline(ptr) ? tinst_xk : false;
3388         // Watch out for Constant vs. AnyNull interface.
3389         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3390         instance_id = InstanceBot;
3391       }
3392       ciObject* o = NULL;  // the Constant value, if any
3393       if (ptr == Constant) {
3394         // Find out which constant.
3395         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3396       }
3397       return make(ptr, k, xk, o, off, instance_id, speculative);
3398     }
3399 
3400     // Either oop vs oop or interface vs interface or interface vs Object
3401 
3402     // !!! Here's how the symmetry requirement breaks down into invariants:
3403     // If we split one up & one down AND they subtype, take the down man.
3404     // If we split one up & one down AND they do NOT subtype, "fall hard".
3405     // If both are up and they subtype, take the subtype class.
3406     // If both are up and they do NOT subtype, "fall hard".
3407     // If both are down and they subtype, take the supertype class.
3408     // If both are down and they do NOT subtype, "fall hard".
3409     // Constants treated as down.
3410 
3411     // Now, reorder the above list; observe that both-down+subtype is also
3412     // "fall hard"; "fall hard" becomes the default case:
3413     // If we split one up & one down AND they subtype, take the down man.
3414     // If both are up and they subtype, take the subtype class.
3415 
3416     // If both are down and they subtype, "fall hard".
3417     // If both are down and they do NOT subtype, "fall hard".
3418     // If both are up and they do NOT subtype, "fall hard".
3419     // If we split one up & one down AND they do NOT subtype, "fall hard".
3420 
3421     // If a proper subtype is exact, and we return it, we return it exactly.
3422     // If a proper supertype is exact, there can be no subtyping relationship!
3423     // If both types are equal to the subtype, exactness is and-ed below the
3424     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3425 
3426     // Check for subtyping:
3427     ciKlass *subtype = NULL;
3428     bool subtype_exact = false;
3429     if( tinst_klass->equals(this_klass) ) {
3430       subtype = this_klass;
3431       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3432     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3433       subtype = this_klass;     // Pick subtyping class
3434       subtype_exact = this_xk;
3435     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3436       subtype = tinst_klass;    // Pick subtyping class
3437       subtype_exact = tinst_xk;
3438     }
3439 
3440     if( subtype ) {
3441       if( above_centerline(ptr) ) { // both are up?
3442         this_klass = tinst_klass = subtype;
3443         this_xk = tinst_xk = subtype_exact;
3444       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3445         this_klass = tinst_klass; // tinst is down; keep down man
3446         this_xk = tinst_xk;
3447       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3448         tinst_klass = this_klass; // this is down; keep down man
3449         tinst_xk = this_xk;
3450       } else {
3451         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3452       }
3453     }
3454 
3455     // Check for classes now being equal
3456     if (tinst_klass->equals(this_klass)) {
3457       // If the klasses are equal, the constants may still differ.  Fall to
3458       // NotNull if they do (neither constant is NULL; that is a special case
3459       // handled elsewhere).
3460       ciObject* o = NULL;             // Assume not constant when done
3461       ciObject* this_oop  = const_oop();
3462       ciObject* tinst_oop = tinst->const_oop();
3463       if( ptr == Constant ) {
3464         if (this_oop != NULL && tinst_oop != NULL &&
3465             this_oop->equals(tinst_oop) )
3466           o = this_oop;
3467         else if (above_centerline(this ->_ptr))
3468           o = tinst_oop;
3469         else if (above_centerline(tinst ->_ptr))
3470           o = this_oop;
3471         else
3472           ptr = NotNull;
3473       }
3474       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
3475     } // Else classes are not equal
3476 
3477     // Since klasses are different, we require a LCA in the Java
3478     // class hierarchy - which means we have to fall to at least NotNull.
3479     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3480       ptr = NotNull;
3481     instance_id = InstanceBot;
3482 
3483     // Now we find the LCA of Java classes
3484     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3485     return make(ptr, k, false, NULL, off, instance_id, speculative);
3486   } // End of case InstPtr
3487 
3488   } // End of switch
3489   return this;                  // Return the double constant
3490 }
3491 
3492 
3493 //------------------------java_mirror_type--------------------------------------
3494 ciType* TypeInstPtr::java_mirror_type() const {
3495   // must be a singleton type
3496   if( const_oop() == NULL )  return NULL;
3497 
3498   // must be of type java.lang.Class
3499   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3500 
3501   return const_oop()->as_instance()->java_mirror_type();
3502 }
3503 
3504 
3505 //------------------------------xdual------------------------------------------
3506 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3507 // inheritance mechanism.
3508 const Type *TypeInstPtr::xdual() const {
3509   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
3510 }
3511 
3512 //------------------------------eq---------------------------------------------
3513 // Structural equality check for Type representations
3514 bool TypeInstPtr::eq( const Type *t ) const {
3515   const TypeInstPtr *p = t->is_instptr();
3516   return
3517     klass()->equals(p->klass()) &&
3518     TypeOopPtr::eq(p);          // Check sub-type stuff
3519 }
3520 
3521 //------------------------------hash-------------------------------------------
3522 // Type-specific hashing function.
3523 int TypeInstPtr::hash(void) const {
3524   int hash = klass()->hash() + TypeOopPtr::hash();
3525   return hash;
3526 }
3527 
3528 //------------------------------dump2------------------------------------------
3529 // Dump oop Type
3530 #ifndef PRODUCT
3531 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3532   // Print the name of the klass.
3533   klass()->print_name_on(st);
3534 
3535   switch( _ptr ) {
3536   case Constant:
3537     // TO DO: Make CI print the hex address of the underlying oop.
3538     if (WizardMode || Verbose) {
3539       const_oop()->print_oop(st);
3540     }
3541   case BotPTR:
3542     if (!WizardMode && !Verbose) {
3543       if( _klass_is_exact ) st->print(":exact");
3544       break;
3545     }
3546   case TopPTR:
3547   case AnyNull:
3548   case NotNull:
3549     st->print(":%s", ptr_msg[_ptr]);
3550     if( _klass_is_exact ) st->print(":exact");
3551     break;
3552   }
3553 
3554   if( _offset ) {               // Dump offset, if any
3555     if( _offset == OffsetBot )      st->print("+any");
3556     else if( _offset == OffsetTop ) st->print("+unknown");
3557     else st->print("+%d", _offset);
3558   }
3559 
3560   st->print(" *");
3561   if (_instance_id == InstanceTop)
3562     st->print(",iid=top");
3563   else if (_instance_id != InstanceBot)
3564     st->print(",iid=%d",_instance_id);
3565 
3566   dump_speculative(st);
3567 }
3568 #endif
3569 
3570 //------------------------------add_offset-------------------------------------
3571 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3572   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
3573 }
3574 
3575 const Type *TypeInstPtr::remove_speculative() const {
3576   if (_speculative == NULL) {
3577     return this;
3578   }
3579   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
3580 }
3581 
3582 //=============================================================================
3583 // Convenience common pre-built types.
3584 const TypeAryPtr *TypeAryPtr::RANGE;
3585 const TypeAryPtr *TypeAryPtr::OOPS;
3586 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3587 const TypeAryPtr *TypeAryPtr::BYTES;
3588 const TypeAryPtr *TypeAryPtr::SHORTS;
3589 const TypeAryPtr *TypeAryPtr::CHARS;
3590 const TypeAryPtr *TypeAryPtr::INTS;
3591 const TypeAryPtr *TypeAryPtr::LONGS;
3592 const TypeAryPtr *TypeAryPtr::FLOATS;
3593 const TypeAryPtr *TypeAryPtr::DOUBLES;
3594 
3595 //------------------------------make-------------------------------------------
3596 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
3597   assert(!(k == NULL && ary->_elem->isa_int()),
3598          "integral arrays must be pre-equipped with a class");
3599   if (!xk)  xk = ary->ary_must_be_exact();
3600   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3601   if (!UseExactTypes)  xk = (ptr == Constant);
3602   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
3603 }
3604 
3605 //------------------------------make-------------------------------------------
3606 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
3607   assert(!(k == NULL && ary->_elem->isa_int()),
3608          "integral arrays must be pre-equipped with a class");
3609   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3610   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3611   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3612   if (!UseExactTypes)  xk = (ptr == Constant);
3613   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
3614 }
3615 
3616 //------------------------------cast_to_ptr_type-------------------------------
3617 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3618   if( ptr == _ptr ) return this;
3619   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
3620 }
3621 
3622 
3623 //-----------------------------cast_to_exactness-------------------------------
3624 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3625   if( klass_is_exact == _klass_is_exact ) return this;
3626   if (!UseExactTypes)  return this;
3627   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3628   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
3629 }
3630 
3631 //-----------------------------cast_to_instance_id----------------------------
3632 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3633   if( instance_id == _instance_id ) return this;
3634   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
3635 }
3636 
3637 //-----------------------------narrow_size_type-------------------------------
3638 // Local cache for arrayOopDesc::max_array_length(etype),
3639 // which is kind of slow (and cached elsewhere by other users).
3640 static jint max_array_length_cache[T_CONFLICT+1];
3641 static jint max_array_length(BasicType etype) {
3642   jint& cache = max_array_length_cache[etype];
3643   jint res = cache;
3644   if (res == 0) {
3645     switch (etype) {
3646     case T_NARROWOOP:
3647       etype = T_OBJECT;
3648       break;
3649     case T_NARROWKLASS:
3650     case T_CONFLICT:
3651     case T_ILLEGAL:
3652     case T_VOID:
3653       etype = T_BYTE;           // will produce conservatively high value
3654     }
3655     cache = res = arrayOopDesc::max_array_length(etype);
3656   }
3657   return res;
3658 }
3659 
3660 // Narrow the given size type to the index range for the given array base type.
3661 // Return NULL if the resulting int type becomes empty.
3662 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3663   jint hi = size->_hi;
3664   jint lo = size->_lo;
3665   jint min_lo = 0;
3666   jint max_hi = max_array_length(elem()->basic_type());
3667   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3668   bool chg = false;
3669   if (lo < min_lo) {
3670     lo = min_lo;
3671     if (size->is_con()) {
3672       hi = lo;
3673     }
3674     chg = true;
3675   }
3676   if (hi > max_hi) {
3677     hi = max_hi;
3678     if (size->is_con()) {
3679       lo = hi;
3680     }
3681     chg = true;
3682   }
3683   // Negative length arrays will produce weird intermediate dead fast-path code
3684   if (lo > hi)
3685     return TypeInt::ZERO;
3686   if (!chg)
3687     return size;
3688   return TypeInt::make(lo, hi, Type::WidenMin);
3689 }
3690 
3691 //-------------------------------cast_to_size----------------------------------
3692 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3693   assert(new_size != NULL, "");
3694   new_size = narrow_size_type(new_size);
3695   if (new_size == size())  return this;
3696   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3697   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
3698 }
3699 
3700 
3701 //------------------------------cast_to_stable---------------------------------
3702 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3703   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3704     return this;
3705 
3706   const Type* elem = this->elem();
3707   const TypePtr* elem_ptr = elem->make_ptr();
3708 
3709   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3710     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3711     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3712   }
3713 
3714   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3715 
3716   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3717 }
3718 
3719 //-----------------------------stable_dimension--------------------------------
3720 int TypeAryPtr::stable_dimension() const {
3721   if (!is_stable())  return 0;
3722   int dim = 1;
3723   const TypePtr* elem_ptr = elem()->make_ptr();
3724   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3725     dim += elem_ptr->is_aryptr()->stable_dimension();
3726   return dim;
3727 }
3728 
3729 //------------------------------eq---------------------------------------------
3730 // Structural equality check for Type representations
3731 bool TypeAryPtr::eq( const Type *t ) const {
3732   const TypeAryPtr *p = t->is_aryptr();
3733   return
3734     _ary == p->_ary &&  // Check array
3735     TypeOopPtr::eq(p);  // Check sub-parts
3736 }
3737 
3738 //------------------------------hash-------------------------------------------
3739 // Type-specific hashing function.
3740 int TypeAryPtr::hash(void) const {
3741   return (intptr_t)_ary + TypeOopPtr::hash();
3742 }
3743 
3744 //------------------------------meet-------------------------------------------
3745 // Compute the MEET of two types.  It returns a new Type object.
3746 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3747   // Perform a fast test for common case; meeting the same types together.
3748   if( this == t ) return this;  // Meeting same type-rep?
3749   // Current "this->_base" is Pointer
3750   switch (t->base()) {          // switch on original type
3751 
3752   // Mixing ints & oops happens when javac reuses local variables
3753   case Int:
3754   case Long:
3755   case FloatTop:
3756   case FloatCon:
3757   case FloatBot:
3758   case DoubleTop:
3759   case DoubleCon:
3760   case DoubleBot:
3761   case NarrowOop:
3762   case NarrowKlass:
3763   case Bottom:                  // Ye Olde Default
3764     return Type::BOTTOM;
3765   case Top:
3766     return this;
3767 
3768   default:                      // All else is a mistake
3769     typerr(t);
3770 
3771   case OopPtr: {                // Meeting to OopPtrs
3772     // Found a OopPtr type vs self-AryPtr type
3773     const TypeOopPtr *tp = t->is_oopptr();
3774     int offset = meet_offset(tp->offset());
3775     PTR ptr = meet_ptr(tp->ptr());
3776     switch (tp->ptr()) {
3777     case TopPTR:
3778     case AnyNull: {
3779       int instance_id = meet_instance_id(InstanceTop);
3780       const TypeOopPtr* speculative = xmeet_speculative(tp);
3781       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3782                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3783     }
3784     case BotPTR:
3785     case NotNull: {
3786       int instance_id = meet_instance_id(tp->instance_id());
3787       const TypeOopPtr* speculative = xmeet_speculative(tp);
3788       return TypeOopPtr::make(ptr, offset, instance_id, speculative);
3789     }
3790     default: ShouldNotReachHere();
3791     }
3792   }
3793 
3794   case AnyPtr: {                // Meeting two AnyPtrs
3795     // Found an AnyPtr type vs self-AryPtr type
3796     const TypePtr *tp = t->is_ptr();
3797     int offset = meet_offset(tp->offset());
3798     PTR ptr = meet_ptr(tp->ptr());
3799     switch (tp->ptr()) {
3800     case TopPTR:
3801       return this;
3802     case BotPTR:
3803     case NotNull:
3804       return TypePtr::make(AnyPtr, ptr, offset);
3805     case Null:
3806       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3807       // else fall through to AnyNull
3808     case AnyNull: {
3809       int instance_id = meet_instance_id(InstanceTop);
3810       const TypeOopPtr* speculative = _speculative;
3811       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3812                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3813     }
3814     default: ShouldNotReachHere();
3815     }
3816   }
3817 
3818   case MetadataPtr:
3819   case KlassPtr:
3820   case RawPtr: return TypePtr::BOTTOM;
3821 
3822   case AryPtr: {                // Meeting 2 references?
3823     const TypeAryPtr *tap = t->is_aryptr();
3824     int off = meet_offset(tap->offset());
3825     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
3826     PTR ptr = meet_ptr(tap->ptr());
3827     int instance_id = meet_instance_id(tap->instance_id());
3828     const TypeOopPtr* speculative = xmeet_speculative(tap);
3829     ciKlass* lazy_klass = NULL;
3830     if (tary->_elem->isa_int()) {
3831       // Integral array element types have irrelevant lattice relations.
3832       // It is the klass that determines array layout, not the element type.
3833       if (_klass == NULL)
3834         lazy_klass = tap->_klass;
3835       else if (tap->_klass == NULL || tap->_klass == _klass) {
3836         lazy_klass = _klass;
3837       } else {
3838         // Something like byte[int+] meets char[int+].
3839         // This must fall to bottom, not (int[-128..65535])[int+].
3840         instance_id = InstanceBot;
3841         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3842       }
3843     } else // Non integral arrays.
3844       // Must fall to bottom if exact klasses in upper lattice
3845       // are not equal or super klass is exact.
3846       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
3847           // meet with top[] and bottom[] are processed further down:
3848           tap->_klass != NULL  && this->_klass != NULL   &&
3849           // both are exact and not equal:
3850           ((tap->_klass_is_exact && this->_klass_is_exact) ||
3851            // 'tap'  is exact and super or unrelated:
3852            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3853            // 'this' is exact and super or unrelated:
3854            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3855       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
3856       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
3857     }
3858 
3859     bool xk = false;
3860     switch (tap->ptr()) {
3861     case AnyNull:
3862     case TopPTR:
3863       // Compute new klass on demand, do not use tap->_klass
3864       if (below_centerline(this->_ptr)) {
3865         xk = this->_klass_is_exact;
3866       } else {
3867         xk = (tap->_klass_is_exact | this->_klass_is_exact);
3868       }
3869       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
3870     case Constant: {
3871       ciObject* o = const_oop();
3872       if( _ptr == Constant ) {
3873         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3874           xk = (klass() == tap->klass());
3875           ptr = NotNull;
3876           o = NULL;
3877           instance_id = InstanceBot;
3878         } else {
3879           xk = true;
3880         }
3881       } else if(above_centerline(_ptr)) {
3882         o = tap->const_oop();
3883         xk = true;
3884       } else {
3885         // Only precise for identical arrays
3886         xk = this->_klass_is_exact && (klass() == tap->klass());
3887       }
3888       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
3889     }
3890     case NotNull:
3891     case BotPTR:
3892       // Compute new klass on demand, do not use tap->_klass
3893       if (above_centerline(this->_ptr))
3894             xk = tap->_klass_is_exact;
3895       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3896               (klass() == tap->klass()); // Only precise for identical arrays
3897       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
3898     default: ShouldNotReachHere();
3899     }
3900   }
3901 
3902   // All arrays inherit from Object class
3903   case InstPtr: {
3904     const TypeInstPtr *tp = t->is_instptr();
3905     int offset = meet_offset(tp->offset());
3906     PTR ptr = meet_ptr(tp->ptr());
3907     int instance_id = meet_instance_id(tp->instance_id());
3908     const TypeOopPtr* speculative = xmeet_speculative(tp);
3909     switch (ptr) {
3910     case TopPTR:
3911     case AnyNull:                // Fall 'down' to dual of object klass
3912       // For instances when a subclass meets a superclass we fall
3913       // below the centerline when the superclass is exact. We need to
3914       // do the same here.
3915       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
3916         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3917       } else {
3918         // cannot subclass, so the meet has to fall badly below the centerline
3919         ptr = NotNull;
3920         instance_id = InstanceBot;
3921         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
3922       }
3923     case Constant:
3924     case NotNull:
3925     case BotPTR:                // Fall down to object klass
3926       // LCA is object_klass, but if we subclass from the top we can do better
3927       if (above_centerline(tp->ptr())) {
3928         // If 'tp'  is above the centerline and it is Object class
3929         // then we can subclass in the Java class hierarchy.
3930         // For instances when a subclass meets a superclass we fall
3931         // below the centerline when the superclass is exact. We need
3932         // to do the same here.
3933         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
3934           // that is, my array type is a subtype of 'tp' klass
3935           return make(ptr, (ptr == Constant ? const_oop() : NULL),
3936                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
3937         }
3938       }
3939       // The other case cannot happen, since t cannot be a subtype of an array.
3940       // The meet falls down to Object class below centerline.
3941       if( ptr == Constant )
3942          ptr = NotNull;
3943       instance_id = InstanceBot;
3944       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
3945     default: typerr(t);
3946     }
3947   }
3948   }
3949   return this;                  // Lint noise
3950 }
3951 
3952 //------------------------------xdual------------------------------------------
3953 // Dual: compute field-by-field dual
3954 const Type *TypeAryPtr::xdual() const {
3955   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
3956 }
3957 
3958 //----------------------interface_vs_oop---------------------------------------
3959 #ifdef ASSERT
3960 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3961   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3962   if (t_aryptr) {
3963     return _ary->interface_vs_oop(t_aryptr->_ary);
3964   }
3965   return false;
3966 }
3967 #endif
3968 
3969 //------------------------------dump2------------------------------------------
3970 #ifndef PRODUCT
3971 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3972   _ary->dump2(d,depth,st);
3973   switch( _ptr ) {
3974   case Constant:
3975     const_oop()->print(st);
3976     break;
3977   case BotPTR:
3978     if (!WizardMode && !Verbose) {
3979       if( _klass_is_exact ) st->print(":exact");
3980       break;
3981     }
3982   case TopPTR:
3983   case AnyNull:
3984   case NotNull:
3985     st->print(":%s", ptr_msg[_ptr]);
3986     if( _klass_is_exact ) st->print(":exact");
3987     break;
3988   }
3989 
3990   if( _offset != 0 ) {
3991     int header_size = objArrayOopDesc::header_size() * wordSize;
3992     if( _offset == OffsetTop )       st->print("+undefined");
3993     else if( _offset == OffsetBot )  st->print("+any");
3994     else if( _offset < header_size ) st->print("+%d", _offset);
3995     else {
3996       BasicType basic_elem_type = elem()->basic_type();
3997       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3998       int elem_size = type2aelembytes(basic_elem_type);
3999       st->print("[%d]", (_offset - array_base)/elem_size);
4000     }
4001   }
4002   st->print(" *");
4003   if (_instance_id == InstanceTop)
4004     st->print(",iid=top");
4005   else if (_instance_id != InstanceBot)
4006     st->print(",iid=%d",_instance_id);
4007 
4008   dump_speculative(st);
4009 }
4010 #endif
4011 
4012 bool TypeAryPtr::empty(void) const {
4013   if (_ary->empty())       return true;
4014   return TypeOopPtr::empty();
4015 }
4016 
4017 //------------------------------add_offset-------------------------------------
4018 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4019   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
4020 }
4021 
4022 const Type *TypeAryPtr::remove_speculative() const {
4023   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL);
4024 }
4025 
4026 //=============================================================================
4027 
4028 //------------------------------hash-------------------------------------------
4029 // Type-specific hashing function.
4030 int TypeNarrowPtr::hash(void) const {
4031   return _ptrtype->hash() + 7;
4032 }
4033 
4034 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4035   return _ptrtype->singleton();
4036 }
4037 
4038 bool TypeNarrowPtr::empty(void) const {
4039   return _ptrtype->empty();
4040 }
4041 
4042 intptr_t TypeNarrowPtr::get_con() const {
4043   return _ptrtype->get_con();
4044 }
4045 
4046 bool TypeNarrowPtr::eq( const Type *t ) const {
4047   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4048   if (tc != NULL) {
4049     if (_ptrtype->base() != tc->_ptrtype->base()) {
4050       return false;
4051     }
4052     return tc->_ptrtype->eq(_ptrtype);
4053   }
4054   return false;
4055 }
4056 
4057 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4058   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4059   return make_same_narrowptr(odual);
4060 }
4061 
4062 
4063 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4064   if (isa_same_narrowptr(kills)) {
4065     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4066     if (ft->empty())
4067       return Type::TOP;           // Canonical empty value
4068     if (ft->isa_ptr()) {
4069       return make_hash_same_narrowptr(ft->isa_ptr());
4070     }
4071     return ft;
4072   } else if (kills->isa_ptr()) {
4073     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4074     if (ft->empty())
4075       return Type::TOP;           // Canonical empty value
4076     return ft;
4077   } else {
4078     return Type::TOP;
4079   }
4080 }
4081 
4082 //------------------------------xmeet------------------------------------------
4083 // Compute the MEET of two types.  It returns a new Type object.
4084 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4085   // Perform a fast test for common case; meeting the same types together.
4086   if( this == t ) return this;  // Meeting same type-rep?
4087 
4088   if (t->base() == base()) {
4089     const Type* result = _ptrtype->xmeet(t->make_ptr());
4090     if (result->isa_ptr()) {
4091       return make_hash_same_narrowptr(result->is_ptr());
4092     }
4093     return result;
4094   }
4095 
4096   // Current "this->_base" is NarrowKlass or NarrowOop
4097   switch (t->base()) {          // switch on original type
4098 
4099   case Int:                     // Mixing ints & oops happens when javac
4100   case Long:                    // reuses local variables
4101   case FloatTop:
4102   case FloatCon:
4103   case FloatBot:
4104   case DoubleTop:
4105   case DoubleCon:
4106   case DoubleBot:
4107   case AnyPtr:
4108   case RawPtr:
4109   case OopPtr:
4110   case InstPtr:
4111   case AryPtr:
4112   case MetadataPtr:
4113   case KlassPtr:
4114   case NarrowOop:
4115   case NarrowKlass:
4116 
4117   case Bottom:                  // Ye Olde Default
4118     return Type::BOTTOM;
4119   case Top:
4120     return this;
4121 
4122   default:                      // All else is a mistake
4123     typerr(t);
4124 
4125   } // End of switch
4126 
4127   return this;
4128 }
4129 
4130 #ifndef PRODUCT
4131 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4132   _ptrtype->dump2(d, depth, st);
4133 }
4134 #endif
4135 
4136 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4137 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4138 
4139 
4140 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4141   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4142 }
4143 
4144 
4145 #ifndef PRODUCT
4146 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4147   st->print("narrowoop: ");
4148   TypeNarrowPtr::dump2(d, depth, st);
4149 }
4150 #endif
4151 
4152 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4153 
4154 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4155   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4156 }
4157 
4158 #ifndef PRODUCT
4159 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4160   st->print("narrowklass: ");
4161   TypeNarrowPtr::dump2(d, depth, st);
4162 }
4163 #endif
4164 
4165 
4166 //------------------------------eq---------------------------------------------
4167 // Structural equality check for Type representations
4168 bool TypeMetadataPtr::eq( const Type *t ) const {
4169   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4170   ciMetadata* one = metadata();
4171   ciMetadata* two = a->metadata();
4172   if (one == NULL || two == NULL) {
4173     return (one == two) && TypePtr::eq(t);
4174   } else {
4175     return one->equals(two) && TypePtr::eq(t);
4176   }
4177 }
4178 
4179 //------------------------------hash-------------------------------------------
4180 // Type-specific hashing function.
4181 int TypeMetadataPtr::hash(void) const {
4182   return
4183     (metadata() ? metadata()->hash() : 0) +
4184     TypePtr::hash();
4185 }
4186 
4187 //------------------------------singleton--------------------------------------
4188 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4189 // constants
4190 bool TypeMetadataPtr::singleton(void) const {
4191   // detune optimizer to not generate constant metadta + constant offset as a constant!
4192   // TopPTR, Null, AnyNull, Constant are all singletons
4193   return (_offset == 0) && !below_centerline(_ptr);
4194 }
4195 
4196 //------------------------------add_offset-------------------------------------
4197 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4198   return make( _ptr, _metadata, xadd_offset(offset));
4199 }
4200 
4201 //-----------------------------filter------------------------------------------
4202 // Do not allow interface-vs.-noninterface joins to collapse to top.
4203 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4204   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4205   if (ft == NULL || ft->empty())
4206     return Type::TOP;           // Canonical empty value
4207   return ft;
4208 }
4209 
4210  //------------------------------get_con----------------------------------------
4211 intptr_t TypeMetadataPtr::get_con() const {
4212   assert( _ptr == Null || _ptr == Constant, "" );
4213   assert( _offset >= 0, "" );
4214 
4215   if (_offset != 0) {
4216     // After being ported to the compiler interface, the compiler no longer
4217     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4218     // to a handle at compile time.  This handle is embedded in the generated
4219     // code and dereferenced at the time the nmethod is made.  Until that time,
4220     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4221     // have access to the addresses!).  This does not seem to currently happen,
4222     // but this assertion here is to help prevent its occurence.
4223     tty->print_cr("Found oop constant with non-zero offset");
4224     ShouldNotReachHere();
4225   }
4226 
4227   return (intptr_t)metadata()->constant_encoding();
4228 }
4229 
4230 //------------------------------cast_to_ptr_type-------------------------------
4231 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4232   if( ptr == _ptr ) return this;
4233   return make(ptr, metadata(), _offset);
4234 }
4235 
4236 //------------------------------meet-------------------------------------------
4237 // Compute the MEET of two types.  It returns a new Type object.
4238 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4239   // Perform a fast test for common case; meeting the same types together.
4240   if( this == t ) return this;  // Meeting same type-rep?
4241 
4242   // Current "this->_base" is OopPtr
4243   switch (t->base()) {          // switch on original type
4244 
4245   case Int:                     // Mixing ints & oops happens when javac
4246   case Long:                    // reuses local variables
4247   case FloatTop:
4248   case FloatCon:
4249   case FloatBot:
4250   case DoubleTop:
4251   case DoubleCon:
4252   case DoubleBot:
4253   case NarrowOop:
4254   case NarrowKlass:
4255   case Bottom:                  // Ye Olde Default
4256     return Type::BOTTOM;
4257   case Top:
4258     return this;
4259 
4260   default:                      // All else is a mistake
4261     typerr(t);
4262 
4263   case AnyPtr: {
4264     // Found an AnyPtr type vs self-OopPtr type
4265     const TypePtr *tp = t->is_ptr();
4266     int offset = meet_offset(tp->offset());
4267     PTR ptr = meet_ptr(tp->ptr());
4268     switch (tp->ptr()) {
4269     case Null:
4270       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
4271       // else fall through:
4272     case TopPTR:
4273     case AnyNull: {
4274       return make(ptr, NULL, offset);
4275     }
4276     case BotPTR:
4277     case NotNull:
4278       return TypePtr::make(AnyPtr, ptr, offset);
4279     default: typerr(t);
4280     }
4281   }
4282 
4283   case RawPtr:
4284   case KlassPtr:
4285   case OopPtr:
4286   case InstPtr:
4287   case AryPtr:
4288     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4289 
4290   case MetadataPtr: {
4291     const TypeMetadataPtr *tp = t->is_metadataptr();
4292     int offset = meet_offset(tp->offset());
4293     PTR tptr = tp->ptr();
4294     PTR ptr = meet_ptr(tptr);
4295     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4296     if (tptr == TopPTR || _ptr == TopPTR ||
4297         metadata()->equals(tp->metadata())) {
4298       return make(ptr, md, offset);
4299     }
4300     // metadata is different
4301     if( ptr == Constant ) {  // Cannot be equal constants, so...
4302       if( tptr == Constant && _ptr != Constant)  return t;
4303       if( _ptr == Constant && tptr != Constant)  return this;
4304       ptr = NotNull;            // Fall down in lattice
4305     }
4306     return make(ptr, NULL, offset);
4307     break;
4308   }
4309   } // End of switch
4310   return this;                  // Return the double constant
4311 }
4312 
4313 
4314 //------------------------------xdual------------------------------------------
4315 // Dual of a pure metadata pointer.
4316 const Type *TypeMetadataPtr::xdual() const {
4317   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4318 }
4319 
4320 //------------------------------dump2------------------------------------------
4321 #ifndef PRODUCT
4322 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4323   st->print("metadataptr:%s", ptr_msg[_ptr]);
4324   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4325   switch( _offset ) {
4326   case OffsetTop: st->print("+top"); break;
4327   case OffsetBot: st->print("+any"); break;
4328   case         0: break;
4329   default:        st->print("+%d",_offset); break;
4330   }
4331 }
4332 #endif
4333 
4334 
4335 //=============================================================================
4336 // Convenience common pre-built type.
4337 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4338 
4339 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4340   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4341 }
4342 
4343 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4344   return make(Constant, m, 0);
4345 }
4346 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4347   return make(Constant, m, 0);
4348 }
4349 
4350 //------------------------------make-------------------------------------------
4351 // Create a meta data constant
4352 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4353   assert(m == NULL || !m->is_klass(), "wrong type");
4354   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4355 }
4356 
4357 
4358 //=============================================================================
4359 // Convenience common pre-built types.
4360 
4361 // Not-null object klass or below
4362 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4363 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4364 
4365 //------------------------------TypeKlassPtr-----------------------------------
4366 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4367   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4368 }
4369 
4370 //------------------------------make-------------------------------------------
4371 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4372 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4373   assert( k != NULL, "Expect a non-NULL klass");
4374   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4375   TypeKlassPtr *r =
4376     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4377 
4378   return r;
4379 }
4380 
4381 //------------------------------eq---------------------------------------------
4382 // Structural equality check for Type representations
4383 bool TypeKlassPtr::eq( const Type *t ) const {
4384   const TypeKlassPtr *p = t->is_klassptr();
4385   return
4386     klass()->equals(p->klass()) &&
4387     TypePtr::eq(p);
4388 }
4389 
4390 //------------------------------hash-------------------------------------------
4391 // Type-specific hashing function.
4392 int TypeKlassPtr::hash(void) const {
4393   return klass()->hash() + TypePtr::hash();
4394 }
4395 
4396 //------------------------------singleton--------------------------------------
4397 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4398 // constants
4399 bool TypeKlassPtr::singleton(void) const {
4400   // detune optimizer to not generate constant klass + constant offset as a constant!
4401   // TopPTR, Null, AnyNull, Constant are all singletons
4402   return (_offset == 0) && !below_centerline(_ptr);
4403 }
4404 
4405 // Do not allow interface-vs.-noninterface joins to collapse to top.
4406 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4407   // logic here mirrors the one from TypeOopPtr::filter. See comments
4408   // there.
4409   const Type* ft = join_helper(kills, include_speculative);
4410   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4411   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4412 
4413   if (ft->empty()) {
4414     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4415       return kills;             // Uplift to interface
4416 
4417     return Type::TOP;           // Canonical empty value
4418   }
4419 
4420   // Interface klass type could be exact in opposite to interface type,
4421   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4422   if (ftkp != NULL && ktkp != NULL &&
4423       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4424       !ftkp->klass_is_exact() && // Keep exact interface klass
4425       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4426     return ktkp->cast_to_ptr_type(ftkp->ptr());
4427   }
4428 
4429   return ft;
4430 }
4431 
4432 //----------------------compute_klass------------------------------------------
4433 // Compute the defining klass for this class
4434 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4435   // Compute _klass based on element type.
4436   ciKlass* k_ary = NULL;
4437   const TypeInstPtr *tinst;
4438   const TypeAryPtr *tary;
4439   const Type* el = elem();
4440   if (el->isa_narrowoop()) {
4441     el = el->make_ptr();
4442   }
4443 
4444   // Get element klass
4445   if ((tinst = el->isa_instptr()) != NULL) {
4446     // Compute array klass from element klass
4447     k_ary = ciObjArrayKlass::make(tinst->klass());
4448   } else if ((tary = el->isa_aryptr()) != NULL) {
4449     // Compute array klass from element klass
4450     ciKlass* k_elem = tary->klass();
4451     // If element type is something like bottom[], k_elem will be null.
4452     if (k_elem != NULL)
4453       k_ary = ciObjArrayKlass::make(k_elem);
4454   } else if ((el->base() == Type::Top) ||
4455              (el->base() == Type::Bottom)) {
4456     // element type of Bottom occurs from meet of basic type
4457     // and object; Top occurs when doing join on Bottom.
4458     // Leave k_ary at NULL.
4459   } else {
4460     // Cannot compute array klass directly from basic type,
4461     // since subtypes of TypeInt all have basic type T_INT.
4462 #ifdef ASSERT
4463     if (verify && el->isa_int()) {
4464       // Check simple cases when verifying klass.
4465       BasicType bt = T_ILLEGAL;
4466       if (el == TypeInt::BYTE) {
4467         bt = T_BYTE;
4468       } else if (el == TypeInt::SHORT) {
4469         bt = T_SHORT;
4470       } else if (el == TypeInt::CHAR) {
4471         bt = T_CHAR;
4472       } else if (el == TypeInt::INT) {
4473         bt = T_INT;
4474       } else {
4475         return _klass; // just return specified klass
4476       }
4477       return ciTypeArrayKlass::make(bt);
4478     }
4479 #endif
4480     assert(!el->isa_int(),
4481            "integral arrays must be pre-equipped with a class");
4482     // Compute array klass directly from basic type
4483     k_ary = ciTypeArrayKlass::make(el->basic_type());
4484   }
4485   return k_ary;
4486 }
4487 
4488 //------------------------------klass------------------------------------------
4489 // Return the defining klass for this class
4490 ciKlass* TypeAryPtr::klass() const {
4491   if( _klass ) return _klass;   // Return cached value, if possible
4492 
4493   // Oops, need to compute _klass and cache it
4494   ciKlass* k_ary = compute_klass();
4495 
4496   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4497     // The _klass field acts as a cache of the underlying
4498     // ciKlass for this array type.  In order to set the field,
4499     // we need to cast away const-ness.
4500     //
4501     // IMPORTANT NOTE: we *never* set the _klass field for the
4502     // type TypeAryPtr::OOPS.  This Type is shared between all
4503     // active compilations.  However, the ciKlass which represents
4504     // this Type is *not* shared between compilations, so caching
4505     // this value would result in fetching a dangling pointer.
4506     //
4507     // Recomputing the underlying ciKlass for each request is
4508     // a bit less efficient than caching, but calls to
4509     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4510     ((TypeAryPtr*)this)->_klass = k_ary;
4511     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4512         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4513       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4514     }
4515   }
4516   return k_ary;
4517 }
4518 
4519 
4520 //------------------------------add_offset-------------------------------------
4521 // Access internals of klass object
4522 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4523   return make( _ptr, klass(), xadd_offset(offset) );
4524 }
4525 
4526 //------------------------------cast_to_ptr_type-------------------------------
4527 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4528   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4529   if( ptr == _ptr ) return this;
4530   return make(ptr, _klass, _offset);
4531 }
4532 
4533 
4534 //-----------------------------cast_to_exactness-------------------------------
4535 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4536   if( klass_is_exact == _klass_is_exact ) return this;
4537   if (!UseExactTypes)  return this;
4538   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4539 }
4540 
4541 
4542 //-----------------------------as_instance_type--------------------------------
4543 // Corresponding type for an instance of the given class.
4544 // It will be NotNull, and exact if and only if the klass type is exact.
4545 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4546   ciKlass* k = klass();
4547   bool    xk = klass_is_exact();
4548   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4549   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4550   guarantee(toop != NULL, "need type for given klass");
4551   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4552   return toop->cast_to_exactness(xk)->is_oopptr();
4553 }
4554 
4555 
4556 //------------------------------xmeet------------------------------------------
4557 // Compute the MEET of two types, return a new Type object.
4558 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4559   // Perform a fast test for common case; meeting the same types together.
4560   if( this == t ) return this;  // Meeting same type-rep?
4561 
4562   // Current "this->_base" is Pointer
4563   switch (t->base()) {          // switch on original type
4564 
4565   case Int:                     // Mixing ints & oops happens when javac
4566   case Long:                    // reuses local variables
4567   case FloatTop:
4568   case FloatCon:
4569   case FloatBot:
4570   case DoubleTop:
4571   case DoubleCon:
4572   case DoubleBot:
4573   case NarrowOop:
4574   case NarrowKlass:
4575   case Bottom:                  // Ye Olde Default
4576     return Type::BOTTOM;
4577   case Top:
4578     return this;
4579 
4580   default:                      // All else is a mistake
4581     typerr(t);
4582 
4583   case AnyPtr: {                // Meeting to AnyPtrs
4584     // Found an AnyPtr type vs self-KlassPtr type
4585     const TypePtr *tp = t->is_ptr();
4586     int offset = meet_offset(tp->offset());
4587     PTR ptr = meet_ptr(tp->ptr());
4588     switch (tp->ptr()) {
4589     case TopPTR:
4590       return this;
4591     case Null:
4592       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4593     case AnyNull:
4594       return make( ptr, klass(), offset );
4595     case BotPTR:
4596     case NotNull:
4597       return TypePtr::make(AnyPtr, ptr, offset);
4598     default: typerr(t);
4599     }
4600   }
4601 
4602   case RawPtr:
4603   case MetadataPtr:
4604   case OopPtr:
4605   case AryPtr:                  // Meet with AryPtr
4606   case InstPtr:                 // Meet with InstPtr
4607     return TypePtr::BOTTOM;
4608 
4609   //
4610   //             A-top         }
4611   //           /   |   \       }  Tops
4612   //       B-top A-any C-top   }
4613   //          | /  |  \ |      }  Any-nulls
4614   //       B-any   |   C-any   }
4615   //          |    |    |
4616   //       B-con A-con C-con   } constants; not comparable across classes
4617   //          |    |    |
4618   //       B-not   |   C-not   }
4619   //          | \  |  / |      }  not-nulls
4620   //       B-bot A-not C-bot   }
4621   //           \   |   /       }  Bottoms
4622   //             A-bot         }
4623   //
4624 
4625   case KlassPtr: {  // Meet two KlassPtr types
4626     const TypeKlassPtr *tkls = t->is_klassptr();
4627     int  off     = meet_offset(tkls->offset());
4628     PTR  ptr     = meet_ptr(tkls->ptr());
4629 
4630     // Check for easy case; klasses are equal (and perhaps not loaded!)
4631     // If we have constants, then we created oops so classes are loaded
4632     // and we can handle the constants further down.  This case handles
4633     // not-loaded classes
4634     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4635       return make( ptr, klass(), off );
4636     }
4637 
4638     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4639     ciKlass* tkls_klass = tkls->klass();
4640     ciKlass* this_klass = this->klass();
4641     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4642     assert( this_klass->is_loaded(), "This class should have been loaded.");
4643 
4644     // If 'this' type is above the centerline and is a superclass of the
4645     // other, we can treat 'this' as having the same type as the other.
4646     if ((above_centerline(this->ptr())) &&
4647         tkls_klass->is_subtype_of(this_klass)) {
4648       this_klass = tkls_klass;
4649     }
4650     // If 'tinst' type is above the centerline and is a superclass of the
4651     // other, we can treat 'tinst' as having the same type as the other.
4652     if ((above_centerline(tkls->ptr())) &&
4653         this_klass->is_subtype_of(tkls_klass)) {
4654       tkls_klass = this_klass;
4655     }
4656 
4657     // Check for classes now being equal
4658     if (tkls_klass->equals(this_klass)) {
4659       // If the klasses are equal, the constants may still differ.  Fall to
4660       // NotNull if they do (neither constant is NULL; that is a special case
4661       // handled elsewhere).
4662       if( ptr == Constant ) {
4663         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4664             this->klass()->equals(tkls->klass()));
4665         else if (above_centerline(this->ptr()));
4666         else if (above_centerline(tkls->ptr()));
4667         else
4668           ptr = NotNull;
4669       }
4670       return make( ptr, this_klass, off );
4671     } // Else classes are not equal
4672 
4673     // Since klasses are different, we require the LCA in the Java
4674     // class hierarchy - which means we have to fall to at least NotNull.
4675     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4676       ptr = NotNull;
4677     // Now we find the LCA of Java classes
4678     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4679     return   make( ptr, k, off );
4680   } // End of case KlassPtr
4681 
4682   } // End of switch
4683   return this;                  // Return the double constant
4684 }
4685 
4686 //------------------------------xdual------------------------------------------
4687 // Dual: compute field-by-field dual
4688 const Type    *TypeKlassPtr::xdual() const {
4689   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4690 }
4691 
4692 //------------------------------get_con----------------------------------------
4693 intptr_t TypeKlassPtr::get_con() const {
4694   assert( _ptr == Null || _ptr == Constant, "" );
4695   assert( _offset >= 0, "" );
4696 
4697   if (_offset != 0) {
4698     // After being ported to the compiler interface, the compiler no longer
4699     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4700     // to a handle at compile time.  This handle is embedded in the generated
4701     // code and dereferenced at the time the nmethod is made.  Until that time,
4702     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4703     // have access to the addresses!).  This does not seem to currently happen,
4704     // but this assertion here is to help prevent its occurence.
4705     tty->print_cr("Found oop constant with non-zero offset");
4706     ShouldNotReachHere();
4707   }
4708 
4709   return (intptr_t)klass()->constant_encoding();
4710 }
4711 //------------------------------dump2------------------------------------------
4712 // Dump Klass Type
4713 #ifndef PRODUCT
4714 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4715   switch( _ptr ) {
4716   case Constant:
4717     st->print("precise ");
4718   case NotNull:
4719     {
4720       const char *name = klass()->name()->as_utf8();
4721       if( name ) {
4722         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4723       } else {
4724         ShouldNotReachHere();
4725       }
4726     }
4727   case BotPTR:
4728     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4729   case TopPTR:
4730   case AnyNull:
4731     st->print(":%s", ptr_msg[_ptr]);
4732     if( _klass_is_exact ) st->print(":exact");
4733     break;
4734   }
4735 
4736   if( _offset ) {               // Dump offset, if any
4737     if( _offset == OffsetBot )      { st->print("+any"); }
4738     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4739     else                            { st->print("+%d", _offset); }
4740   }
4741 
4742   st->print(" *");
4743 }
4744 #endif
4745 
4746 
4747 
4748 //=============================================================================
4749 // Convenience common pre-built types.
4750 
4751 //------------------------------make-------------------------------------------
4752 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4753   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4754 }
4755 
4756 //------------------------------make-------------------------------------------
4757 const TypeFunc *TypeFunc::make(ciMethod* method) {
4758   Compile* C = Compile::current();
4759   const TypeFunc* tf = C->last_tf(method); // check cache
4760   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4761   const TypeTuple *domain;
4762   if (method->is_static()) {
4763     domain = TypeTuple::make_domain(NULL, method->signature());
4764   } else {
4765     domain = TypeTuple::make_domain(method->holder(), method->signature());
4766   }
4767   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4768   tf = TypeFunc::make(domain, range);
4769   C->set_last_tf(method, tf);  // fill cache
4770   return tf;
4771 }
4772 
4773 //------------------------------meet-------------------------------------------
4774 // Compute the MEET of two types.  It returns a new Type object.
4775 const Type *TypeFunc::xmeet( const Type *t ) const {
4776   // Perform a fast test for common case; meeting the same types together.
4777   if( this == t ) return this;  // Meeting same type-rep?
4778 
4779   // Current "this->_base" is Func
4780   switch (t->base()) {          // switch on original type
4781 
4782   case Bottom:                  // Ye Olde Default
4783     return t;
4784 
4785   default:                      // All else is a mistake
4786     typerr(t);
4787 
4788   case Top:
4789     break;
4790   }
4791   return this;                  // Return the double constant
4792 }
4793 
4794 //------------------------------xdual------------------------------------------
4795 // Dual: compute field-by-field dual
4796 const Type *TypeFunc::xdual() const {
4797   return this;
4798 }
4799 
4800 //------------------------------eq---------------------------------------------
4801 // Structural equality check for Type representations
4802 bool TypeFunc::eq( const Type *t ) const {
4803   const TypeFunc *a = (const TypeFunc*)t;
4804   return _domain == a->_domain &&
4805     _range == a->_range;
4806 }
4807 
4808 //------------------------------hash-------------------------------------------
4809 // Type-specific hashing function.
4810 int TypeFunc::hash(void) const {
4811   return (intptr_t)_domain + (intptr_t)_range;
4812 }
4813 
4814 //------------------------------dump2------------------------------------------
4815 // Dump Function Type
4816 #ifndef PRODUCT
4817 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4818   if( _range->_cnt <= Parms )
4819     st->print("void");
4820   else {
4821     uint i;
4822     for (i = Parms; i < _range->_cnt-1; i++) {
4823       _range->field_at(i)->dump2(d,depth,st);
4824       st->print("/");
4825     }
4826     _range->field_at(i)->dump2(d,depth,st);
4827   }
4828   st->print(" ");
4829   st->print("( ");
4830   if( !depth || d[this] ) {     // Check for recursive dump
4831     st->print("...)");
4832     return;
4833   }
4834   d.Insert((void*)this,(void*)this);    // Stop recursion
4835   if (Parms < _domain->_cnt)
4836     _domain->field_at(Parms)->dump2(d,depth-1,st);
4837   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4838     st->print(", ");
4839     _domain->field_at(i)->dump2(d,depth-1,st);
4840   }
4841   st->print(" )");
4842 }
4843 #endif
4844 
4845 //------------------------------singleton--------------------------------------
4846 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4847 // constants (Ldi nodes).  Singletons are integer, float or double constants
4848 // or a single symbol.
4849 bool TypeFunc::singleton(void) const {
4850   return false;                 // Never a singleton
4851 }
4852 
4853 bool TypeFunc::empty(void) const {
4854   return false;                 // Never empty
4855 }
4856 
4857 
4858 BasicType TypeFunc::return_type() const{
4859   if (range()->cnt() == TypeFunc::Parms) {
4860     return T_VOID;
4861   }
4862   return range()->field_at(TypeFunc::Parms)->basic_type();
4863 }