1 //
   2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedClassPointers) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 563     } else {
 564       klass_load_size = 1*BytesPerInstWord;
 565     }
 566     if (Assembler::is_simm13(v_off)) {
 567       return klass_load_size +
 568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 569              NativeCall::instruction_size);  // call; delay slot
 570     } else {
 571       return klass_load_size +
 572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 573              NativeCall::instruction_size);  // call; delay slot
 574     }
 575   }
 576 }
 577 
 578 int MachCallRuntimeNode::ret_addr_offset() {
 579 #ifdef _LP64
 580   if (MacroAssembler::is_far_target(entry_point())) {
 581     return NativeFarCall::instruction_size;
 582   } else {
 583     return NativeCall::instruction_size;
 584   }
 585 #else
 586   return NativeCall::instruction_size;  // call; delay slot
 587 #endif
 588 }
 589 
 590 // Indicate if the safepoint node needs the polling page as an input.
 591 // Since Sparc does not have absolute addressing, it does.
 592 bool SafePointNode::needs_polling_address_input() {
 593   return true;
 594 }
 595 
 596 // emit an interrupt that is caught by the debugger (for debugging compiler)
 597 void emit_break(CodeBuffer &cbuf) {
 598   MacroAssembler _masm(&cbuf);
 599   __ breakpoint_trap();
 600 }
 601 
 602 #ifndef PRODUCT
 603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 604   st->print("TA");
 605 }
 606 #endif
 607 
 608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 609   emit_break(cbuf);
 610 }
 611 
 612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 613   return MachNode::size(ra_);
 614 }
 615 
 616 // Traceable jump
 617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 618   MacroAssembler _masm(&cbuf);
 619   Register rdest = reg_to_register_object(jump_target);
 620   __ JMP(rdest, 0);
 621   __ delayed()->nop();
 622 }
 623 
 624 // Traceable jump and set exception pc
 625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 626   MacroAssembler _masm(&cbuf);
 627   Register rdest = reg_to_register_object(jump_target);
 628   __ JMP(rdest, 0);
 629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 630 }
 631 
 632 void emit_nop(CodeBuffer &cbuf) {
 633   MacroAssembler _masm(&cbuf);
 634   __ nop();
 635 }
 636 
 637 void emit_illtrap(CodeBuffer &cbuf) {
 638   MacroAssembler _masm(&cbuf);
 639   __ illtrap(0);
 640 }
 641 
 642 
 643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 644   assert(n->rule() != loadUB_rule, "");
 645 
 646   intptr_t offset = 0;
 647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 648   const Node* addr = n->get_base_and_disp(offset, adr_type);
 649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   atype = atype->add_offset(offset);
 653   assert(disp32 == offset, "wrong disp32");
 654   return atype->_offset;
 655 }
 656 
 657 
 658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 659   assert(n->rule() != loadUB_rule, "");
 660 
 661   intptr_t offset = 0;
 662   Node* addr = n->in(2);
 663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 665     Node* a = addr->in(2/*AddPNode::Address*/);
 666     Node* o = addr->in(3/*AddPNode::Offset*/);
 667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 669     assert(atype->isa_oop_ptr(), "still an oop");
 670   }
 671   offset = atype->is_ptr()->_offset;
 672   if (offset != Type::OffsetBot)  offset += disp32;
 673   return offset;
 674 }
 675 
 676 static inline jdouble replicate_immI(int con, int count, int width) {
 677   // Load a constant replicated "count" times with width "width"
 678   assert(count*width == 8 && width <= 4, "sanity");
 679   int bit_width = width * 8;
 680   jlong val = con;
 681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 682   for (int i = 0; i < count - 1; i++) {
 683     val |= (val << bit_width);
 684   }
 685   jdouble dval = *((jdouble*) &val);  // coerce to double type
 686   return dval;
 687 }
 688 
 689 static inline jdouble replicate_immF(float con) {
 690   // Replicate float con 2 times and pack into vector.
 691   int val = *((int*)&con);
 692   jlong lval = val;
 693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 695   return dval;
 696 }
 697 
 698 // Standard Sparc opcode form2 field breakdown
 699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 701   int op = (f30 << 30) |
 702            (f29 << 29) |
 703            (f25 << 25) |
 704            (f22 << 22) |
 705            (f20 << 20) |
 706            (f19 << 19) |
 707            (f0  <<  0);
 708   cbuf.insts()->emit_int32(op);
 709 }
 710 
 711 // Standard Sparc opcode form2 field breakdown
 712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 713   f0 >>= 10;           // Drop 10 bits
 714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 715   int op = (f30 << 30) |
 716            (f25 << 25) |
 717            (f22 << 22) |
 718            (f0  <<  0);
 719   cbuf.insts()->emit_int32(op);
 720 }
 721 
 722 // Standard Sparc opcode form3 field breakdown
 723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 724   int op = (f30 << 30) |
 725            (f25 << 25) |
 726            (f19 << 19) |
 727            (f14 << 14) |
 728            (f5  <<  5) |
 729            (f0  <<  0);
 730   cbuf.insts()->emit_int32(op);
 731 }
 732 
 733 // Standard Sparc opcode form3 field breakdown
 734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 735   simm13 &= (1<<13)-1; // Mask to 13 bits
 736   int op = (f30 << 30) |
 737            (f25 << 25) |
 738            (f19 << 19) |
 739            (f14 << 14) |
 740            (1   << 13) | // bit to indicate immediate-mode
 741            (simm13<<0);
 742   cbuf.insts()->emit_int32(op);
 743 }
 744 
 745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 746   simm10 &= (1<<10)-1; // Mask to 10 bits
 747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 748 }
 749 
 750 #ifdef ASSERT
 751 // Helper function for VerifyOops in emit_form3_mem_reg
 752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 753   warning("VerifyOops encountered unexpected instruction:");
 754   n->dump(2);
 755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 756 }
 757 #endif
 758 
 759 
 760 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 762 
 763 #ifdef ASSERT
 764   // The following code implements the +VerifyOops feature.
 765   // It verifies oop values which are loaded into or stored out of
 766   // the current method activation.  +VerifyOops complements techniques
 767   // like ScavengeALot, because it eagerly inspects oops in transit,
 768   // as they enter or leave the stack, as opposed to ScavengeALot,
 769   // which inspects oops "at rest", in the stack or heap, at safepoints.
 770   // For this reason, +VerifyOops can sometimes detect bugs very close
 771   // to their point of creation.  It can also serve as a cross-check
 772   // on the validity of oop maps, when used toegether with ScavengeALot.
 773 
 774   // It would be good to verify oops at other points, especially
 775   // when an oop is used as a base pointer for a load or store.
 776   // This is presently difficult, because it is hard to know when
 777   // a base address is biased or not.  (If we had such information,
 778   // it would be easy and useful to make a two-argument version of
 779   // verify_oop which unbiases the base, and performs verification.)
 780 
 781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 782   bool is_verified_oop_base  = false;
 783   bool is_verified_oop_load  = false;
 784   bool is_verified_oop_store = false;
 785   int tmp_enc = -1;
 786   if (VerifyOops && src1_enc != R_SP_enc) {
 787     // classify the op, mainly for an assert check
 788     int st_op = 0, ld_op = 0;
 789     switch (primary) {
 790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 794     case Assembler::std_op3:  st_op = Op_StoreL; break;
 795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 797 
 798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 809 
 810     default: ShouldNotReachHere();
 811     }
 812     if (tertiary == REGP_OP) {
 813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 815       else                          ShouldNotReachHere();
 816       if (st_op) {
 817         // a store
 818         // inputs are (0:control, 1:memory, 2:address, 3:value)
 819         Node* n2 = n->in(3);
 820         if (n2 != NULL) {
 821           const Type* t = n2->bottom_type();
 822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 823         }
 824       } else {
 825         // a load
 826         const Type* t = n->bottom_type();
 827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 828       }
 829     }
 830 
 831     if (ld_op) {
 832       // a Load
 833       // inputs are (0:control, 1:memory, 2:address)
 834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 849           !(n->rule() == loadUB_rule)) {
 850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 851       }
 852     } else if (st_op) {
 853       // a Store
 854       // inputs are (0:control, 1:memory, 2:address, 3:value)
 855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 863       }
 864     }
 865 
 866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 867       Node* addr = n->in(2);
 868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 870         if (atype != NULL) {
 871           intptr_t offset = get_offset_from_base(n, atype, disp32);
 872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 873           if (offset != offset_2) {
 874             get_offset_from_base(n, atype, disp32);
 875             get_offset_from_base_2(n, atype, disp32);
 876           }
 877           assert(offset == offset_2, "different offsets");
 878           if (offset == disp32) {
 879             // we now know that src1 is a true oop pointer
 880             is_verified_oop_base = true;
 881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 882               if( primary == Assembler::ldd_op3 ) {
 883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 884               } else {
 885                 tmp_enc = dst_enc;
 886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 887                 assert(src1_enc != dst_enc, "");
 888               }
 889             }
 890           }
 891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 892                        || offset == oopDesc::mark_offset_in_bytes())) {
 893                       // loading the mark should not be allowed either, but
 894                       // we don't check this since it conflicts with InlineObjectHash
 895                       // usage of LoadINode to get the mark. We could keep the
 896                       // check if we create a new LoadMarkNode
 897             // but do not verify the object before its header is initialized
 898             ShouldNotReachHere();
 899           }
 900         }
 901       }
 902     }
 903   }
 904 #endif
 905 
 906   uint instr;
 907   instr = (Assembler::ldst_op << 30)
 908         | (dst_enc        << 25)
 909         | (primary        << 19)
 910         | (src1_enc       << 14);
 911 
 912   uint index = src2_enc;
 913   int disp = disp32;
 914 
 915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 916     disp += STACK_BIAS;
 917     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
 918     if (!Assembler::is_simm13(disp)) {
 919       ra->C->record_method_not_compilable("unable to handle large constant offsets");
 920       return;
 921     }
 922   }
 923 
 924   // We should have a compiler bailout here rather than a guarantee.
 925   // Better yet would be some mechanism to handle variable-size matches correctly.
 926   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 927 
 928   if( disp == 0 ) {
 929     // use reg-reg form
 930     // bit 13 is already zero
 931     instr |= index;
 932   } else {
 933     // use reg-imm form
 934     instr |= 0x00002000;          // set bit 13 to one
 935     instr |= disp & 0x1FFF;
 936   }
 937 
 938   cbuf.insts()->emit_int32(instr);
 939 
 940 #ifdef ASSERT
 941   {
 942     MacroAssembler _masm(&cbuf);
 943     if (is_verified_oop_base) {
 944       __ verify_oop(reg_to_register_object(src1_enc));
 945     }
 946     if (is_verified_oop_store) {
 947       __ verify_oop(reg_to_register_object(dst_enc));
 948     }
 949     if (tmp_enc != -1) {
 950       __ mov(O7, reg_to_register_object(tmp_enc));
 951     }
 952     if (is_verified_oop_load) {
 953       __ verify_oop(reg_to_register_object(dst_enc));
 954     }
 955   }
 956 #endif
 957 }
 958 
 959 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 960   // The method which records debug information at every safepoint
 961   // expects the call to be the first instruction in the snippet as
 962   // it creates a PcDesc structure which tracks the offset of a call
 963   // from the start of the codeBlob. This offset is computed as
 964   // code_end() - code_begin() of the code which has been emitted
 965   // so far.
 966   // In this particular case we have skirted around the problem by
 967   // putting the "mov" instruction in the delay slot but the problem
 968   // may bite us again at some other point and a cleaner/generic
 969   // solution using relocations would be needed.
 970   MacroAssembler _masm(&cbuf);
 971   __ set_inst_mark();
 972 
 973   // We flush the current window just so that there is a valid stack copy
 974   // the fact that the current window becomes active again instantly is
 975   // not a problem there is nothing live in it.
 976 
 977 #ifdef ASSERT
 978   int startpos = __ offset();
 979 #endif /* ASSERT */
 980 
 981   __ call((address)entry_point, rtype);
 982 
 983   if (preserve_g2)   __ delayed()->mov(G2, L7);
 984   else __ delayed()->nop();
 985 
 986   if (preserve_g2)   __ mov(L7, G2);
 987 
 988 #ifdef ASSERT
 989   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 990 #ifdef _LP64
 991     // Trash argument dump slots.
 992     __ set(0xb0b8ac0db0b8ac0d, G1);
 993     __ mov(G1, G5);
 994     __ stx(G1, SP, STACK_BIAS + 0x80);
 995     __ stx(G1, SP, STACK_BIAS + 0x88);
 996     __ stx(G1, SP, STACK_BIAS + 0x90);
 997     __ stx(G1, SP, STACK_BIAS + 0x98);
 998     __ stx(G1, SP, STACK_BIAS + 0xA0);
 999     __ stx(G1, SP, STACK_BIAS + 0xA8);
1000 #else // _LP64
1001     // this is also a native call, so smash the first 7 stack locations,
1002     // and the various registers
1003 
1004     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1005     // while [SP+0x44..0x58] are the argument dump slots.
1006     __ set((intptr_t)0xbaadf00d, G1);
1007     __ mov(G1, G5);
1008     __ sllx(G1, 32, G1);
1009     __ or3(G1, G5, G1);
1010     __ mov(G1, G5);
1011     __ stx(G1, SP, 0x40);
1012     __ stx(G1, SP, 0x48);
1013     __ stx(G1, SP, 0x50);
1014     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1015 #endif // _LP64
1016   }
1017 #endif /*ASSERT*/
1018 }
1019 
1020 //=============================================================================
1021 // REQUIRED FUNCTIONALITY for encoding
1022 void emit_lo(CodeBuffer &cbuf, int val) {  }
1023 void emit_hi(CodeBuffer &cbuf, int val) {  }
1024 
1025 
1026 //=============================================================================
1027 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1028 
1029 int Compile::ConstantTable::calculate_table_base_offset() const {
1030   if (UseRDPCForConstantTableBase) {
1031     // The table base offset might be less but then it fits into
1032     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1033     return Assembler::min_simm13();
1034   } else {
1035     int offset = -(size() / 2);
1036     if (!Assembler::is_simm13(offset)) {
1037       offset = Assembler::min_simm13();
1038     }
1039     return offset;
1040   }
1041 }
1042 
1043 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1044   Compile* C = ra_->C;
1045   Compile::ConstantTable& constant_table = C->constant_table();
1046   MacroAssembler _masm(&cbuf);
1047 
1048   Register r = as_Register(ra_->get_encode(this));
1049   CodeSection* consts_section = __ code()->consts();
1050   int consts_size = consts_section->align_at_start(consts_section->size());
1051   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1052 
1053   if (UseRDPCForConstantTableBase) {
1054     // For the following RDPC logic to work correctly the consts
1055     // section must be allocated right before the insts section.  This
1056     // assert checks for that.  The layout and the SECT_* constants
1057     // are defined in src/share/vm/asm/codeBuffer.hpp.
1058     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1059     int insts_offset = __ offset();
1060 
1061     // Layout:
1062     //
1063     // |----------- consts section ------------|----------- insts section -----------...
1064     // |------ constant table -----|- padding -|------------------x----
1065     //                                                            \ current PC (RDPC instruction)
1066     // |<------------- consts_size ----------->|<- insts_offset ->|
1067     //                                                            \ table base
1068     // The table base offset is later added to the load displacement
1069     // so it has to be negative.
1070     int table_base_offset = -(consts_size + insts_offset);
1071     int disp;
1072 
1073     // If the displacement from the current PC to the constant table
1074     // base fits into simm13 we set the constant table base to the
1075     // current PC.
1076     if (Assembler::is_simm13(table_base_offset)) {
1077       constant_table.set_table_base_offset(table_base_offset);
1078       disp = 0;
1079     } else {
1080       // Otherwise we set the constant table base offset to the
1081       // maximum negative displacement of load instructions to keep
1082       // the disp as small as possible:
1083       //
1084       // |<------------- consts_size ----------->|<- insts_offset ->|
1085       // |<--------- min_simm13 --------->|<-------- disp --------->|
1086       //                                  \ table base
1087       table_base_offset = Assembler::min_simm13();
1088       constant_table.set_table_base_offset(table_base_offset);
1089       disp = (consts_size + insts_offset) + table_base_offset;
1090     }
1091 
1092     __ rdpc(r);
1093 
1094     if (disp != 0) {
1095       assert(r != O7, "need temporary");
1096       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1097     }
1098   }
1099   else {
1100     // Materialize the constant table base.
1101     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1102     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1103     AddressLiteral base(baseaddr, rspec);
1104     __ set(base, r);
1105   }
1106 }
1107 
1108 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1109   if (UseRDPCForConstantTableBase) {
1110     // This is really the worst case but generally it's only 1 instruction.
1111     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1112   } else {
1113     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1114   }
1115 }
1116 
1117 #ifndef PRODUCT
1118 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1119   char reg[128];
1120   ra_->dump_register(this, reg);
1121   if (UseRDPCForConstantTableBase) {
1122     st->print("RDPC   %s\t! constant table base", reg);
1123   } else {
1124     st->print("SET    &constanttable,%s\t! constant table base", reg);
1125   }
1126 }
1127 #endif
1128 
1129 
1130 //=============================================================================
1131 
1132 #ifndef PRODUCT
1133 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1134   Compile* C = ra_->C;
1135 
1136   for (int i = 0; i < OptoPrologueNops; i++) {
1137     st->print_cr("NOP"); st->print("\t");
1138   }
1139 
1140   if( VerifyThread ) {
1141     st->print_cr("Verify_Thread"); st->print("\t");
1142   }
1143 
1144   size_t framesize = C->frame_slots() << LogBytesPerInt;
1145 
1146   // Calls to C2R adapters often do not accept exceptional returns.
1147   // We require that their callers must bang for them.  But be careful, because
1148   // some VM calls (such as call site linkage) can use several kilobytes of
1149   // stack.  But the stack safety zone should account for that.
1150   // See bugs 4446381, 4468289, 4497237.
1151   if (C->need_stack_bang(framesize)) {
1152     st->print_cr("! stack bang"); st->print("\t");
1153   }
1154 
1155   if (Assembler::is_simm13(-framesize)) {
1156     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1157   } else {
1158     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1159     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1160     st->print   ("SAVE   R_SP,R_G3,R_SP");
1161   }
1162 
1163 }
1164 #endif
1165 
1166 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1167   Compile* C = ra_->C;
1168   MacroAssembler _masm(&cbuf);
1169 
1170   for (int i = 0; i < OptoPrologueNops; i++) {
1171     __ nop();
1172   }
1173 
1174   __ verify_thread();
1175 
1176   size_t framesize = C->frame_slots() << LogBytesPerInt;
1177   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1178   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1179 
1180   // Calls to C2R adapters often do not accept exceptional returns.
1181   // We require that their callers must bang for them.  But be careful, because
1182   // some VM calls (such as call site linkage) can use several kilobytes of
1183   // stack.  But the stack safety zone should account for that.
1184   // See bugs 4446381, 4468289, 4497237.
1185   if (C->need_stack_bang(framesize)) {
1186     __ generate_stack_overflow_check(framesize);
1187   }
1188 
1189   if (Assembler::is_simm13(-framesize)) {
1190     __ save(SP, -framesize, SP);
1191   } else {
1192     __ sethi(-framesize & ~0x3ff, G3);
1193     __ add(G3, -framesize & 0x3ff, G3);
1194     __ save(SP, G3, SP);
1195   }
1196   C->set_frame_complete( __ offset() );
1197 
1198   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1199     // NOTE: We set the table base offset here because users might be
1200     // emitted before MachConstantBaseNode.
1201     Compile::ConstantTable& constant_table = C->constant_table();
1202     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1203   }
1204 }
1205 
1206 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1207   return MachNode::size(ra_);
1208 }
1209 
1210 int MachPrologNode::reloc() const {
1211   return 10; // a large enough number
1212 }
1213 
1214 //=============================================================================
1215 #ifndef PRODUCT
1216 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1217   Compile* C = ra_->C;
1218 
1219   if( do_polling() && ra_->C->is_method_compilation() ) {
1220     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1221 #ifdef _LP64
1222     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1223 #else
1224     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1225 #endif
1226   }
1227 
1228   if( do_polling() )
1229     st->print("RET\n\t");
1230 
1231   st->print("RESTORE");
1232 }
1233 #endif
1234 
1235 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1236   MacroAssembler _masm(&cbuf);
1237   Compile* C = ra_->C;
1238 
1239   __ verify_thread();
1240 
1241   // If this does safepoint polling, then do it here
1242   if( do_polling() && ra_->C->is_method_compilation() ) {
1243     AddressLiteral polling_page(os::get_polling_page());
1244     __ sethi(polling_page, L0);
1245     __ relocate(relocInfo::poll_return_type);
1246     __ ld_ptr( L0, 0, G0 );
1247   }
1248 
1249   // If this is a return, then stuff the restore in the delay slot
1250   if( do_polling() ) {
1251     __ ret();
1252     __ delayed()->restore();
1253   } else {
1254     __ restore();
1255   }
1256 }
1257 
1258 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1259   return MachNode::size(ra_);
1260 }
1261 
1262 int MachEpilogNode::reloc() const {
1263   return 16; // a large enough number
1264 }
1265 
1266 const Pipeline * MachEpilogNode::pipeline() const {
1267   return MachNode::pipeline_class();
1268 }
1269 
1270 int MachEpilogNode::safepoint_offset() const {
1271   assert( do_polling(), "no return for this epilog node");
1272   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1273 }
1274 
1275 //=============================================================================
1276 
1277 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1278 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1279 static enum RC rc_class( OptoReg::Name reg ) {
1280   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1281   if (OptoReg::is_stack(reg)) return rc_stack;
1282   VMReg r = OptoReg::as_VMReg(reg);
1283   if (r->is_Register()) return rc_int;
1284   assert(r->is_FloatRegister(), "must be");
1285   return rc_float;
1286 }
1287 
1288 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1289   if (cbuf) {
1290     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1291   }
1292 #ifndef PRODUCT
1293   else if (!do_size) {
1294     if (size != 0) st->print("\n\t");
1295     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1296     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1297   }
1298 #endif
1299   return size+4;
1300 }
1301 
1302 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1303   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1304 #ifndef PRODUCT
1305   else if( !do_size ) {
1306     if( size != 0 ) st->print("\n\t");
1307     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1308   }
1309 #endif
1310   return size+4;
1311 }
1312 
1313 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1314                                         PhaseRegAlloc *ra_,
1315                                         bool do_size,
1316                                         outputStream* st ) const {
1317   // Get registers to move
1318   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1319   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1320   OptoReg::Name dst_second = ra_->get_reg_second(this );
1321   OptoReg::Name dst_first = ra_->get_reg_first(this );
1322 
1323   enum RC src_second_rc = rc_class(src_second);
1324   enum RC src_first_rc = rc_class(src_first);
1325   enum RC dst_second_rc = rc_class(dst_second);
1326   enum RC dst_first_rc = rc_class(dst_first);
1327 
1328   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1329 
1330   // Generate spill code!
1331   int size = 0;
1332 
1333   if( src_first == dst_first && src_second == dst_second )
1334     return size;            // Self copy, no move
1335 
1336   // --------------------------------------
1337   // Check for mem-mem move.  Load into unused float registers and fall into
1338   // the float-store case.
1339   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1340     int offset = ra_->reg2offset(src_first);
1341     // Further check for aligned-adjacent pair, so we can use a double load
1342     if( (src_first&1)==0 && src_first+1 == src_second ) {
1343       src_second    = OptoReg::Name(R_F31_num);
1344       src_second_rc = rc_float;
1345       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1346     } else {
1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1348     }
1349     src_first    = OptoReg::Name(R_F30_num);
1350     src_first_rc = rc_float;
1351   }
1352 
1353   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1354     int offset = ra_->reg2offset(src_second);
1355     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1356     src_second    = OptoReg::Name(R_F31_num);
1357     src_second_rc = rc_float;
1358   }
1359 
1360   // --------------------------------------
1361   // Check for float->int copy; requires a trip through memory
1362   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1363     int offset = frame::register_save_words*wordSize;
1364     if (cbuf) {
1365       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1366       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1367       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1368       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1369     }
1370 #ifndef PRODUCT
1371     else if (!do_size) {
1372       if (size != 0) st->print("\n\t");
1373       st->print(  "SUB    R_SP,16,R_SP\n");
1374       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1375       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1376       st->print("\tADD    R_SP,16,R_SP\n");
1377     }
1378 #endif
1379     size += 16;
1380   }
1381 
1382   // Check for float->int copy on T4
1383   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1384     // Further check for aligned-adjacent pair, so we can use a double move
1385     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1386       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1387     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1388   }
1389   // Check for int->float copy on T4
1390   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1391     // Further check for aligned-adjacent pair, so we can use a double move
1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1395   }
1396 
1397   // --------------------------------------
1398   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1399   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1400   // hardware does the flop for me.  Doubles are always aligned, so no problem
1401   // there.  Misaligned sources only come from native-long-returns (handled
1402   // special below).
1403 #ifndef _LP64
1404   if( src_first_rc == rc_int &&     // source is already big-endian
1405       src_second_rc != rc_bad &&    // 64-bit move
1406       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1407     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1408     // Do the big-endian flop.
1409     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1410     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1411   }
1412 #endif
1413 
1414   // --------------------------------------
1415   // Check for integer reg-reg copy
1416   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1417 #ifndef _LP64
1418     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1419       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1420       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1421       //       operand contains the least significant word of the 64-bit value and vice versa.
1422       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1423       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1424       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1425       if( cbuf ) {
1426         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1427         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1428         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1429 #ifndef PRODUCT
1430       } else if( !do_size ) {
1431         if( size != 0 ) st->print("\n\t");
1432         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1433         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1434         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1435 #endif
1436       }
1437       return size+12;
1438     }
1439     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1440       // returning a long value in I0/I1
1441       // a SpillCopy must be able to target a return instruction's reg_class
1442       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1443       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1444       //       operand contains the least significant word of the 64-bit value and vice versa.
1445       OptoReg::Name tdest = dst_first;
1446 
1447       if (src_first == dst_first) {
1448         tdest = OptoReg::Name(R_O7_num);
1449         size += 4;
1450       }
1451 
1452       if( cbuf ) {
1453         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1454         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1455         // ShrL_reg_imm6
1456         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1457         // ShrR_reg_imm6  src, 0, dst
1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1459         if (tdest != dst_first) {
1460           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1461         }
1462       }
1463 #ifndef PRODUCT
1464       else if( !do_size ) {
1465         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1466         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1467         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1468         if (tdest != dst_first) {
1469           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1470         }
1471       }
1472 #endif // PRODUCT
1473       return size+8;
1474     }
1475 #endif // !_LP64
1476     // Else normal reg-reg copy
1477     assert( src_second != dst_first, "smashed second before evacuating it" );
1478     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1479     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1480     // This moves an aligned adjacent pair.
1481     // See if we are done.
1482     if( src_first+1 == src_second && dst_first+1 == dst_second )
1483       return size;
1484   }
1485 
1486   // Check for integer store
1487   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1488     int offset = ra_->reg2offset(dst_first);
1489     // Further check for aligned-adjacent pair, so we can use a double store
1490     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1491       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1492     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1493   }
1494 
1495   // Check for integer load
1496   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1497     int offset = ra_->reg2offset(src_first);
1498     // Further check for aligned-adjacent pair, so we can use a double load
1499     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1500       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1501     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1502   }
1503 
1504   // Check for float reg-reg copy
1505   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1506     // Further check for aligned-adjacent pair, so we can use a double move
1507     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1508       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1509     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1510   }
1511 
1512   // Check for float store
1513   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1514     int offset = ra_->reg2offset(dst_first);
1515     // Further check for aligned-adjacent pair, so we can use a double store
1516     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1517       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1518     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1519   }
1520 
1521   // Check for float load
1522   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1523     int offset = ra_->reg2offset(src_first);
1524     // Further check for aligned-adjacent pair, so we can use a double load
1525     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1526       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1527     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1528   }
1529 
1530   // --------------------------------------------------------------------
1531   // Check for hi bits still needing moving.  Only happens for misaligned
1532   // arguments to native calls.
1533   if( src_second == dst_second )
1534     return size;               // Self copy; no move
1535   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1536 
1537 #ifndef _LP64
1538   // In the LP64 build, all registers can be moved as aligned/adjacent
1539   // pairs, so there's never any need to move the high bits separately.
1540   // The 32-bit builds have to deal with the 32-bit ABI which can force
1541   // all sorts of silly alignment problems.
1542 
1543   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1544   // 32-bits of a 64-bit register, but are needed in low bits of another
1545   // register (else it's a hi-bits-to-hi-bits copy which should have
1546   // happened already as part of a 64-bit move)
1547   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1548     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1549     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1550     // Shift src_second down to dst_second's low bits.
1551     if( cbuf ) {
1552       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1553 #ifndef PRODUCT
1554     } else if( !do_size ) {
1555       if( size != 0 ) st->print("\n\t");
1556       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1557 #endif
1558     }
1559     return size+4;
1560   }
1561 
1562   // Check for high word integer store.  Must down-shift the hi bits
1563   // into a temp register, then fall into the case of storing int bits.
1564   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1565     // Shift src_second down to dst_second's low bits.
1566     if( cbuf ) {
1567       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1568 #ifndef PRODUCT
1569     } else if( !do_size ) {
1570       if( size != 0 ) st->print("\n\t");
1571       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1572 #endif
1573     }
1574     size+=4;
1575     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1576   }
1577 
1578   // Check for high word integer load
1579   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1580     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1581 
1582   // Check for high word integer store
1583   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1584     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1585 
1586   // Check for high word float store
1587   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1588     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1589 
1590 #endif // !_LP64
1591 
1592   Unimplemented();
1593 }
1594 
1595 #ifndef PRODUCT
1596 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1597   implementation( NULL, ra_, false, st );
1598 }
1599 #endif
1600 
1601 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1602   implementation( &cbuf, ra_, false, NULL );
1603 }
1604 
1605 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1606   return implementation( NULL, ra_, true, NULL );
1607 }
1608 
1609 //=============================================================================
1610 #ifndef PRODUCT
1611 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1612   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1613 }
1614 #endif
1615 
1616 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1617   MacroAssembler _masm(&cbuf);
1618   for(int i = 0; i < _count; i += 1) {
1619     __ nop();
1620   }
1621 }
1622 
1623 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1624   return 4 * _count;
1625 }
1626 
1627 
1628 //=============================================================================
1629 #ifndef PRODUCT
1630 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1631   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1632   int reg = ra_->get_reg_first(this);
1633   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1634 }
1635 #endif
1636 
1637 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1638   MacroAssembler _masm(&cbuf);
1639   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1640   int reg = ra_->get_encode(this);
1641 
1642   if (Assembler::is_simm13(offset)) {
1643      __ add(SP, offset, reg_to_register_object(reg));
1644   } else {
1645      __ set(offset, O7);
1646      __ add(SP, O7, reg_to_register_object(reg));
1647   }
1648 }
1649 
1650 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1651   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1652   assert(ra_ == ra_->C->regalloc(), "sanity");
1653   return ra_->C->scratch_emit_size(this);
1654 }
1655 
1656 //=============================================================================
1657 #ifndef PRODUCT
1658 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1659   st->print_cr("\nUEP:");
1660 #ifdef    _LP64
1661   if (UseCompressedClassPointers) {
1662     assert(Universe::heap() != NULL, "java heap should be initialized");
1663     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1664     if (Universe::narrow_klass_base() != 0) {
1665       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1666       if (Universe::narrow_klass_shift() != 0) {
1667         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1668       }
1669       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1670       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1671     } else {
1672       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1673     }
1674   } else {
1675     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1676   }
1677   st->print_cr("\tCMP    R_G5,R_G3" );
1678   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1679 #else  // _LP64
1680   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1681   st->print_cr("\tCMP    R_G5,R_G3" );
1682   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1683 #endif // _LP64
1684 }
1685 #endif
1686 
1687 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1688   MacroAssembler _masm(&cbuf);
1689   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1690   Register temp_reg   = G3;
1691   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1692 
1693   // Load klass from receiver
1694   __ load_klass(O0, temp_reg);
1695   // Compare against expected klass
1696   __ cmp(temp_reg, G5_ic_reg);
1697   // Branch to miss code, checks xcc or icc depending
1698   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1699 }
1700 
1701 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1702   return MachNode::size(ra_);
1703 }
1704 
1705 
1706 //=============================================================================
1707 
1708 uint size_exception_handler() {
1709   if (TraceJumps) {
1710     return (400); // just a guess
1711   }
1712   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1713 }
1714 
1715 uint size_deopt_handler() {
1716   if (TraceJumps) {
1717     return (400); // just a guess
1718   }
1719   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1720 }
1721 
1722 // Emit exception handler code.
1723 int emit_exception_handler(CodeBuffer& cbuf) {
1724   Register temp_reg = G3;
1725   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1726   MacroAssembler _masm(&cbuf);
1727 
1728   address base =
1729   __ start_a_stub(size_exception_handler());
1730   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1731 
1732   int offset = __ offset();
1733 
1734   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1735   __ delayed()->nop();
1736 
1737   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1738 
1739   __ end_a_stub();
1740 
1741   return offset;
1742 }
1743 
1744 int emit_deopt_handler(CodeBuffer& cbuf) {
1745   // Can't use any of the current frame's registers as we may have deopted
1746   // at a poll and everything (including G3) can be live.
1747   Register temp_reg = L0;
1748   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1749   MacroAssembler _masm(&cbuf);
1750 
1751   address base =
1752   __ start_a_stub(size_deopt_handler());
1753   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1754 
1755   int offset = __ offset();
1756   __ save_frame(0);
1757   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1758   __ delayed()->restore();
1759 
1760   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1761 
1762   __ end_a_stub();
1763   return offset;
1764 
1765 }
1766 
1767 // Given a register encoding, produce a Integer Register object
1768 static Register reg_to_register_object(int register_encoding) {
1769   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1770   return as_Register(register_encoding);
1771 }
1772 
1773 // Given a register encoding, produce a single-precision Float Register object
1774 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1775   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1776   return as_SingleFloatRegister(register_encoding);
1777 }
1778 
1779 // Given a register encoding, produce a double-precision Float Register object
1780 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1781   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1782   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1783   return as_DoubleFloatRegister(register_encoding);
1784 }
1785 
1786 const bool Matcher::match_rule_supported(int opcode) {
1787   if (!has_match_rule(opcode))
1788     return false;
1789 
1790   switch (opcode) {
1791   case Op_CountLeadingZerosI:
1792   case Op_CountLeadingZerosL:
1793   case Op_CountTrailingZerosI:
1794   case Op_CountTrailingZerosL:
1795   case Op_PopCountI:
1796   case Op_PopCountL:
1797     if (!UsePopCountInstruction)
1798       return false;
1799   case Op_CompareAndSwapL:
1800 #ifdef _LP64
1801   case Op_CompareAndSwapP:
1802 #endif
1803     if (!VM_Version::supports_cx8())
1804       return false;
1805     break;
1806   }
1807 
1808   return true;  // Per default match rules are supported.
1809 }
1810 
1811 int Matcher::regnum_to_fpu_offset(int regnum) {
1812   return regnum - 32; // The FP registers are in the second chunk
1813 }
1814 
1815 #ifdef ASSERT
1816 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1817 #endif
1818 
1819 // Vector width in bytes
1820 const int Matcher::vector_width_in_bytes(BasicType bt) {
1821   assert(MaxVectorSize == 8, "");
1822   return 8;
1823 }
1824 
1825 // Vector ideal reg
1826 const int Matcher::vector_ideal_reg(int size) {
1827   assert(MaxVectorSize == 8, "");
1828   return Op_RegD;
1829 }
1830 
1831 const int Matcher::vector_shift_count_ideal_reg(int size) {
1832   fatal("vector shift is not supported");
1833   return Node::NotAMachineReg;
1834 }
1835 
1836 // Limits on vector size (number of elements) loaded into vector.
1837 const int Matcher::max_vector_size(const BasicType bt) {
1838   assert(is_java_primitive(bt), "only primitive type vectors");
1839   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1840 }
1841 
1842 const int Matcher::min_vector_size(const BasicType bt) {
1843   return max_vector_size(bt); // Same as max.
1844 }
1845 
1846 // SPARC doesn't support misaligned vectors store/load.
1847 const bool Matcher::misaligned_vectors_ok() {
1848   return false;
1849 }
1850 
1851 // Current (2013) SPARC platforms need to read original key
1852 // to construct decryption expanded key 
1853 const bool Matcher::pass_original_key_for_aes() {
1854   return true;
1855 }
1856 
1857 // USII supports fxtof through the whole range of number, USIII doesn't
1858 const bool Matcher::convL2FSupported(void) {
1859   return VM_Version::has_fast_fxtof();
1860 }
1861 
1862 // Is this branch offset short enough that a short branch can be used?
1863 //
1864 // NOTE: If the platform does not provide any short branch variants, then
1865 //       this method should return false for offset 0.
1866 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1867   // The passed offset is relative to address of the branch.
1868   // Don't need to adjust the offset.
1869   return UseCBCond && Assembler::is_simm12(offset);
1870 }
1871 
1872 const bool Matcher::isSimpleConstant64(jlong value) {
1873   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1874   // Depends on optimizations in MacroAssembler::setx.
1875   int hi = (int)(value >> 32);
1876   int lo = (int)(value & ~0);
1877   return (hi == 0) || (hi == -1) || (lo == 0);
1878 }
1879 
1880 // No scaling for the parameter the ClearArray node.
1881 const bool Matcher::init_array_count_is_in_bytes = true;
1882 
1883 // Threshold size for cleararray.
1884 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1885 
1886 // No additional cost for CMOVL.
1887 const int Matcher::long_cmove_cost() { return 0; }
1888 
1889 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1890 const int Matcher::float_cmove_cost() {
1891   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1892 }
1893 
1894 // Should the Matcher clone shifts on addressing modes, expecting them to
1895 // be subsumed into complex addressing expressions or compute them into
1896 // registers?  True for Intel but false for most RISCs
1897 const bool Matcher::clone_shift_expressions = false;
1898 
1899 // Do we need to mask the count passed to shift instructions or does
1900 // the cpu only look at the lower 5/6 bits anyway?
1901 const bool Matcher::need_masked_shift_count = false;
1902 
1903 bool Matcher::narrow_oop_use_complex_address() {
1904   NOT_LP64(ShouldNotCallThis());
1905   assert(UseCompressedOops, "only for compressed oops code");
1906   return false;
1907 }
1908 
1909 bool Matcher::narrow_klass_use_complex_address() {
1910   NOT_LP64(ShouldNotCallThis());
1911   assert(UseCompressedClassPointers, "only for compressed klass code");
1912   return false;
1913 }
1914 
1915 // Is it better to copy float constants, or load them directly from memory?
1916 // Intel can load a float constant from a direct address, requiring no
1917 // extra registers.  Most RISCs will have to materialize an address into a
1918 // register first, so they would do better to copy the constant from stack.
1919 const bool Matcher::rematerialize_float_constants = false;
1920 
1921 // If CPU can load and store mis-aligned doubles directly then no fixup is
1922 // needed.  Else we split the double into 2 integer pieces and move it
1923 // piece-by-piece.  Only happens when passing doubles into C code as the
1924 // Java calling convention forces doubles to be aligned.
1925 #ifdef _LP64
1926 const bool Matcher::misaligned_doubles_ok = true;
1927 #else
1928 const bool Matcher::misaligned_doubles_ok = false;
1929 #endif
1930 
1931 // No-op on SPARC.
1932 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1933 }
1934 
1935 // Advertise here if the CPU requires explicit rounding operations
1936 // to implement the UseStrictFP mode.
1937 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1938 
1939 // Are floats conerted to double when stored to stack during deoptimization?
1940 // Sparc does not handle callee-save floats.
1941 bool Matcher::float_in_double() { return false; }
1942 
1943 // Do ints take an entire long register or just half?
1944 // Note that we if-def off of _LP64.
1945 // The relevant question is how the int is callee-saved.  In _LP64
1946 // the whole long is written but de-opt'ing will have to extract
1947 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1948 #ifdef _LP64
1949 const bool Matcher::int_in_long = true;
1950 #else
1951 const bool Matcher::int_in_long = false;
1952 #endif
1953 
1954 // Return whether or not this register is ever used as an argument.  This
1955 // function is used on startup to build the trampoline stubs in generateOptoStub.
1956 // Registers not mentioned will be killed by the VM call in the trampoline, and
1957 // arguments in those registers not be available to the callee.
1958 bool Matcher::can_be_java_arg( int reg ) {
1959   // Standard sparc 6 args in registers
1960   if( reg == R_I0_num ||
1961       reg == R_I1_num ||
1962       reg == R_I2_num ||
1963       reg == R_I3_num ||
1964       reg == R_I4_num ||
1965       reg == R_I5_num ) return true;
1966 #ifdef _LP64
1967   // 64-bit builds can pass 64-bit pointers and longs in
1968   // the high I registers
1969   if( reg == R_I0H_num ||
1970       reg == R_I1H_num ||
1971       reg == R_I2H_num ||
1972       reg == R_I3H_num ||
1973       reg == R_I4H_num ||
1974       reg == R_I5H_num ) return true;
1975 
1976   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1977     return true;
1978   }
1979 
1980 #else
1981   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1982   // Longs cannot be passed in O regs, because O regs become I regs
1983   // after a 'save' and I regs get their high bits chopped off on
1984   // interrupt.
1985   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1986   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1987 #endif
1988   // A few float args in registers
1989   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1990 
1991   return false;
1992 }
1993 
1994 bool Matcher::is_spillable_arg( int reg ) {
1995   return can_be_java_arg(reg);
1996 }
1997 
1998 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1999   // Use hardware SDIVX instruction when it is
2000   // faster than a code which use multiply.
2001   return VM_Version::has_fast_idiv();
2002 }
2003 
2004 // Register for DIVI projection of divmodI
2005 RegMask Matcher::divI_proj_mask() {
2006   ShouldNotReachHere();
2007   return RegMask();
2008 }
2009 
2010 // Register for MODI projection of divmodI
2011 RegMask Matcher::modI_proj_mask() {
2012   ShouldNotReachHere();
2013   return RegMask();
2014 }
2015 
2016 // Register for DIVL projection of divmodL
2017 RegMask Matcher::divL_proj_mask() {
2018   ShouldNotReachHere();
2019   return RegMask();
2020 }
2021 
2022 // Register for MODL projection of divmodL
2023 RegMask Matcher::modL_proj_mask() {
2024   ShouldNotReachHere();
2025   return RegMask();
2026 }
2027 
2028 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2029   return L7_REGP_mask();
2030 }
2031 
2032 %}
2033 
2034 
2035 // The intptr_t operand types, defined by textual substitution.
2036 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2037 #ifdef _LP64
2038 #define immX      immL
2039 #define immX13    immL13
2040 #define immX13m7  immL13m7
2041 #define iRegX     iRegL
2042 #define g1RegX    g1RegL
2043 #else
2044 #define immX      immI
2045 #define immX13    immI13
2046 #define immX13m7  immI13m7
2047 #define iRegX     iRegI
2048 #define g1RegX    g1RegI
2049 #endif
2050 
2051 //----------ENCODING BLOCK-----------------------------------------------------
2052 // This block specifies the encoding classes used by the compiler to output
2053 // byte streams.  Encoding classes are parameterized macros used by
2054 // Machine Instruction Nodes in order to generate the bit encoding of the
2055 // instruction.  Operands specify their base encoding interface with the
2056 // interface keyword.  There are currently supported four interfaces,
2057 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2058 // operand to generate a function which returns its register number when
2059 // queried.   CONST_INTER causes an operand to generate a function which
2060 // returns the value of the constant when queried.  MEMORY_INTER causes an
2061 // operand to generate four functions which return the Base Register, the
2062 // Index Register, the Scale Value, and the Offset Value of the operand when
2063 // queried.  COND_INTER causes an operand to generate six functions which
2064 // return the encoding code (ie - encoding bits for the instruction)
2065 // associated with each basic boolean condition for a conditional instruction.
2066 //
2067 // Instructions specify two basic values for encoding.  Again, a function
2068 // is available to check if the constant displacement is an oop. They use the
2069 // ins_encode keyword to specify their encoding classes (which must be
2070 // a sequence of enc_class names, and their parameters, specified in
2071 // the encoding block), and they use the
2072 // opcode keyword to specify, in order, their primary, secondary, and
2073 // tertiary opcode.  Only the opcode sections which a particular instruction
2074 // needs for encoding need to be specified.
2075 encode %{
2076   enc_class enc_untested %{
2077 #ifdef ASSERT
2078     MacroAssembler _masm(&cbuf);
2079     __ untested("encoding");
2080 #endif
2081   %}
2082 
2083   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2084     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2085                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2086   %}
2087 
2088   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2089     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2090                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2091   %}
2092 
2093   enc_class form3_mem_prefetch_read( memory mem ) %{
2094     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2095                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2096   %}
2097 
2098   enc_class form3_mem_prefetch_write( memory mem ) %{
2099     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2100                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2101   %}
2102 
2103   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2104     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2105     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2106     guarantee($mem$$index == R_G0_enc, "double index?");
2107     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2108     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2109     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2110     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2111   %}
2112 
2113   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2114     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2115     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2116     guarantee($mem$$index == R_G0_enc, "double index?");
2117     // Load long with 2 instructions
2118     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2119     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2120   %}
2121 
2122   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2123   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2124     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2125     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2126   %}
2127 
2128   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2129     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2130     if( $rs2$$reg != $rd$$reg )
2131       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2132   %}
2133 
2134   // Target lo half of long
2135   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2136     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2137     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2138       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2139   %}
2140 
2141   // Source lo half of long
2142   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2143     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2144     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2145       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2146   %}
2147 
2148   // Target hi half of long
2149   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2150     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2151   %}
2152 
2153   // Source lo half of long, and leave it sign extended.
2154   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2155     // Sign extend low half
2156     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2157   %}
2158 
2159   // Source hi half of long, and leave it sign extended.
2160   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2161     // Shift high half to low half
2162     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2163   %}
2164 
2165   // Source hi half of long
2166   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2167     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2168     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2169       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2170   %}
2171 
2172   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2173     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2174   %}
2175 
2176   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2177     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2178     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2179   %}
2180 
2181   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2182     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2183     // clear if nothing else is happening
2184     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2185     // blt,a,pn done
2186     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2187     // mov dst,-1 in delay slot
2188     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2189   %}
2190 
2191   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2192     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2193   %}
2194 
2195   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2196     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2197   %}
2198 
2199   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2200     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2201   %}
2202 
2203   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2204     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2205   %}
2206 
2207   enc_class move_return_pc_to_o1() %{
2208     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2209   %}
2210 
2211 #ifdef _LP64
2212   /* %%% merge with enc_to_bool */
2213   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2214     MacroAssembler _masm(&cbuf);
2215 
2216     Register   src_reg = reg_to_register_object($src$$reg);
2217     Register   dst_reg = reg_to_register_object($dst$$reg);
2218     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2219   %}
2220 #endif
2221 
2222   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2223     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2224     MacroAssembler _masm(&cbuf);
2225 
2226     Register   p_reg = reg_to_register_object($p$$reg);
2227     Register   q_reg = reg_to_register_object($q$$reg);
2228     Register   y_reg = reg_to_register_object($y$$reg);
2229     Register tmp_reg = reg_to_register_object($tmp$$reg);
2230 
2231     __ subcc( p_reg, q_reg,   p_reg );
2232     __ add  ( p_reg, y_reg, tmp_reg );
2233     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2234   %}
2235 
2236   enc_class form_d2i_helper(regD src, regF dst) %{
2237     // fcmp %fcc0,$src,$src
2238     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2239     // branch %fcc0 not-nan, predict taken
2240     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2241     // fdtoi $src,$dst
2242     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2243     // fitos $dst,$dst (if nan)
2244     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2245     // clear $dst (if nan)
2246     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2247     // carry on here...
2248   %}
2249 
2250   enc_class form_d2l_helper(regD src, regD dst) %{
2251     // fcmp %fcc0,$src,$src  check for NAN
2252     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2253     // branch %fcc0 not-nan, predict taken
2254     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2255     // fdtox $src,$dst   convert in delay slot
2256     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2257     // fxtod $dst,$dst  (if nan)
2258     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2259     // clear $dst (if nan)
2260     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2261     // carry on here...
2262   %}
2263 
2264   enc_class form_f2i_helper(regF src, regF dst) %{
2265     // fcmps %fcc0,$src,$src
2266     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2267     // branch %fcc0 not-nan, predict taken
2268     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2269     // fstoi $src,$dst
2270     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2271     // fitos $dst,$dst (if nan)
2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2273     // clear $dst (if nan)
2274     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2275     // carry on here...
2276   %}
2277 
2278   enc_class form_f2l_helper(regF src, regD dst) %{
2279     // fcmps %fcc0,$src,$src
2280     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2281     // branch %fcc0 not-nan, predict taken
2282     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2283     // fstox $src,$dst
2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2285     // fxtod $dst,$dst (if nan)
2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2287     // clear $dst (if nan)
2288     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2289     // carry on here...
2290   %}
2291 
2292   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2293   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2294   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2295   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2296 
2297   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2298 
2299   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2300   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2301 
2302   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2303     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2304   %}
2305 
2306   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2307     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2308   %}
2309 
2310   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2311     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2312   %}
2313 
2314   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2315     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2316   %}
2317 
2318   enc_class form3_convI2F(regF rs2, regF rd) %{
2319     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2320   %}
2321 
2322   // Encloding class for traceable jumps
2323   enc_class form_jmpl(g3RegP dest) %{
2324     emit_jmpl(cbuf, $dest$$reg);
2325   %}
2326 
2327   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2328     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2329   %}
2330 
2331   enc_class form2_nop() %{
2332     emit_nop(cbuf);
2333   %}
2334 
2335   enc_class form2_illtrap() %{
2336     emit_illtrap(cbuf);
2337   %}
2338 
2339 
2340   // Compare longs and convert into -1, 0, 1.
2341   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2342     // CMP $src1,$src2
2343     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2344     // blt,a,pn done
2345     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2346     // mov dst,-1 in delay slot
2347     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2348     // bgt,a,pn done
2349     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2350     // mov dst,1 in delay slot
2351     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2352     // CLR    $dst
2353     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2354   %}
2355 
2356   enc_class enc_PartialSubtypeCheck() %{
2357     MacroAssembler _masm(&cbuf);
2358     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2359     __ delayed()->nop();
2360   %}
2361 
2362   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2363     MacroAssembler _masm(&cbuf);
2364     Label* L = $labl$$label;
2365     Assembler::Predict predict_taken =
2366       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2367 
2368     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2369     __ delayed()->nop();
2370   %}
2371 
2372   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2373     MacroAssembler _masm(&cbuf);
2374     Label* L = $labl$$label;
2375     Assembler::Predict predict_taken =
2376       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2377 
2378     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2379     __ delayed()->nop();
2380   %}
2381 
2382   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2383     int op = (Assembler::arith_op << 30) |
2384              ($dst$$reg << 25) |
2385              (Assembler::movcc_op3 << 19) |
2386              (1 << 18) |                    // cc2 bit for 'icc'
2387              ($cmp$$cmpcode << 14) |
2388              (0 << 13) |                    // select register move
2389              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2390              ($src$$reg << 0);
2391     cbuf.insts()->emit_int32(op);
2392   %}
2393 
2394   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2395     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2396     int op = (Assembler::arith_op << 30) |
2397              ($dst$$reg << 25) |
2398              (Assembler::movcc_op3 << 19) |
2399              (1 << 18) |                    // cc2 bit for 'icc'
2400              ($cmp$$cmpcode << 14) |
2401              (1 << 13) |                    // select immediate move
2402              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2403              (simm11 << 0);
2404     cbuf.insts()->emit_int32(op);
2405   %}
2406 
2407   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2408     int op = (Assembler::arith_op << 30) |
2409              ($dst$$reg << 25) |
2410              (Assembler::movcc_op3 << 19) |
2411              (0 << 18) |                    // cc2 bit for 'fccX'
2412              ($cmp$$cmpcode << 14) |
2413              (0 << 13) |                    // select register move
2414              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2415              ($src$$reg << 0);
2416     cbuf.insts()->emit_int32(op);
2417   %}
2418 
2419   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2420     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2421     int op = (Assembler::arith_op << 30) |
2422              ($dst$$reg << 25) |
2423              (Assembler::movcc_op3 << 19) |
2424              (0 << 18) |                    // cc2 bit for 'fccX'
2425              ($cmp$$cmpcode << 14) |
2426              (1 << 13) |                    // select immediate move
2427              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2428              (simm11 << 0);
2429     cbuf.insts()->emit_int32(op);
2430   %}
2431 
2432   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2433     int op = (Assembler::arith_op << 30) |
2434              ($dst$$reg << 25) |
2435              (Assembler::fpop2_op3 << 19) |
2436              (0 << 18) |
2437              ($cmp$$cmpcode << 14) |
2438              (1 << 13) |                    // select register move
2439              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2440              ($primary << 5) |              // select single, double or quad
2441              ($src$$reg << 0);
2442     cbuf.insts()->emit_int32(op);
2443   %}
2444 
2445   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2446     int op = (Assembler::arith_op << 30) |
2447              ($dst$$reg << 25) |
2448              (Assembler::fpop2_op3 << 19) |
2449              (0 << 18) |
2450              ($cmp$$cmpcode << 14) |
2451              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2452              ($primary << 5) |              // select single, double or quad
2453              ($src$$reg << 0);
2454     cbuf.insts()->emit_int32(op);
2455   %}
2456 
2457   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2458   // the condition comes from opcode-field instead of an argument.
2459   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2460     int op = (Assembler::arith_op << 30) |
2461              ($dst$$reg << 25) |
2462              (Assembler::movcc_op3 << 19) |
2463              (1 << 18) |                    // cc2 bit for 'icc'
2464              ($primary << 14) |
2465              (0 << 13) |                    // select register move
2466              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2467              ($src$$reg << 0);
2468     cbuf.insts()->emit_int32(op);
2469   %}
2470 
2471   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2472     int op = (Assembler::arith_op << 30) |
2473              ($dst$$reg << 25) |
2474              (Assembler::movcc_op3 << 19) |
2475              (6 << 16) |                    // cc2 bit for 'xcc'
2476              ($primary << 14) |
2477              (0 << 13) |                    // select register move
2478              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2479              ($src$$reg << 0);
2480     cbuf.insts()->emit_int32(op);
2481   %}
2482 
2483   enc_class Set13( immI13 src, iRegI rd ) %{
2484     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2485   %}
2486 
2487   enc_class SetHi22( immI src, iRegI rd ) %{
2488     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2489   %}
2490 
2491   enc_class Set32( immI src, iRegI rd ) %{
2492     MacroAssembler _masm(&cbuf);
2493     __ set($src$$constant, reg_to_register_object($rd$$reg));
2494   %}
2495 
2496   enc_class call_epilog %{
2497     if( VerifyStackAtCalls ) {
2498       MacroAssembler _masm(&cbuf);
2499       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2500       Register temp_reg = G3;
2501       __ add(SP, framesize, temp_reg);
2502       __ cmp(temp_reg, FP);
2503       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2504     }
2505   %}
2506 
2507   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2508   // to G1 so the register allocator will not have to deal with the misaligned register
2509   // pair.
2510   enc_class adjust_long_from_native_call %{
2511 #ifndef _LP64
2512     if (returns_long()) {
2513       //    sllx  O0,32,O0
2514       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2515       //    srl   O1,0,O1
2516       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2517       //    or    O0,O1,G1
2518       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2519     }
2520 #endif
2521   %}
2522 
2523   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2524     // CALL directly to the runtime
2525     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2526     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2527                     /*preserve_g2=*/true);
2528   %}
2529 
2530   enc_class preserve_SP %{
2531     MacroAssembler _masm(&cbuf);
2532     __ mov(SP, L7_mh_SP_save);
2533   %}
2534 
2535   enc_class restore_SP %{
2536     MacroAssembler _masm(&cbuf);
2537     __ mov(L7_mh_SP_save, SP);
2538   %}
2539 
2540   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2541     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2542     // who we intended to call.
2543     if (!_method) {
2544       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2545     } else if (_optimized_virtual) {
2546       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2547     } else {
2548       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2549     }
2550     if (_method) {  // Emit stub for static call.
2551       CompiledStaticCall::emit_to_interp_stub(cbuf);
2552     }
2553   %}
2554 
2555   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2556     MacroAssembler _masm(&cbuf);
2557     __ set_inst_mark();
2558     int vtable_index = this->_vtable_index;
2559     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2560     if (vtable_index < 0) {
2561       // must be invalid_vtable_index, not nonvirtual_vtable_index
2562       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2563       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2564       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2565       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2566       __ ic_call((address)$meth$$method);
2567     } else {
2568       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2569       // Just go thru the vtable
2570       // get receiver klass (receiver already checked for non-null)
2571       // If we end up going thru a c2i adapter interpreter expects method in G5
2572       int off = __ offset();
2573       __ load_klass(O0, G3_scratch);
2574       int klass_load_size;
2575       if (UseCompressedClassPointers) {
2576         assert(Universe::heap() != NULL, "java heap should be initialized");
2577         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2578       } else {
2579         klass_load_size = 1*BytesPerInstWord;
2580       }
2581       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2582       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2583       if (Assembler::is_simm13(v_off)) {
2584         __ ld_ptr(G3, v_off, G5_method);
2585       } else {
2586         // Generate 2 instructions
2587         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2588         __ or3(G5_method, v_off & 0x3ff, G5_method);
2589         // ld_ptr, set_hi, set
2590         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2591                "Unexpected instruction size(s)");
2592         __ ld_ptr(G3, G5_method, G5_method);
2593       }
2594       // NOTE: for vtable dispatches, the vtable entry will never be null.
2595       // However it may very well end up in handle_wrong_method if the
2596       // method is abstract for the particular class.
2597       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2598       // jump to target (either compiled code or c2iadapter)
2599       __ jmpl(G3_scratch, G0, O7);
2600       __ delayed()->nop();
2601     }
2602   %}
2603 
2604   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2605     MacroAssembler _masm(&cbuf);
2606 
2607     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2608     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2609                               // we might be calling a C2I adapter which needs it.
2610 
2611     assert(temp_reg != G5_ic_reg, "conflicting registers");
2612     // Load nmethod
2613     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2614 
2615     // CALL to compiled java, indirect the contents of G3
2616     __ set_inst_mark();
2617     __ callr(temp_reg, G0);
2618     __ delayed()->nop();
2619   %}
2620 
2621 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2622     MacroAssembler _masm(&cbuf);
2623     Register Rdividend = reg_to_register_object($src1$$reg);
2624     Register Rdivisor = reg_to_register_object($src2$$reg);
2625     Register Rresult = reg_to_register_object($dst$$reg);
2626 
2627     __ sra(Rdivisor, 0, Rdivisor);
2628     __ sra(Rdividend, 0, Rdividend);
2629     __ sdivx(Rdividend, Rdivisor, Rresult);
2630 %}
2631 
2632 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2633     MacroAssembler _masm(&cbuf);
2634 
2635     Register Rdividend = reg_to_register_object($src1$$reg);
2636     int divisor = $imm$$constant;
2637     Register Rresult = reg_to_register_object($dst$$reg);
2638 
2639     __ sra(Rdividend, 0, Rdividend);
2640     __ sdivx(Rdividend, divisor, Rresult);
2641 %}
2642 
2643 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2644     MacroAssembler _masm(&cbuf);
2645     Register Rsrc1 = reg_to_register_object($src1$$reg);
2646     Register Rsrc2 = reg_to_register_object($src2$$reg);
2647     Register Rdst  = reg_to_register_object($dst$$reg);
2648 
2649     __ sra( Rsrc1, 0, Rsrc1 );
2650     __ sra( Rsrc2, 0, Rsrc2 );
2651     __ mulx( Rsrc1, Rsrc2, Rdst );
2652     __ srlx( Rdst, 32, Rdst );
2653 %}
2654 
2655 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2656     MacroAssembler _masm(&cbuf);
2657     Register Rdividend = reg_to_register_object($src1$$reg);
2658     Register Rdivisor = reg_to_register_object($src2$$reg);
2659     Register Rresult = reg_to_register_object($dst$$reg);
2660     Register Rscratch = reg_to_register_object($scratch$$reg);
2661 
2662     assert(Rdividend != Rscratch, "");
2663     assert(Rdivisor  != Rscratch, "");
2664 
2665     __ sra(Rdividend, 0, Rdividend);
2666     __ sra(Rdivisor, 0, Rdivisor);
2667     __ sdivx(Rdividend, Rdivisor, Rscratch);
2668     __ mulx(Rscratch, Rdivisor, Rscratch);
2669     __ sub(Rdividend, Rscratch, Rresult);
2670 %}
2671 
2672 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2673     MacroAssembler _masm(&cbuf);
2674 
2675     Register Rdividend = reg_to_register_object($src1$$reg);
2676     int divisor = $imm$$constant;
2677     Register Rresult = reg_to_register_object($dst$$reg);
2678     Register Rscratch = reg_to_register_object($scratch$$reg);
2679 
2680     assert(Rdividend != Rscratch, "");
2681 
2682     __ sra(Rdividend, 0, Rdividend);
2683     __ sdivx(Rdividend, divisor, Rscratch);
2684     __ mulx(Rscratch, divisor, Rscratch);
2685     __ sub(Rdividend, Rscratch, Rresult);
2686 %}
2687 
2688 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2689     MacroAssembler _masm(&cbuf);
2690 
2691     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2692     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2693 
2694     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2695 %}
2696 
2697 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2698     MacroAssembler _masm(&cbuf);
2699 
2700     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2701     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2702 
2703     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2704 %}
2705 
2706 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2707     MacroAssembler _masm(&cbuf);
2708 
2709     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2710     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2711 
2712     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2713 %}
2714 
2715 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2716     MacroAssembler _masm(&cbuf);
2717 
2718     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2719     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2720 
2721     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2722 %}
2723 
2724 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2725     MacroAssembler _masm(&cbuf);
2726 
2727     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2728     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2729 
2730     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2731 %}
2732 
2733 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2734     MacroAssembler _masm(&cbuf);
2735 
2736     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2737     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2738 
2739     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2740 %}
2741 
2742 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2743     MacroAssembler _masm(&cbuf);
2744 
2745     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2746     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2747 
2748     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2749 %}
2750 
2751 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2752     MacroAssembler _masm(&cbuf);
2753 
2754     Register Roop  = reg_to_register_object($oop$$reg);
2755     Register Rbox  = reg_to_register_object($box$$reg);
2756     Register Rscratch = reg_to_register_object($scratch$$reg);
2757     Register Rmark =    reg_to_register_object($scratch2$$reg);
2758 
2759     assert(Roop  != Rscratch, "");
2760     assert(Roop  != Rmark, "");
2761     assert(Rbox  != Rscratch, "");
2762     assert(Rbox  != Rmark, "");
2763 
2764     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2765 %}
2766 
2767 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2768     MacroAssembler _masm(&cbuf);
2769 
2770     Register Roop  = reg_to_register_object($oop$$reg);
2771     Register Rbox  = reg_to_register_object($box$$reg);
2772     Register Rscratch = reg_to_register_object($scratch$$reg);
2773     Register Rmark =    reg_to_register_object($scratch2$$reg);
2774 
2775     assert(Roop  != Rscratch, "");
2776     assert(Roop  != Rmark, "");
2777     assert(Rbox  != Rscratch, "");
2778     assert(Rbox  != Rmark, "");
2779 
2780     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2781   %}
2782 
2783   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2784     MacroAssembler _masm(&cbuf);
2785     Register Rmem = reg_to_register_object($mem$$reg);
2786     Register Rold = reg_to_register_object($old$$reg);
2787     Register Rnew = reg_to_register_object($new$$reg);
2788 
2789     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2790     __ cmp( Rold, Rnew );
2791   %}
2792 
2793   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2794     Register Rmem = reg_to_register_object($mem$$reg);
2795     Register Rold = reg_to_register_object($old$$reg);
2796     Register Rnew = reg_to_register_object($new$$reg);
2797 
2798     MacroAssembler _masm(&cbuf);
2799     __ mov(Rnew, O7);
2800     __ casx(Rmem, Rold, O7);
2801     __ cmp( Rold, O7 );
2802   %}
2803 
2804   // raw int cas, used for compareAndSwap
2805   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2806     Register Rmem = reg_to_register_object($mem$$reg);
2807     Register Rold = reg_to_register_object($old$$reg);
2808     Register Rnew = reg_to_register_object($new$$reg);
2809 
2810     MacroAssembler _masm(&cbuf);
2811     __ mov(Rnew, O7);
2812     __ cas(Rmem, Rold, O7);
2813     __ cmp( Rold, O7 );
2814   %}
2815 
2816   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2817     Register Rres = reg_to_register_object($res$$reg);
2818 
2819     MacroAssembler _masm(&cbuf);
2820     __ mov(1, Rres);
2821     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2822   %}
2823 
2824   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2825     Register Rres = reg_to_register_object($res$$reg);
2826 
2827     MacroAssembler _masm(&cbuf);
2828     __ mov(1, Rres);
2829     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2830   %}
2831 
2832   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2833     MacroAssembler _masm(&cbuf);
2834     Register Rdst = reg_to_register_object($dst$$reg);
2835     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2836                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2837     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2838                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2839 
2840     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2841     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2842   %}
2843 
2844 
2845   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2846     Label Ldone, Lloop;
2847     MacroAssembler _masm(&cbuf);
2848 
2849     Register   str1_reg = reg_to_register_object($str1$$reg);
2850     Register   str2_reg = reg_to_register_object($str2$$reg);
2851     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2852     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2853     Register result_reg = reg_to_register_object($result$$reg);
2854 
2855     assert(result_reg != str1_reg &&
2856            result_reg != str2_reg &&
2857            result_reg != cnt1_reg &&
2858            result_reg != cnt2_reg ,
2859            "need different registers");
2860 
2861     // Compute the minimum of the string lengths(str1_reg) and the
2862     // difference of the string lengths (stack)
2863 
2864     // See if the lengths are different, and calculate min in str1_reg.
2865     // Stash diff in O7 in case we need it for a tie-breaker.
2866     Label Lskip;
2867     __ subcc(cnt1_reg, cnt2_reg, O7);
2868     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2869     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2870     // cnt2 is shorter, so use its count:
2871     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2872     __ bind(Lskip);
2873 
2874     // reallocate cnt1_reg, cnt2_reg, result_reg
2875     // Note:  limit_reg holds the string length pre-scaled by 2
2876     Register limit_reg =   cnt1_reg;
2877     Register  chr2_reg =   cnt2_reg;
2878     Register  chr1_reg = result_reg;
2879     // str{12} are the base pointers
2880 
2881     // Is the minimum length zero?
2882     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2883     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2884     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2885 
2886     // Load first characters
2887     __ lduh(str1_reg, 0, chr1_reg);
2888     __ lduh(str2_reg, 0, chr2_reg);
2889 
2890     // Compare first characters
2891     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2892     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2893     assert(chr1_reg == result_reg, "result must be pre-placed");
2894     __ delayed()->nop();
2895 
2896     {
2897       // Check after comparing first character to see if strings are equivalent
2898       Label LSkip2;
2899       // Check if the strings start at same location
2900       __ cmp(str1_reg, str2_reg);
2901       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2902       __ delayed()->nop();
2903 
2904       // Check if the length difference is zero (in O7)
2905       __ cmp(G0, O7);
2906       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2907       __ delayed()->mov(G0, result_reg);  // result is zero
2908 
2909       // Strings might not be equal
2910       __ bind(LSkip2);
2911     }
2912 
2913     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2914     __ signx(limit_reg);
2915 
2916     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2917     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2918     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2919 
2920     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2921     __ add(str1_reg, limit_reg, str1_reg);
2922     __ add(str2_reg, limit_reg, str2_reg);
2923     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2924 
2925     // Compare the rest of the characters
2926     __ lduh(str1_reg, limit_reg, chr1_reg);
2927     __ bind(Lloop);
2928     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2929     __ lduh(str2_reg, limit_reg, chr2_reg);
2930     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2931     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2932     assert(chr1_reg == result_reg, "result must be pre-placed");
2933     __ delayed()->inccc(limit_reg, sizeof(jchar));
2934     // annul LDUH if branch is not taken to prevent access past end of string
2935     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2936     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2937 
2938     // If strings are equal up to min length, return the length difference.
2939     __ mov(O7, result_reg);
2940 
2941     // Otherwise, return the difference between the first mismatched chars.
2942     __ bind(Ldone);
2943   %}
2944 
2945 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2946     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2947     MacroAssembler _masm(&cbuf);
2948 
2949     Register   str1_reg = reg_to_register_object($str1$$reg);
2950     Register   str2_reg = reg_to_register_object($str2$$reg);
2951     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2952     Register   tmp1_reg = O7;
2953     Register result_reg = reg_to_register_object($result$$reg);
2954 
2955     assert(result_reg != str1_reg &&
2956            result_reg != str2_reg &&
2957            result_reg !=  cnt_reg &&
2958            result_reg != tmp1_reg ,
2959            "need different registers");
2960 
2961     __ cmp(str1_reg, str2_reg); //same char[] ?
2962     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2963     __ delayed()->add(G0, 1, result_reg);
2964 
2965     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2966     __ delayed()->add(G0, 1, result_reg); // count == 0
2967 
2968     //rename registers
2969     Register limit_reg =    cnt_reg;
2970     Register  chr1_reg = result_reg;
2971     Register  chr2_reg =   tmp1_reg;
2972 
2973     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2974     __ signx(limit_reg);
2975 
2976     //check for alignment and position the pointers to the ends
2977     __ or3(str1_reg, str2_reg, chr1_reg);
2978     __ andcc(chr1_reg, 0x3, chr1_reg);
2979     // notZero means at least one not 4-byte aligned.
2980     // We could optimize the case when both arrays are not aligned
2981     // but it is not frequent case and it requires additional checks.
2982     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2983     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2984 
2985     // Compare char[] arrays aligned to 4 bytes.
2986     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2987                           chr1_reg, chr2_reg, Ldone);
2988     __ ba(Ldone);
2989     __ delayed()->add(G0, 1, result_reg);
2990 
2991     // char by char compare
2992     __ bind(Lchar);
2993     __ add(str1_reg, limit_reg, str1_reg);
2994     __ add(str2_reg, limit_reg, str2_reg);
2995     __ neg(limit_reg); //negate count
2996 
2997     __ lduh(str1_reg, limit_reg, chr1_reg);
2998     // Lchar_loop
2999     __ bind(Lchar_loop);
3000     __ lduh(str2_reg, limit_reg, chr2_reg);
3001     __ cmp(chr1_reg, chr2_reg);
3002     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3003     __ delayed()->mov(G0, result_reg); //not equal
3004     __ inccc(limit_reg, sizeof(jchar));
3005     // annul LDUH if branch is not taken to prevent access past end of string
3006     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3007     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3008 
3009     __ add(G0, 1, result_reg);  //equal
3010 
3011     __ bind(Ldone);
3012   %}
3013 
3014 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3015     Label Lvector, Ldone, Lloop;
3016     MacroAssembler _masm(&cbuf);
3017 
3018     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3019     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3020     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3021     Register   tmp2_reg = O7;
3022     Register result_reg = reg_to_register_object($result$$reg);
3023 
3024     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3025     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3026 
3027     // return true if the same array
3028     __ cmp(ary1_reg, ary2_reg);
3029     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3030     __ delayed()->add(G0, 1, result_reg); // equal
3031 
3032     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3033     __ delayed()->mov(G0, result_reg);    // not equal
3034 
3035     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3036     __ delayed()->mov(G0, result_reg);    // not equal
3037 
3038     //load the lengths of arrays
3039     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3040     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3041 
3042     // return false if the two arrays are not equal length
3043     __ cmp(tmp1_reg, tmp2_reg);
3044     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3045     __ delayed()->mov(G0, result_reg);     // not equal
3046 
3047     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3048     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3049 
3050     // load array addresses
3051     __ add(ary1_reg, base_offset, ary1_reg);
3052     __ add(ary2_reg, base_offset, ary2_reg);
3053 
3054     // renaming registers
3055     Register chr1_reg  =  result_reg; // for characters in ary1
3056     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3057     Register limit_reg =  tmp1_reg;   // length
3058 
3059     // set byte count
3060     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3061 
3062     // Compare char[] arrays aligned to 4 bytes.
3063     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3064                           chr1_reg, chr2_reg, Ldone);
3065     __ add(G0, 1, result_reg); // equals
3066 
3067     __ bind(Ldone);
3068   %}
3069 
3070   enc_class enc_rethrow() %{
3071     cbuf.set_insts_mark();
3072     Register temp_reg = G3;
3073     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3074     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3075     MacroAssembler _masm(&cbuf);
3076 #ifdef ASSERT
3077     __ save_frame(0);
3078     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3079     __ sethi(last_rethrow_addrlit, L1);
3080     Address addr(L1, last_rethrow_addrlit.low10());
3081     __ rdpc(L2);
3082     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3083     __ st_ptr(L2, addr);
3084     __ restore();
3085 #endif
3086     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3087     __ delayed()->nop();
3088   %}
3089 
3090   enc_class emit_mem_nop() %{
3091     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3092     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3093   %}
3094 
3095   enc_class emit_fadd_nop() %{
3096     // Generates the instruction FMOVS f31,f31
3097     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3098   %}
3099 
3100   enc_class emit_br_nop() %{
3101     // Generates the instruction BPN,PN .
3102     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3103   %}
3104 
3105   enc_class enc_membar_acquire %{
3106     MacroAssembler _masm(&cbuf);
3107     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3108   %}
3109 
3110   enc_class enc_membar_release %{
3111     MacroAssembler _masm(&cbuf);
3112     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3113   %}
3114 
3115   enc_class enc_membar_volatile %{
3116     MacroAssembler _masm(&cbuf);
3117     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3118   %}
3119 
3120 %}
3121 
3122 //----------FRAME--------------------------------------------------------------
3123 // Definition of frame structure and management information.
3124 //
3125 //  S T A C K   L A Y O U T    Allocators stack-slot number
3126 //                             |   (to get allocators register number
3127 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3128 //  r   CALLER     |        |
3129 //  o     |        +--------+      pad to even-align allocators stack-slot
3130 //  w     V        |  pad0  |        numbers; owned by CALLER
3131 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3132 //  h     ^        |   in   |  5
3133 //        |        |  args  |  4   Holes in incoming args owned by SELF
3134 //  |     |        |        |  3
3135 //  |     |        +--------+
3136 //  V     |        | old out|      Empty on Intel, window on Sparc
3137 //        |    old |preserve|      Must be even aligned.
3138 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3139 //        |        |   in   |  3   area for Intel ret address
3140 //     Owned by    |preserve|      Empty on Sparc.
3141 //       SELF      +--------+
3142 //        |        |  pad2  |  2   pad to align old SP
3143 //        |        +--------+  1
3144 //        |        | locks  |  0
3145 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3146 //        |        |  pad1  | 11   pad to align new SP
3147 //        |        +--------+
3148 //        |        |        | 10
3149 //        |        | spills |  9   spills
3150 //        V        |        |  8   (pad0 slot for callee)
3151 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3152 //        ^        |  out   |  7
3153 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3154 //     Owned by    +--------+
3155 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3156 //        |    new |preserve|      Must be even-aligned.
3157 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3158 //        |        |        |
3159 //
3160 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3161 //         known from SELF's arguments and the Java calling convention.
3162 //         Region 6-7 is determined per call site.
3163 // Note 2: If the calling convention leaves holes in the incoming argument
3164 //         area, those holes are owned by SELF.  Holes in the outgoing area
3165 //         are owned by the CALLEE.  Holes should not be nessecary in the
3166 //         incoming area, as the Java calling convention is completely under
3167 //         the control of the AD file.  Doubles can be sorted and packed to
3168 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3169 //         varargs C calling conventions.
3170 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3171 //         even aligned with pad0 as needed.
3172 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3173 //         region 6-11 is even aligned; it may be padded out more so that
3174 //         the region from SP to FP meets the minimum stack alignment.
3175 
3176 frame %{
3177   // What direction does stack grow in (assumed to be same for native & Java)
3178   stack_direction(TOWARDS_LOW);
3179 
3180   // These two registers define part of the calling convention
3181   // between compiled code and the interpreter.
3182   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3183   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3184 
3185   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3186   cisc_spilling_operand_name(indOffset);
3187 
3188   // Number of stack slots consumed by a Monitor enter
3189 #ifdef _LP64
3190   sync_stack_slots(2);
3191 #else
3192   sync_stack_slots(1);
3193 #endif
3194 
3195   // Compiled code's Frame Pointer
3196   frame_pointer(R_SP);
3197 
3198   // Stack alignment requirement
3199   stack_alignment(StackAlignmentInBytes);
3200   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3201   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3202 
3203   // Number of stack slots between incoming argument block and the start of
3204   // a new frame.  The PROLOG must add this many slots to the stack.  The
3205   // EPILOG must remove this many slots.
3206   in_preserve_stack_slots(0);
3207 
3208   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3209   // for calls to C.  Supports the var-args backing area for register parms.
3210   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3211 #ifdef _LP64
3212   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3213   varargs_C_out_slots_killed(12);
3214 #else
3215   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3216   varargs_C_out_slots_killed( 7);
3217 #endif
3218 
3219   // The after-PROLOG location of the return address.  Location of
3220   // return address specifies a type (REG or STACK) and a number
3221   // representing the register number (i.e. - use a register name) or
3222   // stack slot.
3223   return_addr(REG R_I7);          // Ret Addr is in register I7
3224 
3225   // Body of function which returns an OptoRegs array locating
3226   // arguments either in registers or in stack slots for calling
3227   // java
3228   calling_convention %{
3229     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3230 
3231   %}
3232 
3233   // Body of function which returns an OptoRegs array locating
3234   // arguments either in registers or in stack slots for callin
3235   // C.
3236   c_calling_convention %{
3237     // This is obviously always outgoing
3238     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3239   %}
3240 
3241   // Location of native (C/C++) and interpreter return values.  This is specified to
3242   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3243   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3244   // to and from the register pairs is done by the appropriate call and epilog
3245   // opcodes.  This simplifies the register allocator.
3246   c_return_value %{
3247     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3248 #ifdef     _LP64
3249     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3250     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3251     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3252     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3253 #else  // !_LP64
3254     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3255     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3256     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3257     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3258 #endif
3259     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3260                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3261   %}
3262 
3263   // Location of compiled Java return values.  Same as C
3264   return_value %{
3265     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3266 #ifdef     _LP64
3267     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3268     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3269     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3270     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3271 #else  // !_LP64
3272     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3273     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3274     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3275     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3276 #endif
3277     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3278                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3279   %}
3280 
3281 %}
3282 
3283 
3284 //----------ATTRIBUTES---------------------------------------------------------
3285 //----------Operand Attributes-------------------------------------------------
3286 op_attrib op_cost(1);          // Required cost attribute
3287 
3288 //----------Instruction Attributes---------------------------------------------
3289 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3290 ins_attrib ins_size(32);           // Required size attribute (in bits)
3291 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3292 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3293                                    // non-matching short branch variant of some
3294                                                             // long branch?
3295 
3296 //----------OPERANDS-----------------------------------------------------------
3297 // Operand definitions must precede instruction definitions for correct parsing
3298 // in the ADLC because operands constitute user defined types which are used in
3299 // instruction definitions.
3300 
3301 //----------Simple Operands----------------------------------------------------
3302 // Immediate Operands
3303 // Integer Immediate: 32-bit
3304 operand immI() %{
3305   match(ConI);
3306 
3307   op_cost(0);
3308   // formats are generated automatically for constants and base registers
3309   format %{ %}
3310   interface(CONST_INTER);
3311 %}
3312 
3313 // Integer Immediate: 8-bit
3314 operand immI8() %{
3315   predicate(Assembler::is_simm8(n->get_int()));
3316   match(ConI);
3317   op_cost(0);
3318   format %{ %}
3319   interface(CONST_INTER);
3320 %}
3321 
3322 // Integer Immediate: 13-bit
3323 operand immI13() %{
3324   predicate(Assembler::is_simm13(n->get_int()));
3325   match(ConI);
3326   op_cost(0);
3327 
3328   format %{ %}
3329   interface(CONST_INTER);
3330 %}
3331 
3332 // Integer Immediate: 13-bit minus 7
3333 operand immI13m7() %{
3334   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3335   match(ConI);
3336   op_cost(0);
3337 
3338   format %{ %}
3339   interface(CONST_INTER);
3340 %}
3341 
3342 // Integer Immediate: 16-bit
3343 operand immI16() %{
3344   predicate(Assembler::is_simm16(n->get_int()));
3345   match(ConI);
3346   op_cost(0);
3347   format %{ %}
3348   interface(CONST_INTER);
3349 %}
3350 
3351 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3352 operand immU12() %{
3353   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3354   match(ConI);
3355   op_cost(0);
3356 
3357   format %{ %}
3358   interface(CONST_INTER);
3359 %}
3360 
3361 // Integer Immediate: 6-bit
3362 operand immU6() %{
3363   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3364   match(ConI);
3365   op_cost(0);
3366   format %{ %}
3367   interface(CONST_INTER);
3368 %}
3369 
3370 // Integer Immediate: 11-bit
3371 operand immI11() %{
3372   predicate(Assembler::is_simm11(n->get_int()));
3373   match(ConI);
3374   op_cost(0);
3375   format %{ %}
3376   interface(CONST_INTER);
3377 %}
3378 
3379 // Integer Immediate: 5-bit
3380 operand immI5() %{
3381   predicate(Assembler::is_simm5(n->get_int()));
3382   match(ConI);
3383   op_cost(0);
3384   format %{ %}
3385   interface(CONST_INTER);
3386 %}
3387 
3388 // Int Immediate non-negative
3389 operand immU31()
3390 %{
3391   predicate(n->get_int() >= 0);
3392   match(ConI);
3393 
3394   op_cost(0);
3395   format %{ %}
3396   interface(CONST_INTER);
3397 %}
3398 
3399 // Integer Immediate: 0-bit
3400 operand immI0() %{
3401   predicate(n->get_int() == 0);
3402   match(ConI);
3403   op_cost(0);
3404 
3405   format %{ %}
3406   interface(CONST_INTER);
3407 %}
3408 
3409 // Integer Immediate: the value 10
3410 operand immI10() %{
3411   predicate(n->get_int() == 10);
3412   match(ConI);
3413   op_cost(0);
3414 
3415   format %{ %}
3416   interface(CONST_INTER);
3417 %}
3418 
3419 // Integer Immediate: the values 0-31
3420 operand immU5() %{
3421   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3422   match(ConI);
3423   op_cost(0);
3424 
3425   format %{ %}
3426   interface(CONST_INTER);
3427 %}
3428 
3429 // Integer Immediate: the values 1-31
3430 operand immI_1_31() %{
3431   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3432   match(ConI);
3433   op_cost(0);
3434 
3435   format %{ %}
3436   interface(CONST_INTER);
3437 %}
3438 
3439 // Integer Immediate: the values 32-63
3440 operand immI_32_63() %{
3441   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3442   match(ConI);
3443   op_cost(0);
3444 
3445   format %{ %}
3446   interface(CONST_INTER);
3447 %}
3448 
3449 // Immediates for special shifts (sign extend)
3450 
3451 // Integer Immediate: the value 16
3452 operand immI_16() %{
3453   predicate(n->get_int() == 16);
3454   match(ConI);
3455   op_cost(0);
3456 
3457   format %{ %}
3458   interface(CONST_INTER);
3459 %}
3460 
3461 // Integer Immediate: the value 24
3462 operand immI_24() %{
3463   predicate(n->get_int() == 24);
3464   match(ConI);
3465   op_cost(0);
3466 
3467   format %{ %}
3468   interface(CONST_INTER);
3469 %}
3470 
3471 // Integer Immediate: the value 255
3472 operand immI_255() %{
3473   predicate( n->get_int() == 255 );
3474   match(ConI);
3475   op_cost(0);
3476 
3477   format %{ %}
3478   interface(CONST_INTER);
3479 %}
3480 
3481 // Integer Immediate: the value 65535
3482 operand immI_65535() %{
3483   predicate(n->get_int() == 65535);
3484   match(ConI);
3485   op_cost(0);
3486 
3487   format %{ %}
3488   interface(CONST_INTER);
3489 %}
3490 
3491 // Long Immediate: the value FF
3492 operand immL_FF() %{
3493   predicate( n->get_long() == 0xFFL );
3494   match(ConL);
3495   op_cost(0);
3496 
3497   format %{ %}
3498   interface(CONST_INTER);
3499 %}
3500 
3501 // Long Immediate: the value FFFF
3502 operand immL_FFFF() %{
3503   predicate( n->get_long() == 0xFFFFL );
3504   match(ConL);
3505   op_cost(0);
3506 
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Pointer Immediate: 32 or 64-bit
3512 operand immP() %{
3513   match(ConP);
3514 
3515   op_cost(5);
3516   // formats are generated automatically for constants and base registers
3517   format %{ %}
3518   interface(CONST_INTER);
3519 %}
3520 
3521 #ifdef _LP64
3522 // Pointer Immediate: 64-bit
3523 operand immP_set() %{
3524   predicate(!VM_Version::is_niagara_plus());
3525   match(ConP);
3526 
3527   op_cost(5);
3528   // formats are generated automatically for constants and base registers
3529   format %{ %}
3530   interface(CONST_INTER);
3531 %}
3532 
3533 // Pointer Immediate: 64-bit
3534 // From Niagara2 processors on a load should be better than materializing.
3535 operand immP_load() %{
3536   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3537   match(ConP);
3538 
3539   op_cost(5);
3540   // formats are generated automatically for constants and base registers
3541   format %{ %}
3542   interface(CONST_INTER);
3543 %}
3544 
3545 // Pointer Immediate: 64-bit
3546 operand immP_no_oop_cheap() %{
3547   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3548   match(ConP);
3549 
3550   op_cost(5);
3551   // formats are generated automatically for constants and base registers
3552   format %{ %}
3553   interface(CONST_INTER);
3554 %}
3555 #endif
3556 
3557 operand immP13() %{
3558   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3559   match(ConP);
3560   op_cost(0);
3561 
3562   format %{ %}
3563   interface(CONST_INTER);
3564 %}
3565 
3566 operand immP0() %{
3567   predicate(n->get_ptr() == 0);
3568   match(ConP);
3569   op_cost(0);
3570 
3571   format %{ %}
3572   interface(CONST_INTER);
3573 %}
3574 
3575 operand immP_poll() %{
3576   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3577   match(ConP);
3578 
3579   // formats are generated automatically for constants and base registers
3580   format %{ %}
3581   interface(CONST_INTER);
3582 %}
3583 
3584 // Pointer Immediate
3585 operand immN()
3586 %{
3587   match(ConN);
3588 
3589   op_cost(10);
3590   format %{ %}
3591   interface(CONST_INTER);
3592 %}
3593 
3594 operand immNKlass()
3595 %{
3596   match(ConNKlass);
3597 
3598   op_cost(10);
3599   format %{ %}
3600   interface(CONST_INTER);
3601 %}
3602 
3603 // NULL Pointer Immediate
3604 operand immN0()
3605 %{
3606   predicate(n->get_narrowcon() == 0);
3607   match(ConN);
3608 
3609   op_cost(0);
3610   format %{ %}
3611   interface(CONST_INTER);
3612 %}
3613 
3614 operand immL() %{
3615   match(ConL);
3616   op_cost(40);
3617   // formats are generated automatically for constants and base registers
3618   format %{ %}
3619   interface(CONST_INTER);
3620 %}
3621 
3622 operand immL0() %{
3623   predicate(n->get_long() == 0L);
3624   match(ConL);
3625   op_cost(0);
3626   // formats are generated automatically for constants and base registers
3627   format %{ %}
3628   interface(CONST_INTER);
3629 %}
3630 
3631 // Integer Immediate: 5-bit
3632 operand immL5() %{
3633   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3634   match(ConL);
3635   op_cost(0);
3636   format %{ %}
3637   interface(CONST_INTER);
3638 %}
3639 
3640 // Long Immediate: 13-bit
3641 operand immL13() %{
3642   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3643   match(ConL);
3644   op_cost(0);
3645 
3646   format %{ %}
3647   interface(CONST_INTER);
3648 %}
3649 
3650 // Long Immediate: 13-bit minus 7
3651 operand immL13m7() %{
3652   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3653   match(ConL);
3654   op_cost(0);
3655 
3656   format %{ %}
3657   interface(CONST_INTER);
3658 %}
3659 
3660 // Long Immediate: low 32-bit mask
3661 operand immL_32bits() %{
3662   predicate(n->get_long() == 0xFFFFFFFFL);
3663   match(ConL);
3664   op_cost(0);
3665 
3666   format %{ %}
3667   interface(CONST_INTER);
3668 %}
3669 
3670 // Long Immediate: cheap (materialize in <= 3 instructions)
3671 operand immL_cheap() %{
3672   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3673   match(ConL);
3674   op_cost(0);
3675 
3676   format %{ %}
3677   interface(CONST_INTER);
3678 %}
3679 
3680 // Long Immediate: expensive (materialize in > 3 instructions)
3681 operand immL_expensive() %{
3682   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3683   match(ConL);
3684   op_cost(0);
3685 
3686   format %{ %}
3687   interface(CONST_INTER);
3688 %}
3689 
3690 // Double Immediate
3691 operand immD() %{
3692   match(ConD);
3693 
3694   op_cost(40);
3695   format %{ %}
3696   interface(CONST_INTER);
3697 %}
3698 
3699 operand immD0() %{
3700 #ifdef _LP64
3701   // on 64-bit architectures this comparision is faster
3702   predicate(jlong_cast(n->getd()) == 0);
3703 #else
3704   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3705 #endif
3706   match(ConD);
3707 
3708   op_cost(0);
3709   format %{ %}
3710   interface(CONST_INTER);
3711 %}
3712 
3713 // Float Immediate
3714 operand immF() %{
3715   match(ConF);
3716 
3717   op_cost(20);
3718   format %{ %}
3719   interface(CONST_INTER);
3720 %}
3721 
3722 // Float Immediate: 0
3723 operand immF0() %{
3724   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3725   match(ConF);
3726 
3727   op_cost(0);
3728   format %{ %}
3729   interface(CONST_INTER);
3730 %}
3731 
3732 // Integer Register Operands
3733 // Integer Register
3734 operand iRegI() %{
3735   constraint(ALLOC_IN_RC(int_reg));
3736   match(RegI);
3737 
3738   match(notemp_iRegI);
3739   match(g1RegI);
3740   match(o0RegI);
3741   match(iRegIsafe);
3742 
3743   format %{ %}
3744   interface(REG_INTER);
3745 %}
3746 
3747 operand notemp_iRegI() %{
3748   constraint(ALLOC_IN_RC(notemp_int_reg));
3749   match(RegI);
3750 
3751   match(o0RegI);
3752 
3753   format %{ %}
3754   interface(REG_INTER);
3755 %}
3756 
3757 operand o0RegI() %{
3758   constraint(ALLOC_IN_RC(o0_regI));
3759   match(iRegI);
3760 
3761   format %{ %}
3762   interface(REG_INTER);
3763 %}
3764 
3765 // Pointer Register
3766 operand iRegP() %{
3767   constraint(ALLOC_IN_RC(ptr_reg));
3768   match(RegP);
3769 
3770   match(lock_ptr_RegP);
3771   match(g1RegP);
3772   match(g2RegP);
3773   match(g3RegP);
3774   match(g4RegP);
3775   match(i0RegP);
3776   match(o0RegP);
3777   match(o1RegP);
3778   match(l7RegP);
3779 
3780   format %{ %}
3781   interface(REG_INTER);
3782 %}
3783 
3784 operand sp_ptr_RegP() %{
3785   constraint(ALLOC_IN_RC(sp_ptr_reg));
3786   match(RegP);
3787   match(iRegP);
3788 
3789   format %{ %}
3790   interface(REG_INTER);
3791 %}
3792 
3793 operand lock_ptr_RegP() %{
3794   constraint(ALLOC_IN_RC(lock_ptr_reg));
3795   match(RegP);
3796   match(i0RegP);
3797   match(o0RegP);
3798   match(o1RegP);
3799   match(l7RegP);
3800 
3801   format %{ %}
3802   interface(REG_INTER);
3803 %}
3804 
3805 operand g1RegP() %{
3806   constraint(ALLOC_IN_RC(g1_regP));
3807   match(iRegP);
3808 
3809   format %{ %}
3810   interface(REG_INTER);
3811 %}
3812 
3813 operand g2RegP() %{
3814   constraint(ALLOC_IN_RC(g2_regP));
3815   match(iRegP);
3816 
3817   format %{ %}
3818   interface(REG_INTER);
3819 %}
3820 
3821 operand g3RegP() %{
3822   constraint(ALLOC_IN_RC(g3_regP));
3823   match(iRegP);
3824 
3825   format %{ %}
3826   interface(REG_INTER);
3827 %}
3828 
3829 operand g1RegI() %{
3830   constraint(ALLOC_IN_RC(g1_regI));
3831   match(iRegI);
3832 
3833   format %{ %}
3834   interface(REG_INTER);
3835 %}
3836 
3837 operand g3RegI() %{
3838   constraint(ALLOC_IN_RC(g3_regI));
3839   match(iRegI);
3840 
3841   format %{ %}
3842   interface(REG_INTER);
3843 %}
3844 
3845 operand g4RegI() %{
3846   constraint(ALLOC_IN_RC(g4_regI));
3847   match(iRegI);
3848 
3849   format %{ %}
3850   interface(REG_INTER);
3851 %}
3852 
3853 operand g4RegP() %{
3854   constraint(ALLOC_IN_RC(g4_regP));
3855   match(iRegP);
3856 
3857   format %{ %}
3858   interface(REG_INTER);
3859 %}
3860 
3861 operand i0RegP() %{
3862   constraint(ALLOC_IN_RC(i0_regP));
3863   match(iRegP);
3864 
3865   format %{ %}
3866   interface(REG_INTER);
3867 %}
3868 
3869 operand o0RegP() %{
3870   constraint(ALLOC_IN_RC(o0_regP));
3871   match(iRegP);
3872 
3873   format %{ %}
3874   interface(REG_INTER);
3875 %}
3876 
3877 operand o1RegP() %{
3878   constraint(ALLOC_IN_RC(o1_regP));
3879   match(iRegP);
3880 
3881   format %{ %}
3882   interface(REG_INTER);
3883 %}
3884 
3885 operand o2RegP() %{
3886   constraint(ALLOC_IN_RC(o2_regP));
3887   match(iRegP);
3888 
3889   format %{ %}
3890   interface(REG_INTER);
3891 %}
3892 
3893 operand o7RegP() %{
3894   constraint(ALLOC_IN_RC(o7_regP));
3895   match(iRegP);
3896 
3897   format %{ %}
3898   interface(REG_INTER);
3899 %}
3900 
3901 operand l7RegP() %{
3902   constraint(ALLOC_IN_RC(l7_regP));
3903   match(iRegP);
3904 
3905   format %{ %}
3906   interface(REG_INTER);
3907 %}
3908 
3909 operand o7RegI() %{
3910   constraint(ALLOC_IN_RC(o7_regI));
3911   match(iRegI);
3912 
3913   format %{ %}
3914   interface(REG_INTER);
3915 %}
3916 
3917 operand iRegN() %{
3918   constraint(ALLOC_IN_RC(int_reg));
3919   match(RegN);
3920 
3921   format %{ %}
3922   interface(REG_INTER);
3923 %}
3924 
3925 // Long Register
3926 operand iRegL() %{
3927   constraint(ALLOC_IN_RC(long_reg));
3928   match(RegL);
3929 
3930   format %{ %}
3931   interface(REG_INTER);
3932 %}
3933 
3934 operand o2RegL() %{
3935   constraint(ALLOC_IN_RC(o2_regL));
3936   match(iRegL);
3937 
3938   format %{ %}
3939   interface(REG_INTER);
3940 %}
3941 
3942 operand o7RegL() %{
3943   constraint(ALLOC_IN_RC(o7_regL));
3944   match(iRegL);
3945 
3946   format %{ %}
3947   interface(REG_INTER);
3948 %}
3949 
3950 operand g1RegL() %{
3951   constraint(ALLOC_IN_RC(g1_regL));
3952   match(iRegL);
3953 
3954   format %{ %}
3955   interface(REG_INTER);
3956 %}
3957 
3958 operand g3RegL() %{
3959   constraint(ALLOC_IN_RC(g3_regL));
3960   match(iRegL);
3961 
3962   format %{ %}
3963   interface(REG_INTER);
3964 %}
3965 
3966 // Int Register safe
3967 // This is 64bit safe
3968 operand iRegIsafe() %{
3969   constraint(ALLOC_IN_RC(long_reg));
3970 
3971   match(iRegI);
3972 
3973   format %{ %}
3974   interface(REG_INTER);
3975 %}
3976 
3977 // Condition Code Flag Register
3978 operand flagsReg() %{
3979   constraint(ALLOC_IN_RC(int_flags));
3980   match(RegFlags);
3981 
3982   format %{ "ccr" %} // both ICC and XCC
3983   interface(REG_INTER);
3984 %}
3985 
3986 // Condition Code Register, unsigned comparisons.
3987 operand flagsRegU() %{
3988   constraint(ALLOC_IN_RC(int_flags));
3989   match(RegFlags);
3990 
3991   format %{ "icc_U" %}
3992   interface(REG_INTER);
3993 %}
3994 
3995 // Condition Code Register, pointer comparisons.
3996 operand flagsRegP() %{
3997   constraint(ALLOC_IN_RC(int_flags));
3998   match(RegFlags);
3999 
4000 #ifdef _LP64
4001   format %{ "xcc_P" %}
4002 #else
4003   format %{ "icc_P" %}
4004 #endif
4005   interface(REG_INTER);
4006 %}
4007 
4008 // Condition Code Register, long comparisons.
4009 operand flagsRegL() %{
4010   constraint(ALLOC_IN_RC(int_flags));
4011   match(RegFlags);
4012 
4013   format %{ "xcc_L" %}
4014   interface(REG_INTER);
4015 %}
4016 
4017 // Condition Code Register, floating comparisons, unordered same as "less".
4018 operand flagsRegF() %{
4019   constraint(ALLOC_IN_RC(float_flags));
4020   match(RegFlags);
4021   match(flagsRegF0);
4022 
4023   format %{ %}
4024   interface(REG_INTER);
4025 %}
4026 
4027 operand flagsRegF0() %{
4028   constraint(ALLOC_IN_RC(float_flag0));
4029   match(RegFlags);
4030 
4031   format %{ %}
4032   interface(REG_INTER);
4033 %}
4034 
4035 
4036 // Condition Code Flag Register used by long compare
4037 operand flagsReg_long_LTGE() %{
4038   constraint(ALLOC_IN_RC(int_flags));
4039   match(RegFlags);
4040   format %{ "icc_LTGE" %}
4041   interface(REG_INTER);
4042 %}
4043 operand flagsReg_long_EQNE() %{
4044   constraint(ALLOC_IN_RC(int_flags));
4045   match(RegFlags);
4046   format %{ "icc_EQNE" %}
4047   interface(REG_INTER);
4048 %}
4049 operand flagsReg_long_LEGT() %{
4050   constraint(ALLOC_IN_RC(int_flags));
4051   match(RegFlags);
4052   format %{ "icc_LEGT" %}
4053   interface(REG_INTER);
4054 %}
4055 
4056 
4057 operand regD() %{
4058   constraint(ALLOC_IN_RC(dflt_reg));
4059   match(RegD);
4060 
4061   match(regD_low);
4062 
4063   format %{ %}
4064   interface(REG_INTER);
4065 %}
4066 
4067 operand regF() %{
4068   constraint(ALLOC_IN_RC(sflt_reg));
4069   match(RegF);
4070 
4071   format %{ %}
4072   interface(REG_INTER);
4073 %}
4074 
4075 operand regD_low() %{
4076   constraint(ALLOC_IN_RC(dflt_low_reg));
4077   match(regD);
4078 
4079   format %{ %}
4080   interface(REG_INTER);
4081 %}
4082 
4083 // Special Registers
4084 
4085 // Method Register
4086 operand inline_cache_regP(iRegP reg) %{
4087   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4088   match(reg);
4089   format %{ %}
4090   interface(REG_INTER);
4091 %}
4092 
4093 operand interpreter_method_oop_regP(iRegP reg) %{
4094   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4095   match(reg);
4096   format %{ %}
4097   interface(REG_INTER);
4098 %}
4099 
4100 
4101 //----------Complex Operands---------------------------------------------------
4102 // Indirect Memory Reference
4103 operand indirect(sp_ptr_RegP reg) %{
4104   constraint(ALLOC_IN_RC(sp_ptr_reg));
4105   match(reg);
4106 
4107   op_cost(100);
4108   format %{ "[$reg]" %}
4109   interface(MEMORY_INTER) %{
4110     base($reg);
4111     index(0x0);
4112     scale(0x0);
4113     disp(0x0);
4114   %}
4115 %}
4116 
4117 // Indirect with simm13 Offset
4118 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4119   constraint(ALLOC_IN_RC(sp_ptr_reg));
4120   match(AddP reg offset);
4121 
4122   op_cost(100);
4123   format %{ "[$reg + $offset]" %}
4124   interface(MEMORY_INTER) %{
4125     base($reg);
4126     index(0x0);
4127     scale(0x0);
4128     disp($offset);
4129   %}
4130 %}
4131 
4132 // Indirect with simm13 Offset minus 7
4133 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4134   constraint(ALLOC_IN_RC(sp_ptr_reg));
4135   match(AddP reg offset);
4136 
4137   op_cost(100);
4138   format %{ "[$reg + $offset]" %}
4139   interface(MEMORY_INTER) %{
4140     base($reg);
4141     index(0x0);
4142     scale(0x0);
4143     disp($offset);
4144   %}
4145 %}
4146 
4147 // Note:  Intel has a swapped version also, like this:
4148 //operand indOffsetX(iRegI reg, immP offset) %{
4149 //  constraint(ALLOC_IN_RC(int_reg));
4150 //  match(AddP offset reg);
4151 //
4152 //  op_cost(100);
4153 //  format %{ "[$reg + $offset]" %}
4154 //  interface(MEMORY_INTER) %{
4155 //    base($reg);
4156 //    index(0x0);
4157 //    scale(0x0);
4158 //    disp($offset);
4159 //  %}
4160 //%}
4161 //// However, it doesn't make sense for SPARC, since
4162 // we have no particularly good way to embed oops in
4163 // single instructions.
4164 
4165 // Indirect with Register Index
4166 operand indIndex(iRegP addr, iRegX index) %{
4167   constraint(ALLOC_IN_RC(ptr_reg));
4168   match(AddP addr index);
4169 
4170   op_cost(100);
4171   format %{ "[$addr + $index]" %}
4172   interface(MEMORY_INTER) %{
4173     base($addr);
4174     index($index);
4175     scale(0x0);
4176     disp(0x0);
4177   %}
4178 %}
4179 
4180 //----------Special Memory Operands--------------------------------------------
4181 // Stack Slot Operand - This operand is used for loading and storing temporary
4182 //                      values on the stack where a match requires a value to
4183 //                      flow through memory.
4184 operand stackSlotI(sRegI reg) %{
4185   constraint(ALLOC_IN_RC(stack_slots));
4186   op_cost(100);
4187   //match(RegI);
4188   format %{ "[$reg]" %}
4189   interface(MEMORY_INTER) %{
4190     base(0xE);   // R_SP
4191     index(0x0);
4192     scale(0x0);
4193     disp($reg);  // Stack Offset
4194   %}
4195 %}
4196 
4197 operand stackSlotP(sRegP reg) %{
4198   constraint(ALLOC_IN_RC(stack_slots));
4199   op_cost(100);
4200   //match(RegP);
4201   format %{ "[$reg]" %}
4202   interface(MEMORY_INTER) %{
4203     base(0xE);   // R_SP
4204     index(0x0);
4205     scale(0x0);
4206     disp($reg);  // Stack Offset
4207   %}
4208 %}
4209 
4210 operand stackSlotF(sRegF reg) %{
4211   constraint(ALLOC_IN_RC(stack_slots));
4212   op_cost(100);
4213   //match(RegF);
4214   format %{ "[$reg]" %}
4215   interface(MEMORY_INTER) %{
4216     base(0xE);   // R_SP
4217     index(0x0);
4218     scale(0x0);
4219     disp($reg);  // Stack Offset
4220   %}
4221 %}
4222 operand stackSlotD(sRegD reg) %{
4223   constraint(ALLOC_IN_RC(stack_slots));
4224   op_cost(100);
4225   //match(RegD);
4226   format %{ "[$reg]" %}
4227   interface(MEMORY_INTER) %{
4228     base(0xE);   // R_SP
4229     index(0x0);
4230     scale(0x0);
4231     disp($reg);  // Stack Offset
4232   %}
4233 %}
4234 operand stackSlotL(sRegL reg) %{
4235   constraint(ALLOC_IN_RC(stack_slots));
4236   op_cost(100);
4237   //match(RegL);
4238   format %{ "[$reg]" %}
4239   interface(MEMORY_INTER) %{
4240     base(0xE);   // R_SP
4241     index(0x0);
4242     scale(0x0);
4243     disp($reg);  // Stack Offset
4244   %}
4245 %}
4246 
4247 // Operands for expressing Control Flow
4248 // NOTE:  Label is a predefined operand which should not be redefined in
4249 //        the AD file.  It is generically handled within the ADLC.
4250 
4251 //----------Conditional Branch Operands----------------------------------------
4252 // Comparison Op  - This is the operation of the comparison, and is limited to
4253 //                  the following set of codes:
4254 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4255 //
4256 // Other attributes of the comparison, such as unsignedness, are specified
4257 // by the comparison instruction that sets a condition code flags register.
4258 // That result is represented by a flags operand whose subtype is appropriate
4259 // to the unsignedness (etc.) of the comparison.
4260 //
4261 // Later, the instruction which matches both the Comparison Op (a Bool) and
4262 // the flags (produced by the Cmp) specifies the coding of the comparison op
4263 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4264 
4265 operand cmpOp() %{
4266   match(Bool);
4267 
4268   format %{ "" %}
4269   interface(COND_INTER) %{
4270     equal(0x1);
4271     not_equal(0x9);
4272     less(0x3);
4273     greater_equal(0xB);
4274     less_equal(0x2);
4275     greater(0xA);
4276     overflow(0x7);
4277     no_overflow(0xF);
4278   %}
4279 %}
4280 
4281 // Comparison Op, unsigned
4282 operand cmpOpU() %{
4283   match(Bool);
4284   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4285             n->as_Bool()->_test._test != BoolTest::no_overflow);
4286 
4287   format %{ "u" %}
4288   interface(COND_INTER) %{
4289     equal(0x1);
4290     not_equal(0x9);
4291     less(0x5);
4292     greater_equal(0xD);
4293     less_equal(0x4);
4294     greater(0xC);
4295     overflow(0x7);
4296     no_overflow(0xF);
4297   %}
4298 %}
4299 
4300 // Comparison Op, pointer (same as unsigned)
4301 operand cmpOpP() %{
4302   match(Bool);
4303   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4304             n->as_Bool()->_test._test != BoolTest::no_overflow);
4305 
4306   format %{ "p" %}
4307   interface(COND_INTER) %{
4308     equal(0x1);
4309     not_equal(0x9);
4310     less(0x5);
4311     greater_equal(0xD);
4312     less_equal(0x4);
4313     greater(0xC);
4314     overflow(0x7);
4315     no_overflow(0xF);
4316   %}
4317 %}
4318 
4319 // Comparison Op, branch-register encoding
4320 operand cmpOp_reg() %{
4321   match(Bool);
4322   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4323             n->as_Bool()->_test._test != BoolTest::no_overflow);
4324 
4325   format %{ "" %}
4326   interface(COND_INTER) %{
4327     equal        (0x1);
4328     not_equal    (0x5);
4329     less         (0x3);
4330     greater_equal(0x7);
4331     less_equal   (0x2);
4332     greater      (0x6);
4333     overflow(0x7); // not supported
4334     no_overflow(0xF); // not supported
4335   %}
4336 %}
4337 
4338 // Comparison Code, floating, unordered same as less
4339 operand cmpOpF() %{
4340   match(Bool);
4341   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4342             n->as_Bool()->_test._test != BoolTest::no_overflow);
4343 
4344   format %{ "fl" %}
4345   interface(COND_INTER) %{
4346     equal(0x9);
4347     not_equal(0x1);
4348     less(0x3);
4349     greater_equal(0xB);
4350     less_equal(0xE);
4351     greater(0x6);
4352 
4353     overflow(0x7); // not supported
4354     no_overflow(0xF); // not supported
4355   %}
4356 %}
4357 
4358 // Used by long compare
4359 operand cmpOp_commute() %{
4360   match(Bool);
4361   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4362             n->as_Bool()->_test._test != BoolTest::no_overflow);
4363 
4364   format %{ "" %}
4365   interface(COND_INTER) %{
4366     equal(0x1);
4367     not_equal(0x9);
4368     less(0xA);
4369     greater_equal(0x2);
4370     less_equal(0xB);
4371     greater(0x3);
4372     overflow(0x7);
4373     no_overflow(0xF);
4374   %}
4375 %}
4376 
4377 //----------OPERAND CLASSES----------------------------------------------------
4378 // Operand Classes are groups of operands that are used to simplify
4379 // instruction definitions by not requiring the AD writer to specify separate
4380 // instructions for every form of operand when the instruction accepts
4381 // multiple operand types with the same basic encoding and format.  The classic
4382 // case of this is memory operands.
4383 opclass memory( indirect, indOffset13, indIndex );
4384 opclass indIndexMemory( indIndex );
4385 
4386 //----------PIPELINE-----------------------------------------------------------
4387 pipeline %{
4388 
4389 //----------ATTRIBUTES---------------------------------------------------------
4390 attributes %{
4391   fixed_size_instructions;           // Fixed size instructions
4392   branch_has_delay_slot;             // Branch has delay slot following
4393   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4394   instruction_unit_size = 4;         // An instruction is 4 bytes long
4395   instruction_fetch_unit_size = 16;  // The processor fetches one line
4396   instruction_fetch_units = 1;       // of 16 bytes
4397 
4398   // List of nop instructions
4399   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4400 %}
4401 
4402 //----------RESOURCES----------------------------------------------------------
4403 // Resources are the functional units available to the machine
4404 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4405 
4406 //----------PIPELINE DESCRIPTION-----------------------------------------------
4407 // Pipeline Description specifies the stages in the machine's pipeline
4408 
4409 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4410 
4411 //----------PIPELINE CLASSES---------------------------------------------------
4412 // Pipeline Classes describe the stages in which input and output are
4413 // referenced by the hardware pipeline.
4414 
4415 // Integer ALU reg-reg operation
4416 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4417     single_instruction;
4418     dst   : E(write);
4419     src1  : R(read);
4420     src2  : R(read);
4421     IALU  : R;
4422 %}
4423 
4424 // Integer ALU reg-reg long operation
4425 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4426     instruction_count(2);
4427     dst   : E(write);
4428     src1  : R(read);
4429     src2  : R(read);
4430     IALU  : R;
4431     IALU  : R;
4432 %}
4433 
4434 // Integer ALU reg-reg long dependent operation
4435 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4436     instruction_count(1); multiple_bundles;
4437     dst   : E(write);
4438     src1  : R(read);
4439     src2  : R(read);
4440     cr    : E(write);
4441     IALU  : R(2);
4442 %}
4443 
4444 // Integer ALU reg-imm operaion
4445 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4446     single_instruction;
4447     dst   : E(write);
4448     src1  : R(read);
4449     IALU  : R;
4450 %}
4451 
4452 // Integer ALU reg-reg operation with condition code
4453 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4454     single_instruction;
4455     dst   : E(write);
4456     cr    : E(write);
4457     src1  : R(read);
4458     src2  : R(read);
4459     IALU  : R;
4460 %}
4461 
4462 // Integer ALU reg-imm operation with condition code
4463 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4464     single_instruction;
4465     dst   : E(write);
4466     cr    : E(write);
4467     src1  : R(read);
4468     IALU  : R;
4469 %}
4470 
4471 // Integer ALU zero-reg operation
4472 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4473     single_instruction;
4474     dst   : E(write);
4475     src2  : R(read);
4476     IALU  : R;
4477 %}
4478 
4479 // Integer ALU zero-reg operation with condition code only
4480 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4481     single_instruction;
4482     cr    : E(write);
4483     src   : R(read);
4484     IALU  : R;
4485 %}
4486 
4487 // Integer ALU reg-reg operation with condition code only
4488 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4489     single_instruction;
4490     cr    : E(write);
4491     src1  : R(read);
4492     src2  : R(read);
4493     IALU  : R;
4494 %}
4495 
4496 // Integer ALU reg-imm operation with condition code only
4497 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4498     single_instruction;
4499     cr    : E(write);
4500     src1  : R(read);
4501     IALU  : R;
4502 %}
4503 
4504 // Integer ALU reg-reg-zero operation with condition code only
4505 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4506     single_instruction;
4507     cr    : E(write);
4508     src1  : R(read);
4509     src2  : R(read);
4510     IALU  : R;
4511 %}
4512 
4513 // Integer ALU reg-imm-zero operation with condition code only
4514 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4515     single_instruction;
4516     cr    : E(write);
4517     src1  : R(read);
4518     IALU  : R;
4519 %}
4520 
4521 // Integer ALU reg-reg operation with condition code, src1 modified
4522 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4523     single_instruction;
4524     cr    : E(write);
4525     src1  : E(write);
4526     src1  : R(read);
4527     src2  : R(read);
4528     IALU  : R;
4529 %}
4530 
4531 // Integer ALU reg-imm operation with condition code, src1 modified
4532 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4533     single_instruction;
4534     cr    : E(write);
4535     src1  : E(write);
4536     src1  : R(read);
4537     IALU  : R;
4538 %}
4539 
4540 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4541     multiple_bundles;
4542     dst   : E(write)+4;
4543     cr    : E(write);
4544     src1  : R(read);
4545     src2  : R(read);
4546     IALU  : R(3);
4547     BR    : R(2);
4548 %}
4549 
4550 // Integer ALU operation
4551 pipe_class ialu_none(iRegI dst) %{
4552     single_instruction;
4553     dst   : E(write);
4554     IALU  : R;
4555 %}
4556 
4557 // Integer ALU reg operation
4558 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4559     single_instruction; may_have_no_code;
4560     dst   : E(write);
4561     src   : R(read);
4562     IALU  : R;
4563 %}
4564 
4565 // Integer ALU reg conditional operation
4566 // This instruction has a 1 cycle stall, and cannot execute
4567 // in the same cycle as the instruction setting the condition
4568 // code. We kludge this by pretending to read the condition code
4569 // 1 cycle earlier, and by marking the functional units as busy
4570 // for 2 cycles with the result available 1 cycle later than
4571 // is really the case.
4572 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4573     single_instruction;
4574     op2_out : C(write);
4575     op1     : R(read);
4576     cr      : R(read);       // This is really E, with a 1 cycle stall
4577     BR      : R(2);
4578     MS      : R(2);
4579 %}
4580 
4581 #ifdef _LP64
4582 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4583     instruction_count(1); multiple_bundles;
4584     dst     : C(write)+1;
4585     src     : R(read)+1;
4586     IALU    : R(1);
4587     BR      : E(2);
4588     MS      : E(2);
4589 %}
4590 #endif
4591 
4592 // Integer ALU reg operation
4593 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4594     single_instruction; may_have_no_code;
4595     dst   : E(write);
4596     src   : R(read);
4597     IALU  : R;
4598 %}
4599 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4600     single_instruction; may_have_no_code;
4601     dst   : E(write);
4602     src   : R(read);
4603     IALU  : R;
4604 %}
4605 
4606 // Two integer ALU reg operations
4607 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4608     instruction_count(2);
4609     dst   : E(write);
4610     src   : R(read);
4611     A0    : R;
4612     A1    : R;
4613 %}
4614 
4615 // Two integer ALU reg operations
4616 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4617     instruction_count(2); may_have_no_code;
4618     dst   : E(write);
4619     src   : R(read);
4620     A0    : R;
4621     A1    : R;
4622 %}
4623 
4624 // Integer ALU imm operation
4625 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4626     single_instruction;
4627     dst   : E(write);
4628     IALU  : R;
4629 %}
4630 
4631 // Integer ALU reg-reg with carry operation
4632 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4633     single_instruction;
4634     dst   : E(write);
4635     src1  : R(read);
4636     src2  : R(read);
4637     IALU  : R;
4638 %}
4639 
4640 // Integer ALU cc operation
4641 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4642     single_instruction;
4643     dst   : E(write);
4644     cc    : R(read);
4645     IALU  : R;
4646 %}
4647 
4648 // Integer ALU cc / second IALU operation
4649 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4650     instruction_count(1); multiple_bundles;
4651     dst   : E(write)+1;
4652     src   : R(read);
4653     IALU  : R;
4654 %}
4655 
4656 // Integer ALU cc / second IALU operation
4657 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4658     instruction_count(1); multiple_bundles;
4659     dst   : E(write)+1;
4660     p     : R(read);
4661     q     : R(read);
4662     IALU  : R;
4663 %}
4664 
4665 // Integer ALU hi-lo-reg operation
4666 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4667     instruction_count(1); multiple_bundles;
4668     dst   : E(write)+1;
4669     IALU  : R(2);
4670 %}
4671 
4672 // Float ALU hi-lo-reg operation (with temp)
4673 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4674     instruction_count(1); multiple_bundles;
4675     dst   : E(write)+1;
4676     IALU  : R(2);
4677 %}
4678 
4679 // Long Constant
4680 pipe_class loadConL( iRegL dst, immL src ) %{
4681     instruction_count(2); multiple_bundles;
4682     dst   : E(write)+1;
4683     IALU  : R(2);
4684     IALU  : R(2);
4685 %}
4686 
4687 // Pointer Constant
4688 pipe_class loadConP( iRegP dst, immP src ) %{
4689     instruction_count(0); multiple_bundles;
4690     fixed_latency(6);
4691 %}
4692 
4693 // Polling Address
4694 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4695 #ifdef _LP64
4696     instruction_count(0); multiple_bundles;
4697     fixed_latency(6);
4698 #else
4699     dst   : E(write);
4700     IALU  : R;
4701 #endif
4702 %}
4703 
4704 // Long Constant small
4705 pipe_class loadConLlo( iRegL dst, immL src ) %{
4706     instruction_count(2);
4707     dst   : E(write);
4708     IALU  : R;
4709     IALU  : R;
4710 %}
4711 
4712 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4713 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4714     instruction_count(1); multiple_bundles;
4715     src   : R(read);
4716     dst   : M(write)+1;
4717     IALU  : R;
4718     MS    : E;
4719 %}
4720 
4721 // Integer ALU nop operation
4722 pipe_class ialu_nop() %{
4723     single_instruction;
4724     IALU  : R;
4725 %}
4726 
4727 // Integer ALU nop operation
4728 pipe_class ialu_nop_A0() %{
4729     single_instruction;
4730     A0    : R;
4731 %}
4732 
4733 // Integer ALU nop operation
4734 pipe_class ialu_nop_A1() %{
4735     single_instruction;
4736     A1    : R;
4737 %}
4738 
4739 // Integer Multiply reg-reg operation
4740 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4741     single_instruction;
4742     dst   : E(write);
4743     src1  : R(read);
4744     src2  : R(read);
4745     MS    : R(5);
4746 %}
4747 
4748 // Integer Multiply reg-imm operation
4749 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4750     single_instruction;
4751     dst   : E(write);
4752     src1  : R(read);
4753     MS    : R(5);
4754 %}
4755 
4756 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4757     single_instruction;
4758     dst   : E(write)+4;
4759     src1  : R(read);
4760     src2  : R(read);
4761     MS    : R(6);
4762 %}
4763 
4764 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4765     single_instruction;
4766     dst   : E(write)+4;
4767     src1  : R(read);
4768     MS    : R(6);
4769 %}
4770 
4771 // Integer Divide reg-reg
4772 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4773     instruction_count(1); multiple_bundles;
4774     dst   : E(write);
4775     temp  : E(write);
4776     src1  : R(read);
4777     src2  : R(read);
4778     temp  : R(read);
4779     MS    : R(38);
4780 %}
4781 
4782 // Integer Divide reg-imm
4783 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4784     instruction_count(1); multiple_bundles;
4785     dst   : E(write);
4786     temp  : E(write);
4787     src1  : R(read);
4788     temp  : R(read);
4789     MS    : R(38);
4790 %}
4791 
4792 // Long Divide
4793 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4794     dst  : E(write)+71;
4795     src1 : R(read);
4796     src2 : R(read)+1;
4797     MS   : R(70);
4798 %}
4799 
4800 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4801     dst  : E(write)+71;
4802     src1 : R(read);
4803     MS   : R(70);
4804 %}
4805 
4806 // Floating Point Add Float
4807 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4808     single_instruction;
4809     dst   : X(write);
4810     src1  : E(read);
4811     src2  : E(read);
4812     FA    : R;
4813 %}
4814 
4815 // Floating Point Add Double
4816 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4817     single_instruction;
4818     dst   : X(write);
4819     src1  : E(read);
4820     src2  : E(read);
4821     FA    : R;
4822 %}
4823 
4824 // Floating Point Conditional Move based on integer flags
4825 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4826     single_instruction;
4827     dst   : X(write);
4828     src   : E(read);
4829     cr    : R(read);
4830     FA    : R(2);
4831     BR    : R(2);
4832 %}
4833 
4834 // Floating Point Conditional Move based on integer flags
4835 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4836     single_instruction;
4837     dst   : X(write);
4838     src   : E(read);
4839     cr    : R(read);
4840     FA    : R(2);
4841     BR    : R(2);
4842 %}
4843 
4844 // Floating Point Multiply Float
4845 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4846     single_instruction;
4847     dst   : X(write);
4848     src1  : E(read);
4849     src2  : E(read);
4850     FM    : R;
4851 %}
4852 
4853 // Floating Point Multiply Double
4854 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4855     single_instruction;
4856     dst   : X(write);
4857     src1  : E(read);
4858     src2  : E(read);
4859     FM    : R;
4860 %}
4861 
4862 // Floating Point Divide Float
4863 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4864     single_instruction;
4865     dst   : X(write);
4866     src1  : E(read);
4867     src2  : E(read);
4868     FM    : R;
4869     FDIV  : C(14);
4870 %}
4871 
4872 // Floating Point Divide Double
4873 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4874     single_instruction;
4875     dst   : X(write);
4876     src1  : E(read);
4877     src2  : E(read);
4878     FM    : R;
4879     FDIV  : C(17);
4880 %}
4881 
4882 // Floating Point Move/Negate/Abs Float
4883 pipe_class faddF_reg(regF dst, regF src) %{
4884     single_instruction;
4885     dst   : W(write);
4886     src   : E(read);
4887     FA    : R(1);
4888 %}
4889 
4890 // Floating Point Move/Negate/Abs Double
4891 pipe_class faddD_reg(regD dst, regD src) %{
4892     single_instruction;
4893     dst   : W(write);
4894     src   : E(read);
4895     FA    : R;
4896 %}
4897 
4898 // Floating Point Convert F->D
4899 pipe_class fcvtF2D(regD dst, regF src) %{
4900     single_instruction;
4901     dst   : X(write);
4902     src   : E(read);
4903     FA    : R;
4904 %}
4905 
4906 // Floating Point Convert I->D
4907 pipe_class fcvtI2D(regD dst, regF src) %{
4908     single_instruction;
4909     dst   : X(write);
4910     src   : E(read);
4911     FA    : R;
4912 %}
4913 
4914 // Floating Point Convert LHi->D
4915 pipe_class fcvtLHi2D(regD dst, regD src) %{
4916     single_instruction;
4917     dst   : X(write);
4918     src   : E(read);
4919     FA    : R;
4920 %}
4921 
4922 // Floating Point Convert L->D
4923 pipe_class fcvtL2D(regD dst, regF src) %{
4924     single_instruction;
4925     dst   : X(write);
4926     src   : E(read);
4927     FA    : R;
4928 %}
4929 
4930 // Floating Point Convert L->F
4931 pipe_class fcvtL2F(regD dst, regF src) %{
4932     single_instruction;
4933     dst   : X(write);
4934     src   : E(read);
4935     FA    : R;
4936 %}
4937 
4938 // Floating Point Convert D->F
4939 pipe_class fcvtD2F(regD dst, regF src) %{
4940     single_instruction;
4941     dst   : X(write);
4942     src   : E(read);
4943     FA    : R;
4944 %}
4945 
4946 // Floating Point Convert I->L
4947 pipe_class fcvtI2L(regD dst, regF src) %{
4948     single_instruction;
4949     dst   : X(write);
4950     src   : E(read);
4951     FA    : R;
4952 %}
4953 
4954 // Floating Point Convert D->F
4955 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4956     instruction_count(1); multiple_bundles;
4957     dst   : X(write)+6;
4958     src   : E(read);
4959     FA    : R;
4960 %}
4961 
4962 // Floating Point Convert D->L
4963 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4964     instruction_count(1); multiple_bundles;
4965     dst   : X(write)+6;
4966     src   : E(read);
4967     FA    : R;
4968 %}
4969 
4970 // Floating Point Convert F->I
4971 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4972     instruction_count(1); multiple_bundles;
4973     dst   : X(write)+6;
4974     src   : E(read);
4975     FA    : R;
4976 %}
4977 
4978 // Floating Point Convert F->L
4979 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4980     instruction_count(1); multiple_bundles;
4981     dst   : X(write)+6;
4982     src   : E(read);
4983     FA    : R;
4984 %}
4985 
4986 // Floating Point Convert I->F
4987 pipe_class fcvtI2F(regF dst, regF src) %{
4988     single_instruction;
4989     dst   : X(write);
4990     src   : E(read);
4991     FA    : R;
4992 %}
4993 
4994 // Floating Point Compare
4995 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4996     single_instruction;
4997     cr    : X(write);
4998     src1  : E(read);
4999     src2  : E(read);
5000     FA    : R;
5001 %}
5002 
5003 // Floating Point Compare
5004 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5005     single_instruction;
5006     cr    : X(write);
5007     src1  : E(read);
5008     src2  : E(read);
5009     FA    : R;
5010 %}
5011 
5012 // Floating Add Nop
5013 pipe_class fadd_nop() %{
5014     single_instruction;
5015     FA  : R;
5016 %}
5017 
5018 // Integer Store to Memory
5019 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5020     single_instruction;
5021     mem   : R(read);
5022     src   : C(read);
5023     MS    : R;
5024 %}
5025 
5026 // Integer Store to Memory
5027 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5028     single_instruction;
5029     mem   : R(read);
5030     src   : C(read);
5031     MS    : R;
5032 %}
5033 
5034 // Integer Store Zero to Memory
5035 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5036     single_instruction;
5037     mem   : R(read);
5038     MS    : R;
5039 %}
5040 
5041 // Special Stack Slot Store
5042 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5043     single_instruction;
5044     stkSlot : R(read);
5045     src     : C(read);
5046     MS      : R;
5047 %}
5048 
5049 // Special Stack Slot Store
5050 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5051     instruction_count(2); multiple_bundles;
5052     stkSlot : R(read);
5053     src     : C(read);
5054     MS      : R(2);
5055 %}
5056 
5057 // Float Store
5058 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5059     single_instruction;
5060     mem : R(read);
5061     src : C(read);
5062     MS  : R;
5063 %}
5064 
5065 // Float Store
5066 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5067     single_instruction;
5068     mem : R(read);
5069     MS  : R;
5070 %}
5071 
5072 // Double Store
5073 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5074     instruction_count(1);
5075     mem : R(read);
5076     src : C(read);
5077     MS  : R;
5078 %}
5079 
5080 // Double Store
5081 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5082     single_instruction;
5083     mem : R(read);
5084     MS  : R;
5085 %}
5086 
5087 // Special Stack Slot Float Store
5088 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5089     single_instruction;
5090     stkSlot : R(read);
5091     src     : C(read);
5092     MS      : R;
5093 %}
5094 
5095 // Special Stack Slot Double Store
5096 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5097     single_instruction;
5098     stkSlot : R(read);
5099     src     : C(read);
5100     MS      : R;
5101 %}
5102 
5103 // Integer Load (when sign bit propagation not needed)
5104 pipe_class iload_mem(iRegI dst, memory mem) %{
5105     single_instruction;
5106     mem : R(read);
5107     dst : C(write);
5108     MS  : R;
5109 %}
5110 
5111 // Integer Load from stack operand
5112 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5113     single_instruction;
5114     mem : R(read);
5115     dst : C(write);
5116     MS  : R;
5117 %}
5118 
5119 // Integer Load (when sign bit propagation or masking is needed)
5120 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5121     single_instruction;
5122     mem : R(read);
5123     dst : M(write);
5124     MS  : R;
5125 %}
5126 
5127 // Float Load
5128 pipe_class floadF_mem(regF dst, memory mem) %{
5129     single_instruction;
5130     mem : R(read);
5131     dst : M(write);
5132     MS  : R;
5133 %}
5134 
5135 // Float Load
5136 pipe_class floadD_mem(regD dst, memory mem) %{
5137     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5138     mem : R(read);
5139     dst : M(write);
5140     MS  : R;
5141 %}
5142 
5143 // Float Load
5144 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5145     single_instruction;
5146     stkSlot : R(read);
5147     dst : M(write);
5148     MS  : R;
5149 %}
5150 
5151 // Float Load
5152 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5153     single_instruction;
5154     stkSlot : R(read);
5155     dst : M(write);
5156     MS  : R;
5157 %}
5158 
5159 // Memory Nop
5160 pipe_class mem_nop() %{
5161     single_instruction;
5162     MS  : R;
5163 %}
5164 
5165 pipe_class sethi(iRegP dst, immI src) %{
5166     single_instruction;
5167     dst  : E(write);
5168     IALU : R;
5169 %}
5170 
5171 pipe_class loadPollP(iRegP poll) %{
5172     single_instruction;
5173     poll : R(read);
5174     MS   : R;
5175 %}
5176 
5177 pipe_class br(Universe br, label labl) %{
5178     single_instruction_with_delay_slot;
5179     BR  : R;
5180 %}
5181 
5182 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5183     single_instruction_with_delay_slot;
5184     cr    : E(read);
5185     BR    : R;
5186 %}
5187 
5188 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5189     single_instruction_with_delay_slot;
5190     op1 : E(read);
5191     BR  : R;
5192     MS  : R;
5193 %}
5194 
5195 // Compare and branch
5196 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5197     instruction_count(2); has_delay_slot;
5198     cr    : E(write);
5199     src1  : R(read);
5200     src2  : R(read);
5201     IALU  : R;
5202     BR    : R;
5203 %}
5204 
5205 // Compare and branch
5206 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5207     instruction_count(2); has_delay_slot;
5208     cr    : E(write);
5209     src1  : R(read);
5210     IALU  : R;
5211     BR    : R;
5212 %}
5213 
5214 // Compare and branch using cbcond
5215 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5216     single_instruction;
5217     src1  : E(read);
5218     src2  : E(read);
5219     IALU  : R;
5220     BR    : R;
5221 %}
5222 
5223 // Compare and branch using cbcond
5224 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5225     single_instruction;
5226     src1  : E(read);
5227     IALU  : R;
5228     BR    : R;
5229 %}
5230 
5231 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5232     single_instruction_with_delay_slot;
5233     cr    : E(read);
5234     BR    : R;
5235 %}
5236 
5237 pipe_class br_nop() %{
5238     single_instruction;
5239     BR  : R;
5240 %}
5241 
5242 pipe_class simple_call(method meth) %{
5243     instruction_count(2); multiple_bundles; force_serialization;
5244     fixed_latency(100);
5245     BR  : R(1);
5246     MS  : R(1);
5247     A0  : R(1);
5248 %}
5249 
5250 pipe_class compiled_call(method meth) %{
5251     instruction_count(1); multiple_bundles; force_serialization;
5252     fixed_latency(100);
5253     MS  : R(1);
5254 %}
5255 
5256 pipe_class call(method meth) %{
5257     instruction_count(0); multiple_bundles; force_serialization;
5258     fixed_latency(100);
5259 %}
5260 
5261 pipe_class tail_call(Universe ignore, label labl) %{
5262     single_instruction; has_delay_slot;
5263     fixed_latency(100);
5264     BR  : R(1);
5265     MS  : R(1);
5266 %}
5267 
5268 pipe_class ret(Universe ignore) %{
5269     single_instruction; has_delay_slot;
5270     BR  : R(1);
5271     MS  : R(1);
5272 %}
5273 
5274 pipe_class ret_poll(g3RegP poll) %{
5275     instruction_count(3); has_delay_slot;
5276     poll : E(read);
5277     MS   : R;
5278 %}
5279 
5280 // The real do-nothing guy
5281 pipe_class empty( ) %{
5282     instruction_count(0);
5283 %}
5284 
5285 pipe_class long_memory_op() %{
5286     instruction_count(0); multiple_bundles; force_serialization;
5287     fixed_latency(25);
5288     MS  : R(1);
5289 %}
5290 
5291 // Check-cast
5292 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5293     array : R(read);
5294     match  : R(read);
5295     IALU   : R(2);
5296     BR     : R(2);
5297     MS     : R;
5298 %}
5299 
5300 // Convert FPU flags into +1,0,-1
5301 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5302     src1  : E(read);
5303     src2  : E(read);
5304     dst   : E(write);
5305     FA    : R;
5306     MS    : R(2);
5307     BR    : R(2);
5308 %}
5309 
5310 // Compare for p < q, and conditionally add y
5311 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5312     p     : E(read);
5313     q     : E(read);
5314     y     : E(read);
5315     IALU  : R(3)
5316 %}
5317 
5318 // Perform a compare, then move conditionally in a branch delay slot.
5319 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5320     src2   : E(read);
5321     srcdst : E(read);
5322     IALU   : R;
5323     BR     : R;
5324 %}
5325 
5326 // Define the class for the Nop node
5327 define %{
5328    MachNop = ialu_nop;
5329 %}
5330 
5331 %}
5332 
5333 //----------INSTRUCTIONS-------------------------------------------------------
5334 
5335 //------------Special Stack Slot instructions - no match rules-----------------
5336 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5337   // No match rule to avoid chain rule match.
5338   effect(DEF dst, USE src);
5339   ins_cost(MEMORY_REF_COST);
5340   size(4);
5341   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5342   opcode(Assembler::ldf_op3);
5343   ins_encode(simple_form3_mem_reg(src, dst));
5344   ins_pipe(floadF_stk);
5345 %}
5346 
5347 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5348   // No match rule to avoid chain rule match.
5349   effect(DEF dst, USE src);
5350   ins_cost(MEMORY_REF_COST);
5351   size(4);
5352   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5353   opcode(Assembler::lddf_op3);
5354   ins_encode(simple_form3_mem_reg(src, dst));
5355   ins_pipe(floadD_stk);
5356 %}
5357 
5358 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5359   // No match rule to avoid chain rule match.
5360   effect(DEF dst, USE src);
5361   ins_cost(MEMORY_REF_COST);
5362   size(4);
5363   format %{ "STF    $src,$dst\t! regF to stkI" %}
5364   opcode(Assembler::stf_op3);
5365   ins_encode(simple_form3_mem_reg(dst, src));
5366   ins_pipe(fstoreF_stk_reg);
5367 %}
5368 
5369 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5370   // No match rule to avoid chain rule match.
5371   effect(DEF dst, USE src);
5372   ins_cost(MEMORY_REF_COST);
5373   size(4);
5374   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5375   opcode(Assembler::stdf_op3);
5376   ins_encode(simple_form3_mem_reg(dst, src));
5377   ins_pipe(fstoreD_stk_reg);
5378 %}
5379 
5380 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5381   effect(DEF dst, USE src);
5382   ins_cost(MEMORY_REF_COST*2);
5383   size(8);
5384   format %{ "STW    $src,$dst.hi\t! long\n\t"
5385             "STW    R_G0,$dst.lo" %}
5386   opcode(Assembler::stw_op3);
5387   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5388   ins_pipe(lstoreI_stk_reg);
5389 %}
5390 
5391 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5392   // No match rule to avoid chain rule match.
5393   effect(DEF dst, USE src);
5394   ins_cost(MEMORY_REF_COST);
5395   size(4);
5396   format %{ "STX    $src,$dst\t! regL to stkD" %}
5397   opcode(Assembler::stx_op3);
5398   ins_encode(simple_form3_mem_reg( dst, src ) );
5399   ins_pipe(istore_stk_reg);
5400 %}
5401 
5402 //---------- Chain stack slots between similar types --------
5403 
5404 // Load integer from stack slot
5405 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5406   match(Set dst src);
5407   ins_cost(MEMORY_REF_COST);
5408 
5409   size(4);
5410   format %{ "LDUW   $src,$dst\t!stk" %}
5411   opcode(Assembler::lduw_op3);
5412   ins_encode(simple_form3_mem_reg( src, dst ) );
5413   ins_pipe(iload_mem);
5414 %}
5415 
5416 // Store integer to stack slot
5417 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5418   match(Set dst src);
5419   ins_cost(MEMORY_REF_COST);
5420 
5421   size(4);
5422   format %{ "STW    $src,$dst\t!stk" %}
5423   opcode(Assembler::stw_op3);
5424   ins_encode(simple_form3_mem_reg( dst, src ) );
5425   ins_pipe(istore_mem_reg);
5426 %}
5427 
5428 // Load long from stack slot
5429 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5430   match(Set dst src);
5431 
5432   ins_cost(MEMORY_REF_COST);
5433   size(4);
5434   format %{ "LDX    $src,$dst\t! long" %}
5435   opcode(Assembler::ldx_op3);
5436   ins_encode(simple_form3_mem_reg( src, dst ) );
5437   ins_pipe(iload_mem);
5438 %}
5439 
5440 // Store long to stack slot
5441 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5442   match(Set dst src);
5443 
5444   ins_cost(MEMORY_REF_COST);
5445   size(4);
5446   format %{ "STX    $src,$dst\t! long" %}
5447   opcode(Assembler::stx_op3);
5448   ins_encode(simple_form3_mem_reg( dst, src ) );
5449   ins_pipe(istore_mem_reg);
5450 %}
5451 
5452 #ifdef _LP64
5453 // Load pointer from stack slot, 64-bit encoding
5454 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5455   match(Set dst src);
5456   ins_cost(MEMORY_REF_COST);
5457   size(4);
5458   format %{ "LDX    $src,$dst\t!ptr" %}
5459   opcode(Assembler::ldx_op3);
5460   ins_encode(simple_form3_mem_reg( src, dst ) );
5461   ins_pipe(iload_mem);
5462 %}
5463 
5464 // Store pointer to stack slot
5465 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5466   match(Set dst src);
5467   ins_cost(MEMORY_REF_COST);
5468   size(4);
5469   format %{ "STX    $src,$dst\t!ptr" %}
5470   opcode(Assembler::stx_op3);
5471   ins_encode(simple_form3_mem_reg( dst, src ) );
5472   ins_pipe(istore_mem_reg);
5473 %}
5474 #else // _LP64
5475 // Load pointer from stack slot, 32-bit encoding
5476 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5477   match(Set dst src);
5478   ins_cost(MEMORY_REF_COST);
5479   format %{ "LDUW   $src,$dst\t!ptr" %}
5480   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5481   ins_encode(simple_form3_mem_reg( src, dst ) );
5482   ins_pipe(iload_mem);
5483 %}
5484 
5485 // Store pointer to stack slot
5486 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5487   match(Set dst src);
5488   ins_cost(MEMORY_REF_COST);
5489   format %{ "STW    $src,$dst\t!ptr" %}
5490   opcode(Assembler::stw_op3, Assembler::ldst_op);
5491   ins_encode(simple_form3_mem_reg( dst, src ) );
5492   ins_pipe(istore_mem_reg);
5493 %}
5494 #endif // _LP64
5495 
5496 //------------Special Nop instructions for bundling - no match rules-----------
5497 // Nop using the A0 functional unit
5498 instruct Nop_A0() %{
5499   ins_cost(0);
5500 
5501   format %{ "NOP    ! Alu Pipeline" %}
5502   opcode(Assembler::or_op3, Assembler::arith_op);
5503   ins_encode( form2_nop() );
5504   ins_pipe(ialu_nop_A0);
5505 %}
5506 
5507 // Nop using the A1 functional unit
5508 instruct Nop_A1( ) %{
5509   ins_cost(0);
5510 
5511   format %{ "NOP    ! Alu Pipeline" %}
5512   opcode(Assembler::or_op3, Assembler::arith_op);
5513   ins_encode( form2_nop() );
5514   ins_pipe(ialu_nop_A1);
5515 %}
5516 
5517 // Nop using the memory functional unit
5518 instruct Nop_MS( ) %{
5519   ins_cost(0);
5520 
5521   format %{ "NOP    ! Memory Pipeline" %}
5522   ins_encode( emit_mem_nop );
5523   ins_pipe(mem_nop);
5524 %}
5525 
5526 // Nop using the floating add functional unit
5527 instruct Nop_FA( ) %{
5528   ins_cost(0);
5529 
5530   format %{ "NOP    ! Floating Add Pipeline" %}
5531   ins_encode( emit_fadd_nop );
5532   ins_pipe(fadd_nop);
5533 %}
5534 
5535 // Nop using the branch functional unit
5536 instruct Nop_BR( ) %{
5537   ins_cost(0);
5538 
5539   format %{ "NOP    ! Branch Pipeline" %}
5540   ins_encode( emit_br_nop );
5541   ins_pipe(br_nop);
5542 %}
5543 
5544 //----------Load/Store/Move Instructions---------------------------------------
5545 //----------Load Instructions--------------------------------------------------
5546 // Load Byte (8bit signed)
5547 instruct loadB(iRegI dst, memory mem) %{
5548   match(Set dst (LoadB mem));
5549   ins_cost(MEMORY_REF_COST);
5550 
5551   size(4);
5552   format %{ "LDSB   $mem,$dst\t! byte" %}
5553   ins_encode %{
5554     __ ldsb($mem$$Address, $dst$$Register);
5555   %}
5556   ins_pipe(iload_mask_mem);
5557 %}
5558 
5559 // Load Byte (8bit signed) into a Long Register
5560 instruct loadB2L(iRegL dst, memory mem) %{
5561   match(Set dst (ConvI2L (LoadB mem)));
5562   ins_cost(MEMORY_REF_COST);
5563 
5564   size(4);
5565   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5566   ins_encode %{
5567     __ ldsb($mem$$Address, $dst$$Register);
5568   %}
5569   ins_pipe(iload_mask_mem);
5570 %}
5571 
5572 // Load Unsigned Byte (8bit UNsigned) into an int reg
5573 instruct loadUB(iRegI dst, memory mem) %{
5574   match(Set dst (LoadUB mem));
5575   ins_cost(MEMORY_REF_COST);
5576 
5577   size(4);
5578   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5579   ins_encode %{
5580     __ ldub($mem$$Address, $dst$$Register);
5581   %}
5582   ins_pipe(iload_mem);
5583 %}
5584 
5585 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5586 instruct loadUB2L(iRegL dst, memory mem) %{
5587   match(Set dst (ConvI2L (LoadUB mem)));
5588   ins_cost(MEMORY_REF_COST);
5589 
5590   size(4);
5591   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5592   ins_encode %{
5593     __ ldub($mem$$Address, $dst$$Register);
5594   %}
5595   ins_pipe(iload_mem);
5596 %}
5597 
5598 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5599 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5600   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5601   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5602 
5603   size(2*4);
5604   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5605             "AND    $dst,$mask,$dst" %}
5606   ins_encode %{
5607     __ ldub($mem$$Address, $dst$$Register);
5608     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5609   %}
5610   ins_pipe(iload_mem);
5611 %}
5612 
5613 // Load Short (16bit signed)
5614 instruct loadS(iRegI dst, memory mem) %{
5615   match(Set dst (LoadS mem));
5616   ins_cost(MEMORY_REF_COST);
5617 
5618   size(4);
5619   format %{ "LDSH   $mem,$dst\t! short" %}
5620   ins_encode %{
5621     __ ldsh($mem$$Address, $dst$$Register);
5622   %}
5623   ins_pipe(iload_mask_mem);
5624 %}
5625 
5626 // Load Short (16 bit signed) to Byte (8 bit signed)
5627 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5628   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5629   ins_cost(MEMORY_REF_COST);
5630 
5631   size(4);
5632 
5633   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5634   ins_encode %{
5635     __ ldsb($mem$$Address, $dst$$Register, 1);
5636   %}
5637   ins_pipe(iload_mask_mem);
5638 %}
5639 
5640 // Load Short (16bit signed) into a Long Register
5641 instruct loadS2L(iRegL dst, memory mem) %{
5642   match(Set dst (ConvI2L (LoadS mem)));
5643   ins_cost(MEMORY_REF_COST);
5644 
5645   size(4);
5646   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5647   ins_encode %{
5648     __ ldsh($mem$$Address, $dst$$Register);
5649   %}
5650   ins_pipe(iload_mask_mem);
5651 %}
5652 
5653 // Load Unsigned Short/Char (16bit UNsigned)
5654 instruct loadUS(iRegI dst, memory mem) %{
5655   match(Set dst (LoadUS mem));
5656   ins_cost(MEMORY_REF_COST);
5657 
5658   size(4);
5659   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5660   ins_encode %{
5661     __ lduh($mem$$Address, $dst$$Register);
5662   %}
5663   ins_pipe(iload_mem);
5664 %}
5665 
5666 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5667 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5668   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5669   ins_cost(MEMORY_REF_COST);
5670 
5671   size(4);
5672   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5673   ins_encode %{
5674     __ ldsb($mem$$Address, $dst$$Register, 1);
5675   %}
5676   ins_pipe(iload_mask_mem);
5677 %}
5678 
5679 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5680 instruct loadUS2L(iRegL dst, memory mem) %{
5681   match(Set dst (ConvI2L (LoadUS mem)));
5682   ins_cost(MEMORY_REF_COST);
5683 
5684   size(4);
5685   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5686   ins_encode %{
5687     __ lduh($mem$$Address, $dst$$Register);
5688   %}
5689   ins_pipe(iload_mem);
5690 %}
5691 
5692 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5693 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5694   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5695   ins_cost(MEMORY_REF_COST);
5696 
5697   size(4);
5698   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5699   ins_encode %{
5700     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5701   %}
5702   ins_pipe(iload_mem);
5703 %}
5704 
5705 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5706 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5707   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5708   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5709 
5710   size(2*4);
5711   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5712             "AND    $dst,$mask,$dst" %}
5713   ins_encode %{
5714     Register Rdst = $dst$$Register;
5715     __ lduh($mem$$Address, Rdst);
5716     __ and3(Rdst, $mask$$constant, Rdst);
5717   %}
5718   ins_pipe(iload_mem);
5719 %}
5720 
5721 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5722 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5723   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5724   effect(TEMP dst, TEMP tmp);
5725   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5726 
5727   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5728             "SET    $mask,$tmp\n\t"
5729             "AND    $dst,$tmp,$dst" %}
5730   ins_encode %{
5731     Register Rdst = $dst$$Register;
5732     Register Rtmp = $tmp$$Register;
5733     __ lduh($mem$$Address, Rdst);
5734     __ set($mask$$constant, Rtmp);
5735     __ and3(Rdst, Rtmp, Rdst);
5736   %}
5737   ins_pipe(iload_mem);
5738 %}
5739 
5740 // Load Integer
5741 instruct loadI(iRegI dst, memory mem) %{
5742   match(Set dst (LoadI mem));
5743   ins_cost(MEMORY_REF_COST);
5744 
5745   size(4);
5746   format %{ "LDUW   $mem,$dst\t! int" %}
5747   ins_encode %{
5748     __ lduw($mem$$Address, $dst$$Register);
5749   %}
5750   ins_pipe(iload_mem);
5751 %}
5752 
5753 // Load Integer to Byte (8 bit signed)
5754 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5755   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5756   ins_cost(MEMORY_REF_COST);
5757 
5758   size(4);
5759 
5760   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5761   ins_encode %{
5762     __ ldsb($mem$$Address, $dst$$Register, 3);
5763   %}
5764   ins_pipe(iload_mask_mem);
5765 %}
5766 
5767 // Load Integer to Unsigned Byte (8 bit UNsigned)
5768 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5769   match(Set dst (AndI (LoadI mem) mask));
5770   ins_cost(MEMORY_REF_COST);
5771 
5772   size(4);
5773 
5774   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5775   ins_encode %{
5776     __ ldub($mem$$Address, $dst$$Register, 3);
5777   %}
5778   ins_pipe(iload_mask_mem);
5779 %}
5780 
5781 // Load Integer to Short (16 bit signed)
5782 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5783   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5784   ins_cost(MEMORY_REF_COST);
5785 
5786   size(4);
5787 
5788   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5789   ins_encode %{
5790     __ ldsh($mem$$Address, $dst$$Register, 2);
5791   %}
5792   ins_pipe(iload_mask_mem);
5793 %}
5794 
5795 // Load Integer to Unsigned Short (16 bit UNsigned)
5796 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5797   match(Set dst (AndI (LoadI mem) mask));
5798   ins_cost(MEMORY_REF_COST);
5799 
5800   size(4);
5801 
5802   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5803   ins_encode %{
5804     __ lduh($mem$$Address, $dst$$Register, 2);
5805   %}
5806   ins_pipe(iload_mask_mem);
5807 %}
5808 
5809 // Load Integer into a Long Register
5810 instruct loadI2L(iRegL dst, memory mem) %{
5811   match(Set dst (ConvI2L (LoadI mem)));
5812   ins_cost(MEMORY_REF_COST);
5813 
5814   size(4);
5815   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5816   ins_encode %{
5817     __ ldsw($mem$$Address, $dst$$Register);
5818   %}
5819   ins_pipe(iload_mask_mem);
5820 %}
5821 
5822 // Load Integer with mask 0xFF into a Long Register
5823 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5824   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5825   ins_cost(MEMORY_REF_COST);
5826 
5827   size(4);
5828   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5829   ins_encode %{
5830     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5831   %}
5832   ins_pipe(iload_mem);
5833 %}
5834 
5835 // Load Integer with mask 0xFFFF into a Long Register
5836 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5837   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5838   ins_cost(MEMORY_REF_COST);
5839 
5840   size(4);
5841   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5842   ins_encode %{
5843     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5844   %}
5845   ins_pipe(iload_mem);
5846 %}
5847 
5848 // Load Integer with a 12-bit mask into a Long Register
5849 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5850   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5851   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5852 
5853   size(2*4);
5854   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5855             "AND    $dst,$mask,$dst" %}
5856   ins_encode %{
5857     Register Rdst = $dst$$Register;
5858     __ lduw($mem$$Address, Rdst);
5859     __ and3(Rdst, $mask$$constant, Rdst);
5860   %}
5861   ins_pipe(iload_mem);
5862 %}
5863 
5864 // Load Integer with a 31-bit mask into a Long Register
5865 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5866   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5867   effect(TEMP dst, TEMP tmp);
5868   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5869 
5870   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5871             "SET    $mask,$tmp\n\t"
5872             "AND    $dst,$tmp,$dst" %}
5873   ins_encode %{
5874     Register Rdst = $dst$$Register;
5875     Register Rtmp = $tmp$$Register;
5876     __ lduw($mem$$Address, Rdst);
5877     __ set($mask$$constant, Rtmp);
5878     __ and3(Rdst, Rtmp, Rdst);
5879   %}
5880   ins_pipe(iload_mem);
5881 %}
5882 
5883 // Load Unsigned Integer into a Long Register
5884 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5885   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5886   ins_cost(MEMORY_REF_COST);
5887 
5888   size(4);
5889   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5890   ins_encode %{
5891     __ lduw($mem$$Address, $dst$$Register);
5892   %}
5893   ins_pipe(iload_mem);
5894 %}
5895 
5896 // Load Long - aligned
5897 instruct loadL(iRegL dst, memory mem ) %{
5898   match(Set dst (LoadL mem));
5899   ins_cost(MEMORY_REF_COST);
5900 
5901   size(4);
5902   format %{ "LDX    $mem,$dst\t! long" %}
5903   ins_encode %{
5904     __ ldx($mem$$Address, $dst$$Register);
5905   %}
5906   ins_pipe(iload_mem);
5907 %}
5908 
5909 // Load Long - UNaligned
5910 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5911   match(Set dst (LoadL_unaligned mem));
5912   effect(KILL tmp);
5913   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5914   size(16);
5915   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5916           "\tLDUW   $mem  ,$dst\n"
5917           "\tSLLX   #32, $dst, $dst\n"
5918           "\tOR     $dst, R_O7, $dst" %}
5919   opcode(Assembler::lduw_op3);
5920   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5921   ins_pipe(iload_mem);
5922 %}
5923 
5924 // Load Range
5925 instruct loadRange(iRegI dst, memory mem) %{
5926   match(Set dst (LoadRange mem));
5927   ins_cost(MEMORY_REF_COST);
5928 
5929   size(4);
5930   format %{ "LDUW   $mem,$dst\t! range" %}
5931   opcode(Assembler::lduw_op3);
5932   ins_encode(simple_form3_mem_reg( mem, dst ) );
5933   ins_pipe(iload_mem);
5934 %}
5935 
5936 // Load Integer into %f register (for fitos/fitod)
5937 instruct loadI_freg(regF dst, memory mem) %{
5938   match(Set dst (LoadI mem));
5939   ins_cost(MEMORY_REF_COST);
5940   size(4);
5941 
5942   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5943   opcode(Assembler::ldf_op3);
5944   ins_encode(simple_form3_mem_reg( mem, dst ) );
5945   ins_pipe(floadF_mem);
5946 %}
5947 
5948 // Load Pointer
5949 instruct loadP(iRegP dst, memory mem) %{
5950   match(Set dst (LoadP mem));
5951   ins_cost(MEMORY_REF_COST);
5952   size(4);
5953 
5954 #ifndef _LP64
5955   format %{ "LDUW   $mem,$dst\t! ptr" %}
5956   ins_encode %{
5957     __ lduw($mem$$Address, $dst$$Register);
5958   %}
5959 #else
5960   format %{ "LDX    $mem,$dst\t! ptr" %}
5961   ins_encode %{
5962     __ ldx($mem$$Address, $dst$$Register);
5963   %}
5964 #endif
5965   ins_pipe(iload_mem);
5966 %}
5967 
5968 // Load Compressed Pointer
5969 instruct loadN(iRegN dst, memory mem) %{
5970   match(Set dst (LoadN mem));
5971   ins_cost(MEMORY_REF_COST);
5972   size(4);
5973 
5974   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5975   ins_encode %{
5976     __ lduw($mem$$Address, $dst$$Register);
5977   %}
5978   ins_pipe(iload_mem);
5979 %}
5980 
5981 // Load Klass Pointer
5982 instruct loadKlass(iRegP dst, memory mem) %{
5983   match(Set dst (LoadKlass mem));
5984   ins_cost(MEMORY_REF_COST);
5985   size(4);
5986 
5987 #ifndef _LP64
5988   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5989   ins_encode %{
5990     __ lduw($mem$$Address, $dst$$Register);
5991   %}
5992 #else
5993   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5994   ins_encode %{
5995     __ ldx($mem$$Address, $dst$$Register);
5996   %}
5997 #endif
5998   ins_pipe(iload_mem);
5999 %}
6000 
6001 // Load narrow Klass Pointer
6002 instruct loadNKlass(iRegN dst, memory mem) %{
6003   match(Set dst (LoadNKlass mem));
6004   ins_cost(MEMORY_REF_COST);
6005   size(4);
6006 
6007   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6008   ins_encode %{
6009     __ lduw($mem$$Address, $dst$$Register);
6010   %}
6011   ins_pipe(iload_mem);
6012 %}
6013 
6014 // Load Double
6015 instruct loadD(regD dst, memory mem) %{
6016   match(Set dst (LoadD mem));
6017   ins_cost(MEMORY_REF_COST);
6018 
6019   size(4);
6020   format %{ "LDDF   $mem,$dst" %}
6021   opcode(Assembler::lddf_op3);
6022   ins_encode(simple_form3_mem_reg( mem, dst ) );
6023   ins_pipe(floadD_mem);
6024 %}
6025 
6026 // Load Double - UNaligned
6027 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6028   match(Set dst (LoadD_unaligned mem));
6029   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6030   size(8);
6031   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6032           "\tLDF    $mem+4,$dst.lo\t!" %}
6033   opcode(Assembler::ldf_op3);
6034   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6035   ins_pipe(iload_mem);
6036 %}
6037 
6038 // Load Float
6039 instruct loadF(regF dst, memory mem) %{
6040   match(Set dst (LoadF mem));
6041   ins_cost(MEMORY_REF_COST);
6042 
6043   size(4);
6044   format %{ "LDF    $mem,$dst" %}
6045   opcode(Assembler::ldf_op3);
6046   ins_encode(simple_form3_mem_reg( mem, dst ) );
6047   ins_pipe(floadF_mem);
6048 %}
6049 
6050 // Load Constant
6051 instruct loadConI( iRegI dst, immI src ) %{
6052   match(Set dst src);
6053   ins_cost(DEFAULT_COST * 3/2);
6054   format %{ "SET    $src,$dst" %}
6055   ins_encode( Set32(src, dst) );
6056   ins_pipe(ialu_hi_lo_reg);
6057 %}
6058 
6059 instruct loadConI13( iRegI dst, immI13 src ) %{
6060   match(Set dst src);
6061 
6062   size(4);
6063   format %{ "MOV    $src,$dst" %}
6064   ins_encode( Set13( src, dst ) );
6065   ins_pipe(ialu_imm);
6066 %}
6067 
6068 #ifndef _LP64
6069 instruct loadConP(iRegP dst, immP con) %{
6070   match(Set dst con);
6071   ins_cost(DEFAULT_COST * 3/2);
6072   format %{ "SET    $con,$dst\t!ptr" %}
6073   ins_encode %{
6074     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6075       intptr_t val = $con$$constant;
6076     if (constant_reloc == relocInfo::oop_type) {
6077       __ set_oop_constant((jobject) val, $dst$$Register);
6078     } else if (constant_reloc == relocInfo::metadata_type) {
6079       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6080     } else {          // non-oop pointers, e.g. card mark base, heap top
6081       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6082       __ set(val, $dst$$Register);
6083     }
6084   %}
6085   ins_pipe(loadConP);
6086 %}
6087 #else
6088 instruct loadConP_set(iRegP dst, immP_set con) %{
6089   match(Set dst con);
6090   ins_cost(DEFAULT_COST * 3/2);
6091   format %{ "SET    $con,$dst\t! ptr" %}
6092   ins_encode %{
6093     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6094       intptr_t val = $con$$constant;
6095     if (constant_reloc == relocInfo::oop_type) {
6096       __ set_oop_constant((jobject) val, $dst$$Register);
6097     } else if (constant_reloc == relocInfo::metadata_type) {
6098       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6099     } else {          // non-oop pointers, e.g. card mark base, heap top
6100       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6101       __ set(val, $dst$$Register);
6102     }
6103   %}
6104   ins_pipe(loadConP);
6105 %}
6106 
6107 instruct loadConP_load(iRegP dst, immP_load con) %{
6108   match(Set dst con);
6109   ins_cost(MEMORY_REF_COST);
6110   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6111   ins_encode %{
6112     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6113     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6114   %}
6115   ins_pipe(loadConP);
6116 %}
6117 
6118 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6119   match(Set dst con);
6120   ins_cost(DEFAULT_COST * 3/2);
6121   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6122   ins_encode %{
6123     __ set($con$$constant, $dst$$Register);
6124   %}
6125   ins_pipe(loadConP);
6126 %}
6127 #endif // _LP64
6128 
6129 instruct loadConP0(iRegP dst, immP0 src) %{
6130   match(Set dst src);
6131 
6132   size(4);
6133   format %{ "CLR    $dst\t!ptr" %}
6134   ins_encode %{
6135     __ clr($dst$$Register);
6136   %}
6137   ins_pipe(ialu_imm);
6138 %}
6139 
6140 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6141   match(Set dst src);
6142   ins_cost(DEFAULT_COST);
6143   format %{ "SET    $src,$dst\t!ptr" %}
6144   ins_encode %{
6145     AddressLiteral polling_page(os::get_polling_page());
6146     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6147   %}
6148   ins_pipe(loadConP_poll);
6149 %}
6150 
6151 instruct loadConN0(iRegN dst, immN0 src) %{
6152   match(Set dst src);
6153 
6154   size(4);
6155   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6156   ins_encode %{
6157     __ clr($dst$$Register);
6158   %}
6159   ins_pipe(ialu_imm);
6160 %}
6161 
6162 instruct loadConN(iRegN dst, immN src) %{
6163   match(Set dst src);
6164   ins_cost(DEFAULT_COST * 3/2);
6165   format %{ "SET    $src,$dst\t! compressed ptr" %}
6166   ins_encode %{
6167     Register dst = $dst$$Register;
6168     __ set_narrow_oop((jobject)$src$$constant, dst);
6169   %}
6170   ins_pipe(ialu_hi_lo_reg);
6171 %}
6172 
6173 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6174   match(Set dst src);
6175   ins_cost(DEFAULT_COST * 3/2);
6176   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6177   ins_encode %{
6178     Register dst = $dst$$Register;
6179     __ set_narrow_klass((Klass*)$src$$constant, dst);
6180   %}
6181   ins_pipe(ialu_hi_lo_reg);
6182 %}
6183 
6184 // Materialize long value (predicated by immL_cheap).
6185 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6186   match(Set dst con);
6187   effect(KILL tmp);
6188   ins_cost(DEFAULT_COST * 3);
6189   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6190   ins_encode %{
6191     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6192   %}
6193   ins_pipe(loadConL);
6194 %}
6195 
6196 // Load long value from constant table (predicated by immL_expensive).
6197 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6198   match(Set dst con);
6199   ins_cost(MEMORY_REF_COST);
6200   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6201   ins_encode %{
6202       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6203     __ ldx($constanttablebase, con_offset, $dst$$Register);
6204   %}
6205   ins_pipe(loadConL);
6206 %}
6207 
6208 instruct loadConL0( iRegL dst, immL0 src ) %{
6209   match(Set dst src);
6210   ins_cost(DEFAULT_COST);
6211   size(4);
6212   format %{ "CLR    $dst\t! long" %}
6213   ins_encode( Set13( src, dst ) );
6214   ins_pipe(ialu_imm);
6215 %}
6216 
6217 instruct loadConL13( iRegL dst, immL13 src ) %{
6218   match(Set dst src);
6219   ins_cost(DEFAULT_COST * 2);
6220 
6221   size(4);
6222   format %{ "MOV    $src,$dst\t! long" %}
6223   ins_encode( Set13( src, dst ) );
6224   ins_pipe(ialu_imm);
6225 %}
6226 
6227 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6228   match(Set dst con);
6229   effect(KILL tmp);
6230   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6231   ins_encode %{
6232       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6233     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6234   %}
6235   ins_pipe(loadConFD);
6236 %}
6237 
6238 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6239   match(Set dst con);
6240   effect(KILL tmp);
6241   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6242   ins_encode %{
6243     // XXX This is a quick fix for 6833573.
6244     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6245     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6246     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6247   %}
6248   ins_pipe(loadConFD);
6249 %}
6250 
6251 // Prefetch instructions.
6252 // Must be safe to execute with invalid address (cannot fault).
6253 
6254 instruct prefetchr( memory mem ) %{
6255   match( PrefetchRead mem );
6256   ins_cost(MEMORY_REF_COST);
6257   size(4);
6258 
6259   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6260   opcode(Assembler::prefetch_op3);
6261   ins_encode( form3_mem_prefetch_read( mem ) );
6262   ins_pipe(iload_mem);
6263 %}
6264 
6265 instruct prefetchw( memory mem ) %{
6266   match( PrefetchWrite mem );
6267   ins_cost(MEMORY_REF_COST);
6268   size(4);
6269 
6270   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6271   opcode(Assembler::prefetch_op3);
6272   ins_encode( form3_mem_prefetch_write( mem ) );
6273   ins_pipe(iload_mem);
6274 %}
6275 
6276 // Prefetch instructions for allocation.
6277 
6278 instruct prefetchAlloc( memory mem ) %{
6279   predicate(AllocatePrefetchInstr == 0);
6280   match( PrefetchAllocation mem );
6281   ins_cost(MEMORY_REF_COST);
6282   size(4);
6283 
6284   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6285   opcode(Assembler::prefetch_op3);
6286   ins_encode( form3_mem_prefetch_write( mem ) );
6287   ins_pipe(iload_mem);
6288 %}
6289 
6290 // Use BIS instruction to prefetch for allocation.
6291 // Could fault, need space at the end of TLAB.
6292 instruct prefetchAlloc_bis( iRegP dst ) %{
6293   predicate(AllocatePrefetchInstr == 1);
6294   match( PrefetchAllocation dst );
6295   ins_cost(MEMORY_REF_COST);
6296   size(4);
6297 
6298   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6299   ins_encode %{
6300     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6301   %}
6302   ins_pipe(istore_mem_reg);
6303 %}
6304 
6305 // Next code is used for finding next cache line address to prefetch.
6306 #ifndef _LP64
6307 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6308   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6309   ins_cost(DEFAULT_COST);
6310   size(4);
6311 
6312   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6313   ins_encode %{
6314     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6315   %}
6316   ins_pipe(ialu_reg_imm);
6317 %}
6318 #else
6319 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6320   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6321   ins_cost(DEFAULT_COST);
6322   size(4);
6323 
6324   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6325   ins_encode %{
6326     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6327   %}
6328   ins_pipe(ialu_reg_imm);
6329 %}
6330 #endif
6331 
6332 //----------Store Instructions-------------------------------------------------
6333 // Store Byte
6334 instruct storeB(memory mem, iRegI src) %{
6335   match(Set mem (StoreB mem src));
6336   ins_cost(MEMORY_REF_COST);
6337 
6338   size(4);
6339   format %{ "STB    $src,$mem\t! byte" %}
6340   opcode(Assembler::stb_op3);
6341   ins_encode(simple_form3_mem_reg( mem, src ) );
6342   ins_pipe(istore_mem_reg);
6343 %}
6344 
6345 instruct storeB0(memory mem, immI0 src) %{
6346   match(Set mem (StoreB mem src));
6347   ins_cost(MEMORY_REF_COST);
6348 
6349   size(4);
6350   format %{ "STB    $src,$mem\t! byte" %}
6351   opcode(Assembler::stb_op3);
6352   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6353   ins_pipe(istore_mem_zero);
6354 %}
6355 
6356 instruct storeCM0(memory mem, immI0 src) %{
6357   match(Set mem (StoreCM mem src));
6358   ins_cost(MEMORY_REF_COST);
6359 
6360   size(4);
6361   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6362   opcode(Assembler::stb_op3);
6363   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6364   ins_pipe(istore_mem_zero);
6365 %}
6366 
6367 // Store Char/Short
6368 instruct storeC(memory mem, iRegI src) %{
6369   match(Set mem (StoreC mem src));
6370   ins_cost(MEMORY_REF_COST);
6371 
6372   size(4);
6373   format %{ "STH    $src,$mem\t! short" %}
6374   opcode(Assembler::sth_op3);
6375   ins_encode(simple_form3_mem_reg( mem, src ) );
6376   ins_pipe(istore_mem_reg);
6377 %}
6378 
6379 instruct storeC0(memory mem, immI0 src) %{
6380   match(Set mem (StoreC mem src));
6381   ins_cost(MEMORY_REF_COST);
6382 
6383   size(4);
6384   format %{ "STH    $src,$mem\t! short" %}
6385   opcode(Assembler::sth_op3);
6386   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6387   ins_pipe(istore_mem_zero);
6388 %}
6389 
6390 // Store Integer
6391 instruct storeI(memory mem, iRegI src) %{
6392   match(Set mem (StoreI mem src));
6393   ins_cost(MEMORY_REF_COST);
6394 
6395   size(4);
6396   format %{ "STW    $src,$mem" %}
6397   opcode(Assembler::stw_op3);
6398   ins_encode(simple_form3_mem_reg( mem, src ) );
6399   ins_pipe(istore_mem_reg);
6400 %}
6401 
6402 // Store Long
6403 instruct storeL(memory mem, iRegL src) %{
6404   match(Set mem (StoreL mem src));
6405   ins_cost(MEMORY_REF_COST);
6406   size(4);
6407   format %{ "STX    $src,$mem\t! long" %}
6408   opcode(Assembler::stx_op3);
6409   ins_encode(simple_form3_mem_reg( mem, src ) );
6410   ins_pipe(istore_mem_reg);
6411 %}
6412 
6413 instruct storeI0(memory mem, immI0 src) %{
6414   match(Set mem (StoreI mem src));
6415   ins_cost(MEMORY_REF_COST);
6416 
6417   size(4);
6418   format %{ "STW    $src,$mem" %}
6419   opcode(Assembler::stw_op3);
6420   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6421   ins_pipe(istore_mem_zero);
6422 %}
6423 
6424 instruct storeL0(memory mem, immL0 src) %{
6425   match(Set mem (StoreL mem src));
6426   ins_cost(MEMORY_REF_COST);
6427 
6428   size(4);
6429   format %{ "STX    $src,$mem" %}
6430   opcode(Assembler::stx_op3);
6431   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6432   ins_pipe(istore_mem_zero);
6433 %}
6434 
6435 // Store Integer from float register (used after fstoi)
6436 instruct storeI_Freg(memory mem, regF src) %{
6437   match(Set mem (StoreI mem src));
6438   ins_cost(MEMORY_REF_COST);
6439 
6440   size(4);
6441   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6442   opcode(Assembler::stf_op3);
6443   ins_encode(simple_form3_mem_reg( mem, src ) );
6444   ins_pipe(fstoreF_mem_reg);
6445 %}
6446 
6447 // Store Pointer
6448 instruct storeP(memory dst, sp_ptr_RegP src) %{
6449   match(Set dst (StoreP dst src));
6450   ins_cost(MEMORY_REF_COST);
6451   size(4);
6452 
6453 #ifndef _LP64
6454   format %{ "STW    $src,$dst\t! ptr" %}
6455   opcode(Assembler::stw_op3, 0, REGP_OP);
6456 #else
6457   format %{ "STX    $src,$dst\t! ptr" %}
6458   opcode(Assembler::stx_op3, 0, REGP_OP);
6459 #endif
6460   ins_encode( form3_mem_reg( dst, src ) );
6461   ins_pipe(istore_mem_spORreg);
6462 %}
6463 
6464 instruct storeP0(memory dst, immP0 src) %{
6465   match(Set dst (StoreP dst src));
6466   ins_cost(MEMORY_REF_COST);
6467   size(4);
6468 
6469 #ifndef _LP64
6470   format %{ "STW    $src,$dst\t! ptr" %}
6471   opcode(Assembler::stw_op3, 0, REGP_OP);
6472 #else
6473   format %{ "STX    $src,$dst\t! ptr" %}
6474   opcode(Assembler::stx_op3, 0, REGP_OP);
6475 #endif
6476   ins_encode( form3_mem_reg( dst, R_G0 ) );
6477   ins_pipe(istore_mem_zero);
6478 %}
6479 
6480 // Store Compressed Pointer
6481 instruct storeN(memory dst, iRegN src) %{
6482    match(Set dst (StoreN dst src));
6483    ins_cost(MEMORY_REF_COST);
6484    size(4);
6485 
6486    format %{ "STW    $src,$dst\t! compressed ptr" %}
6487    ins_encode %{
6488      Register base = as_Register($dst$$base);
6489      Register index = as_Register($dst$$index);
6490      Register src = $src$$Register;
6491      if (index != G0) {
6492        __ stw(src, base, index);
6493      } else {
6494        __ stw(src, base, $dst$$disp);
6495      }
6496    %}
6497    ins_pipe(istore_mem_spORreg);
6498 %}
6499 
6500 instruct storeNKlass(memory dst, iRegN src) %{
6501    match(Set dst (StoreNKlass dst src));
6502    ins_cost(MEMORY_REF_COST);
6503    size(4);
6504 
6505    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6506    ins_encode %{
6507      Register base = as_Register($dst$$base);
6508      Register index = as_Register($dst$$index);
6509      Register src = $src$$Register;
6510      if (index != G0) {
6511        __ stw(src, base, index);
6512      } else {
6513        __ stw(src, base, $dst$$disp);
6514      }
6515    %}
6516    ins_pipe(istore_mem_spORreg);
6517 %}
6518 
6519 instruct storeN0(memory dst, immN0 src) %{
6520    match(Set dst (StoreN dst src));
6521    ins_cost(MEMORY_REF_COST);
6522    size(4);
6523 
6524    format %{ "STW    $src,$dst\t! compressed ptr" %}
6525    ins_encode %{
6526      Register base = as_Register($dst$$base);
6527      Register index = as_Register($dst$$index);
6528      if (index != G0) {
6529        __ stw(0, base, index);
6530      } else {
6531        __ stw(0, base, $dst$$disp);
6532      }
6533    %}
6534    ins_pipe(istore_mem_zero);
6535 %}
6536 
6537 // Store Double
6538 instruct storeD( memory mem, regD src) %{
6539   match(Set mem (StoreD mem src));
6540   ins_cost(MEMORY_REF_COST);
6541 
6542   size(4);
6543   format %{ "STDF   $src,$mem" %}
6544   opcode(Assembler::stdf_op3);
6545   ins_encode(simple_form3_mem_reg( mem, src ) );
6546   ins_pipe(fstoreD_mem_reg);
6547 %}
6548 
6549 instruct storeD0( memory mem, immD0 src) %{
6550   match(Set mem (StoreD mem src));
6551   ins_cost(MEMORY_REF_COST);
6552 
6553   size(4);
6554   format %{ "STX    $src,$mem" %}
6555   opcode(Assembler::stx_op3);
6556   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6557   ins_pipe(fstoreD_mem_zero);
6558 %}
6559 
6560 // Store Float
6561 instruct storeF( memory mem, regF src) %{
6562   match(Set mem (StoreF mem src));
6563   ins_cost(MEMORY_REF_COST);
6564 
6565   size(4);
6566   format %{ "STF    $src,$mem" %}
6567   opcode(Assembler::stf_op3);
6568   ins_encode(simple_form3_mem_reg( mem, src ) );
6569   ins_pipe(fstoreF_mem_reg);
6570 %}
6571 
6572 instruct storeF0( memory mem, immF0 src) %{
6573   match(Set mem (StoreF mem src));
6574   ins_cost(MEMORY_REF_COST);
6575 
6576   size(4);
6577   format %{ "STW    $src,$mem\t! storeF0" %}
6578   opcode(Assembler::stw_op3);
6579   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6580   ins_pipe(fstoreF_mem_zero);
6581 %}
6582 
6583 // Convert oop pointer into compressed form
6584 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6585   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6586   match(Set dst (EncodeP src));
6587   format %{ "encode_heap_oop $src, $dst" %}
6588   ins_encode %{
6589     __ encode_heap_oop($src$$Register, $dst$$Register);
6590   %}
6591   ins_pipe(ialu_reg);
6592 %}
6593 
6594 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6595   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6596   match(Set dst (EncodeP src));
6597   format %{ "encode_heap_oop_not_null $src, $dst" %}
6598   ins_encode %{
6599     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6600   %}
6601   ins_pipe(ialu_reg);
6602 %}
6603 
6604 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6605   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6606             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6607   match(Set dst (DecodeN src));
6608   format %{ "decode_heap_oop $src, $dst" %}
6609   ins_encode %{
6610     __ decode_heap_oop($src$$Register, $dst$$Register);
6611   %}
6612   ins_pipe(ialu_reg);
6613 %}
6614 
6615 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6616   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6617             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6618   match(Set dst (DecodeN src));
6619   format %{ "decode_heap_oop_not_null $src, $dst" %}
6620   ins_encode %{
6621     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6622   %}
6623   ins_pipe(ialu_reg);
6624 %}
6625 
6626 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6627   match(Set dst (EncodePKlass src));
6628   format %{ "encode_klass_not_null $src, $dst" %}
6629   ins_encode %{
6630     __ encode_klass_not_null($src$$Register, $dst$$Register);
6631   %}
6632   ins_pipe(ialu_reg);
6633 %}
6634 
6635 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6636   match(Set dst (DecodeNKlass src));
6637   format %{ "decode_klass_not_null $src, $dst" %}
6638   ins_encode %{
6639     __ decode_klass_not_null($src$$Register, $dst$$Register);
6640   %}
6641   ins_pipe(ialu_reg);
6642 %}
6643 
6644 //----------MemBar Instructions-----------------------------------------------
6645 // Memory barrier flavors
6646 
6647 instruct membar_acquire() %{
6648   match(MemBarAcquire);
6649   ins_cost(4*MEMORY_REF_COST);
6650 
6651   size(0);
6652   format %{ "MEMBAR-acquire" %}
6653   ins_encode( enc_membar_acquire );
6654   ins_pipe(long_memory_op);
6655 %}
6656 
6657 instruct membar_acquire_lock() %{
6658   match(MemBarAcquireLock);
6659   ins_cost(0);
6660 
6661   size(0);
6662   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6663   ins_encode( );
6664   ins_pipe(empty);
6665 %}
6666 
6667 instruct membar_release() %{
6668   match(MemBarRelease);
6669   ins_cost(4*MEMORY_REF_COST);
6670 
6671   size(0);
6672   format %{ "MEMBAR-release" %}
6673   ins_encode( enc_membar_release );
6674   ins_pipe(long_memory_op);
6675 %}
6676 
6677 instruct membar_release_lock() %{
6678   match(MemBarReleaseLock);
6679   ins_cost(0);
6680 
6681   size(0);
6682   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6683   ins_encode( );
6684   ins_pipe(empty);
6685 %}
6686 
6687 instruct membar_volatile() %{
6688   match(MemBarVolatile);
6689   ins_cost(4*MEMORY_REF_COST);
6690 
6691   size(4);
6692   format %{ "MEMBAR-volatile" %}
6693   ins_encode( enc_membar_volatile );
6694   ins_pipe(long_memory_op);
6695 %}
6696 
6697 instruct unnecessary_membar_volatile() %{
6698   match(MemBarVolatile);
6699   predicate(Matcher::post_store_load_barrier(n));
6700   ins_cost(0);
6701 
6702   size(0);
6703   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6704   ins_encode( );
6705   ins_pipe(empty);
6706 %}
6707 
6708 instruct membar_storestore() %{
6709   match(MemBarStoreStore);
6710   ins_cost(0);
6711 
6712   size(0);
6713   format %{ "!MEMBAR-storestore (empty encoding)" %}
6714   ins_encode( );
6715   ins_pipe(empty);
6716 %}
6717 
6718 //----------Register Move Instructions-----------------------------------------
6719 instruct roundDouble_nop(regD dst) %{
6720   match(Set dst (RoundDouble dst));
6721   ins_cost(0);
6722   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6723   ins_encode( );
6724   ins_pipe(empty);
6725 %}
6726 
6727 
6728 instruct roundFloat_nop(regF dst) %{
6729   match(Set dst (RoundFloat dst));
6730   ins_cost(0);
6731   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6732   ins_encode( );
6733   ins_pipe(empty);
6734 %}
6735 
6736 
6737 // Cast Index to Pointer for unsafe natives
6738 instruct castX2P(iRegX src, iRegP dst) %{
6739   match(Set dst (CastX2P src));
6740 
6741   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6742   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6743   ins_pipe(ialu_reg);
6744 %}
6745 
6746 // Cast Pointer to Index for unsafe natives
6747 instruct castP2X(iRegP src, iRegX dst) %{
6748   match(Set dst (CastP2X src));
6749 
6750   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6751   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6752   ins_pipe(ialu_reg);
6753 %}
6754 
6755 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6756   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6757   match(Set stkSlot src);   // chain rule
6758   ins_cost(MEMORY_REF_COST);
6759   format %{ "STDF   $src,$stkSlot\t!stk" %}
6760   opcode(Assembler::stdf_op3);
6761   ins_encode(simple_form3_mem_reg(stkSlot, src));
6762   ins_pipe(fstoreD_stk_reg);
6763 %}
6764 
6765 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6766   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6767   match(Set dst stkSlot);   // chain rule
6768   ins_cost(MEMORY_REF_COST);
6769   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6770   opcode(Assembler::lddf_op3);
6771   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6772   ins_pipe(floadD_stk);
6773 %}
6774 
6775 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6776   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6777   match(Set stkSlot src);   // chain rule
6778   ins_cost(MEMORY_REF_COST);
6779   format %{ "STF   $src,$stkSlot\t!stk" %}
6780   opcode(Assembler::stf_op3);
6781   ins_encode(simple_form3_mem_reg(stkSlot, src));
6782   ins_pipe(fstoreF_stk_reg);
6783 %}
6784 
6785 //----------Conditional Move---------------------------------------------------
6786 // Conditional move
6787 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6788   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6789   ins_cost(150);
6790   format %{ "MOV$cmp $pcc,$src,$dst" %}
6791   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6792   ins_pipe(ialu_reg);
6793 %}
6794 
6795 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6796   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6797   ins_cost(140);
6798   format %{ "MOV$cmp $pcc,$src,$dst" %}
6799   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6800   ins_pipe(ialu_imm);
6801 %}
6802 
6803 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6804   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6805   ins_cost(150);
6806   size(4);
6807   format %{ "MOV$cmp  $icc,$src,$dst" %}
6808   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6809   ins_pipe(ialu_reg);
6810 %}
6811 
6812 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6813   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6814   ins_cost(140);
6815   size(4);
6816   format %{ "MOV$cmp  $icc,$src,$dst" %}
6817   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6818   ins_pipe(ialu_imm);
6819 %}
6820 
6821 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6822   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6823   ins_cost(150);
6824   size(4);
6825   format %{ "MOV$cmp  $icc,$src,$dst" %}
6826   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6827   ins_pipe(ialu_reg);
6828 %}
6829 
6830 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6831   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6832   ins_cost(140);
6833   size(4);
6834   format %{ "MOV$cmp  $icc,$src,$dst" %}
6835   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6836   ins_pipe(ialu_imm);
6837 %}
6838 
6839 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6840   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6841   ins_cost(150);
6842   size(4);
6843   format %{ "MOV$cmp $fcc,$src,$dst" %}
6844   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6845   ins_pipe(ialu_reg);
6846 %}
6847 
6848 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6849   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6850   ins_cost(140);
6851   size(4);
6852   format %{ "MOV$cmp $fcc,$src,$dst" %}
6853   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6854   ins_pipe(ialu_imm);
6855 %}
6856 
6857 // Conditional move for RegN. Only cmov(reg,reg).
6858 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6859   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6860   ins_cost(150);
6861   format %{ "MOV$cmp $pcc,$src,$dst" %}
6862   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6863   ins_pipe(ialu_reg);
6864 %}
6865 
6866 // This instruction also works with CmpN so we don't need cmovNN_reg.
6867 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6868   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6869   ins_cost(150);
6870   size(4);
6871   format %{ "MOV$cmp  $icc,$src,$dst" %}
6872   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6873   ins_pipe(ialu_reg);
6874 %}
6875 
6876 // This instruction also works with CmpN so we don't need cmovNN_reg.
6877 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6878   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6879   ins_cost(150);
6880   size(4);
6881   format %{ "MOV$cmp  $icc,$src,$dst" %}
6882   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6883   ins_pipe(ialu_reg);
6884 %}
6885 
6886 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6887   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6888   ins_cost(150);
6889   size(4);
6890   format %{ "MOV$cmp $fcc,$src,$dst" %}
6891   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6892   ins_pipe(ialu_reg);
6893 %}
6894 
6895 // Conditional move
6896 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6897   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6898   ins_cost(150);
6899   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6900   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6901   ins_pipe(ialu_reg);
6902 %}
6903 
6904 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6905   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6906   ins_cost(140);
6907   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6908   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6909   ins_pipe(ialu_imm);
6910 %}
6911 
6912 // This instruction also works with CmpN so we don't need cmovPN_reg.
6913 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6914   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6915   ins_cost(150);
6916 
6917   size(4);
6918   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6919   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6920   ins_pipe(ialu_reg);
6921 %}
6922 
6923 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6924   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6925   ins_cost(150);
6926 
6927   size(4);
6928   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6929   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6930   ins_pipe(ialu_reg);
6931 %}
6932 
6933 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6934   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6935   ins_cost(140);
6936 
6937   size(4);
6938   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6939   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6940   ins_pipe(ialu_imm);
6941 %}
6942 
6943 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6944   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6945   ins_cost(140);
6946 
6947   size(4);
6948   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6949   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6950   ins_pipe(ialu_imm);
6951 %}
6952 
6953 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6954   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6955   ins_cost(150);
6956   size(4);
6957   format %{ "MOV$cmp $fcc,$src,$dst" %}
6958   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6959   ins_pipe(ialu_imm);
6960 %}
6961 
6962 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6963   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6964   ins_cost(140);
6965   size(4);
6966   format %{ "MOV$cmp $fcc,$src,$dst" %}
6967   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6968   ins_pipe(ialu_imm);
6969 %}
6970 
6971 // Conditional move
6972 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6973   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6974   ins_cost(150);
6975   opcode(0x101);
6976   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6977   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6978   ins_pipe(int_conditional_float_move);
6979 %}
6980 
6981 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6982   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6983   ins_cost(150);
6984 
6985   size(4);
6986   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6987   opcode(0x101);
6988   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6989   ins_pipe(int_conditional_float_move);
6990 %}
6991 
6992 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6993   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6994   ins_cost(150);
6995 
6996   size(4);
6997   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6998   opcode(0x101);
6999   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7000   ins_pipe(int_conditional_float_move);
7001 %}
7002 
7003 // Conditional move,
7004 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7005   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7006   ins_cost(150);
7007   size(4);
7008   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7009   opcode(0x1);
7010   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7011   ins_pipe(int_conditional_double_move);
7012 %}
7013 
7014 // Conditional move
7015 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7016   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7017   ins_cost(150);
7018   size(4);
7019   opcode(0x102);
7020   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7021   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7022   ins_pipe(int_conditional_double_move);
7023 %}
7024 
7025 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7026   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7027   ins_cost(150);
7028 
7029   size(4);
7030   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7031   opcode(0x102);
7032   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7033   ins_pipe(int_conditional_double_move);
7034 %}
7035 
7036 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7037   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7038   ins_cost(150);
7039 
7040   size(4);
7041   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7042   opcode(0x102);
7043   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7044   ins_pipe(int_conditional_double_move);
7045 %}
7046 
7047 // Conditional move,
7048 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7049   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7050   ins_cost(150);
7051   size(4);
7052   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7053   opcode(0x2);
7054   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7055   ins_pipe(int_conditional_double_move);
7056 %}
7057 
7058 // Conditional move
7059 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7060   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7061   ins_cost(150);
7062   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7063   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7064   ins_pipe(ialu_reg);
7065 %}
7066 
7067 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7068   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7069   ins_cost(140);
7070   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7071   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7072   ins_pipe(ialu_imm);
7073 %}
7074 
7075 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7076   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7077   ins_cost(150);
7078 
7079   size(4);
7080   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7081   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7082   ins_pipe(ialu_reg);
7083 %}
7084 
7085 
7086 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7087   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7088   ins_cost(150);
7089 
7090   size(4);
7091   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7092   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7093   ins_pipe(ialu_reg);
7094 %}
7095 
7096 
7097 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7098   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7099   ins_cost(150);
7100 
7101   size(4);
7102   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7103   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7104   ins_pipe(ialu_reg);
7105 %}
7106 
7107 
7108 
7109 //----------OS and Locking Instructions----------------------------------------
7110 
7111 // This name is KNOWN by the ADLC and cannot be changed.
7112 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7113 // for this guy.
7114 instruct tlsLoadP(g2RegP dst) %{
7115   match(Set dst (ThreadLocal));
7116 
7117   size(0);
7118   ins_cost(0);
7119   format %{ "# TLS is in G2" %}
7120   ins_encode( /*empty encoding*/ );
7121   ins_pipe(ialu_none);
7122 %}
7123 
7124 instruct checkCastPP( iRegP dst ) %{
7125   match(Set dst (CheckCastPP dst));
7126 
7127   size(0);
7128   format %{ "# checkcastPP of $dst" %}
7129   ins_encode( /*empty encoding*/ );
7130   ins_pipe(empty);
7131 %}
7132 
7133 
7134 instruct castPP( iRegP dst ) %{
7135   match(Set dst (CastPP dst));
7136   format %{ "# castPP of $dst" %}
7137   ins_encode( /*empty encoding*/ );
7138   ins_pipe(empty);
7139 %}
7140 
7141 instruct castII( iRegI dst ) %{
7142   match(Set dst (CastII dst));
7143   format %{ "# castII of $dst" %}
7144   ins_encode( /*empty encoding*/ );
7145   ins_cost(0);
7146   ins_pipe(empty);
7147 %}
7148 
7149 //----------Arithmetic Instructions--------------------------------------------
7150 // Addition Instructions
7151 // Register Addition
7152 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7153   match(Set dst (AddI src1 src2));
7154 
7155   size(4);
7156   format %{ "ADD    $src1,$src2,$dst" %}
7157   ins_encode %{
7158     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7159   %}
7160   ins_pipe(ialu_reg_reg);
7161 %}
7162 
7163 // Immediate Addition
7164 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7165   match(Set dst (AddI src1 src2));
7166 
7167   size(4);
7168   format %{ "ADD    $src1,$src2,$dst" %}
7169   opcode(Assembler::add_op3, Assembler::arith_op);
7170   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7171   ins_pipe(ialu_reg_imm);
7172 %}
7173 
7174 // Pointer Register Addition
7175 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7176   match(Set dst (AddP src1 src2));
7177 
7178   size(4);
7179   format %{ "ADD    $src1,$src2,$dst" %}
7180   opcode(Assembler::add_op3, Assembler::arith_op);
7181   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7182   ins_pipe(ialu_reg_reg);
7183 %}
7184 
7185 // Pointer Immediate Addition
7186 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7187   match(Set dst (AddP src1 src2));
7188 
7189   size(4);
7190   format %{ "ADD    $src1,$src2,$dst" %}
7191   opcode(Assembler::add_op3, Assembler::arith_op);
7192   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7193   ins_pipe(ialu_reg_imm);
7194 %}
7195 
7196 // Long Addition
7197 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7198   match(Set dst (AddL src1 src2));
7199 
7200   size(4);
7201   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7202   opcode(Assembler::add_op3, Assembler::arith_op);
7203   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7204   ins_pipe(ialu_reg_reg);
7205 %}
7206 
7207 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7208   match(Set dst (AddL src1 con));
7209 
7210   size(4);
7211   format %{ "ADD    $src1,$con,$dst" %}
7212   opcode(Assembler::add_op3, Assembler::arith_op);
7213   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7214   ins_pipe(ialu_reg_imm);
7215 %}
7216 
7217 //----------Conditional_store--------------------------------------------------
7218 // Conditional-store of the updated heap-top.
7219 // Used during allocation of the shared heap.
7220 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7221 
7222 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7223 instruct loadPLocked(iRegP dst, memory mem) %{
7224   match(Set dst (LoadPLocked mem));
7225   ins_cost(MEMORY_REF_COST);
7226 
7227 #ifndef _LP64
7228   size(4);
7229   format %{ "LDUW   $mem,$dst\t! ptr" %}
7230   opcode(Assembler::lduw_op3, 0, REGP_OP);
7231 #else
7232   format %{ "LDX    $mem,$dst\t! ptr" %}
7233   opcode(Assembler::ldx_op3, 0, REGP_OP);
7234 #endif
7235   ins_encode( form3_mem_reg( mem, dst ) );
7236   ins_pipe(iload_mem);
7237 %}
7238 
7239 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7240   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7241   effect( KILL newval );
7242   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7243             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7244   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7245   ins_pipe( long_memory_op );
7246 %}
7247 
7248 // Conditional-store of an int value.
7249 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7250   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7251   effect( KILL newval );
7252   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7253             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7254   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7255   ins_pipe( long_memory_op );
7256 %}
7257 
7258 // Conditional-store of a long value.
7259 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7260   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7261   effect( KILL newval );
7262   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7263             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7264   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7265   ins_pipe( long_memory_op );
7266 %}
7267 
7268 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7269 
7270 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7271   predicate(VM_Version::supports_cx8());
7272   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7273   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7274   format %{
7275             "MOV    $newval,O7\n\t"
7276             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7277             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7278             "MOV    1,$res\n\t"
7279             "MOVne  xcc,R_G0,$res"
7280   %}
7281   ins_encode( enc_casx(mem_ptr, oldval, newval),
7282               enc_lflags_ne_to_boolean(res) );
7283   ins_pipe( long_memory_op );
7284 %}
7285 
7286 
7287 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7288   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7289   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7290   format %{
7291             "MOV    $newval,O7\n\t"
7292             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7293             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7294             "MOV    1,$res\n\t"
7295             "MOVne  icc,R_G0,$res"
7296   %}
7297   ins_encode( enc_casi(mem_ptr, oldval, newval),
7298               enc_iflags_ne_to_boolean(res) );
7299   ins_pipe( long_memory_op );
7300 %}
7301 
7302 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7303 #ifdef _LP64
7304   predicate(VM_Version::supports_cx8());
7305 #endif
7306   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7307   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7308   format %{
7309             "MOV    $newval,O7\n\t"
7310             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7311             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7312             "MOV    1,$res\n\t"
7313             "MOVne  xcc,R_G0,$res"
7314   %}
7315 #ifdef _LP64
7316   ins_encode( enc_casx(mem_ptr, oldval, newval),
7317               enc_lflags_ne_to_boolean(res) );
7318 #else
7319   ins_encode( enc_casi(mem_ptr, oldval, newval),
7320               enc_iflags_ne_to_boolean(res) );
7321 #endif
7322   ins_pipe( long_memory_op );
7323 %}
7324 
7325 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7326   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7327   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7328   format %{
7329             "MOV    $newval,O7\n\t"
7330             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7331             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7332             "MOV    1,$res\n\t"
7333             "MOVne  icc,R_G0,$res"
7334   %}
7335   ins_encode( enc_casi(mem_ptr, oldval, newval),
7336               enc_iflags_ne_to_boolean(res) );
7337   ins_pipe( long_memory_op );
7338 %}
7339 
7340 instruct xchgI( memory mem, iRegI newval) %{
7341   match(Set newval (GetAndSetI mem newval));
7342   format %{ "SWAP  [$mem],$newval" %}
7343   size(4);
7344   ins_encode %{
7345     __ swap($mem$$Address, $newval$$Register);
7346   %}
7347   ins_pipe( long_memory_op );
7348 %}
7349 
7350 #ifndef _LP64
7351 instruct xchgP( memory mem, iRegP newval) %{
7352   match(Set newval (GetAndSetP mem newval));
7353   format %{ "SWAP  [$mem],$newval" %}
7354   size(4);
7355   ins_encode %{
7356     __ swap($mem$$Address, $newval$$Register);
7357   %}
7358   ins_pipe( long_memory_op );
7359 %}
7360 #endif
7361 
7362 instruct xchgN( memory mem, iRegN newval) %{
7363   match(Set newval (GetAndSetN mem newval));
7364   format %{ "SWAP  [$mem],$newval" %}
7365   size(4);
7366   ins_encode %{
7367     __ swap($mem$$Address, $newval$$Register);
7368   %}
7369   ins_pipe( long_memory_op );
7370 %}
7371 
7372 //---------------------
7373 // Subtraction Instructions
7374 // Register Subtraction
7375 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7376   match(Set dst (SubI src1 src2));
7377 
7378   size(4);
7379   format %{ "SUB    $src1,$src2,$dst" %}
7380   opcode(Assembler::sub_op3, Assembler::arith_op);
7381   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7382   ins_pipe(ialu_reg_reg);
7383 %}
7384 
7385 // Immediate Subtraction
7386 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7387   match(Set dst (SubI src1 src2));
7388 
7389   size(4);
7390   format %{ "SUB    $src1,$src2,$dst" %}
7391   opcode(Assembler::sub_op3, Assembler::arith_op);
7392   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7393   ins_pipe(ialu_reg_imm);
7394 %}
7395 
7396 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7397   match(Set dst (SubI zero src2));
7398 
7399   size(4);
7400   format %{ "NEG    $src2,$dst" %}
7401   opcode(Assembler::sub_op3, Assembler::arith_op);
7402   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7403   ins_pipe(ialu_zero_reg);
7404 %}
7405 
7406 // Long subtraction
7407 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7408   match(Set dst (SubL src1 src2));
7409 
7410   size(4);
7411   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7412   opcode(Assembler::sub_op3, Assembler::arith_op);
7413   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7414   ins_pipe(ialu_reg_reg);
7415 %}
7416 
7417 // Immediate Subtraction
7418 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7419   match(Set dst (SubL src1 con));
7420 
7421   size(4);
7422   format %{ "SUB    $src1,$con,$dst\t! long" %}
7423   opcode(Assembler::sub_op3, Assembler::arith_op);
7424   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7425   ins_pipe(ialu_reg_imm);
7426 %}
7427 
7428 // Long negation
7429 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7430   match(Set dst (SubL zero src2));
7431 
7432   size(4);
7433   format %{ "NEG    $src2,$dst\t! long" %}
7434   opcode(Assembler::sub_op3, Assembler::arith_op);
7435   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7436   ins_pipe(ialu_zero_reg);
7437 %}
7438 
7439 // Multiplication Instructions
7440 // Integer Multiplication
7441 // Register Multiplication
7442 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7443   match(Set dst (MulI src1 src2));
7444 
7445   size(4);
7446   format %{ "MULX   $src1,$src2,$dst" %}
7447   opcode(Assembler::mulx_op3, Assembler::arith_op);
7448   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7449   ins_pipe(imul_reg_reg);
7450 %}
7451 
7452 // Immediate Multiplication
7453 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7454   match(Set dst (MulI src1 src2));
7455 
7456   size(4);
7457   format %{ "MULX   $src1,$src2,$dst" %}
7458   opcode(Assembler::mulx_op3, Assembler::arith_op);
7459   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7460   ins_pipe(imul_reg_imm);
7461 %}
7462 
7463 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7464   match(Set dst (MulL src1 src2));
7465   ins_cost(DEFAULT_COST * 5);
7466   size(4);
7467   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7468   opcode(Assembler::mulx_op3, Assembler::arith_op);
7469   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7470   ins_pipe(mulL_reg_reg);
7471 %}
7472 
7473 // Immediate Multiplication
7474 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7475   match(Set dst (MulL src1 src2));
7476   ins_cost(DEFAULT_COST * 5);
7477   size(4);
7478   format %{ "MULX   $src1,$src2,$dst" %}
7479   opcode(Assembler::mulx_op3, Assembler::arith_op);
7480   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7481   ins_pipe(mulL_reg_imm);
7482 %}
7483 
7484 // Integer Division
7485 // Register Division
7486 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7487   match(Set dst (DivI src1 src2));
7488   ins_cost((2+71)*DEFAULT_COST);
7489 
7490   format %{ "SRA     $src2,0,$src2\n\t"
7491             "SRA     $src1,0,$src1\n\t"
7492             "SDIVX   $src1,$src2,$dst" %}
7493   ins_encode( idiv_reg( src1, src2, dst ) );
7494   ins_pipe(sdiv_reg_reg);
7495 %}
7496 
7497 // Immediate Division
7498 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7499   match(Set dst (DivI src1 src2));
7500   ins_cost((2+71)*DEFAULT_COST);
7501 
7502   format %{ "SRA     $src1,0,$src1\n\t"
7503             "SDIVX   $src1,$src2,$dst" %}
7504   ins_encode( idiv_imm( src1, src2, dst ) );
7505   ins_pipe(sdiv_reg_imm);
7506 %}
7507 
7508 //----------Div-By-10-Expansion------------------------------------------------
7509 // Extract hi bits of a 32x32->64 bit multiply.
7510 // Expand rule only, not matched
7511 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7512   effect( DEF dst, USE src1, USE src2 );
7513   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7514             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7515   ins_encode( enc_mul_hi(dst,src1,src2));
7516   ins_pipe(sdiv_reg_reg);
7517 %}
7518 
7519 // Magic constant, reciprocal of 10
7520 instruct loadConI_x66666667(iRegIsafe dst) %{
7521   effect( DEF dst );
7522 
7523   size(8);
7524   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7525   ins_encode( Set32(0x66666667, dst) );
7526   ins_pipe(ialu_hi_lo_reg);
7527 %}
7528 
7529 // Register Shift Right Arithmetic Long by 32-63
7530 instruct sra_31( iRegI dst, iRegI src ) %{
7531   effect( DEF dst, USE src );
7532   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7533   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7534   ins_pipe(ialu_reg_reg);
7535 %}
7536 
7537 // Arithmetic Shift Right by 8-bit immediate
7538 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7539   effect( DEF dst, USE src );
7540   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7541   opcode(Assembler::sra_op3, Assembler::arith_op);
7542   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7543   ins_pipe(ialu_reg_imm);
7544 %}
7545 
7546 // Integer DIV with 10
7547 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7548   match(Set dst (DivI src div));
7549   ins_cost((6+6)*DEFAULT_COST);
7550   expand %{
7551     iRegIsafe tmp1;               // Killed temps;
7552     iRegIsafe tmp2;               // Killed temps;
7553     iRegI tmp3;                   // Killed temps;
7554     iRegI tmp4;                   // Killed temps;
7555     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7556     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7557     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7558     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7559     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7560   %}
7561 %}
7562 
7563 // Register Long Division
7564 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7565   match(Set dst (DivL src1 src2));
7566   ins_cost(DEFAULT_COST*71);
7567   size(4);
7568   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7569   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7570   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7571   ins_pipe(divL_reg_reg);
7572 %}
7573 
7574 // Register Long Division
7575 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7576   match(Set dst (DivL src1 src2));
7577   ins_cost(DEFAULT_COST*71);
7578   size(4);
7579   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7580   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7581   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7582   ins_pipe(divL_reg_imm);
7583 %}
7584 
7585 // Integer Remainder
7586 // Register Remainder
7587 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7588   match(Set dst (ModI src1 src2));
7589   effect( KILL ccr, KILL temp);
7590 
7591   format %{ "SREM   $src1,$src2,$dst" %}
7592   ins_encode( irem_reg(src1, src2, dst, temp) );
7593   ins_pipe(sdiv_reg_reg);
7594 %}
7595 
7596 // Immediate Remainder
7597 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7598   match(Set dst (ModI src1 src2));
7599   effect( KILL ccr, KILL temp);
7600 
7601   format %{ "SREM   $src1,$src2,$dst" %}
7602   ins_encode( irem_imm(src1, src2, dst, temp) );
7603   ins_pipe(sdiv_reg_imm);
7604 %}
7605 
7606 // Register Long Remainder
7607 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7608   effect(DEF dst, USE src1, USE src2);
7609   size(4);
7610   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7611   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7612   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7613   ins_pipe(divL_reg_reg);
7614 %}
7615 
7616 // Register Long Division
7617 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7618   effect(DEF dst, USE src1, USE src2);
7619   size(4);
7620   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7621   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7622   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7623   ins_pipe(divL_reg_imm);
7624 %}
7625 
7626 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7627   effect(DEF dst, USE src1, USE src2);
7628   size(4);
7629   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7630   opcode(Assembler::mulx_op3, Assembler::arith_op);
7631   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7632   ins_pipe(mulL_reg_reg);
7633 %}
7634 
7635 // Immediate Multiplication
7636 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7637   effect(DEF dst, USE src1, USE src2);
7638   size(4);
7639   format %{ "MULX   $src1,$src2,$dst" %}
7640   opcode(Assembler::mulx_op3, Assembler::arith_op);
7641   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7642   ins_pipe(mulL_reg_imm);
7643 %}
7644 
7645 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7646   effect(DEF dst, USE src1, USE src2);
7647   size(4);
7648   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7649   opcode(Assembler::sub_op3, Assembler::arith_op);
7650   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7651   ins_pipe(ialu_reg_reg);
7652 %}
7653 
7654 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7655   effect(DEF dst, USE src1, USE src2);
7656   size(4);
7657   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7658   opcode(Assembler::sub_op3, Assembler::arith_op);
7659   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7660   ins_pipe(ialu_reg_reg);
7661 %}
7662 
7663 // Register Long Remainder
7664 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7665   match(Set dst (ModL src1 src2));
7666   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7667   expand %{
7668     iRegL tmp1;
7669     iRegL tmp2;
7670     divL_reg_reg_1(tmp1, src1, src2);
7671     mulL_reg_reg_1(tmp2, tmp1, src2);
7672     subL_reg_reg_1(dst,  src1, tmp2);
7673   %}
7674 %}
7675 
7676 // Register Long Remainder
7677 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7678   match(Set dst (ModL src1 src2));
7679   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7680   expand %{
7681     iRegL tmp1;
7682     iRegL tmp2;
7683     divL_reg_imm13_1(tmp1, src1, src2);
7684     mulL_reg_imm13_1(tmp2, tmp1, src2);
7685     subL_reg_reg_2  (dst,  src1, tmp2);
7686   %}
7687 %}
7688 
7689 // Integer Shift Instructions
7690 // Register Shift Left
7691 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7692   match(Set dst (LShiftI src1 src2));
7693 
7694   size(4);
7695   format %{ "SLL    $src1,$src2,$dst" %}
7696   opcode(Assembler::sll_op3, Assembler::arith_op);
7697   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7698   ins_pipe(ialu_reg_reg);
7699 %}
7700 
7701 // Register Shift Left Immediate
7702 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7703   match(Set dst (LShiftI src1 src2));
7704 
7705   size(4);
7706   format %{ "SLL    $src1,$src2,$dst" %}
7707   opcode(Assembler::sll_op3, Assembler::arith_op);
7708   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7709   ins_pipe(ialu_reg_imm);
7710 %}
7711 
7712 // Register Shift Left
7713 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7714   match(Set dst (LShiftL src1 src2));
7715 
7716   size(4);
7717   format %{ "SLLX   $src1,$src2,$dst" %}
7718   opcode(Assembler::sllx_op3, Assembler::arith_op);
7719   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7720   ins_pipe(ialu_reg_reg);
7721 %}
7722 
7723 // Register Shift Left Immediate
7724 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7725   match(Set dst (LShiftL src1 src2));
7726 
7727   size(4);
7728   format %{ "SLLX   $src1,$src2,$dst" %}
7729   opcode(Assembler::sllx_op3, Assembler::arith_op);
7730   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7731   ins_pipe(ialu_reg_imm);
7732 %}
7733 
7734 // Register Arithmetic Shift Right
7735 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7736   match(Set dst (RShiftI src1 src2));
7737   size(4);
7738   format %{ "SRA    $src1,$src2,$dst" %}
7739   opcode(Assembler::sra_op3, Assembler::arith_op);
7740   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7741   ins_pipe(ialu_reg_reg);
7742 %}
7743 
7744 // Register Arithmetic Shift Right Immediate
7745 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7746   match(Set dst (RShiftI src1 src2));
7747 
7748   size(4);
7749   format %{ "SRA    $src1,$src2,$dst" %}
7750   opcode(Assembler::sra_op3, Assembler::arith_op);
7751   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7752   ins_pipe(ialu_reg_imm);
7753 %}
7754 
7755 // Register Shift Right Arithmatic Long
7756 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7757   match(Set dst (RShiftL src1 src2));
7758 
7759   size(4);
7760   format %{ "SRAX   $src1,$src2,$dst" %}
7761   opcode(Assembler::srax_op3, Assembler::arith_op);
7762   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7763   ins_pipe(ialu_reg_reg);
7764 %}
7765 
7766 // Register Shift Left Immediate
7767 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7768   match(Set dst (RShiftL src1 src2));
7769 
7770   size(4);
7771   format %{ "SRAX   $src1,$src2,$dst" %}
7772   opcode(Assembler::srax_op3, Assembler::arith_op);
7773   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7774   ins_pipe(ialu_reg_imm);
7775 %}
7776 
7777 // Register Shift Right
7778 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7779   match(Set dst (URShiftI src1 src2));
7780 
7781   size(4);
7782   format %{ "SRL    $src1,$src2,$dst" %}
7783   opcode(Assembler::srl_op3, Assembler::arith_op);
7784   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7785   ins_pipe(ialu_reg_reg);
7786 %}
7787 
7788 // Register Shift Right Immediate
7789 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7790   match(Set dst (URShiftI src1 src2));
7791 
7792   size(4);
7793   format %{ "SRL    $src1,$src2,$dst" %}
7794   opcode(Assembler::srl_op3, Assembler::arith_op);
7795   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7796   ins_pipe(ialu_reg_imm);
7797 %}
7798 
7799 // Register Shift Right
7800 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7801   match(Set dst (URShiftL src1 src2));
7802 
7803   size(4);
7804   format %{ "SRLX   $src1,$src2,$dst" %}
7805   opcode(Assembler::srlx_op3, Assembler::arith_op);
7806   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7807   ins_pipe(ialu_reg_reg);
7808 %}
7809 
7810 // Register Shift Right Immediate
7811 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7812   match(Set dst (URShiftL src1 src2));
7813 
7814   size(4);
7815   format %{ "SRLX   $src1,$src2,$dst" %}
7816   opcode(Assembler::srlx_op3, Assembler::arith_op);
7817   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7818   ins_pipe(ialu_reg_imm);
7819 %}
7820 
7821 // Register Shift Right Immediate with a CastP2X
7822 #ifdef _LP64
7823 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7824   match(Set dst (URShiftL (CastP2X src1) src2));
7825   size(4);
7826   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7827   opcode(Assembler::srlx_op3, Assembler::arith_op);
7828   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7829   ins_pipe(ialu_reg_imm);
7830 %}
7831 #else
7832 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7833   match(Set dst (URShiftI (CastP2X src1) src2));
7834   size(4);
7835   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7836   opcode(Assembler::srl_op3, Assembler::arith_op);
7837   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7838   ins_pipe(ialu_reg_imm);
7839 %}
7840 #endif
7841 
7842 
7843 //----------Floating Point Arithmetic Instructions-----------------------------
7844 
7845 //  Add float single precision
7846 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7847   match(Set dst (AddF src1 src2));
7848 
7849   size(4);
7850   format %{ "FADDS  $src1,$src2,$dst" %}
7851   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7852   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7853   ins_pipe(faddF_reg_reg);
7854 %}
7855 
7856 //  Add float double precision
7857 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7858   match(Set dst (AddD src1 src2));
7859 
7860   size(4);
7861   format %{ "FADDD  $src1,$src2,$dst" %}
7862   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7863   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7864   ins_pipe(faddD_reg_reg);
7865 %}
7866 
7867 //  Sub float single precision
7868 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7869   match(Set dst (SubF src1 src2));
7870 
7871   size(4);
7872   format %{ "FSUBS  $src1,$src2,$dst" %}
7873   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7874   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7875   ins_pipe(faddF_reg_reg);
7876 %}
7877 
7878 //  Sub float double precision
7879 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7880   match(Set dst (SubD src1 src2));
7881 
7882   size(4);
7883   format %{ "FSUBD  $src1,$src2,$dst" %}
7884   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7885   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7886   ins_pipe(faddD_reg_reg);
7887 %}
7888 
7889 //  Mul float single precision
7890 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7891   match(Set dst (MulF src1 src2));
7892 
7893   size(4);
7894   format %{ "FMULS  $src1,$src2,$dst" %}
7895   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7896   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7897   ins_pipe(fmulF_reg_reg);
7898 %}
7899 
7900 //  Mul float double precision
7901 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7902   match(Set dst (MulD src1 src2));
7903 
7904   size(4);
7905   format %{ "FMULD  $src1,$src2,$dst" %}
7906   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7907   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7908   ins_pipe(fmulD_reg_reg);
7909 %}
7910 
7911 //  Div float single precision
7912 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7913   match(Set dst (DivF src1 src2));
7914 
7915   size(4);
7916   format %{ "FDIVS  $src1,$src2,$dst" %}
7917   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7918   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7919   ins_pipe(fdivF_reg_reg);
7920 %}
7921 
7922 //  Div float double precision
7923 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7924   match(Set dst (DivD src1 src2));
7925 
7926   size(4);
7927   format %{ "FDIVD  $src1,$src2,$dst" %}
7928   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7929   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7930   ins_pipe(fdivD_reg_reg);
7931 %}
7932 
7933 //  Absolute float double precision
7934 instruct absD_reg(regD dst, regD src) %{
7935   match(Set dst (AbsD src));
7936 
7937   format %{ "FABSd  $src,$dst" %}
7938   ins_encode(fabsd(dst, src));
7939   ins_pipe(faddD_reg);
7940 %}
7941 
7942 //  Absolute float single precision
7943 instruct absF_reg(regF dst, regF src) %{
7944   match(Set dst (AbsF src));
7945 
7946   format %{ "FABSs  $src,$dst" %}
7947   ins_encode(fabss(dst, src));
7948   ins_pipe(faddF_reg);
7949 %}
7950 
7951 instruct negF_reg(regF dst, regF src) %{
7952   match(Set dst (NegF src));
7953 
7954   size(4);
7955   format %{ "FNEGs  $src,$dst" %}
7956   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7957   ins_encode(form3_opf_rs2F_rdF(src, dst));
7958   ins_pipe(faddF_reg);
7959 %}
7960 
7961 instruct negD_reg(regD dst, regD src) %{
7962   match(Set dst (NegD src));
7963 
7964   format %{ "FNEGd  $src,$dst" %}
7965   ins_encode(fnegd(dst, src));
7966   ins_pipe(faddD_reg);
7967 %}
7968 
7969 //  Sqrt float double precision
7970 instruct sqrtF_reg_reg(regF dst, regF src) %{
7971   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7972 
7973   size(4);
7974   format %{ "FSQRTS $src,$dst" %}
7975   ins_encode(fsqrts(dst, src));
7976   ins_pipe(fdivF_reg_reg);
7977 %}
7978 
7979 //  Sqrt float double precision
7980 instruct sqrtD_reg_reg(regD dst, regD src) %{
7981   match(Set dst (SqrtD src));
7982 
7983   size(4);
7984   format %{ "FSQRTD $src,$dst" %}
7985   ins_encode(fsqrtd(dst, src));
7986   ins_pipe(fdivD_reg_reg);
7987 %}
7988 
7989 //----------Logical Instructions-----------------------------------------------
7990 // And Instructions
7991 // Register And
7992 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7993   match(Set dst (AndI src1 src2));
7994 
7995   size(4);
7996   format %{ "AND    $src1,$src2,$dst" %}
7997   opcode(Assembler::and_op3, Assembler::arith_op);
7998   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7999   ins_pipe(ialu_reg_reg);
8000 %}
8001 
8002 // Immediate And
8003 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8004   match(Set dst (AndI src1 src2));
8005 
8006   size(4);
8007   format %{ "AND    $src1,$src2,$dst" %}
8008   opcode(Assembler::and_op3, Assembler::arith_op);
8009   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8010   ins_pipe(ialu_reg_imm);
8011 %}
8012 
8013 // Register And Long
8014 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8015   match(Set dst (AndL src1 src2));
8016 
8017   ins_cost(DEFAULT_COST);
8018   size(4);
8019   format %{ "AND    $src1,$src2,$dst\t! long" %}
8020   opcode(Assembler::and_op3, Assembler::arith_op);
8021   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8022   ins_pipe(ialu_reg_reg);
8023 %}
8024 
8025 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8026   match(Set dst (AndL src1 con));
8027 
8028   ins_cost(DEFAULT_COST);
8029   size(4);
8030   format %{ "AND    $src1,$con,$dst\t! long" %}
8031   opcode(Assembler::and_op3, Assembler::arith_op);
8032   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8033   ins_pipe(ialu_reg_imm);
8034 %}
8035 
8036 // Or Instructions
8037 // Register Or
8038 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8039   match(Set dst (OrI src1 src2));
8040 
8041   size(4);
8042   format %{ "OR     $src1,$src2,$dst" %}
8043   opcode(Assembler::or_op3, Assembler::arith_op);
8044   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8045   ins_pipe(ialu_reg_reg);
8046 %}
8047 
8048 // Immediate Or
8049 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8050   match(Set dst (OrI src1 src2));
8051 
8052   size(4);
8053   format %{ "OR     $src1,$src2,$dst" %}
8054   opcode(Assembler::or_op3, Assembler::arith_op);
8055   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8056   ins_pipe(ialu_reg_imm);
8057 %}
8058 
8059 // Register Or Long
8060 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8061   match(Set dst (OrL src1 src2));
8062 
8063   ins_cost(DEFAULT_COST);
8064   size(4);
8065   format %{ "OR     $src1,$src2,$dst\t! long" %}
8066   opcode(Assembler::or_op3, Assembler::arith_op);
8067   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8068   ins_pipe(ialu_reg_reg);
8069 %}
8070 
8071 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8072   match(Set dst (OrL src1 con));
8073   ins_cost(DEFAULT_COST*2);
8074 
8075   ins_cost(DEFAULT_COST);
8076   size(4);
8077   format %{ "OR     $src1,$con,$dst\t! long" %}
8078   opcode(Assembler::or_op3, Assembler::arith_op);
8079   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8080   ins_pipe(ialu_reg_imm);
8081 %}
8082 
8083 #ifndef _LP64
8084 
8085 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8086 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8087   match(Set dst (OrI src1 (CastP2X src2)));
8088 
8089   size(4);
8090   format %{ "OR     $src1,$src2,$dst" %}
8091   opcode(Assembler::or_op3, Assembler::arith_op);
8092   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8093   ins_pipe(ialu_reg_reg);
8094 %}
8095 
8096 #else
8097 
8098 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8099   match(Set dst (OrL src1 (CastP2X src2)));
8100 
8101   ins_cost(DEFAULT_COST);
8102   size(4);
8103   format %{ "OR     $src1,$src2,$dst\t! long" %}
8104   opcode(Assembler::or_op3, Assembler::arith_op);
8105   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8106   ins_pipe(ialu_reg_reg);
8107 %}
8108 
8109 #endif
8110 
8111 // Xor Instructions
8112 // Register Xor
8113 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8114   match(Set dst (XorI src1 src2));
8115 
8116   size(4);
8117   format %{ "XOR    $src1,$src2,$dst" %}
8118   opcode(Assembler::xor_op3, Assembler::arith_op);
8119   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8120   ins_pipe(ialu_reg_reg);
8121 %}
8122 
8123 // Immediate Xor
8124 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8125   match(Set dst (XorI src1 src2));
8126 
8127   size(4);
8128   format %{ "XOR    $src1,$src2,$dst" %}
8129   opcode(Assembler::xor_op3, Assembler::arith_op);
8130   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8131   ins_pipe(ialu_reg_imm);
8132 %}
8133 
8134 // Register Xor Long
8135 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8136   match(Set dst (XorL src1 src2));
8137 
8138   ins_cost(DEFAULT_COST);
8139   size(4);
8140   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8141   opcode(Assembler::xor_op3, Assembler::arith_op);
8142   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8143   ins_pipe(ialu_reg_reg);
8144 %}
8145 
8146 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8147   match(Set dst (XorL src1 con));
8148 
8149   ins_cost(DEFAULT_COST);
8150   size(4);
8151   format %{ "XOR    $src1,$con,$dst\t! long" %}
8152   opcode(Assembler::xor_op3, Assembler::arith_op);
8153   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8154   ins_pipe(ialu_reg_imm);
8155 %}
8156 
8157 //----------Convert to Boolean-------------------------------------------------
8158 // Nice hack for 32-bit tests but doesn't work for
8159 // 64-bit pointers.
8160 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8161   match(Set dst (Conv2B src));
8162   effect( KILL ccr );
8163   ins_cost(DEFAULT_COST*2);
8164   format %{ "CMP    R_G0,$src\n\t"
8165             "ADDX   R_G0,0,$dst" %}
8166   ins_encode( enc_to_bool( src, dst ) );
8167   ins_pipe(ialu_reg_ialu);
8168 %}
8169 
8170 #ifndef _LP64
8171 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8172   match(Set dst (Conv2B src));
8173   effect( KILL ccr );
8174   ins_cost(DEFAULT_COST*2);
8175   format %{ "CMP    R_G0,$src\n\t"
8176             "ADDX   R_G0,0,$dst" %}
8177   ins_encode( enc_to_bool( src, dst ) );
8178   ins_pipe(ialu_reg_ialu);
8179 %}
8180 #else
8181 instruct convP2B( iRegI dst, iRegP src ) %{
8182   match(Set dst (Conv2B src));
8183   ins_cost(DEFAULT_COST*2);
8184   format %{ "MOV    $src,$dst\n\t"
8185             "MOVRNZ $src,1,$dst" %}
8186   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8187   ins_pipe(ialu_clr_and_mover);
8188 %}
8189 #endif
8190 
8191 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8192   match(Set dst (CmpLTMask src zero));
8193   effect(KILL ccr);
8194   size(4);
8195   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8196   ins_encode %{
8197     __ sra($src$$Register, 31, $dst$$Register);
8198   %}
8199   ins_pipe(ialu_reg_imm);
8200 %}
8201 
8202 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8203   match(Set dst (CmpLTMask p q));
8204   effect( KILL ccr );
8205   ins_cost(DEFAULT_COST*4);
8206   format %{ "CMP    $p,$q\n\t"
8207             "MOV    #0,$dst\n\t"
8208             "BLT,a  .+8\n\t"
8209             "MOV    #-1,$dst" %}
8210   ins_encode( enc_ltmask(p,q,dst) );
8211   ins_pipe(ialu_reg_reg_ialu);
8212 %}
8213 
8214 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8215   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8216   effect(KILL ccr, TEMP tmp);
8217   ins_cost(DEFAULT_COST*3);
8218 
8219   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8220             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8221             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8222   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8223   ins_pipe(cadd_cmpltmask);
8224 %}
8225 
8226 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8227   match(Set p (AndI (CmpLTMask p q) y));
8228   effect(KILL ccr);
8229   ins_cost(DEFAULT_COST*3);
8230 
8231   format %{ "CMP  $p,$q\n\t"
8232             "MOV  $y,$p\n\t"
8233             "MOVge G0,$p" %}
8234   ins_encode %{
8235     __ cmp($p$$Register, $q$$Register);
8236     __ mov($y$$Register, $p$$Register);
8237     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8238   %}
8239   ins_pipe(ialu_reg_reg_ialu);
8240 %}
8241 
8242 //-----------------------------------------------------------------
8243 // Direct raw moves between float and general registers using VIS3.
8244 
8245 //  ins_pipe(faddF_reg);
8246 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8247   predicate(UseVIS >= 3);
8248   match(Set dst (MoveF2I src));
8249 
8250   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8251   ins_encode %{
8252     __ movstouw($src$$FloatRegister, $dst$$Register);
8253   %}
8254   ins_pipe(ialu_reg_reg);
8255 %}
8256 
8257 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8258   predicate(UseVIS >= 3);
8259   match(Set dst (MoveI2F src));
8260 
8261   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8262   ins_encode %{
8263     __ movwtos($src$$Register, $dst$$FloatRegister);
8264   %}
8265   ins_pipe(ialu_reg_reg);
8266 %}
8267 
8268 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8269   predicate(UseVIS >= 3);
8270   match(Set dst (MoveD2L src));
8271 
8272   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8273   ins_encode %{
8274     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8275   %}
8276   ins_pipe(ialu_reg_reg);
8277 %}
8278 
8279 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8280   predicate(UseVIS >= 3);
8281   match(Set dst (MoveL2D src));
8282 
8283   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8284   ins_encode %{
8285     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8286   %}
8287   ins_pipe(ialu_reg_reg);
8288 %}
8289 
8290 
8291 // Raw moves between float and general registers using stack.
8292 
8293 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8294   match(Set dst (MoveF2I src));
8295   effect(DEF dst, USE src);
8296   ins_cost(MEMORY_REF_COST);
8297 
8298   size(4);
8299   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8300   opcode(Assembler::lduw_op3);
8301   ins_encode(simple_form3_mem_reg( src, dst ) );
8302   ins_pipe(iload_mem);
8303 %}
8304 
8305 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8306   match(Set dst (MoveI2F src));
8307   effect(DEF dst, USE src);
8308   ins_cost(MEMORY_REF_COST);
8309 
8310   size(4);
8311   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8312   opcode(Assembler::ldf_op3);
8313   ins_encode(simple_form3_mem_reg(src, dst));
8314   ins_pipe(floadF_stk);
8315 %}
8316 
8317 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8318   match(Set dst (MoveD2L src));
8319   effect(DEF dst, USE src);
8320   ins_cost(MEMORY_REF_COST);
8321 
8322   size(4);
8323   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8324   opcode(Assembler::ldx_op3);
8325   ins_encode(simple_form3_mem_reg( src, dst ) );
8326   ins_pipe(iload_mem);
8327 %}
8328 
8329 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8330   match(Set dst (MoveL2D src));
8331   effect(DEF dst, USE src);
8332   ins_cost(MEMORY_REF_COST);
8333 
8334   size(4);
8335   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8336   opcode(Assembler::lddf_op3);
8337   ins_encode(simple_form3_mem_reg(src, dst));
8338   ins_pipe(floadD_stk);
8339 %}
8340 
8341 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8342   match(Set dst (MoveF2I src));
8343   effect(DEF dst, USE src);
8344   ins_cost(MEMORY_REF_COST);
8345 
8346   size(4);
8347   format %{ "STF   $src,$dst\t! MoveF2I" %}
8348   opcode(Assembler::stf_op3);
8349   ins_encode(simple_form3_mem_reg(dst, src));
8350   ins_pipe(fstoreF_stk_reg);
8351 %}
8352 
8353 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8354   match(Set dst (MoveI2F src));
8355   effect(DEF dst, USE src);
8356   ins_cost(MEMORY_REF_COST);
8357 
8358   size(4);
8359   format %{ "STW    $src,$dst\t! MoveI2F" %}
8360   opcode(Assembler::stw_op3);
8361   ins_encode(simple_form3_mem_reg( dst, src ) );
8362   ins_pipe(istore_mem_reg);
8363 %}
8364 
8365 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8366   match(Set dst (MoveD2L src));
8367   effect(DEF dst, USE src);
8368   ins_cost(MEMORY_REF_COST);
8369 
8370   size(4);
8371   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8372   opcode(Assembler::stdf_op3);
8373   ins_encode(simple_form3_mem_reg(dst, src));
8374   ins_pipe(fstoreD_stk_reg);
8375 %}
8376 
8377 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8378   match(Set dst (MoveL2D src));
8379   effect(DEF dst, USE src);
8380   ins_cost(MEMORY_REF_COST);
8381 
8382   size(4);
8383   format %{ "STX    $src,$dst\t! MoveL2D" %}
8384   opcode(Assembler::stx_op3);
8385   ins_encode(simple_form3_mem_reg( dst, src ) );
8386   ins_pipe(istore_mem_reg);
8387 %}
8388 
8389 
8390 //----------Arithmetic Conversion Instructions---------------------------------
8391 // The conversions operations are all Alpha sorted.  Please keep it that way!
8392 
8393 instruct convD2F_reg(regF dst, regD src) %{
8394   match(Set dst (ConvD2F src));
8395   size(4);
8396   format %{ "FDTOS  $src,$dst" %}
8397   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8398   ins_encode(form3_opf_rs2D_rdF(src, dst));
8399   ins_pipe(fcvtD2F);
8400 %}
8401 
8402 
8403 // Convert a double to an int in a float register.
8404 // If the double is a NAN, stuff a zero in instead.
8405 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8406   effect(DEF dst, USE src, KILL fcc0);
8407   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8408             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8409             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8410             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8411             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8412       "skip:" %}
8413   ins_encode(form_d2i_helper(src,dst));
8414   ins_pipe(fcvtD2I);
8415 %}
8416 
8417 instruct convD2I_stk(stackSlotI dst, regD src) %{
8418   match(Set dst (ConvD2I src));
8419   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8420   expand %{
8421     regF tmp;
8422     convD2I_helper(tmp, src);
8423     regF_to_stkI(dst, tmp);
8424   %}
8425 %}
8426 
8427 instruct convD2I_reg(iRegI dst, regD src) %{
8428   predicate(UseVIS >= 3);
8429   match(Set dst (ConvD2I src));
8430   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8431   expand %{
8432     regF tmp;
8433     convD2I_helper(tmp, src);
8434     MoveF2I_reg_reg(dst, tmp);
8435   %}
8436 %}
8437 
8438 
8439 // Convert a double to a long in a double register.
8440 // If the double is a NAN, stuff a zero in instead.
8441 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8442   effect(DEF dst, USE src, KILL fcc0);
8443   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8444             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8445             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8446             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8447             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8448       "skip:" %}
8449   ins_encode(form_d2l_helper(src,dst));
8450   ins_pipe(fcvtD2L);
8451 %}
8452 
8453 instruct convD2L_stk(stackSlotL dst, regD src) %{
8454   match(Set dst (ConvD2L src));
8455   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8456   expand %{
8457     regD tmp;
8458     convD2L_helper(tmp, src);
8459     regD_to_stkL(dst, tmp);
8460   %}
8461 %}
8462 
8463 instruct convD2L_reg(iRegL dst, regD src) %{
8464   predicate(UseVIS >= 3);
8465   match(Set dst (ConvD2L src));
8466   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8467   expand %{
8468     regD tmp;
8469     convD2L_helper(tmp, src);
8470     MoveD2L_reg_reg(dst, tmp);
8471   %}
8472 %}
8473 
8474 
8475 instruct convF2D_reg(regD dst, regF src) %{
8476   match(Set dst (ConvF2D src));
8477   format %{ "FSTOD  $src,$dst" %}
8478   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8479   ins_encode(form3_opf_rs2F_rdD(src, dst));
8480   ins_pipe(fcvtF2D);
8481 %}
8482 
8483 
8484 // Convert a float to an int in a float register.
8485 // If the float is a NAN, stuff a zero in instead.
8486 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8487   effect(DEF dst, USE src, KILL fcc0);
8488   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8489             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8490             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8491             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8492             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8493       "skip:" %}
8494   ins_encode(form_f2i_helper(src,dst));
8495   ins_pipe(fcvtF2I);
8496 %}
8497 
8498 instruct convF2I_stk(stackSlotI dst, regF src) %{
8499   match(Set dst (ConvF2I src));
8500   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8501   expand %{
8502     regF tmp;
8503     convF2I_helper(tmp, src);
8504     regF_to_stkI(dst, tmp);
8505   %}
8506 %}
8507 
8508 instruct convF2I_reg(iRegI dst, regF src) %{
8509   predicate(UseVIS >= 3);
8510   match(Set dst (ConvF2I src));
8511   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8512   expand %{
8513     regF tmp;
8514     convF2I_helper(tmp, src);
8515     MoveF2I_reg_reg(dst, tmp);
8516   %}
8517 %}
8518 
8519 
8520 // Convert a float to a long in a float register.
8521 // If the float is a NAN, stuff a zero in instead.
8522 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8523   effect(DEF dst, USE src, KILL fcc0);
8524   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8525             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8526             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8527             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8528             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8529       "skip:" %}
8530   ins_encode(form_f2l_helper(src,dst));
8531   ins_pipe(fcvtF2L);
8532 %}
8533 
8534 instruct convF2L_stk(stackSlotL dst, regF src) %{
8535   match(Set dst (ConvF2L src));
8536   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8537   expand %{
8538     regD tmp;
8539     convF2L_helper(tmp, src);
8540     regD_to_stkL(dst, tmp);
8541   %}
8542 %}
8543 
8544 instruct convF2L_reg(iRegL dst, regF src) %{
8545   predicate(UseVIS >= 3);
8546   match(Set dst (ConvF2L src));
8547   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8548   expand %{
8549     regD tmp;
8550     convF2L_helper(tmp, src);
8551     MoveD2L_reg_reg(dst, tmp);
8552   %}
8553 %}
8554 
8555 
8556 instruct convI2D_helper(regD dst, regF tmp) %{
8557   effect(USE tmp, DEF dst);
8558   format %{ "FITOD  $tmp,$dst" %}
8559   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8560   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8561   ins_pipe(fcvtI2D);
8562 %}
8563 
8564 instruct convI2D_stk(stackSlotI src, regD dst) %{
8565   match(Set dst (ConvI2D src));
8566   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8567   expand %{
8568     regF tmp;
8569     stkI_to_regF(tmp, src);
8570     convI2D_helper(dst, tmp);
8571   %}
8572 %}
8573 
8574 instruct convI2D_reg(regD_low dst, iRegI src) %{
8575   predicate(UseVIS >= 3);
8576   match(Set dst (ConvI2D src));
8577   expand %{
8578     regF tmp;
8579     MoveI2F_reg_reg(tmp, src);
8580     convI2D_helper(dst, tmp);
8581   %}
8582 %}
8583 
8584 instruct convI2D_mem(regD_low dst, memory mem) %{
8585   match(Set dst (ConvI2D (LoadI mem)));
8586   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8587   size(8);
8588   format %{ "LDF    $mem,$dst\n\t"
8589             "FITOD  $dst,$dst" %}
8590   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8591   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8592   ins_pipe(floadF_mem);
8593 %}
8594 
8595 
8596 instruct convI2F_helper(regF dst, regF tmp) %{
8597   effect(DEF dst, USE tmp);
8598   format %{ "FITOS  $tmp,$dst" %}
8599   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8600   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8601   ins_pipe(fcvtI2F);
8602 %}
8603 
8604 instruct convI2F_stk(regF dst, stackSlotI src) %{
8605   match(Set dst (ConvI2F src));
8606   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8607   expand %{
8608     regF tmp;
8609     stkI_to_regF(tmp,src);
8610     convI2F_helper(dst, tmp);
8611   %}
8612 %}
8613 
8614 instruct convI2F_reg(regF dst, iRegI src) %{
8615   predicate(UseVIS >= 3);
8616   match(Set dst (ConvI2F src));
8617   ins_cost(DEFAULT_COST);
8618   expand %{
8619     regF tmp;
8620     MoveI2F_reg_reg(tmp, src);
8621     convI2F_helper(dst, tmp);
8622   %}
8623 %}
8624 
8625 instruct convI2F_mem( regF dst, memory mem ) %{
8626   match(Set dst (ConvI2F (LoadI mem)));
8627   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8628   size(8);
8629   format %{ "LDF    $mem,$dst\n\t"
8630             "FITOS  $dst,$dst" %}
8631   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8632   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8633   ins_pipe(floadF_mem);
8634 %}
8635 
8636 
8637 instruct convI2L_reg(iRegL dst, iRegI src) %{
8638   match(Set dst (ConvI2L src));
8639   size(4);
8640   format %{ "SRA    $src,0,$dst\t! int->long" %}
8641   opcode(Assembler::sra_op3, Assembler::arith_op);
8642   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8643   ins_pipe(ialu_reg_reg);
8644 %}
8645 
8646 // Zero-extend convert int to long
8647 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8648   match(Set dst (AndL (ConvI2L src) mask) );
8649   size(4);
8650   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8651   opcode(Assembler::srl_op3, Assembler::arith_op);
8652   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8653   ins_pipe(ialu_reg_reg);
8654 %}
8655 
8656 // Zero-extend long
8657 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8658   match(Set dst (AndL src mask) );
8659   size(4);
8660   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8661   opcode(Assembler::srl_op3, Assembler::arith_op);
8662   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8663   ins_pipe(ialu_reg_reg);
8664 %}
8665 
8666 
8667 //-----------
8668 // Long to Double conversion using V8 opcodes.
8669 // Still useful because cheetah traps and becomes
8670 // amazingly slow for some common numbers.
8671 
8672 // Magic constant, 0x43300000
8673 instruct loadConI_x43300000(iRegI dst) %{
8674   effect(DEF dst);
8675   size(4);
8676   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8677   ins_encode(SetHi22(0x43300000, dst));
8678   ins_pipe(ialu_none);
8679 %}
8680 
8681 // Magic constant, 0x41f00000
8682 instruct loadConI_x41f00000(iRegI dst) %{
8683   effect(DEF dst);
8684   size(4);
8685   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8686   ins_encode(SetHi22(0x41f00000, dst));
8687   ins_pipe(ialu_none);
8688 %}
8689 
8690 // Construct a double from two float halves
8691 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8692   effect(DEF dst, USE src1, USE src2);
8693   size(8);
8694   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8695             "FMOVS  $src2.lo,$dst.lo" %}
8696   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8697   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8698   ins_pipe(faddD_reg_reg);
8699 %}
8700 
8701 // Convert integer in high half of a double register (in the lower half of
8702 // the double register file) to double
8703 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8704   effect(DEF dst, USE src);
8705   size(4);
8706   format %{ "FITOD  $src,$dst" %}
8707   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8708   ins_encode(form3_opf_rs2D_rdD(src, dst));
8709   ins_pipe(fcvtLHi2D);
8710 %}
8711 
8712 // Add float double precision
8713 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8714   effect(DEF dst, USE src1, USE src2);
8715   size(4);
8716   format %{ "FADDD  $src1,$src2,$dst" %}
8717   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8718   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8719   ins_pipe(faddD_reg_reg);
8720 %}
8721 
8722 // Sub float double precision
8723 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8724   effect(DEF dst, USE src1, USE src2);
8725   size(4);
8726   format %{ "FSUBD  $src1,$src2,$dst" %}
8727   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8728   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8729   ins_pipe(faddD_reg_reg);
8730 %}
8731 
8732 // Mul float double precision
8733 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8734   effect(DEF dst, USE src1, USE src2);
8735   size(4);
8736   format %{ "FMULD  $src1,$src2,$dst" %}
8737   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8738   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8739   ins_pipe(fmulD_reg_reg);
8740 %}
8741 
8742 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8743   match(Set dst (ConvL2D src));
8744   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8745 
8746   expand %{
8747     regD_low   tmpsrc;
8748     iRegI      ix43300000;
8749     iRegI      ix41f00000;
8750     stackSlotL lx43300000;
8751     stackSlotL lx41f00000;
8752     regD_low   dx43300000;
8753     regD       dx41f00000;
8754     regD       tmp1;
8755     regD_low   tmp2;
8756     regD       tmp3;
8757     regD       tmp4;
8758 
8759     stkL_to_regD(tmpsrc, src);
8760 
8761     loadConI_x43300000(ix43300000);
8762     loadConI_x41f00000(ix41f00000);
8763     regI_to_stkLHi(lx43300000, ix43300000);
8764     regI_to_stkLHi(lx41f00000, ix41f00000);
8765     stkL_to_regD(dx43300000, lx43300000);
8766     stkL_to_regD(dx41f00000, lx41f00000);
8767 
8768     convI2D_regDHi_regD(tmp1, tmpsrc);
8769     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8770     subD_regD_regD(tmp3, tmp2, dx43300000);
8771     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8772     addD_regD_regD(dst, tmp3, tmp4);
8773   %}
8774 %}
8775 
8776 // Long to Double conversion using fast fxtof
8777 instruct convL2D_helper(regD dst, regD tmp) %{
8778   effect(DEF dst, USE tmp);
8779   size(4);
8780   format %{ "FXTOD  $tmp,$dst" %}
8781   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8782   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8783   ins_pipe(fcvtL2D);
8784 %}
8785 
8786 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8787   predicate(VM_Version::has_fast_fxtof());
8788   match(Set dst (ConvL2D src));
8789   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8790   expand %{
8791     regD tmp;
8792     stkL_to_regD(tmp, src);
8793     convL2D_helper(dst, tmp);
8794   %}
8795 %}
8796 
8797 instruct convL2D_reg(regD dst, iRegL src) %{
8798   predicate(UseVIS >= 3);
8799   match(Set dst (ConvL2D src));
8800   expand %{
8801     regD tmp;
8802     MoveL2D_reg_reg(tmp, src);
8803     convL2D_helper(dst, tmp);
8804   %}
8805 %}
8806 
8807 // Long to Float conversion using fast fxtof
8808 instruct convL2F_helper(regF dst, regD tmp) %{
8809   effect(DEF dst, USE tmp);
8810   size(4);
8811   format %{ "FXTOS  $tmp,$dst" %}
8812   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8813   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8814   ins_pipe(fcvtL2F);
8815 %}
8816 
8817 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8818   match(Set dst (ConvL2F src));
8819   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8820   expand %{
8821     regD tmp;
8822     stkL_to_regD(tmp, src);
8823     convL2F_helper(dst, tmp);
8824   %}
8825 %}
8826 
8827 instruct convL2F_reg(regF dst, iRegL src) %{
8828   predicate(UseVIS >= 3);
8829   match(Set dst (ConvL2F src));
8830   ins_cost(DEFAULT_COST);
8831   expand %{
8832     regD tmp;
8833     MoveL2D_reg_reg(tmp, src);
8834     convL2F_helper(dst, tmp);
8835   %}
8836 %}
8837 
8838 //-----------
8839 
8840 instruct convL2I_reg(iRegI dst, iRegL src) %{
8841   match(Set dst (ConvL2I src));
8842 #ifndef _LP64
8843   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8844   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8845   ins_pipe(ialu_move_reg_I_to_L);
8846 #else
8847   size(4);
8848   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8849   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8850   ins_pipe(ialu_reg);
8851 #endif
8852 %}
8853 
8854 // Register Shift Right Immediate
8855 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8856   match(Set dst (ConvL2I (RShiftL src cnt)));
8857 
8858   size(4);
8859   format %{ "SRAX   $src,$cnt,$dst" %}
8860   opcode(Assembler::srax_op3, Assembler::arith_op);
8861   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8862   ins_pipe(ialu_reg_imm);
8863 %}
8864 
8865 //----------Control Flow Instructions------------------------------------------
8866 // Compare Instructions
8867 // Compare Integers
8868 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8869   match(Set icc (CmpI op1 op2));
8870   effect( DEF icc, USE op1, USE op2 );
8871 
8872   size(4);
8873   format %{ "CMP    $op1,$op2" %}
8874   opcode(Assembler::subcc_op3, Assembler::arith_op);
8875   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8876   ins_pipe(ialu_cconly_reg_reg);
8877 %}
8878 
8879 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8880   match(Set icc (CmpU op1 op2));
8881 
8882   size(4);
8883   format %{ "CMP    $op1,$op2\t! unsigned" %}
8884   opcode(Assembler::subcc_op3, Assembler::arith_op);
8885   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8886   ins_pipe(ialu_cconly_reg_reg);
8887 %}
8888 
8889 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8890   match(Set icc (CmpI op1 op2));
8891   effect( DEF icc, USE op1 );
8892 
8893   size(4);
8894   format %{ "CMP    $op1,$op2" %}
8895   opcode(Assembler::subcc_op3, Assembler::arith_op);
8896   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8897   ins_pipe(ialu_cconly_reg_imm);
8898 %}
8899 
8900 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8901   match(Set icc (CmpI (AndI op1 op2) zero));
8902 
8903   size(4);
8904   format %{ "BTST   $op2,$op1" %}
8905   opcode(Assembler::andcc_op3, Assembler::arith_op);
8906   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8907   ins_pipe(ialu_cconly_reg_reg_zero);
8908 %}
8909 
8910 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8911   match(Set icc (CmpI (AndI op1 op2) zero));
8912 
8913   size(4);
8914   format %{ "BTST   $op2,$op1" %}
8915   opcode(Assembler::andcc_op3, Assembler::arith_op);
8916   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8917   ins_pipe(ialu_cconly_reg_imm_zero);
8918 %}
8919 
8920 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8921   match(Set xcc (CmpL op1 op2));
8922   effect( DEF xcc, USE op1, USE op2 );
8923 
8924   size(4);
8925   format %{ "CMP    $op1,$op2\t\t! long" %}
8926   opcode(Assembler::subcc_op3, Assembler::arith_op);
8927   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8928   ins_pipe(ialu_cconly_reg_reg);
8929 %}
8930 
8931 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8932   match(Set xcc (CmpL op1 con));
8933   effect( DEF xcc, USE op1, USE con );
8934 
8935   size(4);
8936   format %{ "CMP    $op1,$con\t\t! long" %}
8937   opcode(Assembler::subcc_op3, Assembler::arith_op);
8938   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8939   ins_pipe(ialu_cconly_reg_reg);
8940 %}
8941 
8942 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8943   match(Set xcc (CmpL (AndL op1 op2) zero));
8944   effect( DEF xcc, USE op1, USE op2 );
8945 
8946   size(4);
8947   format %{ "BTST   $op1,$op2\t\t! long" %}
8948   opcode(Assembler::andcc_op3, Assembler::arith_op);
8949   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8950   ins_pipe(ialu_cconly_reg_reg);
8951 %}
8952 
8953 // useful for checking the alignment of a pointer:
8954 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8955   match(Set xcc (CmpL (AndL op1 con) zero));
8956   effect( DEF xcc, USE op1, USE con );
8957 
8958   size(4);
8959   format %{ "BTST   $op1,$con\t\t! long" %}
8960   opcode(Assembler::andcc_op3, Assembler::arith_op);
8961   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8962   ins_pipe(ialu_cconly_reg_reg);
8963 %}
8964 
8965 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8966   match(Set icc (CmpU op1 op2));
8967 
8968   size(4);
8969   format %{ "CMP    $op1,$op2\t! unsigned" %}
8970   opcode(Assembler::subcc_op3, Assembler::arith_op);
8971   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8972   ins_pipe(ialu_cconly_reg_imm);
8973 %}
8974 
8975 // Compare Pointers
8976 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8977   match(Set pcc (CmpP op1 op2));
8978 
8979   size(4);
8980   format %{ "CMP    $op1,$op2\t! ptr" %}
8981   opcode(Assembler::subcc_op3, Assembler::arith_op);
8982   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8983   ins_pipe(ialu_cconly_reg_reg);
8984 %}
8985 
8986 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8987   match(Set pcc (CmpP op1 op2));
8988 
8989   size(4);
8990   format %{ "CMP    $op1,$op2\t! ptr" %}
8991   opcode(Assembler::subcc_op3, Assembler::arith_op);
8992   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8993   ins_pipe(ialu_cconly_reg_imm);
8994 %}
8995 
8996 // Compare Narrow oops
8997 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8998   match(Set icc (CmpN op1 op2));
8999 
9000   size(4);
9001   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9002   opcode(Assembler::subcc_op3, Assembler::arith_op);
9003   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9004   ins_pipe(ialu_cconly_reg_reg);
9005 %}
9006 
9007 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9008   match(Set icc (CmpN op1 op2));
9009 
9010   size(4);
9011   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9012   opcode(Assembler::subcc_op3, Assembler::arith_op);
9013   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9014   ins_pipe(ialu_cconly_reg_imm);
9015 %}
9016 
9017 //----------Max and Min--------------------------------------------------------
9018 // Min Instructions
9019 // Conditional move for min
9020 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9021   effect( USE_DEF op2, USE op1, USE icc );
9022 
9023   size(4);
9024   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9025   opcode(Assembler::less);
9026   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9027   ins_pipe(ialu_reg_flags);
9028 %}
9029 
9030 // Min Register with Register.
9031 instruct minI_eReg(iRegI op1, iRegI op2) %{
9032   match(Set op2 (MinI op1 op2));
9033   ins_cost(DEFAULT_COST*2);
9034   expand %{
9035     flagsReg icc;
9036     compI_iReg(icc,op1,op2);
9037     cmovI_reg_lt(op2,op1,icc);
9038   %}
9039 %}
9040 
9041 // Max Instructions
9042 // Conditional move for max
9043 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9044   effect( USE_DEF op2, USE op1, USE icc );
9045   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9046   opcode(Assembler::greater);
9047   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9048   ins_pipe(ialu_reg_flags);
9049 %}
9050 
9051 // Max Register with Register
9052 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9053   match(Set op2 (MaxI op1 op2));
9054   ins_cost(DEFAULT_COST*2);
9055   expand %{
9056     flagsReg icc;
9057     compI_iReg(icc,op1,op2);
9058     cmovI_reg_gt(op2,op1,icc);
9059   %}
9060 %}
9061 
9062 
9063 //----------Float Compares----------------------------------------------------
9064 // Compare floating, generate condition code
9065 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9066   match(Set fcc (CmpF src1 src2));
9067 
9068   size(4);
9069   format %{ "FCMPs  $fcc,$src1,$src2" %}
9070   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9071   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9072   ins_pipe(faddF_fcc_reg_reg_zero);
9073 %}
9074 
9075 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9076   match(Set fcc (CmpD src1 src2));
9077 
9078   size(4);
9079   format %{ "FCMPd  $fcc,$src1,$src2" %}
9080   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9081   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9082   ins_pipe(faddD_fcc_reg_reg_zero);
9083 %}
9084 
9085 
9086 // Compare floating, generate -1,0,1
9087 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9088   match(Set dst (CmpF3 src1 src2));
9089   effect(KILL fcc0);
9090   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9091   format %{ "fcmpl  $dst,$src1,$src2" %}
9092   // Primary = float
9093   opcode( true );
9094   ins_encode( floating_cmp( dst, src1, src2 ) );
9095   ins_pipe( floating_cmp );
9096 %}
9097 
9098 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9099   match(Set dst (CmpD3 src1 src2));
9100   effect(KILL fcc0);
9101   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9102   format %{ "dcmpl  $dst,$src1,$src2" %}
9103   // Primary = double (not float)
9104   opcode( false );
9105   ins_encode( floating_cmp( dst, src1, src2 ) );
9106   ins_pipe( floating_cmp );
9107 %}
9108 
9109 //----------Branches---------------------------------------------------------
9110 // Jump
9111 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9112 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9113   match(Jump switch_val);
9114   effect(TEMP table);
9115 
9116   ins_cost(350);
9117 
9118   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9119              "LD     [O7 + $switch_val], O7\n\t"
9120              "JUMP   O7" %}
9121   ins_encode %{
9122     // Calculate table address into a register.
9123     Register table_reg;
9124     Register label_reg = O7;
9125     // If we are calculating the size of this instruction don't trust
9126     // zero offsets because they might change when
9127     // MachConstantBaseNode decides to optimize the constant table
9128     // base.
9129     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9130       table_reg = $constanttablebase;
9131     } else {
9132       table_reg = O7;
9133       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9134       __ add($constanttablebase, con_offset, table_reg);
9135     }
9136 
9137     // Jump to base address + switch value
9138     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9139     __ jmp(label_reg, G0);
9140     __ delayed()->nop();
9141   %}
9142   ins_pipe(ialu_reg_reg);
9143 %}
9144 
9145 // Direct Branch.  Use V8 version with longer range.
9146 instruct branch(label labl) %{
9147   match(Goto);
9148   effect(USE labl);
9149 
9150   size(8);
9151   ins_cost(BRANCH_COST);
9152   format %{ "BA     $labl" %}
9153   ins_encode %{
9154     Label* L = $labl$$label;
9155     __ ba(*L);
9156     __ delayed()->nop();
9157   %}
9158   ins_pipe(br);
9159 %}
9160 
9161 // Direct Branch, short with no delay slot
9162 instruct branch_short(label labl) %{
9163   match(Goto);
9164   predicate(UseCBCond);
9165   effect(USE labl);
9166 
9167   size(4);
9168   ins_cost(BRANCH_COST);
9169   format %{ "BA     $labl\t! short branch" %}
9170   ins_encode %{ 
9171     Label* L = $labl$$label;
9172     assert(__ use_cbcond(*L), "back to back cbcond");
9173     __ ba_short(*L);
9174   %}
9175   ins_short_branch(1);
9176   ins_avoid_back_to_back(1);
9177   ins_pipe(cbcond_reg_imm);
9178 %}
9179 
9180 // Conditional Direct Branch
9181 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9182   match(If cmp icc);
9183   effect(USE labl);
9184 
9185   size(8);
9186   ins_cost(BRANCH_COST);
9187   format %{ "BP$cmp   $icc,$labl" %}
9188   // Prim = bits 24-22, Secnd = bits 31-30
9189   ins_encode( enc_bp( labl, cmp, icc ) );
9190   ins_pipe(br_cc);
9191 %}
9192 
9193 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9194   match(If cmp icc);
9195   effect(USE labl);
9196 
9197   ins_cost(BRANCH_COST);
9198   format %{ "BP$cmp  $icc,$labl" %}
9199   // Prim = bits 24-22, Secnd = bits 31-30
9200   ins_encode( enc_bp( labl, cmp, icc ) );
9201   ins_pipe(br_cc);
9202 %}
9203 
9204 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9205   match(If cmp pcc);
9206   effect(USE labl);
9207 
9208   size(8);
9209   ins_cost(BRANCH_COST);
9210   format %{ "BP$cmp  $pcc,$labl" %}
9211   ins_encode %{
9212     Label* L = $labl$$label;
9213     Assembler::Predict predict_taken =
9214       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9215 
9216     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9217     __ delayed()->nop();
9218   %}
9219   ins_pipe(br_cc);
9220 %}
9221 
9222 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9223   match(If cmp fcc);
9224   effect(USE labl);
9225 
9226   size(8);
9227   ins_cost(BRANCH_COST);
9228   format %{ "FBP$cmp $fcc,$labl" %}
9229   ins_encode %{
9230     Label* L = $labl$$label;
9231     Assembler::Predict predict_taken =
9232       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9233 
9234     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9235     __ delayed()->nop();
9236   %}
9237   ins_pipe(br_fcc);
9238 %}
9239 
9240 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9241   match(CountedLoopEnd cmp icc);
9242   effect(USE labl);
9243 
9244   size(8);
9245   ins_cost(BRANCH_COST);
9246   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9247   // Prim = bits 24-22, Secnd = bits 31-30
9248   ins_encode( enc_bp( labl, cmp, icc ) );
9249   ins_pipe(br_cc);
9250 %}
9251 
9252 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9253   match(CountedLoopEnd cmp icc);
9254   effect(USE labl);
9255 
9256   size(8);
9257   ins_cost(BRANCH_COST);
9258   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9259   // Prim = bits 24-22, Secnd = bits 31-30
9260   ins_encode( enc_bp( labl, cmp, icc ) );
9261   ins_pipe(br_cc);
9262 %}
9263 
9264 // Compare and branch instructions
9265 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9266   match(If cmp (CmpI op1 op2));
9267   effect(USE labl, KILL icc);
9268 
9269   size(12);
9270   ins_cost(BRANCH_COST);
9271   format %{ "CMP    $op1,$op2\t! int\n\t"
9272             "BP$cmp   $labl" %}
9273   ins_encode %{
9274     Label* L = $labl$$label;
9275     Assembler::Predict predict_taken =
9276       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9277     __ cmp($op1$$Register, $op2$$Register);
9278     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9279     __ delayed()->nop();
9280   %}
9281   ins_pipe(cmp_br_reg_reg);
9282 %}
9283 
9284 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9285   match(If cmp (CmpI op1 op2));
9286   effect(USE labl, KILL icc);
9287 
9288   size(12);
9289   ins_cost(BRANCH_COST);
9290   format %{ "CMP    $op1,$op2\t! int\n\t"
9291             "BP$cmp   $labl" %}
9292   ins_encode %{
9293     Label* L = $labl$$label;
9294     Assembler::Predict predict_taken =
9295       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9296     __ cmp($op1$$Register, $op2$$constant);
9297     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9298     __ delayed()->nop();
9299   %}
9300   ins_pipe(cmp_br_reg_imm);
9301 %}
9302 
9303 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9304   match(If cmp (CmpU op1 op2));
9305   effect(USE labl, KILL icc);
9306 
9307   size(12);
9308   ins_cost(BRANCH_COST);
9309   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9310             "BP$cmp  $labl" %}
9311   ins_encode %{
9312     Label* L = $labl$$label;
9313     Assembler::Predict predict_taken =
9314       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9315     __ cmp($op1$$Register, $op2$$Register);
9316     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9317     __ delayed()->nop();
9318   %}
9319   ins_pipe(cmp_br_reg_reg);
9320 %}
9321 
9322 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9323   match(If cmp (CmpU op1 op2));
9324   effect(USE labl, KILL icc);
9325 
9326   size(12);
9327   ins_cost(BRANCH_COST);
9328   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9329             "BP$cmp  $labl" %}
9330   ins_encode %{
9331     Label* L = $labl$$label;
9332     Assembler::Predict predict_taken =
9333       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9334     __ cmp($op1$$Register, $op2$$constant);
9335     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9336     __ delayed()->nop();
9337   %}
9338   ins_pipe(cmp_br_reg_imm);
9339 %}
9340 
9341 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9342   match(If cmp (CmpL op1 op2));
9343   effect(USE labl, KILL xcc);
9344 
9345   size(12);
9346   ins_cost(BRANCH_COST);
9347   format %{ "CMP    $op1,$op2\t! long\n\t"
9348             "BP$cmp   $labl" %}
9349   ins_encode %{
9350     Label* L = $labl$$label;
9351     Assembler::Predict predict_taken =
9352       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9353     __ cmp($op1$$Register, $op2$$Register);
9354     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9355     __ delayed()->nop();
9356   %}
9357   ins_pipe(cmp_br_reg_reg);
9358 %}
9359 
9360 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9361   match(If cmp (CmpL op1 op2));
9362   effect(USE labl, KILL xcc);
9363 
9364   size(12);
9365   ins_cost(BRANCH_COST);
9366   format %{ "CMP    $op1,$op2\t! long\n\t"
9367             "BP$cmp   $labl" %}
9368   ins_encode %{
9369     Label* L = $labl$$label;
9370     Assembler::Predict predict_taken =
9371       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9372     __ cmp($op1$$Register, $op2$$constant);
9373     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9374     __ delayed()->nop();
9375   %}
9376   ins_pipe(cmp_br_reg_imm);
9377 %}
9378 
9379 // Compare Pointers and branch
9380 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9381   match(If cmp (CmpP op1 op2));
9382   effect(USE labl, KILL pcc);
9383 
9384   size(12);
9385   ins_cost(BRANCH_COST);
9386   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9387             "B$cmp   $labl" %}
9388   ins_encode %{
9389     Label* L = $labl$$label;
9390     Assembler::Predict predict_taken =
9391       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9392     __ cmp($op1$$Register, $op2$$Register);
9393     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9394     __ delayed()->nop();
9395   %}
9396   ins_pipe(cmp_br_reg_reg);
9397 %}
9398 
9399 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9400   match(If cmp (CmpP op1 null));
9401   effect(USE labl, KILL pcc);
9402 
9403   size(12);
9404   ins_cost(BRANCH_COST);
9405   format %{ "CMP    $op1,0\t! ptr\n\t"
9406             "B$cmp   $labl" %}
9407   ins_encode %{
9408     Label* L = $labl$$label;
9409     Assembler::Predict predict_taken =
9410       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9411     __ cmp($op1$$Register, G0);
9412     // bpr() is not used here since it has shorter distance.
9413     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9414     __ delayed()->nop();
9415   %}
9416   ins_pipe(cmp_br_reg_reg);
9417 %}
9418 
9419 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9420   match(If cmp (CmpN op1 op2));
9421   effect(USE labl, KILL icc);
9422 
9423   size(12);
9424   ins_cost(BRANCH_COST);
9425   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9426             "BP$cmp   $labl" %}
9427   ins_encode %{
9428     Label* L = $labl$$label;
9429     Assembler::Predict predict_taken =
9430       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9431     __ cmp($op1$$Register, $op2$$Register);
9432     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9433     __ delayed()->nop();
9434   %}
9435   ins_pipe(cmp_br_reg_reg);
9436 %}
9437 
9438 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9439   match(If cmp (CmpN op1 null));
9440   effect(USE labl, KILL icc);
9441 
9442   size(12);
9443   ins_cost(BRANCH_COST);
9444   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9445             "BP$cmp   $labl" %}
9446   ins_encode %{
9447     Label* L = $labl$$label;
9448     Assembler::Predict predict_taken =
9449       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9450     __ cmp($op1$$Register, G0);
9451     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9452     __ delayed()->nop();
9453   %}
9454   ins_pipe(cmp_br_reg_reg);
9455 %}
9456 
9457 // Loop back branch
9458 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9459   match(CountedLoopEnd cmp (CmpI op1 op2));
9460   effect(USE labl, KILL icc);
9461 
9462   size(12);
9463   ins_cost(BRANCH_COST);
9464   format %{ "CMP    $op1,$op2\t! int\n\t"
9465             "BP$cmp   $labl\t! Loop end" %}
9466   ins_encode %{
9467     Label* L = $labl$$label;
9468     Assembler::Predict predict_taken =
9469       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9470     __ cmp($op1$$Register, $op2$$Register);
9471     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9472     __ delayed()->nop();
9473   %}
9474   ins_pipe(cmp_br_reg_reg);
9475 %}
9476 
9477 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9478   match(CountedLoopEnd cmp (CmpI op1 op2));
9479   effect(USE labl, KILL icc);
9480 
9481   size(12);
9482   ins_cost(BRANCH_COST);
9483   format %{ "CMP    $op1,$op2\t! int\n\t"
9484             "BP$cmp   $labl\t! Loop end" %}
9485   ins_encode %{
9486     Label* L = $labl$$label;
9487     Assembler::Predict predict_taken =
9488       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9489     __ cmp($op1$$Register, $op2$$constant);
9490     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9491     __ delayed()->nop();
9492   %}
9493   ins_pipe(cmp_br_reg_imm);
9494 %}
9495 
9496 // Short compare and branch instructions
9497 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9498   match(If cmp (CmpI op1 op2));
9499   predicate(UseCBCond);
9500   effect(USE labl, KILL icc);
9501 
9502   size(4);
9503   ins_cost(BRANCH_COST);
9504   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9505   ins_encode %{
9506     Label* L = $labl$$label;
9507     assert(__ use_cbcond(*L), "back to back cbcond");
9508     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9509   %}
9510   ins_short_branch(1);
9511   ins_avoid_back_to_back(1);
9512   ins_pipe(cbcond_reg_reg);
9513 %}
9514 
9515 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9516   match(If cmp (CmpI op1 op2));
9517   predicate(UseCBCond);
9518   effect(USE labl, KILL icc);
9519 
9520   size(4);
9521   ins_cost(BRANCH_COST);
9522   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9523   ins_encode %{
9524     Label* L = $labl$$label;
9525     assert(__ use_cbcond(*L), "back to back cbcond");
9526     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9527   %}
9528   ins_short_branch(1);
9529   ins_avoid_back_to_back(1);
9530   ins_pipe(cbcond_reg_imm);
9531 %}
9532 
9533 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9534   match(If cmp (CmpU op1 op2));
9535   predicate(UseCBCond);
9536   effect(USE labl, KILL icc);
9537 
9538   size(4);
9539   ins_cost(BRANCH_COST);
9540   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9541   ins_encode %{
9542     Label* L = $labl$$label;
9543     assert(__ use_cbcond(*L), "back to back cbcond");
9544     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9545   %}
9546   ins_short_branch(1);
9547   ins_avoid_back_to_back(1);
9548   ins_pipe(cbcond_reg_reg);
9549 %}
9550 
9551 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9552   match(If cmp (CmpU op1 op2));
9553   predicate(UseCBCond);
9554   effect(USE labl, KILL icc);
9555 
9556   size(4);
9557   ins_cost(BRANCH_COST);
9558   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9559   ins_encode %{
9560     Label* L = $labl$$label;
9561     assert(__ use_cbcond(*L), "back to back cbcond");
9562     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9563   %}
9564   ins_short_branch(1);
9565   ins_avoid_back_to_back(1);
9566   ins_pipe(cbcond_reg_imm);
9567 %}
9568 
9569 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9570   match(If cmp (CmpL op1 op2));
9571   predicate(UseCBCond);
9572   effect(USE labl, KILL xcc);
9573 
9574   size(4);
9575   ins_cost(BRANCH_COST);
9576   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9577   ins_encode %{
9578     Label* L = $labl$$label;
9579     assert(__ use_cbcond(*L), "back to back cbcond");
9580     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9581   %}
9582   ins_short_branch(1);
9583   ins_avoid_back_to_back(1);
9584   ins_pipe(cbcond_reg_reg);
9585 %}
9586 
9587 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9588   match(If cmp (CmpL op1 op2));
9589   predicate(UseCBCond);
9590   effect(USE labl, KILL xcc);
9591 
9592   size(4);
9593   ins_cost(BRANCH_COST);
9594   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9595   ins_encode %{
9596     Label* L = $labl$$label;
9597     assert(__ use_cbcond(*L), "back to back cbcond");
9598     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9599   %}
9600   ins_short_branch(1);
9601   ins_avoid_back_to_back(1);
9602   ins_pipe(cbcond_reg_imm);
9603 %}
9604 
9605 // Compare Pointers and branch
9606 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9607   match(If cmp (CmpP op1 op2));
9608   predicate(UseCBCond);
9609   effect(USE labl, KILL pcc);
9610 
9611   size(4);
9612   ins_cost(BRANCH_COST);
9613 #ifdef _LP64
9614   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9615 #else
9616   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9617 #endif
9618   ins_encode %{
9619     Label* L = $labl$$label;
9620     assert(__ use_cbcond(*L), "back to back cbcond");
9621     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9622   %}
9623   ins_short_branch(1);
9624   ins_avoid_back_to_back(1);
9625   ins_pipe(cbcond_reg_reg);
9626 %}
9627 
9628 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9629   match(If cmp (CmpP op1 null));
9630   predicate(UseCBCond);
9631   effect(USE labl, KILL pcc);
9632 
9633   size(4);
9634   ins_cost(BRANCH_COST);
9635 #ifdef _LP64
9636   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9637 #else
9638   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9639 #endif
9640   ins_encode %{
9641     Label* L = $labl$$label;
9642     assert(__ use_cbcond(*L), "back to back cbcond");
9643     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9644   %}
9645   ins_short_branch(1);
9646   ins_avoid_back_to_back(1);
9647   ins_pipe(cbcond_reg_reg);
9648 %}
9649 
9650 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9651   match(If cmp (CmpN op1 op2));
9652   predicate(UseCBCond);
9653   effect(USE labl, KILL icc);
9654 
9655   size(4);
9656   ins_cost(BRANCH_COST);
9657   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9658   ins_encode %{
9659     Label* L = $labl$$label;
9660     assert(__ use_cbcond(*L), "back to back cbcond");
9661     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9662   %}
9663   ins_short_branch(1);
9664   ins_avoid_back_to_back(1);
9665   ins_pipe(cbcond_reg_reg);
9666 %}
9667 
9668 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9669   match(If cmp (CmpN op1 null));
9670   predicate(UseCBCond);
9671   effect(USE labl, KILL icc);
9672 
9673   size(4);
9674   ins_cost(BRANCH_COST);
9675   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9676   ins_encode %{
9677     Label* L = $labl$$label;
9678     assert(__ use_cbcond(*L), "back to back cbcond");
9679     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9680   %}
9681   ins_short_branch(1);
9682   ins_avoid_back_to_back(1);
9683   ins_pipe(cbcond_reg_reg);
9684 %}
9685 
9686 // Loop back branch
9687 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9688   match(CountedLoopEnd cmp (CmpI op1 op2));
9689   predicate(UseCBCond);
9690   effect(USE labl, KILL icc);
9691 
9692   size(4);
9693   ins_cost(BRANCH_COST);
9694   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9695   ins_encode %{
9696     Label* L = $labl$$label;
9697     assert(__ use_cbcond(*L), "back to back cbcond");
9698     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9699   %}
9700   ins_short_branch(1);
9701   ins_avoid_back_to_back(1);
9702   ins_pipe(cbcond_reg_reg);
9703 %}
9704 
9705 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9706   match(CountedLoopEnd cmp (CmpI op1 op2));
9707   predicate(UseCBCond);
9708   effect(USE labl, KILL icc);
9709 
9710   size(4);
9711   ins_cost(BRANCH_COST);
9712   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9713   ins_encode %{
9714     Label* L = $labl$$label;
9715     assert(__ use_cbcond(*L), "back to back cbcond");
9716     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9717   %}
9718   ins_short_branch(1);
9719   ins_avoid_back_to_back(1);
9720   ins_pipe(cbcond_reg_imm);
9721 %}
9722 
9723 // Branch-on-register tests all 64 bits.  We assume that values
9724 // in 64-bit registers always remains zero or sign extended
9725 // unless our code munges the high bits.  Interrupts can chop
9726 // the high order bits to zero or sign at any time.
9727 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9728   match(If cmp (CmpI op1 zero));
9729   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9730   effect(USE labl);
9731 
9732   size(8);
9733   ins_cost(BRANCH_COST);
9734   format %{ "BR$cmp   $op1,$labl" %}
9735   ins_encode( enc_bpr( labl, cmp, op1 ) );
9736   ins_pipe(br_reg);
9737 %}
9738 
9739 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9740   match(If cmp (CmpP op1 null));
9741   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9742   effect(USE labl);
9743 
9744   size(8);
9745   ins_cost(BRANCH_COST);
9746   format %{ "BR$cmp   $op1,$labl" %}
9747   ins_encode( enc_bpr( labl, cmp, op1 ) );
9748   ins_pipe(br_reg);
9749 %}
9750 
9751 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9752   match(If cmp (CmpL op1 zero));
9753   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9754   effect(USE labl);
9755 
9756   size(8);
9757   ins_cost(BRANCH_COST);
9758   format %{ "BR$cmp   $op1,$labl" %}
9759   ins_encode( enc_bpr( labl, cmp, op1 ) );
9760   ins_pipe(br_reg);
9761 %}
9762 
9763 
9764 // ============================================================================
9765 // Long Compare
9766 //
9767 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9768 // is tricky.  The flavor of compare used depends on whether we are testing
9769 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9770 // The GE test is the negated LT test.  The LE test can be had by commuting
9771 // the operands (yielding a GE test) and then negating; negate again for the
9772 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9773 // NE test is negated from that.
9774 
9775 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9776 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9777 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9778 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9779 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9780 // foo match ends up with the wrong leaf.  One fix is to not match both
9781 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9782 // both forms beat the trinary form of long-compare and both are very useful
9783 // on Intel which has so few registers.
9784 
9785 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9786   match(If cmp xcc);
9787   effect(USE labl);
9788 
9789   size(8);
9790   ins_cost(BRANCH_COST);
9791   format %{ "BP$cmp   $xcc,$labl" %}
9792   ins_encode %{
9793     Label* L = $labl$$label;
9794     Assembler::Predict predict_taken =
9795       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9796 
9797     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9798     __ delayed()->nop();
9799   %}
9800   ins_pipe(br_cc);
9801 %}
9802 
9803 // Manifest a CmpL3 result in an integer register.  Very painful.
9804 // This is the test to avoid.
9805 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9806   match(Set dst (CmpL3 src1 src2) );
9807   effect( KILL ccr );
9808   ins_cost(6*DEFAULT_COST);
9809   size(24);
9810   format %{ "CMP    $src1,$src2\t\t! long\n"
9811           "\tBLT,a,pn done\n"
9812           "\tMOV    -1,$dst\t! delay slot\n"
9813           "\tBGT,a,pn done\n"
9814           "\tMOV    1,$dst\t! delay slot\n"
9815           "\tCLR    $dst\n"
9816     "done:"     %}
9817   ins_encode( cmpl_flag(src1,src2,dst) );
9818   ins_pipe(cmpL_reg);
9819 %}
9820 
9821 // Conditional move
9822 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9823   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9824   ins_cost(150);
9825   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9826   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9827   ins_pipe(ialu_reg);
9828 %}
9829 
9830 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9831   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9832   ins_cost(140);
9833   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9834   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9835   ins_pipe(ialu_imm);
9836 %}
9837 
9838 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9839   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9840   ins_cost(150);
9841   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9842   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9843   ins_pipe(ialu_reg);
9844 %}
9845 
9846 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9847   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9848   ins_cost(140);
9849   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9850   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9851   ins_pipe(ialu_imm);
9852 %}
9853 
9854 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9855   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9856   ins_cost(150);
9857   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9858   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9859   ins_pipe(ialu_reg);
9860 %}
9861 
9862 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9863   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9864   ins_cost(150);
9865   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9866   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9867   ins_pipe(ialu_reg);
9868 %}
9869 
9870 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9871   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9872   ins_cost(140);
9873   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9874   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9875   ins_pipe(ialu_imm);
9876 %}
9877 
9878 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9879   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9880   ins_cost(150);
9881   opcode(0x101);
9882   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9883   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9884   ins_pipe(int_conditional_float_move);
9885 %}
9886 
9887 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9888   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9889   ins_cost(150);
9890   opcode(0x102);
9891   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9892   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9893   ins_pipe(int_conditional_float_move);
9894 %}
9895 
9896 // ============================================================================
9897 // Safepoint Instruction
9898 instruct safePoint_poll(iRegP poll) %{
9899   match(SafePoint poll);
9900   effect(USE poll);
9901 
9902   size(4);
9903 #ifdef _LP64
9904   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9905 #else
9906   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9907 #endif
9908   ins_encode %{
9909     __ relocate(relocInfo::poll_type);
9910     __ ld_ptr($poll$$Register, 0, G0);
9911   %}
9912   ins_pipe(loadPollP);
9913 %}
9914 
9915 // ============================================================================
9916 // Call Instructions
9917 // Call Java Static Instruction
9918 instruct CallStaticJavaDirect( method meth ) %{
9919   match(CallStaticJava);
9920   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9921   effect(USE meth);
9922 
9923   size(8);
9924   ins_cost(CALL_COST);
9925   format %{ "CALL,static  ; NOP ==> " %}
9926   ins_encode( Java_Static_Call( meth ), call_epilog );
9927   ins_pipe(simple_call);
9928 %}
9929 
9930 // Call Java Static Instruction (method handle version)
9931 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9932   match(CallStaticJava);
9933   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9934   effect(USE meth, KILL l7_mh_SP_save);
9935 
9936   size(16);
9937   ins_cost(CALL_COST);
9938   format %{ "CALL,static/MethodHandle" %}
9939   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9940   ins_pipe(simple_call);
9941 %}
9942 
9943 // Call Java Dynamic Instruction
9944 instruct CallDynamicJavaDirect( method meth ) %{
9945   match(CallDynamicJava);
9946   effect(USE meth);
9947 
9948   ins_cost(CALL_COST);
9949   format %{ "SET    (empty),R_G5\n\t"
9950             "CALL,dynamic  ; NOP ==> " %}
9951   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9952   ins_pipe(call);
9953 %}
9954 
9955 // Call Runtime Instruction
9956 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9957   match(CallRuntime);
9958   effect(USE meth, KILL l7);
9959   ins_cost(CALL_COST);
9960   format %{ "CALL,runtime" %}
9961   ins_encode( Java_To_Runtime( meth ),
9962               call_epilog, adjust_long_from_native_call );
9963   ins_pipe(simple_call);
9964 %}
9965 
9966 // Call runtime without safepoint - same as CallRuntime
9967 instruct CallLeafDirect(method meth, l7RegP l7) %{
9968   match(CallLeaf);
9969   effect(USE meth, KILL l7);
9970   ins_cost(CALL_COST);
9971   format %{ "CALL,runtime leaf" %}
9972   ins_encode( Java_To_Runtime( meth ),
9973               call_epilog,
9974               adjust_long_from_native_call );
9975   ins_pipe(simple_call);
9976 %}
9977 
9978 // Call runtime without safepoint - same as CallLeaf
9979 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9980   match(CallLeafNoFP);
9981   effect(USE meth, KILL l7);
9982   ins_cost(CALL_COST);
9983   format %{ "CALL,runtime leaf nofp" %}
9984   ins_encode( Java_To_Runtime( meth ),
9985               call_epilog,
9986               adjust_long_from_native_call );
9987   ins_pipe(simple_call);
9988 %}
9989 
9990 // Tail Call; Jump from runtime stub to Java code.
9991 // Also known as an 'interprocedural jump'.
9992 // Target of jump will eventually return to caller.
9993 // TailJump below removes the return address.
9994 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9995   match(TailCall jump_target method_oop );
9996 
9997   ins_cost(CALL_COST);
9998   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9999   ins_encode(form_jmpl(jump_target));
10000   ins_pipe(tail_call);
10001 %}
10002 
10003 
10004 // Return Instruction
10005 instruct Ret() %{
10006   match(Return);
10007 
10008   // The epilogue node did the ret already.
10009   size(0);
10010   format %{ "! return" %}
10011   ins_encode();
10012   ins_pipe(empty);
10013 %}
10014 
10015 
10016 // Tail Jump; remove the return address; jump to target.
10017 // TailCall above leaves the return address around.
10018 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10019 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10020 // "restore" before this instruction (in Epilogue), we need to materialize it
10021 // in %i0.
10022 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10023   match( TailJump jump_target ex_oop );
10024   ins_cost(CALL_COST);
10025   format %{ "! discard R_O7\n\t"
10026             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10027   ins_encode(form_jmpl_set_exception_pc(jump_target));
10028   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10029   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10030   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10031   ins_pipe(tail_call);
10032 %}
10033 
10034 // Create exception oop: created by stack-crawling runtime code.
10035 // Created exception is now available to this handler, and is setup
10036 // just prior to jumping to this handler.  No code emitted.
10037 instruct CreateException( o0RegP ex_oop )
10038 %{
10039   match(Set ex_oop (CreateEx));
10040   ins_cost(0);
10041 
10042   size(0);
10043   // use the following format syntax
10044   format %{ "! exception oop is in R_O0; no code emitted" %}
10045   ins_encode();
10046   ins_pipe(empty);
10047 %}
10048 
10049 
10050 // Rethrow exception:
10051 // The exception oop will come in the first argument position.
10052 // Then JUMP (not call) to the rethrow stub code.
10053 instruct RethrowException()
10054 %{
10055   match(Rethrow);
10056   ins_cost(CALL_COST);
10057 
10058   // use the following format syntax
10059   format %{ "Jmp    rethrow_stub" %}
10060   ins_encode(enc_rethrow);
10061   ins_pipe(tail_call);
10062 %}
10063 
10064 
10065 // Die now
10066 instruct ShouldNotReachHere( )
10067 %{
10068   match(Halt);
10069   ins_cost(CALL_COST);
10070 
10071   size(4);
10072   // Use the following format syntax
10073   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10074   ins_encode( form2_illtrap() );
10075   ins_pipe(tail_call);
10076 %}
10077 
10078 // ============================================================================
10079 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10080 // array for an instance of the superklass.  Set a hidden internal cache on a
10081 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10082 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10083 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10084   match(Set index (PartialSubtypeCheck sub super));
10085   effect( KILL pcc, KILL o7 );
10086   ins_cost(DEFAULT_COST*10);
10087   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10088   ins_encode( enc_PartialSubtypeCheck() );
10089   ins_pipe(partial_subtype_check_pipe);
10090 %}
10091 
10092 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10093   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10094   effect( KILL idx, KILL o7 );
10095   ins_cost(DEFAULT_COST*10);
10096   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10097   ins_encode( enc_PartialSubtypeCheck() );
10098   ins_pipe(partial_subtype_check_pipe);
10099 %}
10100 
10101 
10102 // ============================================================================
10103 // inlined locking and unlocking
10104 
10105 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10106   match(Set pcc (FastLock object box));
10107 
10108   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10109   ins_cost(100);
10110 
10111   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10112   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10113   ins_pipe(long_memory_op);
10114 %}
10115 
10116 
10117 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10118   match(Set pcc (FastUnlock object box));
10119   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10120   ins_cost(100);
10121 
10122   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10123   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10124   ins_pipe(long_memory_op);
10125 %}
10126 
10127 // The encodings are generic.
10128 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10129   predicate(!use_block_zeroing(n->in(2)) );
10130   match(Set dummy (ClearArray cnt base));
10131   effect(TEMP temp, KILL ccr);
10132   ins_cost(300);
10133   format %{ "MOV    $cnt,$temp\n"
10134     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10135     "        BRge   loop\t\t! Clearing loop\n"
10136     "        STX    G0,[$base+$temp]\t! delay slot" %}
10137 
10138   ins_encode %{
10139     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10140     Register nof_bytes_arg    = $cnt$$Register;
10141     Register nof_bytes_tmp    = $temp$$Register;
10142     Register base_pointer_arg = $base$$Register;
10143 
10144     Label loop;
10145     __ mov(nof_bytes_arg, nof_bytes_tmp);
10146 
10147     // Loop and clear, walking backwards through the array.
10148     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10149     __ bind(loop);
10150     __ deccc(nof_bytes_tmp, 8);
10151     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10152     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10153     // %%%% this mini-loop must not cross a cache boundary!
10154   %}
10155   ins_pipe(long_memory_op);
10156 %}
10157 
10158 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10159   predicate(use_block_zeroing(n->in(2)));
10160   match(Set dummy (ClearArray cnt base));
10161   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10162   ins_cost(300);
10163   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10164 
10165   ins_encode %{
10166 
10167     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10168     Register to    = $base$$Register;
10169     Register count = $cnt$$Register;
10170 
10171     Label Ldone;
10172     __ nop(); // Separate short branches
10173     // Use BIS for zeroing (temp is not used).
10174     __ bis_zeroing(to, count, G0, Ldone);
10175     __ bind(Ldone);
10176 
10177   %}
10178   ins_pipe(long_memory_op);
10179 %}
10180 
10181 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10182   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10183   match(Set dummy (ClearArray cnt base));
10184   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10185   ins_cost(300);
10186   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10187 
10188   ins_encode %{
10189 
10190     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10191     Register to    = $base$$Register;
10192     Register count = $cnt$$Register;
10193     Register temp  = $tmp$$Register;
10194 
10195     Label Ldone;
10196     __ nop(); // Separate short branches
10197     // Use BIS for zeroing
10198     __ bis_zeroing(to, count, temp, Ldone);
10199     __ bind(Ldone);
10200 
10201   %}
10202   ins_pipe(long_memory_op);
10203 %}
10204 
10205 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10206                         o7RegI tmp, flagsReg ccr) %{
10207   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10208   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10209   ins_cost(300);
10210   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10211   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10212   ins_pipe(long_memory_op);
10213 %}
10214 
10215 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10216                        o7RegI tmp, flagsReg ccr) %{
10217   match(Set result (StrEquals (Binary str1 str2) cnt));
10218   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10219   ins_cost(300);
10220   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10221   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10222   ins_pipe(long_memory_op);
10223 %}
10224 
10225 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10226                       o7RegI tmp2, flagsReg ccr) %{
10227   match(Set result (AryEq ary1 ary2));
10228   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10229   ins_cost(300);
10230   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10231   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10232   ins_pipe(long_memory_op);
10233 %}
10234 
10235 
10236 //---------- Zeros Count Instructions ------------------------------------------
10237 
10238 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10239   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10240   match(Set dst (CountLeadingZerosI src));
10241   effect(TEMP dst, TEMP tmp, KILL cr);
10242 
10243   // x |= (x >> 1);
10244   // x |= (x >> 2);
10245   // x |= (x >> 4);
10246   // x |= (x >> 8);
10247   // x |= (x >> 16);
10248   // return (WORDBITS - popc(x));
10249   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10250             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10251             "OR      $dst,$tmp,$dst\n\t"
10252             "SRL     $dst,2,$tmp\n\t"
10253             "OR      $dst,$tmp,$dst\n\t"
10254             "SRL     $dst,4,$tmp\n\t"
10255             "OR      $dst,$tmp,$dst\n\t"
10256             "SRL     $dst,8,$tmp\n\t"
10257             "OR      $dst,$tmp,$dst\n\t"
10258             "SRL     $dst,16,$tmp\n\t"
10259             "OR      $dst,$tmp,$dst\n\t"
10260             "POPC    $dst,$dst\n\t"
10261             "MOV     32,$tmp\n\t"
10262             "SUB     $tmp,$dst,$dst" %}
10263   ins_encode %{
10264     Register Rdst = $dst$$Register;
10265     Register Rsrc = $src$$Register;
10266     Register Rtmp = $tmp$$Register;
10267     __ srl(Rsrc, 1,    Rtmp);
10268     __ srl(Rsrc, 0,    Rdst);
10269     __ or3(Rdst, Rtmp, Rdst);
10270     __ srl(Rdst, 2,    Rtmp);
10271     __ or3(Rdst, Rtmp, Rdst);
10272     __ srl(Rdst, 4,    Rtmp);
10273     __ or3(Rdst, Rtmp, Rdst);
10274     __ srl(Rdst, 8,    Rtmp);
10275     __ or3(Rdst, Rtmp, Rdst);
10276     __ srl(Rdst, 16,   Rtmp);
10277     __ or3(Rdst, Rtmp, Rdst);
10278     __ popc(Rdst, Rdst);
10279     __ mov(BitsPerInt, Rtmp);
10280     __ sub(Rtmp, Rdst, Rdst);
10281   %}
10282   ins_pipe(ialu_reg);
10283 %}
10284 
10285 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10286   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10287   match(Set dst (CountLeadingZerosL src));
10288   effect(TEMP dst, TEMP tmp, KILL cr);
10289 
10290   // x |= (x >> 1);
10291   // x |= (x >> 2);
10292   // x |= (x >> 4);
10293   // x |= (x >> 8);
10294   // x |= (x >> 16);
10295   // x |= (x >> 32);
10296   // return (WORDBITS - popc(x));
10297   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10298             "OR      $src,$tmp,$dst\n\t"
10299             "SRLX    $dst,2,$tmp\n\t"
10300             "OR      $dst,$tmp,$dst\n\t"
10301             "SRLX    $dst,4,$tmp\n\t"
10302             "OR      $dst,$tmp,$dst\n\t"
10303             "SRLX    $dst,8,$tmp\n\t"
10304             "OR      $dst,$tmp,$dst\n\t"
10305             "SRLX    $dst,16,$tmp\n\t"
10306             "OR      $dst,$tmp,$dst\n\t"
10307             "SRLX    $dst,32,$tmp\n\t"
10308             "OR      $dst,$tmp,$dst\n\t"
10309             "POPC    $dst,$dst\n\t"
10310             "MOV     64,$tmp\n\t"
10311             "SUB     $tmp,$dst,$dst" %}
10312   ins_encode %{
10313     Register Rdst = $dst$$Register;
10314     Register Rsrc = $src$$Register;
10315     Register Rtmp = $tmp$$Register;
10316     __ srlx(Rsrc, 1,    Rtmp);
10317     __ or3( Rsrc, Rtmp, Rdst);
10318     __ srlx(Rdst, 2,    Rtmp);
10319     __ or3( Rdst, Rtmp, Rdst);
10320     __ srlx(Rdst, 4,    Rtmp);
10321     __ or3( Rdst, Rtmp, Rdst);
10322     __ srlx(Rdst, 8,    Rtmp);
10323     __ or3( Rdst, Rtmp, Rdst);
10324     __ srlx(Rdst, 16,   Rtmp);
10325     __ or3( Rdst, Rtmp, Rdst);
10326     __ srlx(Rdst, 32,   Rtmp);
10327     __ or3( Rdst, Rtmp, Rdst);
10328     __ popc(Rdst, Rdst);
10329     __ mov(BitsPerLong, Rtmp);
10330     __ sub(Rtmp, Rdst, Rdst);
10331   %}
10332   ins_pipe(ialu_reg);
10333 %}
10334 
10335 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10336   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10337   match(Set dst (CountTrailingZerosI src));
10338   effect(TEMP dst, KILL cr);
10339 
10340   // return popc(~x & (x - 1));
10341   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10342             "ANDN    $dst,$src,$dst\n\t"
10343             "SRL     $dst,R_G0,$dst\n\t"
10344             "POPC    $dst,$dst" %}
10345   ins_encode %{
10346     Register Rdst = $dst$$Register;
10347     Register Rsrc = $src$$Register;
10348     __ sub(Rsrc, 1, Rdst);
10349     __ andn(Rdst, Rsrc, Rdst);
10350     __ srl(Rdst, G0, Rdst);
10351     __ popc(Rdst, Rdst);
10352   %}
10353   ins_pipe(ialu_reg);
10354 %}
10355 
10356 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10357   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10358   match(Set dst (CountTrailingZerosL src));
10359   effect(TEMP dst, KILL cr);
10360 
10361   // return popc(~x & (x - 1));
10362   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10363             "ANDN    $dst,$src,$dst\n\t"
10364             "POPC    $dst,$dst" %}
10365   ins_encode %{
10366     Register Rdst = $dst$$Register;
10367     Register Rsrc = $src$$Register;
10368     __ sub(Rsrc, 1, Rdst);
10369     __ andn(Rdst, Rsrc, Rdst);
10370     __ popc(Rdst, Rdst);
10371   %}
10372   ins_pipe(ialu_reg);
10373 %}
10374 
10375 
10376 //---------- Population Count Instructions -------------------------------------
10377 
10378 instruct popCountI(iRegIsafe dst, iRegI src) %{
10379   predicate(UsePopCountInstruction);
10380   match(Set dst (PopCountI src));
10381 
10382   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10383             "POPC   $dst, $dst" %}
10384   ins_encode %{
10385     __ srl($src$$Register, G0, $dst$$Register);
10386     __ popc($dst$$Register, $dst$$Register);
10387   %}
10388   ins_pipe(ialu_reg);
10389 %}
10390 
10391 // Note: Long.bitCount(long) returns an int.
10392 instruct popCountL(iRegIsafe dst, iRegL src) %{
10393   predicate(UsePopCountInstruction);
10394   match(Set dst (PopCountL src));
10395 
10396   format %{ "POPC   $src, $dst" %}
10397   ins_encode %{
10398     __ popc($src$$Register, $dst$$Register);
10399   %}
10400   ins_pipe(ialu_reg);
10401 %}
10402 
10403 
10404 // ============================================================================
10405 //------------Bytes reverse--------------------------------------------------
10406 
10407 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10408   match(Set dst (ReverseBytesI src));
10409 
10410   // Op cost is artificially doubled to make sure that load or store
10411   // instructions are preferred over this one which requires a spill
10412   // onto a stack slot.
10413   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10414   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10415 
10416   ins_encode %{
10417     __ set($src$$disp + STACK_BIAS, O7);
10418     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10419   %}
10420   ins_pipe( iload_mem );
10421 %}
10422 
10423 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10424   match(Set dst (ReverseBytesL src));
10425 
10426   // Op cost is artificially doubled to make sure that load or store
10427   // instructions are preferred over this one which requires a spill
10428   // onto a stack slot.
10429   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10430   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10431 
10432   ins_encode %{
10433     __ set($src$$disp + STACK_BIAS, O7);
10434     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10435   %}
10436   ins_pipe( iload_mem );
10437 %}
10438 
10439 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10440   match(Set dst (ReverseBytesUS src));
10441 
10442   // Op cost is artificially doubled to make sure that load or store
10443   // instructions are preferred over this one which requires a spill
10444   // onto a stack slot.
10445   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10446   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10447 
10448   ins_encode %{
10449     // the value was spilled as an int so bias the load
10450     __ set($src$$disp + STACK_BIAS + 2, O7);
10451     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10452   %}
10453   ins_pipe( iload_mem );
10454 %}
10455 
10456 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10457   match(Set dst (ReverseBytesS src));
10458 
10459   // Op cost is artificially doubled to make sure that load or store
10460   // instructions are preferred over this one which requires a spill
10461   // onto a stack slot.
10462   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10463   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10464 
10465   ins_encode %{
10466     // the value was spilled as an int so bias the load
10467     __ set($src$$disp + STACK_BIAS + 2, O7);
10468     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10469   %}
10470   ins_pipe( iload_mem );
10471 %}
10472 
10473 // Load Integer reversed byte order
10474 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10475   match(Set dst (ReverseBytesI (LoadI src)));
10476 
10477   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10478   size(4);
10479   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10480 
10481   ins_encode %{
10482     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10483   %}
10484   ins_pipe(iload_mem);
10485 %}
10486 
10487 // Load Long - aligned and reversed
10488 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10489   match(Set dst (ReverseBytesL (LoadL src)));
10490 
10491   ins_cost(MEMORY_REF_COST);
10492   size(4);
10493   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10494 
10495   ins_encode %{
10496     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10497   %}
10498   ins_pipe(iload_mem);
10499 %}
10500 
10501 // Load unsigned short / char reversed byte order
10502 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10503   match(Set dst (ReverseBytesUS (LoadUS src)));
10504 
10505   ins_cost(MEMORY_REF_COST);
10506   size(4);
10507   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10508 
10509   ins_encode %{
10510     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10511   %}
10512   ins_pipe(iload_mem);
10513 %}
10514 
10515 // Load short reversed byte order
10516 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10517   match(Set dst (ReverseBytesS (LoadS src)));
10518 
10519   ins_cost(MEMORY_REF_COST);
10520   size(4);
10521   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10522 
10523   ins_encode %{
10524     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10525   %}
10526   ins_pipe(iload_mem);
10527 %}
10528 
10529 // Store Integer reversed byte order
10530 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10531   match(Set dst (StoreI dst (ReverseBytesI src)));
10532 
10533   ins_cost(MEMORY_REF_COST);
10534   size(4);
10535   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10536 
10537   ins_encode %{
10538     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10539   %}
10540   ins_pipe(istore_mem_reg);
10541 %}
10542 
10543 // Store Long reversed byte order
10544 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10545   match(Set dst (StoreL dst (ReverseBytesL src)));
10546 
10547   ins_cost(MEMORY_REF_COST);
10548   size(4);
10549   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10550 
10551   ins_encode %{
10552     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10553   %}
10554   ins_pipe(istore_mem_reg);
10555 %}
10556 
10557 // Store unsighed short/char reversed byte order
10558 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10559   match(Set dst (StoreC dst (ReverseBytesUS src)));
10560 
10561   ins_cost(MEMORY_REF_COST);
10562   size(4);
10563   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10564 
10565   ins_encode %{
10566     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10567   %}
10568   ins_pipe(istore_mem_reg);
10569 %}
10570 
10571 // Store short reversed byte order
10572 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10573   match(Set dst (StoreC dst (ReverseBytesS src)));
10574 
10575   ins_cost(MEMORY_REF_COST);
10576   size(4);
10577   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10578 
10579   ins_encode %{
10580     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10581   %}
10582   ins_pipe(istore_mem_reg);
10583 %}
10584 
10585 // ====================VECTOR INSTRUCTIONS=====================================
10586 
10587 // Load Aligned Packed values into a Double Register
10588 instruct loadV8(regD dst, memory mem) %{
10589   predicate(n->as_LoadVector()->memory_size() == 8);
10590   match(Set dst (LoadVector mem));
10591   ins_cost(MEMORY_REF_COST);
10592   size(4);
10593   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10594   ins_encode %{
10595     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10596   %}
10597   ins_pipe(floadD_mem);
10598 %}
10599 
10600 // Store Vector in Double register to memory
10601 instruct storeV8(memory mem, regD src) %{
10602   predicate(n->as_StoreVector()->memory_size() == 8);
10603   match(Set mem (StoreVector mem src));
10604   ins_cost(MEMORY_REF_COST);
10605   size(4);
10606   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10607   ins_encode %{
10608     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10609   %}
10610   ins_pipe(fstoreD_mem_reg);
10611 %}
10612 
10613 // Store Zero into vector in memory
10614 instruct storeV8B_zero(memory mem, immI0 zero) %{
10615   predicate(n->as_StoreVector()->memory_size() == 8);
10616   match(Set mem (StoreVector mem (ReplicateB zero)));
10617   ins_cost(MEMORY_REF_COST);
10618   size(4);
10619   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10620   ins_encode %{
10621     __ stx(G0, $mem$$Address);
10622   %}
10623   ins_pipe(fstoreD_mem_zero);
10624 %}
10625 
10626 instruct storeV4S_zero(memory mem, immI0 zero) %{
10627   predicate(n->as_StoreVector()->memory_size() == 8);
10628   match(Set mem (StoreVector mem (ReplicateS zero)));
10629   ins_cost(MEMORY_REF_COST);
10630   size(4);
10631   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10632   ins_encode %{
10633     __ stx(G0, $mem$$Address);
10634   %}
10635   ins_pipe(fstoreD_mem_zero);
10636 %}
10637 
10638 instruct storeV2I_zero(memory mem, immI0 zero) %{
10639   predicate(n->as_StoreVector()->memory_size() == 8);
10640   match(Set mem (StoreVector mem (ReplicateI zero)));
10641   ins_cost(MEMORY_REF_COST);
10642   size(4);
10643   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10644   ins_encode %{
10645     __ stx(G0, $mem$$Address);
10646   %}
10647   ins_pipe(fstoreD_mem_zero);
10648 %}
10649 
10650 instruct storeV2F_zero(memory mem, immF0 zero) %{
10651   predicate(n->as_StoreVector()->memory_size() == 8);
10652   match(Set mem (StoreVector mem (ReplicateF zero)));
10653   ins_cost(MEMORY_REF_COST);
10654   size(4);
10655   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10656   ins_encode %{
10657     __ stx(G0, $mem$$Address);
10658   %}
10659   ins_pipe(fstoreD_mem_zero);
10660 %}
10661 
10662 // Replicate scalar to packed byte values into Double register
10663 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10664   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10665   match(Set dst (ReplicateB src));
10666   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10667   format %{ "SLLX  $src,56,$tmp\n\t"
10668             "SRLX  $tmp, 8,$tmp2\n\t"
10669             "OR    $tmp,$tmp2,$tmp\n\t"
10670             "SRLX  $tmp,16,$tmp2\n\t"
10671             "OR    $tmp,$tmp2,$tmp\n\t"
10672             "SRLX  $tmp,32,$tmp2\n\t"
10673             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10674             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10675   ins_encode %{
10676     Register Rsrc = $src$$Register;
10677     Register Rtmp = $tmp$$Register;
10678     Register Rtmp2 = $tmp2$$Register;
10679     __ sllx(Rsrc,    56, Rtmp);
10680     __ srlx(Rtmp,     8, Rtmp2);
10681     __ or3 (Rtmp, Rtmp2, Rtmp);
10682     __ srlx(Rtmp,    16, Rtmp2);
10683     __ or3 (Rtmp, Rtmp2, Rtmp);
10684     __ srlx(Rtmp,    32, Rtmp2);
10685     __ or3 (Rtmp, Rtmp2, Rtmp);
10686     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10687   %}
10688   ins_pipe(ialu_reg);
10689 %}
10690 
10691 // Replicate scalar to packed byte values into Double stack
10692 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10693   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10694   match(Set dst (ReplicateB src));
10695   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10696   format %{ "SLLX  $src,56,$tmp\n\t"
10697             "SRLX  $tmp, 8,$tmp2\n\t"
10698             "OR    $tmp,$tmp2,$tmp\n\t"
10699             "SRLX  $tmp,16,$tmp2\n\t"
10700             "OR    $tmp,$tmp2,$tmp\n\t"
10701             "SRLX  $tmp,32,$tmp2\n\t"
10702             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10703             "STX   $tmp,$dst\t! regL to stkD" %}
10704   ins_encode %{
10705     Register Rsrc = $src$$Register;
10706     Register Rtmp = $tmp$$Register;
10707     Register Rtmp2 = $tmp2$$Register;
10708     __ sllx(Rsrc,    56, Rtmp);
10709     __ srlx(Rtmp,     8, Rtmp2);
10710     __ or3 (Rtmp, Rtmp2, Rtmp);
10711     __ srlx(Rtmp,    16, Rtmp2);
10712     __ or3 (Rtmp, Rtmp2, Rtmp);
10713     __ srlx(Rtmp,    32, Rtmp2);
10714     __ or3 (Rtmp, Rtmp2, Rtmp);
10715     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10716     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10717   %}
10718   ins_pipe(ialu_reg);
10719 %}
10720 
10721 // Replicate scalar constant to packed byte values in Double register
10722 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10723   predicate(n->as_Vector()->length() == 8);
10724   match(Set dst (ReplicateB con));
10725   effect(KILL tmp);
10726   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10727   ins_encode %{
10728     // XXX This is a quick fix for 6833573.
10729     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10730     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10731     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10732   %}
10733   ins_pipe(loadConFD);
10734 %}
10735 
10736 // Replicate scalar to packed char/short values into Double register
10737 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10738   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10739   match(Set dst (ReplicateS src));
10740   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10741   format %{ "SLLX  $src,48,$tmp\n\t"
10742             "SRLX  $tmp,16,$tmp2\n\t"
10743             "OR    $tmp,$tmp2,$tmp\n\t"
10744             "SRLX  $tmp,32,$tmp2\n\t"
10745             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10746             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10747   ins_encode %{
10748     Register Rsrc = $src$$Register;
10749     Register Rtmp = $tmp$$Register;
10750     Register Rtmp2 = $tmp2$$Register;
10751     __ sllx(Rsrc,    48, Rtmp);
10752     __ srlx(Rtmp,    16, Rtmp2);
10753     __ or3 (Rtmp, Rtmp2, Rtmp);
10754     __ srlx(Rtmp,    32, Rtmp2);
10755     __ or3 (Rtmp, Rtmp2, Rtmp);
10756     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10757   %}
10758   ins_pipe(ialu_reg);
10759 %}
10760 
10761 // Replicate scalar to packed char/short values into Double stack
10762 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10763   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10764   match(Set dst (ReplicateS src));
10765   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10766   format %{ "SLLX  $src,48,$tmp\n\t"
10767             "SRLX  $tmp,16,$tmp2\n\t"
10768             "OR    $tmp,$tmp2,$tmp\n\t"
10769             "SRLX  $tmp,32,$tmp2\n\t"
10770             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10771             "STX   $tmp,$dst\t! regL to stkD" %}
10772   ins_encode %{
10773     Register Rsrc = $src$$Register;
10774     Register Rtmp = $tmp$$Register;
10775     Register Rtmp2 = $tmp2$$Register;
10776     __ sllx(Rsrc,    48, Rtmp);
10777     __ srlx(Rtmp,    16, Rtmp2);
10778     __ or3 (Rtmp, Rtmp2, Rtmp);
10779     __ srlx(Rtmp,    32, Rtmp2);
10780     __ or3 (Rtmp, Rtmp2, Rtmp);
10781     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10782     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10783   %}
10784   ins_pipe(ialu_reg);
10785 %}
10786 
10787 // Replicate scalar constant to packed char/short values in Double register
10788 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10789   predicate(n->as_Vector()->length() == 4);
10790   match(Set dst (ReplicateS con));
10791   effect(KILL tmp);
10792   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10793   ins_encode %{
10794     // XXX This is a quick fix for 6833573.
10795     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10796     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10797     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10798   %}
10799   ins_pipe(loadConFD);
10800 %}
10801 
10802 // Replicate scalar to packed int values into Double register
10803 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10804   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10805   match(Set dst (ReplicateI src));
10806   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10807   format %{ "SLLX  $src,32,$tmp\n\t"
10808             "SRLX  $tmp,32,$tmp2\n\t"
10809             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10810             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10811   ins_encode %{
10812     Register Rsrc = $src$$Register;
10813     Register Rtmp = $tmp$$Register;
10814     Register Rtmp2 = $tmp2$$Register;
10815     __ sllx(Rsrc,    32, Rtmp);
10816     __ srlx(Rtmp,    32, Rtmp2);
10817     __ or3 (Rtmp, Rtmp2, Rtmp);
10818     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10819   %}
10820   ins_pipe(ialu_reg);
10821 %}
10822 
10823 // Replicate scalar to packed int values into Double stack
10824 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10825   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10826   match(Set dst (ReplicateI src));
10827   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10828   format %{ "SLLX  $src,32,$tmp\n\t"
10829             "SRLX  $tmp,32,$tmp2\n\t"
10830             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10831             "STX   $tmp,$dst\t! regL to stkD" %}
10832   ins_encode %{
10833     Register Rsrc = $src$$Register;
10834     Register Rtmp = $tmp$$Register;
10835     Register Rtmp2 = $tmp2$$Register;
10836     __ sllx(Rsrc,    32, Rtmp);
10837     __ srlx(Rtmp,    32, Rtmp2);
10838     __ or3 (Rtmp, Rtmp2, Rtmp);
10839     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10840     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10841   %}
10842   ins_pipe(ialu_reg);
10843 %}
10844 
10845 // Replicate scalar zero constant to packed int values in Double register
10846 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10847   predicate(n->as_Vector()->length() == 2);
10848   match(Set dst (ReplicateI con));
10849   effect(KILL tmp);
10850   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10851   ins_encode %{
10852     // XXX This is a quick fix for 6833573.
10853     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10854     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10855     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10856   %}
10857   ins_pipe(loadConFD);
10858 %}
10859 
10860 // Replicate scalar to packed float values into Double stack
10861 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10862   predicate(n->as_Vector()->length() == 2);
10863   match(Set dst (ReplicateF src));
10864   ins_cost(MEMORY_REF_COST*2);
10865   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10866             "STF    $src,$dst.lo" %}
10867   opcode(Assembler::stf_op3);
10868   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10869   ins_pipe(fstoreF_stk_reg);
10870 %}
10871 
10872 // Replicate scalar zero constant to packed float values in Double register
10873 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10874   predicate(n->as_Vector()->length() == 2);
10875   match(Set dst (ReplicateF con));
10876   effect(KILL tmp);
10877   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10878   ins_encode %{
10879     // XXX This is a quick fix for 6833573.
10880     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10881     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10882     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10883   %}
10884   ins_pipe(loadConFD);
10885 %}
10886 
10887 //----------PEEPHOLE RULES-----------------------------------------------------
10888 // These must follow all instruction definitions as they use the names
10889 // defined in the instructions definitions.
10890 //
10891 // peepmatch ( root_instr_name [preceding_instruction]* );
10892 //
10893 // peepconstraint %{
10894 // (instruction_number.operand_name relational_op instruction_number.operand_name
10895 //  [, ...] );
10896 // // instruction numbers are zero-based using left to right order in peepmatch
10897 //
10898 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10899 // // provide an instruction_number.operand_name for each operand that appears
10900 // // in the replacement instruction's match rule
10901 //
10902 // ---------VM FLAGS---------------------------------------------------------
10903 //
10904 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10905 //
10906 // Each peephole rule is given an identifying number starting with zero and
10907 // increasing by one in the order seen by the parser.  An individual peephole
10908 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10909 // on the command-line.
10910 //
10911 // ---------CURRENT LIMITATIONS----------------------------------------------
10912 //
10913 // Only match adjacent instructions in same basic block
10914 // Only equality constraints
10915 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10916 // Only one replacement instruction
10917 //
10918 // ---------EXAMPLE----------------------------------------------------------
10919 //
10920 // // pertinent parts of existing instructions in architecture description
10921 // instruct movI(eRegI dst, eRegI src) %{
10922 //   match(Set dst (CopyI src));
10923 // %}
10924 //
10925 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10926 //   match(Set dst (AddI dst src));
10927 //   effect(KILL cr);
10928 // %}
10929 //
10930 // // Change (inc mov) to lea
10931 // peephole %{
10932 //   // increment preceeded by register-register move
10933 //   peepmatch ( incI_eReg movI );
10934 //   // require that the destination register of the increment
10935 //   // match the destination register of the move
10936 //   peepconstraint ( 0.dst == 1.dst );
10937 //   // construct a replacement instruction that sets
10938 //   // the destination to ( move's source register + one )
10939 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10940 // %}
10941 //
10942 
10943 // // Change load of spilled value to only a spill
10944 // instruct storeI(memory mem, eRegI src) %{
10945 //   match(Set mem (StoreI mem src));
10946 // %}
10947 //
10948 // instruct loadI(eRegI dst, memory mem) %{
10949 //   match(Set dst (LoadI mem));
10950 // %}
10951 //
10952 // peephole %{
10953 //   peepmatch ( loadI storeI );
10954 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10955 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10956 // %}
10957 
10958 //----------SMARTSPILL RULES---------------------------------------------------
10959 // These must follow all instruction definitions as they use the names
10960 // defined in the instructions definitions.
10961 //
10962 // SPARC will probably not have any of these rules due to RISC instruction set.
10963 
10964 //----------PIPELINE-----------------------------------------------------------
10965 // Rules which define the behavior of the target architectures pipeline.