1 //
   2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for all registers
 127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 128 // Class for general registers
 129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 130 // Class for general registers which may be used for implicit null checks on win95
 131 // Also safe for use by tailjump. We don't want to allocate in rbp,
 132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 133 // Class of "X" registers
 134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 135 // Class of registers that can appear in an address with no offset.
 136 // EBP and ESP require an extra instruction byte for zero offset.
 137 // Used in fast-unlock
 138 reg_class p_reg(EDX, EDI, ESI, EBX);
 139 // Class for general registers not including ECX
 140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 141 // Class for general registers not including EAX
 142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 143 // Class for general registers not including EAX or EBX.
 144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 145 // Class of EAX (for multiply and divide operations)
 146 reg_class eax_reg(EAX);
 147 // Class of EBX (for atomic add)
 148 reg_class ebx_reg(EBX);
 149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 150 reg_class ecx_reg(ECX);
 151 // Class of EDX (for multiply and divide operations)
 152 reg_class edx_reg(EDX);
 153 // Class of EDI (for synchronization)
 154 reg_class edi_reg(EDI);
 155 // Class of ESI (for synchronization)
 156 reg_class esi_reg(ESI);
 157 // Singleton class for interpreter's stack pointer
 158 reg_class ebp_reg(EBP);
 159 // Singleton class for stack pointer
 160 reg_class sp_reg(ESP);
 161 // Singleton class for instruction pointer
 162 // reg_class ip_reg(EIP);
 163 // Class of integer register pairs
 164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 165 // Class of integer register pairs that aligns with calling convention
 166 reg_class eadx_reg( EAX,EDX );
 167 reg_class ebcx_reg( ECX,EBX );
 168 // Not AX or DX, used in divides
 169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 170 
 171 // Floating point registers.  Notice FPR0 is not a choice.
 172 // FPR0 is not ever allocated; we use clever encodings to fake
 173 // a 2-address instructions out of Intels FP stack.
 174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 175 
 176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 178                       FPR7L,FPR7H );
 179 
 180 reg_class fp_flt_reg0( FPR1L );
 181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 185 
 186 %}
 187 
 188 
 189 //----------SOURCE BLOCK-------------------------------------------------------
 190 // This is a block of C++ code which provides values, functions, and
 191 // definitions necessary in the rest of the architecture description
 192 source_hpp %{
 193 // Must be visible to the DFA in dfa_x86_32.cpp
 194 extern bool is_operand_hi32_zero(Node* n);
 195 %}
 196 
 197 source %{
 198 #define   RELOC_IMM32    Assembler::imm_operand
 199 #define   RELOC_DISP32   Assembler::disp32_operand
 200 
 201 #define __ _masm.
 202 
 203 // How to find the high register of a Long pair, given the low register
 204 #define   HIGH_FROM_LOW(x) ((x)+2)
 205 
 206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 208 // fast versions of NegF/NegD and AbsF/AbsD.
 209 
 210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 213   // of 128-bits operands for SSE instructions.
 214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 215   // Store the value to a 128-bits operand.
 216   operand[0] = lo;
 217   operand[1] = hi;
 218   return operand;
 219 }
 220 
 221 // Buffer for 128-bits masks used by SSE instructions.
 222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 223 
 224 // Static initialization during VM startup.
 225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 229 
 230 // Offset hacking within calls.
 231 static int pre_call_resets_size() {
 232   int size = 0;
 233   Compile* C = Compile::current();
 234   if (C->in_24_bit_fp_mode()) {
 235     size += 6; // fldcw
 236   }
 237   if (C->max_vector_size() > 16) {
 238     size += 3; // vzeroupper
 239   }
 240   return size;
 241 }
 242 
 243 static int preserve_SP_size() {
 244   return 2;  // op, rm(reg/reg)
 245 }
 246 
 247 // !!!!! Special hack to get all type of calls to specify the byte offset
 248 //       from the start of the call to the point where the return address
 249 //       will point.
 250 int MachCallStaticJavaNode::ret_addr_offset() {
 251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
 252   if (_method_handle_invoke)
 253     offset += preserve_SP_size();
 254   return offset;
 255 }
 256 
 257 int MachCallDynamicJavaNode::ret_addr_offset() {
 258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
 259 }
 260 
 261 static int sizeof_FFree_Float_Stack_All = -1;
 262 
 263 int MachCallRuntimeNode::ret_addr_offset() {
 264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
 266 }
 267 
 268 // Indicate if the safepoint node needs the polling page as an input.
 269 // Since x86 does have absolute addressing, it doesn't.
 270 bool SafePointNode::needs_polling_address_input() {
 271   return false;
 272 }
 273 
 274 //
 275 // Compute padding required for nodes which need alignment
 276 //
 277 
 278 // The address of the call instruction needs to be 4-byte aligned to
 279 // ensure that it does not span a cache line so that it can be patched.
 280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 281   current_offset += pre_call_resets_size();  // skip fldcw, if any
 282   current_offset += 1;      // skip call opcode byte
 283   return round_to(current_offset, alignment_required()) - current_offset;
 284 }
 285 
 286 // The address of the call instruction needs to be 4-byte aligned to
 287 // ensure that it does not span a cache line so that it can be patched.
 288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 289   current_offset += pre_call_resets_size();  // skip fldcw, if any
 290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 291   current_offset += 1;      // skip call opcode byte
 292   return round_to(current_offset, alignment_required()) - current_offset;
 293 }
 294 
 295 // The address of the call instruction needs to be 4-byte aligned to
 296 // ensure that it does not span a cache line so that it can be patched.
 297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 298   current_offset += pre_call_resets_size();  // skip fldcw, if any
 299   current_offset += 5;      // skip MOV instruction
 300   current_offset += 1;      // skip call opcode byte
 301   return round_to(current_offset, alignment_required()) - current_offset;
 302 }
 303 
 304 // EMIT_RM()
 305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 307   cbuf.insts()->emit_int8(c);
 308 }
 309 
 310 // EMIT_CC()
 311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 312   unsigned char c = (unsigned char)( f1 | f2 );
 313   cbuf.insts()->emit_int8(c);
 314 }
 315 
 316 // EMIT_OPCODE()
 317 void emit_opcode(CodeBuffer &cbuf, int code) {
 318   cbuf.insts()->emit_int8((unsigned char) code);
 319 }
 320 
 321 // EMIT_OPCODE() w/ relocation information
 322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 324   emit_opcode(cbuf, code);
 325 }
 326 
 327 // EMIT_D8()
 328 void emit_d8(CodeBuffer &cbuf, int d8) {
 329   cbuf.insts()->emit_int8((unsigned char) d8);
 330 }
 331 
 332 // EMIT_D16()
 333 void emit_d16(CodeBuffer &cbuf, int d16) {
 334   cbuf.insts()->emit_int16(d16);
 335 }
 336 
 337 // EMIT_D32()
 338 void emit_d32(CodeBuffer &cbuf, int d32) {
 339   cbuf.insts()->emit_int32(d32);
 340 }
 341 
 342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 344         int format) {
 345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 346   cbuf.insts()->emit_int32(d32);
 347 }
 348 
 349 // emit 32 bit value and construct relocation entry from RelocationHolder
 350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 351         int format) {
 352 #ifdef ASSERT
 353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 355   }
 356 #endif
 357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 358   cbuf.insts()->emit_int32(d32);
 359 }
 360 
 361 // Access stack slot for load or store
 362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 364   if( -128 <= disp && disp <= 127 ) {
 365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 368   } else {
 369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 372   }
 373 }
 374 
 375    // rRegI ereg, memory mem) %{    // emit_reg_mem
 376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
 377   // There is no index & no scale, use form without SIB byte
 378   if ((index == 0x4) &&
 379       (scale == 0) && (base != ESP_enc)) {
 380     // If no displacement, mode is 0x0; unless base is [EBP]
 381     if ( (displace == 0) && (base != EBP_enc) ) {
 382       emit_rm(cbuf, 0x0, reg_encoding, base);
 383     }
 384     else {                    // If 8-bit displacement, mode 0x1
 385       if ((displace >= -128) && (displace <= 127)
 386           && (disp_reloc == relocInfo::none) ) {
 387         emit_rm(cbuf, 0x1, reg_encoding, base);
 388         emit_d8(cbuf, displace);
 389       }
 390       else {                  // If 32-bit displacement
 391         if (base == -1) { // Special flag for absolute address
 392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 393           // (manual lies; no SIB needed here)
 394           if ( disp_reloc != relocInfo::none ) {
 395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 396           } else {
 397             emit_d32      (cbuf, displace);
 398           }
 399         }
 400         else {                // Normal base + offset
 401           emit_rm(cbuf, 0x2, reg_encoding, base);
 402           if ( disp_reloc != relocInfo::none ) {
 403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 404           } else {
 405             emit_d32      (cbuf, displace);
 406           }
 407         }
 408       }
 409     }
 410   }
 411   else {                      // Else, encode with the SIB byte
 412     // If no displacement, mode is 0x0; unless base is [EBP]
 413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 415       emit_rm(cbuf, scale, index, base);
 416     }
 417     else {                    // If 8-bit displacement, mode 0x1
 418       if ((displace >= -128) && (displace <= 127)
 419           && (disp_reloc == relocInfo::none) ) {
 420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 421         emit_rm(cbuf, scale, index, base);
 422         emit_d8(cbuf, displace);
 423       }
 424       else {                  // If 32-bit displacement
 425         if (base == 0x04 ) {
 426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 427           emit_rm(cbuf, scale, index, 0x04);
 428         } else {
 429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 430           emit_rm(cbuf, scale, index, base);
 431         }
 432         if ( disp_reloc != relocInfo::none ) {
 433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 434         } else {
 435           emit_d32      (cbuf, displace);
 436         }
 437       }
 438     }
 439   }
 440 }
 441 
 442 
 443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 444   if( dst_encoding == src_encoding ) {
 445     // reg-reg copy, use an empty encoding
 446   } else {
 447     emit_opcode( cbuf, 0x8B );
 448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 449   }
 450 }
 451 
 452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 453   Label exit;
 454   __ jccb(Assembler::noParity, exit);
 455   __ pushf();
 456   //
 457   // comiss/ucomiss instructions set ZF,PF,CF flags and
 458   // zero OF,AF,SF for NaN values.
 459   // Fixup flags by zeroing ZF,PF so that compare of NaN
 460   // values returns 'less than' result (CF is set).
 461   // Leave the rest of flags unchanged.
 462   //
 463   //    7 6 5 4 3 2 1 0
 464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 465   //    0 0 1 0 1 0 1 1   (0x2B)
 466   //
 467   __ andl(Address(rsp, 0), 0xffffff2b);
 468   __ popf();
 469   __ bind(exit);
 470 }
 471 
 472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 473   Label done;
 474   __ movl(dst, -1);
 475   __ jcc(Assembler::parity, done);
 476   __ jcc(Assembler::below, done);
 477   __ setb(Assembler::notEqual, dst);
 478   __ movzbl(dst, dst);
 479   __ bind(done);
 480 }
 481 
 482 
 483 //=============================================================================
 484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 485 
 486 int Compile::ConstantTable::calculate_table_base_offset() const {
 487   return 0;  // absolute addressing, no offset
 488 }
 489 
 490 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 491   // Empty encoding
 492 }
 493 
 494 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 495   return 0;
 496 }
 497 
 498 #ifndef PRODUCT
 499 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 500   st->print("# MachConstantBaseNode (empty encoding)");
 501 }
 502 #endif
 503 
 504 
 505 //=============================================================================
 506 #ifndef PRODUCT
 507 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 508   Compile* C = ra_->C;
 509 
 510   int framesize = C->frame_slots() << LogBytesPerInt;
 511   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 512   // Remove wordSize for return addr which is already pushed.
 513   framesize -= wordSize;
 514 
 515   if (C->need_stack_bang(framesize)) {
 516     framesize -= wordSize;
 517     st->print("# stack bang");
 518     st->print("\n\t");
 519     st->print("PUSH   EBP\t# Save EBP");
 520     if (framesize) {
 521       st->print("\n\t");
 522       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 523     }
 524   } else {
 525     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 526     st->print("\n\t");
 527     framesize -= wordSize;
 528     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 529   }
 530 
 531   if (VerifyStackAtCalls) {
 532     st->print("\n\t");
 533     framesize -= wordSize;
 534     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 535   }
 536 
 537   if( C->in_24_bit_fp_mode() ) {
 538     st->print("\n\t");
 539     st->print("FLDCW  \t# load 24 bit fpu control word");
 540   }
 541   if (UseSSE >= 2 && VerifyFPU) {
 542     st->print("\n\t");
 543     st->print("# verify FPU stack (must be clean on entry)");
 544   }
 545 
 546 #ifdef ASSERT
 547   if (VerifyStackAtCalls) {
 548     st->print("\n\t");
 549     st->print("# stack alignment check");
 550   }
 551 #endif
 552   st->cr();
 553 }
 554 #endif
 555 
 556 
 557 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 558   Compile* C = ra_->C;
 559   MacroAssembler _masm(&cbuf);
 560 
 561   int framesize = C->frame_slots() << LogBytesPerInt;
 562 
 563   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
 564 
 565   C->set_frame_complete(cbuf.insts_size());
 566 
 567   if (C->has_mach_constant_base_node()) {
 568     // NOTE: We set the table base offset here because users might be
 569     // emitted before MachConstantBaseNode.
 570     Compile::ConstantTable& constant_table = C->constant_table();
 571     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 572   }
 573 }
 574 
 575 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 576   return MachNode::size(ra_); // too many variables; just compute it the hard way
 577 }
 578 
 579 int MachPrologNode::reloc() const {
 580   return 0; // a large enough number
 581 }
 582 
 583 //=============================================================================
 584 #ifndef PRODUCT
 585 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 586   Compile *C = ra_->C;
 587   int framesize = C->frame_slots() << LogBytesPerInt;
 588   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 589   // Remove two words for return addr and rbp,
 590   framesize -= 2*wordSize;
 591 
 592   if (C->max_vector_size() > 16) {
 593     st->print("VZEROUPPER");
 594     st->cr(); st->print("\t");
 595   }
 596   if (C->in_24_bit_fp_mode()) {
 597     st->print("FLDCW  standard control word");
 598     st->cr(); st->print("\t");
 599   }
 600   if (framesize) {
 601     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 602     st->cr(); st->print("\t");
 603   }
 604   st->print_cr("POPL   EBP"); st->print("\t");
 605   if (do_polling() && C->is_method_compilation()) {
 606     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 607     st->cr(); st->print("\t");
 608   }
 609 }
 610 #endif
 611 
 612 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 613   Compile *C = ra_->C;
 614 
 615   if (C->max_vector_size() > 16) {
 616     // Clear upper bits of YMM registers when current compiled code uses
 617     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 618     MacroAssembler masm(&cbuf);
 619     masm.vzeroupper();
 620   }
 621   // If method set FPU control word, restore to standard control word
 622   if (C->in_24_bit_fp_mode()) {
 623     MacroAssembler masm(&cbuf);
 624     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 625   }
 626 
 627   int framesize = C->frame_slots() << LogBytesPerInt;
 628   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 629   // Remove two words for return addr and rbp,
 630   framesize -= 2*wordSize;
 631 
 632   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 633 
 634   if (framesize >= 128) {
 635     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 636     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 637     emit_d32(cbuf, framesize);
 638   } else if (framesize) {
 639     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 640     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 641     emit_d8(cbuf, framesize);
 642   }
 643 
 644   emit_opcode(cbuf, 0x58 | EBP_enc);
 645 
 646   if (do_polling() && C->is_method_compilation()) {
 647     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 648     emit_opcode(cbuf,0x85);
 649     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 650     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 651   }
 652 }
 653 
 654 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 655   Compile *C = ra_->C;
 656   // If method set FPU control word, restore to standard control word
 657   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 658   if (C->max_vector_size() > 16) size += 3; // vzeroupper
 659   if (do_polling() && C->is_method_compilation()) size += 6;
 660 
 661   int framesize = C->frame_slots() << LogBytesPerInt;
 662   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 663   // Remove two words for return addr and rbp,
 664   framesize -= 2*wordSize;
 665 
 666   size++; // popl rbp,
 667 
 668   if (framesize >= 128) {
 669     size += 6;
 670   } else {
 671     size += framesize ? 3 : 0;
 672   }
 673   return size;
 674 }
 675 
 676 int MachEpilogNode::reloc() const {
 677   return 0; // a large enough number
 678 }
 679 
 680 const Pipeline * MachEpilogNode::pipeline() const {
 681   return MachNode::pipeline_class();
 682 }
 683 
 684 int MachEpilogNode::safepoint_offset() const { return 0; }
 685 
 686 //=============================================================================
 687 
 688 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 689 static enum RC rc_class( OptoReg::Name reg ) {
 690 
 691   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 692   if (OptoReg::is_stack(reg)) return rc_stack;
 693 
 694   VMReg r = OptoReg::as_VMReg(reg);
 695   if (r->is_Register()) return rc_int;
 696   if (r->is_FloatRegister()) {
 697     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 698     return rc_float;
 699   }
 700   assert(r->is_XMMRegister(), "must be");
 701   return rc_xmm;
 702 }
 703 
 704 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 705                         int opcode, const char *op_str, int size, outputStream* st ) {
 706   if( cbuf ) {
 707     emit_opcode  (*cbuf, opcode );
 708     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
 709 #ifndef PRODUCT
 710   } else if( !do_size ) {
 711     if( size != 0 ) st->print("\n\t");
 712     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 713       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 714       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 715     } else { // FLD, FST, PUSH, POP
 716       st->print("%s [ESP + #%d]",op_str,offset);
 717     }
 718 #endif
 719   }
 720   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 721   return size+3+offset_size;
 722 }
 723 
 724 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 725 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 726                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 727   if (cbuf) {
 728     MacroAssembler _masm(cbuf);
 729     if (reg_lo+1 == reg_hi) { // double move?
 730       if (is_load) {
 731         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 732       } else {
 733         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 734       }
 735     } else {
 736       if (is_load) {
 737         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 738       } else {
 739         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 740       }
 741     }
 742 #ifndef PRODUCT
 743   } else if (!do_size) {
 744     if (size != 0) st->print("\n\t");
 745     if (reg_lo+1 == reg_hi) { // double move?
 746       if (is_load) st->print("%s %s,[ESP + #%d]",
 747                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 748                               Matcher::regName[reg_lo], offset);
 749       else         st->print("MOVSD  [ESP + #%d],%s",
 750                               offset, Matcher::regName[reg_lo]);
 751     } else {
 752       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 753                               Matcher::regName[reg_lo], offset);
 754       else         st->print("MOVSS  [ESP + #%d],%s",
 755                               offset, Matcher::regName[reg_lo]);
 756     }
 757 #endif
 758   }
 759   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 760   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 761   return size+5+offset_size;
 762 }
 763 
 764 
 765 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 766                             int src_hi, int dst_hi, int size, outputStream* st ) {
 767   if (cbuf) {
 768     MacroAssembler _masm(cbuf);
 769     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 770       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 771                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 772     } else {
 773       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 774                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 775     }
 776 #ifndef PRODUCT
 777   } else if (!do_size) {
 778     if (size != 0) st->print("\n\t");
 779     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 780       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 781         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 782       } else {
 783         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 784       }
 785     } else {
 786       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 787         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 788       } else {
 789         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 790       }
 791     }
 792 #endif
 793   }
 794   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 795   // Only MOVAPS SSE prefix uses 1 byte.
 796   int sz = 4;
 797   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 798       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 799   return size + sz;
 800 }
 801 
 802 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 803                             int src_hi, int dst_hi, int size, outputStream* st ) {
 804   // 32-bit
 805   if (cbuf) {
 806     MacroAssembler _masm(cbuf);
 807     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 808              as_Register(Matcher::_regEncode[src_lo]));
 809 #ifndef PRODUCT
 810   } else if (!do_size) {
 811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 812 #endif
 813   }
 814   return 4;
 815 }
 816 
 817 
 818 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 819                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 820   // 32-bit
 821   if (cbuf) {
 822     MacroAssembler _masm(cbuf);
 823     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 824              as_XMMRegister(Matcher::_regEncode[src_lo]));
 825 #ifndef PRODUCT
 826   } else if (!do_size) {
 827     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 828 #endif
 829   }
 830   return 4;
 831 }
 832 
 833 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 834   if( cbuf ) {
 835     emit_opcode(*cbuf, 0x8B );
 836     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 837 #ifndef PRODUCT
 838   } else if( !do_size ) {
 839     if( size != 0 ) st->print("\n\t");
 840     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 841 #endif
 842   }
 843   return size+2;
 844 }
 845 
 846 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 847                                  int offset, int size, outputStream* st ) {
 848   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 849     if( cbuf ) {
 850       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 851       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 852 #ifndef PRODUCT
 853     } else if( !do_size ) {
 854       if( size != 0 ) st->print("\n\t");
 855       st->print("FLD    %s",Matcher::regName[src_lo]);
 856 #endif
 857     }
 858     size += 2;
 859   }
 860 
 861   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 862   const char *op_str;
 863   int op;
 864   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 865     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 866     op = 0xDD;
 867   } else {                   // 32-bit store
 868     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 869     op = 0xD9;
 870     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 871   }
 872 
 873   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 874 }
 875 
 876 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 877 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 878                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 879 
 880 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 881                             int stack_offset, int reg, uint ireg, outputStream* st);
 882 
 883 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 884                                      int dst_offset, uint ireg, outputStream* st) {
 885   int calc_size = 0;
 886   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 887   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 888   switch (ireg) {
 889   case Op_VecS:
 890     calc_size = 3+src_offset_size + 3+dst_offset_size;
 891     break;
 892   case Op_VecD:
 893     calc_size = 3+src_offset_size + 3+dst_offset_size;
 894     src_offset += 4;
 895     dst_offset += 4;
 896     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 897     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 898     calc_size += 3+src_offset_size + 3+dst_offset_size;
 899     break;
 900   case Op_VecX:
 901     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 902     break;
 903   case Op_VecY:
 904     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 905     break;
 906   default:
 907     ShouldNotReachHere();
 908   }
 909   if (cbuf) {
 910     MacroAssembler _masm(cbuf);
 911     int offset = __ offset();
 912     switch (ireg) {
 913     case Op_VecS:
 914       __ pushl(Address(rsp, src_offset));
 915       __ popl (Address(rsp, dst_offset));
 916       break;
 917     case Op_VecD:
 918       __ pushl(Address(rsp, src_offset));
 919       __ popl (Address(rsp, dst_offset));
 920       __ pushl(Address(rsp, src_offset+4));
 921       __ popl (Address(rsp, dst_offset+4));
 922       break;
 923     case Op_VecX:
 924       __ movdqu(Address(rsp, -16), xmm0);
 925       __ movdqu(xmm0, Address(rsp, src_offset));
 926       __ movdqu(Address(rsp, dst_offset), xmm0);
 927       __ movdqu(xmm0, Address(rsp, -16));
 928       break;
 929     case Op_VecY:
 930       __ vmovdqu(Address(rsp, -32), xmm0);
 931       __ vmovdqu(xmm0, Address(rsp, src_offset));
 932       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 933       __ vmovdqu(xmm0, Address(rsp, -32));
 934       break;
 935     default:
 936       ShouldNotReachHere();
 937     }
 938     int size = __ offset() - offset;
 939     assert(size == calc_size, "incorrect size calculattion");
 940     return size;
 941 #ifndef PRODUCT
 942   } else if (!do_size) {
 943     switch (ireg) {
 944     case Op_VecS:
 945       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 946                 "popl    [rsp + #%d]",
 947                 src_offset, dst_offset);
 948       break;
 949     case Op_VecD:
 950       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 951                 "popq    [rsp + #%d]\n\t"
 952                 "pushl   [rsp + #%d]\n\t"
 953                 "popq    [rsp + #%d]",
 954                 src_offset, dst_offset, src_offset+4, dst_offset+4);
 955       break;
 956      case Op_VecX:
 957       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
 958                 "movdqu  xmm0, [rsp + #%d]\n\t"
 959                 "movdqu  [rsp + #%d], xmm0\n\t"
 960                 "movdqu  xmm0, [rsp - #16]",
 961                 src_offset, dst_offset);
 962       break;
 963     case Op_VecY:
 964       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 965                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 966                 "vmovdqu [rsp + #%d], xmm0\n\t"
 967                 "vmovdqu xmm0, [rsp - #32]",
 968                 src_offset, dst_offset);
 969       break;
 970     default:
 971       ShouldNotReachHere();
 972     }
 973 #endif
 974   }
 975   return calc_size;
 976 }
 977 
 978 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 979   // Get registers to move
 980   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 981   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 982   OptoReg::Name dst_second = ra_->get_reg_second(this );
 983   OptoReg::Name dst_first = ra_->get_reg_first(this );
 984 
 985   enum RC src_second_rc = rc_class(src_second);
 986   enum RC src_first_rc = rc_class(src_first);
 987   enum RC dst_second_rc = rc_class(dst_second);
 988   enum RC dst_first_rc = rc_class(dst_first);
 989 
 990   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 991 
 992   // Generate spill code!
 993   int size = 0;
 994 
 995   if( src_first == dst_first && src_second == dst_second )
 996     return size;            // Self copy, no move
 997 
 998   if (bottom_type()->isa_vect() != NULL) {
 999     uint ireg = ideal_reg();
1000     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1001     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
1002     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1003     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1004       // mem -> mem
1005       int src_offset = ra_->reg2offset(src_first);
1006       int dst_offset = ra_->reg2offset(dst_first);
1007       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
1008     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1009       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
1010     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1011       int stack_offset = ra_->reg2offset(dst_first);
1012       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
1013     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
1014       int stack_offset = ra_->reg2offset(src_first);
1015       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1016     } else {
1017       ShouldNotReachHere();
1018     }
1019   }
1020 
1021   // --------------------------------------
1022   // Check for mem-mem move.  push/pop to move.
1023   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1024     if( src_second == dst_first ) { // overlapping stack copy ranges
1025       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1026       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1027       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1028       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1029     }
1030     // move low bits
1031     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1032     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1033     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1034       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1035       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1036     }
1037     return size;
1038   }
1039 
1040   // --------------------------------------
1041   // Check for integer reg-reg copy
1042   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1043     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1044 
1045   // Check for integer store
1046   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1047     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1048 
1049   // Check for integer load
1050   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1051     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1052 
1053   // Check for integer reg-xmm reg copy
1054   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1055     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1056             "no 64 bit integer-float reg moves" );
1057     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1058   }
1059   // --------------------------------------
1060   // Check for float reg-reg copy
1061   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1062     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1063             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1064     if( cbuf ) {
1065 
1066       // Note the mucking with the register encode to compensate for the 0/1
1067       // indexing issue mentioned in a comment in the reg_def sections
1068       // for FPR registers many lines above here.
1069 
1070       if( src_first != FPR1L_num ) {
1071         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1072         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1073         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1074         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1075      } else {
1076         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1077         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1078      }
1079 #ifndef PRODUCT
1080     } else if( !do_size ) {
1081       if( size != 0 ) st->print("\n\t");
1082       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1083       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1084 #endif
1085     }
1086     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1087   }
1088 
1089   // Check for float store
1090   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1091     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1092   }
1093 
1094   // Check for float load
1095   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1096     int offset = ra_->reg2offset(src_first);
1097     const char *op_str;
1098     int op;
1099     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1100       op_str = "FLD_D";
1101       op = 0xDD;
1102     } else {                   // 32-bit load
1103       op_str = "FLD_S";
1104       op = 0xD9;
1105       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1106     }
1107     if( cbuf ) {
1108       emit_opcode  (*cbuf, op );
1109       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1110       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1111       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1112 #ifndef PRODUCT
1113     } else if( !do_size ) {
1114       if( size != 0 ) st->print("\n\t");
1115       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1116 #endif
1117     }
1118     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1119     return size + 3+offset_size+2;
1120   }
1121 
1122   // Check for xmm reg-reg copy
1123   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1124     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1125             (src_first+1 == src_second && dst_first+1 == dst_second),
1126             "no non-adjacent float-moves" );
1127     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1128   }
1129 
1130   // Check for xmm reg-integer reg copy
1131   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1132     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1133             "no 64 bit float-integer reg moves" );
1134     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1135   }
1136 
1137   // Check for xmm store
1138   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1139     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1140   }
1141 
1142   // Check for float xmm load
1143   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1144     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1145   }
1146 
1147   // Copy from float reg to xmm reg
1148   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1149     // copy to the top of stack from floating point reg
1150     // and use LEA to preserve flags
1151     if( cbuf ) {
1152       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1153       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1154       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1155       emit_d8(*cbuf,0xF8);
1156 #ifndef PRODUCT
1157     } else if( !do_size ) {
1158       if( size != 0 ) st->print("\n\t");
1159       st->print("LEA    ESP,[ESP-8]");
1160 #endif
1161     }
1162     size += 4;
1163 
1164     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1165 
1166     // Copy from the temp memory to the xmm reg.
1167     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1168 
1169     if( cbuf ) {
1170       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1171       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1172       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1173       emit_d8(*cbuf,0x08);
1174 #ifndef PRODUCT
1175     } else if( !do_size ) {
1176       if( size != 0 ) st->print("\n\t");
1177       st->print("LEA    ESP,[ESP+8]");
1178 #endif
1179     }
1180     size += 4;
1181     return size;
1182   }
1183 
1184   assert( size > 0, "missed a case" );
1185 
1186   // --------------------------------------------------------------------
1187   // Check for second bits still needing moving.
1188   if( src_second == dst_second )
1189     return size;               // Self copy; no move
1190   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1191 
1192   // Check for second word int-int move
1193   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1194     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1195 
1196   // Check for second word integer store
1197   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1198     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1199 
1200   // Check for second word integer load
1201   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1202     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1203 
1204 
1205   Unimplemented();
1206 }
1207 
1208 #ifndef PRODUCT
1209 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1210   implementation( NULL, ra_, false, st );
1211 }
1212 #endif
1213 
1214 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1215   implementation( &cbuf, ra_, false, NULL );
1216 }
1217 
1218 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1219   return implementation( NULL, ra_, true, NULL );
1220 }
1221 
1222 
1223 //=============================================================================
1224 #ifndef PRODUCT
1225 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1226   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1227   int reg = ra_->get_reg_first(this);
1228   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1229 }
1230 #endif
1231 
1232 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1233   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1234   int reg = ra_->get_encode(this);
1235   if( offset >= 128 ) {
1236     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1237     emit_rm(cbuf, 0x2, reg, 0x04);
1238     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1239     emit_d32(cbuf, offset);
1240   }
1241   else {
1242     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1243     emit_rm(cbuf, 0x1, reg, 0x04);
1244     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1245     emit_d8(cbuf, offset);
1246   }
1247 }
1248 
1249 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1250   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1251   if( offset >= 128 ) {
1252     return 7;
1253   }
1254   else {
1255     return 4;
1256   }
1257 }
1258 
1259 //=============================================================================
1260 #ifndef PRODUCT
1261 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1262   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1263   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1264   st->print_cr("\tNOP");
1265   st->print_cr("\tNOP");
1266   if( !OptoBreakpoint )
1267     st->print_cr("\tNOP");
1268 }
1269 #endif
1270 
1271 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1272   MacroAssembler masm(&cbuf);
1273 #ifdef ASSERT
1274   uint insts_size = cbuf.insts_size();
1275 #endif
1276   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1277   masm.jump_cc(Assembler::notEqual,
1278                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1279   /* WARNING these NOPs are critical so that verified entry point is properly
1280      aligned for patching by NativeJump::patch_verified_entry() */
1281   int nops_cnt = 2;
1282   if( !OptoBreakpoint ) // Leave space for int3
1283      nops_cnt += 1;
1284   masm.nop(nops_cnt);
1285 
1286   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1287 }
1288 
1289 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1290   return OptoBreakpoint ? 11 : 12;
1291 }
1292 
1293 
1294 //=============================================================================
1295 uint size_exception_handler() {
1296   // NativeCall instruction size is the same as NativeJump.
1297   // exception handler starts out as jump and can be patched to
1298   // a call be deoptimization.  (4932387)
1299   // Note that this value is also credited (in output.cpp) to
1300   // the size of the code section.
1301   return NativeJump::instruction_size;
1302 }
1303 
1304 // Emit exception handler code.  Stuff framesize into a register
1305 // and call a VM stub routine.
1306 int emit_exception_handler(CodeBuffer& cbuf) {
1307 
1308   // Note that the code buffer's insts_mark is always relative to insts.
1309   // That's why we must use the macroassembler to generate a handler.
1310   MacroAssembler _masm(&cbuf);
1311   address base =
1312   __ start_a_stub(size_exception_handler());
1313   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1314   int offset = __ offset();
1315   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1316   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1317   __ end_a_stub();
1318   return offset;
1319 }
1320 
1321 uint size_deopt_handler() {
1322   // NativeCall instruction size is the same as NativeJump.
1323   // exception handler starts out as jump and can be patched to
1324   // a call be deoptimization.  (4932387)
1325   // Note that this value is also credited (in output.cpp) to
1326   // the size of the code section.
1327   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1328 }
1329 
1330 // Emit deopt handler code.
1331 int emit_deopt_handler(CodeBuffer& cbuf) {
1332 
1333   // Note that the code buffer's insts_mark is always relative to insts.
1334   // That's why we must use the macroassembler to generate a handler.
1335   MacroAssembler _masm(&cbuf);
1336   address base =
1337   __ start_a_stub(size_exception_handler());
1338   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1339   int offset = __ offset();
1340   InternalAddress here(__ pc());
1341   __ pushptr(here.addr());
1342 
1343   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1344   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1345   __ end_a_stub();
1346   return offset;
1347 }
1348 
1349 int Matcher::regnum_to_fpu_offset(int regnum) {
1350   return regnum - 32; // The FP registers are in the second chunk
1351 }
1352 
1353 // This is UltraSparc specific, true just means we have fast l2f conversion
1354 const bool Matcher::convL2FSupported(void) {
1355   return true;
1356 }
1357 
1358 // Is this branch offset short enough that a short branch can be used?
1359 //
1360 // NOTE: If the platform does not provide any short branch variants, then
1361 //       this method should return false for offset 0.
1362 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1363   // The passed offset is relative to address of the branch.
1364   // On 86 a branch displacement is calculated relative to address
1365   // of a next instruction.
1366   offset -= br_size;
1367 
1368   // the short version of jmpConUCF2 contains multiple branches,
1369   // making the reach slightly less
1370   if (rule == jmpConUCF2_rule)
1371     return (-126 <= offset && offset <= 125);
1372   return (-128 <= offset && offset <= 127);
1373 }
1374 
1375 const bool Matcher::isSimpleConstant64(jlong value) {
1376   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1377   return false;
1378 }
1379 
1380 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1381 const bool Matcher::init_array_count_is_in_bytes = false;
1382 
1383 // Threshold size for cleararray.
1384 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1385 
1386 // Needs 2 CMOV's for longs.
1387 const int Matcher::long_cmove_cost() { return 1; }
1388 
1389 // No CMOVF/CMOVD with SSE/SSE2
1390 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1391 
1392 // Should the Matcher clone shifts on addressing modes, expecting them to
1393 // be subsumed into complex addressing expressions or compute them into
1394 // registers?  True for Intel but false for most RISCs
1395 const bool Matcher::clone_shift_expressions = true;
1396 
1397 // Do we need to mask the count passed to shift instructions or does
1398 // the cpu only look at the lower 5/6 bits anyway?
1399 const bool Matcher::need_masked_shift_count = false;
1400 
1401 bool Matcher::narrow_oop_use_complex_address() {
1402   ShouldNotCallThis();
1403   return true;
1404 }
1405 
1406 bool Matcher::narrow_klass_use_complex_address() {
1407   ShouldNotCallThis();
1408   return true;
1409 }
1410 
1411 
1412 // Is it better to copy float constants, or load them directly from memory?
1413 // Intel can load a float constant from a direct address, requiring no
1414 // extra registers.  Most RISCs will have to materialize an address into a
1415 // register first, so they would do better to copy the constant from stack.
1416 const bool Matcher::rematerialize_float_constants = true;
1417 
1418 // If CPU can load and store mis-aligned doubles directly then no fixup is
1419 // needed.  Else we split the double into 2 integer pieces and move it
1420 // piece-by-piece.  Only happens when passing doubles into C code as the
1421 // Java calling convention forces doubles to be aligned.
1422 const bool Matcher::misaligned_doubles_ok = true;
1423 
1424 
1425 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1426   // Get the memory operand from the node
1427   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1428   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1429   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1430   uint opcnt     = 1;                 // First operand
1431   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1432   while( idx >= skipped+num_edges ) {
1433     skipped += num_edges;
1434     opcnt++;                          // Bump operand count
1435     assert( opcnt < numopnds, "Accessing non-existent operand" );
1436     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1437   }
1438 
1439   MachOper *memory = node->_opnds[opcnt];
1440   MachOper *new_memory = NULL;
1441   switch (memory->opcode()) {
1442   case DIRECT:
1443   case INDOFFSET32X:
1444     // No transformation necessary.
1445     return;
1446   case INDIRECT:
1447     new_memory = new (C) indirect_win95_safeOper( );
1448     break;
1449   case INDOFFSET8:
1450     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1451     break;
1452   case INDOFFSET32:
1453     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1454     break;
1455   case INDINDEXOFFSET:
1456     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1457     break;
1458   case INDINDEXSCALE:
1459     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1460     break;
1461   case INDINDEXSCALEOFFSET:
1462     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1463     break;
1464   case LOAD_LONG_INDIRECT:
1465   case LOAD_LONG_INDOFFSET32:
1466     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1467     return;
1468   default:
1469     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1470     return;
1471   }
1472   node->_opnds[opcnt] = new_memory;
1473 }
1474 
1475 // Advertise here if the CPU requires explicit rounding operations
1476 // to implement the UseStrictFP mode.
1477 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1478 
1479 // Are floats conerted to double when stored to stack during deoptimization?
1480 // On x32 it is stored with convertion only when FPU is used for floats.
1481 bool Matcher::float_in_double() { return (UseSSE == 0); }
1482 
1483 // Do ints take an entire long register or just half?
1484 const bool Matcher::int_in_long = false;
1485 
1486 // Return whether or not this register is ever used as an argument.  This
1487 // function is used on startup to build the trampoline stubs in generateOptoStub.
1488 // Registers not mentioned will be killed by the VM call in the trampoline, and
1489 // arguments in those registers not be available to the callee.
1490 bool Matcher::can_be_java_arg( int reg ) {
1491   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1492   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1493   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1494   return false;
1495 }
1496 
1497 bool Matcher::is_spillable_arg( int reg ) {
1498   return can_be_java_arg(reg);
1499 }
1500 
1501 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1502   // Use hardware integer DIV instruction when
1503   // it is faster than a code which use multiply.
1504   // Only when constant divisor fits into 32 bit
1505   // (min_jint is excluded to get only correct
1506   // positive 32 bit values from negative).
1507   return VM_Version::has_fast_idiv() &&
1508          (divisor == (int)divisor && divisor != min_jint);
1509 }
1510 
1511 // Register for DIVI projection of divmodI
1512 RegMask Matcher::divI_proj_mask() {
1513   return EAX_REG_mask();
1514 }
1515 
1516 // Register for MODI projection of divmodI
1517 RegMask Matcher::modI_proj_mask() {
1518   return EDX_REG_mask();
1519 }
1520 
1521 // Register for DIVL projection of divmodL
1522 RegMask Matcher::divL_proj_mask() {
1523   ShouldNotReachHere();
1524   return RegMask();
1525 }
1526 
1527 // Register for MODL projection of divmodL
1528 RegMask Matcher::modL_proj_mask() {
1529   ShouldNotReachHere();
1530   return RegMask();
1531 }
1532 
1533 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1534   return EBP_REG_mask();
1535 }
1536 
1537 // Returns true if the high 32 bits of the value is known to be zero.
1538 bool is_operand_hi32_zero(Node* n) {
1539   int opc = n->Opcode();
1540   if (opc == Op_AndL) {
1541     Node* o2 = n->in(2);
1542     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1543       return true;
1544     }
1545   }
1546   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1547     return true;
1548   }
1549   return false;
1550 }
1551 
1552 %}
1553 
1554 //----------ENCODING BLOCK-----------------------------------------------------
1555 // This block specifies the encoding classes used by the compiler to output
1556 // byte streams.  Encoding classes generate functions which are called by
1557 // Machine Instruction Nodes in order to generate the bit encoding of the
1558 // instruction.  Operands specify their base encoding interface with the
1559 // interface keyword.  There are currently supported four interfaces,
1560 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1561 // operand to generate a function which returns its register number when
1562 // queried.   CONST_INTER causes an operand to generate a function which
1563 // returns the value of the constant when queried.  MEMORY_INTER causes an
1564 // operand to generate four functions which return the Base Register, the
1565 // Index Register, the Scale Value, and the Offset Value of the operand when
1566 // queried.  COND_INTER causes an operand to generate six functions which
1567 // return the encoding code (ie - encoding bits for the instruction)
1568 // associated with each basic boolean condition for a conditional instruction.
1569 // Instructions specify two basic values for encoding.  They use the
1570 // ins_encode keyword to specify their encoding class (which must be one of
1571 // the class names specified in the encoding block), and they use the
1572 // opcode keyword to specify, in order, their primary, secondary, and
1573 // tertiary opcode.  Only the opcode sections which a particular instruction
1574 // needs for encoding need to be specified.
1575 encode %{
1576   // Build emit functions for each basic byte or larger field in the intel
1577   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1578   // code in the enc_class source block.  Emit functions will live in the
1579   // main source block for now.  In future, we can generalize this by
1580   // adding a syntax that specifies the sizes of fields in an order,
1581   // so that the adlc can build the emit functions automagically
1582 
1583   // Emit primary opcode
1584   enc_class OpcP %{
1585     emit_opcode(cbuf, $primary);
1586   %}
1587 
1588   // Emit secondary opcode
1589   enc_class OpcS %{
1590     emit_opcode(cbuf, $secondary);
1591   %}
1592 
1593   // Emit opcode directly
1594   enc_class Opcode(immI d8) %{
1595     emit_opcode(cbuf, $d8$$constant);
1596   %}
1597 
1598   enc_class SizePrefix %{
1599     emit_opcode(cbuf,0x66);
1600   %}
1601 
1602   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1603     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1604   %}
1605 
1606   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1607     emit_opcode(cbuf,$opcode$$constant);
1608     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1609   %}
1610 
1611   enc_class mov_r32_imm0( rRegI dst ) %{
1612     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1613     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1614   %}
1615 
1616   enc_class cdq_enc %{
1617     // Full implementation of Java idiv and irem; checks for
1618     // special case as described in JVM spec., p.243 & p.271.
1619     //
1620     //         normal case                           special case
1621     //
1622     // input : rax,: dividend                         min_int
1623     //         reg: divisor                          -1
1624     //
1625     // output: rax,: quotient  (= rax, idiv reg)       min_int
1626     //         rdx: remainder (= rax, irem reg)       0
1627     //
1628     //  Code sequnce:
1629     //
1630     //  81 F8 00 00 00 80    cmp         rax,80000000h
1631     //  0F 85 0B 00 00 00    jne         normal_case
1632     //  33 D2                xor         rdx,edx
1633     //  83 F9 FF             cmp         rcx,0FFh
1634     //  0F 84 03 00 00 00    je          done
1635     //                  normal_case:
1636     //  99                   cdq
1637     //  F7 F9                idiv        rax,ecx
1638     //                  done:
1639     //
1640     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1641     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1643     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1644     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1645     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1646     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1647     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1648     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1649     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1650     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1651     // normal_case:
1652     emit_opcode(cbuf,0x99);                                         // cdq
1653     // idiv (note: must be emitted by the user of this rule)
1654     // normal:
1655   %}
1656 
1657   // Dense encoding for older common ops
1658   enc_class Opc_plus(immI opcode, rRegI reg) %{
1659     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1660   %}
1661 
1662 
1663   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1664   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1665     // Check for 8-bit immediate, and set sign extend bit in opcode
1666     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1667       emit_opcode(cbuf, $primary | 0x02);
1668     }
1669     else {                          // If 32-bit immediate
1670       emit_opcode(cbuf, $primary);
1671     }
1672   %}
1673 
1674   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1675     // Emit primary opcode and set sign-extend bit
1676     // Check for 8-bit immediate, and set sign extend bit in opcode
1677     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1678       emit_opcode(cbuf, $primary | 0x02);    }
1679     else {                          // If 32-bit immediate
1680       emit_opcode(cbuf, $primary);
1681     }
1682     // Emit r/m byte with secondary opcode, after primary opcode.
1683     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1684   %}
1685 
1686   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1687     // Check for 8-bit immediate, and set sign extend bit in opcode
1688     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1689       $$$emit8$imm$$constant;
1690     }
1691     else {                          // If 32-bit immediate
1692       // Output immediate
1693       $$$emit32$imm$$constant;
1694     }
1695   %}
1696 
1697   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1698     // Emit primary opcode and set sign-extend bit
1699     // Check for 8-bit immediate, and set sign extend bit in opcode
1700     int con = (int)$imm$$constant; // Throw away top bits
1701     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1702     // Emit r/m byte with secondary opcode, after primary opcode.
1703     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1704     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1705     else                               emit_d32(cbuf,con);
1706   %}
1707 
1708   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1709     // Emit primary opcode and set sign-extend bit
1710     // Check for 8-bit immediate, and set sign extend bit in opcode
1711     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1712     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1713     // Emit r/m byte with tertiary opcode, after primary opcode.
1714     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1715     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1716     else                               emit_d32(cbuf,con);
1717   %}
1718 
1719   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1720     emit_cc(cbuf, $secondary, $dst$$reg );
1721   %}
1722 
1723   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1724     int destlo = $dst$$reg;
1725     int desthi = HIGH_FROM_LOW(destlo);
1726     // bswap lo
1727     emit_opcode(cbuf, 0x0F);
1728     emit_cc(cbuf, 0xC8, destlo);
1729     // bswap hi
1730     emit_opcode(cbuf, 0x0F);
1731     emit_cc(cbuf, 0xC8, desthi);
1732     // xchg lo and hi
1733     emit_opcode(cbuf, 0x87);
1734     emit_rm(cbuf, 0x3, destlo, desthi);
1735   %}
1736 
1737   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1738     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1739   %}
1740 
1741   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1742     $$$emit8$primary;
1743     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1744   %}
1745 
1746   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1747     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1748     emit_d8(cbuf, op >> 8 );
1749     emit_d8(cbuf, op & 255);
1750   %}
1751 
1752   // emulate a CMOV with a conditional branch around a MOV
1753   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1754     // Invert sense of branch from sense of CMOV
1755     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1756     emit_d8( cbuf, $brOffs$$constant );
1757   %}
1758 
1759   enc_class enc_PartialSubtypeCheck( ) %{
1760     Register Redi = as_Register(EDI_enc); // result register
1761     Register Reax = as_Register(EAX_enc); // super class
1762     Register Recx = as_Register(ECX_enc); // killed
1763     Register Resi = as_Register(ESI_enc); // sub class
1764     Label miss;
1765 
1766     MacroAssembler _masm(&cbuf);
1767     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1768                                      NULL, &miss,
1769                                      /*set_cond_codes:*/ true);
1770     if ($primary) {
1771       __ xorptr(Redi, Redi);
1772     }
1773     __ bind(miss);
1774   %}
1775 
1776   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1777     MacroAssembler masm(&cbuf);
1778     int start = masm.offset();
1779     if (UseSSE >= 2) {
1780       if (VerifyFPU) {
1781         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1782       }
1783     } else {
1784       // External c_calling_convention expects the FPU stack to be 'clean'.
1785       // Compiled code leaves it dirty.  Do cleanup now.
1786       masm.empty_FPU_stack();
1787     }
1788     if (sizeof_FFree_Float_Stack_All == -1) {
1789       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1790     } else {
1791       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1792     }
1793   %}
1794 
1795   enc_class Verify_FPU_For_Leaf %{
1796     if( VerifyFPU ) {
1797       MacroAssembler masm(&cbuf);
1798       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1799     }
1800   %}
1801 
1802   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1803     // This is the instruction starting address for relocation info.
1804     cbuf.set_insts_mark();
1805     $$$emit8$primary;
1806     // CALL directly to the runtime
1807     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1808                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1809 
1810     if (UseSSE >= 2) {
1811       MacroAssembler _masm(&cbuf);
1812       BasicType rt = tf()->return_type();
1813 
1814       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1815         // A C runtime call where the return value is unused.  In SSE2+
1816         // mode the result needs to be removed from the FPU stack.  It's
1817         // likely that this function call could be removed by the
1818         // optimizer if the C function is a pure function.
1819         __ ffree(0);
1820       } else if (rt == T_FLOAT) {
1821         __ lea(rsp, Address(rsp, -4));
1822         __ fstp_s(Address(rsp, 0));
1823         __ movflt(xmm0, Address(rsp, 0));
1824         __ lea(rsp, Address(rsp,  4));
1825       } else if (rt == T_DOUBLE) {
1826         __ lea(rsp, Address(rsp, -8));
1827         __ fstp_d(Address(rsp, 0));
1828         __ movdbl(xmm0, Address(rsp, 0));
1829         __ lea(rsp, Address(rsp,  8));
1830       }
1831     }
1832   %}
1833 
1834 
1835   enc_class pre_call_resets %{
1836     // If method sets FPU control word restore it here
1837     debug_only(int off0 = cbuf.insts_size());
1838     if (ra_->C->in_24_bit_fp_mode()) {
1839       MacroAssembler _masm(&cbuf);
1840       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1841     }
1842     if (ra_->C->max_vector_size() > 16) {
1843       // Clear upper bits of YMM registers when current compiled code uses
1844       // wide vectors to avoid AVX <-> SSE transition penalty during call.
1845       MacroAssembler _masm(&cbuf);
1846       __ vzeroupper();
1847     }
1848     debug_only(int off1 = cbuf.insts_size());
1849     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
1850   %}
1851 
1852   enc_class post_call_FPU %{
1853     // If method sets FPU control word do it here also
1854     if (Compile::current()->in_24_bit_fp_mode()) {
1855       MacroAssembler masm(&cbuf);
1856       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1857     }
1858   %}
1859 
1860   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1861     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1862     // who we intended to call.
1863     cbuf.set_insts_mark();
1864     $$$emit8$primary;
1865     if (!_method) {
1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1867                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1868     } else if (_optimized_virtual) {
1869       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1870                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1871     } else {
1872       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1873                      static_call_Relocation::spec(), RELOC_IMM32 );
1874     }
1875     if (_method) {  // Emit stub for static call.
1876       CompiledStaticCall::emit_to_interp_stub(cbuf);
1877     }
1878   %}
1879 
1880   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1881     MacroAssembler _masm(&cbuf);
1882     __ ic_call((address)$meth$$method);
1883   %}
1884 
1885   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1886     int disp = in_bytes(Method::from_compiled_offset());
1887     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1888 
1889     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1890     cbuf.set_insts_mark();
1891     $$$emit8$primary;
1892     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1893     emit_d8(cbuf, disp);             // Displacement
1894 
1895   %}
1896 
1897 //   Following encoding is no longer used, but may be restored if calling
1898 //   convention changes significantly.
1899 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1900 //
1901 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1902 //     // int ic_reg     = Matcher::inline_cache_reg();
1903 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1904 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1905 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1906 //
1907 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1908 //     // // so we load it immediately before the call
1909 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1910 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1911 //
1912 //     // xor rbp,ebp
1913 //     emit_opcode(cbuf, 0x33);
1914 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1915 //
1916 //     // CALL to interpreter.
1917 //     cbuf.set_insts_mark();
1918 //     $$$emit8$primary;
1919 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1920 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1921 //   %}
1922 
1923   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1924     $$$emit8$primary;
1925     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1926     $$$emit8$shift$$constant;
1927   %}
1928 
1929   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1930     // Load immediate does not have a zero or sign extended version
1931     // for 8-bit immediates
1932     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1933     $$$emit32$src$$constant;
1934   %}
1935 
1936   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1937     // Load immediate does not have a zero or sign extended version
1938     // for 8-bit immediates
1939     emit_opcode(cbuf, $primary + $dst$$reg);
1940     $$$emit32$src$$constant;
1941   %}
1942 
1943   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1944     // Load immediate does not have a zero or sign extended version
1945     // for 8-bit immediates
1946     int dst_enc = $dst$$reg;
1947     int src_con = $src$$constant & 0x0FFFFFFFFL;
1948     if (src_con == 0) {
1949       // xor dst, dst
1950       emit_opcode(cbuf, 0x33);
1951       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1952     } else {
1953       emit_opcode(cbuf, $primary + dst_enc);
1954       emit_d32(cbuf, src_con);
1955     }
1956   %}
1957 
1958   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1959     // Load immediate does not have a zero or sign extended version
1960     // for 8-bit immediates
1961     int dst_enc = $dst$$reg + 2;
1962     int src_con = ((julong)($src$$constant)) >> 32;
1963     if (src_con == 0) {
1964       // xor dst, dst
1965       emit_opcode(cbuf, 0x33);
1966       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1967     } else {
1968       emit_opcode(cbuf, $primary + dst_enc);
1969       emit_d32(cbuf, src_con);
1970     }
1971   %}
1972 
1973 
1974   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1975   enc_class enc_Copy( rRegI dst, rRegI src ) %{
1976     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1977   %}
1978 
1979   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
1980     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1981   %}
1982 
1983   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1984     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1985   %}
1986 
1987   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
1988     $$$emit8$primary;
1989     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1990   %}
1991 
1992   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
1993     $$$emit8$secondary;
1994     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
1995   %}
1996 
1997   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
1998     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1999   %}
2000 
2001   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2002     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2003   %}
2004 
2005   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2006     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2007   %}
2008 
2009   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2010     // Output immediate
2011     $$$emit32$src$$constant;
2012   %}
2013 
2014   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2015     // Output Float immediate bits
2016     jfloat jf = $src$$constant;
2017     int    jf_as_bits = jint_cast( jf );
2018     emit_d32(cbuf, jf_as_bits);
2019   %}
2020 
2021   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2022     // Output Float immediate bits
2023     jfloat jf = $src$$constant;
2024     int    jf_as_bits = jint_cast( jf );
2025     emit_d32(cbuf, jf_as_bits);
2026   %}
2027 
2028   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2029     // Output immediate
2030     $$$emit16$src$$constant;
2031   %}
2032 
2033   enc_class Con_d32(immI src) %{
2034     emit_d32(cbuf,$src$$constant);
2035   %}
2036 
2037   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2038     // Output immediate memory reference
2039     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2040     emit_d32(cbuf, 0x00);
2041   %}
2042 
2043   enc_class lock_prefix( ) %{
2044     if( os::is_MP() )
2045       emit_opcode(cbuf,0xF0);         // [Lock]
2046   %}
2047 
2048   // Cmp-xchg long value.
2049   // Note: we need to swap rbx, and rcx before and after the
2050   //       cmpxchg8 instruction because the instruction uses
2051   //       rcx as the high order word of the new value to store but
2052   //       our register encoding uses rbx,.
2053   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2054 
2055     // XCHG  rbx,ecx
2056     emit_opcode(cbuf,0x87);
2057     emit_opcode(cbuf,0xD9);
2058     // [Lock]
2059     if( os::is_MP() )
2060       emit_opcode(cbuf,0xF0);
2061     // CMPXCHG8 [Eptr]
2062     emit_opcode(cbuf,0x0F);
2063     emit_opcode(cbuf,0xC7);
2064     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2065     // XCHG  rbx,ecx
2066     emit_opcode(cbuf,0x87);
2067     emit_opcode(cbuf,0xD9);
2068   %}
2069 
2070   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2071     // [Lock]
2072     if( os::is_MP() )
2073       emit_opcode(cbuf,0xF0);
2074 
2075     // CMPXCHG [Eptr]
2076     emit_opcode(cbuf,0x0F);
2077     emit_opcode(cbuf,0xB1);
2078     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2079   %}
2080 
2081   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2082     int res_encoding = $res$$reg;
2083 
2084     // MOV  res,0
2085     emit_opcode( cbuf, 0xB8 + res_encoding);
2086     emit_d32( cbuf, 0 );
2087     // JNE,s  fail
2088     emit_opcode(cbuf,0x75);
2089     emit_d8(cbuf, 5 );
2090     // MOV  res,1
2091     emit_opcode( cbuf, 0xB8 + res_encoding);
2092     emit_d32( cbuf, 1 );
2093     // fail:
2094   %}
2095 
2096   enc_class set_instruction_start( ) %{
2097     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2098   %}
2099 
2100   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2101     int reg_encoding = $ereg$$reg;
2102     int base  = $mem$$base;
2103     int index = $mem$$index;
2104     int scale = $mem$$scale;
2105     int displace = $mem$$disp;
2106     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2107     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2108   %}
2109 
2110   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2111     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2112     int base  = $mem$$base;
2113     int index = $mem$$index;
2114     int scale = $mem$$scale;
2115     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2116     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2117     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2118   %}
2119 
2120   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2121     int r1, r2;
2122     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2123     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2124     emit_opcode(cbuf,0x0F);
2125     emit_opcode(cbuf,$tertiary);
2126     emit_rm(cbuf, 0x3, r1, r2);
2127     emit_d8(cbuf,$cnt$$constant);
2128     emit_d8(cbuf,$primary);
2129     emit_rm(cbuf, 0x3, $secondary, r1);
2130     emit_d8(cbuf,$cnt$$constant);
2131   %}
2132 
2133   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2134     emit_opcode( cbuf, 0x8B ); // Move
2135     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2136     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2137       emit_d8(cbuf,$primary);
2138       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2139       emit_d8(cbuf,$cnt$$constant-32);
2140     }
2141     emit_d8(cbuf,$primary);
2142     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2143     emit_d8(cbuf,31);
2144   %}
2145 
2146   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2147     int r1, r2;
2148     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2149     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2150 
2151     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2152     emit_rm(cbuf, 0x3, r1, r2);
2153     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2154       emit_opcode(cbuf,$primary);
2155       emit_rm(cbuf, 0x3, $secondary, r1);
2156       emit_d8(cbuf,$cnt$$constant-32);
2157     }
2158     emit_opcode(cbuf,0x33);  // XOR r2,r2
2159     emit_rm(cbuf, 0x3, r2, r2);
2160   %}
2161 
2162   // Clone of RegMem but accepts an extra parameter to access each
2163   // half of a double in memory; it never needs relocation info.
2164   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2165     emit_opcode(cbuf,$opcode$$constant);
2166     int reg_encoding = $rm_reg$$reg;
2167     int base     = $mem$$base;
2168     int index    = $mem$$index;
2169     int scale    = $mem$$scale;
2170     int displace = $mem$$disp + $disp_for_half$$constant;
2171     relocInfo::relocType disp_reloc = relocInfo::none;
2172     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2173   %}
2174 
2175   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2176   //
2177   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2178   // and it never needs relocation information.
2179   // Frequently used to move data between FPU's Stack Top and memory.
2180   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2181     int rm_byte_opcode = $rm_opcode$$constant;
2182     int base     = $mem$$base;
2183     int index    = $mem$$index;
2184     int scale    = $mem$$scale;
2185     int displace = $mem$$disp;
2186     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2187     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2188   %}
2189 
2190   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2191     int rm_byte_opcode = $rm_opcode$$constant;
2192     int base     = $mem$$base;
2193     int index    = $mem$$index;
2194     int scale    = $mem$$scale;
2195     int displace = $mem$$disp;
2196     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2197     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2198   %}
2199 
2200   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2201     int reg_encoding = $dst$$reg;
2202     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2203     int index        = 0x04;            // 0x04 indicates no index
2204     int scale        = 0x00;            // 0x00 indicates no scale
2205     int displace     = $src1$$constant; // 0x00 indicates no displacement
2206     relocInfo::relocType disp_reloc = relocInfo::none;
2207     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2208   %}
2209 
2210   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2211     // Compare dst,src
2212     emit_opcode(cbuf,0x3B);
2213     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2214     // jmp dst < src around move
2215     emit_opcode(cbuf,0x7C);
2216     emit_d8(cbuf,2);
2217     // move dst,src
2218     emit_opcode(cbuf,0x8B);
2219     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2220   %}
2221 
2222   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2223     // Compare dst,src
2224     emit_opcode(cbuf,0x3B);
2225     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2226     // jmp dst > src around move
2227     emit_opcode(cbuf,0x7F);
2228     emit_d8(cbuf,2);
2229     // move dst,src
2230     emit_opcode(cbuf,0x8B);
2231     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2232   %}
2233 
2234   enc_class enc_FPR_store(memory mem, regDPR src) %{
2235     // If src is FPR1, we can just FST to store it.
2236     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2237     int reg_encoding = 0x2; // Just store
2238     int base  = $mem$$base;
2239     int index = $mem$$index;
2240     int scale = $mem$$scale;
2241     int displace = $mem$$disp;
2242     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2243     if( $src$$reg != FPR1L_enc ) {
2244       reg_encoding = 0x3;  // Store & pop
2245       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2246       emit_d8( cbuf, 0xC0-1+$src$$reg );
2247     }
2248     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2249     emit_opcode(cbuf,$primary);
2250     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2251   %}
2252 
2253   enc_class neg_reg(rRegI dst) %{
2254     // NEG $dst
2255     emit_opcode(cbuf,0xF7);
2256     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2257   %}
2258 
2259   enc_class setLT_reg(eCXRegI dst) %{
2260     // SETLT $dst
2261     emit_opcode(cbuf,0x0F);
2262     emit_opcode(cbuf,0x9C);
2263     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2264   %}
2265 
2266   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2267     int tmpReg = $tmp$$reg;
2268 
2269     // SUB $p,$q
2270     emit_opcode(cbuf,0x2B);
2271     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2272     // SBB $tmp,$tmp
2273     emit_opcode(cbuf,0x1B);
2274     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2275     // AND $tmp,$y
2276     emit_opcode(cbuf,0x23);
2277     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2278     // ADD $p,$tmp
2279     emit_opcode(cbuf,0x03);
2280     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2281   %}
2282 
2283   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2284     // TEST shift,32
2285     emit_opcode(cbuf,0xF7);
2286     emit_rm(cbuf, 0x3, 0, ECX_enc);
2287     emit_d32(cbuf,0x20);
2288     // JEQ,s small
2289     emit_opcode(cbuf, 0x74);
2290     emit_d8(cbuf, 0x04);
2291     // MOV    $dst.hi,$dst.lo
2292     emit_opcode( cbuf, 0x8B );
2293     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2294     // CLR    $dst.lo
2295     emit_opcode(cbuf, 0x33);
2296     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2297 // small:
2298     // SHLD   $dst.hi,$dst.lo,$shift
2299     emit_opcode(cbuf,0x0F);
2300     emit_opcode(cbuf,0xA5);
2301     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2302     // SHL    $dst.lo,$shift"
2303     emit_opcode(cbuf,0xD3);
2304     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2305   %}
2306 
2307   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2308     // TEST shift,32
2309     emit_opcode(cbuf,0xF7);
2310     emit_rm(cbuf, 0x3, 0, ECX_enc);
2311     emit_d32(cbuf,0x20);
2312     // JEQ,s small
2313     emit_opcode(cbuf, 0x74);
2314     emit_d8(cbuf, 0x04);
2315     // MOV    $dst.lo,$dst.hi
2316     emit_opcode( cbuf, 0x8B );
2317     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2318     // CLR    $dst.hi
2319     emit_opcode(cbuf, 0x33);
2320     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2321 // small:
2322     // SHRD   $dst.lo,$dst.hi,$shift
2323     emit_opcode(cbuf,0x0F);
2324     emit_opcode(cbuf,0xAD);
2325     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2326     // SHR    $dst.hi,$shift"
2327     emit_opcode(cbuf,0xD3);
2328     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2329   %}
2330 
2331   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2332     // TEST shift,32
2333     emit_opcode(cbuf,0xF7);
2334     emit_rm(cbuf, 0x3, 0, ECX_enc);
2335     emit_d32(cbuf,0x20);
2336     // JEQ,s small
2337     emit_opcode(cbuf, 0x74);
2338     emit_d8(cbuf, 0x05);
2339     // MOV    $dst.lo,$dst.hi
2340     emit_opcode( cbuf, 0x8B );
2341     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2342     // SAR    $dst.hi,31
2343     emit_opcode(cbuf, 0xC1);
2344     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2345     emit_d8(cbuf, 0x1F );
2346 // small:
2347     // SHRD   $dst.lo,$dst.hi,$shift
2348     emit_opcode(cbuf,0x0F);
2349     emit_opcode(cbuf,0xAD);
2350     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2351     // SAR    $dst.hi,$shift"
2352     emit_opcode(cbuf,0xD3);
2353     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2354   %}
2355 
2356 
2357   // ----------------- Encodings for floating point unit -----------------
2358   // May leave result in FPU-TOS or FPU reg depending on opcodes
2359   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2360     $$$emit8$primary;
2361     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2362   %}
2363 
2364   // Pop argument in FPR0 with FSTP ST(0)
2365   enc_class PopFPU() %{
2366     emit_opcode( cbuf, 0xDD );
2367     emit_d8( cbuf, 0xD8 );
2368   %}
2369 
2370   // !!!!! equivalent to Pop_Reg_F
2371   enc_class Pop_Reg_DPR( regDPR dst ) %{
2372     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2373     emit_d8( cbuf, 0xD8+$dst$$reg );
2374   %}
2375 
2376   enc_class Push_Reg_DPR( regDPR dst ) %{
2377     emit_opcode( cbuf, 0xD9 );
2378     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2379   %}
2380 
2381   enc_class strictfp_bias1( regDPR dst ) %{
2382     emit_opcode( cbuf, 0xDB );           // FLD m80real
2383     emit_opcode( cbuf, 0x2D );
2384     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2385     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2386     emit_opcode( cbuf, 0xC8+$dst$$reg );
2387   %}
2388 
2389   enc_class strictfp_bias2( regDPR dst ) %{
2390     emit_opcode( cbuf, 0xDB );           // FLD m80real
2391     emit_opcode( cbuf, 0x2D );
2392     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2393     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2394     emit_opcode( cbuf, 0xC8+$dst$$reg );
2395   %}
2396 
2397   // Special case for moving an integer register to a stack slot.
2398   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2399     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2400   %}
2401 
2402   // Special case for moving a register to a stack slot.
2403   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2404     // Opcode already emitted
2405     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2406     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2407     emit_d32(cbuf, $dst$$disp);   // Displacement
2408   %}
2409 
2410   // Push the integer in stackSlot 'src' onto FP-stack
2411   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2412     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2413   %}
2414 
2415   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2416   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2417     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2418   %}
2419 
2420   // Same as Pop_Mem_F except for opcode
2421   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2422   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2423     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2424   %}
2425 
2426   enc_class Pop_Reg_FPR( regFPR dst ) %{
2427     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2428     emit_d8( cbuf, 0xD8+$dst$$reg );
2429   %}
2430 
2431   enc_class Push_Reg_FPR( regFPR dst ) %{
2432     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2433     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2434   %}
2435 
2436   // Push FPU's float to a stack-slot, and pop FPU-stack
2437   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2438     int pop = 0x02;
2439     if ($src$$reg != FPR1L_enc) {
2440       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2441       emit_d8( cbuf, 0xC0-1+$src$$reg );
2442       pop = 0x03;
2443     }
2444     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2445   %}
2446 
2447   // Push FPU's double to a stack-slot, and pop FPU-stack
2448   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2449     int pop = 0x02;
2450     if ($src$$reg != FPR1L_enc) {
2451       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2452       emit_d8( cbuf, 0xC0-1+$src$$reg );
2453       pop = 0x03;
2454     }
2455     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2456   %}
2457 
2458   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2459   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2460     int pop = 0xD0 - 1; // -1 since we skip FLD
2461     if ($src$$reg != FPR1L_enc) {
2462       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2463       emit_d8( cbuf, 0xC0-1+$src$$reg );
2464       pop = 0xD8;
2465     }
2466     emit_opcode( cbuf, 0xDD );
2467     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2468   %}
2469 
2470 
2471   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2472     // load dst in FPR0
2473     emit_opcode( cbuf, 0xD9 );
2474     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2475     if ($src$$reg != FPR1L_enc) {
2476       // fincstp
2477       emit_opcode (cbuf, 0xD9);
2478       emit_opcode (cbuf, 0xF7);
2479       // swap src with FPR1:
2480       // FXCH FPR1 with src
2481       emit_opcode(cbuf, 0xD9);
2482       emit_d8(cbuf, 0xC8-1+$src$$reg );
2483       // fdecstp
2484       emit_opcode (cbuf, 0xD9);
2485       emit_opcode (cbuf, 0xF6);
2486     }
2487   %}
2488 
2489   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2490     MacroAssembler _masm(&cbuf);
2491     __ subptr(rsp, 8);
2492     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2493     __ fld_d(Address(rsp, 0));
2494     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2495     __ fld_d(Address(rsp, 0));
2496   %}
2497 
2498   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2499     MacroAssembler _masm(&cbuf);
2500     __ subptr(rsp, 4);
2501     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2502     __ fld_s(Address(rsp, 0));
2503     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2504     __ fld_s(Address(rsp, 0));
2505   %}
2506 
2507   enc_class Push_ResultD(regD dst) %{
2508     MacroAssembler _masm(&cbuf);
2509     __ fstp_d(Address(rsp, 0));
2510     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2511     __ addptr(rsp, 8);
2512   %}
2513 
2514   enc_class Push_ResultF(regF dst, immI d8) %{
2515     MacroAssembler _masm(&cbuf);
2516     __ fstp_s(Address(rsp, 0));
2517     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2518     __ addptr(rsp, $d8$$constant);
2519   %}
2520 
2521   enc_class Push_SrcD(regD src) %{
2522     MacroAssembler _masm(&cbuf);
2523     __ subptr(rsp, 8);
2524     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2525     __ fld_d(Address(rsp, 0));
2526   %}
2527 
2528   enc_class push_stack_temp_qword() %{
2529     MacroAssembler _masm(&cbuf);
2530     __ subptr(rsp, 8);
2531   %}
2532 
2533   enc_class pop_stack_temp_qword() %{
2534     MacroAssembler _masm(&cbuf);
2535     __ addptr(rsp, 8);
2536   %}
2537 
2538   enc_class push_xmm_to_fpr1(regD src) %{
2539     MacroAssembler _masm(&cbuf);
2540     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2541     __ fld_d(Address(rsp, 0));
2542   %}
2543 
2544   enc_class Push_Result_Mod_DPR( regDPR src) %{
2545     if ($src$$reg != FPR1L_enc) {
2546       // fincstp
2547       emit_opcode (cbuf, 0xD9);
2548       emit_opcode (cbuf, 0xF7);
2549       // FXCH FPR1 with src
2550       emit_opcode(cbuf, 0xD9);
2551       emit_d8(cbuf, 0xC8-1+$src$$reg );
2552       // fdecstp
2553       emit_opcode (cbuf, 0xD9);
2554       emit_opcode (cbuf, 0xF6);
2555     }
2556     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2557     // // FSTP   FPR$dst$$reg
2558     // emit_opcode( cbuf, 0xDD );
2559     // emit_d8( cbuf, 0xD8+$dst$$reg );
2560   %}
2561 
2562   enc_class fnstsw_sahf_skip_parity() %{
2563     // fnstsw ax
2564     emit_opcode( cbuf, 0xDF );
2565     emit_opcode( cbuf, 0xE0 );
2566     // sahf
2567     emit_opcode( cbuf, 0x9E );
2568     // jnp  ::skip
2569     emit_opcode( cbuf, 0x7B );
2570     emit_opcode( cbuf, 0x05 );
2571   %}
2572 
2573   enc_class emitModDPR() %{
2574     // fprem must be iterative
2575     // :: loop
2576     // fprem
2577     emit_opcode( cbuf, 0xD9 );
2578     emit_opcode( cbuf, 0xF8 );
2579     // wait
2580     emit_opcode( cbuf, 0x9b );
2581     // fnstsw ax
2582     emit_opcode( cbuf, 0xDF );
2583     emit_opcode( cbuf, 0xE0 );
2584     // sahf
2585     emit_opcode( cbuf, 0x9E );
2586     // jp  ::loop
2587     emit_opcode( cbuf, 0x0F );
2588     emit_opcode( cbuf, 0x8A );
2589     emit_opcode( cbuf, 0xF4 );
2590     emit_opcode( cbuf, 0xFF );
2591     emit_opcode( cbuf, 0xFF );
2592     emit_opcode( cbuf, 0xFF );
2593   %}
2594 
2595   enc_class fpu_flags() %{
2596     // fnstsw_ax
2597     emit_opcode( cbuf, 0xDF);
2598     emit_opcode( cbuf, 0xE0);
2599     // test ax,0x0400
2600     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2601     emit_opcode( cbuf, 0xA9 );
2602     emit_d16   ( cbuf, 0x0400 );
2603     // // // This sequence works, but stalls for 12-16 cycles on PPro
2604     // // test rax,0x0400
2605     // emit_opcode( cbuf, 0xA9 );
2606     // emit_d32   ( cbuf, 0x00000400 );
2607     //
2608     // jz exit (no unordered comparison)
2609     emit_opcode( cbuf, 0x74 );
2610     emit_d8    ( cbuf, 0x02 );
2611     // mov ah,1 - treat as LT case (set carry flag)
2612     emit_opcode( cbuf, 0xB4 );
2613     emit_d8    ( cbuf, 0x01 );
2614     // sahf
2615     emit_opcode( cbuf, 0x9E);
2616   %}
2617 
2618   enc_class cmpF_P6_fixup() %{
2619     // Fixup the integer flags in case comparison involved a NaN
2620     //
2621     // JNP exit (no unordered comparison, P-flag is set by NaN)
2622     emit_opcode( cbuf, 0x7B );
2623     emit_d8    ( cbuf, 0x03 );
2624     // MOV AH,1 - treat as LT case (set carry flag)
2625     emit_opcode( cbuf, 0xB4 );
2626     emit_d8    ( cbuf, 0x01 );
2627     // SAHF
2628     emit_opcode( cbuf, 0x9E);
2629     // NOP     // target for branch to avoid branch to branch
2630     emit_opcode( cbuf, 0x90);
2631   %}
2632 
2633 //     fnstsw_ax();
2634 //     sahf();
2635 //     movl(dst, nan_result);
2636 //     jcc(Assembler::parity, exit);
2637 //     movl(dst, less_result);
2638 //     jcc(Assembler::below, exit);
2639 //     movl(dst, equal_result);
2640 //     jcc(Assembler::equal, exit);
2641 //     movl(dst, greater_result);
2642 
2643 // less_result     =  1;
2644 // greater_result  = -1;
2645 // equal_result    = 0;
2646 // nan_result      = -1;
2647 
2648   enc_class CmpF_Result(rRegI dst) %{
2649     // fnstsw_ax();
2650     emit_opcode( cbuf, 0xDF);
2651     emit_opcode( cbuf, 0xE0);
2652     // sahf
2653     emit_opcode( cbuf, 0x9E);
2654     // movl(dst, nan_result);
2655     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2656     emit_d32( cbuf, -1 );
2657     // jcc(Assembler::parity, exit);
2658     emit_opcode( cbuf, 0x7A );
2659     emit_d8    ( cbuf, 0x13 );
2660     // movl(dst, less_result);
2661     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2662     emit_d32( cbuf, -1 );
2663     // jcc(Assembler::below, exit);
2664     emit_opcode( cbuf, 0x72 );
2665     emit_d8    ( cbuf, 0x0C );
2666     // movl(dst, equal_result);
2667     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2668     emit_d32( cbuf, 0 );
2669     // jcc(Assembler::equal, exit);
2670     emit_opcode( cbuf, 0x74 );
2671     emit_d8    ( cbuf, 0x05 );
2672     // movl(dst, greater_result);
2673     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2674     emit_d32( cbuf, 1 );
2675   %}
2676 
2677 
2678   // Compare the longs and set flags
2679   // BROKEN!  Do Not use as-is
2680   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2681     // CMP    $src1.hi,$src2.hi
2682     emit_opcode( cbuf, 0x3B );
2683     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2684     // JNE,s  done
2685     emit_opcode(cbuf,0x75);
2686     emit_d8(cbuf, 2 );
2687     // CMP    $src1.lo,$src2.lo
2688     emit_opcode( cbuf, 0x3B );
2689     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2690 // done:
2691   %}
2692 
2693   enc_class convert_int_long( regL dst, rRegI src ) %{
2694     // mov $dst.lo,$src
2695     int dst_encoding = $dst$$reg;
2696     int src_encoding = $src$$reg;
2697     encode_Copy( cbuf, dst_encoding  , src_encoding );
2698     // mov $dst.hi,$src
2699     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2700     // sar $dst.hi,31
2701     emit_opcode( cbuf, 0xC1 );
2702     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2703     emit_d8(cbuf, 0x1F );
2704   %}
2705 
2706   enc_class convert_long_double( eRegL src ) %{
2707     // push $src.hi
2708     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2709     // push $src.lo
2710     emit_opcode(cbuf, 0x50+$src$$reg  );
2711     // fild 64-bits at [SP]
2712     emit_opcode(cbuf,0xdf);
2713     emit_d8(cbuf, 0x6C);
2714     emit_d8(cbuf, 0x24);
2715     emit_d8(cbuf, 0x00);
2716     // pop stack
2717     emit_opcode(cbuf, 0x83); // add  SP, #8
2718     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2719     emit_d8(cbuf, 0x8);
2720   %}
2721 
2722   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2723     // IMUL   EDX:EAX,$src1
2724     emit_opcode( cbuf, 0xF7 );
2725     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2726     // SAR    EDX,$cnt-32
2727     int shift_count = ((int)$cnt$$constant) - 32;
2728     if (shift_count > 0) {
2729       emit_opcode(cbuf, 0xC1);
2730       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2731       emit_d8(cbuf, shift_count);
2732     }
2733   %}
2734 
2735   // this version doesn't have add sp, 8
2736   enc_class convert_long_double2( eRegL src ) %{
2737     // push $src.hi
2738     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2739     // push $src.lo
2740     emit_opcode(cbuf, 0x50+$src$$reg  );
2741     // fild 64-bits at [SP]
2742     emit_opcode(cbuf,0xdf);
2743     emit_d8(cbuf, 0x6C);
2744     emit_d8(cbuf, 0x24);
2745     emit_d8(cbuf, 0x00);
2746   %}
2747 
2748   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2749     // Basic idea: long = (long)int * (long)int
2750     // IMUL EDX:EAX, src
2751     emit_opcode( cbuf, 0xF7 );
2752     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2753   %}
2754 
2755   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2756     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2757     // MUL EDX:EAX, src
2758     emit_opcode( cbuf, 0xF7 );
2759     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2760   %}
2761 
2762   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2763     // Basic idea: lo(result) = lo(x_lo * y_lo)
2764     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2765     // MOV    $tmp,$src.lo
2766     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2767     // IMUL   $tmp,EDX
2768     emit_opcode( cbuf, 0x0F );
2769     emit_opcode( cbuf, 0xAF );
2770     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2771     // MOV    EDX,$src.hi
2772     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2773     // IMUL   EDX,EAX
2774     emit_opcode( cbuf, 0x0F );
2775     emit_opcode( cbuf, 0xAF );
2776     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2777     // ADD    $tmp,EDX
2778     emit_opcode( cbuf, 0x03 );
2779     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2780     // MUL   EDX:EAX,$src.lo
2781     emit_opcode( cbuf, 0xF7 );
2782     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2783     // ADD    EDX,ESI
2784     emit_opcode( cbuf, 0x03 );
2785     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2786   %}
2787 
2788   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2789     // Basic idea: lo(result) = lo(src * y_lo)
2790     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2791     // IMUL   $tmp,EDX,$src
2792     emit_opcode( cbuf, 0x6B );
2793     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2794     emit_d8( cbuf, (int)$src$$constant );
2795     // MOV    EDX,$src
2796     emit_opcode(cbuf, 0xB8 + EDX_enc);
2797     emit_d32( cbuf, (int)$src$$constant );
2798     // MUL   EDX:EAX,EDX
2799     emit_opcode( cbuf, 0xF7 );
2800     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2801     // ADD    EDX,ESI
2802     emit_opcode( cbuf, 0x03 );
2803     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2804   %}
2805 
2806   enc_class long_div( eRegL src1, eRegL src2 ) %{
2807     // PUSH src1.hi
2808     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2809     // PUSH src1.lo
2810     emit_opcode(cbuf,               0x50+$src1$$reg  );
2811     // PUSH src2.hi
2812     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2813     // PUSH src2.lo
2814     emit_opcode(cbuf,               0x50+$src2$$reg  );
2815     // CALL directly to the runtime
2816     cbuf.set_insts_mark();
2817     emit_opcode(cbuf,0xE8);       // Call into runtime
2818     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2819     // Restore stack
2820     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2821     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2822     emit_d8(cbuf, 4*4);
2823   %}
2824 
2825   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2826     // PUSH src1.hi
2827     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2828     // PUSH src1.lo
2829     emit_opcode(cbuf,               0x50+$src1$$reg  );
2830     // PUSH src2.hi
2831     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2832     // PUSH src2.lo
2833     emit_opcode(cbuf,               0x50+$src2$$reg  );
2834     // CALL directly to the runtime
2835     cbuf.set_insts_mark();
2836     emit_opcode(cbuf,0xE8);       // Call into runtime
2837     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2838     // Restore stack
2839     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2840     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2841     emit_d8(cbuf, 4*4);
2842   %}
2843 
2844   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2845     // MOV   $tmp,$src.lo
2846     emit_opcode(cbuf, 0x8B);
2847     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2848     // OR    $tmp,$src.hi
2849     emit_opcode(cbuf, 0x0B);
2850     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2851   %}
2852 
2853   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2854     // CMP    $src1.lo,$src2.lo
2855     emit_opcode( cbuf, 0x3B );
2856     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2857     // JNE,s  skip
2858     emit_cc(cbuf, 0x70, 0x5);
2859     emit_d8(cbuf,2);
2860     // CMP    $src1.hi,$src2.hi
2861     emit_opcode( cbuf, 0x3B );
2862     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2863   %}
2864 
2865   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2866     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2867     emit_opcode( cbuf, 0x3B );
2868     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2869     // MOV    $tmp,$src1.hi
2870     emit_opcode( cbuf, 0x8B );
2871     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2872     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2873     emit_opcode( cbuf, 0x1B );
2874     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2875   %}
2876 
2877   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2878     // XOR    $tmp,$tmp
2879     emit_opcode(cbuf,0x33);  // XOR
2880     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2881     // CMP    $tmp,$src.lo
2882     emit_opcode( cbuf, 0x3B );
2883     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2884     // SBB    $tmp,$src.hi
2885     emit_opcode( cbuf, 0x1B );
2886     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2887   %}
2888 
2889  // Sniff, sniff... smells like Gnu Superoptimizer
2890   enc_class neg_long( eRegL dst ) %{
2891     emit_opcode(cbuf,0xF7);    // NEG hi
2892     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2893     emit_opcode(cbuf,0xF7);    // NEG lo
2894     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2895     emit_opcode(cbuf,0x83);    // SBB hi,0
2896     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2897     emit_d8    (cbuf,0 );
2898   %}
2899 
2900 
2901   // Because the transitions from emitted code to the runtime
2902   // monitorenter/exit helper stubs are so slow it's critical that
2903   // we inline both the stack-locking fast-path and the inflated fast path.
2904   //
2905   // See also: cmpFastLock and cmpFastUnlock.
2906   //
2907   // What follows is a specialized inline transliteration of the code
2908   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
2909   // another option would be to emit TrySlowEnter and TrySlowExit methods
2910   // at startup-time.  These methods would accept arguments as
2911   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
2912   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
2913   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
2914   // In practice, however, the # of lock sites is bounded and is usually small.
2915   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
2916   // if the processor uses simple bimodal branch predictors keyed by EIP
2917   // Since the helper routines would be called from multiple synchronization
2918   // sites.
2919   //
2920   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
2921   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
2922   // to those specialized methods.  That'd give us a mostly platform-independent
2923   // implementation that the JITs could optimize and inline at their pleasure.
2924   // Done correctly, the only time we'd need to cross to native could would be
2925   // to park() or unpark() threads.  We'd also need a few more unsafe operators
2926   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
2927   // (b) explicit barriers or fence operations.
2928   //
2929   // TODO:
2930   //
2931   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
2932   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
2933   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
2934   //    the lock operators would typically be faster than reifying Self.
2935   //
2936   // *  Ideally I'd define the primitives as:
2937   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
2938   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
2939   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
2940   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
2941   //    Furthermore the register assignments are overconstrained, possibly resulting in
2942   //    sub-optimal code near the synchronization site.
2943   //
2944   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
2945   //    Alternately, use a better sp-proximity test.
2946   //
2947   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
2948   //    Either one is sufficient to uniquely identify a thread.
2949   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
2950   //
2951   // *  Intrinsify notify() and notifyAll() for the common cases where the
2952   //    object is locked by the calling thread but the waitlist is empty.
2953   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
2954   //
2955   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
2956   //    But beware of excessive branch density on AMD Opterons.
2957   //
2958   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
2959   //    or failure of the fast-path.  If the fast-path fails then we pass
2960   //    control to the slow-path, typically in C.  In Fast_Lock and
2961   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
2962   //    will emit a conditional branch immediately after the node.
2963   //    So we have branches to branches and lots of ICC.ZF games.
2964   //    Instead, it might be better to have C2 pass a "FailureLabel"
2965   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
2966   //    will drop through the node.  ICC.ZF is undefined at exit.
2967   //    In the case of failure, the node will branch directly to the
2968   //    FailureLabel
2969 
2970 
2971   // obj: object to lock
2972   // box: on-stack box address (displaced header location) - KILLED
2973   // rax,: tmp -- KILLED
2974   // scr: tmp -- KILLED
2975   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
2976 
2977     Register objReg = as_Register($obj$$reg);
2978     Register boxReg = as_Register($box$$reg);
2979     Register tmpReg = as_Register($tmp$$reg);
2980     Register scrReg = as_Register($scr$$reg);
2981 
2982     // Ensure the register assignents are disjoint
2983     guarantee (objReg != boxReg, "") ;
2984     guarantee (objReg != tmpReg, "") ;
2985     guarantee (objReg != scrReg, "") ;
2986     guarantee (boxReg != tmpReg, "") ;
2987     guarantee (boxReg != scrReg, "") ;
2988     guarantee (tmpReg == as_Register(EAX_enc), "") ;
2989 
2990     MacroAssembler masm(&cbuf);
2991 
2992     if (_counters != NULL) {
2993       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
2994     }
2995     if (EmitSync & 1) {
2996         // set box->dhw = unused_mark (3)
2997         // Force all sync thru slow-path: slow_enter() and slow_exit() 
2998         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
2999         masm.cmpptr (rsp, (int32_t)0) ;                        
3000     } else 
3001     if (EmitSync & 2) { 
3002         Label DONE_LABEL ;           
3003         if (UseBiasedLocking) {
3004            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3005            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3006         }
3007 
3008         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3009         masm.orptr (tmpReg, 0x1);
3010         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3011         if (os::is_MP()) { masm.lock();  }
3012         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3013         masm.jcc(Assembler::equal, DONE_LABEL);
3014         // Recursive locking
3015         masm.subptr(tmpReg, rsp);
3016         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3017         masm.movptr(Address(boxReg, 0), tmpReg);
3018         masm.bind(DONE_LABEL) ; 
3019     } else {  
3020       // Possible cases that we'll encounter in fast_lock 
3021       // ------------------------------------------------
3022       // * Inflated
3023       //    -- unlocked
3024       //    -- Locked
3025       //       = by self
3026       //       = by other
3027       // * biased
3028       //    -- by Self
3029       //    -- by other
3030       // * neutral
3031       // * stack-locked
3032       //    -- by self
3033       //       = sp-proximity test hits
3034       //       = sp-proximity test generates false-negative
3035       //    -- by other
3036       //
3037 
3038       Label IsInflated, DONE_LABEL, PopDone ;
3039 
3040       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3041       // order to reduce the number of conditional branches in the most common cases.
3042       // Beware -- there's a subtle invariant that fetch of the markword
3043       // at [FETCH], below, will never observe a biased encoding (*101b).
3044       // If this invariant is not held we risk exclusion (safety) failure.
3045       if (UseBiasedLocking && !UseOptoBiasInlining) {
3046         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3047       }
3048 
3049       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3050       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3051       masm.jccb  (Assembler::notZero, IsInflated) ;
3052 
3053       // Attempt stack-locking ...
3054       masm.orptr (tmpReg, 0x1);
3055       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3056       if (os::is_MP()) { masm.lock();  }
3057       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3058       if (_counters != NULL) {
3059         masm.cond_inc32(Assembler::equal,
3060                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3061       }
3062       masm.jccb (Assembler::equal, DONE_LABEL);
3063 
3064       // Recursive locking
3065       masm.subptr(tmpReg, rsp);
3066       masm.andptr(tmpReg, 0xFFFFF003 );
3067       masm.movptr(Address(boxReg, 0), tmpReg);
3068       if (_counters != NULL) {
3069         masm.cond_inc32(Assembler::equal,
3070                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3071       }
3072       masm.jmp  (DONE_LABEL) ;
3073 
3074       masm.bind (IsInflated) ;
3075 
3076       // The object is inflated.
3077       //
3078       // TODO-FIXME: eliminate the ugly use of manifest constants:
3079       //   Use markOopDesc::monitor_value instead of "2".
3080       //   use markOop::unused_mark() instead of "3".
3081       // The tmpReg value is an objectMonitor reference ORed with
3082       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3083       // objectmonitor pointer by masking off the "2" bit or we can just
3084       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3085       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3086       //
3087       // I use the latter as it avoids AGI stalls.
3088       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3089       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3090       //
3091       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3092 
3093       // boxReg refers to the on-stack BasicLock in the current frame.
3094       // We'd like to write:
3095       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3096       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3097       // additional latency as we have another ST in the store buffer that must drain.
3098 
3099       if (EmitSync & 8192) { 
3100          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3101          masm.get_thread (scrReg) ; 
3102          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3103          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3104          if (os::is_MP()) { masm.lock(); } 
3105          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3106       } else 
3107       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3108          masm.movptr(scrReg, boxReg) ; 
3109          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3110 
3111          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3112          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3113             // prefetchw [eax + Offset(_owner)-2]
3114             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3115          }
3116 
3117          if ((EmitSync & 64) == 0) {
3118            // Optimistic form: consider XORL tmpReg,tmpReg
3119            masm.movptr(tmpReg, NULL_WORD) ; 
3120          } else { 
3121            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3122            // Test-And-CAS instead of CAS
3123            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3124            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3125            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3126          }
3127 
3128          // Appears unlocked - try to swing _owner from null to non-null.
3129          // Ideally, I'd manifest "Self" with get_thread and then attempt
3130          // to CAS the register containing Self into m->Owner.
3131          // But we don't have enough registers, so instead we can either try to CAS
3132          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3133          // we later store "Self" into m->Owner.  Transiently storing a stack address
3134          // (rsp or the address of the box) into  m->owner is harmless.
3135          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3136          if (os::is_MP()) { masm.lock();  }
3137          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3138          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3139          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3140          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3141          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3142          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3143                        
3144          // If the CAS fails we can either retry or pass control to the slow-path.  
3145          // We use the latter tactic.  
3146          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3147          // If the CAS was successful ...
3148          //   Self has acquired the lock
3149          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3150          // Intentional fall-through into DONE_LABEL ...
3151       } else {
3152          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3153          masm.movptr(boxReg, tmpReg) ; 
3154 
3155          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3156          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3157             // prefetchw [eax + Offset(_owner)-2]
3158             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3159          }
3160 
3161          if ((EmitSync & 64) == 0) {
3162            // Optimistic form
3163            masm.xorptr  (tmpReg, tmpReg) ; 
3164          } else { 
3165            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3166            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3167            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3168            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3169          }
3170 
3171          // Appears unlocked - try to swing _owner from null to non-null.
3172          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3173          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3174          masm.get_thread (scrReg) ;
3175          if (os::is_MP()) { masm.lock(); }
3176          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3177 
3178          // If the CAS fails we can either retry or pass control to the slow-path.
3179          // We use the latter tactic.
3180          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3181          // If the CAS was successful ...
3182          //   Self has acquired the lock
3183          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3184          // Intentional fall-through into DONE_LABEL ...
3185       }
3186 
3187       // DONE_LABEL is a hot target - we'd really like to place it at the
3188       // start of cache line by padding with NOPs.
3189       // See the AMD and Intel software optimization manuals for the
3190       // most efficient "long" NOP encodings.
3191       // Unfortunately none of our alignment mechanisms suffice.
3192       masm.bind(DONE_LABEL);
3193 
3194       // Avoid branch-to-branch on AMD processors
3195       // This appears to be superstition.
3196       if (EmitSync & 32) masm.nop() ;
3197 
3198 
3199       // At DONE_LABEL the icc ZFlag is set as follows ...
3200       // Fast_Unlock uses the same protocol.
3201       // ZFlag == 1 -> Success
3202       // ZFlag == 0 -> Failure - force control through the slow-path
3203     }
3204   %}
3205 
3206   // obj: object to unlock
3207   // box: box address (displaced header location), killed.  Must be EAX.
3208   // rbx,: killed tmp; cannot be obj nor box.
3209   //
3210   // Some commentary on balanced locking:
3211   //
3212   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3213   // Methods that don't have provably balanced locking are forced to run in the
3214   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3215   // The interpreter provides two properties:
3216   // I1:  At return-time the interpreter automatically and quietly unlocks any
3217   //      objects acquired the current activation (frame).  Recall that the
3218   //      interpreter maintains an on-stack list of locks currently held by
3219   //      a frame.
3220   // I2:  If a method attempts to unlock an object that is not held by the
3221   //      the frame the interpreter throws IMSX.
3222   //
3223   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3224   // B() doesn't have provably balanced locking so it runs in the interpreter.
3225   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3226   // is still locked by A().
3227   //
3228   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3229   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3230   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3231   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3232 
3233   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3234 
3235     Register objReg = as_Register($obj$$reg);
3236     Register boxReg = as_Register($box$$reg);
3237     Register tmpReg = as_Register($tmp$$reg);
3238 
3239     guarantee (objReg != boxReg, "") ;
3240     guarantee (objReg != tmpReg, "") ;
3241     guarantee (boxReg != tmpReg, "") ;
3242     guarantee (boxReg == as_Register(EAX_enc), "") ;
3243     MacroAssembler masm(&cbuf);
3244 
3245     if (EmitSync & 4) {
3246       // Disable - inhibit all inlining.  Force control through the slow-path
3247       masm.cmpptr (rsp, 0) ; 
3248     } else 
3249     if (EmitSync & 8) {
3250       Label DONE_LABEL ;
3251       if (UseBiasedLocking) {
3252          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3253       }
3254       // classic stack-locking code ...
3255       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3256       masm.testptr(tmpReg, tmpReg) ;
3257       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3258       if (os::is_MP()) { masm.lock(); }
3259       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3260       masm.bind(DONE_LABEL);
3261     } else {
3262       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3263 
3264       // Critically, the biased locking test must have precedence over
3265       // and appear before the (box->dhw == 0) recursive stack-lock test.
3266       if (UseBiasedLocking && !UseOptoBiasInlining) {
3267          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3268       }
3269       
3270       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3271       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3272       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3273 
3274       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3275       masm.jccb  (Assembler::zero, Stacked) ;
3276 
3277       masm.bind  (Inflated) ;
3278       // It's inflated.
3279       // Despite our balanced locking property we still check that m->_owner == Self
3280       // as java routines or native JNI code called by this thread might
3281       // have released the lock.
3282       // Refer to the comments in synchronizer.cpp for how we might encode extra
3283       // state in _succ so we can avoid fetching EntryList|cxq.
3284       //
3285       // I'd like to add more cases in fast_lock() and fast_unlock() --
3286       // such as recursive enter and exit -- but we have to be wary of
3287       // I$ bloat, T$ effects and BP$ effects.
3288       //
3289       // If there's no contention try a 1-0 exit.  That is, exit without
3290       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3291       // we detect and recover from the race that the 1-0 exit admits.
3292       //
3293       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3294       // before it STs null into _owner, releasing the lock.  Updates
3295       // to data protected by the critical section must be visible before
3296       // we drop the lock (and thus before any other thread could acquire
3297       // the lock and observe the fields protected by the lock).
3298       // IA32's memory-model is SPO, so STs are ordered with respect to
3299       // each other and there's no need for an explicit barrier (fence).
3300       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3301 
3302       masm.get_thread (boxReg) ;
3303       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3304         // prefetchw [ebx + Offset(_owner)-2]
3305         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3306       }
3307 
3308       // Note that we could employ various encoding schemes to reduce
3309       // the number of loads below (currently 4) to just 2 or 3.
3310       // Refer to the comments in synchronizer.cpp.
3311       // In practice the chain of fetches doesn't seem to impact performance, however.
3312       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3313          // Attempt to reduce branch density - AMD's branch predictor.
3314          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3315          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3316          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3317          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3318          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3319          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3320          masm.jmpb  (DONE_LABEL) ; 
3321       } else { 
3322          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3323          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3324          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3325          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3326          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3327          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3328          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3329          masm.jmpb  (DONE_LABEL) ; 
3330       }
3331 
3332       // The Following code fragment (EmitSync & 65536) improves the performance of
3333       // contended applications and contended synchronization microbenchmarks.
3334       // Unfortunately the emission of the code - even though not executed - causes regressions
3335       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3336       // with an equal number of never-executed NOPs results in the same regression.
3337       // We leave it off by default.
3338 
3339       if ((EmitSync & 65536) != 0) {
3340          Label LSuccess, LGoSlowPath ;
3341 
3342          masm.bind  (CheckSucc) ;
3343 
3344          // Optional pre-test ... it's safe to elide this
3345          if ((EmitSync & 16) == 0) { 
3346             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3347             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3348          }
3349 
3350          // We have a classic Dekker-style idiom:
3351          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3352          // There are a number of ways to implement the barrier:
3353          // (1) lock:andl &m->_owner, 0
3354          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3355          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3356          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3357          // (2) If supported, an explicit MFENCE is appealing.
3358          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3359          //     particularly if the write-buffer is full as might be the case if
3360          //     if stores closely precede the fence or fence-equivalent instruction.
3361          //     In more modern implementations MFENCE appears faster, however.
3362          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3363          //     The $lines underlying the top-of-stack should be in M-state.
3364          //     The locked add instruction is serializing, of course.
3365          // (4) Use xchg, which is serializing
3366          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3367          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3368          //     The integer condition codes will tell us if succ was 0.
3369          //     Since _succ and _owner should reside in the same $line and
3370          //     we just stored into _owner, it's likely that the $line
3371          //     remains in M-state for the lock:orl.
3372          //
3373          // We currently use (3), although it's likely that switching to (2)
3374          // is correct for the future.
3375             
3376          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3377          if (os::is_MP()) { 
3378             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3379               masm.mfence();
3380             } else { 
3381               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3382             }
3383          }
3384          // Ratify _succ remains non-null
3385          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3386          masm.jccb  (Assembler::notZero, LSuccess) ; 
3387 
3388          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3389          if (os::is_MP()) { masm.lock(); }
3390          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3391          masm.jccb  (Assembler::notEqual, LSuccess) ;
3392          // Since we're low on registers we installed rsp as a placeholding in _owner.
3393          // Now install Self over rsp.  This is safe as we're transitioning from
3394          // non-null to non=null
3395          masm.get_thread (boxReg) ;
3396          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3397          // Intentional fall-through into LGoSlowPath ...
3398 
3399          masm.bind  (LGoSlowPath) ; 
3400          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3401          masm.jmpb  (DONE_LABEL) ; 
3402 
3403          masm.bind  (LSuccess) ; 
3404          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3405          masm.jmpb  (DONE_LABEL) ; 
3406       }
3407 
3408       masm.bind (Stacked) ;
3409       // It's not inflated and it's not recursively stack-locked and it's not biased.
3410       // It must be stack-locked.
3411       // Try to reset the header to displaced header.
3412       // The "box" value on the stack is stable, so we can reload
3413       // and be assured we observe the same value as above.
3414       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3415       if (os::is_MP()) {   masm.lock();    }
3416       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3417       // Intention fall-thru into DONE_LABEL
3418 
3419 
3420       // DONE_LABEL is a hot target - we'd really like to place it at the
3421       // start of cache line by padding with NOPs.
3422       // See the AMD and Intel software optimization manuals for the
3423       // most efficient "long" NOP encodings.
3424       // Unfortunately none of our alignment mechanisms suffice.
3425       if ((EmitSync & 65536) == 0) {
3426          masm.bind (CheckSucc) ;
3427       }
3428       masm.bind(DONE_LABEL);
3429 
3430       // Avoid branch to branch on AMD processors
3431       if (EmitSync & 32768) { masm.nop() ; }
3432     }
3433   %}
3434 
3435 
3436   enc_class enc_pop_rdx() %{
3437     emit_opcode(cbuf,0x5A);
3438   %}
3439 
3440   enc_class enc_rethrow() %{
3441     cbuf.set_insts_mark();
3442     emit_opcode(cbuf, 0xE9);        // jmp    entry
3443     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3444                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3445   %}
3446 
3447 
3448   // Convert a double to an int.  Java semantics require we do complex
3449   // manglelations in the corner cases.  So we set the rounding mode to
3450   // 'zero', store the darned double down as an int, and reset the
3451   // rounding mode to 'nearest'.  The hardware throws an exception which
3452   // patches up the correct value directly to the stack.
3453   enc_class DPR2I_encoding( regDPR src ) %{
3454     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3455     // exceptions here, so that a NAN or other corner-case value will
3456     // thrown an exception (but normal values get converted at full speed).
3457     // However, I2C adapters and other float-stack manglers leave pending
3458     // invalid-op exceptions hanging.  We would have to clear them before
3459     // enabling them and that is more expensive than just testing for the
3460     // invalid value Intel stores down in the corner cases.
3461     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3462     emit_opcode(cbuf,0x2D);
3463     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3464     // Allocate a word
3465     emit_opcode(cbuf,0x83);            // SUB ESP,4
3466     emit_opcode(cbuf,0xEC);
3467     emit_d8(cbuf,0x04);
3468     // Encoding assumes a double has been pushed into FPR0.
3469     // Store down the double as an int, popping the FPU stack
3470     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3471     emit_opcode(cbuf,0x1C);
3472     emit_d8(cbuf,0x24);
3473     // Restore the rounding mode; mask the exception
3474     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3475     emit_opcode(cbuf,0x2D);
3476     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3477         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3478         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3479 
3480     // Load the converted int; adjust CPU stack
3481     emit_opcode(cbuf,0x58);       // POP EAX
3482     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3483     emit_d32   (cbuf,0x80000000); //         0x80000000
3484     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3485     emit_d8    (cbuf,0x07);       // Size of slow_call
3486     // Push src onto stack slow-path
3487     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3488     emit_d8    (cbuf,0xC0-1+$src$$reg );
3489     // CALL directly to the runtime
3490     cbuf.set_insts_mark();
3491     emit_opcode(cbuf,0xE8);       // Call into runtime
3492     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3493     // Carry on here...
3494   %}
3495 
3496   enc_class DPR2L_encoding( regDPR src ) %{
3497     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3498     emit_opcode(cbuf,0x2D);
3499     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3500     // Allocate a word
3501     emit_opcode(cbuf,0x83);            // SUB ESP,8
3502     emit_opcode(cbuf,0xEC);
3503     emit_d8(cbuf,0x08);
3504     // Encoding assumes a double has been pushed into FPR0.
3505     // Store down the double as a long, popping the FPU stack
3506     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3507     emit_opcode(cbuf,0x3C);
3508     emit_d8(cbuf,0x24);
3509     // Restore the rounding mode; mask the exception
3510     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3511     emit_opcode(cbuf,0x2D);
3512     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3513         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3514         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3515 
3516     // Load the converted int; adjust CPU stack
3517     emit_opcode(cbuf,0x58);       // POP EAX
3518     emit_opcode(cbuf,0x5A);       // POP EDX
3519     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3520     emit_d8    (cbuf,0xFA);       // rdx
3521     emit_d32   (cbuf,0x80000000); //         0x80000000
3522     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3523     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3524     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3525     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3526     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3527     emit_d8    (cbuf,0x07);       // Size of slow_call
3528     // Push src onto stack slow-path
3529     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3530     emit_d8    (cbuf,0xC0-1+$src$$reg );
3531     // CALL directly to the runtime
3532     cbuf.set_insts_mark();
3533     emit_opcode(cbuf,0xE8);       // Call into runtime
3534     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3535     // Carry on here...
3536   %}
3537 
3538   enc_class FMul_ST_reg( eRegFPR src1 ) %{
3539     // Operand was loaded from memory into fp ST (stack top)
3540     // FMUL   ST,$src  /* D8 C8+i */
3541     emit_opcode(cbuf, 0xD8);
3542     emit_opcode(cbuf, 0xC8 + $src1$$reg);
3543   %}
3544 
3545   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3546     // FADDP  ST,src2  /* D8 C0+i */
3547     emit_opcode(cbuf, 0xD8);
3548     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3549     //could use FADDP  src2,fpST  /* DE C0+i */
3550   %}
3551 
3552   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3553     // FADDP  src2,ST  /* DE C0+i */
3554     emit_opcode(cbuf, 0xDE);
3555     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3556   %}
3557 
3558   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3559     // Operand has been loaded into fp ST (stack top)
3560       // FSUB   ST,$src1
3561       emit_opcode(cbuf, 0xD8);
3562       emit_opcode(cbuf, 0xE0 + $src1$$reg);
3563 
3564       // FDIV
3565       emit_opcode(cbuf, 0xD8);
3566       emit_opcode(cbuf, 0xF0 + $src2$$reg);
3567   %}
3568 
3569   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3570     // Operand was loaded from memory into fp ST (stack top)
3571     // FADD   ST,$src  /* D8 C0+i */
3572     emit_opcode(cbuf, 0xD8);
3573     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3574 
3575     // FMUL  ST,src2  /* D8 C*+i */
3576     emit_opcode(cbuf, 0xD8);
3577     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3578   %}
3579 
3580 
3581   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3582     // Operand was loaded from memory into fp ST (stack top)
3583     // FADD   ST,$src  /* D8 C0+i */
3584     emit_opcode(cbuf, 0xD8);
3585     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3586 
3587     // FMULP  src2,ST  /* DE C8+i */
3588     emit_opcode(cbuf, 0xDE);
3589     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3590   %}
3591 
3592   // Atomically load the volatile long
3593   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3594     emit_opcode(cbuf,0xDF);
3595     int rm_byte_opcode = 0x05;
3596     int base     = $mem$$base;
3597     int index    = $mem$$index;
3598     int scale    = $mem$$scale;
3599     int displace = $mem$$disp;
3600     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3601     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3602     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3603   %}
3604 
3605   // Volatile Store Long.  Must be atomic, so move it into
3606   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3607   // target address before the store (for null-ptr checks)
3608   // so the memory operand is used twice in the encoding.
3609   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3610     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3611     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3612     emit_opcode(cbuf,0xDF);
3613     int rm_byte_opcode = 0x07;
3614     int base     = $mem$$base;
3615     int index    = $mem$$index;
3616     int scale    = $mem$$scale;
3617     int displace = $mem$$disp;
3618     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3619     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3620   %}
3621 
3622   // Safepoint Poll.  This polls the safepoint page, and causes an
3623   // exception if it is not readable. Unfortunately, it kills the condition code
3624   // in the process
3625   // We current use TESTL [spp],EDI
3626   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3627 
3628   enc_class Safepoint_Poll() %{
3629     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3630     emit_opcode(cbuf,0x85);
3631     emit_rm (cbuf, 0x0, 0x7, 0x5);
3632     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3633   %}
3634 %}
3635 
3636 
3637 //----------FRAME--------------------------------------------------------------
3638 // Definition of frame structure and management information.
3639 //
3640 //  S T A C K   L A Y O U T    Allocators stack-slot number
3641 //                             |   (to get allocators register number
3642 //  G  Owned by    |        |  v    add OptoReg::stack0())
3643 //  r   CALLER     |        |
3644 //  o     |        +--------+      pad to even-align allocators stack-slot
3645 //  w     V        |  pad0  |        numbers; owned by CALLER
3646 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3647 //  h     ^        |   in   |  5
3648 //        |        |  args  |  4   Holes in incoming args owned by SELF
3649 //  |     |        |        |  3
3650 //  |     |        +--------+
3651 //  V     |        | old out|      Empty on Intel, window on Sparc
3652 //        |    old |preserve|      Must be even aligned.
3653 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3654 //        |        |   in   |  3   area for Intel ret address
3655 //     Owned by    |preserve|      Empty on Sparc.
3656 //       SELF      +--------+
3657 //        |        |  pad2  |  2   pad to align old SP
3658 //        |        +--------+  1
3659 //        |        | locks  |  0
3660 //        |        +--------+----> OptoReg::stack0(), even aligned
3661 //        |        |  pad1  | 11   pad to align new SP
3662 //        |        +--------+
3663 //        |        |        | 10
3664 //        |        | spills |  9   spills
3665 //        V        |        |  8   (pad0 slot for callee)
3666 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3667 //        ^        |  out   |  7
3668 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3669 //     Owned by    +--------+
3670 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3671 //        |    new |preserve|      Must be even-aligned.
3672 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3673 //        |        |        |
3674 //
3675 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3676 //         known from SELF's arguments and the Java calling convention.
3677 //         Region 6-7 is determined per call site.
3678 // Note 2: If the calling convention leaves holes in the incoming argument
3679 //         area, those holes are owned by SELF.  Holes in the outgoing area
3680 //         are owned by the CALLEE.  Holes should not be nessecary in the
3681 //         incoming area, as the Java calling convention is completely under
3682 //         the control of the AD file.  Doubles can be sorted and packed to
3683 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3684 //         varargs C calling conventions.
3685 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3686 //         even aligned with pad0 as needed.
3687 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3688 //         region 6-11 is even aligned; it may be padded out more so that
3689 //         the region from SP to FP meets the minimum stack alignment.
3690 
3691 frame %{
3692   // What direction does stack grow in (assumed to be same for C & Java)
3693   stack_direction(TOWARDS_LOW);
3694 
3695   // These three registers define part of the calling convention
3696   // between compiled code and the interpreter.
3697   inline_cache_reg(EAX);                // Inline Cache Register
3698   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3699 
3700   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3701   cisc_spilling_operand_name(indOffset32);
3702 
3703   // Number of stack slots consumed by locking an object
3704   sync_stack_slots(1);
3705 
3706   // Compiled code's Frame Pointer
3707   frame_pointer(ESP);
3708   // Interpreter stores its frame pointer in a register which is
3709   // stored to the stack by I2CAdaptors.
3710   // I2CAdaptors convert from interpreted java to compiled java.
3711   interpreter_frame_pointer(EBP);
3712 
3713   // Stack alignment requirement
3714   // Alignment size in bytes (128-bit -> 16 bytes)
3715   stack_alignment(StackAlignmentInBytes);
3716 
3717   // Number of stack slots between incoming argument block and the start of
3718   // a new frame.  The PROLOG must add this many slots to the stack.  The
3719   // EPILOG must remove this many slots.  Intel needs one slot for
3720   // return address and one for rbp, (must save rbp)
3721   in_preserve_stack_slots(2+VerifyStackAtCalls);
3722 
3723   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3724   // for calls to C.  Supports the var-args backing area for register parms.
3725   varargs_C_out_slots_killed(0);
3726 
3727   // The after-PROLOG location of the return address.  Location of
3728   // return address specifies a type (REG or STACK) and a number
3729   // representing the register number (i.e. - use a register name) or
3730   // stack slot.
3731   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3732   // Otherwise, it is above the locks and verification slot and alignment word
3733   return_addr(STACK - 1 +
3734               round_to((Compile::current()->in_preserve_stack_slots() +
3735                         Compile::current()->fixed_slots()),
3736                        stack_alignment_in_slots()));
3737 
3738   // Body of function which returns an integer array locating
3739   // arguments either in registers or in stack slots.  Passed an array
3740   // of ideal registers called "sig" and a "length" count.  Stack-slot
3741   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3742   // arguments for a CALLEE.  Incoming stack arguments are
3743   // automatically biased by the preserve_stack_slots field above.
3744   calling_convention %{
3745     // No difference between ingoing/outgoing just pass false
3746     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3747   %}
3748 
3749 
3750   // Body of function which returns an integer array locating
3751   // arguments either in registers or in stack slots.  Passed an array
3752   // of ideal registers called "sig" and a "length" count.  Stack-slot
3753   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3754   // arguments for a CALLEE.  Incoming stack arguments are
3755   // automatically biased by the preserve_stack_slots field above.
3756   c_calling_convention %{
3757     // This is obviously always outgoing
3758     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3759   %}
3760 
3761   // Location of C & interpreter return values
3762   c_return_value %{
3763     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3764     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3765     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3766 
3767     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3768     // that C functions return float and double results in XMM0.
3769     if( ideal_reg == Op_RegD && UseSSE>=2 )
3770       return OptoRegPair(XMM0b_num,XMM0_num);
3771     if( ideal_reg == Op_RegF && UseSSE>=2 )
3772       return OptoRegPair(OptoReg::Bad,XMM0_num);
3773 
3774     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3775   %}
3776 
3777   // Location of return values
3778   return_value %{
3779     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3780     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3781     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3782     if( ideal_reg == Op_RegD && UseSSE>=2 )
3783       return OptoRegPair(XMM0b_num,XMM0_num);
3784     if( ideal_reg == Op_RegF && UseSSE>=1 )
3785       return OptoRegPair(OptoReg::Bad,XMM0_num);
3786     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3787   %}
3788 
3789 %}
3790 
3791 //----------ATTRIBUTES---------------------------------------------------------
3792 //----------Operand Attributes-------------------------------------------------
3793 op_attrib op_cost(0);        // Required cost attribute
3794 
3795 //----------Instruction Attributes---------------------------------------------
3796 ins_attrib ins_cost(100);       // Required cost attribute
3797 ins_attrib ins_size(8);         // Required size attribute (in bits)
3798 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3799                                 // non-matching short branch variant of some
3800                                                             // long branch?
3801 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3802                                 // specifies the alignment that some part of the instruction (not
3803                                 // necessarily the start) requires.  If > 1, a compute_padding()
3804                                 // function must be provided for the instruction
3805 
3806 //----------OPERANDS-----------------------------------------------------------
3807 // Operand definitions must precede instruction definitions for correct parsing
3808 // in the ADLC because operands constitute user defined types which are used in
3809 // instruction definitions.
3810 
3811 //----------Simple Operands----------------------------------------------------
3812 // Immediate Operands
3813 // Integer Immediate
3814 operand immI() %{
3815   match(ConI);
3816 
3817   op_cost(10);
3818   format %{ %}
3819   interface(CONST_INTER);
3820 %}
3821 
3822 // Constant for test vs zero
3823 operand immI0() %{
3824   predicate(n->get_int() == 0);
3825   match(ConI);
3826 
3827   op_cost(0);
3828   format %{ %}
3829   interface(CONST_INTER);
3830 %}
3831 
3832 // Constant for increment
3833 operand immI1() %{
3834   predicate(n->get_int() == 1);
3835   match(ConI);
3836 
3837   op_cost(0);
3838   format %{ %}
3839   interface(CONST_INTER);
3840 %}
3841 
3842 // Constant for decrement
3843 operand immI_M1() %{
3844   predicate(n->get_int() == -1);
3845   match(ConI);
3846 
3847   op_cost(0);
3848   format %{ %}
3849   interface(CONST_INTER);
3850 %}
3851 
3852 // Valid scale values for addressing modes
3853 operand immI2() %{
3854   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3855   match(ConI);
3856 
3857   format %{ %}
3858   interface(CONST_INTER);
3859 %}
3860 
3861 operand immI8() %{
3862   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3863   match(ConI);
3864 
3865   op_cost(5);
3866   format %{ %}
3867   interface(CONST_INTER);
3868 %}
3869 
3870 operand immI16() %{
3871   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3872   match(ConI);
3873 
3874   op_cost(10);
3875   format %{ %}
3876   interface(CONST_INTER);
3877 %}
3878 
3879 // Int Immediate non-negative
3880 operand immU31()
3881 %{
3882   predicate(n->get_int() >= 0);
3883   match(ConI);
3884 
3885   op_cost(0);
3886   format %{ %}
3887   interface(CONST_INTER);
3888 %}
3889 
3890 // Constant for long shifts
3891 operand immI_32() %{
3892   predicate( n->get_int() == 32 );
3893   match(ConI);
3894 
3895   op_cost(0);
3896   format %{ %}
3897   interface(CONST_INTER);
3898 %}
3899 
3900 operand immI_1_31() %{
3901   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3902   match(ConI);
3903 
3904   op_cost(0);
3905   format %{ %}
3906   interface(CONST_INTER);
3907 %}
3908 
3909 operand immI_32_63() %{
3910   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3911   match(ConI);
3912   op_cost(0);
3913 
3914   format %{ %}
3915   interface(CONST_INTER);
3916 %}
3917 
3918 operand immI_1() %{
3919   predicate( n->get_int() == 1 );
3920   match(ConI);
3921 
3922   op_cost(0);
3923   format %{ %}
3924   interface(CONST_INTER);
3925 %}
3926 
3927 operand immI_2() %{
3928   predicate( n->get_int() == 2 );
3929   match(ConI);
3930 
3931   op_cost(0);
3932   format %{ %}
3933   interface(CONST_INTER);
3934 %}
3935 
3936 operand immI_3() %{
3937   predicate( n->get_int() == 3 );
3938   match(ConI);
3939 
3940   op_cost(0);
3941   format %{ %}
3942   interface(CONST_INTER);
3943 %}
3944 
3945 // Pointer Immediate
3946 operand immP() %{
3947   match(ConP);
3948 
3949   op_cost(10);
3950   format %{ %}
3951   interface(CONST_INTER);
3952 %}
3953 
3954 // NULL Pointer Immediate
3955 operand immP0() %{
3956   predicate( n->get_ptr() == 0 );
3957   match(ConP);
3958   op_cost(0);
3959 
3960   format %{ %}
3961   interface(CONST_INTER);
3962 %}
3963 
3964 // Long Immediate
3965 operand immL() %{
3966   match(ConL);
3967 
3968   op_cost(20);
3969   format %{ %}
3970   interface(CONST_INTER);
3971 %}
3972 
3973 // Long Immediate zero
3974 operand immL0() %{
3975   predicate( n->get_long() == 0L );
3976   match(ConL);
3977   op_cost(0);
3978 
3979   format %{ %}
3980   interface(CONST_INTER);
3981 %}
3982 
3983 // Long Immediate zero
3984 operand immL_M1() %{
3985   predicate( n->get_long() == -1L );
3986   match(ConL);
3987   op_cost(0);
3988 
3989   format %{ %}
3990   interface(CONST_INTER);
3991 %}
3992 
3993 // Long immediate from 0 to 127.
3994 // Used for a shorter form of long mul by 10.
3995 operand immL_127() %{
3996   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
3997   match(ConL);
3998   op_cost(0);
3999 
4000   format %{ %}
4001   interface(CONST_INTER);
4002 %}
4003 
4004 // Long Immediate: low 32-bit mask
4005 operand immL_32bits() %{
4006   predicate(n->get_long() == 0xFFFFFFFFL);
4007   match(ConL);
4008   op_cost(0);
4009 
4010   format %{ %}
4011   interface(CONST_INTER);
4012 %}
4013 
4014 // Long Immediate: low 32-bit mask
4015 operand immL32() %{
4016   predicate(n->get_long() == (int)(n->get_long()));
4017   match(ConL);
4018   op_cost(20);
4019 
4020   format %{ %}
4021   interface(CONST_INTER);
4022 %}
4023 
4024 //Double Immediate zero
4025 operand immDPR0() %{
4026   // Do additional (and counter-intuitive) test against NaN to work around VC++
4027   // bug that generates code such that NaNs compare equal to 0.0
4028   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4029   match(ConD);
4030 
4031   op_cost(5);
4032   format %{ %}
4033   interface(CONST_INTER);
4034 %}
4035 
4036 // Double Immediate one
4037 operand immDPR1() %{
4038   predicate( UseSSE<=1 && n->getd() == 1.0 );
4039   match(ConD);
4040 
4041   op_cost(5);
4042   format %{ %}
4043   interface(CONST_INTER);
4044 %}
4045 
4046 // Double Immediate
4047 operand immDPR() %{
4048   predicate(UseSSE<=1);
4049   match(ConD);
4050 
4051   op_cost(5);
4052   format %{ %}
4053   interface(CONST_INTER);
4054 %}
4055 
4056 operand immD() %{
4057   predicate(UseSSE>=2);
4058   match(ConD);
4059 
4060   op_cost(5);
4061   format %{ %}
4062   interface(CONST_INTER);
4063 %}
4064 
4065 // Double Immediate zero
4066 operand immD0() %{
4067   // Do additional (and counter-intuitive) test against NaN to work around VC++
4068   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4069   // compare equal to -0.0.
4070   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4071   match(ConD);
4072 
4073   format %{ %}
4074   interface(CONST_INTER);
4075 %}
4076 
4077 // Float Immediate zero
4078 operand immFPR0() %{
4079   predicate(UseSSE == 0 && n->getf() == 0.0F);
4080   match(ConF);
4081 
4082   op_cost(5);
4083   format %{ %}
4084   interface(CONST_INTER);
4085 %}
4086 
4087 // Float Immediate one
4088 operand immFPR1() %{
4089   predicate(UseSSE == 0 && n->getf() == 1.0F);
4090   match(ConF);
4091 
4092   op_cost(5);
4093   format %{ %}
4094   interface(CONST_INTER);
4095 %}
4096 
4097 // Float Immediate
4098 operand immFPR() %{
4099   predicate( UseSSE == 0 );
4100   match(ConF);
4101 
4102   op_cost(5);
4103   format %{ %}
4104   interface(CONST_INTER);
4105 %}
4106 
4107 // Float Immediate
4108 operand immF() %{
4109   predicate(UseSSE >= 1);
4110   match(ConF);
4111 
4112   op_cost(5);
4113   format %{ %}
4114   interface(CONST_INTER);
4115 %}
4116 
4117 // Float Immediate zero.  Zero and not -0.0
4118 operand immF0() %{
4119   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4120   match(ConF);
4121 
4122   op_cost(5);
4123   format %{ %}
4124   interface(CONST_INTER);
4125 %}
4126 
4127 // Immediates for special shifts (sign extend)
4128 
4129 // Constants for increment
4130 operand immI_16() %{
4131   predicate( n->get_int() == 16 );
4132   match(ConI);
4133 
4134   format %{ %}
4135   interface(CONST_INTER);
4136 %}
4137 
4138 operand immI_24() %{
4139   predicate( n->get_int() == 24 );
4140   match(ConI);
4141 
4142   format %{ %}
4143   interface(CONST_INTER);
4144 %}
4145 
4146 // Constant for byte-wide masking
4147 operand immI_255() %{
4148   predicate( n->get_int() == 255 );
4149   match(ConI);
4150 
4151   format %{ %}
4152   interface(CONST_INTER);
4153 %}
4154 
4155 // Constant for short-wide masking
4156 operand immI_65535() %{
4157   predicate(n->get_int() == 65535);
4158   match(ConI);
4159 
4160   format %{ %}
4161   interface(CONST_INTER);
4162 %}
4163 
4164 // Register Operands
4165 // Integer Register
4166 operand rRegI() %{
4167   constraint(ALLOC_IN_RC(int_reg));
4168   match(RegI);
4169   match(xRegI);
4170   match(eAXRegI);
4171   match(eBXRegI);
4172   match(eCXRegI);
4173   match(eDXRegI);
4174   match(eDIRegI);
4175   match(eSIRegI);
4176 
4177   format %{ %}
4178   interface(REG_INTER);
4179 %}
4180 
4181 // Subset of Integer Register
4182 operand xRegI(rRegI reg) %{
4183   constraint(ALLOC_IN_RC(int_x_reg));
4184   match(reg);
4185   match(eAXRegI);
4186   match(eBXRegI);
4187   match(eCXRegI);
4188   match(eDXRegI);
4189 
4190   format %{ %}
4191   interface(REG_INTER);
4192 %}
4193 
4194 // Special Registers
4195 operand eAXRegI(xRegI reg) %{
4196   constraint(ALLOC_IN_RC(eax_reg));
4197   match(reg);
4198   match(rRegI);
4199 
4200   format %{ "EAX" %}
4201   interface(REG_INTER);
4202 %}
4203 
4204 // Special Registers
4205 operand eBXRegI(xRegI reg) %{
4206   constraint(ALLOC_IN_RC(ebx_reg));
4207   match(reg);
4208   match(rRegI);
4209 
4210   format %{ "EBX" %}
4211   interface(REG_INTER);
4212 %}
4213 
4214 operand eCXRegI(xRegI reg) %{
4215   constraint(ALLOC_IN_RC(ecx_reg));
4216   match(reg);
4217   match(rRegI);
4218 
4219   format %{ "ECX" %}
4220   interface(REG_INTER);
4221 %}
4222 
4223 operand eDXRegI(xRegI reg) %{
4224   constraint(ALLOC_IN_RC(edx_reg));
4225   match(reg);
4226   match(rRegI);
4227 
4228   format %{ "EDX" %}
4229   interface(REG_INTER);
4230 %}
4231 
4232 operand eDIRegI(xRegI reg) %{
4233   constraint(ALLOC_IN_RC(edi_reg));
4234   match(reg);
4235   match(rRegI);
4236 
4237   format %{ "EDI" %}
4238   interface(REG_INTER);
4239 %}
4240 
4241 operand naxRegI() %{
4242   constraint(ALLOC_IN_RC(nax_reg));
4243   match(RegI);
4244   match(eCXRegI);
4245   match(eDXRegI);
4246   match(eSIRegI);
4247   match(eDIRegI);
4248 
4249   format %{ %}
4250   interface(REG_INTER);
4251 %}
4252 
4253 operand nadxRegI() %{
4254   constraint(ALLOC_IN_RC(nadx_reg));
4255   match(RegI);
4256   match(eBXRegI);
4257   match(eCXRegI);
4258   match(eSIRegI);
4259   match(eDIRegI);
4260 
4261   format %{ %}
4262   interface(REG_INTER);
4263 %}
4264 
4265 operand ncxRegI() %{
4266   constraint(ALLOC_IN_RC(ncx_reg));
4267   match(RegI);
4268   match(eAXRegI);
4269   match(eDXRegI);
4270   match(eSIRegI);
4271   match(eDIRegI);
4272 
4273   format %{ %}
4274   interface(REG_INTER);
4275 %}
4276 
4277 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4278 // //
4279 operand eSIRegI(xRegI reg) %{
4280    constraint(ALLOC_IN_RC(esi_reg));
4281    match(reg);
4282    match(rRegI);
4283 
4284    format %{ "ESI" %}
4285    interface(REG_INTER);
4286 %}
4287 
4288 // Pointer Register
4289 operand anyRegP() %{
4290   constraint(ALLOC_IN_RC(any_reg));
4291   match(RegP);
4292   match(eAXRegP);
4293   match(eBXRegP);
4294   match(eCXRegP);
4295   match(eDIRegP);
4296   match(eRegP);
4297 
4298   format %{ %}
4299   interface(REG_INTER);
4300 %}
4301 
4302 operand eRegP() %{
4303   constraint(ALLOC_IN_RC(int_reg));
4304   match(RegP);
4305   match(eAXRegP);
4306   match(eBXRegP);
4307   match(eCXRegP);
4308   match(eDIRegP);
4309 
4310   format %{ %}
4311   interface(REG_INTER);
4312 %}
4313 
4314 // On windows95, EBP is not safe to use for implicit null tests.
4315 operand eRegP_no_EBP() %{
4316   constraint(ALLOC_IN_RC(int_reg_no_rbp));
4317   match(RegP);
4318   match(eAXRegP);
4319   match(eBXRegP);
4320   match(eCXRegP);
4321   match(eDIRegP);
4322 
4323   op_cost(100);
4324   format %{ %}
4325   interface(REG_INTER);
4326 %}
4327 
4328 operand naxRegP() %{
4329   constraint(ALLOC_IN_RC(nax_reg));
4330   match(RegP);
4331   match(eBXRegP);
4332   match(eDXRegP);
4333   match(eCXRegP);
4334   match(eSIRegP);
4335   match(eDIRegP);
4336 
4337   format %{ %}
4338   interface(REG_INTER);
4339 %}
4340 
4341 operand nabxRegP() %{
4342   constraint(ALLOC_IN_RC(nabx_reg));
4343   match(RegP);
4344   match(eCXRegP);
4345   match(eDXRegP);
4346   match(eSIRegP);
4347   match(eDIRegP);
4348 
4349   format %{ %}
4350   interface(REG_INTER);
4351 %}
4352 
4353 operand pRegP() %{
4354   constraint(ALLOC_IN_RC(p_reg));
4355   match(RegP);
4356   match(eBXRegP);
4357   match(eDXRegP);
4358   match(eSIRegP);
4359   match(eDIRegP);
4360 
4361   format %{ %}
4362   interface(REG_INTER);
4363 %}
4364 
4365 // Special Registers
4366 // Return a pointer value
4367 operand eAXRegP(eRegP reg) %{
4368   constraint(ALLOC_IN_RC(eax_reg));
4369   match(reg);
4370   format %{ "EAX" %}
4371   interface(REG_INTER);
4372 %}
4373 
4374 // Used in AtomicAdd
4375 operand eBXRegP(eRegP reg) %{
4376   constraint(ALLOC_IN_RC(ebx_reg));
4377   match(reg);
4378   format %{ "EBX" %}
4379   interface(REG_INTER);
4380 %}
4381 
4382 // Tail-call (interprocedural jump) to interpreter
4383 operand eCXRegP(eRegP reg) %{
4384   constraint(ALLOC_IN_RC(ecx_reg));
4385   match(reg);
4386   format %{ "ECX" %}
4387   interface(REG_INTER);
4388 %}
4389 
4390 operand eSIRegP(eRegP reg) %{
4391   constraint(ALLOC_IN_RC(esi_reg));
4392   match(reg);
4393   format %{ "ESI" %}
4394   interface(REG_INTER);
4395 %}
4396 
4397 // Used in rep stosw
4398 operand eDIRegP(eRegP reg) %{
4399   constraint(ALLOC_IN_RC(edi_reg));
4400   match(reg);
4401   format %{ "EDI" %}
4402   interface(REG_INTER);
4403 %}
4404 
4405 operand eBPRegP() %{
4406   constraint(ALLOC_IN_RC(ebp_reg));
4407   match(RegP);
4408   format %{ "EBP" %}
4409   interface(REG_INTER);
4410 %}
4411 
4412 operand eRegL() %{
4413   constraint(ALLOC_IN_RC(long_reg));
4414   match(RegL);
4415   match(eADXRegL);
4416 
4417   format %{ %}
4418   interface(REG_INTER);
4419 %}
4420 
4421 operand eADXRegL( eRegL reg ) %{
4422   constraint(ALLOC_IN_RC(eadx_reg));
4423   match(reg);
4424 
4425   format %{ "EDX:EAX" %}
4426   interface(REG_INTER);
4427 %}
4428 
4429 operand eBCXRegL( eRegL reg ) %{
4430   constraint(ALLOC_IN_RC(ebcx_reg));
4431   match(reg);
4432 
4433   format %{ "EBX:ECX" %}
4434   interface(REG_INTER);
4435 %}
4436 
4437 // Special case for integer high multiply
4438 operand eADXRegL_low_only() %{
4439   constraint(ALLOC_IN_RC(eadx_reg));
4440   match(RegL);
4441 
4442   format %{ "EAX" %}
4443   interface(REG_INTER);
4444 %}
4445 
4446 // Flags register, used as output of compare instructions
4447 operand eFlagsReg() %{
4448   constraint(ALLOC_IN_RC(int_flags));
4449   match(RegFlags);
4450 
4451   format %{ "EFLAGS" %}
4452   interface(REG_INTER);
4453 %}
4454 
4455 // Flags register, used as output of FLOATING POINT compare instructions
4456 operand eFlagsRegU() %{
4457   constraint(ALLOC_IN_RC(int_flags));
4458   match(RegFlags);
4459 
4460   format %{ "EFLAGS_U" %}
4461   interface(REG_INTER);
4462 %}
4463 
4464 operand eFlagsRegUCF() %{
4465   constraint(ALLOC_IN_RC(int_flags));
4466   match(RegFlags);
4467   predicate(false);
4468 
4469   format %{ "EFLAGS_U_CF" %}
4470   interface(REG_INTER);
4471 %}
4472 
4473 // Condition Code Register used by long compare
4474 operand flagsReg_long_LTGE() %{
4475   constraint(ALLOC_IN_RC(int_flags));
4476   match(RegFlags);
4477   format %{ "FLAGS_LTGE" %}
4478   interface(REG_INTER);
4479 %}
4480 operand flagsReg_long_EQNE() %{
4481   constraint(ALLOC_IN_RC(int_flags));
4482   match(RegFlags);
4483   format %{ "FLAGS_EQNE" %}
4484   interface(REG_INTER);
4485 %}
4486 operand flagsReg_long_LEGT() %{
4487   constraint(ALLOC_IN_RC(int_flags));
4488   match(RegFlags);
4489   format %{ "FLAGS_LEGT" %}
4490   interface(REG_INTER);
4491 %}
4492 
4493 // Float register operands
4494 operand regDPR() %{
4495   predicate( UseSSE < 2 );
4496   constraint(ALLOC_IN_RC(fp_dbl_reg));
4497   match(RegD);
4498   match(regDPR1);
4499   match(regDPR2);
4500   format %{ %}
4501   interface(REG_INTER);
4502 %}
4503 
4504 operand regDPR1(regDPR reg) %{
4505   predicate( UseSSE < 2 );
4506   constraint(ALLOC_IN_RC(fp_dbl_reg0));
4507   match(reg);
4508   format %{ "FPR1" %}
4509   interface(REG_INTER);
4510 %}
4511 
4512 operand regDPR2(regDPR reg) %{
4513   predicate( UseSSE < 2 );
4514   constraint(ALLOC_IN_RC(fp_dbl_reg1));
4515   match(reg);
4516   format %{ "FPR2" %}
4517   interface(REG_INTER);
4518 %}
4519 
4520 operand regnotDPR1(regDPR reg) %{
4521   predicate( UseSSE < 2 );
4522   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
4523   match(reg);
4524   format %{ %}
4525   interface(REG_INTER);
4526 %}
4527 
4528 // Float register operands
4529 operand regFPR() %{
4530   predicate( UseSSE < 2 );
4531   constraint(ALLOC_IN_RC(fp_flt_reg));
4532   match(RegF);
4533   match(regFPR1);
4534   format %{ %}
4535   interface(REG_INTER);
4536 %}
4537 
4538 // Float register operands
4539 operand regFPR1(regFPR reg) %{
4540   predicate( UseSSE < 2 );
4541   constraint(ALLOC_IN_RC(fp_flt_reg0));
4542   match(reg);
4543   format %{ "FPR1" %}
4544   interface(REG_INTER);
4545 %}
4546 
4547 // XMM Float register operands
4548 operand regF() %{
4549   predicate( UseSSE>=1 );
4550   constraint(ALLOC_IN_RC(float_reg));
4551   match(RegF);
4552   format %{ %}
4553   interface(REG_INTER);
4554 %}
4555 
4556 // XMM Double register operands
4557 operand regD() %{
4558   predicate( UseSSE>=2 );
4559   constraint(ALLOC_IN_RC(double_reg));
4560   match(RegD);
4561   format %{ %}
4562   interface(REG_INTER);
4563 %}
4564 
4565 
4566 //----------Memory Operands----------------------------------------------------
4567 // Direct Memory Operand
4568 operand direct(immP addr) %{
4569   match(addr);
4570 
4571   format %{ "[$addr]" %}
4572   interface(MEMORY_INTER) %{
4573     base(0xFFFFFFFF);
4574     index(0x4);
4575     scale(0x0);
4576     disp($addr);
4577   %}
4578 %}
4579 
4580 // Indirect Memory Operand
4581 operand indirect(eRegP reg) %{
4582   constraint(ALLOC_IN_RC(int_reg));
4583   match(reg);
4584 
4585   format %{ "[$reg]" %}
4586   interface(MEMORY_INTER) %{
4587     base($reg);
4588     index(0x4);
4589     scale(0x0);
4590     disp(0x0);
4591   %}
4592 %}
4593 
4594 // Indirect Memory Plus Short Offset Operand
4595 operand indOffset8(eRegP reg, immI8 off) %{
4596   match(AddP reg off);
4597 
4598   format %{ "[$reg + $off]" %}
4599   interface(MEMORY_INTER) %{
4600     base($reg);
4601     index(0x4);
4602     scale(0x0);
4603     disp($off);
4604   %}
4605 %}
4606 
4607 // Indirect Memory Plus Long Offset Operand
4608 operand indOffset32(eRegP reg, immI off) %{
4609   match(AddP reg off);
4610 
4611   format %{ "[$reg + $off]" %}
4612   interface(MEMORY_INTER) %{
4613     base($reg);
4614     index(0x4);
4615     scale(0x0);
4616     disp($off);
4617   %}
4618 %}
4619 
4620 // Indirect Memory Plus Long Offset Operand
4621 operand indOffset32X(rRegI reg, immP off) %{
4622   match(AddP off reg);
4623 
4624   format %{ "[$reg + $off]" %}
4625   interface(MEMORY_INTER) %{
4626     base($reg);
4627     index(0x4);
4628     scale(0x0);
4629     disp($off);
4630   %}
4631 %}
4632 
4633 // Indirect Memory Plus Index Register Plus Offset Operand
4634 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4635   match(AddP (AddP reg ireg) off);
4636 
4637   op_cost(10);
4638   format %{"[$reg + $off + $ireg]" %}
4639   interface(MEMORY_INTER) %{
4640     base($reg);
4641     index($ireg);
4642     scale(0x0);
4643     disp($off);
4644   %}
4645 %}
4646 
4647 // Indirect Memory Plus Index Register Plus Offset Operand
4648 operand indIndex(eRegP reg, rRegI ireg) %{
4649   match(AddP reg ireg);
4650 
4651   op_cost(10);
4652   format %{"[$reg + $ireg]" %}
4653   interface(MEMORY_INTER) %{
4654     base($reg);
4655     index($ireg);
4656     scale(0x0);
4657     disp(0x0);
4658   %}
4659 %}
4660 
4661 // // -------------------------------------------------------------------------
4662 // // 486 architecture doesn't support "scale * index + offset" with out a base
4663 // // -------------------------------------------------------------------------
4664 // // Scaled Memory Operands
4665 // // Indirect Memory Times Scale Plus Offset Operand
4666 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4667 //   match(AddP off (LShiftI ireg scale));
4668 //
4669 //   op_cost(10);
4670 //   format %{"[$off + $ireg << $scale]" %}
4671 //   interface(MEMORY_INTER) %{
4672 //     base(0x4);
4673 //     index($ireg);
4674 //     scale($scale);
4675 //     disp($off);
4676 //   %}
4677 // %}
4678 
4679 // Indirect Memory Times Scale Plus Index Register
4680 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4681   match(AddP reg (LShiftI ireg scale));
4682 
4683   op_cost(10);
4684   format %{"[$reg + $ireg << $scale]" %}
4685   interface(MEMORY_INTER) %{
4686     base($reg);
4687     index($ireg);
4688     scale($scale);
4689     disp(0x0);
4690   %}
4691 %}
4692 
4693 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4694 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4695   match(AddP (AddP reg (LShiftI ireg scale)) off);
4696 
4697   op_cost(10);
4698   format %{"[$reg + $off + $ireg << $scale]" %}
4699   interface(MEMORY_INTER) %{
4700     base($reg);
4701     index($ireg);
4702     scale($scale);
4703     disp($off);
4704   %}
4705 %}
4706 
4707 //----------Load Long Memory Operands------------------------------------------
4708 // The load-long idiom will use it's address expression again after loading
4709 // the first word of the long.  If the load-long destination overlaps with
4710 // registers used in the addressing expression, the 2nd half will be loaded
4711 // from a clobbered address.  Fix this by requiring that load-long use
4712 // address registers that do not overlap with the load-long target.
4713 
4714 // load-long support
4715 operand load_long_RegP() %{
4716   constraint(ALLOC_IN_RC(esi_reg));
4717   match(RegP);
4718   match(eSIRegP);
4719   op_cost(100);
4720   format %{  %}
4721   interface(REG_INTER);
4722 %}
4723 
4724 // Indirect Memory Operand Long
4725 operand load_long_indirect(load_long_RegP reg) %{
4726   constraint(ALLOC_IN_RC(esi_reg));
4727   match(reg);
4728 
4729   format %{ "[$reg]" %}
4730   interface(MEMORY_INTER) %{
4731     base($reg);
4732     index(0x4);
4733     scale(0x0);
4734     disp(0x0);
4735   %}
4736 %}
4737 
4738 // Indirect Memory Plus Long Offset Operand
4739 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4740   match(AddP reg off);
4741 
4742   format %{ "[$reg + $off]" %}
4743   interface(MEMORY_INTER) %{
4744     base($reg);
4745     index(0x4);
4746     scale(0x0);
4747     disp($off);
4748   %}
4749 %}
4750 
4751 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4752 
4753 
4754 //----------Special Memory Operands--------------------------------------------
4755 // Stack Slot Operand - This operand is used for loading and storing temporary
4756 //                      values on the stack where a match requires a value to
4757 //                      flow through memory.
4758 operand stackSlotP(sRegP reg) %{
4759   constraint(ALLOC_IN_RC(stack_slots));
4760   // No match rule because this operand is only generated in matching
4761   format %{ "[$reg]" %}
4762   interface(MEMORY_INTER) %{
4763     base(0x4);   // ESP
4764     index(0x4);  // No Index
4765     scale(0x0);  // No Scale
4766     disp($reg);  // Stack Offset
4767   %}
4768 %}
4769 
4770 operand stackSlotI(sRegI reg) %{
4771   constraint(ALLOC_IN_RC(stack_slots));
4772   // No match rule because this operand is only generated in matching
4773   format %{ "[$reg]" %}
4774   interface(MEMORY_INTER) %{
4775     base(0x4);   // ESP
4776     index(0x4);  // No Index
4777     scale(0x0);  // No Scale
4778     disp($reg);  // Stack Offset
4779   %}
4780 %}
4781 
4782 operand stackSlotF(sRegF reg) %{
4783   constraint(ALLOC_IN_RC(stack_slots));
4784   // No match rule because this operand is only generated in matching
4785   format %{ "[$reg]" %}
4786   interface(MEMORY_INTER) %{
4787     base(0x4);   // ESP
4788     index(0x4);  // No Index
4789     scale(0x0);  // No Scale
4790     disp($reg);  // Stack Offset
4791   %}
4792 %}
4793 
4794 operand stackSlotD(sRegD reg) %{
4795   constraint(ALLOC_IN_RC(stack_slots));
4796   // No match rule because this operand is only generated in matching
4797   format %{ "[$reg]" %}
4798   interface(MEMORY_INTER) %{
4799     base(0x4);   // ESP
4800     index(0x4);  // No Index
4801     scale(0x0);  // No Scale
4802     disp($reg);  // Stack Offset
4803   %}
4804 %}
4805 
4806 operand stackSlotL(sRegL reg) %{
4807   constraint(ALLOC_IN_RC(stack_slots));
4808   // No match rule because this operand is only generated in matching
4809   format %{ "[$reg]" %}
4810   interface(MEMORY_INTER) %{
4811     base(0x4);   // ESP
4812     index(0x4);  // No Index
4813     scale(0x0);  // No Scale
4814     disp($reg);  // Stack Offset
4815   %}
4816 %}
4817 
4818 //----------Memory Operands - Win95 Implicit Null Variants----------------
4819 // Indirect Memory Operand
4820 operand indirect_win95_safe(eRegP_no_EBP reg)
4821 %{
4822   constraint(ALLOC_IN_RC(int_reg));
4823   match(reg);
4824 
4825   op_cost(100);
4826   format %{ "[$reg]" %}
4827   interface(MEMORY_INTER) %{
4828     base($reg);
4829     index(0x4);
4830     scale(0x0);
4831     disp(0x0);
4832   %}
4833 %}
4834 
4835 // Indirect Memory Plus Short Offset Operand
4836 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4837 %{
4838   match(AddP reg off);
4839 
4840   op_cost(100);
4841   format %{ "[$reg + $off]" %}
4842   interface(MEMORY_INTER) %{
4843     base($reg);
4844     index(0x4);
4845     scale(0x0);
4846     disp($off);
4847   %}
4848 %}
4849 
4850 // Indirect Memory Plus Long Offset Operand
4851 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4852 %{
4853   match(AddP reg off);
4854 
4855   op_cost(100);
4856   format %{ "[$reg + $off]" %}
4857   interface(MEMORY_INTER) %{
4858     base($reg);
4859     index(0x4);
4860     scale(0x0);
4861     disp($off);
4862   %}
4863 %}
4864 
4865 // Indirect Memory Plus Index Register Plus Offset Operand
4866 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4867 %{
4868   match(AddP (AddP reg ireg) off);
4869 
4870   op_cost(100);
4871   format %{"[$reg + $off + $ireg]" %}
4872   interface(MEMORY_INTER) %{
4873     base($reg);
4874     index($ireg);
4875     scale(0x0);
4876     disp($off);
4877   %}
4878 %}
4879 
4880 // Indirect Memory Times Scale Plus Index Register
4881 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4882 %{
4883   match(AddP reg (LShiftI ireg scale));
4884 
4885   op_cost(100);
4886   format %{"[$reg + $ireg << $scale]" %}
4887   interface(MEMORY_INTER) %{
4888     base($reg);
4889     index($ireg);
4890     scale($scale);
4891     disp(0x0);
4892   %}
4893 %}
4894 
4895 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4896 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4897 %{
4898   match(AddP (AddP reg (LShiftI ireg scale)) off);
4899 
4900   op_cost(100);
4901   format %{"[$reg + $off + $ireg << $scale]" %}
4902   interface(MEMORY_INTER) %{
4903     base($reg);
4904     index($ireg);
4905     scale($scale);
4906     disp($off);
4907   %}
4908 %}
4909 
4910 //----------Conditional Branch Operands----------------------------------------
4911 // Comparison Op  - This is the operation of the comparison, and is limited to
4912 //                  the following set of codes:
4913 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4914 //
4915 // Other attributes of the comparison, such as unsignedness, are specified
4916 // by the comparison instruction that sets a condition code flags register.
4917 // That result is represented by a flags operand whose subtype is appropriate
4918 // to the unsignedness (etc.) of the comparison.
4919 //
4920 // Later, the instruction which matches both the Comparison Op (a Bool) and
4921 // the flags (produced by the Cmp) specifies the coding of the comparison op
4922 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4923 
4924 // Comparision Code
4925 operand cmpOp() %{
4926   match(Bool);
4927 
4928   format %{ "" %}
4929   interface(COND_INTER) %{
4930     equal(0x4, "e");
4931     not_equal(0x5, "ne");
4932     less(0xC, "l");
4933     greater_equal(0xD, "ge");
4934     less_equal(0xE, "le");
4935     greater(0xF, "g");
4936     overflow(0x0, "o");
4937     no_overflow(0x1, "no");
4938   %}
4939 %}
4940 
4941 // Comparison Code, unsigned compare.  Used by FP also, with
4942 // C2 (unordered) turned into GT or LT already.  The other bits
4943 // C0 and C3 are turned into Carry & Zero flags.
4944 operand cmpOpU() %{
4945   match(Bool);
4946 
4947   format %{ "" %}
4948   interface(COND_INTER) %{
4949     equal(0x4, "e");
4950     not_equal(0x5, "ne");
4951     less(0x2, "b");
4952     greater_equal(0x3, "nb");
4953     less_equal(0x6, "be");
4954     greater(0x7, "nbe");
4955     overflow(0x0, "o");
4956     no_overflow(0x1, "no");
4957   %}
4958 %}
4959 
4960 // Floating comparisons that don't require any fixup for the unordered case
4961 operand cmpOpUCF() %{
4962   match(Bool);
4963   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4964             n->as_Bool()->_test._test == BoolTest::ge ||
4965             n->as_Bool()->_test._test == BoolTest::le ||
4966             n->as_Bool()->_test._test == BoolTest::gt);
4967   format %{ "" %}
4968   interface(COND_INTER) %{
4969     equal(0x4, "e");
4970     not_equal(0x5, "ne");
4971     less(0x2, "b");
4972     greater_equal(0x3, "nb");
4973     less_equal(0x6, "be");
4974     greater(0x7, "nbe");
4975     overflow(0x0, "o");
4976     no_overflow(0x1, "no");
4977   %}
4978 %}
4979 
4980 
4981 // Floating comparisons that can be fixed up with extra conditional jumps
4982 operand cmpOpUCF2() %{
4983   match(Bool);
4984   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4985             n->as_Bool()->_test._test == BoolTest::eq);
4986   format %{ "" %}
4987   interface(COND_INTER) %{
4988     equal(0x4, "e");
4989     not_equal(0x5, "ne");
4990     less(0x2, "b");
4991     greater_equal(0x3, "nb");
4992     less_equal(0x6, "be");
4993     greater(0x7, "nbe");
4994     overflow(0x0, "o");
4995     no_overflow(0x1, "no");
4996   %}
4997 %}
4998 
4999 // Comparison Code for FP conditional move
5000 operand cmpOp_fcmov() %{
5001   match(Bool);
5002 
5003   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
5004             n->as_Bool()->_test._test != BoolTest::no_overflow);
5005   format %{ "" %}
5006   interface(COND_INTER) %{
5007     equal        (0x0C8);
5008     not_equal    (0x1C8);
5009     less         (0x0C0);
5010     greater_equal(0x1C0);
5011     less_equal   (0x0D0);
5012     greater      (0x1D0);
5013     overflow(0x0, "o"); // not really supported by the instruction
5014     no_overflow(0x1, "no"); // not really supported by the instruction
5015   %}
5016 %}
5017 
5018 // Comparision Code used in long compares
5019 operand cmpOp_commute() %{
5020   match(Bool);
5021 
5022   format %{ "" %}
5023   interface(COND_INTER) %{
5024     equal(0x4, "e");
5025     not_equal(0x5, "ne");
5026     less(0xF, "g");
5027     greater_equal(0xE, "le");
5028     less_equal(0xD, "ge");
5029     greater(0xC, "l");
5030     overflow(0x0, "o");
5031     no_overflow(0x1, "no");
5032   %}
5033 %}
5034 
5035 //----------OPERAND CLASSES----------------------------------------------------
5036 // Operand Classes are groups of operands that are used as to simplify
5037 // instruction definitions by not requiring the AD writer to specify separate
5038 // instructions for every form of operand when the instruction accepts
5039 // multiple operand types with the same basic encoding and format.  The classic
5040 // case of this is memory operands.
5041 
5042 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5043                indIndex, indIndexScale, indIndexScaleOffset);
5044 
5045 // Long memory operations are encoded in 2 instructions and a +4 offset.
5046 // This means some kind of offset is always required and you cannot use
5047 // an oop as the offset (done when working on static globals).
5048 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5049                     indIndex, indIndexScale, indIndexScaleOffset);
5050 
5051 
5052 //----------PIPELINE-----------------------------------------------------------
5053 // Rules which define the behavior of the target architectures pipeline.
5054 pipeline %{
5055 
5056 //----------ATTRIBUTES---------------------------------------------------------
5057 attributes %{
5058   variable_size_instructions;        // Fixed size instructions
5059   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5060   instruction_unit_size = 1;         // An instruction is 1 bytes long
5061   instruction_fetch_unit_size = 16;  // The processor fetches one line
5062   instruction_fetch_units = 1;       // of 16 bytes
5063 
5064   // List of nop instructions
5065   nops( MachNop );
5066 %}
5067 
5068 //----------RESOURCES----------------------------------------------------------
5069 // Resources are the functional units available to the machine
5070 
5071 // Generic P2/P3 pipeline
5072 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5073 // 3 instructions decoded per cycle.
5074 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5075 // 2 ALU op, only ALU0 handles mul/div instructions.
5076 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5077            MS0, MS1, MEM = MS0 | MS1,
5078            BR, FPU,
5079            ALU0, ALU1, ALU = ALU0 | ALU1 );
5080 
5081 //----------PIPELINE DESCRIPTION-----------------------------------------------
5082 // Pipeline Description specifies the stages in the machine's pipeline
5083 
5084 // Generic P2/P3 pipeline
5085 pipe_desc(S0, S1, S2, S3, S4, S5);
5086 
5087 //----------PIPELINE CLASSES---------------------------------------------------
5088 // Pipeline Classes describe the stages in which input and output are
5089 // referenced by the hardware pipeline.
5090 
5091 // Naming convention: ialu or fpu
5092 // Then: _reg
5093 // Then: _reg if there is a 2nd register
5094 // Then: _long if it's a pair of instructions implementing a long
5095 // Then: _fat if it requires the big decoder
5096 //   Or: _mem if it requires the big decoder and a memory unit.
5097 
5098 // Integer ALU reg operation
5099 pipe_class ialu_reg(rRegI dst) %{
5100     single_instruction;
5101     dst    : S4(write);
5102     dst    : S3(read);
5103     DECODE : S0;        // any decoder
5104     ALU    : S3;        // any alu
5105 %}
5106 
5107 // Long ALU reg operation
5108 pipe_class ialu_reg_long(eRegL dst) %{
5109     instruction_count(2);
5110     dst    : S4(write);
5111     dst    : S3(read);
5112     DECODE : S0(2);     // any 2 decoders
5113     ALU    : S3(2);     // both alus
5114 %}
5115 
5116 // Integer ALU reg operation using big decoder
5117 pipe_class ialu_reg_fat(rRegI dst) %{
5118     single_instruction;
5119     dst    : S4(write);
5120     dst    : S3(read);
5121     D0     : S0;        // big decoder only
5122     ALU    : S3;        // any alu
5123 %}
5124 
5125 // Long ALU reg operation using big decoder
5126 pipe_class ialu_reg_long_fat(eRegL dst) %{
5127     instruction_count(2);
5128     dst    : S4(write);
5129     dst    : S3(read);
5130     D0     : S0(2);     // big decoder only; twice
5131     ALU    : S3(2);     // any 2 alus
5132 %}
5133 
5134 // Integer ALU reg-reg operation
5135 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
5136     single_instruction;
5137     dst    : S4(write);
5138     src    : S3(read);
5139     DECODE : S0;        // any decoder
5140     ALU    : S3;        // any alu
5141 %}
5142 
5143 // Long ALU reg-reg operation
5144 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5145     instruction_count(2);
5146     dst    : S4(write);
5147     src    : S3(read);
5148     DECODE : S0(2);     // any 2 decoders
5149     ALU    : S3(2);     // both alus
5150 %}
5151 
5152 // Integer ALU reg-reg operation
5153 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
5154     single_instruction;
5155     dst    : S4(write);
5156     src    : S3(read);
5157     D0     : S0;        // big decoder only
5158     ALU    : S3;        // any alu
5159 %}
5160 
5161 // Long ALU reg-reg operation
5162 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5163     instruction_count(2);
5164     dst    : S4(write);
5165     src    : S3(read);
5166     D0     : S0(2);     // big decoder only; twice
5167     ALU    : S3(2);     // both alus
5168 %}
5169 
5170 // Integer ALU reg-mem operation
5171 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
5172     single_instruction;
5173     dst    : S5(write);
5174     mem    : S3(read);
5175     D0     : S0;        // big decoder only
5176     ALU    : S4;        // any alu
5177     MEM    : S3;        // any mem
5178 %}
5179 
5180 // Long ALU reg-mem operation
5181 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5182     instruction_count(2);
5183     dst    : S5(write);
5184     mem    : S3(read);
5185     D0     : S0(2);     // big decoder only; twice
5186     ALU    : S4(2);     // any 2 alus
5187     MEM    : S3(2);     // both mems
5188 %}
5189 
5190 // Integer mem operation (prefetch)
5191 pipe_class ialu_mem(memory mem)
5192 %{
5193     single_instruction;
5194     mem    : S3(read);
5195     D0     : S0;        // big decoder only
5196     MEM    : S3;        // any mem
5197 %}
5198 
5199 // Integer Store to Memory
5200 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
5201     single_instruction;
5202     mem    : S3(read);
5203     src    : S5(read);
5204     D0     : S0;        // big decoder only
5205     ALU    : S4;        // any alu
5206     MEM    : S3;
5207 %}
5208 
5209 // Long Store to Memory
5210 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5211     instruction_count(2);
5212     mem    : S3(read);
5213     src    : S5(read);
5214     D0     : S0(2);     // big decoder only; twice
5215     ALU    : S4(2);     // any 2 alus
5216     MEM    : S3(2);     // Both mems
5217 %}
5218 
5219 // Integer Store to Memory
5220 pipe_class ialu_mem_imm(memory mem) %{
5221     single_instruction;
5222     mem    : S3(read);
5223     D0     : S0;        // big decoder only
5224     ALU    : S4;        // any alu
5225     MEM    : S3;
5226 %}
5227 
5228 // Integer ALU0 reg-reg operation
5229 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
5230     single_instruction;
5231     dst    : S4(write);
5232     src    : S3(read);
5233     D0     : S0;        // Big decoder only
5234     ALU0   : S3;        // only alu0
5235 %}
5236 
5237 // Integer ALU0 reg-mem operation
5238 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
5239     single_instruction;
5240     dst    : S5(write);
5241     mem    : S3(read);
5242     D0     : S0;        // big decoder only
5243     ALU0   : S4;        // ALU0 only
5244     MEM    : S3;        // any mem
5245 %}
5246 
5247 // Integer ALU reg-reg operation
5248 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
5249     single_instruction;
5250     cr     : S4(write);
5251     src1   : S3(read);
5252     src2   : S3(read);
5253     DECODE : S0;        // any decoder
5254     ALU    : S3;        // any alu
5255 %}
5256 
5257 // Integer ALU reg-imm operation
5258 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
5259     single_instruction;
5260     cr     : S4(write);
5261     src1   : S3(read);
5262     DECODE : S0;        // any decoder
5263     ALU    : S3;        // any alu
5264 %}
5265 
5266 // Integer ALU reg-mem operation
5267 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
5268     single_instruction;
5269     cr     : S4(write);
5270     src1   : S3(read);
5271     src2   : S3(read);
5272     D0     : S0;        // big decoder only
5273     ALU    : S4;        // any alu
5274     MEM    : S3;
5275 %}
5276 
5277 // Conditional move reg-reg
5278 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
5279     instruction_count(4);
5280     y      : S4(read);
5281     q      : S3(read);
5282     p      : S3(read);
5283     DECODE : S0(4);     // any decoder
5284 %}
5285 
5286 // Conditional move reg-reg
5287 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
5288     single_instruction;
5289     dst    : S4(write);
5290     src    : S3(read);
5291     cr     : S3(read);
5292     DECODE : S0;        // any decoder
5293 %}
5294 
5295 // Conditional move reg-mem
5296 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
5297     single_instruction;
5298     dst    : S4(write);
5299     src    : S3(read);
5300     cr     : S3(read);
5301     DECODE : S0;        // any decoder
5302     MEM    : S3;
5303 %}
5304 
5305 // Conditional move reg-reg long
5306 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5307     single_instruction;
5308     dst    : S4(write);
5309     src    : S3(read);
5310     cr     : S3(read);
5311     DECODE : S0(2);     // any 2 decoders
5312 %}
5313 
5314 // Conditional move double reg-reg
5315 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
5316     single_instruction;
5317     dst    : S4(write);
5318     src    : S3(read);
5319     cr     : S3(read);
5320     DECODE : S0;        // any decoder
5321 %}
5322 
5323 // Float reg-reg operation
5324 pipe_class fpu_reg(regDPR dst) %{
5325     instruction_count(2);
5326     dst    : S3(read);
5327     DECODE : S0(2);     // any 2 decoders
5328     FPU    : S3;
5329 %}
5330 
5331 // Float reg-reg operation
5332 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
5333     instruction_count(2);
5334     dst    : S4(write);
5335     src    : S3(read);
5336     DECODE : S0(2);     // any 2 decoders
5337     FPU    : S3;
5338 %}
5339 
5340 // Float reg-reg operation
5341 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
5342     instruction_count(3);
5343     dst    : S4(write);
5344     src1   : S3(read);
5345     src2   : S3(read);
5346     DECODE : S0(3);     // any 3 decoders
5347     FPU    : S3(2);
5348 %}
5349 
5350 // Float reg-reg operation
5351 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
5352     instruction_count(4);
5353     dst    : S4(write);
5354     src1   : S3(read);
5355     src2   : S3(read);
5356     src3   : S3(read);
5357     DECODE : S0(4);     // any 3 decoders
5358     FPU    : S3(2);
5359 %}
5360 
5361 // Float reg-reg operation
5362 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
5363     instruction_count(4);
5364     dst    : S4(write);
5365     src1   : S3(read);
5366     src2   : S3(read);
5367     src3   : S3(read);
5368     DECODE : S1(3);     // any 3 decoders
5369     D0     : S0;        // Big decoder only
5370     FPU    : S3(2);
5371     MEM    : S3;
5372 %}
5373 
5374 // Float reg-mem operation
5375 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
5376     instruction_count(2);
5377     dst    : S5(write);
5378     mem    : S3(read);
5379     D0     : S0;        // big decoder only
5380     DECODE : S1;        // any decoder for FPU POP
5381     FPU    : S4;
5382     MEM    : S3;        // any mem
5383 %}
5384 
5385 // Float reg-mem operation
5386 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
5387     instruction_count(3);
5388     dst    : S5(write);
5389     src1   : S3(read);
5390     mem    : S3(read);
5391     D0     : S0;        // big decoder only
5392     DECODE : S1(2);     // any decoder for FPU POP
5393     FPU    : S4;
5394     MEM    : S3;        // any mem
5395 %}
5396 
5397 // Float mem-reg operation
5398 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
5399     instruction_count(2);
5400     src    : S5(read);
5401     mem    : S3(read);
5402     DECODE : S0;        // any decoder for FPU PUSH
5403     D0     : S1;        // big decoder only
5404     FPU    : S4;
5405     MEM    : S3;        // any mem
5406 %}
5407 
5408 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
5409     instruction_count(3);
5410     src1   : S3(read);
5411     src2   : S3(read);
5412     mem    : S3(read);
5413     DECODE : S0(2);     // any decoder for FPU PUSH
5414     D0     : S1;        // big decoder only
5415     FPU    : S4;
5416     MEM    : S3;        // any mem
5417 %}
5418 
5419 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
5420     instruction_count(3);
5421     src1   : S3(read);
5422     src2   : S3(read);
5423     mem    : S4(read);
5424     DECODE : S0;        // any decoder for FPU PUSH
5425     D0     : S0(2);     // big decoder only
5426     FPU    : S4;
5427     MEM    : S3(2);     // any mem
5428 %}
5429 
5430 pipe_class fpu_mem_mem(memory dst, memory src1) %{
5431     instruction_count(2);
5432     src1   : S3(read);
5433     dst    : S4(read);
5434     D0     : S0(2);     // big decoder only
5435     MEM    : S3(2);     // any mem
5436 %}
5437 
5438 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
5439     instruction_count(3);
5440     src1   : S3(read);
5441     src2   : S3(read);
5442     dst    : S4(read);
5443     D0     : S0(3);     // big decoder only
5444     FPU    : S4;
5445     MEM    : S3(3);     // any mem
5446 %}
5447 
5448 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
5449     instruction_count(3);
5450     src1   : S4(read);
5451     mem    : S4(read);
5452     DECODE : S0;        // any decoder for FPU PUSH
5453     D0     : S0(2);     // big decoder only
5454     FPU    : S4;
5455     MEM    : S3(2);     // any mem
5456 %}
5457 
5458 // Float load constant
5459 pipe_class fpu_reg_con(regDPR dst) %{
5460     instruction_count(2);
5461     dst    : S5(write);
5462     D0     : S0;        // big decoder only for the load
5463     DECODE : S1;        // any decoder for FPU POP
5464     FPU    : S4;
5465     MEM    : S3;        // any mem
5466 %}
5467 
5468 // Float load constant
5469 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
5470     instruction_count(3);
5471     dst    : S5(write);
5472     src    : S3(read);
5473     D0     : S0;        // big decoder only for the load
5474     DECODE : S1(2);     // any decoder for FPU POP
5475     FPU    : S4;
5476     MEM    : S3;        // any mem
5477 %}
5478 
5479 // UnConditional branch
5480 pipe_class pipe_jmp( label labl ) %{
5481     single_instruction;
5482     BR   : S3;
5483 %}
5484 
5485 // Conditional branch
5486 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
5487     single_instruction;
5488     cr    : S1(read);
5489     BR    : S3;
5490 %}
5491 
5492 // Allocation idiom
5493 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
5494     instruction_count(1); force_serialization;
5495     fixed_latency(6);
5496     heap_ptr : S3(read);
5497     DECODE   : S0(3);
5498     D0       : S2;
5499     MEM      : S3;
5500     ALU      : S3(2);
5501     dst      : S5(write);
5502     BR       : S5;
5503 %}
5504 
5505 // Generic big/slow expanded idiom
5506 pipe_class pipe_slow(  ) %{
5507     instruction_count(10); multiple_bundles; force_serialization;
5508     fixed_latency(100);
5509     D0  : S0(2);
5510     MEM : S3(2);
5511 %}
5512 
5513 // The real do-nothing guy
5514 pipe_class empty( ) %{
5515     instruction_count(0);
5516 %}
5517 
5518 // Define the class for the Nop node
5519 define %{
5520    MachNop = empty;
5521 %}
5522 
5523 %}
5524 
5525 //----------INSTRUCTIONS-------------------------------------------------------
5526 //
5527 // match      -- States which machine-independent subtree may be replaced
5528 //               by this instruction.
5529 // ins_cost   -- The estimated cost of this instruction is used by instruction
5530 //               selection to identify a minimum cost tree of machine
5531 //               instructions that matches a tree of machine-independent
5532 //               instructions.
5533 // format     -- A string providing the disassembly for this instruction.
5534 //               The value of an instruction's operand may be inserted
5535 //               by referring to it with a '$' prefix.
5536 // opcode     -- Three instruction opcodes may be provided.  These are referred
5537 //               to within an encode class as $primary, $secondary, and $tertiary
5538 //               respectively.  The primary opcode is commonly used to
5539 //               indicate the type of machine instruction, while secondary
5540 //               and tertiary are often used for prefix options or addressing
5541 //               modes.
5542 // ins_encode -- A list of encode classes with parameters. The encode class
5543 //               name must have been defined in an 'enc_class' specification
5544 //               in the encode section of the architecture description.
5545 
5546 //----------BSWAP-Instruction--------------------------------------------------
5547 instruct bytes_reverse_int(rRegI dst) %{
5548   match(Set dst (ReverseBytesI dst));
5549 
5550   format %{ "BSWAP  $dst" %}
5551   opcode(0x0F, 0xC8);
5552   ins_encode( OpcP, OpcSReg(dst) );
5553   ins_pipe( ialu_reg );
5554 %}
5555 
5556 instruct bytes_reverse_long(eRegL dst) %{
5557   match(Set dst (ReverseBytesL dst));
5558 
5559   format %{ "BSWAP  $dst.lo\n\t"
5560             "BSWAP  $dst.hi\n\t"
5561             "XCHG   $dst.lo $dst.hi" %}
5562 
5563   ins_cost(125);
5564   ins_encode( bswap_long_bytes(dst) );
5565   ins_pipe( ialu_reg_reg);
5566 %}
5567 
5568 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5569   match(Set dst (ReverseBytesUS dst));
5570   effect(KILL cr);
5571 
5572   format %{ "BSWAP  $dst\n\t" 
5573             "SHR    $dst,16\n\t" %}
5574   ins_encode %{
5575     __ bswapl($dst$$Register);
5576     __ shrl($dst$$Register, 16); 
5577   %}
5578   ins_pipe( ialu_reg );
5579 %}
5580 
5581 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5582   match(Set dst (ReverseBytesS dst));
5583   effect(KILL cr);
5584 
5585   format %{ "BSWAP  $dst\n\t" 
5586             "SAR    $dst,16\n\t" %}
5587   ins_encode %{
5588     __ bswapl($dst$$Register);
5589     __ sarl($dst$$Register, 16); 
5590   %}
5591   ins_pipe( ialu_reg );
5592 %}
5593 
5594 
5595 //---------- Zeros Count Instructions ------------------------------------------
5596 
5597 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5598   predicate(UseCountLeadingZerosInstruction);
5599   match(Set dst (CountLeadingZerosI src));
5600   effect(KILL cr);
5601 
5602   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5603   ins_encode %{
5604     __ lzcntl($dst$$Register, $src$$Register);
5605   %}
5606   ins_pipe(ialu_reg);
5607 %}
5608 
5609 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5610   predicate(!UseCountLeadingZerosInstruction);
5611   match(Set dst (CountLeadingZerosI src));
5612   effect(KILL cr);
5613 
5614   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5615             "JNZ    skip\n\t"
5616             "MOV    $dst, -1\n"
5617       "skip:\n\t"
5618             "NEG    $dst\n\t"
5619             "ADD    $dst, 31" %}
5620   ins_encode %{
5621     Register Rdst = $dst$$Register;
5622     Register Rsrc = $src$$Register;
5623     Label skip;
5624     __ bsrl(Rdst, Rsrc);
5625     __ jccb(Assembler::notZero, skip);
5626     __ movl(Rdst, -1);
5627     __ bind(skip);
5628     __ negl(Rdst);
5629     __ addl(Rdst, BitsPerInt - 1);
5630   %}
5631   ins_pipe(ialu_reg);
5632 %}
5633 
5634 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5635   predicate(UseCountLeadingZerosInstruction);
5636   match(Set dst (CountLeadingZerosL src));
5637   effect(TEMP dst, KILL cr);
5638 
5639   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5640             "JNC    done\n\t"
5641             "LZCNT  $dst, $src.lo\n\t"
5642             "ADD    $dst, 32\n"
5643       "done:" %}
5644   ins_encode %{
5645     Register Rdst = $dst$$Register;
5646     Register Rsrc = $src$$Register;
5647     Label done;
5648     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5649     __ jccb(Assembler::carryClear, done);
5650     __ lzcntl(Rdst, Rsrc);
5651     __ addl(Rdst, BitsPerInt);
5652     __ bind(done);
5653   %}
5654   ins_pipe(ialu_reg);
5655 %}
5656 
5657 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5658   predicate(!UseCountLeadingZerosInstruction);
5659   match(Set dst (CountLeadingZerosL src));
5660   effect(TEMP dst, KILL cr);
5661 
5662   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5663             "JZ     msw_is_zero\n\t"
5664             "ADD    $dst, 32\n\t"
5665             "JMP    not_zero\n"
5666       "msw_is_zero:\n\t"
5667             "BSR    $dst, $src.lo\n\t"
5668             "JNZ    not_zero\n\t"
5669             "MOV    $dst, -1\n"
5670       "not_zero:\n\t"
5671             "NEG    $dst\n\t"
5672             "ADD    $dst, 63\n" %}
5673  ins_encode %{
5674     Register Rdst = $dst$$Register;
5675     Register Rsrc = $src$$Register;
5676     Label msw_is_zero;
5677     Label not_zero;
5678     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5679     __ jccb(Assembler::zero, msw_is_zero);
5680     __ addl(Rdst, BitsPerInt);
5681     __ jmpb(not_zero);
5682     __ bind(msw_is_zero);
5683     __ bsrl(Rdst, Rsrc);
5684     __ jccb(Assembler::notZero, not_zero);
5685     __ movl(Rdst, -1);
5686     __ bind(not_zero);
5687     __ negl(Rdst);
5688     __ addl(Rdst, BitsPerLong - 1);
5689   %}
5690   ins_pipe(ialu_reg);
5691 %}
5692 
5693 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5694   match(Set dst (CountTrailingZerosI src));
5695   effect(KILL cr);
5696 
5697   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5698             "JNZ    done\n\t"
5699             "MOV    $dst, 32\n"
5700       "done:" %}
5701   ins_encode %{
5702     Register Rdst = $dst$$Register;
5703     Label done;
5704     __ bsfl(Rdst, $src$$Register);
5705     __ jccb(Assembler::notZero, done);
5706     __ movl(Rdst, BitsPerInt);
5707     __ bind(done);
5708   %}
5709   ins_pipe(ialu_reg);
5710 %}
5711 
5712 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5713   match(Set dst (CountTrailingZerosL src));
5714   effect(TEMP dst, KILL cr);
5715 
5716   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5717             "JNZ    done\n\t"
5718             "BSF    $dst, $src.hi\n\t"
5719             "JNZ    msw_not_zero\n\t"
5720             "MOV    $dst, 32\n"
5721       "msw_not_zero:\n\t"
5722             "ADD    $dst, 32\n"
5723       "done:" %}
5724   ins_encode %{
5725     Register Rdst = $dst$$Register;
5726     Register Rsrc = $src$$Register;
5727     Label msw_not_zero;
5728     Label done;
5729     __ bsfl(Rdst, Rsrc);
5730     __ jccb(Assembler::notZero, done);
5731     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5732     __ jccb(Assembler::notZero, msw_not_zero);
5733     __ movl(Rdst, BitsPerInt);
5734     __ bind(msw_not_zero);
5735     __ addl(Rdst, BitsPerInt);
5736     __ bind(done);
5737   %}
5738   ins_pipe(ialu_reg);
5739 %}
5740 
5741 
5742 //---------- Population Count Instructions -------------------------------------
5743 
5744 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5745   predicate(UsePopCountInstruction);
5746   match(Set dst (PopCountI src));
5747   effect(KILL cr);
5748 
5749   format %{ "POPCNT $dst, $src" %}
5750   ins_encode %{
5751     __ popcntl($dst$$Register, $src$$Register);
5752   %}
5753   ins_pipe(ialu_reg);
5754 %}
5755 
5756 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5757   predicate(UsePopCountInstruction);
5758   match(Set dst (PopCountI (LoadI mem)));
5759   effect(KILL cr);
5760 
5761   format %{ "POPCNT $dst, $mem" %}
5762   ins_encode %{
5763     __ popcntl($dst$$Register, $mem$$Address);
5764   %}
5765   ins_pipe(ialu_reg);
5766 %}
5767 
5768 // Note: Long.bitCount(long) returns an int.
5769 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5770   predicate(UsePopCountInstruction);
5771   match(Set dst (PopCountL src));
5772   effect(KILL cr, TEMP tmp, TEMP dst);
5773 
5774   format %{ "POPCNT $dst, $src.lo\n\t"
5775             "POPCNT $tmp, $src.hi\n\t"
5776             "ADD    $dst, $tmp" %}
5777   ins_encode %{
5778     __ popcntl($dst$$Register, $src$$Register);
5779     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5780     __ addl($dst$$Register, $tmp$$Register);
5781   %}
5782   ins_pipe(ialu_reg);
5783 %}
5784 
5785 // Note: Long.bitCount(long) returns an int.
5786 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5787   predicate(UsePopCountInstruction);
5788   match(Set dst (PopCountL (LoadL mem)));
5789   effect(KILL cr, TEMP tmp, TEMP dst);
5790 
5791   format %{ "POPCNT $dst, $mem\n\t"
5792             "POPCNT $tmp, $mem+4\n\t"
5793             "ADD    $dst, $tmp" %}
5794   ins_encode %{
5795     //__ popcntl($dst$$Register, $mem$$Address$$first);
5796     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5797     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5798     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5799     __ addl($dst$$Register, $tmp$$Register);
5800   %}
5801   ins_pipe(ialu_reg);
5802 %}
5803 
5804 
5805 //----------Load/Store/Move Instructions---------------------------------------
5806 //----------Load Instructions--------------------------------------------------
5807 // Load Byte (8bit signed)
5808 instruct loadB(xRegI dst, memory mem) %{
5809   match(Set dst (LoadB mem));
5810 
5811   ins_cost(125);
5812   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5813 
5814   ins_encode %{
5815     __ movsbl($dst$$Register, $mem$$Address);
5816   %}
5817 
5818   ins_pipe(ialu_reg_mem);
5819 %}
5820 
5821 // Load Byte (8bit signed) into Long Register
5822 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5823   match(Set dst (ConvI2L (LoadB mem)));
5824   effect(KILL cr);
5825 
5826   ins_cost(375);
5827   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5828             "MOV    $dst.hi,$dst.lo\n\t"
5829             "SAR    $dst.hi,7" %}
5830 
5831   ins_encode %{
5832     __ movsbl($dst$$Register, $mem$$Address);
5833     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5834     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5835   %}
5836 
5837   ins_pipe(ialu_reg_mem);
5838 %}
5839 
5840 // Load Unsigned Byte (8bit UNsigned)
5841 instruct loadUB(xRegI dst, memory mem) %{
5842   match(Set dst (LoadUB mem));
5843 
5844   ins_cost(125);
5845   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5846 
5847   ins_encode %{
5848     __ movzbl($dst$$Register, $mem$$Address);
5849   %}
5850 
5851   ins_pipe(ialu_reg_mem);
5852 %}
5853 
5854 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5855 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5856   match(Set dst (ConvI2L (LoadUB mem)));
5857   effect(KILL cr);
5858 
5859   ins_cost(250);
5860   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5861             "XOR    $dst.hi,$dst.hi" %}
5862 
5863   ins_encode %{
5864     Register Rdst = $dst$$Register;
5865     __ movzbl(Rdst, $mem$$Address);
5866     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5867   %}
5868 
5869   ins_pipe(ialu_reg_mem);
5870 %}
5871 
5872 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5873 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5874   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5875   effect(KILL cr);
5876 
5877   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5878             "XOR    $dst.hi,$dst.hi\n\t"
5879             "AND    $dst.lo,$mask" %}
5880   ins_encode %{
5881     Register Rdst = $dst$$Register;
5882     __ movzbl(Rdst, $mem$$Address);
5883     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5884     __ andl(Rdst, $mask$$constant);
5885   %}
5886   ins_pipe(ialu_reg_mem);
5887 %}
5888 
5889 // Load Short (16bit signed)
5890 instruct loadS(rRegI dst, memory mem) %{
5891   match(Set dst (LoadS mem));
5892 
5893   ins_cost(125);
5894   format %{ "MOVSX  $dst,$mem\t# short" %}
5895 
5896   ins_encode %{
5897     __ movswl($dst$$Register, $mem$$Address);
5898   %}
5899 
5900   ins_pipe(ialu_reg_mem);
5901 %}
5902 
5903 // Load Short (16 bit signed) to Byte (8 bit signed)
5904 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5905   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5906 
5907   ins_cost(125);
5908   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5909   ins_encode %{
5910     __ movsbl($dst$$Register, $mem$$Address);
5911   %}
5912   ins_pipe(ialu_reg_mem);
5913 %}
5914 
5915 // Load Short (16bit signed) into Long Register
5916 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5917   match(Set dst (ConvI2L (LoadS mem)));
5918   effect(KILL cr);
5919 
5920   ins_cost(375);
5921   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5922             "MOV    $dst.hi,$dst.lo\n\t"
5923             "SAR    $dst.hi,15" %}
5924 
5925   ins_encode %{
5926     __ movswl($dst$$Register, $mem$$Address);
5927     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5928     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5929   %}
5930 
5931   ins_pipe(ialu_reg_mem);
5932 %}
5933 
5934 // Load Unsigned Short/Char (16bit unsigned)
5935 instruct loadUS(rRegI dst, memory mem) %{
5936   match(Set dst (LoadUS mem));
5937 
5938   ins_cost(125);
5939   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5940 
5941   ins_encode %{
5942     __ movzwl($dst$$Register, $mem$$Address);
5943   %}
5944 
5945   ins_pipe(ialu_reg_mem);
5946 %}
5947 
5948 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5949 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5950   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5951 
5952   ins_cost(125);
5953   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5954   ins_encode %{
5955     __ movsbl($dst$$Register, $mem$$Address);
5956   %}
5957   ins_pipe(ialu_reg_mem);
5958 %}
5959 
5960 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5961 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5962   match(Set dst (ConvI2L (LoadUS mem)));
5963   effect(KILL cr);
5964 
5965   ins_cost(250);
5966   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
5967             "XOR    $dst.hi,$dst.hi" %}
5968 
5969   ins_encode %{
5970     __ movzwl($dst$$Register, $mem$$Address);
5971     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5972   %}
5973 
5974   ins_pipe(ialu_reg_mem);
5975 %}
5976 
5977 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5978 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5979   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5980   effect(KILL cr);
5981 
5982   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
5983             "XOR    $dst.hi,$dst.hi" %}
5984   ins_encode %{
5985     Register Rdst = $dst$$Register;
5986     __ movzbl(Rdst, $mem$$Address);
5987     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5988   %}
5989   ins_pipe(ialu_reg_mem);
5990 %}
5991 
5992 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
5993 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
5994   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5995   effect(KILL cr);
5996 
5997   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
5998             "XOR    $dst.hi,$dst.hi\n\t"
5999             "AND    $dst.lo,$mask" %}
6000   ins_encode %{
6001     Register Rdst = $dst$$Register;
6002     __ movzwl(Rdst, $mem$$Address);
6003     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6004     __ andl(Rdst, $mask$$constant);
6005   %}
6006   ins_pipe(ialu_reg_mem);
6007 %}
6008 
6009 // Load Integer
6010 instruct loadI(rRegI dst, memory mem) %{
6011   match(Set dst (LoadI mem));
6012 
6013   ins_cost(125);
6014   format %{ "MOV    $dst,$mem\t# int" %}
6015 
6016   ins_encode %{
6017     __ movl($dst$$Register, $mem$$Address);
6018   %}
6019 
6020   ins_pipe(ialu_reg_mem);
6021 %}
6022 
6023 // Load Integer (32 bit signed) to Byte (8 bit signed)
6024 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
6025   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6026 
6027   ins_cost(125);
6028   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6029   ins_encode %{
6030     __ movsbl($dst$$Register, $mem$$Address);
6031   %}
6032   ins_pipe(ialu_reg_mem);
6033 %}
6034 
6035 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6036 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
6037   match(Set dst (AndI (LoadI mem) mask));
6038 
6039   ins_cost(125);
6040   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6041   ins_encode %{
6042     __ movzbl($dst$$Register, $mem$$Address);
6043   %}
6044   ins_pipe(ialu_reg_mem);
6045 %}
6046 
6047 // Load Integer (32 bit signed) to Short (16 bit signed)
6048 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
6049   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6050 
6051   ins_cost(125);
6052   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6053   ins_encode %{
6054     __ movswl($dst$$Register, $mem$$Address);
6055   %}
6056   ins_pipe(ialu_reg_mem);
6057 %}
6058 
6059 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6060 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
6061   match(Set dst (AndI (LoadI mem) mask));
6062 
6063   ins_cost(125);
6064   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6065   ins_encode %{
6066     __ movzwl($dst$$Register, $mem$$Address);
6067   %}
6068   ins_pipe(ialu_reg_mem);
6069 %}
6070 
6071 // Load Integer into Long Register
6072 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6073   match(Set dst (ConvI2L (LoadI mem)));
6074   effect(KILL cr);
6075 
6076   ins_cost(375);
6077   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6078             "MOV    $dst.hi,$dst.lo\n\t"
6079             "SAR    $dst.hi,31" %}
6080 
6081   ins_encode %{
6082     __ movl($dst$$Register, $mem$$Address);
6083     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6084     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6085   %}
6086 
6087   ins_pipe(ialu_reg_mem);
6088 %}
6089 
6090 // Load Integer with mask 0xFF into Long Register
6091 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6092   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6093   effect(KILL cr);
6094 
6095   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6096             "XOR    $dst.hi,$dst.hi" %}
6097   ins_encode %{
6098     Register Rdst = $dst$$Register;
6099     __ movzbl(Rdst, $mem$$Address);
6100     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6101   %}
6102   ins_pipe(ialu_reg_mem);
6103 %}
6104 
6105 // Load Integer with mask 0xFFFF into Long Register
6106 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6107   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6108   effect(KILL cr);
6109 
6110   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6111             "XOR    $dst.hi,$dst.hi" %}
6112   ins_encode %{
6113     Register Rdst = $dst$$Register;
6114     __ movzwl(Rdst, $mem$$Address);
6115     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6116   %}
6117   ins_pipe(ialu_reg_mem);
6118 %}
6119 
6120 // Load Integer with 31-bit mask into Long Register
6121 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
6122   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6123   effect(KILL cr);
6124 
6125   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
6126             "XOR    $dst.hi,$dst.hi\n\t"
6127             "AND    $dst.lo,$mask" %}
6128   ins_encode %{
6129     Register Rdst = $dst$$Register;
6130     __ movl(Rdst, $mem$$Address);
6131     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6132     __ andl(Rdst, $mask$$constant);
6133   %}
6134   ins_pipe(ialu_reg_mem);
6135 %}
6136 
6137 // Load Unsigned Integer into Long Register
6138 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
6139   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
6140   effect(KILL cr);
6141 
6142   ins_cost(250);
6143   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6144             "XOR    $dst.hi,$dst.hi" %}
6145 
6146   ins_encode %{
6147     __ movl($dst$$Register, $mem$$Address);
6148     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6149   %}
6150 
6151   ins_pipe(ialu_reg_mem);
6152 %}
6153 
6154 // Load Long.  Cannot clobber address while loading, so restrict address
6155 // register to ESI
6156 instruct loadL(eRegL dst, load_long_memory mem) %{
6157   predicate(!((LoadLNode*)n)->require_atomic_access());
6158   match(Set dst (LoadL mem));
6159 
6160   ins_cost(250);
6161   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6162             "MOV    $dst.hi,$mem+4" %}
6163 
6164   ins_encode %{
6165     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
6166     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
6167     __ movl($dst$$Register, Amemlo);
6168     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6169   %}
6170 
6171   ins_pipe(ialu_reg_long_mem);
6172 %}
6173 
6174 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6175 // then store it down to the stack and reload on the int
6176 // side.
6177 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6178   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6179   match(Set dst (LoadL mem));
6180 
6181   ins_cost(200);
6182   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6183             "FISTp  $dst" %}
6184   ins_encode(enc_loadL_volatile(mem,dst));
6185   ins_pipe( fpu_reg_mem );
6186 %}
6187 
6188 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
6189   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6190   match(Set dst (LoadL mem));
6191   effect(TEMP tmp);
6192   ins_cost(180);
6193   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6194             "MOVSD  $dst,$tmp" %}
6195   ins_encode %{
6196     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6197     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
6198   %}
6199   ins_pipe( pipe_slow );
6200 %}
6201 
6202 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
6203   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6204   match(Set dst (LoadL mem));
6205   effect(TEMP tmp);
6206   ins_cost(160);
6207   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6208             "MOVD   $dst.lo,$tmp\n\t"
6209             "PSRLQ  $tmp,32\n\t"
6210             "MOVD   $dst.hi,$tmp" %}
6211   ins_encode %{
6212     __ movdbl($tmp$$XMMRegister, $mem$$Address);
6213     __ movdl($dst$$Register, $tmp$$XMMRegister);
6214     __ psrlq($tmp$$XMMRegister, 32);
6215     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
6216   %}
6217   ins_pipe( pipe_slow );
6218 %}
6219 
6220 // Load Range
6221 instruct loadRange(rRegI dst, memory mem) %{
6222   match(Set dst (LoadRange mem));
6223 
6224   ins_cost(125);
6225   format %{ "MOV    $dst,$mem" %}
6226   opcode(0x8B);
6227   ins_encode( OpcP, RegMem(dst,mem));
6228   ins_pipe( ialu_reg_mem );
6229 %}
6230 
6231 
6232 // Load Pointer
6233 instruct loadP(eRegP dst, memory mem) %{
6234   match(Set dst (LoadP mem));
6235 
6236   ins_cost(125);
6237   format %{ "MOV    $dst,$mem" %}
6238   opcode(0x8B);
6239   ins_encode( OpcP, RegMem(dst,mem));
6240   ins_pipe( ialu_reg_mem );
6241 %}
6242 
6243 // Load Klass Pointer
6244 instruct loadKlass(eRegP dst, memory mem) %{
6245   match(Set dst (LoadKlass mem));
6246 
6247   ins_cost(125);
6248   format %{ "MOV    $dst,$mem" %}
6249   opcode(0x8B);
6250   ins_encode( OpcP, RegMem(dst,mem));
6251   ins_pipe( ialu_reg_mem );
6252 %}
6253 
6254 // Load Double
6255 instruct loadDPR(regDPR dst, memory mem) %{
6256   predicate(UseSSE<=1);
6257   match(Set dst (LoadD mem));
6258 
6259   ins_cost(150);
6260   format %{ "FLD_D  ST,$mem\n\t"
6261             "FSTP   $dst" %}
6262   opcode(0xDD);               /* DD /0 */
6263   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6264               Pop_Reg_DPR(dst) );
6265   ins_pipe( fpu_reg_mem );
6266 %}
6267 
6268 // Load Double to XMM
6269 instruct loadD(regD dst, memory mem) %{
6270   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6271   match(Set dst (LoadD mem));
6272   ins_cost(145);
6273   format %{ "MOVSD  $dst,$mem" %}
6274   ins_encode %{
6275     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6276   %}
6277   ins_pipe( pipe_slow );
6278 %}
6279 
6280 instruct loadD_partial(regD dst, memory mem) %{
6281   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6282   match(Set dst (LoadD mem));
6283   ins_cost(145);
6284   format %{ "MOVLPD $dst,$mem" %}
6285   ins_encode %{
6286     __ movdbl ($dst$$XMMRegister, $mem$$Address);
6287   %}
6288   ins_pipe( pipe_slow );
6289 %}
6290 
6291 // Load to XMM register (single-precision floating point)
6292 // MOVSS instruction
6293 instruct loadF(regF dst, memory mem) %{
6294   predicate(UseSSE>=1);
6295   match(Set dst (LoadF mem));
6296   ins_cost(145);
6297   format %{ "MOVSS  $dst,$mem" %}
6298   ins_encode %{
6299     __ movflt ($dst$$XMMRegister, $mem$$Address);
6300   %}
6301   ins_pipe( pipe_slow );
6302 %}
6303 
6304 // Load Float
6305 instruct loadFPR(regFPR dst, memory mem) %{
6306   predicate(UseSSE==0);
6307   match(Set dst (LoadF mem));
6308 
6309   ins_cost(150);
6310   format %{ "FLD_S  ST,$mem\n\t"
6311             "FSTP   $dst" %}
6312   opcode(0xD9);               /* D9 /0 */
6313   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6314               Pop_Reg_FPR(dst) );
6315   ins_pipe( fpu_reg_mem );
6316 %}
6317 
6318 // Load Effective Address
6319 instruct leaP8(eRegP dst, indOffset8 mem) %{
6320   match(Set dst mem);
6321 
6322   ins_cost(110);
6323   format %{ "LEA    $dst,$mem" %}
6324   opcode(0x8D);
6325   ins_encode( OpcP, RegMem(dst,mem));
6326   ins_pipe( ialu_reg_reg_fat );
6327 %}
6328 
6329 instruct leaP32(eRegP dst, indOffset32 mem) %{
6330   match(Set dst mem);
6331 
6332   ins_cost(110);
6333   format %{ "LEA    $dst,$mem" %}
6334   opcode(0x8D);
6335   ins_encode( OpcP, RegMem(dst,mem));
6336   ins_pipe( ialu_reg_reg_fat );
6337 %}
6338 
6339 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6340   match(Set dst mem);
6341 
6342   ins_cost(110);
6343   format %{ "LEA    $dst,$mem" %}
6344   opcode(0x8D);
6345   ins_encode( OpcP, RegMem(dst,mem));
6346   ins_pipe( ialu_reg_reg_fat );
6347 %}
6348 
6349 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6350   match(Set dst mem);
6351 
6352   ins_cost(110);
6353   format %{ "LEA    $dst,$mem" %}
6354   opcode(0x8D);
6355   ins_encode( OpcP, RegMem(dst,mem));
6356   ins_pipe( ialu_reg_reg_fat );
6357 %}
6358 
6359 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6360   match(Set dst mem);
6361 
6362   ins_cost(110);
6363   format %{ "LEA    $dst,$mem" %}
6364   opcode(0x8D);
6365   ins_encode( OpcP, RegMem(dst,mem));
6366   ins_pipe( ialu_reg_reg_fat );
6367 %}
6368 
6369 // Load Constant
6370 instruct loadConI(rRegI dst, immI src) %{
6371   match(Set dst src);
6372 
6373   format %{ "MOV    $dst,$src" %}
6374   ins_encode( LdImmI(dst, src) );
6375   ins_pipe( ialu_reg_fat );
6376 %}
6377 
6378 // Load Constant zero
6379 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
6380   match(Set dst src);
6381   effect(KILL cr);
6382 
6383   ins_cost(50);
6384   format %{ "XOR    $dst,$dst" %}
6385   opcode(0x33);  /* + rd */
6386   ins_encode( OpcP, RegReg( dst, dst ) );
6387   ins_pipe( ialu_reg );
6388 %}
6389 
6390 instruct loadConP(eRegP dst, immP src) %{
6391   match(Set dst src);
6392 
6393   format %{ "MOV    $dst,$src" %}
6394   opcode(0xB8);  /* + rd */
6395   ins_encode( LdImmP(dst, src) );
6396   ins_pipe( ialu_reg_fat );
6397 %}
6398 
6399 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6400   match(Set dst src);
6401   effect(KILL cr);
6402   ins_cost(200);
6403   format %{ "MOV    $dst.lo,$src.lo\n\t"
6404             "MOV    $dst.hi,$src.hi" %}
6405   opcode(0xB8);
6406   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6407   ins_pipe( ialu_reg_long_fat );
6408 %}
6409 
6410 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6411   match(Set dst src);
6412   effect(KILL cr);
6413   ins_cost(150);
6414   format %{ "XOR    $dst.lo,$dst.lo\n\t"
6415             "XOR    $dst.hi,$dst.hi" %}
6416   opcode(0x33,0x33);
6417   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6418   ins_pipe( ialu_reg_long );
6419 %}
6420 
6421 // The instruction usage is guarded by predicate in operand immFPR().
6422 instruct loadConFPR(regFPR dst, immFPR con) %{
6423   match(Set dst con);
6424   ins_cost(125);
6425   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
6426             "FSTP   $dst" %}
6427   ins_encode %{
6428     __ fld_s($constantaddress($con));
6429     __ fstp_d($dst$$reg);
6430   %}
6431   ins_pipe(fpu_reg_con);
6432 %}
6433 
6434 // The instruction usage is guarded by predicate in operand immFPR0().
6435 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
6436   match(Set dst con);
6437   ins_cost(125);
6438   format %{ "FLDZ   ST\n\t"
6439             "FSTP   $dst" %}
6440   ins_encode %{
6441     __ fldz();
6442     __ fstp_d($dst$$reg);
6443   %}
6444   ins_pipe(fpu_reg_con);
6445 %}
6446 
6447 // The instruction usage is guarded by predicate in operand immFPR1().
6448 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
6449   match(Set dst con);
6450   ins_cost(125);
6451   format %{ "FLD1   ST\n\t"
6452             "FSTP   $dst" %}
6453   ins_encode %{
6454     __ fld1();
6455     __ fstp_d($dst$$reg);
6456   %}
6457   ins_pipe(fpu_reg_con);
6458 %}
6459 
6460 // The instruction usage is guarded by predicate in operand immF().
6461 instruct loadConF(regF dst, immF con) %{
6462   match(Set dst con);
6463   ins_cost(125);
6464   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
6465   ins_encode %{
6466     __ movflt($dst$$XMMRegister, $constantaddress($con));
6467   %}
6468   ins_pipe(pipe_slow);
6469 %}
6470 
6471 // The instruction usage is guarded by predicate in operand immF0().
6472 instruct loadConF0(regF dst, immF0 src) %{
6473   match(Set dst src);
6474   ins_cost(100);
6475   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6476   ins_encode %{
6477     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
6478   %}
6479   ins_pipe(pipe_slow);
6480 %}
6481 
6482 // The instruction usage is guarded by predicate in operand immDPR().
6483 instruct loadConDPR(regDPR dst, immDPR con) %{
6484   match(Set dst con);
6485   ins_cost(125);
6486 
6487   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
6488             "FSTP   $dst" %}
6489   ins_encode %{
6490     __ fld_d($constantaddress($con));
6491     __ fstp_d($dst$$reg);
6492   %}
6493   ins_pipe(fpu_reg_con);
6494 %}
6495 
6496 // The instruction usage is guarded by predicate in operand immDPR0().
6497 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
6498   match(Set dst con);
6499   ins_cost(125);
6500 
6501   format %{ "FLDZ   ST\n\t"
6502             "FSTP   $dst" %}
6503   ins_encode %{
6504     __ fldz();
6505     __ fstp_d($dst$$reg);
6506   %}
6507   ins_pipe(fpu_reg_con);
6508 %}
6509 
6510 // The instruction usage is guarded by predicate in operand immDPR1().
6511 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6512   match(Set dst con);
6513   ins_cost(125);
6514 
6515   format %{ "FLD1   ST\n\t"
6516             "FSTP   $dst" %}
6517   ins_encode %{
6518     __ fld1();
6519     __ fstp_d($dst$$reg);
6520   %}
6521   ins_pipe(fpu_reg_con);
6522 %}
6523 
6524 // The instruction usage is guarded by predicate in operand immD().
6525 instruct loadConD(regD dst, immD con) %{
6526   match(Set dst con);
6527   ins_cost(125);
6528   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6529   ins_encode %{
6530     __ movdbl($dst$$XMMRegister, $constantaddress($con));
6531   %}
6532   ins_pipe(pipe_slow);
6533 %}
6534 
6535 // The instruction usage is guarded by predicate in operand immD0().
6536 instruct loadConD0(regD dst, immD0 src) %{
6537   match(Set dst src);
6538   ins_cost(100);
6539   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6540   ins_encode %{
6541     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6542   %}
6543   ins_pipe( pipe_slow );
6544 %}
6545 
6546 // Load Stack Slot
6547 instruct loadSSI(rRegI dst, stackSlotI src) %{
6548   match(Set dst src);
6549   ins_cost(125);
6550 
6551   format %{ "MOV    $dst,$src" %}
6552   opcode(0x8B);
6553   ins_encode( OpcP, RegMem(dst,src));
6554   ins_pipe( ialu_reg_mem );
6555 %}
6556 
6557 instruct loadSSL(eRegL dst, stackSlotL src) %{
6558   match(Set dst src);
6559 
6560   ins_cost(200);
6561   format %{ "MOV    $dst,$src.lo\n\t"
6562             "MOV    $dst+4,$src.hi" %}
6563   opcode(0x8B, 0x8B);
6564   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6565   ins_pipe( ialu_mem_long_reg );
6566 %}
6567 
6568 // Load Stack Slot
6569 instruct loadSSP(eRegP dst, stackSlotP src) %{
6570   match(Set dst src);
6571   ins_cost(125);
6572 
6573   format %{ "MOV    $dst,$src" %}
6574   opcode(0x8B);
6575   ins_encode( OpcP, RegMem(dst,src));
6576   ins_pipe( ialu_reg_mem );
6577 %}
6578 
6579 // Load Stack Slot
6580 instruct loadSSF(regFPR dst, stackSlotF src) %{
6581   match(Set dst src);
6582   ins_cost(125);
6583 
6584   format %{ "FLD_S  $src\n\t"
6585             "FSTP   $dst" %}
6586   opcode(0xD9);               /* D9 /0, FLD m32real */
6587   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6588               Pop_Reg_FPR(dst) );
6589   ins_pipe( fpu_reg_mem );
6590 %}
6591 
6592 // Load Stack Slot
6593 instruct loadSSD(regDPR dst, stackSlotD src) %{
6594   match(Set dst src);
6595   ins_cost(125);
6596 
6597   format %{ "FLD_D  $src\n\t"
6598             "FSTP   $dst" %}
6599   opcode(0xDD);               /* DD /0, FLD m64real */
6600   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6601               Pop_Reg_DPR(dst) );
6602   ins_pipe( fpu_reg_mem );
6603 %}
6604 
6605 // Prefetch instructions.
6606 // Must be safe to execute with invalid address (cannot fault).
6607 
6608 instruct prefetchr0( memory mem ) %{
6609   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6610   match(PrefetchRead mem);
6611   ins_cost(0);
6612   size(0);
6613   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6614   ins_encode();
6615   ins_pipe(empty);
6616 %}
6617 
6618 instruct prefetchr( memory mem ) %{
6619   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6620   match(PrefetchRead mem);
6621   ins_cost(100);
6622 
6623   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6624   ins_encode %{
6625     __ prefetchr($mem$$Address);
6626   %}
6627   ins_pipe(ialu_mem);
6628 %}
6629 
6630 instruct prefetchrNTA( memory mem ) %{
6631   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6632   match(PrefetchRead mem);
6633   ins_cost(100);
6634 
6635   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6636   ins_encode %{
6637     __ prefetchnta($mem$$Address);
6638   %}
6639   ins_pipe(ialu_mem);
6640 %}
6641 
6642 instruct prefetchrT0( memory mem ) %{
6643   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6644   match(PrefetchRead mem);
6645   ins_cost(100);
6646 
6647   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6648   ins_encode %{
6649     __ prefetcht0($mem$$Address);
6650   %}
6651   ins_pipe(ialu_mem);
6652 %}
6653 
6654 instruct prefetchrT2( memory mem ) %{
6655   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6656   match(PrefetchRead mem);
6657   ins_cost(100);
6658 
6659   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6660   ins_encode %{
6661     __ prefetcht2($mem$$Address);
6662   %}
6663   ins_pipe(ialu_mem);
6664 %}
6665 
6666 instruct prefetchw0( memory mem ) %{
6667   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6668   match(PrefetchWrite mem);
6669   ins_cost(0);
6670   size(0);
6671   format %{ "Prefetch (non-SSE is empty encoding)" %}
6672   ins_encode();
6673   ins_pipe(empty);
6674 %}
6675 
6676 instruct prefetchw( memory mem ) %{
6677   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6678   match( PrefetchWrite mem );
6679   ins_cost(100);
6680 
6681   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6682   ins_encode %{
6683     __ prefetchw($mem$$Address);
6684   %}
6685   ins_pipe(ialu_mem);
6686 %}
6687 
6688 instruct prefetchwNTA( memory mem ) %{
6689   predicate(UseSSE>=1);
6690   match(PrefetchWrite mem);
6691   ins_cost(100);
6692 
6693   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6694   ins_encode %{
6695     __ prefetchnta($mem$$Address);
6696   %}
6697   ins_pipe(ialu_mem);
6698 %}
6699 
6700 // Prefetch instructions for allocation.
6701 
6702 instruct prefetchAlloc0( memory mem ) %{
6703   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6704   match(PrefetchAllocation mem);
6705   ins_cost(0);
6706   size(0);
6707   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6708   ins_encode();
6709   ins_pipe(empty);
6710 %}
6711 
6712 instruct prefetchAlloc( memory mem ) %{
6713   predicate(AllocatePrefetchInstr==3);
6714   match( PrefetchAllocation mem );
6715   ins_cost(100);
6716 
6717   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6718   ins_encode %{
6719     __ prefetchw($mem$$Address);
6720   %}
6721   ins_pipe(ialu_mem);
6722 %}
6723 
6724 instruct prefetchAllocNTA( memory mem ) %{
6725   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6726   match(PrefetchAllocation mem);
6727   ins_cost(100);
6728 
6729   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6730   ins_encode %{
6731     __ prefetchnta($mem$$Address);
6732   %}
6733   ins_pipe(ialu_mem);
6734 %}
6735 
6736 instruct prefetchAllocT0( memory mem ) %{
6737   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6738   match(PrefetchAllocation mem);
6739   ins_cost(100);
6740 
6741   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6742   ins_encode %{
6743     __ prefetcht0($mem$$Address);
6744   %}
6745   ins_pipe(ialu_mem);
6746 %}
6747 
6748 instruct prefetchAllocT2( memory mem ) %{
6749   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6750   match(PrefetchAllocation mem);
6751   ins_cost(100);
6752 
6753   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6754   ins_encode %{
6755     __ prefetcht2($mem$$Address);
6756   %}
6757   ins_pipe(ialu_mem);
6758 %}
6759 
6760 //----------Store Instructions-------------------------------------------------
6761 
6762 // Store Byte
6763 instruct storeB(memory mem, xRegI src) %{
6764   match(Set mem (StoreB mem src));
6765 
6766   ins_cost(125);
6767   format %{ "MOV8   $mem,$src" %}
6768   opcode(0x88);
6769   ins_encode( OpcP, RegMem( src, mem ) );
6770   ins_pipe( ialu_mem_reg );
6771 %}
6772 
6773 // Store Char/Short
6774 instruct storeC(memory mem, rRegI src) %{
6775   match(Set mem (StoreC mem src));
6776 
6777   ins_cost(125);
6778   format %{ "MOV16  $mem,$src" %}
6779   opcode(0x89, 0x66);
6780   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6781   ins_pipe( ialu_mem_reg );
6782 %}
6783 
6784 // Store Integer
6785 instruct storeI(memory mem, rRegI src) %{
6786   match(Set mem (StoreI mem src));
6787 
6788   ins_cost(125);
6789   format %{ "MOV    $mem,$src" %}
6790   opcode(0x89);
6791   ins_encode( OpcP, RegMem( src, mem ) );
6792   ins_pipe( ialu_mem_reg );
6793 %}
6794 
6795 // Store Long
6796 instruct storeL(long_memory mem, eRegL src) %{
6797   predicate(!((StoreLNode*)n)->require_atomic_access());
6798   match(Set mem (StoreL mem src));
6799 
6800   ins_cost(200);
6801   format %{ "MOV    $mem,$src.lo\n\t"
6802             "MOV    $mem+4,$src.hi" %}
6803   opcode(0x89, 0x89);
6804   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6805   ins_pipe( ialu_mem_long_reg );
6806 %}
6807 
6808 // Store Long to Integer
6809 instruct storeL2I(memory mem, eRegL src) %{
6810   match(Set mem (StoreI mem (ConvL2I src)));
6811 
6812   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6813   ins_encode %{
6814     __ movl($mem$$Address, $src$$Register);
6815   %}
6816   ins_pipe(ialu_mem_reg);
6817 %}
6818 
6819 // Volatile Store Long.  Must be atomic, so move it into
6820 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6821 // target address before the store (for null-ptr checks)
6822 // so the memory operand is used twice in the encoding.
6823 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6824   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6825   match(Set mem (StoreL mem src));
6826   effect( KILL cr );
6827   ins_cost(400);
6828   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6829             "FILD   $src\n\t"
6830             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6831   opcode(0x3B);
6832   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6833   ins_pipe( fpu_reg_mem );
6834 %}
6835 
6836 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6837   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6838   match(Set mem (StoreL mem src));
6839   effect( TEMP tmp, KILL cr );
6840   ins_cost(380);
6841   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6842             "MOVSD  $tmp,$src\n\t"
6843             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6844   ins_encode %{
6845     __ cmpl(rax, $mem$$Address);
6846     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6847     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6848   %}
6849   ins_pipe( pipe_slow );
6850 %}
6851 
6852 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6853   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6854   match(Set mem (StoreL mem src));
6855   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6856   ins_cost(360);
6857   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6858             "MOVD   $tmp,$src.lo\n\t"
6859             "MOVD   $tmp2,$src.hi\n\t"
6860             "PUNPCKLDQ $tmp,$tmp2\n\t"
6861             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6862   ins_encode %{
6863     __ cmpl(rax, $mem$$Address);
6864     __ movdl($tmp$$XMMRegister, $src$$Register);
6865     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6866     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6867     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6868   %}
6869   ins_pipe( pipe_slow );
6870 %}
6871 
6872 // Store Pointer; for storing unknown oops and raw pointers
6873 instruct storeP(memory mem, anyRegP src) %{
6874   match(Set mem (StoreP mem src));
6875 
6876   ins_cost(125);
6877   format %{ "MOV    $mem,$src" %}
6878   opcode(0x89);
6879   ins_encode( OpcP, RegMem( src, mem ) );
6880   ins_pipe( ialu_mem_reg );
6881 %}
6882 
6883 // Store Integer Immediate
6884 instruct storeImmI(memory mem, immI src) %{
6885   match(Set mem (StoreI mem src));
6886 
6887   ins_cost(150);
6888   format %{ "MOV    $mem,$src" %}
6889   opcode(0xC7);               /* C7 /0 */
6890   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6891   ins_pipe( ialu_mem_imm );
6892 %}
6893 
6894 // Store Short/Char Immediate
6895 instruct storeImmI16(memory mem, immI16 src) %{
6896   predicate(UseStoreImmI16);
6897   match(Set mem (StoreC mem src));
6898 
6899   ins_cost(150);
6900   format %{ "MOV16  $mem,$src" %}
6901   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6902   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6903   ins_pipe( ialu_mem_imm );
6904 %}
6905 
6906 // Store Pointer Immediate; null pointers or constant oops that do not
6907 // need card-mark barriers.
6908 instruct storeImmP(memory mem, immP src) %{
6909   match(Set mem (StoreP mem src));
6910 
6911   ins_cost(150);
6912   format %{ "MOV    $mem,$src" %}
6913   opcode(0xC7);               /* C7 /0 */
6914   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6915   ins_pipe( ialu_mem_imm );
6916 %}
6917 
6918 // Store Byte Immediate
6919 instruct storeImmB(memory mem, immI8 src) %{
6920   match(Set mem (StoreB mem src));
6921 
6922   ins_cost(150);
6923   format %{ "MOV8   $mem,$src" %}
6924   opcode(0xC6);               /* C6 /0 */
6925   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6926   ins_pipe( ialu_mem_imm );
6927 %}
6928 
6929 // Store CMS card-mark Immediate
6930 instruct storeImmCM(memory mem, immI8 src) %{
6931   match(Set mem (StoreCM mem src));
6932 
6933   ins_cost(150);
6934   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6935   opcode(0xC6);               /* C6 /0 */
6936   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6937   ins_pipe( ialu_mem_imm );
6938 %}
6939 
6940 // Store Double
6941 instruct storeDPR( memory mem, regDPR1 src) %{
6942   predicate(UseSSE<=1);
6943   match(Set mem (StoreD mem src));
6944 
6945   ins_cost(100);
6946   format %{ "FST_D  $mem,$src" %}
6947   opcode(0xDD);       /* DD /2 */
6948   ins_encode( enc_FPR_store(mem,src) );
6949   ins_pipe( fpu_mem_reg );
6950 %}
6951 
6952 // Store double does rounding on x86
6953 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6954   predicate(UseSSE<=1);
6955   match(Set mem (StoreD mem (RoundDouble src)));
6956 
6957   ins_cost(100);
6958   format %{ "FST_D  $mem,$src\t# round" %}
6959   opcode(0xDD);       /* DD /2 */
6960   ins_encode( enc_FPR_store(mem,src) );
6961   ins_pipe( fpu_mem_reg );
6962 %}
6963 
6964 // Store XMM register to memory (double-precision floating points)
6965 // MOVSD instruction
6966 instruct storeD(memory mem, regD src) %{
6967   predicate(UseSSE>=2);
6968   match(Set mem (StoreD mem src));
6969   ins_cost(95);
6970   format %{ "MOVSD  $mem,$src" %}
6971   ins_encode %{
6972     __ movdbl($mem$$Address, $src$$XMMRegister);
6973   %}
6974   ins_pipe( pipe_slow );
6975 %}
6976 
6977 // Store XMM register to memory (single-precision floating point)
6978 // MOVSS instruction
6979 instruct storeF(memory mem, regF src) %{
6980   predicate(UseSSE>=1);
6981   match(Set mem (StoreF mem src));
6982   ins_cost(95);
6983   format %{ "MOVSS  $mem,$src" %}
6984   ins_encode %{
6985     __ movflt($mem$$Address, $src$$XMMRegister);
6986   %}
6987   ins_pipe( pipe_slow );
6988 %}
6989 
6990 // Store Float
6991 instruct storeFPR( memory mem, regFPR1 src) %{
6992   predicate(UseSSE==0);
6993   match(Set mem (StoreF mem src));
6994 
6995   ins_cost(100);
6996   format %{ "FST_S  $mem,$src" %}
6997   opcode(0xD9);       /* D9 /2 */
6998   ins_encode( enc_FPR_store(mem,src) );
6999   ins_pipe( fpu_mem_reg );
7000 %}
7001 
7002 // Store Float does rounding on x86
7003 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
7004   predicate(UseSSE==0);
7005   match(Set mem (StoreF mem (RoundFloat src)));
7006 
7007   ins_cost(100);
7008   format %{ "FST_S  $mem,$src\t# round" %}
7009   opcode(0xD9);       /* D9 /2 */
7010   ins_encode( enc_FPR_store(mem,src) );
7011   ins_pipe( fpu_mem_reg );
7012 %}
7013 
7014 // Store Float does rounding on x86
7015 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
7016   predicate(UseSSE<=1);
7017   match(Set mem (StoreF mem (ConvD2F src)));
7018 
7019   ins_cost(100);
7020   format %{ "FST_S  $mem,$src\t# D-round" %}
7021   opcode(0xD9);       /* D9 /2 */
7022   ins_encode( enc_FPR_store(mem,src) );
7023   ins_pipe( fpu_mem_reg );
7024 %}
7025 
7026 // Store immediate Float value (it is faster than store from FPU register)
7027 // The instruction usage is guarded by predicate in operand immFPR().
7028 instruct storeFPR_imm( memory mem, immFPR src) %{
7029   match(Set mem (StoreF mem src));
7030 
7031   ins_cost(50);
7032   format %{ "MOV    $mem,$src\t# store float" %}
7033   opcode(0xC7);               /* C7 /0 */
7034   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
7035   ins_pipe( ialu_mem_imm );
7036 %}
7037 
7038 // Store immediate Float value (it is faster than store from XMM register)
7039 // The instruction usage is guarded by predicate in operand immF().
7040 instruct storeF_imm( memory mem, immF src) %{
7041   match(Set mem (StoreF mem src));
7042 
7043   ins_cost(50);
7044   format %{ "MOV    $mem,$src\t# store float" %}
7045   opcode(0xC7);               /* C7 /0 */
7046   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7047   ins_pipe( ialu_mem_imm );
7048 %}
7049 
7050 // Store Integer to stack slot
7051 instruct storeSSI(stackSlotI dst, rRegI src) %{
7052   match(Set dst src);
7053 
7054   ins_cost(100);
7055   format %{ "MOV    $dst,$src" %}
7056   opcode(0x89);
7057   ins_encode( OpcPRegSS( dst, src ) );
7058   ins_pipe( ialu_mem_reg );
7059 %}
7060 
7061 // Store Integer to stack slot
7062 instruct storeSSP(stackSlotP dst, eRegP src) %{
7063   match(Set dst src);
7064 
7065   ins_cost(100);
7066   format %{ "MOV    $dst,$src" %}
7067   opcode(0x89);
7068   ins_encode( OpcPRegSS( dst, src ) );
7069   ins_pipe( ialu_mem_reg );
7070 %}
7071 
7072 // Store Long to stack slot
7073 instruct storeSSL(stackSlotL dst, eRegL src) %{
7074   match(Set dst src);
7075 
7076   ins_cost(200);
7077   format %{ "MOV    $dst,$src.lo\n\t"
7078             "MOV    $dst+4,$src.hi" %}
7079   opcode(0x89, 0x89);
7080   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7081   ins_pipe( ialu_mem_long_reg );
7082 %}
7083 
7084 //----------MemBar Instructions-----------------------------------------------
7085 // Memory barrier flavors
7086 
7087 instruct membar_acquire() %{
7088   match(MemBarAcquire);
7089   ins_cost(400);
7090 
7091   size(0);
7092   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7093   ins_encode();
7094   ins_pipe(empty);
7095 %}
7096 
7097 instruct membar_acquire_lock() %{
7098   match(MemBarAcquireLock);
7099   ins_cost(0);
7100 
7101   size(0);
7102   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7103   ins_encode( );
7104   ins_pipe(empty);
7105 %}
7106 
7107 instruct membar_release() %{
7108   match(MemBarRelease);
7109   ins_cost(400);
7110 
7111   size(0);
7112   format %{ "MEMBAR-release ! (empty encoding)" %}
7113   ins_encode( );
7114   ins_pipe(empty);
7115 %}
7116 
7117 instruct membar_release_lock() %{
7118   match(MemBarReleaseLock);
7119   ins_cost(0);
7120 
7121   size(0);
7122   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7123   ins_encode( );
7124   ins_pipe(empty);
7125 %}
7126 
7127 instruct membar_volatile(eFlagsReg cr) %{
7128   match(MemBarVolatile);
7129   effect(KILL cr);
7130   ins_cost(400);
7131 
7132   format %{ 
7133     $$template
7134     if (os::is_MP()) {
7135       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7136     } else {
7137       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7138     }
7139   %}
7140   ins_encode %{
7141     __ membar(Assembler::StoreLoad);
7142   %}
7143   ins_pipe(pipe_slow);
7144 %}
7145 
7146 instruct unnecessary_membar_volatile() %{
7147   match(MemBarVolatile);
7148   predicate(Matcher::post_store_load_barrier(n));
7149   ins_cost(0);
7150 
7151   size(0);
7152   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7153   ins_encode( );
7154   ins_pipe(empty);
7155 %}
7156 
7157 instruct membar_storestore() %{
7158   match(MemBarStoreStore);
7159   ins_cost(0);
7160 
7161   size(0);
7162   format %{ "MEMBAR-storestore (empty encoding)" %}
7163   ins_encode( );
7164   ins_pipe(empty);
7165 %}
7166 
7167 //----------Move Instructions--------------------------------------------------
7168 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7169   match(Set dst (CastX2P src));
7170   format %{ "# X2P  $dst, $src" %}
7171   ins_encode( /*empty encoding*/ );
7172   ins_cost(0);
7173   ins_pipe(empty);
7174 %}
7175 
7176 instruct castP2X(rRegI dst, eRegP src ) %{
7177   match(Set dst (CastP2X src));
7178   ins_cost(50);
7179   format %{ "MOV    $dst, $src\t# CastP2X" %}
7180   ins_encode( enc_Copy( dst, src) );
7181   ins_pipe( ialu_reg_reg );
7182 %}
7183 
7184 //----------Conditional Move---------------------------------------------------
7185 // Conditional move
7186 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
7187   predicate(!VM_Version::supports_cmov() );
7188   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7189   ins_cost(200);
7190   format %{ "J$cop,us skip\t# signed cmove\n\t"
7191             "MOV    $dst,$src\n"
7192       "skip:" %}
7193   ins_encode %{
7194     Label Lskip;
7195     // Invert sense of branch from sense of CMOV
7196     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7197     __ movl($dst$$Register, $src$$Register);
7198     __ bind(Lskip);
7199   %}
7200   ins_pipe( pipe_cmov_reg );
7201 %}
7202 
7203 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
7204   predicate(!VM_Version::supports_cmov() );
7205   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7206   ins_cost(200);
7207   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
7208             "MOV    $dst,$src\n"
7209       "skip:" %}
7210   ins_encode %{
7211     Label Lskip;
7212     // Invert sense of branch from sense of CMOV
7213     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7214     __ movl($dst$$Register, $src$$Register);
7215     __ bind(Lskip);
7216   %}
7217   ins_pipe( pipe_cmov_reg );
7218 %}
7219 
7220 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
7221   predicate(VM_Version::supports_cmov() );
7222   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7223   ins_cost(200);
7224   format %{ "CMOV$cop $dst,$src" %}
7225   opcode(0x0F,0x40);
7226   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7227   ins_pipe( pipe_cmov_reg );
7228 %}
7229 
7230 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
7231   predicate(VM_Version::supports_cmov() );
7232   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7233   ins_cost(200);
7234   format %{ "CMOV$cop $dst,$src" %}
7235   opcode(0x0F,0x40);
7236   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7237   ins_pipe( pipe_cmov_reg );
7238 %}
7239 
7240 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
7241   predicate(VM_Version::supports_cmov() );
7242   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7243   ins_cost(200);
7244   expand %{
7245     cmovI_regU(cop, cr, dst, src);
7246   %}
7247 %}
7248 
7249 // Conditional move
7250 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
7251   predicate(VM_Version::supports_cmov() );
7252   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7253   ins_cost(250);
7254   format %{ "CMOV$cop $dst,$src" %}
7255   opcode(0x0F,0x40);
7256   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7257   ins_pipe( pipe_cmov_mem );
7258 %}
7259 
7260 // Conditional move
7261 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
7262   predicate(VM_Version::supports_cmov() );
7263   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7264   ins_cost(250);
7265   format %{ "CMOV$cop $dst,$src" %}
7266   opcode(0x0F,0x40);
7267   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7268   ins_pipe( pipe_cmov_mem );
7269 %}
7270 
7271 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
7272   predicate(VM_Version::supports_cmov() );
7273   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7274   ins_cost(250);
7275   expand %{
7276     cmovI_memU(cop, cr, dst, src);
7277   %}
7278 %}
7279 
7280 // Conditional move
7281 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7282   predicate(VM_Version::supports_cmov() );
7283   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7284   ins_cost(200);
7285   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7286   opcode(0x0F,0x40);
7287   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7288   ins_pipe( pipe_cmov_reg );
7289 %}
7290 
7291 // Conditional move (non-P6 version)
7292 // Note:  a CMoveP is generated for  stubs and native wrappers
7293 //        regardless of whether we are on a P6, so we
7294 //        emulate a cmov here
7295 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7296   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7297   ins_cost(300);
7298   format %{ "Jn$cop   skip\n\t"
7299           "MOV    $dst,$src\t# pointer\n"
7300       "skip:" %}
7301   opcode(0x8b);
7302   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7303   ins_pipe( pipe_cmov_reg );
7304 %}
7305 
7306 // Conditional move
7307 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7308   predicate(VM_Version::supports_cmov() );
7309   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7310   ins_cost(200);
7311   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7312   opcode(0x0F,0x40);
7313   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7314   ins_pipe( pipe_cmov_reg );
7315 %}
7316 
7317 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7318   predicate(VM_Version::supports_cmov() );
7319   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7320   ins_cost(200);
7321   expand %{
7322     cmovP_regU(cop, cr, dst, src);
7323   %}
7324 %}
7325 
7326 // DISABLED: Requires the ADLC to emit a bottom_type call that
7327 // correctly meets the two pointer arguments; one is an incoming
7328 // register but the other is a memory operand.  ALSO appears to
7329 // be buggy with implicit null checks.
7330 //
7331 //// Conditional move
7332 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7333 //  predicate(VM_Version::supports_cmov() );
7334 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7335 //  ins_cost(250);
7336 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7337 //  opcode(0x0F,0x40);
7338 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7339 //  ins_pipe( pipe_cmov_mem );
7340 //%}
7341 //
7342 //// Conditional move
7343 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7344 //  predicate(VM_Version::supports_cmov() );
7345 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7346 //  ins_cost(250);
7347 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7348 //  opcode(0x0F,0x40);
7349 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7350 //  ins_pipe( pipe_cmov_mem );
7351 //%}
7352 
7353 // Conditional move
7354 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
7355   predicate(UseSSE<=1);
7356   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7357   ins_cost(200);
7358   format %{ "FCMOV$cop $dst,$src\t# double" %}
7359   opcode(0xDA);
7360   ins_encode( enc_cmov_dpr(cop,src) );
7361   ins_pipe( pipe_cmovDPR_reg );
7362 %}
7363 
7364 // Conditional move
7365 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
7366   predicate(UseSSE==0);
7367   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7368   ins_cost(200);
7369   format %{ "FCMOV$cop $dst,$src\t# float" %}
7370   opcode(0xDA);
7371   ins_encode( enc_cmov_dpr(cop,src) );
7372   ins_pipe( pipe_cmovDPR_reg );
7373 %}
7374 
7375 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7376 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
7377   predicate(UseSSE<=1);
7378   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7379   ins_cost(200);
7380   format %{ "Jn$cop   skip\n\t"
7381             "MOV    $dst,$src\t# double\n"
7382       "skip:" %}
7383   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7384   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
7385   ins_pipe( pipe_cmovDPR_reg );
7386 %}
7387 
7388 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7389 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
7390   predicate(UseSSE==0);
7391   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7392   ins_cost(200);
7393   format %{ "Jn$cop    skip\n\t"
7394             "MOV    $dst,$src\t# float\n"
7395       "skip:" %}
7396   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7397   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
7398   ins_pipe( pipe_cmovDPR_reg );
7399 %}
7400 
7401 // No CMOVE with SSE/SSE2
7402 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7403   predicate (UseSSE>=1);
7404   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7405   ins_cost(200);
7406   format %{ "Jn$cop   skip\n\t"
7407             "MOVSS  $dst,$src\t# float\n"
7408       "skip:" %}
7409   ins_encode %{
7410     Label skip;
7411     // Invert sense of branch from sense of CMOV
7412     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7413     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7414     __ bind(skip);
7415   %}
7416   ins_pipe( pipe_slow );
7417 %}
7418 
7419 // No CMOVE with SSE/SSE2
7420 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7421   predicate (UseSSE>=2);
7422   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7423   ins_cost(200);
7424   format %{ "Jn$cop   skip\n\t"
7425             "MOVSD  $dst,$src\t# float\n"
7426       "skip:" %}
7427   ins_encode %{
7428     Label skip;
7429     // Invert sense of branch from sense of CMOV
7430     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7431     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7432     __ bind(skip);
7433   %}
7434   ins_pipe( pipe_slow );
7435 %}
7436 
7437 // unsigned version
7438 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
7439   predicate (UseSSE>=1);
7440   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7441   ins_cost(200);
7442   format %{ "Jn$cop   skip\n\t"
7443             "MOVSS  $dst,$src\t# float\n"
7444       "skip:" %}
7445   ins_encode %{
7446     Label skip;
7447     // Invert sense of branch from sense of CMOV
7448     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7449     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7450     __ bind(skip);
7451   %}
7452   ins_pipe( pipe_slow );
7453 %}
7454 
7455 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
7456   predicate (UseSSE>=1);
7457   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7458   ins_cost(200);
7459   expand %{
7460     fcmovF_regU(cop, cr, dst, src);
7461   %}
7462 %}
7463 
7464 // unsigned version
7465 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
7466   predicate (UseSSE>=2);
7467   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7468   ins_cost(200);
7469   format %{ "Jn$cop   skip\n\t"
7470             "MOVSD  $dst,$src\t# float\n"
7471       "skip:" %}
7472   ins_encode %{
7473     Label skip;
7474     // Invert sense of branch from sense of CMOV
7475     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7476     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7477     __ bind(skip);
7478   %}
7479   ins_pipe( pipe_slow );
7480 %}
7481 
7482 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
7483   predicate (UseSSE>=2);
7484   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7485   ins_cost(200);
7486   expand %{
7487     fcmovD_regU(cop, cr, dst, src);
7488   %}
7489 %}
7490 
7491 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7492   predicate(VM_Version::supports_cmov() );
7493   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7494   ins_cost(200);
7495   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7496             "CMOV$cop $dst.hi,$src.hi" %}
7497   opcode(0x0F,0x40);
7498   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7499   ins_pipe( pipe_cmov_reg_long );
7500 %}
7501 
7502 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7503   predicate(VM_Version::supports_cmov() );
7504   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7505   ins_cost(200);
7506   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7507             "CMOV$cop $dst.hi,$src.hi" %}
7508   opcode(0x0F,0x40);
7509   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7510   ins_pipe( pipe_cmov_reg_long );
7511 %}
7512 
7513 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7514   predicate(VM_Version::supports_cmov() );
7515   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7516   ins_cost(200);
7517   expand %{
7518     cmovL_regU(cop, cr, dst, src);
7519   %}
7520 %}
7521 
7522 //----------Arithmetic Instructions--------------------------------------------
7523 //----------Addition Instructions----------------------------------------------
7524 
7525 // Integer Addition Instructions
7526 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7527   match(Set dst (AddI dst src));
7528   effect(KILL cr);
7529 
7530   size(2);
7531   format %{ "ADD    $dst,$src" %}
7532   opcode(0x03);
7533   ins_encode( OpcP, RegReg( dst, src) );
7534   ins_pipe( ialu_reg_reg );
7535 %}
7536 
7537 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7538   match(Set dst (AddI dst src));
7539   effect(KILL cr);
7540 
7541   format %{ "ADD    $dst,$src" %}
7542   opcode(0x81, 0x00); /* /0 id */
7543   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7544   ins_pipe( ialu_reg );
7545 %}
7546 
7547 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7548   predicate(UseIncDec);
7549   match(Set dst (AddI dst src));
7550   effect(KILL cr);
7551 
7552   size(1);
7553   format %{ "INC    $dst" %}
7554   opcode(0x40); /*  */
7555   ins_encode( Opc_plus( primary, dst ) );
7556   ins_pipe( ialu_reg );
7557 %}
7558 
7559 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7560   match(Set dst (AddI src0 src1));
7561   ins_cost(110);
7562 
7563   format %{ "LEA    $dst,[$src0 + $src1]" %}
7564   opcode(0x8D); /* 0x8D /r */
7565   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7566   ins_pipe( ialu_reg_reg );
7567 %}
7568 
7569 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7570   match(Set dst (AddP src0 src1));
7571   ins_cost(110);
7572 
7573   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7574   opcode(0x8D); /* 0x8D /r */
7575   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7576   ins_pipe( ialu_reg_reg );
7577 %}
7578 
7579 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7580   predicate(UseIncDec);
7581   match(Set dst (AddI dst src));
7582   effect(KILL cr);
7583 
7584   size(1);
7585   format %{ "DEC    $dst" %}
7586   opcode(0x48); /*  */
7587   ins_encode( Opc_plus( primary, dst ) );
7588   ins_pipe( ialu_reg );
7589 %}
7590 
7591 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7592   match(Set dst (AddP dst src));
7593   effect(KILL cr);
7594 
7595   size(2);
7596   format %{ "ADD    $dst,$src" %}
7597   opcode(0x03);
7598   ins_encode( OpcP, RegReg( dst, src) );
7599   ins_pipe( ialu_reg_reg );
7600 %}
7601 
7602 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7603   match(Set dst (AddP dst src));
7604   effect(KILL cr);
7605 
7606   format %{ "ADD    $dst,$src" %}
7607   opcode(0x81,0x00); /* Opcode 81 /0 id */
7608   // ins_encode( RegImm( dst, src) );
7609   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7610   ins_pipe( ialu_reg );
7611 %}
7612 
7613 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7614   match(Set dst (AddI dst (LoadI src)));
7615   effect(KILL cr);
7616 
7617   ins_cost(125);
7618   format %{ "ADD    $dst,$src" %}
7619   opcode(0x03);
7620   ins_encode( OpcP, RegMem( dst, src) );
7621   ins_pipe( ialu_reg_mem );
7622 %}
7623 
7624 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7625   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7626   effect(KILL cr);
7627 
7628   ins_cost(150);
7629   format %{ "ADD    $dst,$src" %}
7630   opcode(0x01);  /* Opcode 01 /r */
7631   ins_encode( OpcP, RegMem( src, dst ) );
7632   ins_pipe( ialu_mem_reg );
7633 %}
7634 
7635 // Add Memory with Immediate
7636 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7637   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7638   effect(KILL cr);
7639 
7640   ins_cost(125);
7641   format %{ "ADD    $dst,$src" %}
7642   opcode(0x81);               /* Opcode 81 /0 id */
7643   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7644   ins_pipe( ialu_mem_imm );
7645 %}
7646 
7647 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7648   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7649   effect(KILL cr);
7650 
7651   ins_cost(125);
7652   format %{ "INC    $dst" %}
7653   opcode(0xFF);               /* Opcode FF /0 */
7654   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7655   ins_pipe( ialu_mem_imm );
7656 %}
7657 
7658 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7659   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7660   effect(KILL cr);
7661 
7662   ins_cost(125);
7663   format %{ "DEC    $dst" %}
7664   opcode(0xFF);               /* Opcode FF /1 */
7665   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7666   ins_pipe( ialu_mem_imm );
7667 %}
7668 
7669 
7670 instruct checkCastPP( eRegP dst ) %{
7671   match(Set dst (CheckCastPP dst));
7672 
7673   size(0);
7674   format %{ "#checkcastPP of $dst" %}
7675   ins_encode( /*empty encoding*/ );
7676   ins_pipe( empty );
7677 %}
7678 
7679 instruct castPP( eRegP dst ) %{
7680   match(Set dst (CastPP dst));
7681   format %{ "#castPP of $dst" %}
7682   ins_encode( /*empty encoding*/ );
7683   ins_pipe( empty );
7684 %}
7685 
7686 instruct castII( rRegI dst ) %{
7687   match(Set dst (CastII dst));
7688   format %{ "#castII of $dst" %}
7689   ins_encode( /*empty encoding*/ );
7690   ins_cost(0);
7691   ins_pipe( empty );
7692 %}
7693 
7694 
7695 // Load-locked - same as a regular pointer load when used with compare-swap
7696 instruct loadPLocked(eRegP dst, memory mem) %{
7697   match(Set dst (LoadPLocked mem));
7698 
7699   ins_cost(125);
7700   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7701   opcode(0x8B);
7702   ins_encode( OpcP, RegMem(dst,mem));
7703   ins_pipe( ialu_reg_mem );
7704 %}
7705 
7706 // Conditional-store of the updated heap-top.
7707 // Used during allocation of the shared heap.
7708 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7709 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7710   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7711   // EAX is killed if there is contention, but then it's also unused.
7712   // In the common case of no contention, EAX holds the new oop address.
7713   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7714   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7715   ins_pipe( pipe_cmpxchg );
7716 %}
7717 
7718 // Conditional-store of an int value.
7719 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7720 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7721   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7722   effect(KILL oldval);
7723   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7724   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7725   ins_pipe( pipe_cmpxchg );
7726 %}
7727 
7728 // Conditional-store of a long value.
7729 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7730 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7731   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7732   effect(KILL oldval);
7733   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7734             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7735             "XCHG   EBX,ECX"
7736   %}
7737   ins_encode %{
7738     // Note: we need to swap rbx, and rcx before and after the
7739     //       cmpxchg8 instruction because the instruction uses
7740     //       rcx as the high order word of the new value to store but
7741     //       our register encoding uses rbx.
7742     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7743     if( os::is_MP() )
7744       __ lock();
7745     __ cmpxchg8($mem$$Address);
7746     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7747   %}
7748   ins_pipe( pipe_cmpxchg );
7749 %}
7750 
7751 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7752 
7753 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7754   predicate(VM_Version::supports_cx8());
7755   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7756   effect(KILL cr, KILL oldval);
7757   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7758             "MOV    $res,0\n\t"
7759             "JNE,s  fail\n\t"
7760             "MOV    $res,1\n"
7761           "fail:" %}
7762   ins_encode( enc_cmpxchg8(mem_ptr),
7763               enc_flags_ne_to_boolean(res) );
7764   ins_pipe( pipe_cmpxchg );
7765 %}
7766 
7767 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7768   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7769   effect(KILL cr, KILL oldval);
7770   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7771             "MOV    $res,0\n\t"
7772             "JNE,s  fail\n\t"
7773             "MOV    $res,1\n"
7774           "fail:" %}
7775   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7776   ins_pipe( pipe_cmpxchg );
7777 %}
7778 
7779 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7780   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7781   effect(KILL cr, KILL oldval);
7782   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7783             "MOV    $res,0\n\t"
7784             "JNE,s  fail\n\t"
7785             "MOV    $res,1\n"
7786           "fail:" %}
7787   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7788   ins_pipe( pipe_cmpxchg );
7789 %}
7790 
7791 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7792   predicate(n->as_LoadStore()->result_not_used());
7793   match(Set dummy (GetAndAddI mem add));
7794   effect(KILL cr);
7795   format %{ "ADDL  [$mem],$add" %}
7796   ins_encode %{
7797     if (os::is_MP()) { __ lock(); }
7798     __ addl($mem$$Address, $add$$constant);
7799   %}
7800   ins_pipe( pipe_cmpxchg );
7801 %}
7802 
7803 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7804   match(Set newval (GetAndAddI mem newval));
7805   effect(KILL cr);
7806   format %{ "XADDL  [$mem],$newval" %}
7807   ins_encode %{
7808     if (os::is_MP()) { __ lock(); }
7809     __ xaddl($mem$$Address, $newval$$Register);
7810   %}
7811   ins_pipe( pipe_cmpxchg );
7812 %}
7813 
7814 instruct xchgI( memory mem, rRegI newval) %{
7815   match(Set newval (GetAndSetI mem newval));
7816   format %{ "XCHGL  $newval,[$mem]" %}
7817   ins_encode %{
7818     __ xchgl($newval$$Register, $mem$$Address);
7819   %}
7820   ins_pipe( pipe_cmpxchg );
7821 %}
7822 
7823 instruct xchgP( memory mem, pRegP newval) %{
7824   match(Set newval (GetAndSetP mem newval));
7825   format %{ "XCHGL  $newval,[$mem]" %}
7826   ins_encode %{
7827     __ xchgl($newval$$Register, $mem$$Address);
7828   %}
7829   ins_pipe( pipe_cmpxchg );
7830 %}
7831 
7832 //----------Subtraction Instructions-------------------------------------------
7833 
7834 // Integer Subtraction Instructions
7835 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7836   match(Set dst (SubI dst src));
7837   effect(KILL cr);
7838 
7839   size(2);
7840   format %{ "SUB    $dst,$src" %}
7841   opcode(0x2B);
7842   ins_encode( OpcP, RegReg( dst, src) );
7843   ins_pipe( ialu_reg_reg );
7844 %}
7845 
7846 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7847   match(Set dst (SubI dst src));
7848   effect(KILL cr);
7849 
7850   format %{ "SUB    $dst,$src" %}
7851   opcode(0x81,0x05);  /* Opcode 81 /5 */
7852   // ins_encode( RegImm( dst, src) );
7853   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7854   ins_pipe( ialu_reg );
7855 %}
7856 
7857 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7858   match(Set dst (SubI dst (LoadI src)));
7859   effect(KILL cr);
7860 
7861   ins_cost(125);
7862   format %{ "SUB    $dst,$src" %}
7863   opcode(0x2B);
7864   ins_encode( OpcP, RegMem( dst, src) );
7865   ins_pipe( ialu_reg_mem );
7866 %}
7867 
7868 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7869   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7870   effect(KILL cr);
7871 
7872   ins_cost(150);
7873   format %{ "SUB    $dst,$src" %}
7874   opcode(0x29);  /* Opcode 29 /r */
7875   ins_encode( OpcP, RegMem( src, dst ) );
7876   ins_pipe( ialu_mem_reg );
7877 %}
7878 
7879 // Subtract from a pointer
7880 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7881   match(Set dst (AddP dst (SubI zero src)));
7882   effect(KILL cr);
7883 
7884   size(2);
7885   format %{ "SUB    $dst,$src" %}
7886   opcode(0x2B);
7887   ins_encode( OpcP, RegReg( dst, src) );
7888   ins_pipe( ialu_reg_reg );
7889 %}
7890 
7891 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7892   match(Set dst (SubI zero dst));
7893   effect(KILL cr);
7894 
7895   size(2);
7896   format %{ "NEG    $dst" %}
7897   opcode(0xF7,0x03);  // Opcode F7 /3
7898   ins_encode( OpcP, RegOpc( dst ) );
7899   ins_pipe( ialu_reg );
7900 %}
7901 
7902 //----------Multiplication/Division Instructions-------------------------------
7903 // Integer Multiplication Instructions
7904 // Multiply Register
7905 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7906   match(Set dst (MulI dst src));
7907   effect(KILL cr);
7908 
7909   size(3);
7910   ins_cost(300);
7911   format %{ "IMUL   $dst,$src" %}
7912   opcode(0xAF, 0x0F);
7913   ins_encode( OpcS, OpcP, RegReg( dst, src) );
7914   ins_pipe( ialu_reg_reg_alu0 );
7915 %}
7916 
7917 // Multiply 32-bit Immediate
7918 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
7919   match(Set dst (MulI src imm));
7920   effect(KILL cr);
7921 
7922   ins_cost(300);
7923   format %{ "IMUL   $dst,$src,$imm" %}
7924   opcode(0x69);  /* 69 /r id */
7925   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7926   ins_pipe( ialu_reg_reg_alu0 );
7927 %}
7928 
7929 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7930   match(Set dst src);
7931   effect(KILL cr);
7932 
7933   // Note that this is artificially increased to make it more expensive than loadConL
7934   ins_cost(250);
7935   format %{ "MOV    EAX,$src\t// low word only" %}
7936   opcode(0xB8);
7937   ins_encode( LdImmL_Lo(dst, src) );
7938   ins_pipe( ialu_reg_fat );
7939 %}
7940 
7941 // Multiply by 32-bit Immediate, taking the shifted high order results
7942 //  (special case for shift by 32)
7943 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7944   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7945   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7946              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7947              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7948   effect(USE src1, KILL cr);
7949 
7950   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7951   ins_cost(0*100 + 1*400 - 150);
7952   format %{ "IMUL   EDX:EAX,$src1" %}
7953   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7954   ins_pipe( pipe_slow );
7955 %}
7956 
7957 // Multiply by 32-bit Immediate, taking the shifted high order results
7958 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7959   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7960   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7961              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7962              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7963   effect(USE src1, KILL cr);
7964 
7965   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7966   ins_cost(1*100 + 1*400 - 150);
7967   format %{ "IMUL   EDX:EAX,$src1\n\t"
7968             "SAR    EDX,$cnt-32" %}
7969   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7970   ins_pipe( pipe_slow );
7971 %}
7972 
7973 // Multiply Memory 32-bit Immediate
7974 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
7975   match(Set dst (MulI (LoadI src) imm));
7976   effect(KILL cr);
7977 
7978   ins_cost(300);
7979   format %{ "IMUL   $dst,$src,$imm" %}
7980   opcode(0x69);  /* 69 /r id */
7981   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
7982   ins_pipe( ialu_reg_mem_alu0 );
7983 %}
7984 
7985 // Multiply Memory
7986 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
7987   match(Set dst (MulI dst (LoadI src)));
7988   effect(KILL cr);
7989 
7990   ins_cost(350);
7991   format %{ "IMUL   $dst,$src" %}
7992   opcode(0xAF, 0x0F);
7993   ins_encode( OpcS, OpcP, RegMem( dst, src) );
7994   ins_pipe( ialu_reg_mem_alu0 );
7995 %}
7996 
7997 // Multiply Register Int to Long
7998 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
7999   // Basic Idea: long = (long)int * (long)int
8000   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8001   effect(DEF dst, USE src, USE src1, KILL flags);
8002 
8003   ins_cost(300);
8004   format %{ "IMUL   $dst,$src1" %}
8005 
8006   ins_encode( long_int_multiply( dst, src1 ) );
8007   ins_pipe( ialu_reg_reg_alu0 );
8008 %}
8009 
8010 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8011   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8012   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8013   effect(KILL flags);
8014 
8015   ins_cost(300);
8016   format %{ "MUL    $dst,$src1" %}
8017 
8018   ins_encode( long_uint_multiply(dst, src1) );
8019   ins_pipe( ialu_reg_reg_alu0 );
8020 %}
8021 
8022 // Multiply Register Long
8023 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8024   match(Set dst (MulL dst src));
8025   effect(KILL cr, TEMP tmp);
8026   ins_cost(4*100+3*400);
8027 // Basic idea: lo(result) = lo(x_lo * y_lo)
8028 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8029   format %{ "MOV    $tmp,$src.lo\n\t"
8030             "IMUL   $tmp,EDX\n\t"
8031             "MOV    EDX,$src.hi\n\t"
8032             "IMUL   EDX,EAX\n\t"
8033             "ADD    $tmp,EDX\n\t"
8034             "MUL    EDX:EAX,$src.lo\n\t"
8035             "ADD    EDX,$tmp" %}
8036   ins_encode( long_multiply( dst, src, tmp ) );
8037   ins_pipe( pipe_slow );
8038 %}
8039 
8040 // Multiply Register Long where the left operand's high 32 bits are zero
8041 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8042   predicate(is_operand_hi32_zero(n->in(1)));
8043   match(Set dst (MulL dst src));
8044   effect(KILL cr, TEMP tmp);
8045   ins_cost(2*100+2*400);
8046 // Basic idea: lo(result) = lo(x_lo * y_lo)
8047 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8048   format %{ "MOV    $tmp,$src.hi\n\t"
8049             "IMUL   $tmp,EAX\n\t"
8050             "MUL    EDX:EAX,$src.lo\n\t"
8051             "ADD    EDX,$tmp" %}
8052   ins_encode %{
8053     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8054     __ imull($tmp$$Register, rax);
8055     __ mull($src$$Register);
8056     __ addl(rdx, $tmp$$Register);
8057   %}
8058   ins_pipe( pipe_slow );
8059 %}
8060 
8061 // Multiply Register Long where the right operand's high 32 bits are zero
8062 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8063   predicate(is_operand_hi32_zero(n->in(2)));
8064   match(Set dst (MulL dst src));
8065   effect(KILL cr, TEMP tmp);
8066   ins_cost(2*100+2*400);
8067 // Basic idea: lo(result) = lo(x_lo * y_lo)
8068 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8069   format %{ "MOV    $tmp,$src.lo\n\t"
8070             "IMUL   $tmp,EDX\n\t"
8071             "MUL    EDX:EAX,$src.lo\n\t"
8072             "ADD    EDX,$tmp" %}
8073   ins_encode %{
8074     __ movl($tmp$$Register, $src$$Register);
8075     __ imull($tmp$$Register, rdx);
8076     __ mull($src$$Register);
8077     __ addl(rdx, $tmp$$Register);
8078   %}
8079   ins_pipe( pipe_slow );
8080 %}
8081 
8082 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8083 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8084   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8085   match(Set dst (MulL dst src));
8086   effect(KILL cr);
8087   ins_cost(1*400);
8088 // Basic idea: lo(result) = lo(x_lo * y_lo)
8089 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8090   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8091   ins_encode %{
8092     __ mull($src$$Register);
8093   %}
8094   ins_pipe( pipe_slow );
8095 %}
8096 
8097 // Multiply Register Long by small constant
8098 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
8099   match(Set dst (MulL dst src));
8100   effect(KILL cr, TEMP tmp);
8101   ins_cost(2*100+2*400);
8102   size(12);
8103 // Basic idea: lo(result) = lo(src * EAX)
8104 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8105   format %{ "IMUL   $tmp,EDX,$src\n\t"
8106             "MOV    EDX,$src\n\t"
8107             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8108             "ADD    EDX,$tmp" %}
8109   ins_encode( long_multiply_con( dst, src, tmp ) );
8110   ins_pipe( pipe_slow );
8111 %}
8112 
8113 // Integer DIV with Register
8114 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8115   match(Set rax (DivI rax div));
8116   effect(KILL rdx, KILL cr);
8117   size(26);
8118   ins_cost(30*100+10*100);
8119   format %{ "CMP    EAX,0x80000000\n\t"
8120             "JNE,s  normal\n\t"
8121             "XOR    EDX,EDX\n\t"
8122             "CMP    ECX,-1\n\t"
8123             "JE,s   done\n"
8124     "normal: CDQ\n\t"
8125             "IDIV   $div\n\t"
8126     "done:"        %}
8127   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8128   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8129   ins_pipe( ialu_reg_reg_alu0 );
8130 %}
8131 
8132 // Divide Register Long
8133 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8134   match(Set dst (DivL src1 src2));
8135   effect( KILL cr, KILL cx, KILL bx );
8136   ins_cost(10000);
8137   format %{ "PUSH   $src1.hi\n\t"
8138             "PUSH   $src1.lo\n\t"
8139             "PUSH   $src2.hi\n\t"
8140             "PUSH   $src2.lo\n\t"
8141             "CALL   SharedRuntime::ldiv\n\t"
8142             "ADD    ESP,16" %}
8143   ins_encode( long_div(src1,src2) );
8144   ins_pipe( pipe_slow );
8145 %}
8146 
8147 // Integer DIVMOD with Register, both quotient and mod results
8148 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8149   match(DivModI rax div);
8150   effect(KILL cr);
8151   size(26);
8152   ins_cost(30*100+10*100);
8153   format %{ "CMP    EAX,0x80000000\n\t"
8154             "JNE,s  normal\n\t"
8155             "XOR    EDX,EDX\n\t"
8156             "CMP    ECX,-1\n\t"
8157             "JE,s   done\n"
8158     "normal: CDQ\n\t"
8159             "IDIV   $div\n\t"
8160     "done:"        %}
8161   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8162   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8163   ins_pipe( pipe_slow );
8164 %}
8165 
8166 // Integer MOD with Register
8167 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8168   match(Set rdx (ModI rax div));
8169   effect(KILL rax, KILL cr);
8170 
8171   size(26);
8172   ins_cost(300);
8173   format %{ "CDQ\n\t"
8174             "IDIV   $div" %}
8175   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8176   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8177   ins_pipe( ialu_reg_reg_alu0 );
8178 %}
8179 
8180 // Remainder Register Long
8181 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8182   match(Set dst (ModL src1 src2));
8183   effect( KILL cr, KILL cx, KILL bx );
8184   ins_cost(10000);
8185   format %{ "PUSH   $src1.hi\n\t"
8186             "PUSH   $src1.lo\n\t"
8187             "PUSH   $src2.hi\n\t"
8188             "PUSH   $src2.lo\n\t"
8189             "CALL   SharedRuntime::lrem\n\t"
8190             "ADD    ESP,16" %}
8191   ins_encode( long_mod(src1,src2) );
8192   ins_pipe( pipe_slow );
8193 %}
8194 
8195 // Divide Register Long (no special case since divisor != -1)
8196 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8197   match(Set dst (DivL dst imm));
8198   effect( TEMP tmp, TEMP tmp2, KILL cr );
8199   ins_cost(1000);
8200   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8201             "XOR    $tmp2,$tmp2\n\t"
8202             "CMP    $tmp,EDX\n\t"
8203             "JA,s   fast\n\t"
8204             "MOV    $tmp2,EAX\n\t"
8205             "MOV    EAX,EDX\n\t"
8206             "MOV    EDX,0\n\t"
8207             "JLE,s  pos\n\t"
8208             "LNEG   EAX : $tmp2\n\t"
8209             "DIV    $tmp # unsigned division\n\t"
8210             "XCHG   EAX,$tmp2\n\t"
8211             "DIV    $tmp\n\t"
8212             "LNEG   $tmp2 : EAX\n\t"
8213             "JMP,s  done\n"
8214     "pos:\n\t"
8215             "DIV    $tmp\n\t"
8216             "XCHG   EAX,$tmp2\n"
8217     "fast:\n\t"
8218             "DIV    $tmp\n"
8219     "done:\n\t"
8220             "MOV    EDX,$tmp2\n\t"
8221             "NEG    EDX:EAX # if $imm < 0" %}
8222   ins_encode %{
8223     int con = (int)$imm$$constant;
8224     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8225     int pcon = (con > 0) ? con : -con;
8226     Label Lfast, Lpos, Ldone;
8227 
8228     __ movl($tmp$$Register, pcon);
8229     __ xorl($tmp2$$Register,$tmp2$$Register);
8230     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8231     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8232 
8233     __ movl($tmp2$$Register, $dst$$Register); // save
8234     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8235     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8236     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8237 
8238     // Negative dividend.
8239     // convert value to positive to use unsigned division
8240     __ lneg($dst$$Register, $tmp2$$Register);
8241     __ divl($tmp$$Register);
8242     __ xchgl($dst$$Register, $tmp2$$Register);
8243     __ divl($tmp$$Register);
8244     // revert result back to negative
8245     __ lneg($tmp2$$Register, $dst$$Register);
8246     __ jmpb(Ldone);
8247 
8248     __ bind(Lpos);
8249     __ divl($tmp$$Register); // Use unsigned division
8250     __ xchgl($dst$$Register, $tmp2$$Register);
8251     // Fallthrow for final divide, tmp2 has 32 bit hi result
8252 
8253     __ bind(Lfast);
8254     // fast path: src is positive
8255     __ divl($tmp$$Register); // Use unsigned division
8256 
8257     __ bind(Ldone);
8258     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8259     if (con < 0) {
8260       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8261     }
8262   %}
8263   ins_pipe( pipe_slow );
8264 %}
8265 
8266 // Remainder Register Long (remainder fit into 32 bits)
8267 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8268   match(Set dst (ModL dst imm));
8269   effect( TEMP tmp, TEMP tmp2, KILL cr );
8270   ins_cost(1000);
8271   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8272             "CMP    $tmp,EDX\n\t"
8273             "JA,s   fast\n\t"
8274             "MOV    $tmp2,EAX\n\t"
8275             "MOV    EAX,EDX\n\t"
8276             "MOV    EDX,0\n\t"
8277             "JLE,s  pos\n\t"
8278             "LNEG   EAX : $tmp2\n\t"
8279             "DIV    $tmp # unsigned division\n\t"
8280             "MOV    EAX,$tmp2\n\t"
8281             "DIV    $tmp\n\t"
8282             "NEG    EDX\n\t"
8283             "JMP,s  done\n"
8284     "pos:\n\t"
8285             "DIV    $tmp\n\t"
8286             "MOV    EAX,$tmp2\n"
8287     "fast:\n\t"
8288             "DIV    $tmp\n"
8289     "done:\n\t"
8290             "MOV    EAX,EDX\n\t"
8291             "SAR    EDX,31\n\t" %}
8292   ins_encode %{
8293     int con = (int)$imm$$constant;
8294     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8295     int pcon = (con > 0) ? con : -con;
8296     Label  Lfast, Lpos, Ldone;
8297 
8298     __ movl($tmp$$Register, pcon);
8299     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8300     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8301 
8302     __ movl($tmp2$$Register, $dst$$Register); // save
8303     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8304     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8305     __ jccb(Assembler::lessEqual, Lpos); // result is positive
8306 
8307     // Negative dividend.
8308     // convert value to positive to use unsigned division
8309     __ lneg($dst$$Register, $tmp2$$Register);
8310     __ divl($tmp$$Register);
8311     __ movl($dst$$Register, $tmp2$$Register);
8312     __ divl($tmp$$Register);
8313     // revert remainder back to negative
8314     __ negl(HIGH_FROM_LOW($dst$$Register));
8315     __ jmpb(Ldone);
8316 
8317     __ bind(Lpos);
8318     __ divl($tmp$$Register);
8319     __ movl($dst$$Register, $tmp2$$Register);
8320 
8321     __ bind(Lfast);
8322     // fast path: src is positive
8323     __ divl($tmp$$Register);
8324 
8325     __ bind(Ldone);
8326     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8327     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8328 
8329   %}
8330   ins_pipe( pipe_slow );
8331 %}
8332 
8333 // Integer Shift Instructions
8334 // Shift Left by one
8335 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8336   match(Set dst (LShiftI dst shift));
8337   effect(KILL cr);
8338 
8339   size(2);
8340   format %{ "SHL    $dst,$shift" %}
8341   opcode(0xD1, 0x4);  /* D1 /4 */
8342   ins_encode( OpcP, RegOpc( dst ) );
8343   ins_pipe( ialu_reg );
8344 %}
8345 
8346 // Shift Left by 8-bit immediate
8347 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8348   match(Set dst (LShiftI dst shift));
8349   effect(KILL cr);
8350 
8351   size(3);
8352   format %{ "SHL    $dst,$shift" %}
8353   opcode(0xC1, 0x4);  /* C1 /4 ib */
8354   ins_encode( RegOpcImm( dst, shift) );
8355   ins_pipe( ialu_reg );
8356 %}
8357 
8358 // Shift Left by variable
8359 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8360   match(Set dst (LShiftI dst shift));
8361   effect(KILL cr);
8362 
8363   size(2);
8364   format %{ "SHL    $dst,$shift" %}
8365   opcode(0xD3, 0x4);  /* D3 /4 */
8366   ins_encode( OpcP, RegOpc( dst ) );
8367   ins_pipe( ialu_reg_reg );
8368 %}
8369 
8370 // Arithmetic shift right by one
8371 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8372   match(Set dst (RShiftI dst shift));
8373   effect(KILL cr);
8374 
8375   size(2);
8376   format %{ "SAR    $dst,$shift" %}
8377   opcode(0xD1, 0x7);  /* D1 /7 */
8378   ins_encode( OpcP, RegOpc( dst ) );
8379   ins_pipe( ialu_reg );
8380 %}
8381 
8382 // Arithmetic shift right by one
8383 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8384   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8385   effect(KILL cr);
8386   format %{ "SAR    $dst,$shift" %}
8387   opcode(0xD1, 0x7);  /* D1 /7 */
8388   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8389   ins_pipe( ialu_mem_imm );
8390 %}
8391 
8392 // Arithmetic Shift Right by 8-bit immediate
8393 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8394   match(Set dst (RShiftI dst shift));
8395   effect(KILL cr);
8396 
8397   size(3);
8398   format %{ "SAR    $dst,$shift" %}
8399   opcode(0xC1, 0x7);  /* C1 /7 ib */
8400   ins_encode( RegOpcImm( dst, shift ) );
8401   ins_pipe( ialu_mem_imm );
8402 %}
8403 
8404 // Arithmetic Shift Right by 8-bit immediate
8405 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8406   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8407   effect(KILL cr);
8408 
8409   format %{ "SAR    $dst,$shift" %}
8410   opcode(0xC1, 0x7);  /* C1 /7 ib */
8411   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8412   ins_pipe( ialu_mem_imm );
8413 %}
8414 
8415 // Arithmetic Shift Right by variable
8416 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8417   match(Set dst (RShiftI dst shift));
8418   effect(KILL cr);
8419 
8420   size(2);
8421   format %{ "SAR    $dst,$shift" %}
8422   opcode(0xD3, 0x7);  /* D3 /7 */
8423   ins_encode( OpcP, RegOpc( dst ) );
8424   ins_pipe( ialu_reg_reg );
8425 %}
8426 
8427 // Logical shift right by one
8428 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8429   match(Set dst (URShiftI dst shift));
8430   effect(KILL cr);
8431 
8432   size(2);
8433   format %{ "SHR    $dst,$shift" %}
8434   opcode(0xD1, 0x5);  /* D1 /5 */
8435   ins_encode( OpcP, RegOpc( dst ) );
8436   ins_pipe( ialu_reg );
8437 %}
8438 
8439 // Logical Shift Right by 8-bit immediate
8440 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8441   match(Set dst (URShiftI dst shift));
8442   effect(KILL cr);
8443 
8444   size(3);
8445   format %{ "SHR    $dst,$shift" %}
8446   opcode(0xC1, 0x5);  /* C1 /5 ib */
8447   ins_encode( RegOpcImm( dst, shift) );
8448   ins_pipe( ialu_reg );
8449 %}
8450 
8451 
8452 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8453 // This idiom is used by the compiler for the i2b bytecode.
8454 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
8455   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8456 
8457   size(3);
8458   format %{ "MOVSX  $dst,$src :8" %}
8459   ins_encode %{
8460     __ movsbl($dst$$Register, $src$$Register);
8461   %}
8462   ins_pipe(ialu_reg_reg);
8463 %}
8464 
8465 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8466 // This idiom is used by the compiler the i2s bytecode.
8467 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
8468   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8469 
8470   size(3);
8471   format %{ "MOVSX  $dst,$src :16" %}
8472   ins_encode %{
8473     __ movswl($dst$$Register, $src$$Register);
8474   %}
8475   ins_pipe(ialu_reg_reg);
8476 %}
8477 
8478 
8479 // Logical Shift Right by variable
8480 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8481   match(Set dst (URShiftI dst shift));
8482   effect(KILL cr);
8483 
8484   size(2);
8485   format %{ "SHR    $dst,$shift" %}
8486   opcode(0xD3, 0x5);  /* D3 /5 */
8487   ins_encode( OpcP, RegOpc( dst ) );
8488   ins_pipe( ialu_reg_reg );
8489 %}
8490 
8491 
8492 //----------Logical Instructions-----------------------------------------------
8493 //----------Integer Logical Instructions---------------------------------------
8494 // And Instructions
8495 // And Register with Register
8496 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8497   match(Set dst (AndI dst src));
8498   effect(KILL cr);
8499 
8500   size(2);
8501   format %{ "AND    $dst,$src" %}
8502   opcode(0x23);
8503   ins_encode( OpcP, RegReg( dst, src) );
8504   ins_pipe( ialu_reg_reg );
8505 %}
8506 
8507 // And Register with Immediate
8508 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8509   match(Set dst (AndI dst src));
8510   effect(KILL cr);
8511 
8512   format %{ "AND    $dst,$src" %}
8513   opcode(0x81,0x04);  /* Opcode 81 /4 */
8514   // ins_encode( RegImm( dst, src) );
8515   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8516   ins_pipe( ialu_reg );
8517 %}
8518 
8519 // And Register with Memory
8520 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8521   match(Set dst (AndI dst (LoadI src)));
8522   effect(KILL cr);
8523 
8524   ins_cost(125);
8525   format %{ "AND    $dst,$src" %}
8526   opcode(0x23);
8527   ins_encode( OpcP, RegMem( dst, src) );
8528   ins_pipe( ialu_reg_mem );
8529 %}
8530 
8531 // And Memory with Register
8532 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8533   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8534   effect(KILL cr);
8535 
8536   ins_cost(150);
8537   format %{ "AND    $dst,$src" %}
8538   opcode(0x21);  /* Opcode 21 /r */
8539   ins_encode( OpcP, RegMem( src, dst ) );
8540   ins_pipe( ialu_mem_reg );
8541 %}
8542 
8543 // And Memory with Immediate
8544 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8545   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8546   effect(KILL cr);
8547 
8548   ins_cost(125);
8549   format %{ "AND    $dst,$src" %}
8550   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8551   // ins_encode( MemImm( dst, src) );
8552   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8553   ins_pipe( ialu_mem_imm );
8554 %}
8555 
8556 // Or Instructions
8557 // Or Register with Register
8558 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8559   match(Set dst (OrI dst src));
8560   effect(KILL cr);
8561 
8562   size(2);
8563   format %{ "OR     $dst,$src" %}
8564   opcode(0x0B);
8565   ins_encode( OpcP, RegReg( dst, src) );
8566   ins_pipe( ialu_reg_reg );
8567 %}
8568 
8569 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8570   match(Set dst (OrI dst (CastP2X src)));
8571   effect(KILL cr);
8572 
8573   size(2);
8574   format %{ "OR     $dst,$src" %}
8575   opcode(0x0B);
8576   ins_encode( OpcP, RegReg( dst, src) );
8577   ins_pipe( ialu_reg_reg );
8578 %}
8579 
8580 
8581 // Or Register with Immediate
8582 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8583   match(Set dst (OrI dst src));
8584   effect(KILL cr);
8585 
8586   format %{ "OR     $dst,$src" %}
8587   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8588   // ins_encode( RegImm( dst, src) );
8589   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8590   ins_pipe( ialu_reg );
8591 %}
8592 
8593 // Or Register with Memory
8594 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8595   match(Set dst (OrI dst (LoadI src)));
8596   effect(KILL cr);
8597 
8598   ins_cost(125);
8599   format %{ "OR     $dst,$src" %}
8600   opcode(0x0B);
8601   ins_encode( OpcP, RegMem( dst, src) );
8602   ins_pipe( ialu_reg_mem );
8603 %}
8604 
8605 // Or Memory with Register
8606 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8607   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8608   effect(KILL cr);
8609 
8610   ins_cost(150);
8611   format %{ "OR     $dst,$src" %}
8612   opcode(0x09);  /* Opcode 09 /r */
8613   ins_encode( OpcP, RegMem( src, dst ) );
8614   ins_pipe( ialu_mem_reg );
8615 %}
8616 
8617 // Or Memory with Immediate
8618 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8619   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8620   effect(KILL cr);
8621 
8622   ins_cost(125);
8623   format %{ "OR     $dst,$src" %}
8624   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8625   // ins_encode( MemImm( dst, src) );
8626   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8627   ins_pipe( ialu_mem_imm );
8628 %}
8629 
8630 // ROL/ROR
8631 // ROL expand
8632 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8633   effect(USE_DEF dst, USE shift, KILL cr);
8634 
8635   format %{ "ROL    $dst, $shift" %}
8636   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8637   ins_encode( OpcP, RegOpc( dst ));
8638   ins_pipe( ialu_reg );
8639 %}
8640 
8641 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8642   effect(USE_DEF dst, USE shift, KILL cr);
8643 
8644   format %{ "ROL    $dst, $shift" %}
8645   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8646   ins_encode( RegOpcImm(dst, shift) );
8647   ins_pipe(ialu_reg);
8648 %}
8649 
8650 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8651   effect(USE_DEF dst, USE shift, KILL cr);
8652 
8653   format %{ "ROL    $dst, $shift" %}
8654   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8655   ins_encode(OpcP, RegOpc(dst));
8656   ins_pipe( ialu_reg_reg );
8657 %}
8658 // end of ROL expand
8659 
8660 // ROL 32bit by one once
8661 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8662   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8663 
8664   expand %{
8665     rolI_eReg_imm1(dst, lshift, cr);
8666   %}
8667 %}
8668 
8669 // ROL 32bit var by imm8 once
8670 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8671   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8672   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8673 
8674   expand %{
8675     rolI_eReg_imm8(dst, lshift, cr);
8676   %}
8677 %}
8678 
8679 // ROL 32bit var by var once
8680 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8681   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8682 
8683   expand %{
8684     rolI_eReg_CL(dst, shift, cr);
8685   %}
8686 %}
8687 
8688 // ROL 32bit var by var once
8689 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8690   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8691 
8692   expand %{
8693     rolI_eReg_CL(dst, shift, cr);
8694   %}
8695 %}
8696 
8697 // ROR expand
8698 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8699   effect(USE_DEF dst, USE shift, KILL cr);
8700 
8701   format %{ "ROR    $dst, $shift" %}
8702   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8703   ins_encode( OpcP, RegOpc( dst ) );
8704   ins_pipe( ialu_reg );
8705 %}
8706 
8707 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8708   effect (USE_DEF dst, USE shift, KILL cr);
8709 
8710   format %{ "ROR    $dst, $shift" %}
8711   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8712   ins_encode( RegOpcImm(dst, shift) );
8713   ins_pipe( ialu_reg );
8714 %}
8715 
8716 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8717   effect(USE_DEF dst, USE shift, KILL cr);
8718 
8719   format %{ "ROR    $dst, $shift" %}
8720   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8721   ins_encode(OpcP, RegOpc(dst));
8722   ins_pipe( ialu_reg_reg );
8723 %}
8724 // end of ROR expand
8725 
8726 // ROR right once
8727 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8728   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8729 
8730   expand %{
8731     rorI_eReg_imm1(dst, rshift, cr);
8732   %}
8733 %}
8734 
8735 // ROR 32bit by immI8 once
8736 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8737   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8738   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8739 
8740   expand %{
8741     rorI_eReg_imm8(dst, rshift, cr);
8742   %}
8743 %}
8744 
8745 // ROR 32bit var by var once
8746 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8747   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8748 
8749   expand %{
8750     rorI_eReg_CL(dst, shift, cr);
8751   %}
8752 %}
8753 
8754 // ROR 32bit var by var once
8755 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8756   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8757 
8758   expand %{
8759     rorI_eReg_CL(dst, shift, cr);
8760   %}
8761 %}
8762 
8763 // Xor Instructions
8764 // Xor Register with Register
8765 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8766   match(Set dst (XorI dst src));
8767   effect(KILL cr);
8768 
8769   size(2);
8770   format %{ "XOR    $dst,$src" %}
8771   opcode(0x33);
8772   ins_encode( OpcP, RegReg( dst, src) );
8773   ins_pipe( ialu_reg_reg );
8774 %}
8775 
8776 // Xor Register with Immediate -1
8777 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8778   match(Set dst (XorI dst imm));  
8779 
8780   size(2);
8781   format %{ "NOT    $dst" %}  
8782   ins_encode %{
8783      __ notl($dst$$Register);
8784   %}
8785   ins_pipe( ialu_reg );
8786 %}
8787 
8788 // Xor Register with Immediate
8789 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8790   match(Set dst (XorI dst src));
8791   effect(KILL cr);
8792 
8793   format %{ "XOR    $dst,$src" %}
8794   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8795   // ins_encode( RegImm( dst, src) );
8796   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8797   ins_pipe( ialu_reg );
8798 %}
8799 
8800 // Xor Register with Memory
8801 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8802   match(Set dst (XorI dst (LoadI src)));
8803   effect(KILL cr);
8804 
8805   ins_cost(125);
8806   format %{ "XOR    $dst,$src" %}
8807   opcode(0x33);
8808   ins_encode( OpcP, RegMem(dst, src) );
8809   ins_pipe( ialu_reg_mem );
8810 %}
8811 
8812 // Xor Memory with Register
8813 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8814   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8815   effect(KILL cr);
8816 
8817   ins_cost(150);
8818   format %{ "XOR    $dst,$src" %}
8819   opcode(0x31);  /* Opcode 31 /r */
8820   ins_encode( OpcP, RegMem( src, dst ) );
8821   ins_pipe( ialu_mem_reg );
8822 %}
8823 
8824 // Xor Memory with Immediate
8825 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8826   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8827   effect(KILL cr);
8828 
8829   ins_cost(125);
8830   format %{ "XOR    $dst,$src" %}
8831   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8832   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8833   ins_pipe( ialu_mem_imm );
8834 %}
8835 
8836 //----------Convert Int to Boolean---------------------------------------------
8837 
8838 instruct movI_nocopy(rRegI dst, rRegI src) %{
8839   effect( DEF dst, USE src );
8840   format %{ "MOV    $dst,$src" %}
8841   ins_encode( enc_Copy( dst, src) );
8842   ins_pipe( ialu_reg_reg );
8843 %}
8844 
8845 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8846   effect( USE_DEF dst, USE src, KILL cr );
8847 
8848   size(4);
8849   format %{ "NEG    $dst\n\t"
8850             "ADC    $dst,$src" %}
8851   ins_encode( neg_reg(dst),
8852               OpcRegReg(0x13,dst,src) );
8853   ins_pipe( ialu_reg_reg_long );
8854 %}
8855 
8856 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8857   match(Set dst (Conv2B src));
8858 
8859   expand %{
8860     movI_nocopy(dst,src);
8861     ci2b(dst,src,cr);
8862   %}
8863 %}
8864 
8865 instruct movP_nocopy(rRegI dst, eRegP src) %{
8866   effect( DEF dst, USE src );
8867   format %{ "MOV    $dst,$src" %}
8868   ins_encode( enc_Copy( dst, src) );
8869   ins_pipe( ialu_reg_reg );
8870 %}
8871 
8872 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
8873   effect( USE_DEF dst, USE src, KILL cr );
8874   format %{ "NEG    $dst\n\t"
8875             "ADC    $dst,$src" %}
8876   ins_encode( neg_reg(dst),
8877               OpcRegReg(0x13,dst,src) );
8878   ins_pipe( ialu_reg_reg_long );
8879 %}
8880 
8881 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
8882   match(Set dst (Conv2B src));
8883 
8884   expand %{
8885     movP_nocopy(dst,src);
8886     cp2b(dst,src,cr);
8887   %}
8888 %}
8889 
8890 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
8891   match(Set dst (CmpLTMask p q));
8892   effect(KILL cr);
8893   ins_cost(400);
8894 
8895   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8896   format %{ "XOR    $dst,$dst\n\t"
8897             "CMP    $p,$q\n\t"
8898             "SETlt  $dst\n\t"
8899             "NEG    $dst" %}
8900   ins_encode %{
8901     Register Rp = $p$$Register;
8902     Register Rq = $q$$Register;
8903     Register Rd = $dst$$Register;
8904     Label done;
8905     __ xorl(Rd, Rd);
8906     __ cmpl(Rp, Rq);
8907     __ setb(Assembler::less, Rd);
8908     __ negl(Rd);
8909   %}
8910 
8911   ins_pipe(pipe_slow);
8912 %}
8913 
8914 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
8915   match(Set dst (CmpLTMask dst zero));
8916   effect(DEF dst, KILL cr);
8917   ins_cost(100);
8918 
8919   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
8920   ins_encode %{
8921   __ sarl($dst$$Register, 31);
8922   %}
8923   ins_pipe(ialu_reg);
8924 %}
8925 
8926 /* better to save a register than avoid a branch */
8927 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
8928   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8929   effect(KILL cr);
8930   ins_cost(400);
8931   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
8932             "JGE    done\n\t"
8933             "ADD    $p,$y\n"
8934             "done:  " %}
8935   ins_encode %{
8936     Register Rp = $p$$Register;
8937     Register Rq = $q$$Register;
8938     Register Ry = $y$$Register;
8939     Label done;
8940     __ subl(Rp, Rq);
8941     __ jccb(Assembler::greaterEqual, done);
8942     __ addl(Rp, Ry);
8943     __ bind(done);
8944   %}
8945 
8946   ins_pipe(pipe_cmplt);
8947 %}
8948 
8949 /* better to save a register than avoid a branch */
8950 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
8951   match(Set y (AndI (CmpLTMask p q) y));
8952   effect(KILL cr);
8953 
8954   ins_cost(300);
8955 
8956   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
8957             "JLT      done\n\t"
8958             "XORL     $y, $y\n"
8959             "done:  " %}
8960   ins_encode %{
8961     Register Rp = $p$$Register;
8962     Register Rq = $q$$Register;
8963     Register Ry = $y$$Register;
8964     Label done;
8965     __ cmpl(Rp, Rq);
8966     __ jccb(Assembler::less, done);
8967     __ xorl(Ry, Ry);
8968     __ bind(done);
8969   %}
8970 
8971   ins_pipe(pipe_cmplt);
8972 %}
8973 
8974 /* If I enable this, I encourage spilling in the inner loop of compress.
8975 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
8976   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8977 */
8978 //----------Overflow Math Instructions-----------------------------------------
8979 
8980 instruct addofI_eReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
8981 %{
8982   match(Set cr (OverflowAddI op1 op2));
8983   effect(DEF cr, USE_KILL op1, USE op2);
8984 
8985   format %{ "ADD    $op1, $op2 #overflow check int" %}
8986 
8987   ins_encode %{
8988     __ addl($op1$$Register, $op2$$Register);
8989   %}
8990   ins_pipe(ialu_reg_reg);
8991 %}
8992 
8993 instruct addofI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
8994 %{
8995   match(Set cr (OverflowAddI op1 op2));
8996   effect(DEF cr, USE_KILL op1, USE op2);
8997 
8998   format %{ "ADD    $op1, $op2 #overflow check int" %}
8999 
9000   ins_encode %{
9001     __ addl($op1$$Register, $op2$$constant);
9002   %}
9003   ins_pipe(ialu_reg_reg);
9004 %}
9005 
9006 instruct subofI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
9007 %{
9008   match(Set cr (OverflowSubI op1 op2));
9009   effect(DEF cr, USE_KILL op1, USE op2);
9010 
9011   format %{ "SUB    $op1, $op2 #overflow check int" %}
9012   ins_encode %{
9013     __ subl($op1$$Register, $op2$$Register);
9014   %}
9015   ins_pipe(ialu_reg_reg);
9016 %}
9017 
9018 instruct subofI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
9019 %{
9020   match(Set cr (OverflowSubI op1 op2));
9021   effect(DEF cr, USE_KILL op1, USE op2);
9022 
9023   format %{ "SUB    $op1, $op2 #overflow check int" %}
9024   ins_encode %{
9025     __ subl($op1$$Register, $op2$$constant);
9026   %}
9027   ins_pipe(ialu_reg_reg);
9028 %}
9029 
9030 instruct negofI_rReg(eFlagsReg cr, immI0 zero, eAXRegI op2)
9031 %{
9032   match(Set cr (OverflowSubI zero op2));
9033   effect(DEF cr, USE_KILL op2);
9034 
9035   format %{ "NEG    $op2 #overflow check int" %}
9036   ins_encode %{
9037     __ negl($op2$$Register);
9038   %}
9039   ins_pipe(ialu_reg_reg);
9040 %}
9041 
9042 instruct mulofI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
9043 %{
9044   match(Set cr (OverflowMulI op1 op2));
9045   effect(DEF cr, USE_KILL op1, USE op2);
9046 
9047   format %{ "IMUL    $op1, $op2 #overflow check int" %}
9048   ins_encode %{
9049     __ imull($op1$$Register, $op2$$Register);
9050   %}
9051   ins_pipe(ialu_reg_reg);
9052 %}
9053 
9054 instruct mulofI_rReg_imm(eFlagsReg cr, eAXRegI op1, rRegI op2, immI op3)
9055 %{
9056   match(Set cr (OverflowMulI op2 op3));
9057   effect(DEF cr, KILL op1, USE op2, USE op3);
9058 
9059   format %{ "IMUL    $op1, $op2 #overflow check int" %}
9060   ins_encode %{
9061     __ imull($op1$$Register, $op2$$Register, $op3$$constant);
9062   %}
9063   ins_pipe(ialu_reg_reg);
9064 %}
9065 
9066 //----------Long Instructions------------------------------------------------
9067 // Add Long Register with Register
9068 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9069   match(Set dst (AddL dst src));
9070   effect(KILL cr);
9071   ins_cost(200);
9072   format %{ "ADD    $dst.lo,$src.lo\n\t"
9073             "ADC    $dst.hi,$src.hi" %}
9074   opcode(0x03, 0x13);
9075   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9076   ins_pipe( ialu_reg_reg_long );
9077 %}
9078 
9079 // Add Long Register with Immediate
9080 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9081   match(Set dst (AddL dst src));
9082   effect(KILL cr);
9083   format %{ "ADD    $dst.lo,$src.lo\n\t"
9084             "ADC    $dst.hi,$src.hi" %}
9085   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9086   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9087   ins_pipe( ialu_reg_long );
9088 %}
9089 
9090 // Add Long Register with Memory
9091 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9092   match(Set dst (AddL dst (LoadL mem)));
9093   effect(KILL cr);
9094   ins_cost(125);
9095   format %{ "ADD    $dst.lo,$mem\n\t"
9096             "ADC    $dst.hi,$mem+4" %}
9097   opcode(0x03, 0x13);
9098   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9099   ins_pipe( ialu_reg_long_mem );
9100 %}
9101 
9102 // Subtract Long Register with Register.
9103 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9104   match(Set dst (SubL dst src));
9105   effect(KILL cr);
9106   ins_cost(200);
9107   format %{ "SUB    $dst.lo,$src.lo\n\t"
9108             "SBB    $dst.hi,$src.hi" %}
9109   opcode(0x2B, 0x1B);
9110   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9111   ins_pipe( ialu_reg_reg_long );
9112 %}
9113 
9114 // Subtract Long Register with Immediate
9115 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9116   match(Set dst (SubL dst src));
9117   effect(KILL cr);
9118   format %{ "SUB    $dst.lo,$src.lo\n\t"
9119             "SBB    $dst.hi,$src.hi" %}
9120   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9121   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9122   ins_pipe( ialu_reg_long );
9123 %}
9124 
9125 // Subtract Long Register with Memory
9126 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9127   match(Set dst (SubL dst (LoadL mem)));
9128   effect(KILL cr);
9129   ins_cost(125);
9130   format %{ "SUB    $dst.lo,$mem\n\t"
9131             "SBB    $dst.hi,$mem+4" %}
9132   opcode(0x2B, 0x1B);
9133   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9134   ins_pipe( ialu_reg_long_mem );
9135 %}
9136 
9137 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9138   match(Set dst (SubL zero dst));
9139   effect(KILL cr);
9140   ins_cost(300);
9141   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9142   ins_encode( neg_long(dst) );
9143   ins_pipe( ialu_reg_reg_long );
9144 %}
9145 
9146 // And Long Register with Register
9147 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9148   match(Set dst (AndL dst src));
9149   effect(KILL cr);
9150   format %{ "AND    $dst.lo,$src.lo\n\t"
9151             "AND    $dst.hi,$src.hi" %}
9152   opcode(0x23,0x23);
9153   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9154   ins_pipe( ialu_reg_reg_long );
9155 %}
9156 
9157 // And Long Register with Immediate
9158 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9159   match(Set dst (AndL dst src));
9160   effect(KILL cr);
9161   format %{ "AND    $dst.lo,$src.lo\n\t"
9162             "AND    $dst.hi,$src.hi" %}
9163   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9164   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9165   ins_pipe( ialu_reg_long );
9166 %}
9167 
9168 // And Long Register with Memory
9169 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9170   match(Set dst (AndL dst (LoadL mem)));
9171   effect(KILL cr);
9172   ins_cost(125);
9173   format %{ "AND    $dst.lo,$mem\n\t"
9174             "AND    $dst.hi,$mem+4" %}
9175   opcode(0x23, 0x23);
9176   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9177   ins_pipe( ialu_reg_long_mem );
9178 %}
9179 
9180 // Or Long Register with Register
9181 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9182   match(Set dst (OrL dst src));
9183   effect(KILL cr);
9184   format %{ "OR     $dst.lo,$src.lo\n\t"
9185             "OR     $dst.hi,$src.hi" %}
9186   opcode(0x0B,0x0B);
9187   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9188   ins_pipe( ialu_reg_reg_long );
9189 %}
9190 
9191 // Or Long Register with Immediate
9192 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9193   match(Set dst (OrL dst src));
9194   effect(KILL cr);
9195   format %{ "OR     $dst.lo,$src.lo\n\t"
9196             "OR     $dst.hi,$src.hi" %}
9197   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9198   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9199   ins_pipe( ialu_reg_long );
9200 %}
9201 
9202 // Or Long Register with Memory
9203 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9204   match(Set dst (OrL dst (LoadL mem)));
9205   effect(KILL cr);
9206   ins_cost(125);
9207   format %{ "OR     $dst.lo,$mem\n\t"
9208             "OR     $dst.hi,$mem+4" %}
9209   opcode(0x0B,0x0B);
9210   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9211   ins_pipe( ialu_reg_long_mem );
9212 %}
9213 
9214 // Xor Long Register with Register
9215 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9216   match(Set dst (XorL dst src));
9217   effect(KILL cr);
9218   format %{ "XOR    $dst.lo,$src.lo\n\t"
9219             "XOR    $dst.hi,$src.hi" %}
9220   opcode(0x33,0x33);
9221   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9222   ins_pipe( ialu_reg_reg_long );
9223 %}
9224 
9225 // Xor Long Register with Immediate -1
9226 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9227   match(Set dst (XorL dst imm));  
9228   format %{ "NOT    $dst.lo\n\t"
9229             "NOT    $dst.hi" %}
9230   ins_encode %{
9231      __ notl($dst$$Register);
9232      __ notl(HIGH_FROM_LOW($dst$$Register));
9233   %}
9234   ins_pipe( ialu_reg_long );
9235 %}
9236 
9237 // Xor Long Register with Immediate
9238 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9239   match(Set dst (XorL dst src));
9240   effect(KILL cr);
9241   format %{ "XOR    $dst.lo,$src.lo\n\t"
9242             "XOR    $dst.hi,$src.hi" %}
9243   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9244   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9245   ins_pipe( ialu_reg_long );
9246 %}
9247 
9248 // Xor Long Register with Memory
9249 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9250   match(Set dst (XorL dst (LoadL mem)));
9251   effect(KILL cr);
9252   ins_cost(125);
9253   format %{ "XOR    $dst.lo,$mem\n\t"
9254             "XOR    $dst.hi,$mem+4" %}
9255   opcode(0x33,0x33);
9256   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9257   ins_pipe( ialu_reg_long_mem );
9258 %}
9259 
9260 // Shift Left Long by 1
9261 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9262   predicate(UseNewLongLShift);
9263   match(Set dst (LShiftL dst cnt));
9264   effect(KILL cr);
9265   ins_cost(100);
9266   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9267             "ADC    $dst.hi,$dst.hi" %}
9268   ins_encode %{
9269     __ addl($dst$$Register,$dst$$Register);
9270     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9271   %}
9272   ins_pipe( ialu_reg_long );
9273 %}
9274 
9275 // Shift Left Long by 2
9276 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9277   predicate(UseNewLongLShift);
9278   match(Set dst (LShiftL dst cnt));
9279   effect(KILL cr);
9280   ins_cost(100);
9281   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9282             "ADC    $dst.hi,$dst.hi\n\t" 
9283             "ADD    $dst.lo,$dst.lo\n\t"
9284             "ADC    $dst.hi,$dst.hi" %}
9285   ins_encode %{
9286     __ addl($dst$$Register,$dst$$Register);
9287     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9288     __ addl($dst$$Register,$dst$$Register);
9289     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9290   %}
9291   ins_pipe( ialu_reg_long );
9292 %}
9293 
9294 // Shift Left Long by 3
9295 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9296   predicate(UseNewLongLShift);
9297   match(Set dst (LShiftL dst cnt));
9298   effect(KILL cr);
9299   ins_cost(100);
9300   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9301             "ADC    $dst.hi,$dst.hi\n\t" 
9302             "ADD    $dst.lo,$dst.lo\n\t"
9303             "ADC    $dst.hi,$dst.hi\n\t" 
9304             "ADD    $dst.lo,$dst.lo\n\t"
9305             "ADC    $dst.hi,$dst.hi" %}
9306   ins_encode %{
9307     __ addl($dst$$Register,$dst$$Register);
9308     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9309     __ addl($dst$$Register,$dst$$Register);
9310     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9311     __ addl($dst$$Register,$dst$$Register);
9312     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9313   %}
9314   ins_pipe( ialu_reg_long );
9315 %}
9316 
9317 // Shift Left Long by 1-31
9318 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9319   match(Set dst (LShiftL dst cnt));
9320   effect(KILL cr);
9321   ins_cost(200);
9322   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9323             "SHL    $dst.lo,$cnt" %}
9324   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9325   ins_encode( move_long_small_shift(dst,cnt) );
9326   ins_pipe( ialu_reg_long );
9327 %}
9328 
9329 // Shift Left Long by 32-63
9330 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9331   match(Set dst (LShiftL dst cnt));
9332   effect(KILL cr);
9333   ins_cost(300);
9334   format %{ "MOV    $dst.hi,$dst.lo\n"
9335           "\tSHL    $dst.hi,$cnt-32\n"
9336           "\tXOR    $dst.lo,$dst.lo" %}
9337   opcode(0xC1, 0x4);  /* C1 /4 ib */
9338   ins_encode( move_long_big_shift_clr(dst,cnt) );
9339   ins_pipe( ialu_reg_long );
9340 %}
9341 
9342 // Shift Left Long by variable
9343 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9344   match(Set dst (LShiftL dst shift));
9345   effect(KILL cr);
9346   ins_cost(500+200);
9347   size(17);
9348   format %{ "TEST   $shift,32\n\t"
9349             "JEQ,s  small\n\t"
9350             "MOV    $dst.hi,$dst.lo\n\t"
9351             "XOR    $dst.lo,$dst.lo\n"
9352     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9353             "SHL    $dst.lo,$shift" %}
9354   ins_encode( shift_left_long( dst, shift ) );
9355   ins_pipe( pipe_slow );
9356 %}
9357 
9358 // Shift Right Long by 1-31
9359 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9360   match(Set dst (URShiftL dst cnt));
9361   effect(KILL cr);
9362   ins_cost(200);
9363   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9364             "SHR    $dst.hi,$cnt" %}
9365   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9366   ins_encode( move_long_small_shift(dst,cnt) );
9367   ins_pipe( ialu_reg_long );
9368 %}
9369 
9370 // Shift Right Long by 32-63
9371 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9372   match(Set dst (URShiftL dst cnt));
9373   effect(KILL cr);
9374   ins_cost(300);
9375   format %{ "MOV    $dst.lo,$dst.hi\n"
9376           "\tSHR    $dst.lo,$cnt-32\n"
9377           "\tXOR    $dst.hi,$dst.hi" %}
9378   opcode(0xC1, 0x5);  /* C1 /5 ib */
9379   ins_encode( move_long_big_shift_clr(dst,cnt) );
9380   ins_pipe( ialu_reg_long );
9381 %}
9382 
9383 // Shift Right Long by variable
9384 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9385   match(Set dst (URShiftL dst shift));
9386   effect(KILL cr);
9387   ins_cost(600);
9388   size(17);
9389   format %{ "TEST   $shift,32\n\t"
9390             "JEQ,s  small\n\t"
9391             "MOV    $dst.lo,$dst.hi\n\t"
9392             "XOR    $dst.hi,$dst.hi\n"
9393     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9394             "SHR    $dst.hi,$shift" %}
9395   ins_encode( shift_right_long( dst, shift ) );
9396   ins_pipe( pipe_slow );
9397 %}
9398 
9399 // Shift Right Long by 1-31
9400 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9401   match(Set dst (RShiftL dst cnt));
9402   effect(KILL cr);
9403   ins_cost(200);
9404   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9405             "SAR    $dst.hi,$cnt" %}
9406   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9407   ins_encode( move_long_small_shift(dst,cnt) );
9408   ins_pipe( ialu_reg_long );
9409 %}
9410 
9411 // Shift Right Long by 32-63
9412 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9413   match(Set dst (RShiftL dst cnt));
9414   effect(KILL cr);
9415   ins_cost(300);
9416   format %{ "MOV    $dst.lo,$dst.hi\n"
9417           "\tSAR    $dst.lo,$cnt-32\n"
9418           "\tSAR    $dst.hi,31" %}
9419   opcode(0xC1, 0x7);  /* C1 /7 ib */
9420   ins_encode( move_long_big_shift_sign(dst,cnt) );
9421   ins_pipe( ialu_reg_long );
9422 %}
9423 
9424 // Shift Right arithmetic Long by variable
9425 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9426   match(Set dst (RShiftL dst shift));
9427   effect(KILL cr);
9428   ins_cost(600);
9429   size(18);
9430   format %{ "TEST   $shift,32\n\t"
9431             "JEQ,s  small\n\t"
9432             "MOV    $dst.lo,$dst.hi\n\t"
9433             "SAR    $dst.hi,31\n"
9434     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9435             "SAR    $dst.hi,$shift" %}
9436   ins_encode( shift_right_arith_long( dst, shift ) );
9437   ins_pipe( pipe_slow );
9438 %}
9439 
9440 
9441 //----------Double Instructions------------------------------------------------
9442 // Double Math
9443 
9444 // Compare & branch
9445 
9446 // P6 version of float compare, sets condition codes in EFLAGS
9447 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9448   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9449   match(Set cr (CmpD src1 src2));
9450   effect(KILL rax);
9451   ins_cost(150);
9452   format %{ "FLD    $src1\n\t"
9453             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9454             "JNP    exit\n\t"
9455             "MOV    ah,1       // saw a NaN, set CF\n\t"
9456             "SAHF\n"
9457      "exit:\tNOP               // avoid branch to branch" %}
9458   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9459   ins_encode( Push_Reg_DPR(src1),
9460               OpcP, RegOpc(src2),
9461               cmpF_P6_fixup );
9462   ins_pipe( pipe_slow );
9463 %}
9464 
9465 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9466   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9467   match(Set cr (CmpD src1 src2));
9468   ins_cost(150);
9469   format %{ "FLD    $src1\n\t"
9470             "FUCOMIP ST,$src2  // P6 instruction" %}
9471   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9472   ins_encode( Push_Reg_DPR(src1),
9473               OpcP, RegOpc(src2));
9474   ins_pipe( pipe_slow );
9475 %}
9476 
9477 // Compare & branch
9478 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9479   predicate(UseSSE<=1);
9480   match(Set cr (CmpD src1 src2));
9481   effect(KILL rax);
9482   ins_cost(200);
9483   format %{ "FLD    $src1\n\t"
9484             "FCOMp  $src2\n\t"
9485             "FNSTSW AX\n\t"
9486             "TEST   AX,0x400\n\t"
9487             "JZ,s   flags\n\t"
9488             "MOV    AH,1\t# unordered treat as LT\n"
9489     "flags:\tSAHF" %}
9490   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9491   ins_encode( Push_Reg_DPR(src1),
9492               OpcP, RegOpc(src2),
9493               fpu_flags);
9494   ins_pipe( pipe_slow );
9495 %}
9496 
9497 // Compare vs zero into -1,0,1
9498 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9499   predicate(UseSSE<=1);
9500   match(Set dst (CmpD3 src1 zero));
9501   effect(KILL cr, KILL rax);
9502   ins_cost(280);
9503   format %{ "FTSTD  $dst,$src1" %}
9504   opcode(0xE4, 0xD9);
9505   ins_encode( Push_Reg_DPR(src1),
9506               OpcS, OpcP, PopFPU,
9507               CmpF_Result(dst));
9508   ins_pipe( pipe_slow );
9509 %}
9510 
9511 // Compare into -1,0,1
9512 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9513   predicate(UseSSE<=1);
9514   match(Set dst (CmpD3 src1 src2));
9515   effect(KILL cr, KILL rax);
9516   ins_cost(300);
9517   format %{ "FCMPD  $dst,$src1,$src2" %}
9518   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9519   ins_encode( Push_Reg_DPR(src1),
9520               OpcP, RegOpc(src2),
9521               CmpF_Result(dst));
9522   ins_pipe( pipe_slow );
9523 %}
9524 
9525 // float compare and set condition codes in EFLAGS by XMM regs
9526 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9527   predicate(UseSSE>=2);
9528   match(Set cr (CmpD src1 src2));
9529   ins_cost(145);
9530   format %{ "UCOMISD $src1,$src2\n\t"
9531             "JNP,s   exit\n\t"
9532             "PUSHF\t# saw NaN, set CF\n\t"
9533             "AND     [rsp], #0xffffff2b\n\t"
9534             "POPF\n"
9535     "exit:" %}
9536   ins_encode %{
9537     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9538     emit_cmpfp_fixup(_masm);
9539   %}
9540   ins_pipe( pipe_slow );
9541 %}
9542 
9543 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9544   predicate(UseSSE>=2);
9545   match(Set cr (CmpD src1 src2));
9546   ins_cost(100);
9547   format %{ "UCOMISD $src1,$src2" %}
9548   ins_encode %{
9549     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9550   %}
9551   ins_pipe( pipe_slow );
9552 %}
9553 
9554 // float compare and set condition codes in EFLAGS by XMM regs
9555 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9556   predicate(UseSSE>=2);
9557   match(Set cr (CmpD src1 (LoadD src2)));
9558   ins_cost(145);
9559   format %{ "UCOMISD $src1,$src2\n\t"
9560             "JNP,s   exit\n\t"
9561             "PUSHF\t# saw NaN, set CF\n\t"
9562             "AND     [rsp], #0xffffff2b\n\t"
9563             "POPF\n"
9564     "exit:" %}
9565   ins_encode %{
9566     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9567     emit_cmpfp_fixup(_masm);
9568   %}
9569   ins_pipe( pipe_slow );
9570 %}
9571 
9572 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9573   predicate(UseSSE>=2);
9574   match(Set cr (CmpD src1 (LoadD src2)));
9575   ins_cost(100);
9576   format %{ "UCOMISD $src1,$src2" %}
9577   ins_encode %{
9578     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9579   %}
9580   ins_pipe( pipe_slow );
9581 %}
9582 
9583 // Compare into -1,0,1 in XMM
9584 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9585   predicate(UseSSE>=2);
9586   match(Set dst (CmpD3 src1 src2));
9587   effect(KILL cr);
9588   ins_cost(255);
9589   format %{ "UCOMISD $src1, $src2\n\t"
9590             "MOV     $dst, #-1\n\t"
9591             "JP,s    done\n\t"
9592             "JB,s    done\n\t"
9593             "SETNE   $dst\n\t"
9594             "MOVZB   $dst, $dst\n"
9595     "done:" %}
9596   ins_encode %{
9597     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9598     emit_cmpfp3(_masm, $dst$$Register);
9599   %}
9600   ins_pipe( pipe_slow );
9601 %}
9602 
9603 // Compare into -1,0,1 in XMM and memory
9604 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9605   predicate(UseSSE>=2);
9606   match(Set dst (CmpD3 src1 (LoadD src2)));
9607   effect(KILL cr);
9608   ins_cost(275);
9609   format %{ "UCOMISD $src1, $src2\n\t"
9610             "MOV     $dst, #-1\n\t"
9611             "JP,s    done\n\t"
9612             "JB,s    done\n\t"
9613             "SETNE   $dst\n\t"
9614             "MOVZB   $dst, $dst\n"
9615     "done:" %}
9616   ins_encode %{
9617     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9618     emit_cmpfp3(_masm, $dst$$Register);
9619   %}
9620   ins_pipe( pipe_slow );
9621 %}
9622 
9623 
9624 instruct subDPR_reg(regDPR dst, regDPR src) %{
9625   predicate (UseSSE <=1);
9626   match(Set dst (SubD dst src));
9627 
9628   format %{ "FLD    $src\n\t"
9629             "DSUBp  $dst,ST" %}
9630   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9631   ins_cost(150);
9632   ins_encode( Push_Reg_DPR(src),
9633               OpcP, RegOpc(dst) );
9634   ins_pipe( fpu_reg_reg );
9635 %}
9636 
9637 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9638   predicate (UseSSE <=1);
9639   match(Set dst (RoundDouble (SubD src1 src2)));
9640   ins_cost(250);
9641 
9642   format %{ "FLD    $src2\n\t"
9643             "DSUB   ST,$src1\n\t"
9644             "FSTP_D $dst\t# D-round" %}
9645   opcode(0xD8, 0x5);
9646   ins_encode( Push_Reg_DPR(src2),
9647               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9648   ins_pipe( fpu_mem_reg_reg );
9649 %}
9650 
9651 
9652 instruct subDPR_reg_mem(regDPR dst, memory src) %{
9653   predicate (UseSSE <=1);
9654   match(Set dst (SubD dst (LoadD src)));
9655   ins_cost(150);
9656 
9657   format %{ "FLD    $src\n\t"
9658             "DSUBp  $dst,ST" %}
9659   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9660   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9661               OpcP, RegOpc(dst) );
9662   ins_pipe( fpu_reg_mem );
9663 %}
9664 
9665 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9666   predicate (UseSSE<=1);
9667   match(Set dst (AbsD src));
9668   ins_cost(100);
9669   format %{ "FABS" %}
9670   opcode(0xE1, 0xD9);
9671   ins_encode( OpcS, OpcP );
9672   ins_pipe( fpu_reg_reg );
9673 %}
9674 
9675 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9676   predicate(UseSSE<=1);
9677   match(Set dst (NegD src));
9678   ins_cost(100);
9679   format %{ "FCHS" %}
9680   opcode(0xE0, 0xD9);
9681   ins_encode( OpcS, OpcP );
9682   ins_pipe( fpu_reg_reg );
9683 %}
9684 
9685 instruct addDPR_reg(regDPR dst, regDPR src) %{
9686   predicate(UseSSE<=1);
9687   match(Set dst (AddD dst src));
9688   format %{ "FLD    $src\n\t"
9689             "DADD   $dst,ST" %}
9690   size(4);
9691   ins_cost(150);
9692   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9693   ins_encode( Push_Reg_DPR(src),
9694               OpcP, RegOpc(dst) );
9695   ins_pipe( fpu_reg_reg );
9696 %}
9697 
9698 
9699 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9700   predicate(UseSSE<=1);
9701   match(Set dst (RoundDouble (AddD src1 src2)));
9702   ins_cost(250);
9703 
9704   format %{ "FLD    $src2\n\t"
9705             "DADD   ST,$src1\n\t"
9706             "FSTP_D $dst\t# D-round" %}
9707   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9708   ins_encode( Push_Reg_DPR(src2),
9709               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9710   ins_pipe( fpu_mem_reg_reg );
9711 %}
9712 
9713 
9714 instruct addDPR_reg_mem(regDPR dst, memory src) %{
9715   predicate(UseSSE<=1);
9716   match(Set dst (AddD dst (LoadD src)));
9717   ins_cost(150);
9718 
9719   format %{ "FLD    $src\n\t"
9720             "DADDp  $dst,ST" %}
9721   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9722   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9723               OpcP, RegOpc(dst) );
9724   ins_pipe( fpu_reg_mem );
9725 %}
9726 
9727 // add-to-memory
9728 instruct addDPR_mem_reg(memory dst, regDPR src) %{
9729   predicate(UseSSE<=1);
9730   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9731   ins_cost(150);
9732 
9733   format %{ "FLD_D  $dst\n\t"
9734             "DADD   ST,$src\n\t"
9735             "FST_D  $dst" %}
9736   opcode(0xDD, 0x0);
9737   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9738               Opcode(0xD8), RegOpc(src),
9739               set_instruction_start,
9740               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9741   ins_pipe( fpu_reg_mem );
9742 %}
9743 
9744 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9745   predicate(UseSSE<=1);
9746   match(Set dst (AddD dst con));
9747   ins_cost(125);
9748   format %{ "FLD1\n\t"
9749             "DADDp  $dst,ST" %}
9750   ins_encode %{
9751     __ fld1();
9752     __ faddp($dst$$reg);
9753   %}
9754   ins_pipe(fpu_reg);
9755 %}
9756 
9757 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9758   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9759   match(Set dst (AddD dst con));
9760   ins_cost(200);
9761   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9762             "DADDp  $dst,ST" %}
9763   ins_encode %{
9764     __ fld_d($constantaddress($con));
9765     __ faddp($dst$$reg);
9766   %}
9767   ins_pipe(fpu_reg_mem);
9768 %}
9769 
9770 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9771   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9772   match(Set dst (RoundDouble (AddD src con)));
9773   ins_cost(200);
9774   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9775             "DADD   ST,$src\n\t"
9776             "FSTP_D $dst\t# D-round" %}
9777   ins_encode %{
9778     __ fld_d($constantaddress($con));
9779     __ fadd($src$$reg);
9780     __ fstp_d(Address(rsp, $dst$$disp));
9781   %}
9782   ins_pipe(fpu_mem_reg_con);
9783 %}
9784 
9785 instruct mulDPR_reg(regDPR dst, regDPR src) %{
9786   predicate(UseSSE<=1);
9787   match(Set dst (MulD dst src));
9788   format %{ "FLD    $src\n\t"
9789             "DMULp  $dst,ST" %}
9790   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9791   ins_cost(150);
9792   ins_encode( Push_Reg_DPR(src),
9793               OpcP, RegOpc(dst) );
9794   ins_pipe( fpu_reg_reg );
9795 %}
9796 
9797 // Strict FP instruction biases argument before multiply then
9798 // biases result to avoid double rounding of subnormals.
9799 //
9800 // scale arg1 by multiplying arg1 by 2^(-15360)
9801 // load arg2
9802 // multiply scaled arg1 by arg2
9803 // rescale product by 2^(15360)
9804 //
9805 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9806   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9807   match(Set dst (MulD dst src));
9808   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9809 
9810   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9811             "DMULp  $dst,ST\n\t"
9812             "FLD    $src\n\t"
9813             "DMULp  $dst,ST\n\t"
9814             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9815             "DMULp  $dst,ST\n\t" %}
9816   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9817   ins_encode( strictfp_bias1(dst),
9818               Push_Reg_DPR(src),
9819               OpcP, RegOpc(dst),
9820               strictfp_bias2(dst) );
9821   ins_pipe( fpu_reg_reg );
9822 %}
9823 
9824 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9825   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9826   match(Set dst (MulD dst con));
9827   ins_cost(200);
9828   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9829             "DMULp  $dst,ST" %}
9830   ins_encode %{
9831     __ fld_d($constantaddress($con));
9832     __ fmulp($dst$$reg);
9833   %}
9834   ins_pipe(fpu_reg_mem);
9835 %}
9836 
9837 
9838 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9839   predicate( UseSSE<=1 );
9840   match(Set dst (MulD dst (LoadD src)));
9841   ins_cost(200);
9842   format %{ "FLD_D  $src\n\t"
9843             "DMULp  $dst,ST" %}
9844   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9845   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9846               OpcP, RegOpc(dst) );
9847   ins_pipe( fpu_reg_mem );
9848 %}
9849 
9850 //
9851 // Cisc-alternate to reg-reg multiply
9852 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9853   predicate( UseSSE<=1 );
9854   match(Set dst (MulD src (LoadD mem)));
9855   ins_cost(250);
9856   format %{ "FLD_D  $mem\n\t"
9857             "DMUL   ST,$src\n\t"
9858             "FSTP_D $dst" %}
9859   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9860   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9861               OpcReg_FPR(src),
9862               Pop_Reg_DPR(dst) );
9863   ins_pipe( fpu_reg_reg_mem );
9864 %}
9865 
9866 
9867 // MACRO3 -- addDPR a mulDPR
9868 // This instruction is a '2-address' instruction in that the result goes
9869 // back to src2.  This eliminates a move from the macro; possibly the
9870 // register allocator will have to add it back (and maybe not).
9871 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9872   predicate( UseSSE<=1 );
9873   match(Set src2 (AddD (MulD src0 src1) src2));
9874   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9875             "DMUL   ST,$src1\n\t"
9876             "DADDp  $src2,ST" %}
9877   ins_cost(250);
9878   opcode(0xDD); /* LoadD DD /0 */
9879   ins_encode( Push_Reg_FPR(src0),
9880               FMul_ST_reg(src1),
9881               FAddP_reg_ST(src2) );
9882   ins_pipe( fpu_reg_reg_reg );
9883 %}
9884 
9885 
9886 // MACRO3 -- subDPR a mulDPR
9887 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9888   predicate( UseSSE<=1 );
9889   match(Set src2 (SubD (MulD src0 src1) src2));
9890   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9891             "DMUL   ST,$src1\n\t"
9892             "DSUBRp $src2,ST" %}
9893   ins_cost(250);
9894   ins_encode( Push_Reg_FPR(src0),
9895               FMul_ST_reg(src1),
9896               Opcode(0xDE), Opc_plus(0xE0,src2));
9897   ins_pipe( fpu_reg_reg_reg );
9898 %}
9899 
9900 
9901 instruct divDPR_reg(regDPR dst, regDPR src) %{
9902   predicate( UseSSE<=1 );
9903   match(Set dst (DivD dst src));
9904 
9905   format %{ "FLD    $src\n\t"
9906             "FDIVp  $dst,ST" %}
9907   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9908   ins_cost(150);
9909   ins_encode( Push_Reg_DPR(src),
9910               OpcP, RegOpc(dst) );
9911   ins_pipe( fpu_reg_reg );
9912 %}
9913 
9914 // Strict FP instruction biases argument before division then
9915 // biases result, to avoid double rounding of subnormals.
9916 //
9917 // scale dividend by multiplying dividend by 2^(-15360)
9918 // load divisor
9919 // divide scaled dividend by divisor
9920 // rescale quotient by 2^(15360)
9921 //
9922 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9923   predicate (UseSSE<=1);
9924   match(Set dst (DivD dst src));
9925   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9926   ins_cost(01);
9927 
9928   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9929             "DMULp  $dst,ST\n\t"
9930             "FLD    $src\n\t"
9931             "FDIVp  $dst,ST\n\t"
9932             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9933             "DMULp  $dst,ST\n\t" %}
9934   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9935   ins_encode( strictfp_bias1(dst),
9936               Push_Reg_DPR(src),
9937               OpcP, RegOpc(dst),
9938               strictfp_bias2(dst) );
9939   ins_pipe( fpu_reg_reg );
9940 %}
9941 
9942 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9943   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9944   match(Set dst (RoundDouble (DivD src1 src2)));
9945 
9946   format %{ "FLD    $src1\n\t"
9947             "FDIV   ST,$src2\n\t"
9948             "FSTP_D $dst\t# D-round" %}
9949   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9950   ins_encode( Push_Reg_DPR(src1),
9951               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
9952   ins_pipe( fpu_mem_reg_reg );
9953 %}
9954 
9955 
9956 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
9957   predicate(UseSSE<=1);
9958   match(Set dst (ModD dst src));
9959   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
9960 
9961   format %{ "DMOD   $dst,$src" %}
9962   ins_cost(250);
9963   ins_encode(Push_Reg_Mod_DPR(dst, src),
9964               emitModDPR(),
9965               Push_Result_Mod_DPR(src),
9966               Pop_Reg_DPR(dst));
9967   ins_pipe( pipe_slow );
9968 %}
9969 
9970 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
9971   predicate(UseSSE>=2);
9972   match(Set dst (ModD src0 src1));
9973   effect(KILL rax, KILL cr);
9974 
9975   format %{ "SUB    ESP,8\t # DMOD\n"
9976           "\tMOVSD  [ESP+0],$src1\n"
9977           "\tFLD_D  [ESP+0]\n"
9978           "\tMOVSD  [ESP+0],$src0\n"
9979           "\tFLD_D  [ESP+0]\n"
9980      "loop:\tFPREM\n"
9981           "\tFWAIT\n"
9982           "\tFNSTSW AX\n"
9983           "\tSAHF\n"
9984           "\tJP     loop\n"
9985           "\tFSTP_D [ESP+0]\n"
9986           "\tMOVSD  $dst,[ESP+0]\n"
9987           "\tADD    ESP,8\n"
9988           "\tFSTP   ST0\t # Restore FPU Stack"
9989     %}
9990   ins_cost(250);
9991   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
9992   ins_pipe( pipe_slow );
9993 %}
9994 
9995 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
9996   predicate (UseSSE<=1);
9997   match(Set dst (SinD src));
9998   ins_cost(1800);
9999   format %{ "DSIN   $dst" %}
10000   opcode(0xD9, 0xFE);
10001   ins_encode( OpcP, OpcS );
10002   ins_pipe( pipe_slow );
10003 %}
10004 
10005 instruct sinD_reg(regD dst, eFlagsReg cr) %{
10006   predicate (UseSSE>=2);
10007   match(Set dst (SinD dst));
10008   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10009   ins_cost(1800);
10010   format %{ "DSIN   $dst" %}
10011   opcode(0xD9, 0xFE);
10012   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
10013   ins_pipe( pipe_slow );
10014 %}
10015 
10016 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
10017   predicate (UseSSE<=1);
10018   match(Set dst (CosD src));
10019   ins_cost(1800);
10020   format %{ "DCOS   $dst" %}
10021   opcode(0xD9, 0xFF);
10022   ins_encode( OpcP, OpcS );
10023   ins_pipe( pipe_slow );
10024 %}
10025 
10026 instruct cosD_reg(regD dst, eFlagsReg cr) %{
10027   predicate (UseSSE>=2);
10028   match(Set dst (CosD dst));
10029   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10030   ins_cost(1800);
10031   format %{ "DCOS   $dst" %}
10032   opcode(0xD9, 0xFF);
10033   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
10034   ins_pipe( pipe_slow );
10035 %}
10036 
10037 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
10038   predicate (UseSSE<=1);
10039   match(Set dst(TanD src));
10040   format %{ "DTAN   $dst" %}
10041   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10042               Opcode(0xDD), Opcode(0xD8));   // fstp st
10043   ins_pipe( pipe_slow );
10044 %}
10045 
10046 instruct tanD_reg(regD dst, eFlagsReg cr) %{
10047   predicate (UseSSE>=2);
10048   match(Set dst(TanD dst));
10049   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10050   format %{ "DTAN   $dst" %}
10051   ins_encode( Push_SrcD(dst),
10052               Opcode(0xD9), Opcode(0xF2),    // fptan
10053               Opcode(0xDD), Opcode(0xD8),   // fstp st
10054               Push_ResultD(dst) );
10055   ins_pipe( pipe_slow );
10056 %}
10057 
10058 instruct atanDPR_reg(regDPR dst, regDPR src) %{
10059   predicate (UseSSE<=1);
10060   match(Set dst(AtanD dst src));
10061   format %{ "DATA   $dst,$src" %}
10062   opcode(0xD9, 0xF3);
10063   ins_encode( Push_Reg_DPR(src),
10064               OpcP, OpcS, RegOpc(dst) );
10065   ins_pipe( pipe_slow );
10066 %}
10067 
10068 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
10069   predicate (UseSSE>=2);
10070   match(Set dst(AtanD dst src));
10071   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
10072   format %{ "DATA   $dst,$src" %}
10073   opcode(0xD9, 0xF3);
10074   ins_encode( Push_SrcD(src),
10075               OpcP, OpcS, Push_ResultD(dst) );
10076   ins_pipe( pipe_slow );
10077 %}
10078 
10079 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
10080   predicate (UseSSE<=1);
10081   match(Set dst (SqrtD src));
10082   format %{ "DSQRT  $dst,$src" %}
10083   opcode(0xFA, 0xD9);
10084   ins_encode( Push_Reg_DPR(src),
10085               OpcS, OpcP, Pop_Reg_DPR(dst) );
10086   ins_pipe( pipe_slow );
10087 %}
10088 
10089 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10090   predicate (UseSSE<=1);
10091   match(Set Y (PowD X Y));  // Raise X to the Yth power
10092   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10093   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
10094   ins_encode %{
10095     __ subptr(rsp, 8);
10096     __ fld_s($X$$reg - 1);
10097     __ fast_pow();
10098     __ addptr(rsp, 8);
10099   %}
10100   ins_pipe( pipe_slow );
10101 %}
10102 
10103 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10104   predicate (UseSSE>=2);
10105   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10106   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10107   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
10108   ins_encode %{
10109     __ subptr(rsp, 8);
10110     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
10111     __ fld_d(Address(rsp, 0));
10112     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
10113     __ fld_d(Address(rsp, 0));
10114     __ fast_pow();
10115     __ fstp_d(Address(rsp, 0));
10116     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10117     __ addptr(rsp, 8);
10118   %}
10119   ins_pipe( pipe_slow );
10120 %}
10121 
10122 
10123 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10124   predicate (UseSSE<=1);
10125   match(Set dpr1 (ExpD dpr1));
10126   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10127   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
10128   ins_encode %{
10129     __ fast_exp();
10130   %}
10131   ins_pipe( pipe_slow );
10132 %}
10133 
10134 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10135   predicate (UseSSE>=2);
10136   match(Set dst (ExpD src));
10137   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10138   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
10139   ins_encode %{
10140     __ subptr(rsp, 8);
10141     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10142     __ fld_d(Address(rsp, 0));
10143     __ fast_exp();
10144     __ fstp_d(Address(rsp, 0));
10145     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10146     __ addptr(rsp, 8);
10147   %}
10148   ins_pipe( pipe_slow );
10149 %}
10150 
10151 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
10152   predicate (UseSSE<=1);
10153   // The source Double operand on FPU stack
10154   match(Set dst (Log10D src));
10155   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10156   // fxch         ; swap ST(0) with ST(1)
10157   // fyl2x        ; compute log_10(2) * log_2(x)
10158   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10159             "FXCH   \n\t"
10160             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10161          %}
10162   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10163               Opcode(0xD9), Opcode(0xC9),   // fxch
10164               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10165 
10166   ins_pipe( pipe_slow );
10167 %}
10168 
10169 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
10170   predicate (UseSSE>=2);
10171   effect(KILL cr);
10172   match(Set dst (Log10D src));
10173   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10174   // fyl2x        ; compute log_10(2) * log_2(x)
10175   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10176             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10177          %}
10178   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10179               Push_SrcD(src),
10180               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10181               Push_ResultD(dst));
10182 
10183   ins_pipe( pipe_slow );
10184 %}
10185 
10186 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
10187   predicate (UseSSE<=1);
10188   // The source Double operand on FPU stack
10189   match(Set dst (LogD src));
10190   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10191   // fxch         ; swap ST(0) with ST(1)
10192   // fyl2x        ; compute log_e(2) * log_2(x)
10193   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10194             "FXCH   \n\t"
10195             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10196          %}
10197   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10198               Opcode(0xD9), Opcode(0xC9),   // fxch
10199               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10200 
10201   ins_pipe( pipe_slow );
10202 %}
10203 
10204 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10205   predicate (UseSSE>=2);
10206   effect(KILL cr);
10207   // The source and result Double operands in XMM registers
10208   match(Set dst (LogD src));
10209   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10210   // fyl2x        ; compute log_e(2) * log_2(x)
10211   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10212             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10213          %}
10214   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10215               Push_SrcD(src),
10216               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10217               Push_ResultD(dst));
10218   ins_pipe( pipe_slow );
10219 %}
10220 
10221 //-------------Float Instructions-------------------------------
10222 // Float Math
10223 
10224 // Code for float compare:
10225 //     fcompp();
10226 //     fwait(); fnstsw_ax();
10227 //     sahf();
10228 //     movl(dst, unordered_result);
10229 //     jcc(Assembler::parity, exit);
10230 //     movl(dst, less_result);
10231 //     jcc(Assembler::below, exit);
10232 //     movl(dst, equal_result);
10233 //     jcc(Assembler::equal, exit);
10234 //     movl(dst, greater_result);
10235 //   exit:
10236 
10237 // P6 version of float compare, sets condition codes in EFLAGS
10238 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10239   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10240   match(Set cr (CmpF src1 src2));
10241   effect(KILL rax);
10242   ins_cost(150);
10243   format %{ "FLD    $src1\n\t"
10244             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10245             "JNP    exit\n\t"
10246             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10247             "SAHF\n"
10248      "exit:\tNOP               // avoid branch to branch" %}
10249   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10250   ins_encode( Push_Reg_DPR(src1),
10251               OpcP, RegOpc(src2),
10252               cmpF_P6_fixup );
10253   ins_pipe( pipe_slow );
10254 %}
10255 
10256 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10257   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10258   match(Set cr (CmpF src1 src2));
10259   ins_cost(100);
10260   format %{ "FLD    $src1\n\t"
10261             "FUCOMIP ST,$src2  // P6 instruction" %}
10262   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10263   ins_encode( Push_Reg_DPR(src1),
10264               OpcP, RegOpc(src2));
10265   ins_pipe( pipe_slow );
10266 %}
10267 
10268 
10269 // Compare & branch
10270 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10271   predicate(UseSSE == 0);
10272   match(Set cr (CmpF src1 src2));
10273   effect(KILL rax);
10274   ins_cost(200);
10275   format %{ "FLD    $src1\n\t"
10276             "FCOMp  $src2\n\t"
10277             "FNSTSW AX\n\t"
10278             "TEST   AX,0x400\n\t"
10279             "JZ,s   flags\n\t"
10280             "MOV    AH,1\t# unordered treat as LT\n"
10281     "flags:\tSAHF" %}
10282   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10283   ins_encode( Push_Reg_DPR(src1),
10284               OpcP, RegOpc(src2),
10285               fpu_flags);
10286   ins_pipe( pipe_slow );
10287 %}
10288 
10289 // Compare vs zero into -1,0,1
10290 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10291   predicate(UseSSE == 0);
10292   match(Set dst (CmpF3 src1 zero));
10293   effect(KILL cr, KILL rax);
10294   ins_cost(280);
10295   format %{ "FTSTF  $dst,$src1" %}
10296   opcode(0xE4, 0xD9);
10297   ins_encode( Push_Reg_DPR(src1),
10298               OpcS, OpcP, PopFPU,
10299               CmpF_Result(dst));
10300   ins_pipe( pipe_slow );
10301 %}
10302 
10303 // Compare into -1,0,1
10304 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10305   predicate(UseSSE == 0);
10306   match(Set dst (CmpF3 src1 src2));
10307   effect(KILL cr, KILL rax);
10308   ins_cost(300);
10309   format %{ "FCMPF  $dst,$src1,$src2" %}
10310   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10311   ins_encode( Push_Reg_DPR(src1),
10312               OpcP, RegOpc(src2),
10313               CmpF_Result(dst));
10314   ins_pipe( pipe_slow );
10315 %}
10316 
10317 // float compare and set condition codes in EFLAGS by XMM regs
10318 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10319   predicate(UseSSE>=1);
10320   match(Set cr (CmpF src1 src2));
10321   ins_cost(145);
10322   format %{ "UCOMISS $src1,$src2\n\t"
10323             "JNP,s   exit\n\t"
10324             "PUSHF\t# saw NaN, set CF\n\t"
10325             "AND     [rsp], #0xffffff2b\n\t"
10326             "POPF\n"
10327     "exit:" %}
10328   ins_encode %{
10329     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10330     emit_cmpfp_fixup(_masm);
10331   %}
10332   ins_pipe( pipe_slow );
10333 %}
10334 
10335 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10336   predicate(UseSSE>=1);
10337   match(Set cr (CmpF src1 src2));
10338   ins_cost(100);
10339   format %{ "UCOMISS $src1,$src2" %}
10340   ins_encode %{
10341     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10342   %}
10343   ins_pipe( pipe_slow );
10344 %}
10345 
10346 // float compare and set condition codes in EFLAGS by XMM regs
10347 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10348   predicate(UseSSE>=1);
10349   match(Set cr (CmpF src1 (LoadF src2)));
10350   ins_cost(165);
10351   format %{ "UCOMISS $src1,$src2\n\t"
10352             "JNP,s   exit\n\t"
10353             "PUSHF\t# saw NaN, set CF\n\t"
10354             "AND     [rsp], #0xffffff2b\n\t"
10355             "POPF\n"
10356     "exit:" %}
10357   ins_encode %{
10358     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10359     emit_cmpfp_fixup(_masm);
10360   %}
10361   ins_pipe( pipe_slow );
10362 %}
10363 
10364 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10365   predicate(UseSSE>=1);
10366   match(Set cr (CmpF src1 (LoadF src2)));
10367   ins_cost(100);
10368   format %{ "UCOMISS $src1,$src2" %}
10369   ins_encode %{
10370     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10371   %}
10372   ins_pipe( pipe_slow );
10373 %}
10374 
10375 // Compare into -1,0,1 in XMM
10376 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10377   predicate(UseSSE>=1);
10378   match(Set dst (CmpF3 src1 src2));
10379   effect(KILL cr);
10380   ins_cost(255);
10381   format %{ "UCOMISS $src1, $src2\n\t"
10382             "MOV     $dst, #-1\n\t"
10383             "JP,s    done\n\t"
10384             "JB,s    done\n\t"
10385             "SETNE   $dst\n\t"
10386             "MOVZB   $dst, $dst\n"
10387     "done:" %}
10388   ins_encode %{
10389     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10390     emit_cmpfp3(_masm, $dst$$Register);
10391   %}
10392   ins_pipe( pipe_slow );
10393 %}
10394 
10395 // Compare into -1,0,1 in XMM and memory
10396 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10397   predicate(UseSSE>=1);
10398   match(Set dst (CmpF3 src1 (LoadF src2)));
10399   effect(KILL cr);
10400   ins_cost(275);
10401   format %{ "UCOMISS $src1, $src2\n\t"
10402             "MOV     $dst, #-1\n\t"
10403             "JP,s    done\n\t"
10404             "JB,s    done\n\t"
10405             "SETNE   $dst\n\t"
10406             "MOVZB   $dst, $dst\n"
10407     "done:" %}
10408   ins_encode %{
10409     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10410     emit_cmpfp3(_masm, $dst$$Register);
10411   %}
10412   ins_pipe( pipe_slow );
10413 %}
10414 
10415 // Spill to obtain 24-bit precision
10416 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10417   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10418   match(Set dst (SubF src1 src2));
10419 
10420   format %{ "FSUB   $dst,$src1 - $src2" %}
10421   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10422   ins_encode( Push_Reg_FPR(src1),
10423               OpcReg_FPR(src2),
10424               Pop_Mem_FPR(dst) );
10425   ins_pipe( fpu_mem_reg_reg );
10426 %}
10427 //
10428 // This instruction does not round to 24-bits
10429 instruct subFPR_reg(regFPR dst, regFPR src) %{
10430   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10431   match(Set dst (SubF dst src));
10432 
10433   format %{ "FSUB   $dst,$src" %}
10434   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10435   ins_encode( Push_Reg_FPR(src),
10436               OpcP, RegOpc(dst) );
10437   ins_pipe( fpu_reg_reg );
10438 %}
10439 
10440 // Spill to obtain 24-bit precision
10441 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10442   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10443   match(Set dst (AddF src1 src2));
10444 
10445   format %{ "FADD   $dst,$src1,$src2" %}
10446   opcode(0xD8, 0x0); /* D8 C0+i */
10447   ins_encode( Push_Reg_FPR(src2),
10448               OpcReg_FPR(src1),
10449               Pop_Mem_FPR(dst) );
10450   ins_pipe( fpu_mem_reg_reg );
10451 %}
10452 //
10453 // This instruction does not round to 24-bits
10454 instruct addFPR_reg(regFPR dst, regFPR src) %{
10455   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10456   match(Set dst (AddF dst src));
10457 
10458   format %{ "FLD    $src\n\t"
10459             "FADDp  $dst,ST" %}
10460   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10461   ins_encode( Push_Reg_FPR(src),
10462               OpcP, RegOpc(dst) );
10463   ins_pipe( fpu_reg_reg );
10464 %}
10465 
10466 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10467   predicate(UseSSE==0);
10468   match(Set dst (AbsF src));
10469   ins_cost(100);
10470   format %{ "FABS" %}
10471   opcode(0xE1, 0xD9);
10472   ins_encode( OpcS, OpcP );
10473   ins_pipe( fpu_reg_reg );
10474 %}
10475 
10476 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10477   predicate(UseSSE==0);
10478   match(Set dst (NegF src));
10479   ins_cost(100);
10480   format %{ "FCHS" %}
10481   opcode(0xE0, 0xD9);
10482   ins_encode( OpcS, OpcP );
10483   ins_pipe( fpu_reg_reg );
10484 %}
10485 
10486 // Cisc-alternate to addFPR_reg
10487 // Spill to obtain 24-bit precision
10488 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10489   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10490   match(Set dst (AddF src1 (LoadF src2)));
10491 
10492   format %{ "FLD    $src2\n\t"
10493             "FADD   ST,$src1\n\t"
10494             "FSTP_S $dst" %}
10495   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10496   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10497               OpcReg_FPR(src1),
10498               Pop_Mem_FPR(dst) );
10499   ins_pipe( fpu_mem_reg_mem );
10500 %}
10501 //
10502 // Cisc-alternate to addFPR_reg
10503 // This instruction does not round to 24-bits
10504 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10505   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10506   match(Set dst (AddF dst (LoadF src)));
10507 
10508   format %{ "FADD   $dst,$src" %}
10509   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10510   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10511               OpcP, RegOpc(dst) );
10512   ins_pipe( fpu_reg_mem );
10513 %}
10514 
10515 // // Following two instructions for _222_mpegaudio
10516 // Spill to obtain 24-bit precision
10517 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10518   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10519   match(Set dst (AddF src1 src2));
10520 
10521   format %{ "FADD   $dst,$src1,$src2" %}
10522   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10523   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10524               OpcReg_FPR(src2),
10525               Pop_Mem_FPR(dst) );
10526   ins_pipe( fpu_mem_reg_mem );
10527 %}
10528 
10529 // Cisc-spill variant
10530 // Spill to obtain 24-bit precision
10531 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10532   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10533   match(Set dst (AddF src1 (LoadF src2)));
10534 
10535   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10536   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10537   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10538               set_instruction_start,
10539               OpcP, RMopc_Mem(secondary,src1),
10540               Pop_Mem_FPR(dst) );
10541   ins_pipe( fpu_mem_mem_mem );
10542 %}
10543 
10544 // Spill to obtain 24-bit precision
10545 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10546   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10547   match(Set dst (AddF src1 src2));
10548 
10549   format %{ "FADD   $dst,$src1,$src2" %}
10550   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10551   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10552               set_instruction_start,
10553               OpcP, RMopc_Mem(secondary,src1),
10554               Pop_Mem_FPR(dst) );
10555   ins_pipe( fpu_mem_mem_mem );
10556 %}
10557 
10558 
10559 // Spill to obtain 24-bit precision
10560 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10561   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10562   match(Set dst (AddF src con));
10563   format %{ "FLD    $src\n\t"
10564             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10565             "FSTP_S $dst"  %}
10566   ins_encode %{
10567     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10568     __ fadd_s($constantaddress($con));
10569     __ fstp_s(Address(rsp, $dst$$disp));
10570   %}
10571   ins_pipe(fpu_mem_reg_con);
10572 %}
10573 //
10574 // This instruction does not round to 24-bits
10575 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10576   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10577   match(Set dst (AddF src con));
10578   format %{ "FLD    $src\n\t"
10579             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10580             "FSTP   $dst"  %}
10581   ins_encode %{
10582     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10583     __ fadd_s($constantaddress($con));
10584     __ fstp_d($dst$$reg);
10585   %}
10586   ins_pipe(fpu_reg_reg_con);
10587 %}
10588 
10589 // Spill to obtain 24-bit precision
10590 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10591   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10592   match(Set dst (MulF src1 src2));
10593 
10594   format %{ "FLD    $src1\n\t"
10595             "FMUL   $src2\n\t"
10596             "FSTP_S $dst"  %}
10597   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10598   ins_encode( Push_Reg_FPR(src1),
10599               OpcReg_FPR(src2),
10600               Pop_Mem_FPR(dst) );
10601   ins_pipe( fpu_mem_reg_reg );
10602 %}
10603 //
10604 // This instruction does not round to 24-bits
10605 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10606   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10607   match(Set dst (MulF src1 src2));
10608 
10609   format %{ "FLD    $src1\n\t"
10610             "FMUL   $src2\n\t"
10611             "FSTP_S $dst"  %}
10612   opcode(0xD8, 0x1); /* D8 C8+i */
10613   ins_encode( Push_Reg_FPR(src2),
10614               OpcReg_FPR(src1),
10615               Pop_Reg_FPR(dst) );
10616   ins_pipe( fpu_reg_reg_reg );
10617 %}
10618 
10619 
10620 // Spill to obtain 24-bit precision
10621 // Cisc-alternate to reg-reg multiply
10622 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10623   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10624   match(Set dst (MulF src1 (LoadF src2)));
10625 
10626   format %{ "FLD_S  $src2\n\t"
10627             "FMUL   $src1\n\t"
10628             "FSTP_S $dst"  %}
10629   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10630   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10631               OpcReg_FPR(src1),
10632               Pop_Mem_FPR(dst) );
10633   ins_pipe( fpu_mem_reg_mem );
10634 %}
10635 //
10636 // This instruction does not round to 24-bits
10637 // Cisc-alternate to reg-reg multiply
10638 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10639   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10640   match(Set dst (MulF src1 (LoadF src2)));
10641 
10642   format %{ "FMUL   $dst,$src1,$src2" %}
10643   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10644   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10645               OpcReg_FPR(src1),
10646               Pop_Reg_FPR(dst) );
10647   ins_pipe( fpu_reg_reg_mem );
10648 %}
10649 
10650 // Spill to obtain 24-bit precision
10651 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10652   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10653   match(Set dst (MulF src1 src2));
10654 
10655   format %{ "FMUL   $dst,$src1,$src2" %}
10656   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10657   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10658               set_instruction_start,
10659               OpcP, RMopc_Mem(secondary,src1),
10660               Pop_Mem_FPR(dst) );
10661   ins_pipe( fpu_mem_mem_mem );
10662 %}
10663 
10664 // Spill to obtain 24-bit precision
10665 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10666   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10667   match(Set dst (MulF src con));
10668 
10669   format %{ "FLD    $src\n\t"
10670             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10671             "FSTP_S $dst"  %}
10672   ins_encode %{
10673     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10674     __ fmul_s($constantaddress($con));
10675     __ fstp_s(Address(rsp, $dst$$disp));
10676   %}
10677   ins_pipe(fpu_mem_reg_con);
10678 %}
10679 //
10680 // This instruction does not round to 24-bits
10681 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10682   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10683   match(Set dst (MulF src con));
10684 
10685   format %{ "FLD    $src\n\t"
10686             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10687             "FSTP   $dst"  %}
10688   ins_encode %{
10689     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10690     __ fmul_s($constantaddress($con));
10691     __ fstp_d($dst$$reg);
10692   %}
10693   ins_pipe(fpu_reg_reg_con);
10694 %}
10695 
10696 
10697 //
10698 // MACRO1 -- subsume unshared load into mulFPR
10699 // This instruction does not round to 24-bits
10700 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10701   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10702   match(Set dst (MulF (LoadF mem1) src));
10703 
10704   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10705             "FMUL   ST,$src\n\t"
10706             "FSTP   $dst" %}
10707   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10708   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10709               OpcReg_FPR(src),
10710               Pop_Reg_FPR(dst) );
10711   ins_pipe( fpu_reg_reg_mem );
10712 %}
10713 //
10714 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10715 // This instruction does not round to 24-bits
10716 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10717   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10718   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10719   ins_cost(95);
10720 
10721   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10722             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10723             "FADD   ST,$src2\n\t"
10724             "FSTP   $dst" %}
10725   opcode(0xD9); /* LoadF D9 /0 */
10726   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10727               FMul_ST_reg(src1),
10728               FAdd_ST_reg(src2),
10729               Pop_Reg_FPR(dst) );
10730   ins_pipe( fpu_reg_mem_reg_reg );
10731 %}
10732 
10733 // MACRO3 -- addFPR a mulFPR
10734 // This instruction does not round to 24-bits.  It is a '2-address'
10735 // instruction in that the result goes back to src2.  This eliminates
10736 // a move from the macro; possibly the register allocator will have
10737 // to add it back (and maybe not).
10738 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10739   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10740   match(Set src2 (AddF (MulF src0 src1) src2));
10741 
10742   format %{ "FLD    $src0     ===MACRO3===\n\t"
10743             "FMUL   ST,$src1\n\t"
10744             "FADDP  $src2,ST" %}
10745   opcode(0xD9); /* LoadF D9 /0 */
10746   ins_encode( Push_Reg_FPR(src0),
10747               FMul_ST_reg(src1),
10748               FAddP_reg_ST(src2) );
10749   ins_pipe( fpu_reg_reg_reg );
10750 %}
10751 
10752 // MACRO4 -- divFPR subFPR
10753 // This instruction does not round to 24-bits
10754 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10755   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10756   match(Set dst (DivF (SubF src2 src1) src3));
10757 
10758   format %{ "FLD    $src2   ===MACRO4===\n\t"
10759             "FSUB   ST,$src1\n\t"
10760             "FDIV   ST,$src3\n\t"
10761             "FSTP  $dst" %}
10762   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10763   ins_encode( Push_Reg_FPR(src2),
10764               subFPR_divFPR_encode(src1,src3),
10765               Pop_Reg_FPR(dst) );
10766   ins_pipe( fpu_reg_reg_reg_reg );
10767 %}
10768 
10769 // Spill to obtain 24-bit precision
10770 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10771   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10772   match(Set dst (DivF src1 src2));
10773 
10774   format %{ "FDIV   $dst,$src1,$src2" %}
10775   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10776   ins_encode( Push_Reg_FPR(src1),
10777               OpcReg_FPR(src2),
10778               Pop_Mem_FPR(dst) );
10779   ins_pipe( fpu_mem_reg_reg );
10780 %}
10781 //
10782 // This instruction does not round to 24-bits
10783 instruct divFPR_reg(regFPR dst, regFPR src) %{
10784   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10785   match(Set dst (DivF dst src));
10786 
10787   format %{ "FDIV   $dst,$src" %}
10788   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10789   ins_encode( Push_Reg_FPR(src),
10790               OpcP, RegOpc(dst) );
10791   ins_pipe( fpu_reg_reg );
10792 %}
10793 
10794 
10795 // Spill to obtain 24-bit precision
10796 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10797   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10798   match(Set dst (ModF src1 src2));
10799   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10800 
10801   format %{ "FMOD   $dst,$src1,$src2" %}
10802   ins_encode( Push_Reg_Mod_DPR(src1, src2),
10803               emitModDPR(),
10804               Push_Result_Mod_DPR(src2),
10805               Pop_Mem_FPR(dst));
10806   ins_pipe( pipe_slow );
10807 %}
10808 //
10809 // This instruction does not round to 24-bits
10810 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10811   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10812   match(Set dst (ModF dst src));
10813   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10814 
10815   format %{ "FMOD   $dst,$src" %}
10816   ins_encode(Push_Reg_Mod_DPR(dst, src),
10817               emitModDPR(),
10818               Push_Result_Mod_DPR(src),
10819               Pop_Reg_FPR(dst));
10820   ins_pipe( pipe_slow );
10821 %}
10822 
10823 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10824   predicate(UseSSE>=1);
10825   match(Set dst (ModF src0 src1));
10826   effect(KILL rax, KILL cr);
10827   format %{ "SUB    ESP,4\t # FMOD\n"
10828           "\tMOVSS  [ESP+0],$src1\n"
10829           "\tFLD_S  [ESP+0]\n"
10830           "\tMOVSS  [ESP+0],$src0\n"
10831           "\tFLD_S  [ESP+0]\n"
10832      "loop:\tFPREM\n"
10833           "\tFWAIT\n"
10834           "\tFNSTSW AX\n"
10835           "\tSAHF\n"
10836           "\tJP     loop\n"
10837           "\tFSTP_S [ESP+0]\n"
10838           "\tMOVSS  $dst,[ESP+0]\n"
10839           "\tADD    ESP,4\n"
10840           "\tFSTP   ST0\t # Restore FPU Stack"
10841     %}
10842   ins_cost(250);
10843   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10844   ins_pipe( pipe_slow );
10845 %}
10846 
10847 
10848 //----------Arithmetic Conversion Instructions---------------------------------
10849 // The conversions operations are all Alpha sorted.  Please keep it that way!
10850 
10851 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10852   predicate(UseSSE==0);
10853   match(Set dst (RoundFloat src));
10854   ins_cost(125);
10855   format %{ "FST_S  $dst,$src\t# F-round" %}
10856   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10857   ins_pipe( fpu_mem_reg );
10858 %}
10859 
10860 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10861   predicate(UseSSE<=1);
10862   match(Set dst (RoundDouble src));
10863   ins_cost(125);
10864   format %{ "FST_D  $dst,$src\t# D-round" %}
10865   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10866   ins_pipe( fpu_mem_reg );
10867 %}
10868 
10869 // Force rounding to 24-bit precision and 6-bit exponent
10870 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10871   predicate(UseSSE==0);
10872   match(Set dst (ConvD2F src));
10873   format %{ "FST_S  $dst,$src\t# F-round" %}
10874   expand %{
10875     roundFloat_mem_reg(dst,src);
10876   %}
10877 %}
10878 
10879 // Force rounding to 24-bit precision and 6-bit exponent
10880 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10881   predicate(UseSSE==1);
10882   match(Set dst (ConvD2F src));
10883   effect( KILL cr );
10884   format %{ "SUB    ESP,4\n\t"
10885             "FST_S  [ESP],$src\t# F-round\n\t"
10886             "MOVSS  $dst,[ESP]\n\t"
10887             "ADD ESP,4" %}
10888   ins_encode %{
10889     __ subptr(rsp, 4);
10890     if ($src$$reg != FPR1L_enc) {
10891       __ fld_s($src$$reg-1);
10892       __ fstp_s(Address(rsp, 0));
10893     } else {
10894       __ fst_s(Address(rsp, 0));
10895     }
10896     __ movflt($dst$$XMMRegister, Address(rsp, 0));
10897     __ addptr(rsp, 4);
10898   %}
10899   ins_pipe( pipe_slow );
10900 %}
10901 
10902 // Force rounding double precision to single precision
10903 instruct convD2F_reg(regF dst, regD src) %{
10904   predicate(UseSSE>=2);
10905   match(Set dst (ConvD2F src));
10906   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10907   ins_encode %{
10908     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10909   %}
10910   ins_pipe( pipe_slow );
10911 %}
10912 
10913 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10914   predicate(UseSSE==0);
10915   match(Set dst (ConvF2D src));
10916   format %{ "FST_S  $dst,$src\t# D-round" %}
10917   ins_encode( Pop_Reg_Reg_DPR(dst, src));
10918   ins_pipe( fpu_reg_reg );
10919 %}
10920 
10921 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10922   predicate(UseSSE==1);
10923   match(Set dst (ConvF2D src));
10924   format %{ "FST_D  $dst,$src\t# D-round" %}
10925   expand %{
10926     roundDouble_mem_reg(dst,src);
10927   %}
10928 %}
10929 
10930 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10931   predicate(UseSSE==1);
10932   match(Set dst (ConvF2D src));
10933   effect( KILL cr );
10934   format %{ "SUB    ESP,4\n\t"
10935             "MOVSS  [ESP] $src\n\t"
10936             "FLD_S  [ESP]\n\t"
10937             "ADD    ESP,4\n\t"
10938             "FSTP   $dst\t# D-round" %}
10939   ins_encode %{
10940     __ subptr(rsp, 4);
10941     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10942     __ fld_s(Address(rsp, 0));
10943     __ addptr(rsp, 4);
10944     __ fstp_d($dst$$reg);
10945   %}
10946   ins_pipe( pipe_slow );
10947 %}
10948 
10949 instruct convF2D_reg(regD dst, regF src) %{
10950   predicate(UseSSE>=2);
10951   match(Set dst (ConvF2D src));
10952   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10953   ins_encode %{
10954     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10955   %}
10956   ins_pipe( pipe_slow );
10957 %}
10958 
10959 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10960 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
10961   predicate(UseSSE<=1);
10962   match(Set dst (ConvD2I src));
10963   effect( KILL tmp, KILL cr );
10964   format %{ "FLD    $src\t# Convert double to int \n\t"
10965             "FLDCW  trunc mode\n\t"
10966             "SUB    ESP,4\n\t"
10967             "FISTp  [ESP + #0]\n\t"
10968             "FLDCW  std/24-bit mode\n\t"
10969             "POP    EAX\n\t"
10970             "CMP    EAX,0x80000000\n\t"
10971             "JNE,s  fast\n\t"
10972             "FLD_D  $src\n\t"
10973             "CALL   d2i_wrapper\n"
10974       "fast:" %}
10975   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
10976   ins_pipe( pipe_slow );
10977 %}
10978 
10979 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10980 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10981   predicate(UseSSE>=2);
10982   match(Set dst (ConvD2I src));
10983   effect( KILL tmp, KILL cr );
10984   format %{ "CVTTSD2SI $dst, $src\n\t"
10985             "CMP    $dst,0x80000000\n\t"
10986             "JNE,s  fast\n\t"
10987             "SUB    ESP, 8\n\t"
10988             "MOVSD  [ESP], $src\n\t"
10989             "FLD_D  [ESP]\n\t"
10990             "ADD    ESP, 8\n\t"
10991             "CALL   d2i_wrapper\n"
10992       "fast:" %}
10993   ins_encode %{
10994     Label fast;
10995     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10996     __ cmpl($dst$$Register, 0x80000000);
10997     __ jccb(Assembler::notEqual, fast);
10998     __ subptr(rsp, 8);
10999     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11000     __ fld_d(Address(rsp, 0));
11001     __ addptr(rsp, 8);
11002     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11003     __ bind(fast);
11004   %}
11005   ins_pipe( pipe_slow );
11006 %}
11007 
11008 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
11009   predicate(UseSSE<=1);
11010   match(Set dst (ConvD2L src));
11011   effect( KILL cr );
11012   format %{ "FLD    $src\t# Convert double to long\n\t"
11013             "FLDCW  trunc mode\n\t"
11014             "SUB    ESP,8\n\t"
11015             "FISTp  [ESP + #0]\n\t"
11016             "FLDCW  std/24-bit mode\n\t"
11017             "POP    EAX\n\t"
11018             "POP    EDX\n\t"
11019             "CMP    EDX,0x80000000\n\t"
11020             "JNE,s  fast\n\t"
11021             "TEST   EAX,EAX\n\t"
11022             "JNE,s  fast\n\t"
11023             "FLD    $src\n\t"
11024             "CALL   d2l_wrapper\n"
11025       "fast:" %}
11026   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
11027   ins_pipe( pipe_slow );
11028 %}
11029 
11030 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11031 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11032   predicate (UseSSE>=2);
11033   match(Set dst (ConvD2L src));
11034   effect( KILL cr );
11035   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11036             "MOVSD  [ESP],$src\n\t"
11037             "FLD_D  [ESP]\n\t"
11038             "FLDCW  trunc mode\n\t"
11039             "FISTp  [ESP + #0]\n\t"
11040             "FLDCW  std/24-bit mode\n\t"
11041             "POP    EAX\n\t"
11042             "POP    EDX\n\t"
11043             "CMP    EDX,0x80000000\n\t"
11044             "JNE,s  fast\n\t"
11045             "TEST   EAX,EAX\n\t"
11046             "JNE,s  fast\n\t"
11047             "SUB    ESP,8\n\t"
11048             "MOVSD  [ESP],$src\n\t"
11049             "FLD_D  [ESP]\n\t"
11050             "ADD    ESP,8\n\t"
11051             "CALL   d2l_wrapper\n"
11052       "fast:" %}
11053   ins_encode %{
11054     Label fast;
11055     __ subptr(rsp, 8);
11056     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11057     __ fld_d(Address(rsp, 0));
11058     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11059     __ fistp_d(Address(rsp, 0));
11060     // Restore the rounding mode, mask the exception
11061     if (Compile::current()->in_24_bit_fp_mode()) {
11062       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11063     } else {
11064       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11065     }
11066     // Load the converted long, adjust CPU stack
11067     __ pop(rax);
11068     __ pop(rdx);
11069     __ cmpl(rdx, 0x80000000);
11070     __ jccb(Assembler::notEqual, fast);
11071     __ testl(rax, rax);
11072     __ jccb(Assembler::notEqual, fast);
11073     __ subptr(rsp, 8);
11074     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
11075     __ fld_d(Address(rsp, 0));
11076     __ addptr(rsp, 8);
11077     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11078     __ bind(fast);
11079   %}
11080   ins_pipe( pipe_slow );
11081 %}
11082 
11083 // Convert a double to an int.  Java semantics require we do complex
11084 // manglations in the corner cases.  So we set the rounding mode to
11085 // 'zero', store the darned double down as an int, and reset the
11086 // rounding mode to 'nearest'.  The hardware stores a flag value down
11087 // if we would overflow or converted a NAN; we check for this and
11088 // and go the slow path if needed.
11089 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
11090   predicate(UseSSE==0);
11091   match(Set dst (ConvF2I src));
11092   effect( KILL tmp, KILL cr );
11093   format %{ "FLD    $src\t# Convert float to int \n\t"
11094             "FLDCW  trunc mode\n\t"
11095             "SUB    ESP,4\n\t"
11096             "FISTp  [ESP + #0]\n\t"
11097             "FLDCW  std/24-bit mode\n\t"
11098             "POP    EAX\n\t"
11099             "CMP    EAX,0x80000000\n\t"
11100             "JNE,s  fast\n\t"
11101             "FLD    $src\n\t"
11102             "CALL   d2i_wrapper\n"
11103       "fast:" %}
11104   // DPR2I_encoding works for FPR2I
11105   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
11106   ins_pipe( pipe_slow );
11107 %}
11108 
11109 // Convert a float in xmm to an int reg.
11110 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11111   predicate(UseSSE>=1);
11112   match(Set dst (ConvF2I src));
11113   effect( KILL tmp, KILL cr );
11114   format %{ "CVTTSS2SI $dst, $src\n\t"
11115             "CMP    $dst,0x80000000\n\t"
11116             "JNE,s  fast\n\t"
11117             "SUB    ESP, 4\n\t"
11118             "MOVSS  [ESP], $src\n\t"
11119             "FLD    [ESP]\n\t"
11120             "ADD    ESP, 4\n\t"
11121             "CALL   d2i_wrapper\n"
11122       "fast:" %}
11123   ins_encode %{
11124     Label fast;
11125     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
11126     __ cmpl($dst$$Register, 0x80000000);
11127     __ jccb(Assembler::notEqual, fast);
11128     __ subptr(rsp, 4);
11129     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11130     __ fld_s(Address(rsp, 0));
11131     __ addptr(rsp, 4);
11132     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11133     __ bind(fast);
11134   %}
11135   ins_pipe( pipe_slow );
11136 %}
11137 
11138 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
11139   predicate(UseSSE==0);
11140   match(Set dst (ConvF2L src));
11141   effect( KILL cr );
11142   format %{ "FLD    $src\t# Convert float to long\n\t"
11143             "FLDCW  trunc mode\n\t"
11144             "SUB    ESP,8\n\t"
11145             "FISTp  [ESP + #0]\n\t"
11146             "FLDCW  std/24-bit mode\n\t"
11147             "POP    EAX\n\t"
11148             "POP    EDX\n\t"
11149             "CMP    EDX,0x80000000\n\t"
11150             "JNE,s  fast\n\t"
11151             "TEST   EAX,EAX\n\t"
11152             "JNE,s  fast\n\t"
11153             "FLD    $src\n\t"
11154             "CALL   d2l_wrapper\n"
11155       "fast:" %}
11156   // DPR2L_encoding works for FPR2L
11157   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
11158   ins_pipe( pipe_slow );
11159 %}
11160 
11161 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11162 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11163   predicate (UseSSE>=1);
11164   match(Set dst (ConvF2L src));
11165   effect( KILL cr );
11166   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11167             "MOVSS  [ESP],$src\n\t"
11168             "FLD_S  [ESP]\n\t"
11169             "FLDCW  trunc mode\n\t"
11170             "FISTp  [ESP + #0]\n\t"
11171             "FLDCW  std/24-bit mode\n\t"
11172             "POP    EAX\n\t"
11173             "POP    EDX\n\t"
11174             "CMP    EDX,0x80000000\n\t"
11175             "JNE,s  fast\n\t"
11176             "TEST   EAX,EAX\n\t"
11177             "JNE,s  fast\n\t"
11178             "SUB    ESP,4\t# Convert float to long\n\t"
11179             "MOVSS  [ESP],$src\n\t"
11180             "FLD_S  [ESP]\n\t"
11181             "ADD    ESP,4\n\t"
11182             "CALL   d2l_wrapper\n"
11183       "fast:" %}
11184   ins_encode %{
11185     Label fast;
11186     __ subptr(rsp, 8);
11187     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11188     __ fld_s(Address(rsp, 0));
11189     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11190     __ fistp_d(Address(rsp, 0));
11191     // Restore the rounding mode, mask the exception
11192     if (Compile::current()->in_24_bit_fp_mode()) {
11193       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11194     } else {
11195       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11196     }
11197     // Load the converted long, adjust CPU stack
11198     __ pop(rax);
11199     __ pop(rdx);
11200     __ cmpl(rdx, 0x80000000);
11201     __ jccb(Assembler::notEqual, fast);
11202     __ testl(rax, rax);
11203     __ jccb(Assembler::notEqual, fast);
11204     __ subptr(rsp, 4);
11205     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11206     __ fld_s(Address(rsp, 0));
11207     __ addptr(rsp, 4);
11208     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11209     __ bind(fast);
11210   %}
11211   ins_pipe( pipe_slow );
11212 %}
11213 
11214 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11215   predicate( UseSSE<=1 );
11216   match(Set dst (ConvI2D src));
11217   format %{ "FILD   $src\n\t"
11218             "FSTP   $dst" %}
11219   opcode(0xDB, 0x0);  /* DB /0 */
11220   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11221   ins_pipe( fpu_reg_mem );
11222 %}
11223 
11224 instruct convI2D_reg(regD dst, rRegI src) %{
11225   predicate( UseSSE>=2 && !UseXmmI2D );
11226   match(Set dst (ConvI2D src));
11227   format %{ "CVTSI2SD $dst,$src" %}
11228   ins_encode %{
11229     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11230   %}
11231   ins_pipe( pipe_slow );
11232 %}
11233 
11234 instruct convI2D_mem(regD dst, memory mem) %{
11235   predicate( UseSSE>=2 );
11236   match(Set dst (ConvI2D (LoadI mem)));
11237   format %{ "CVTSI2SD $dst,$mem" %}
11238   ins_encode %{
11239     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11240   %}
11241   ins_pipe( pipe_slow );
11242 %}
11243 
11244 instruct convXI2D_reg(regD dst, rRegI src)
11245 %{
11246   predicate( UseSSE>=2 && UseXmmI2D );
11247   match(Set dst (ConvI2D src));
11248 
11249   format %{ "MOVD  $dst,$src\n\t"
11250             "CVTDQ2PD $dst,$dst\t# i2d" %}
11251   ins_encode %{
11252     __ movdl($dst$$XMMRegister, $src$$Register);
11253     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11254   %}
11255   ins_pipe(pipe_slow); // XXX
11256 %}
11257 
11258 instruct convI2DPR_mem(regDPR dst, memory mem) %{
11259   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11260   match(Set dst (ConvI2D (LoadI mem)));
11261   format %{ "FILD   $mem\n\t"
11262             "FSTP   $dst" %}
11263   opcode(0xDB);      /* DB /0 */
11264   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11265               Pop_Reg_DPR(dst));
11266   ins_pipe( fpu_reg_mem );
11267 %}
11268 
11269 // Convert a byte to a float; no rounding step needed.
11270 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11271   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11272   match(Set dst (ConvI2F src));
11273   format %{ "FILD   $src\n\t"
11274             "FSTP   $dst" %}
11275 
11276   opcode(0xDB, 0x0);  /* DB /0 */
11277   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11278   ins_pipe( fpu_reg_mem );
11279 %}
11280 
11281 // In 24-bit mode, force exponent rounding by storing back out
11282 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11283   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11284   match(Set dst (ConvI2F src));
11285   ins_cost(200);
11286   format %{ "FILD   $src\n\t"
11287             "FSTP_S $dst" %}
11288   opcode(0xDB, 0x0);  /* DB /0 */
11289   ins_encode( Push_Mem_I(src),
11290               Pop_Mem_FPR(dst));
11291   ins_pipe( fpu_mem_mem );
11292 %}
11293 
11294 // In 24-bit mode, force exponent rounding by storing back out
11295 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11296   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11297   match(Set dst (ConvI2F (LoadI mem)));
11298   ins_cost(200);
11299   format %{ "FILD   $mem\n\t"
11300             "FSTP_S $dst" %}
11301   opcode(0xDB);  /* DB /0 */
11302   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11303               Pop_Mem_FPR(dst));
11304   ins_pipe( fpu_mem_mem );
11305 %}
11306 
11307 // This instruction does not round to 24-bits
11308 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11309   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11310   match(Set dst (ConvI2F src));
11311   format %{ "FILD   $src\n\t"
11312             "FSTP   $dst" %}
11313   opcode(0xDB, 0x0);  /* DB /0 */
11314   ins_encode( Push_Mem_I(src),
11315               Pop_Reg_FPR(dst));
11316   ins_pipe( fpu_reg_mem );
11317 %}
11318 
11319 // This instruction does not round to 24-bits
11320 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11321   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11322   match(Set dst (ConvI2F (LoadI mem)));
11323   format %{ "FILD   $mem\n\t"
11324             "FSTP   $dst" %}
11325   opcode(0xDB);      /* DB /0 */
11326   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11327               Pop_Reg_FPR(dst));
11328   ins_pipe( fpu_reg_mem );
11329 %}
11330 
11331 // Convert an int to a float in xmm; no rounding step needed.
11332 instruct convI2F_reg(regF dst, rRegI src) %{
11333   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11334   match(Set dst (ConvI2F src));
11335   format %{ "CVTSI2SS $dst, $src" %}
11336   ins_encode %{
11337     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11338   %}
11339   ins_pipe( pipe_slow );
11340 %}
11341 
11342  instruct convXI2F_reg(regF dst, rRegI src)
11343 %{
11344   predicate( UseSSE>=2 && UseXmmI2F );
11345   match(Set dst (ConvI2F src));
11346 
11347   format %{ "MOVD  $dst,$src\n\t"
11348             "CVTDQ2PS $dst,$dst\t# i2f" %}
11349   ins_encode %{
11350     __ movdl($dst$$XMMRegister, $src$$Register);
11351     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11352   %}
11353   ins_pipe(pipe_slow); // XXX
11354 %}
11355 
11356 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11357   match(Set dst (ConvI2L src));
11358   effect(KILL cr);
11359   ins_cost(375);
11360   format %{ "MOV    $dst.lo,$src\n\t"
11361             "MOV    $dst.hi,$src\n\t"
11362             "SAR    $dst.hi,31" %}
11363   ins_encode(convert_int_long(dst,src));
11364   ins_pipe( ialu_reg_reg_long );
11365 %}
11366 
11367 // Zero-extend convert int to long
11368 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11369   match(Set dst (AndL (ConvI2L src) mask) );
11370   effect( KILL flags );
11371   ins_cost(250);
11372   format %{ "MOV    $dst.lo,$src\n\t"
11373             "XOR    $dst.hi,$dst.hi" %}
11374   opcode(0x33); // XOR
11375   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11376   ins_pipe( ialu_reg_reg_long );
11377 %}
11378 
11379 // Zero-extend long
11380 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11381   match(Set dst (AndL src mask) );
11382   effect( KILL flags );
11383   ins_cost(250);
11384   format %{ "MOV    $dst.lo,$src.lo\n\t"
11385             "XOR    $dst.hi,$dst.hi\n\t" %}
11386   opcode(0x33); // XOR
11387   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11388   ins_pipe( ialu_reg_reg_long );
11389 %}
11390 
11391 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11392   predicate (UseSSE<=1);
11393   match(Set dst (ConvL2D src));
11394   effect( KILL cr );
11395   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11396             "PUSH   $src.lo\n\t"
11397             "FILD   ST,[ESP + #0]\n\t"
11398             "ADD    ESP,8\n\t"
11399             "FSTP_D $dst\t# D-round" %}
11400   opcode(0xDF, 0x5);  /* DF /5 */
11401   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11402   ins_pipe( pipe_slow );
11403 %}
11404 
11405 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11406   predicate (UseSSE>=2);
11407   match(Set dst (ConvL2D src));
11408   effect( KILL cr );
11409   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11410             "PUSH   $src.lo\n\t"
11411             "FILD_D [ESP]\n\t"
11412             "FSTP_D [ESP]\n\t"
11413             "MOVSD  $dst,[ESP]\n\t"
11414             "ADD    ESP,8" %}
11415   opcode(0xDF, 0x5);  /* DF /5 */
11416   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11417   ins_pipe( pipe_slow );
11418 %}
11419 
11420 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11421   predicate (UseSSE>=1);
11422   match(Set dst (ConvL2F src));
11423   effect( KILL cr );
11424   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11425             "PUSH   $src.lo\n\t"
11426             "FILD_D [ESP]\n\t"
11427             "FSTP_S [ESP]\n\t"
11428             "MOVSS  $dst,[ESP]\n\t"
11429             "ADD    ESP,8" %}
11430   opcode(0xDF, 0x5);  /* DF /5 */
11431   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11432   ins_pipe( pipe_slow );
11433 %}
11434 
11435 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11436   match(Set dst (ConvL2F src));
11437   effect( KILL cr );
11438   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11439             "PUSH   $src.lo\n\t"
11440             "FILD   ST,[ESP + #0]\n\t"
11441             "ADD    ESP,8\n\t"
11442             "FSTP_S $dst\t# F-round" %}
11443   opcode(0xDF, 0x5);  /* DF /5 */
11444   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11445   ins_pipe( pipe_slow );
11446 %}
11447 
11448 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11449   match(Set dst (ConvL2I src));
11450   effect( DEF dst, USE src );
11451   format %{ "MOV    $dst,$src.lo" %}
11452   ins_encode(enc_CopyL_Lo(dst,src));
11453   ins_pipe( ialu_reg_reg );
11454 %}
11455 
11456 
11457 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11458   match(Set dst (MoveF2I src));
11459   effect( DEF dst, USE src );
11460   ins_cost(100);
11461   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11462   ins_encode %{
11463     __ movl($dst$$Register, Address(rsp, $src$$disp));
11464   %}
11465   ins_pipe( ialu_reg_mem );
11466 %}
11467 
11468 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11469   predicate(UseSSE==0);
11470   match(Set dst (MoveF2I src));
11471   effect( DEF dst, USE src );
11472 
11473   ins_cost(125);
11474   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11475   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11476   ins_pipe( fpu_mem_reg );
11477 %}
11478 
11479 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11480   predicate(UseSSE>=1);
11481   match(Set dst (MoveF2I src));
11482   effect( DEF dst, USE src );
11483 
11484   ins_cost(95);
11485   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11486   ins_encode %{
11487     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11488   %}
11489   ins_pipe( pipe_slow );
11490 %}
11491 
11492 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11493   predicate(UseSSE>=2);
11494   match(Set dst (MoveF2I src));
11495   effect( DEF dst, USE src );
11496   ins_cost(85);
11497   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11498   ins_encode %{
11499     __ movdl($dst$$Register, $src$$XMMRegister);
11500   %}
11501   ins_pipe( pipe_slow );
11502 %}
11503 
11504 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11505   match(Set dst (MoveI2F src));
11506   effect( DEF dst, USE src );
11507 
11508   ins_cost(100);
11509   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11510   ins_encode %{
11511     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11512   %}
11513   ins_pipe( ialu_mem_reg );
11514 %}
11515 
11516 
11517 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11518   predicate(UseSSE==0);
11519   match(Set dst (MoveI2F src));
11520   effect(DEF dst, USE src);
11521 
11522   ins_cost(125);
11523   format %{ "FLD_S  $src\n\t"
11524             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11525   opcode(0xD9);               /* D9 /0, FLD m32real */
11526   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11527               Pop_Reg_FPR(dst) );
11528   ins_pipe( fpu_reg_mem );
11529 %}
11530 
11531 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11532   predicate(UseSSE>=1);
11533   match(Set dst (MoveI2F src));
11534   effect( DEF dst, USE src );
11535 
11536   ins_cost(95);
11537   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11538   ins_encode %{
11539     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11540   %}
11541   ins_pipe( pipe_slow );
11542 %}
11543 
11544 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11545   predicate(UseSSE>=2);
11546   match(Set dst (MoveI2F src));
11547   effect( DEF dst, USE src );
11548 
11549   ins_cost(85);
11550   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11551   ins_encode %{
11552     __ movdl($dst$$XMMRegister, $src$$Register);
11553   %}
11554   ins_pipe( pipe_slow );
11555 %}
11556 
11557 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11558   match(Set dst (MoveD2L src));
11559   effect(DEF dst, USE src);
11560 
11561   ins_cost(250);
11562   format %{ "MOV    $dst.lo,$src\n\t"
11563             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11564   opcode(0x8B, 0x8B);
11565   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11566   ins_pipe( ialu_mem_long_reg );
11567 %}
11568 
11569 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11570   predicate(UseSSE<=1);
11571   match(Set dst (MoveD2L src));
11572   effect(DEF dst, USE src);
11573 
11574   ins_cost(125);
11575   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11576   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11577   ins_pipe( fpu_mem_reg );
11578 %}
11579 
11580 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11581   predicate(UseSSE>=2);
11582   match(Set dst (MoveD2L src));
11583   effect(DEF dst, USE src);
11584   ins_cost(95);
11585   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11586   ins_encode %{
11587     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11588   %}
11589   ins_pipe( pipe_slow );
11590 %}
11591 
11592 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11593   predicate(UseSSE>=2);
11594   match(Set dst (MoveD2L src));
11595   effect(DEF dst, USE src, TEMP tmp);
11596   ins_cost(85);
11597   format %{ "MOVD   $dst.lo,$src\n\t"
11598             "PSHUFLW $tmp,$src,0x4E\n\t"
11599             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11600   ins_encode %{
11601     __ movdl($dst$$Register, $src$$XMMRegister);
11602     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11603     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11604   %}
11605   ins_pipe( pipe_slow );
11606 %}
11607 
11608 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11609   match(Set dst (MoveL2D src));
11610   effect(DEF dst, USE src);
11611 
11612   ins_cost(200);
11613   format %{ "MOV    $dst,$src.lo\n\t"
11614             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11615   opcode(0x89, 0x89);
11616   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11617   ins_pipe( ialu_mem_long_reg );
11618 %}
11619 
11620 
11621 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11622   predicate(UseSSE<=1);
11623   match(Set dst (MoveL2D src));
11624   effect(DEF dst, USE src);
11625   ins_cost(125);
11626 
11627   format %{ "FLD_D  $src\n\t"
11628             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11629   opcode(0xDD);               /* DD /0, FLD m64real */
11630   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11631               Pop_Reg_DPR(dst) );
11632   ins_pipe( fpu_reg_mem );
11633 %}
11634 
11635 
11636 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11637   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11638   match(Set dst (MoveL2D src));
11639   effect(DEF dst, USE src);
11640 
11641   ins_cost(95);
11642   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11643   ins_encode %{
11644     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11645   %}
11646   ins_pipe( pipe_slow );
11647 %}
11648 
11649 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11650   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11651   match(Set dst (MoveL2D src));
11652   effect(DEF dst, USE src);
11653 
11654   ins_cost(95);
11655   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11656   ins_encode %{
11657     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11658   %}
11659   ins_pipe( pipe_slow );
11660 %}
11661 
11662 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11663   predicate(UseSSE>=2);
11664   match(Set dst (MoveL2D src));
11665   effect(TEMP dst, USE src, TEMP tmp);
11666   ins_cost(85);
11667   format %{ "MOVD   $dst,$src.lo\n\t"
11668             "MOVD   $tmp,$src.hi\n\t"
11669             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11670   ins_encode %{
11671     __ movdl($dst$$XMMRegister, $src$$Register);
11672     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11673     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11674   %}
11675   ins_pipe( pipe_slow );
11676 %}
11677 
11678 
11679 // =======================================================================
11680 // fast clearing of an array
11681 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11682   predicate(!UseFastStosb);
11683   match(Set dummy (ClearArray cnt base));
11684   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11685   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11686             "SHL    ECX,1\t# Convert doublewords to words\n\t"
11687             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11688   ins_encode %{ 
11689     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11690   %}
11691   ins_pipe( pipe_slow );
11692 %}
11693 
11694 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11695   predicate(UseFastStosb);
11696   match(Set dummy (ClearArray cnt base));
11697   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11698   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11699             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
11700             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
11701   ins_encode %{ 
11702     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11703   %}
11704   ins_pipe( pipe_slow );
11705 %}
11706 
11707 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11708                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
11709   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11710   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11711 
11712   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11713   ins_encode %{
11714     __ string_compare($str1$$Register, $str2$$Register,
11715                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11716                       $tmp1$$XMMRegister);
11717   %}
11718   ins_pipe( pipe_slow );
11719 %}
11720 
11721 // fast string equals
11722 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11723                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11724   match(Set result (StrEquals (Binary str1 str2) cnt));
11725   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11726 
11727   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11728   ins_encode %{
11729     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11730                           $cnt$$Register, $result$$Register, $tmp3$$Register,
11731                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11732   %}
11733   ins_pipe( pipe_slow );
11734 %}
11735 
11736 // fast search of substring with known size.
11737 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11738                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11739   predicate(UseSSE42Intrinsics);
11740   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11741   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11742 
11743   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11744   ins_encode %{
11745     int icnt2 = (int)$int_cnt2$$constant;
11746     if (icnt2 >= 8) {
11747       // IndexOf for constant substrings with size >= 8 elements
11748       // which don't need to be loaded through stack.
11749       __ string_indexofC8($str1$$Register, $str2$$Register,
11750                           $cnt1$$Register, $cnt2$$Register,
11751                           icnt2, $result$$Register,
11752                           $vec$$XMMRegister, $tmp$$Register);
11753     } else {
11754       // Small strings are loaded through stack if they cross page boundary.
11755       __ string_indexof($str1$$Register, $str2$$Register,
11756                         $cnt1$$Register, $cnt2$$Register,
11757                         icnt2, $result$$Register,
11758                         $vec$$XMMRegister, $tmp$$Register);
11759     }
11760   %}
11761   ins_pipe( pipe_slow );
11762 %}
11763 
11764 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11765                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11766   predicate(UseSSE42Intrinsics);
11767   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11768   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11769 
11770   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11771   ins_encode %{
11772     __ string_indexof($str1$$Register, $str2$$Register,
11773                       $cnt1$$Register, $cnt2$$Register,
11774                       (-1), $result$$Register,
11775                       $vec$$XMMRegister, $tmp$$Register);
11776   %}
11777   ins_pipe( pipe_slow );
11778 %}
11779 
11780 // fast array equals
11781 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11782                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11783 %{
11784   match(Set result (AryEq ary1 ary2));
11785   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11786   //ins_cost(300);
11787 
11788   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11789   ins_encode %{
11790     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11791                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
11792                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11793   %}
11794   ins_pipe( pipe_slow );
11795 %}
11796 
11797 // encode char[] to byte[] in ISO_8859_1
11798 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
11799                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11800                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
11801   match(Set result (EncodeISOArray src (Binary dst len)));
11802   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11803 
11804   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
11805   ins_encode %{
11806     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11807                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11808                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11809   %}
11810   ins_pipe( pipe_slow );
11811 %}
11812 
11813 
11814 //----------Control Flow Instructions------------------------------------------
11815 // Signed compare Instructions
11816 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11817   match(Set cr (CmpI op1 op2));
11818   effect( DEF cr, USE op1, USE op2 );
11819   format %{ "CMP    $op1,$op2" %}
11820   opcode(0x3B);  /* Opcode 3B /r */
11821   ins_encode( OpcP, RegReg( op1, op2) );
11822   ins_pipe( ialu_cr_reg_reg );
11823 %}
11824 
11825 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11826   match(Set cr (CmpI op1 op2));
11827   effect( DEF cr, USE op1 );
11828   format %{ "CMP    $op1,$op2" %}
11829   opcode(0x81,0x07);  /* Opcode 81 /7 */
11830   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11831   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11832   ins_pipe( ialu_cr_reg_imm );
11833 %}
11834 
11835 // Cisc-spilled version of cmpI_eReg
11836 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11837   match(Set cr (CmpI op1 (LoadI op2)));
11838 
11839   format %{ "CMP    $op1,$op2" %}
11840   ins_cost(500);
11841   opcode(0x3B);  /* Opcode 3B /r */
11842   ins_encode( OpcP, RegMem( op1, op2) );
11843   ins_pipe( ialu_cr_reg_mem );
11844 %}
11845 
11846 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11847   match(Set cr (CmpI src zero));
11848   effect( DEF cr, USE src );
11849 
11850   format %{ "TEST   $src,$src" %}
11851   opcode(0x85);
11852   ins_encode( OpcP, RegReg( src, src ) );
11853   ins_pipe( ialu_cr_reg_imm );
11854 %}
11855 
11856 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11857   match(Set cr (CmpI (AndI src con) zero));
11858 
11859   format %{ "TEST   $src,$con" %}
11860   opcode(0xF7,0x00);
11861   ins_encode( OpcP, RegOpc(src), Con32(con) );
11862   ins_pipe( ialu_cr_reg_imm );
11863 %}
11864 
11865 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11866   match(Set cr (CmpI (AndI src mem) zero));
11867 
11868   format %{ "TEST   $src,$mem" %}
11869   opcode(0x85);
11870   ins_encode( OpcP, RegMem( src, mem ) );
11871   ins_pipe( ialu_cr_reg_mem );
11872 %}
11873 
11874 // Unsigned compare Instructions; really, same as signed except they
11875 // produce an eFlagsRegU instead of eFlagsReg.
11876 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11877   match(Set cr (CmpU op1 op2));
11878 
11879   format %{ "CMPu   $op1,$op2" %}
11880   opcode(0x3B);  /* Opcode 3B /r */
11881   ins_encode( OpcP, RegReg( op1, op2) );
11882   ins_pipe( ialu_cr_reg_reg );
11883 %}
11884 
11885 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11886   match(Set cr (CmpU op1 op2));
11887 
11888   format %{ "CMPu   $op1,$op2" %}
11889   opcode(0x81,0x07);  /* Opcode 81 /7 */
11890   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11891   ins_pipe( ialu_cr_reg_imm );
11892 %}
11893 
11894 // // Cisc-spilled version of cmpU_eReg
11895 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11896   match(Set cr (CmpU op1 (LoadI op2)));
11897 
11898   format %{ "CMPu   $op1,$op2" %}
11899   ins_cost(500);
11900   opcode(0x3B);  /* Opcode 3B /r */
11901   ins_encode( OpcP, RegMem( op1, op2) );
11902   ins_pipe( ialu_cr_reg_mem );
11903 %}
11904 
11905 // // Cisc-spilled version of cmpU_eReg
11906 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11907 //  match(Set cr (CmpU (LoadI op1) op2));
11908 //
11909 //  format %{ "CMPu   $op1,$op2" %}
11910 //  ins_cost(500);
11911 //  opcode(0x39);  /* Opcode 39 /r */
11912 //  ins_encode( OpcP, RegMem( op1, op2) );
11913 //%}
11914 
11915 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11916   match(Set cr (CmpU src zero));
11917 
11918   format %{ "TESTu  $src,$src" %}
11919   opcode(0x85);
11920   ins_encode( OpcP, RegReg( src, src ) );
11921   ins_pipe( ialu_cr_reg_imm );
11922 %}
11923 
11924 // Unsigned pointer compare Instructions
11925 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11926   match(Set cr (CmpP op1 op2));
11927 
11928   format %{ "CMPu   $op1,$op2" %}
11929   opcode(0x3B);  /* Opcode 3B /r */
11930   ins_encode( OpcP, RegReg( op1, op2) );
11931   ins_pipe( ialu_cr_reg_reg );
11932 %}
11933 
11934 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11935   match(Set cr (CmpP op1 op2));
11936 
11937   format %{ "CMPu   $op1,$op2" %}
11938   opcode(0x81,0x07);  /* Opcode 81 /7 */
11939   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11940   ins_pipe( ialu_cr_reg_imm );
11941 %}
11942 
11943 // // Cisc-spilled version of cmpP_eReg
11944 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11945   match(Set cr (CmpP op1 (LoadP op2)));
11946 
11947   format %{ "CMPu   $op1,$op2" %}
11948   ins_cost(500);
11949   opcode(0x3B);  /* Opcode 3B /r */
11950   ins_encode( OpcP, RegMem( op1, op2) );
11951   ins_pipe( ialu_cr_reg_mem );
11952 %}
11953 
11954 // // Cisc-spilled version of cmpP_eReg
11955 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11956 //  match(Set cr (CmpP (LoadP op1) op2));
11957 //
11958 //  format %{ "CMPu   $op1,$op2" %}
11959 //  ins_cost(500);
11960 //  opcode(0x39);  /* Opcode 39 /r */
11961 //  ins_encode( OpcP, RegMem( op1, op2) );
11962 //%}
11963 
11964 // Compare raw pointer (used in out-of-heap check).
11965 // Only works because non-oop pointers must be raw pointers
11966 // and raw pointers have no anti-dependencies.
11967 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11968   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
11969   match(Set cr (CmpP op1 (LoadP op2)));
11970 
11971   format %{ "CMPu   $op1,$op2" %}
11972   opcode(0x3B);  /* Opcode 3B /r */
11973   ins_encode( OpcP, RegMem( op1, op2) );
11974   ins_pipe( ialu_cr_reg_mem );
11975 %}
11976 
11977 //
11978 // This will generate a signed flags result. This should be ok
11979 // since any compare to a zero should be eq/neq.
11980 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11981   match(Set cr (CmpP src zero));
11982 
11983   format %{ "TEST   $src,$src" %}
11984   opcode(0x85);
11985   ins_encode( OpcP, RegReg( src, src ) );
11986   ins_pipe( ialu_cr_reg_imm );
11987 %}
11988 
11989 // Cisc-spilled version of testP_reg
11990 // This will generate a signed flags result. This should be ok
11991 // since any compare to a zero should be eq/neq.
11992 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11993   match(Set cr (CmpP (LoadP op) zero));
11994 
11995   format %{ "TEST   $op,0xFFFFFFFF" %}
11996   ins_cost(500);
11997   opcode(0xF7);               /* Opcode F7 /0 */
11998   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11999   ins_pipe( ialu_cr_reg_imm );
12000 %}
12001 
12002 // Yanked all unsigned pointer compare operations.
12003 // Pointer compares are done with CmpP which is already unsigned.
12004 
12005 //----------Max and Min--------------------------------------------------------
12006 // Min Instructions
12007 ////
12008 //   *** Min and Max using the conditional move are slower than the
12009 //   *** branch version on a Pentium III.
12010 // // Conditional move for min
12011 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
12012 //  effect( USE_DEF op2, USE op1, USE cr );
12013 //  format %{ "CMOVlt $op2,$op1\t! min" %}
12014 //  opcode(0x4C,0x0F);
12015 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12016 //  ins_pipe( pipe_cmov_reg );
12017 //%}
12018 //
12019 //// Min Register with Register (P6 version)
12020 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
12021 //  predicate(VM_Version::supports_cmov() );
12022 //  match(Set op2 (MinI op1 op2));
12023 //  ins_cost(200);
12024 //  expand %{
12025 //    eFlagsReg cr;
12026 //    compI_eReg(cr,op1,op2);
12027 //    cmovI_reg_lt(op2,op1,cr);
12028 //  %}
12029 //%}
12030 
12031 // Min Register with Register (generic version)
12032 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
12033   match(Set dst (MinI dst src));
12034   effect(KILL flags);
12035   ins_cost(300);
12036 
12037   format %{ "MIN    $dst,$src" %}
12038   opcode(0xCC);
12039   ins_encode( min_enc(dst,src) );
12040   ins_pipe( pipe_slow );
12041 %}
12042 
12043 // Max Register with Register
12044 //   *** Min and Max using the conditional move are slower than the
12045 //   *** branch version on a Pentium III.
12046 // // Conditional move for max
12047 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
12048 //  effect( USE_DEF op2, USE op1, USE cr );
12049 //  format %{ "CMOVgt $op2,$op1\t! max" %}
12050 //  opcode(0x4F,0x0F);
12051 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12052 //  ins_pipe( pipe_cmov_reg );
12053 //%}
12054 //
12055 // // Max Register with Register (P6 version)
12056 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
12057 //  predicate(VM_Version::supports_cmov() );
12058 //  match(Set op2 (MaxI op1 op2));
12059 //  ins_cost(200);
12060 //  expand %{
12061 //    eFlagsReg cr;
12062 //    compI_eReg(cr,op1,op2);
12063 //    cmovI_reg_gt(op2,op1,cr);
12064 //  %}
12065 //%}
12066 
12067 // Max Register with Register (generic version)
12068 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
12069   match(Set dst (MaxI dst src));
12070   effect(KILL flags);
12071   ins_cost(300);
12072 
12073   format %{ "MAX    $dst,$src" %}
12074   opcode(0xCC);
12075   ins_encode( max_enc(dst,src) );
12076   ins_pipe( pipe_slow );
12077 %}
12078 
12079 // ============================================================================
12080 // Counted Loop limit node which represents exact final iterator value.
12081 // Note: the resulting value should fit into integer range since
12082 // counted loops have limit check on overflow.
12083 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
12084   match(Set limit (LoopLimit (Binary init limit) stride));
12085   effect(TEMP limit_hi, TEMP tmp, KILL flags);
12086   ins_cost(300);
12087 
12088   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
12089   ins_encode %{
12090     int strd = (int)$stride$$constant;
12091     assert(strd != 1 && strd != -1, "sanity");
12092     int m1 = (strd > 0) ? 1 : -1;
12093     // Convert limit to long (EAX:EDX)
12094     __ cdql();
12095     // Convert init to long (init:tmp)
12096     __ movl($tmp$$Register, $init$$Register);
12097     __ sarl($tmp$$Register, 31);
12098     // $limit - $init
12099     __ subl($limit$$Register, $init$$Register);
12100     __ sbbl($limit_hi$$Register, $tmp$$Register);
12101     // + ($stride - 1)
12102     if (strd > 0) {
12103       __ addl($limit$$Register, (strd - 1));
12104       __ adcl($limit_hi$$Register, 0);
12105       __ movl($tmp$$Register, strd);
12106     } else {
12107       __ addl($limit$$Register, (strd + 1));
12108       __ adcl($limit_hi$$Register, -1);
12109       __ lneg($limit_hi$$Register, $limit$$Register);
12110       __ movl($tmp$$Register, -strd);
12111     }
12112     // signed devision: (EAX:EDX) / pos_stride
12113     __ idivl($tmp$$Register);
12114     if (strd < 0) {
12115       // restore sign
12116       __ negl($tmp$$Register);
12117     }
12118     // (EAX) * stride
12119     __ mull($tmp$$Register);
12120     // + init (ignore upper bits)
12121     __ addl($limit$$Register, $init$$Register);
12122   %}
12123   ins_pipe( pipe_slow );
12124 %}
12125 
12126 // ============================================================================
12127 // Branch Instructions
12128 // Jump Table
12129 instruct jumpXtnd(rRegI switch_val) %{
12130   match(Jump switch_val);
12131   ins_cost(350);
12132   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
12133   ins_encode %{
12134     // Jump to Address(table_base + switch_reg)
12135     Address index(noreg, $switch_val$$Register, Address::times_1);
12136     __ jump(ArrayAddress($constantaddress, index));
12137   %}
12138   ins_pipe(pipe_jmp);
12139 %}
12140 
12141 // Jump Direct - Label defines a relative address from JMP+1
12142 instruct jmpDir(label labl) %{
12143   match(Goto);
12144   effect(USE labl);
12145 
12146   ins_cost(300);
12147   format %{ "JMP    $labl" %}
12148   size(5);
12149   ins_encode %{
12150     Label* L = $labl$$label;
12151     __ jmp(*L, false); // Always long jump
12152   %}
12153   ins_pipe( pipe_jmp );
12154 %}
12155 
12156 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12157 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12158   match(If cop cr);
12159   effect(USE labl);
12160 
12161   ins_cost(300);
12162   format %{ "J$cop    $labl" %}
12163   size(6);
12164   ins_encode %{
12165     Label* L = $labl$$label;
12166     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12167   %}
12168   ins_pipe( pipe_jcc );
12169 %}
12170 
12171 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12172 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12173   match(CountedLoopEnd cop cr);
12174   effect(USE labl);
12175 
12176   ins_cost(300);
12177   format %{ "J$cop    $labl\t# Loop end" %}
12178   size(6);
12179   ins_encode %{
12180     Label* L = $labl$$label;
12181     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12182   %}
12183   ins_pipe( pipe_jcc );
12184 %}
12185 
12186 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12187 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12188   match(CountedLoopEnd cop cmp);
12189   effect(USE labl);
12190 
12191   ins_cost(300);
12192   format %{ "J$cop,u  $labl\t# Loop end" %}
12193   size(6);
12194   ins_encode %{
12195     Label* L = $labl$$label;
12196     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12197   %}
12198   ins_pipe( pipe_jcc );
12199 %}
12200 
12201 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12202   match(CountedLoopEnd cop cmp);
12203   effect(USE labl);
12204 
12205   ins_cost(200);
12206   format %{ "J$cop,u  $labl\t# Loop end" %}
12207   size(6);
12208   ins_encode %{
12209     Label* L = $labl$$label;
12210     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12211   %}
12212   ins_pipe( pipe_jcc );
12213 %}
12214 
12215 // Jump Direct Conditional - using unsigned comparison
12216 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12217   match(If cop cmp);
12218   effect(USE labl);
12219 
12220   ins_cost(300);
12221   format %{ "J$cop,u  $labl" %}
12222   size(6);
12223   ins_encode %{
12224     Label* L = $labl$$label;
12225     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12226   %}
12227   ins_pipe(pipe_jcc);
12228 %}
12229 
12230 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12231   match(If cop cmp);
12232   effect(USE labl);
12233 
12234   ins_cost(200);
12235   format %{ "J$cop,u  $labl" %}
12236   size(6);
12237   ins_encode %{
12238     Label* L = $labl$$label;
12239     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12240   %}
12241   ins_pipe(pipe_jcc);
12242 %}
12243 
12244 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12245   match(If cop cmp);
12246   effect(USE labl);
12247 
12248   ins_cost(200);
12249   format %{ $$template
12250     if ($cop$$cmpcode == Assembler::notEqual) {
12251       $$emit$$"JP,u   $labl\n\t"
12252       $$emit$$"J$cop,u   $labl"
12253     } else {
12254       $$emit$$"JP,u   done\n\t"
12255       $$emit$$"J$cop,u   $labl\n\t"
12256       $$emit$$"done:"
12257     }
12258   %}
12259   ins_encode %{
12260     Label* l = $labl$$label;
12261     if ($cop$$cmpcode == Assembler::notEqual) {
12262       __ jcc(Assembler::parity, *l, false);
12263       __ jcc(Assembler::notEqual, *l, false);
12264     } else if ($cop$$cmpcode == Assembler::equal) {
12265       Label done;
12266       __ jccb(Assembler::parity, done);
12267       __ jcc(Assembler::equal, *l, false);
12268       __ bind(done);
12269     } else {
12270        ShouldNotReachHere();
12271     }
12272   %}
12273   ins_pipe(pipe_jcc);
12274 %}
12275 
12276 // ============================================================================
12277 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12278 // array for an instance of the superklass.  Set a hidden internal cache on a
12279 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12280 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12281 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12282   match(Set result (PartialSubtypeCheck sub super));
12283   effect( KILL rcx, KILL cr );
12284 
12285   ins_cost(1100);  // slightly larger than the next version
12286   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12287             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12288             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12289             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12290             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12291             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12292             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12293      "miss:\t" %}
12294 
12295   opcode(0x1); // Force a XOR of EDI
12296   ins_encode( enc_PartialSubtypeCheck() );
12297   ins_pipe( pipe_slow );
12298 %}
12299 
12300 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12301   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12302   effect( KILL rcx, KILL result );
12303 
12304   ins_cost(1000);
12305   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12306             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12307             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12308             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12309             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12310             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12311      "miss:\t" %}
12312 
12313   opcode(0x0);  // No need to XOR EDI
12314   ins_encode( enc_PartialSubtypeCheck() );
12315   ins_pipe( pipe_slow );
12316 %}
12317 
12318 // ============================================================================
12319 // Branch Instructions -- short offset versions
12320 //
12321 // These instructions are used to replace jumps of a long offset (the default
12322 // match) with jumps of a shorter offset.  These instructions are all tagged
12323 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12324 // match rules in general matching.  Instead, the ADLC generates a conversion
12325 // method in the MachNode which can be used to do in-place replacement of the
12326 // long variant with the shorter variant.  The compiler will determine if a
12327 // branch can be taken by the is_short_branch_offset() predicate in the machine
12328 // specific code section of the file.
12329 
12330 // Jump Direct - Label defines a relative address from JMP+1
12331 instruct jmpDir_short(label labl) %{
12332   match(Goto);
12333   effect(USE labl);
12334 
12335   ins_cost(300);
12336   format %{ "JMP,s  $labl" %}
12337   size(2);
12338   ins_encode %{
12339     Label* L = $labl$$label;
12340     __ jmpb(*L);
12341   %}
12342   ins_pipe( pipe_jmp );
12343   ins_short_branch(1);
12344 %}
12345 
12346 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12347 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12348   match(If cop cr);
12349   effect(USE labl);
12350 
12351   ins_cost(300);
12352   format %{ "J$cop,s  $labl" %}
12353   size(2);
12354   ins_encode %{
12355     Label* L = $labl$$label;
12356     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12357   %}
12358   ins_pipe( pipe_jcc );
12359   ins_short_branch(1);
12360 %}
12361 
12362 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12363 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12364   match(CountedLoopEnd cop cr);
12365   effect(USE labl);
12366 
12367   ins_cost(300);
12368   format %{ "J$cop,s  $labl\t# Loop end" %}
12369   size(2);
12370   ins_encode %{
12371     Label* L = $labl$$label;
12372     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12373   %}
12374   ins_pipe( pipe_jcc );
12375   ins_short_branch(1);
12376 %}
12377 
12378 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12379 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12380   match(CountedLoopEnd cop cmp);
12381   effect(USE labl);
12382 
12383   ins_cost(300);
12384   format %{ "J$cop,us $labl\t# Loop end" %}
12385   size(2);
12386   ins_encode %{
12387     Label* L = $labl$$label;
12388     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12389   %}
12390   ins_pipe( pipe_jcc );
12391   ins_short_branch(1);
12392 %}
12393 
12394 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12395   match(CountedLoopEnd cop cmp);
12396   effect(USE labl);
12397 
12398   ins_cost(300);
12399   format %{ "J$cop,us $labl\t# Loop end" %}
12400   size(2);
12401   ins_encode %{
12402     Label* L = $labl$$label;
12403     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12404   %}
12405   ins_pipe( pipe_jcc );
12406   ins_short_branch(1);
12407 %}
12408 
12409 // Jump Direct Conditional - using unsigned comparison
12410 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12411   match(If cop cmp);
12412   effect(USE labl);
12413 
12414   ins_cost(300);
12415   format %{ "J$cop,us $labl" %}
12416   size(2);
12417   ins_encode %{
12418     Label* L = $labl$$label;
12419     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12420   %}
12421   ins_pipe( pipe_jcc );
12422   ins_short_branch(1);
12423 %}
12424 
12425 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12426   match(If cop cmp);
12427   effect(USE labl);
12428 
12429   ins_cost(300);
12430   format %{ "J$cop,us $labl" %}
12431   size(2);
12432   ins_encode %{
12433     Label* L = $labl$$label;
12434     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12435   %}
12436   ins_pipe( pipe_jcc );
12437   ins_short_branch(1);
12438 %}
12439 
12440 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12441   match(If cop cmp);
12442   effect(USE labl);
12443 
12444   ins_cost(300);
12445   format %{ $$template
12446     if ($cop$$cmpcode == Assembler::notEqual) {
12447       $$emit$$"JP,u,s   $labl\n\t"
12448       $$emit$$"J$cop,u,s   $labl"
12449     } else {
12450       $$emit$$"JP,u,s   done\n\t"
12451       $$emit$$"J$cop,u,s  $labl\n\t"
12452       $$emit$$"done:"
12453     }
12454   %}
12455   size(4);
12456   ins_encode %{
12457     Label* l = $labl$$label;
12458     if ($cop$$cmpcode == Assembler::notEqual) {
12459       __ jccb(Assembler::parity, *l);
12460       __ jccb(Assembler::notEqual, *l);
12461     } else if ($cop$$cmpcode == Assembler::equal) {
12462       Label done;
12463       __ jccb(Assembler::parity, done);
12464       __ jccb(Assembler::equal, *l);
12465       __ bind(done);
12466     } else {
12467        ShouldNotReachHere();
12468     }
12469   %}
12470   ins_pipe(pipe_jcc);
12471   ins_short_branch(1);
12472 %}
12473 
12474 // ============================================================================
12475 // Long Compare
12476 //
12477 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12478 // is tricky.  The flavor of compare used depends on whether we are testing
12479 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12480 // The GE test is the negated LT test.  The LE test can be had by commuting
12481 // the operands (yielding a GE test) and then negating; negate again for the
12482 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12483 // NE test is negated from that.
12484 
12485 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12486 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12487 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12488 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12489 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12490 // foo match ends up with the wrong leaf.  One fix is to not match both
12491 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12492 // both forms beat the trinary form of long-compare and both are very useful
12493 // on Intel which has so few registers.
12494 
12495 // Manifest a CmpL result in an integer register.  Very painful.
12496 // This is the test to avoid.
12497 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12498   match(Set dst (CmpL3 src1 src2));
12499   effect( KILL flags );
12500   ins_cost(1000);
12501   format %{ "XOR    $dst,$dst\n\t"
12502             "CMP    $src1.hi,$src2.hi\n\t"
12503             "JLT,s  m_one\n\t"
12504             "JGT,s  p_one\n\t"
12505             "CMP    $src1.lo,$src2.lo\n\t"
12506             "JB,s   m_one\n\t"
12507             "JEQ,s  done\n"
12508     "p_one:\tINC    $dst\n\t"
12509             "JMP,s  done\n"
12510     "m_one:\tDEC    $dst\n"
12511      "done:" %}
12512   ins_encode %{
12513     Label p_one, m_one, done;
12514     __ xorptr($dst$$Register, $dst$$Register);
12515     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12516     __ jccb(Assembler::less,    m_one);
12517     __ jccb(Assembler::greater, p_one);
12518     __ cmpl($src1$$Register, $src2$$Register);
12519     __ jccb(Assembler::below,   m_one);
12520     __ jccb(Assembler::equal,   done);
12521     __ bind(p_one);
12522     __ incrementl($dst$$Register);
12523     __ jmpb(done);
12524     __ bind(m_one);
12525     __ decrementl($dst$$Register);
12526     __ bind(done);
12527   %}
12528   ins_pipe( pipe_slow );
12529 %}
12530 
12531 //======
12532 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12533 // compares.  Can be used for LE or GT compares by reversing arguments.
12534 // NOT GOOD FOR EQ/NE tests.
12535 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12536   match( Set flags (CmpL src zero ));
12537   ins_cost(100);
12538   format %{ "TEST   $src.hi,$src.hi" %}
12539   opcode(0x85);
12540   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12541   ins_pipe( ialu_cr_reg_reg );
12542 %}
12543 
12544 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12545 // compares.  Can be used for LE or GT compares by reversing arguments.
12546 // NOT GOOD FOR EQ/NE tests.
12547 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12548   match( Set flags (CmpL src1 src2 ));
12549   effect( TEMP tmp );
12550   ins_cost(300);
12551   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12552             "MOV    $tmp,$src1.hi\n\t"
12553             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12554   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12555   ins_pipe( ialu_cr_reg_reg );
12556 %}
12557 
12558 // Long compares reg < zero/req OR reg >= zero/req.
12559 // Just a wrapper for a normal branch, plus the predicate test.
12560 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12561   match(If cmp flags);
12562   effect(USE labl);
12563   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12564   expand %{
12565     jmpCon(cmp,flags,labl);    // JLT or JGE...
12566   %}
12567 %}
12568 
12569 // Compare 2 longs and CMOVE longs.
12570 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12571   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12572   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12573   ins_cost(400);
12574   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12575             "CMOV$cmp $dst.hi,$src.hi" %}
12576   opcode(0x0F,0x40);
12577   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12578   ins_pipe( pipe_cmov_reg_long );
12579 %}
12580 
12581 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12582   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12583   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12584   ins_cost(500);
12585   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12586             "CMOV$cmp $dst.hi,$src.hi" %}
12587   opcode(0x0F,0x40);
12588   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12589   ins_pipe( pipe_cmov_reg_long );
12590 %}
12591 
12592 // Compare 2 longs and CMOVE ints.
12593 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12594   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12595   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12596   ins_cost(200);
12597   format %{ "CMOV$cmp $dst,$src" %}
12598   opcode(0x0F,0x40);
12599   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12600   ins_pipe( pipe_cmov_reg );
12601 %}
12602 
12603 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12604   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12605   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12606   ins_cost(250);
12607   format %{ "CMOV$cmp $dst,$src" %}
12608   opcode(0x0F,0x40);
12609   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12610   ins_pipe( pipe_cmov_mem );
12611 %}
12612 
12613 // Compare 2 longs and CMOVE ints.
12614 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12615   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12616   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12617   ins_cost(200);
12618   format %{ "CMOV$cmp $dst,$src" %}
12619   opcode(0x0F,0x40);
12620   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12621   ins_pipe( pipe_cmov_reg );
12622 %}
12623 
12624 // Compare 2 longs and CMOVE doubles
12625 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12626   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12627   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12628   ins_cost(200);
12629   expand %{
12630     fcmovDPR_regS(cmp,flags,dst,src);
12631   %}
12632 %}
12633 
12634 // Compare 2 longs and CMOVE doubles
12635 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12636   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12637   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12638   ins_cost(200);
12639   expand %{
12640     fcmovD_regS(cmp,flags,dst,src);
12641   %}
12642 %}
12643 
12644 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12645   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12646   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12647   ins_cost(200);
12648   expand %{
12649     fcmovFPR_regS(cmp,flags,dst,src);
12650   %}
12651 %}
12652 
12653 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12654   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12655   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12656   ins_cost(200);
12657   expand %{
12658     fcmovF_regS(cmp,flags,dst,src);
12659   %}
12660 %}
12661 
12662 //======
12663 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12664 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12665   match( Set flags (CmpL src zero ));
12666   effect(TEMP tmp);
12667   ins_cost(200);
12668   format %{ "MOV    $tmp,$src.lo\n\t"
12669             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12670   ins_encode( long_cmp_flags0( src, tmp ) );
12671   ins_pipe( ialu_reg_reg_long );
12672 %}
12673 
12674 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12675 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12676   match( Set flags (CmpL src1 src2 ));
12677   ins_cost(200+300);
12678   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12679             "JNE,s  skip\n\t"
12680             "CMP    $src1.hi,$src2.hi\n\t"
12681      "skip:\t" %}
12682   ins_encode( long_cmp_flags1( src1, src2 ) );
12683   ins_pipe( ialu_cr_reg_reg );
12684 %}
12685 
12686 // Long compare reg == zero/reg OR reg != zero/reg
12687 // Just a wrapper for a normal branch, plus the predicate test.
12688 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12689   match(If cmp flags);
12690   effect(USE labl);
12691   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12692   expand %{
12693     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12694   %}
12695 %}
12696 
12697 // Compare 2 longs and CMOVE longs.
12698 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12699   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12700   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12701   ins_cost(400);
12702   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12703             "CMOV$cmp $dst.hi,$src.hi" %}
12704   opcode(0x0F,0x40);
12705   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12706   ins_pipe( pipe_cmov_reg_long );
12707 %}
12708 
12709 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12710   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12711   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12712   ins_cost(500);
12713   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12714             "CMOV$cmp $dst.hi,$src.hi" %}
12715   opcode(0x0F,0x40);
12716   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12717   ins_pipe( pipe_cmov_reg_long );
12718 %}
12719 
12720 // Compare 2 longs and CMOVE ints.
12721 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12722   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12723   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12724   ins_cost(200);
12725   format %{ "CMOV$cmp $dst,$src" %}
12726   opcode(0x0F,0x40);
12727   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12728   ins_pipe( pipe_cmov_reg );
12729 %}
12730 
12731 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12732   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12733   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12734   ins_cost(250);
12735   format %{ "CMOV$cmp $dst,$src" %}
12736   opcode(0x0F,0x40);
12737   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12738   ins_pipe( pipe_cmov_mem );
12739 %}
12740 
12741 // Compare 2 longs and CMOVE ints.
12742 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12743   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12744   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12745   ins_cost(200);
12746   format %{ "CMOV$cmp $dst,$src" %}
12747   opcode(0x0F,0x40);
12748   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12749   ins_pipe( pipe_cmov_reg );
12750 %}
12751 
12752 // Compare 2 longs and CMOVE doubles
12753 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12754   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12755   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12756   ins_cost(200);
12757   expand %{
12758     fcmovDPR_regS(cmp,flags,dst,src);
12759   %}
12760 %}
12761 
12762 // Compare 2 longs and CMOVE doubles
12763 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12764   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12765   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12766   ins_cost(200);
12767   expand %{
12768     fcmovD_regS(cmp,flags,dst,src);
12769   %}
12770 %}
12771 
12772 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12773   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12774   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12775   ins_cost(200);
12776   expand %{
12777     fcmovFPR_regS(cmp,flags,dst,src);
12778   %}
12779 %}
12780 
12781 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12782   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12783   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12784   ins_cost(200);
12785   expand %{
12786     fcmovF_regS(cmp,flags,dst,src);
12787   %}
12788 %}
12789 
12790 //======
12791 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12792 // Same as cmpL_reg_flags_LEGT except must negate src
12793 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12794   match( Set flags (CmpL src zero ));
12795   effect( TEMP tmp );
12796   ins_cost(300);
12797   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12798             "CMP    $tmp,$src.lo\n\t"
12799             "SBB    $tmp,$src.hi\n\t" %}
12800   ins_encode( long_cmp_flags3(src, tmp) );
12801   ins_pipe( ialu_reg_reg_long );
12802 %}
12803 
12804 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12805 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12806 // requires a commuted test to get the same result.
12807 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12808   match( Set flags (CmpL src1 src2 ));
12809   effect( TEMP tmp );
12810   ins_cost(300);
12811   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12812             "MOV    $tmp,$src2.hi\n\t"
12813             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12814   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12815   ins_pipe( ialu_cr_reg_reg );
12816 %}
12817 
12818 // Long compares reg < zero/req OR reg >= zero/req.
12819 // Just a wrapper for a normal branch, plus the predicate test
12820 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12821   match(If cmp flags);
12822   effect(USE labl);
12823   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12824   ins_cost(300);
12825   expand %{
12826     jmpCon(cmp,flags,labl);    // JGT or JLE...
12827   %}
12828 %}
12829 
12830 // Compare 2 longs and CMOVE longs.
12831 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12832   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12833   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12834   ins_cost(400);
12835   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12836             "CMOV$cmp $dst.hi,$src.hi" %}
12837   opcode(0x0F,0x40);
12838   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12839   ins_pipe( pipe_cmov_reg_long );
12840 %}
12841 
12842 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12843   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12844   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12845   ins_cost(500);
12846   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12847             "CMOV$cmp $dst.hi,$src.hi+4" %}
12848   opcode(0x0F,0x40);
12849   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12850   ins_pipe( pipe_cmov_reg_long );
12851 %}
12852 
12853 // Compare 2 longs and CMOVE ints.
12854 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12855   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12856   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12857   ins_cost(200);
12858   format %{ "CMOV$cmp $dst,$src" %}
12859   opcode(0x0F,0x40);
12860   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12861   ins_pipe( pipe_cmov_reg );
12862 %}
12863 
12864 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12865   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12866   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12867   ins_cost(250);
12868   format %{ "CMOV$cmp $dst,$src" %}
12869   opcode(0x0F,0x40);
12870   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12871   ins_pipe( pipe_cmov_mem );
12872 %}
12873 
12874 // Compare 2 longs and CMOVE ptrs.
12875 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12876   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12877   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12878   ins_cost(200);
12879   format %{ "CMOV$cmp $dst,$src" %}
12880   opcode(0x0F,0x40);
12881   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12882   ins_pipe( pipe_cmov_reg );
12883 %}
12884 
12885 // Compare 2 longs and CMOVE doubles
12886 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12887   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12888   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12889   ins_cost(200);
12890   expand %{
12891     fcmovDPR_regS(cmp,flags,dst,src);
12892   %}
12893 %}
12894 
12895 // Compare 2 longs and CMOVE doubles
12896 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12897   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12898   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12899   ins_cost(200);
12900   expand %{
12901     fcmovD_regS(cmp,flags,dst,src);
12902   %}
12903 %}
12904 
12905 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12906   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12907   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12908   ins_cost(200);
12909   expand %{
12910     fcmovFPR_regS(cmp,flags,dst,src);
12911   %}
12912 %}
12913 
12914 
12915 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12916   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12917   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12918   ins_cost(200);
12919   expand %{
12920     fcmovF_regS(cmp,flags,dst,src);
12921   %}
12922 %}
12923 
12924 
12925 // ============================================================================
12926 // Procedure Call/Return Instructions
12927 // Call Java Static Instruction
12928 // Note: If this code changes, the corresponding ret_addr_offset() and
12929 //       compute_padding() functions will have to be adjusted.
12930 instruct CallStaticJavaDirect(method meth) %{
12931   match(CallStaticJava);
12932   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
12933   effect(USE meth);
12934 
12935   ins_cost(300);
12936   format %{ "CALL,static " %}
12937   opcode(0xE8); /* E8 cd */
12938   ins_encode( pre_call_resets,
12939               Java_Static_Call( meth ),
12940               call_epilog,
12941               post_call_FPU );
12942   ins_pipe( pipe_slow );
12943   ins_alignment(4);
12944 %}
12945 
12946 // Call Java Static Instruction (method handle version)
12947 // Note: If this code changes, the corresponding ret_addr_offset() and
12948 //       compute_padding() functions will have to be adjusted.
12949 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
12950   match(CallStaticJava);
12951   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
12952   effect(USE meth);
12953   // EBP is saved by all callees (for interpreter stack correction).
12954   // We use it here for a similar purpose, in {preserve,restore}_SP.
12955 
12956   ins_cost(300);
12957   format %{ "CALL,static/MethodHandle " %}
12958   opcode(0xE8); /* E8 cd */
12959   ins_encode( pre_call_resets,
12960               preserve_SP,
12961               Java_Static_Call( meth ),
12962               restore_SP,
12963               call_epilog,
12964               post_call_FPU );
12965   ins_pipe( pipe_slow );
12966   ins_alignment(4);
12967 %}
12968 
12969 // Call Java Dynamic Instruction
12970 // Note: If this code changes, the corresponding ret_addr_offset() and
12971 //       compute_padding() functions will have to be adjusted.
12972 instruct CallDynamicJavaDirect(method meth) %{
12973   match(CallDynamicJava);
12974   effect(USE meth);
12975 
12976   ins_cost(300);
12977   format %{ "MOV    EAX,(oop)-1\n\t"
12978             "CALL,dynamic" %}
12979   opcode(0xE8); /* E8 cd */
12980   ins_encode( pre_call_resets,
12981               Java_Dynamic_Call( meth ),
12982               call_epilog,
12983               post_call_FPU );
12984   ins_pipe( pipe_slow );
12985   ins_alignment(4);
12986 %}
12987 
12988 // Call Runtime Instruction
12989 instruct CallRuntimeDirect(method meth) %{
12990   match(CallRuntime );
12991   effect(USE meth);
12992 
12993   ins_cost(300);
12994   format %{ "CALL,runtime " %}
12995   opcode(0xE8); /* E8 cd */
12996   // Use FFREEs to clear entries in float stack
12997   ins_encode( pre_call_resets,
12998               FFree_Float_Stack_All,
12999               Java_To_Runtime( meth ),
13000               post_call_FPU );
13001   ins_pipe( pipe_slow );
13002 %}
13003 
13004 // Call runtime without safepoint
13005 instruct CallLeafDirect(method meth) %{
13006   match(CallLeaf);
13007   effect(USE meth);
13008 
13009   ins_cost(300);
13010   format %{ "CALL_LEAF,runtime " %}
13011   opcode(0xE8); /* E8 cd */
13012   ins_encode( pre_call_resets,
13013               FFree_Float_Stack_All,
13014               Java_To_Runtime( meth ),
13015               Verify_FPU_For_Leaf, post_call_FPU );
13016   ins_pipe( pipe_slow );
13017 %}
13018 
13019 instruct CallLeafNoFPDirect(method meth) %{
13020   match(CallLeafNoFP);
13021   effect(USE meth);
13022 
13023   ins_cost(300);
13024   format %{ "CALL_LEAF_NOFP,runtime " %}
13025   opcode(0xE8); /* E8 cd */
13026   ins_encode(Java_To_Runtime(meth));
13027   ins_pipe( pipe_slow );
13028 %}
13029 
13030 
13031 // Return Instruction
13032 // Remove the return address & jump to it.
13033 instruct Ret() %{
13034   match(Return);
13035   format %{ "RET" %}
13036   opcode(0xC3);
13037   ins_encode(OpcP);
13038   ins_pipe( pipe_jmp );
13039 %}
13040 
13041 // Tail Call; Jump from runtime stub to Java code.
13042 // Also known as an 'interprocedural jump'.
13043 // Target of jump will eventually return to caller.
13044 // TailJump below removes the return address.
13045 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13046   match(TailCall jump_target method_oop );
13047   ins_cost(300);
13048   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13049   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13050   ins_encode( OpcP, RegOpc(jump_target) );
13051   ins_pipe( pipe_jmp );
13052 %}
13053 
13054 
13055 // Tail Jump; remove the return address; jump to target.
13056 // TailCall above leaves the return address around.
13057 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13058   match( TailJump jump_target ex_oop );
13059   ins_cost(300);
13060   format %{ "POP    EDX\t# pop return address into dummy\n\t"
13061             "JMP    $jump_target " %}
13062   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13063   ins_encode( enc_pop_rdx,
13064               OpcP, RegOpc(jump_target) );
13065   ins_pipe( pipe_jmp );
13066 %}
13067 
13068 // Create exception oop: created by stack-crawling runtime code.
13069 // Created exception is now available to this handler, and is setup
13070 // just prior to jumping to this handler.  No code emitted.
13071 instruct CreateException( eAXRegP ex_oop )
13072 %{
13073   match(Set ex_oop (CreateEx));
13074 
13075   size(0);
13076   // use the following format syntax
13077   format %{ "# exception oop is in EAX; no code emitted" %}
13078   ins_encode();
13079   ins_pipe( empty );
13080 %}
13081 
13082 
13083 // Rethrow exception:
13084 // The exception oop will come in the first argument position.
13085 // Then JUMP (not call) to the rethrow stub code.
13086 instruct RethrowException()
13087 %{
13088   match(Rethrow);
13089 
13090   // use the following format syntax
13091   format %{ "JMP    rethrow_stub" %}
13092   ins_encode(enc_rethrow);
13093   ins_pipe( pipe_jmp );
13094 %}
13095 
13096 // inlined locking and unlocking
13097 
13098 
13099 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
13100   match( Set cr (FastLock object box) );
13101   effect( TEMP tmp, TEMP scr, USE_KILL box );
13102   ins_cost(300);
13103   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
13104   ins_encode( Fast_Lock(object,box,tmp,scr) );
13105   ins_pipe( pipe_slow );
13106 %}
13107 
13108 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13109   match( Set cr (FastUnlock object box) );
13110   effect( TEMP tmp, USE_KILL box );
13111   ins_cost(300);
13112   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
13113   ins_encode( Fast_Unlock(object,box,tmp) );
13114   ins_pipe( pipe_slow );
13115 %}
13116 
13117 
13118 
13119 // ============================================================================
13120 // Safepoint Instruction
13121 instruct safePoint_poll(eFlagsReg cr) %{
13122   match(SafePoint);
13123   effect(KILL cr);
13124 
13125   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13126   // On SPARC that might be acceptable as we can generate the address with
13127   // just a sethi, saving an or.  By polling at offset 0 we can end up
13128   // putting additional pressure on the index-0 in the D$.  Because of
13129   // alignment (just like the situation at hand) the lower indices tend
13130   // to see more traffic.  It'd be better to change the polling address
13131   // to offset 0 of the last $line in the polling page.
13132 
13133   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13134   ins_cost(125);
13135   size(6) ;
13136   ins_encode( Safepoint_Poll() );
13137   ins_pipe( ialu_reg_mem );
13138 %}
13139 
13140 
13141 // ============================================================================
13142 // This name is KNOWN by the ADLC and cannot be changed.
13143 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
13144 // for this guy.
13145 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
13146   match(Set dst (ThreadLocal));
13147   effect(DEF dst, KILL cr);
13148 
13149   format %{ "MOV    $dst, Thread::current()" %}
13150   ins_encode %{
13151     Register dstReg = as_Register($dst$$reg);
13152     __ get_thread(dstReg);
13153   %}
13154   ins_pipe( ialu_reg_fat );
13155 %}
13156 
13157 
13158 
13159 //----------PEEPHOLE RULES-----------------------------------------------------
13160 // These must follow all instruction definitions as they use the names
13161 // defined in the instructions definitions.
13162 //
13163 // peepmatch ( root_instr_name [preceding_instruction]* );
13164 //
13165 // peepconstraint %{
13166 // (instruction_number.operand_name relational_op instruction_number.operand_name
13167 //  [, ...] );
13168 // // instruction numbers are zero-based using left to right order in peepmatch
13169 //
13170 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13171 // // provide an instruction_number.operand_name for each operand that appears
13172 // // in the replacement instruction's match rule
13173 //
13174 // ---------VM FLAGS---------------------------------------------------------
13175 //
13176 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13177 //
13178 // Each peephole rule is given an identifying number starting with zero and
13179 // increasing by one in the order seen by the parser.  An individual peephole
13180 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13181 // on the command-line.
13182 //
13183 // ---------CURRENT LIMITATIONS----------------------------------------------
13184 //
13185 // Only match adjacent instructions in same basic block
13186 // Only equality constraints
13187 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13188 // Only one replacement instruction
13189 //
13190 // ---------EXAMPLE----------------------------------------------------------
13191 //
13192 // // pertinent parts of existing instructions in architecture description
13193 // instruct movI(rRegI dst, rRegI src) %{
13194 //   match(Set dst (CopyI src));
13195 // %}
13196 //
13197 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13198 //   match(Set dst (AddI dst src));
13199 //   effect(KILL cr);
13200 // %}
13201 //
13202 // // Change (inc mov) to lea
13203 // peephole %{
13204 //   // increment preceeded by register-register move
13205 //   peepmatch ( incI_eReg movI );
13206 //   // require that the destination register of the increment
13207 //   // match the destination register of the move
13208 //   peepconstraint ( 0.dst == 1.dst );
13209 //   // construct a replacement instruction that sets
13210 //   // the destination to ( move's source register + one )
13211 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13212 // %}
13213 //
13214 // Implementation no longer uses movX instructions since
13215 // machine-independent system no longer uses CopyX nodes.
13216 //
13217 // peephole %{
13218 //   peepmatch ( incI_eReg movI );
13219 //   peepconstraint ( 0.dst == 1.dst );
13220 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13221 // %}
13222 //
13223 // peephole %{
13224 //   peepmatch ( decI_eReg movI );
13225 //   peepconstraint ( 0.dst == 1.dst );
13226 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13227 // %}
13228 //
13229 // peephole %{
13230 //   peepmatch ( addI_eReg_imm movI );
13231 //   peepconstraint ( 0.dst == 1.dst );
13232 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13233 // %}
13234 //
13235 // peephole %{
13236 //   peepmatch ( addP_eReg_imm movP );
13237 //   peepconstraint ( 0.dst == 1.dst );
13238 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13239 // %}
13240 
13241 // // Change load of spilled value to only a spill
13242 // instruct storeI(memory mem, rRegI src) %{
13243 //   match(Set mem (StoreI mem src));
13244 // %}
13245 //
13246 // instruct loadI(rRegI dst, memory mem) %{
13247 //   match(Set dst (LoadI mem));
13248 // %}
13249 //
13250 peephole %{
13251   peepmatch ( loadI storeI );
13252   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13253   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13254 %}
13255 
13256 //----------SMARTSPILL RULES---------------------------------------------------
13257 // These must follow all instruction definitions as they use the names
13258 // defined in the instructions definitions.