1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/c2compiler.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/runtime.hpp"
  33 #ifdef TARGET_ARCH_MODEL_x86_32
  34 # include "adfiles/ad_x86_32.hpp"
  35 #endif
  36 #ifdef TARGET_ARCH_MODEL_x86_64
  37 # include "adfiles/ad_x86_64.hpp"
  38 #endif
  39 #ifdef TARGET_ARCH_MODEL_sparc
  40 # include "adfiles/ad_sparc.hpp"
  41 #endif
  42 #ifdef TARGET_ARCH_MODEL_zero
  43 # include "adfiles/ad_zero.hpp"
  44 #endif
  45 #ifdef TARGET_ARCH_MODEL_arm
  46 # include "adfiles/ad_arm.hpp"
  47 #endif
  48 #ifdef TARGET_ARCH_MODEL_ppc
  49 # include "adfiles/ad_ppc.hpp"
  50 #endif
  51 
  52 // Optimization - Graph Style
  53 
  54 //------------------------------implicit_null_check----------------------------
  55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  57 // I can generate a memory op if there is not one nearby.
  58 // The proj is the control projection for the not-null case.
  59 // The val is the pointer being checked for nullness or
  60 // decodeHeapOop_not_null node if it did not fold into address.
  61 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  62   // Assume if null check need for 0 offset then always needed
  63   // Intel solaris doesn't support any null checks yet and no
  64   // mechanism exists (yet) to set the switches at an os_cpu level
  65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  66 
  67   // Make sure the ptr-is-null path appears to be uncommon!
  68   float f = block->end()->as_MachIf()->_prob;
  69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  70   if( f > PROB_UNLIKELY_MAG(4) ) return;
  71 
  72   uint bidx = 0;                // Capture index of value into memop
  73   bool was_store;               // Memory op is a store op
  74 
  75   // Get the successor block for if the test ptr is non-null
  76   Block* not_null_block;  // this one goes with the proj
  77   Block* null_block;
  78   if (block->get_node(block->number_of_nodes()-1) == proj) {
  79     null_block     = block->_succs[0];
  80     not_null_block = block->_succs[1];
  81   } else {
  82     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
  83     not_null_block = block->_succs[0];
  84     null_block     = block->_succs[1];
  85   }
  86   while (null_block->is_Empty() == Block::empty_with_goto) {
  87     null_block     = null_block->_succs[0];
  88   }
  89 
  90   // Search the exception block for an uncommon trap.
  91   // (See Parse::do_if and Parse::do_ifnull for the reason
  92   // we need an uncommon trap.  Briefly, we need a way to
  93   // detect failure of this optimization, as in 6366351.)
  94   {
  95     bool found_trap = false;
  96     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
  97       Node* nn = null_block->get_node(i1);
  98       if (nn->is_MachCall() &&
  99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 102           jint tr_con = trtype->is_int()->get_con();
 103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 105           assert((int)reason < (int)BitsPerInt, "recode bit map");
 106           if (is_set_nth_bit(allowed_reasons, (int) reason)
 107               && action != Deoptimization::Action_none) {
 108             // This uncommon trap is sure to recompile, eventually.
 109             // When that happens, C->too_many_traps will prevent
 110             // this transformation from happening again.
 111             found_trap = true;
 112           }
 113         }
 114         break;
 115       }
 116     }
 117     if (!found_trap) {
 118       // We did not find an uncommon trap.
 119       return;
 120     }
 121   }
 122 
 123   // Check for decodeHeapOop_not_null node which did not fold into address
 124   bool is_decoden = ((intptr_t)val) & 1;
 125   val = (Node*)(((intptr_t)val) & ~1);
 126 
 127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 129 
 130   // Search the successor block for a load or store who's base value is also
 131   // the tested value.  There may be several.
 132   Node_List *out = new Node_List(Thread::current()->resource_area());
 133   MachNode *best = NULL;        // Best found so far
 134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 135     Node *m = val->out(i);
 136     if( !m->is_Mach() ) continue;
 137     MachNode *mach = m->as_Mach();
 138     was_store = false;
 139     int iop = mach->ideal_Opcode();
 140     switch( iop ) {
 141     case Op_LoadB:
 142     case Op_LoadUB:
 143     case Op_LoadUS:
 144     case Op_LoadD:
 145     case Op_LoadF:
 146     case Op_LoadI:
 147     case Op_LoadL:
 148     case Op_LoadP:
 149     case Op_LoadN:
 150     case Op_LoadS:
 151     case Op_LoadKlass:
 152     case Op_LoadNKlass:
 153     case Op_LoadRange:
 154     case Op_LoadD_unaligned:
 155     case Op_LoadL_unaligned:
 156       assert(mach->in(2) == val, "should be address");
 157       break;
 158     case Op_StoreB:
 159     case Op_StoreC:
 160     case Op_StoreCM:
 161     case Op_StoreD:
 162     case Op_StoreF:
 163     case Op_StoreI:
 164     case Op_StoreL:
 165     case Op_StoreP:
 166     case Op_StoreN:
 167     case Op_StoreNKlass:
 168       was_store = true;         // Memory op is a store op
 169       // Stores will have their address in slot 2 (memory in slot 1).
 170       // If the value being nul-checked is in another slot, it means we
 171       // are storing the checked value, which does NOT check the value!
 172       if( mach->in(2) != val ) continue;
 173       break;                    // Found a memory op?
 174     case Op_StrComp:
 175     case Op_StrEquals:
 176     case Op_StrIndexOf:
 177     case Op_AryEq:
 178     case Op_EncodeISOArray:
 179       // Not a legit memory op for implicit null check regardless of
 180       // embedded loads
 181       continue;
 182     default:                    // Also check for embedded loads
 183       if( !mach->needs_anti_dependence_check() )
 184         continue;               // Not an memory op; skip it
 185       if( must_clone[iop] ) {
 186         // Do not move nodes which produce flags because
 187         // RA will try to clone it to place near branch and
 188         // it will cause recompilation, see clone_node().
 189         continue;
 190       }
 191       {
 192         // Check that value is used in memory address in
 193         // instructions with embedded load (CmpP val1,(val2+off)).
 194         Node* base;
 195         Node* index;
 196         const MachOper* oper = mach->memory_inputs(base, index);
 197         if (oper == NULL || oper == (MachOper*)-1) {
 198           continue;             // Not an memory op; skip it
 199         }
 200         if (val == base ||
 201             val == index && val->bottom_type()->isa_narrowoop()) {
 202           break;                // Found it
 203         } else {
 204           continue;             // Skip it
 205         }
 206       }
 207       break;
 208     }
 209     // check if the offset is not too high for implicit exception
 210     {
 211       intptr_t offset = 0;
 212       const TypePtr *adr_type = NULL;  // Do not need this return value here
 213       const Node* base = mach->get_base_and_disp(offset, adr_type);
 214       if (base == NULL || base == NodeSentinel) {
 215         // Narrow oop address doesn't have base, only index
 216         if( val->bottom_type()->isa_narrowoop() &&
 217             MacroAssembler::needs_explicit_null_check(offset) )
 218           continue;             // Give up if offset is beyond page size
 219         // cannot reason about it; is probably not implicit null exception
 220       } else {
 221         const TypePtr* tptr;
 222         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 223                                   Universe::narrow_klass_shift() == 0)) {
 224           // 32-bits narrow oop can be the base of address expressions
 225           tptr = base->get_ptr_type();
 226         } else {
 227           // only regular oops are expected here
 228           tptr = base->bottom_type()->is_ptr();
 229         }
 230         // Give up if offset is not a compile-time constant
 231         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 232           continue;
 233         offset += tptr->_offset; // correct if base is offseted
 234         if( MacroAssembler::needs_explicit_null_check(offset) )
 235           continue;             // Give up is reference is beyond 4K page size
 236       }
 237     }
 238 
 239     // Check ctrl input to see if the null-check dominates the memory op
 240     Block *cb = get_block_for_node(mach);
 241     cb = cb->_idom;             // Always hoist at least 1 block
 242     if( !was_store ) {          // Stores can be hoisted only one block
 243       while( cb->_dom_depth > (block->_dom_depth + 1))
 244         cb = cb->_idom;         // Hoist loads as far as we want
 245       // The non-null-block should dominate the memory op, too. Live
 246       // range spilling will insert a spill in the non-null-block if it is
 247       // needs to spill the memory op for an implicit null check.
 248       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 249         if (cb != not_null_block) continue;
 250         cb = cb->_idom;
 251       }
 252     }
 253     if( cb != block ) continue;
 254 
 255     // Found a memory user; see if it can be hoisted to check-block
 256     uint vidx = 0;              // Capture index of value into memop
 257     uint j;
 258     for( j = mach->req()-1; j > 0; j-- ) {
 259       if( mach->in(j) == val ) {
 260         vidx = j;
 261         // Ignore DecodeN val which could be hoisted to where needed.
 262         if( is_decoden ) continue;
 263       }
 264       // Block of memory-op input
 265       Block *inb = get_block_for_node(mach->in(j));
 266       Block *b = block;          // Start from nul check
 267       while( b != inb && b->_dom_depth > inb->_dom_depth )
 268         b = b->_idom;           // search upwards for input
 269       // See if input dominates null check
 270       if( b != inb )
 271         break;
 272     }
 273     if( j > 0 )
 274       continue;
 275     Block *mb = get_block_for_node(mach);
 276     // Hoisting stores requires more checks for the anti-dependence case.
 277     // Give up hoisting if we have to move the store past any load.
 278     if( was_store ) {
 279       Block *b = mb;            // Start searching here for a local load
 280       // mach use (faulting) trying to hoist
 281       // n might be blocker to hoisting
 282       while( b != block ) {
 283         uint k;
 284         for( k = 1; k < b->number_of_nodes(); k++ ) {
 285           Node *n = b->get_node(k);
 286           if( n->needs_anti_dependence_check() &&
 287               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 288             break;              // Found anti-dependent load
 289         }
 290         if( k < b->number_of_nodes() )
 291           break;                // Found anti-dependent load
 292         // Make sure control does not do a merge (would have to check allpaths)
 293         if( b->num_preds() != 2 ) break;
 294         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 295       }
 296       if( b != block ) continue;
 297     }
 298 
 299     // Make sure this memory op is not already being used for a NullCheck
 300     Node *e = mb->end();
 301     if( e->is_MachNullCheck() && e->in(1) == mach )
 302       continue;                 // Already being used as a NULL check
 303 
 304     // Found a candidate!  Pick one with least dom depth - the highest
 305     // in the dom tree should be closest to the null check.
 306     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 307       best = mach;
 308       bidx = vidx;
 309     }
 310   }
 311   // No candidate!
 312   if (best == NULL) {
 313     return;
 314   }
 315 
 316   // ---- Found an implicit null check
 317   extern int implicit_null_checks;
 318   implicit_null_checks++;
 319 
 320   if( is_decoden ) {
 321     // Check if we need to hoist decodeHeapOop_not_null first.
 322     Block *valb = get_block_for_node(val);
 323     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 324       // Hoist it up to the end of the test block.
 325       valb->find_remove(val);
 326       block->add_inst(val);
 327       map_node_to_block(val, block);
 328       // DecodeN on x86 may kill flags. Check for flag-killing projections
 329       // that also need to be hoisted.
 330       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 331         Node* n = val->fast_out(j);
 332         if( n->is_MachProj() ) {
 333           get_block_for_node(n)->find_remove(n);
 334           block->add_inst(n);
 335           map_node_to_block(n, block);
 336         }
 337       }
 338     }
 339   }
 340   // Hoist the memory candidate up to the end of the test block.
 341   Block *old_block = get_block_for_node(best);
 342   old_block->find_remove(best);
 343   block->add_inst(best);
 344   map_node_to_block(best, block);
 345 
 346   // Move the control dependence
 347   if (best->in(0) && best->in(0) == old_block->head())
 348     best->set_req(0, block->head());
 349 
 350   // Check for flag-killing projections that also need to be hoisted
 351   // Should be DU safe because no edge updates.
 352   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 353     Node* n = best->fast_out(j);
 354     if( n->is_MachProj() ) {
 355       get_block_for_node(n)->find_remove(n);
 356       block->add_inst(n);
 357       map_node_to_block(n, block);
 358     }
 359   }
 360 
 361   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 362   // One of two graph shapes got matched:
 363   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 364   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 365   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 366   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 367   // We need to flip the projections to keep the same semantics.
 368   if( proj->Opcode() == Op_IfTrue ) {
 369     // Swap order of projections in basic block to swap branch targets
 370     Node *tmp1 = block->get_node(block->end_idx()+1);
 371     Node *tmp2 = block->get_node(block->end_idx()+2);
 372     block->map_node(tmp2, block->end_idx()+1);
 373     block->map_node(tmp1, block->end_idx()+2);
 374     Node *tmp = new (C) Node(C->top()); // Use not NULL input
 375     tmp1->replace_by(tmp);
 376     tmp2->replace_by(tmp1);
 377     tmp->replace_by(tmp2);
 378     tmp->destruct();
 379   }
 380 
 381   // Remove the existing null check; use a new implicit null check instead.
 382   // Since schedule-local needs precise def-use info, we need to correct
 383   // it as well.
 384   Node *old_tst = proj->in(0);
 385   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 386   block->map_node(nul_chk, block->end_idx());
 387   map_node_to_block(nul_chk, block);
 388   // Redirect users of old_test to nul_chk
 389   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 390     old_tst->last_out(i2)->set_req(0, nul_chk);
 391   // Clean-up any dead code
 392   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 393     old_tst->set_req(i3, NULL);
 394 
 395   latency_from_uses(nul_chk);
 396   latency_from_uses(best);
 397 }
 398 
 399 
 400 //------------------------------select-----------------------------------------
 401 // Select a nice fellow from the worklist to schedule next. If there is only
 402 // one choice, then use it. Projections take top priority for correctness
 403 // reasons - if I see a projection, then it is next.  There are a number of
 404 // other special cases, for instructions that consume condition codes, et al.
 405 // These are chosen immediately. Some instructions are required to immediately
 406 // precede the last instruction in the block, and these are taken last. Of the
 407 // remaining cases (most), choose the instruction with the greatest latency
 408 // (that is, the most number of pseudo-cycles required to the end of the
 409 // routine). If there is a tie, choose the instruction with the most inputs.
 410 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
 411 
 412   // If only a single entry on the stack, use it
 413   uint cnt = worklist.size();
 414   if (cnt == 1) {
 415     Node *n = worklist[0];
 416     worklist.map(0,worklist.pop());
 417     return n;
 418   }
 419 
 420   uint choice  = 0; // Bigger is most important
 421   uint latency = 0; // Bigger is scheduled first
 422   uint score   = 0; // Bigger is better
 423   int idx = -1;     // Index in worklist
 424   int cand_cnt = 0; // Candidate count
 425 
 426   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 427     // Order in worklist is used to break ties.
 428     // See caller for how this is used to delay scheduling
 429     // of induction variable increments to after the other
 430     // uses of the phi are scheduled.
 431     Node *n = worklist[i];      // Get Node on worklist
 432 
 433     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 434     if( n->is_Proj() ||         // Projections always win
 435         n->Opcode()== Op_Con || // So does constant 'Top'
 436         iop == Op_CreateEx ||   // Create-exception must start block
 437         iop == Op_CheckCastPP
 438         ) {
 439       worklist.map(i,worklist.pop());
 440       return n;
 441     }
 442 
 443     // Final call in a block must be adjacent to 'catch'
 444     Node *e = block->end();
 445     if( e->is_Catch() && e->in(0)->in(0) == n )
 446       continue;
 447 
 448     // Memory op for an implicit null check has to be at the end of the block
 449     if( e->is_MachNullCheck() && e->in(1) == n )
 450       continue;
 451 
 452     // Schedule IV increment last.
 453     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 454         e->in(1)->in(1) == n && n->is_iteratively_computed())
 455       continue;
 456 
 457     uint n_choice  = 2;
 458 
 459     // See if this instruction is consumed by a branch. If so, then (as the
 460     // branch is the last instruction in the basic block) force it to the
 461     // end of the basic block
 462     if ( must_clone[iop] ) {
 463       // See if any use is a branch
 464       bool found_machif = false;
 465 
 466       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 467         Node* use = n->fast_out(j);
 468 
 469         // The use is a conditional branch, make them adjacent
 470         if (use->is_MachIf() && get_block_for_node(use) == block) {
 471           found_machif = true;
 472           break;
 473         }
 474 
 475         // For nodes that produce a FlagsProj, make the node adjacent to the
 476         // use of the FlagsProj
 477         if (use->is_FlagsProj() && get_block_for_node(use) == block) {
 478           found_machif = true;
 479           break;
 480         }
 481 
 482         // More than this instruction pending for successor to be ready,
 483         // don't choose this if other opportunities are ready
 484         if (ready_cnt.at(use->_idx) > 1)
 485           n_choice = 1;
 486       }
 487 
 488       // loop terminated, prefer not to use this instruction
 489       if (found_machif)
 490         continue;
 491     }
 492 
 493     // See if this has a predecessor that is "must_clone", i.e. sets the
 494     // condition code. If so, choose this first
 495     for (uint j = 0; j < n->req() ; j++) {
 496       Node *inn = n->in(j);
 497       if (inn) {
 498         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 499           n_choice = 3;
 500           break;
 501         }
 502       }
 503     }
 504 
 505     // MachTemps should be scheduled last so they are near their uses
 506     if (n->is_MachTemp()) {
 507       n_choice = 1;
 508     }
 509 
 510     uint n_latency = get_latency_for_node(n);
 511     uint n_score   = n->req();   // Many inputs get high score to break ties
 512 
 513     // Keep best latency found
 514     cand_cnt++;
 515     if (choice < n_choice ||
 516         (choice == n_choice &&
 517          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 518           (!StressLCM &&
 519            (latency < n_latency ||
 520             (latency == n_latency &&
 521              (score < n_score))))))) {
 522       choice  = n_choice;
 523       latency = n_latency;
 524       score   = n_score;
 525       idx     = i;               // Also keep index in worklist
 526     }
 527   } // End of for all ready nodes in worklist
 528 
 529   assert(idx >= 0, "index should be set");
 530   Node *n = worklist[(uint)idx];      // Get the winner
 531 
 532   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 533   return n;
 534 }
 535 
 536 
 537 //------------------------------set_next_call----------------------------------
 538 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 539   if( next_call.test_set(n->_idx) ) return;
 540   for( uint i=0; i<n->len(); i++ ) {
 541     Node *m = n->in(i);
 542     if( !m ) continue;  // must see all nodes in block that precede call
 543     if (get_block_for_node(m) == block) {
 544       set_next_call(block, m, next_call);
 545     }
 546   }
 547 }
 548 
 549 //------------------------------needed_for_next_call---------------------------
 550 // Set the flag 'next_call' for each Node that is needed for the next call to
 551 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 552 // next subroutine call get priority - basically it moves things NOT needed
 553 // for the next call till after the call.  This prevents me from trying to
 554 // carry lots of stuff live across a call.
 555 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 556   // Find the next control-defining Node in this block
 557   Node* call = NULL;
 558   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 559     Node* m = this_call->fast_out(i);
 560     if (get_block_for_node(m) == block && // Local-block user
 561         m != this_call &&       // Not self-start node
 562         m->is_MachCall()) {
 563       call = m;
 564       break;
 565     }
 566   }
 567   if (call == NULL)  return;    // No next call (e.g., block end is near)
 568   // Set next-call for all inputs to this call
 569   set_next_call(block, call, next_call);
 570 }
 571 
 572 //------------------------------add_call_kills-------------------------------------
 573 // helper function that adds caller save registers to MachProjNode
 574 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 575   // Fill in the kill mask for the call
 576   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 577     if( !regs.Member(r) ) {     // Not already defined by the call
 578       // Save-on-call register?
 579       if ((save_policy[r] == 'C') ||
 580           (save_policy[r] == 'A') ||
 581           ((save_policy[r] == 'E') && exclude_soe)) {
 582         proj->_rout.Insert(r);
 583       }
 584     }
 585   }
 586 }
 587 
 588 
 589 //------------------------------sched_call-------------------------------------
 590 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 591   RegMask regs;
 592 
 593   // Schedule all the users of the call right now.  All the users are
 594   // projection Nodes, so they must be scheduled next to the call.
 595   // Collect all the defined registers.
 596   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 597     Node* n = mcall->fast_out(i);
 598     assert( n->is_MachProj(), "" );
 599     int n_cnt = ready_cnt.at(n->_idx)-1;
 600     ready_cnt.at_put(n->_idx, n_cnt);
 601     assert( n_cnt == 0, "" );
 602     // Schedule next to call
 603     block->map_node(n, node_cnt++);
 604     // Collect defined registers
 605     regs.OR(n->out_RegMask());
 606     // Check for scheduling the next control-definer
 607     if( n->bottom_type() == Type::CONTROL )
 608       // Warm up next pile of heuristic bits
 609       needed_for_next_call(block, n, next_call);
 610 
 611     // Children of projections are now all ready
 612     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 613       Node* m = n->fast_out(j); // Get user
 614       if(get_block_for_node(m) != block) {
 615         continue;
 616       }
 617       if( m->is_Phi() ) continue;
 618       int m_cnt = ready_cnt.at(m->_idx)-1;
 619       ready_cnt.at_put(m->_idx, m_cnt);
 620       if( m_cnt == 0 )
 621         worklist.push(m);
 622     }
 623 
 624   }
 625 
 626   // Act as if the call defines the Frame Pointer.
 627   // Certainly the FP is alive and well after the call.
 628   regs.Insert(_matcher.c_frame_pointer());
 629 
 630   // Set all registers killed and not already defined by the call.
 631   uint r_cnt = mcall->tf()->range()->cnt();
 632   int op = mcall->ideal_Opcode();
 633   MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 634   map_node_to_block(proj, block);
 635   block->insert_node(proj, node_cnt++);
 636 
 637   // Select the right register save policy.
 638   const char * save_policy;
 639   switch (op) {
 640     case Op_CallRuntime:
 641     case Op_CallLeaf:
 642     case Op_CallLeafNoFP:
 643       // Calling C code so use C calling convention
 644       save_policy = _matcher._c_reg_save_policy;
 645       break;
 646 
 647     case Op_CallStaticJava:
 648     case Op_CallDynamicJava:
 649       // Calling Java code so use Java calling convention
 650       save_policy = _matcher._register_save_policy;
 651       break;
 652 
 653     default:
 654       ShouldNotReachHere();
 655   }
 656 
 657   // When using CallRuntime mark SOE registers as killed by the call
 658   // so values that could show up in the RegisterMap aren't live in a
 659   // callee saved register since the register wouldn't know where to
 660   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 661   // have debug info on them.  Strictly speaking this only needs to be
 662   // done for oops since idealreg2debugmask takes care of debug info
 663   // references but there no way to handle oops differently than other
 664   // pointers as far as the kill mask goes.
 665   bool exclude_soe = op == Op_CallRuntime;
 666 
 667   // If the call is a MethodHandle invoke, we need to exclude the
 668   // register which is used to save the SP value over MH invokes from
 669   // the mask.  Otherwise this register could be used for
 670   // deoptimization information.
 671   if (op == Op_CallStaticJava) {
 672     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 673     if (mcallstaticjava->_method_handle_invoke)
 674       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 675   }
 676 
 677   add_call_kills(proj, regs, save_policy, exclude_soe);
 678 
 679   return node_cnt;
 680 }
 681 
 682 
 683 //------------------------------schedule_local---------------------------------
 684 // Topological sort within a block.  Someday become a real scheduler.
 685 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
 686   // Already "sorted" are the block start Node (as the first entry), and
 687   // the block-ending Node and any trailing control projections.  We leave
 688   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 689   // Node.  Everything else gets topo-sorted.
 690 
 691 #ifndef PRODUCT
 692     if (trace_opto_pipelining()) {
 693       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 694       for (uint i = 0;i < block->number_of_nodes(); i++) {
 695         tty->print("# ");
 696         block->get_node(i)->fast_dump();
 697       }
 698       tty->print_cr("#");
 699     }
 700 #endif
 701 
 702   // RootNode is already sorted
 703   if (block->number_of_nodes() == 1) {
 704     return true;
 705   }
 706 
 707   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 708   uint node_cnt = block->end_idx();
 709   uint phi_cnt = 1;
 710   uint i;
 711   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 712     Node *n = block->get_node(i);
 713     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 714         (n->is_Proj()  && n->in(0) == block->head()) ) {
 715       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 716       block->map_node(block->get_node(phi_cnt), i);
 717       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 718     } else {                    // All others
 719       // Count block-local inputs to 'n'
 720       uint cnt = n->len();      // Input count
 721       uint local = 0;
 722       for( uint j=0; j<cnt; j++ ) {
 723         Node *m = n->in(j);
 724         if( m && get_block_for_node(m) == block && !m->is_top() )
 725           local++;              // One more block-local input
 726       }
 727       ready_cnt.at_put(n->_idx, local); // Count em up
 728 
 729 #ifdef ASSERT
 730       if( UseConcMarkSweepGC || UseG1GC ) {
 731         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 732           // Check the precedence edges
 733           for (uint prec = n->req(); prec < n->len(); prec++) {
 734             Node* oop_store = n->in(prec);
 735             if (oop_store != NULL) {
 736               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 737             }
 738           }
 739         }
 740       }
 741 #endif
 742 
 743       // A few node types require changing a required edge to a precedence edge
 744       // before allocation.
 745       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 746           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 747            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 748         // MemBarAcquire could be created without Precedent edge.
 749         // del_req() replaces the specified edge with the last input edge
 750         // and then removes the last edge. If the specified edge > number of
 751         // edges the last edge will be moved outside of the input edges array
 752         // and the edge will be lost. This is why this code should be
 753         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 754         Node *x = n->in(TypeFunc::Parms);
 755         n->del_req(TypeFunc::Parms);
 756         n->add_prec(x);
 757       }
 758     }
 759   }
 760   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 761     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 762 
 763   // All the prescheduled guys do not hold back internal nodes
 764   uint i3;
 765   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 766     Node *n = block->get_node(i3);       // Get pre-scheduled
 767     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 768       Node* m = n->fast_out(j);
 769       if (get_block_for_node(m) == block) { // Local-block user
 770         int m_cnt = ready_cnt.at(m->_idx)-1;
 771         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 772       }
 773     }
 774   }
 775 
 776   Node_List delay;
 777   // Make a worklist
 778   Node_List worklist;
 779   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 780     Node *m = block->get_node(i4);
 781     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 782       if (m->is_iteratively_computed()) {
 783         // Push induction variable increments last to allow other uses
 784         // of the phi to be scheduled first. The select() method breaks
 785         // ties in scheduling by worklist order.
 786         delay.push(m);
 787       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 788         // Force the CreateEx to the top of the list so it's processed
 789         // first and ends up at the start of the block.
 790         worklist.insert(0, m);
 791       } else {
 792         worklist.push(m);         // Then on to worklist!
 793       }
 794     }
 795   }
 796   while (delay.size()) {
 797     Node* d = delay.pop();
 798     worklist.push(d);
 799   }
 800 
 801   // Warm up the 'next_call' heuristic bits
 802   needed_for_next_call(block, block->head(), next_call);
 803 
 804 #ifndef PRODUCT
 805     if (trace_opto_pipelining()) {
 806       for (uint j=0; j< block->number_of_nodes(); j++) {
 807         Node     *n = block->get_node(j);
 808         int     idx = n->_idx;
 809         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 810         tty->print("latency:%3d  ", get_latency_for_node(n));
 811         tty->print("%4d: %s\n", idx, n->Name());
 812       }
 813     }
 814 #endif
 815 
 816   uint max_idx = (uint)ready_cnt.length();
 817   // Pull from worklist and schedule
 818   while( worklist.size() ) {    // Worklist is not ready
 819 
 820 #ifndef PRODUCT
 821     if (trace_opto_pipelining()) {
 822       tty->print("#   ready list:");
 823       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 824         Node *n = worklist[i];      // Get Node on worklist
 825         tty->print(" %d", n->_idx);
 826       }
 827       tty->cr();
 828     }
 829 #endif
 830 
 831     // Select and pop a ready guy from worklist
 832     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
 833     block->map_node(n, phi_cnt++);    // Schedule him next
 834 
 835 #ifndef PRODUCT
 836     if (trace_opto_pipelining()) {
 837       tty->print("#    select %d: %s", n->_idx, n->Name());
 838       tty->print(", latency:%d", get_latency_for_node(n));
 839       n->dump();
 840       if (Verbose) {
 841         tty->print("#   ready list:");
 842         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 843           Node *n = worklist[i];      // Get Node on worklist
 844           tty->print(" %d", n->_idx);
 845         }
 846         tty->cr();
 847       }
 848     }
 849 
 850 #endif
 851     if( n->is_MachCall() ) {
 852       MachCallNode *mcall = n->as_MachCall();
 853       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
 854       continue;
 855     }
 856 
 857     if (n->is_Mach() && n->as_Mach()->has_call()) {
 858       RegMask regs;
 859       regs.Insert(_matcher.c_frame_pointer());
 860       regs.OR(n->out_RegMask());
 861 
 862       MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 863       map_node_to_block(proj, block);
 864       block->insert_node(proj, phi_cnt++);
 865 
 866       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
 867     }
 868 
 869     // Children are now all ready
 870     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 871       Node* m = n->fast_out(i5); // Get user
 872       if (get_block_for_node(m) != block) {
 873         continue;
 874       }
 875       if( m->is_Phi() ) continue;
 876       if (m->_idx >= max_idx) { // new node, skip it
 877         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 878         continue;
 879       }
 880       int m_cnt = ready_cnt.at(m->_idx)-1;
 881       ready_cnt.at_put(m->_idx, m_cnt);
 882       if( m_cnt == 0 )
 883         worklist.push(m);
 884     }
 885   }
 886 
 887   if( phi_cnt != block->end_idx() ) {
 888     // did not schedule all.  Retry, Bailout, or Die
 889     if (C->subsume_loads() == true && !C->failing()) {
 890       // Retry with subsume_loads == false
 891       // If this is the first failure, the sentinel string will "stick"
 892       // to the Compile object, and the C2Compiler will see it and retry.
 893       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 894     }
 895     // assert( phi_cnt == end_idx(), "did not schedule all" );
 896     return false;
 897   }
 898 
 899 #ifndef PRODUCT
 900   if (trace_opto_pipelining()) {
 901     tty->print_cr("#");
 902     tty->print_cr("# after schedule_local");
 903     for (uint i = 0;i < block->number_of_nodes();i++) {
 904       tty->print("# ");
 905       block->get_node(i)->fast_dump();
 906     }
 907     tty->cr();
 908   }
 909 #endif
 910 
 911 
 912   return true;
 913 }
 914 
 915 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 916 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 917   for (uint l = 0; l < use->len(); l++) {
 918     if (use->in(l) == old_def) {
 919       if (l < use->req()) {
 920         use->set_req(l, new_def);
 921       } else {
 922         use->rm_prec(l);
 923         use->add_prec(new_def);
 924         l--;
 925       }
 926     }
 927   }
 928 }
 929 
 930 //------------------------------catch_cleanup_find_cloned_def------------------
 931 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
 932   assert( use_blk != def_blk, "Inter-block cleanup only");
 933 
 934   // The use is some block below the Catch.  Find and return the clone of the def
 935   // that dominates the use. If there is no clone in a dominating block, then
 936   // create a phi for the def in a dominating block.
 937 
 938   // Find which successor block dominates this use.  The successor
 939   // blocks must all be single-entry (from the Catch only; I will have
 940   // split blocks to make this so), hence they all dominate.
 941   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 942     use_blk = use_blk->_idom;
 943 
 944   // Find the successor
 945   Node *fixup = NULL;
 946 
 947   uint j;
 948   for( j = 0; j < def_blk->_num_succs; j++ )
 949     if( use_blk == def_blk->_succs[j] )
 950       break;
 951 
 952   if( j == def_blk->_num_succs ) {
 953     // Block at same level in dom-tree is not a successor.  It needs a
 954     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 955     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 956     for(uint k = 1; k < use_blk->num_preds(); k++) {
 957       Block* block = get_block_for_node(use_blk->pred(k));
 958       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
 959     }
 960 
 961     // Check to see if the use_blk already has an identical phi inserted.
 962     // If it exists, it will be at the first position since all uses of a
 963     // def are processed together.
 964     Node *phi = use_blk->get_node(1);
 965     if( phi->is_Phi() ) {
 966       fixup = phi;
 967       for (uint k = 1; k < use_blk->num_preds(); k++) {
 968         if (phi->in(k) != inputs[k]) {
 969           // Not a match
 970           fixup = NULL;
 971           break;
 972         }
 973       }
 974     }
 975 
 976     // If an existing PhiNode was not found, make a new one.
 977     if (fixup == NULL) {
 978       Node *new_phi = PhiNode::make(use_blk->head(), def);
 979       use_blk->insert_node(new_phi, 1);
 980       map_node_to_block(new_phi, use_blk);
 981       for (uint k = 1; k < use_blk->num_preds(); k++) {
 982         new_phi->set_req(k, inputs[k]);
 983       }
 984       fixup = new_phi;
 985     }
 986 
 987   } else {
 988     // Found the use just below the Catch.  Make it use the clone.
 989     fixup = use_blk->get_node(n_clone_idx);
 990   }
 991 
 992   return fixup;
 993 }
 994 
 995 //--------------------------catch_cleanup_intra_block--------------------------
 996 // Fix all input edges in use that reference "def".  The use is in the same
 997 // block as the def and both have been cloned in each successor block.
 998 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
 999 
1000   // Both the use and def have been cloned. For each successor block,
1001   // get the clone of the use, and make its input the clone of the def
1002   // found in that block.
1003 
1004   uint use_idx = blk->find_node(use);
1005   uint offset_idx = use_idx - beg;
1006   for( uint k = 0; k < blk->_num_succs; k++ ) {
1007     // Get clone in each successor block
1008     Block *sb = blk->_succs[k];
1009     Node *clone = sb->get_node(offset_idx+1);
1010     assert( clone->Opcode() == use->Opcode(), "" );
1011 
1012     // Make use-clone reference the def-clone
1013     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1014   }
1015 }
1016 
1017 //------------------------------catch_cleanup_inter_block---------------------
1018 // Fix all input edges in use that reference "def".  The use is in a different
1019 // block than the def.
1020 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1021   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1022 
1023   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1024   catch_cleanup_fix_all_inputs(use, def, new_def);
1025 }
1026 
1027 //------------------------------call_catch_cleanup-----------------------------
1028 // If we inserted any instructions between a Call and his CatchNode,
1029 // clone the instructions on all paths below the Catch.
1030 void PhaseCFG::call_catch_cleanup(Block* block) {
1031 
1032   // End of region to clone
1033   uint end = block->end_idx();
1034   if( !block->get_node(end)->is_Catch() ) return;
1035   // Start of region to clone
1036   uint beg = end;
1037   while(!block->get_node(beg-1)->is_MachProj() ||
1038         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1039     beg--;
1040     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1041   }
1042   // Range of inserted instructions is [beg, end)
1043   if( beg == end ) return;
1044 
1045   // Clone along all Catch output paths.  Clone area between the 'beg' and
1046   // 'end' indices.
1047   for( uint i = 0; i < block->_num_succs; i++ ) {
1048     Block *sb = block->_succs[i];
1049     // Clone the entire area; ignoring the edge fixup for now.
1050     for( uint j = end; j > beg; j-- ) {
1051       // It is safe here to clone a node with anti_dependence
1052       // since clones dominate on each path.
1053       Node *clone = block->get_node(j-1)->clone();
1054       sb->insert_node(clone, 1);
1055       map_node_to_block(clone, sb);
1056     }
1057   }
1058 
1059 
1060   // Fixup edges.  Check the def-use info per cloned Node
1061   for(uint i2 = beg; i2 < end; i2++ ) {
1062     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1063     Node *n = block->get_node(i2);        // Node that got cloned
1064     // Need DU safe iterator because of edge manipulation in calls.
1065     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1066     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1067       out->push(n->fast_out(j1));
1068     }
1069     uint max = out->size();
1070     for (uint j = 0; j < max; j++) {// For all users
1071       Node *use = out->pop();
1072       Block *buse = get_block_for_node(use);
1073       if( use->is_Phi() ) {
1074         for( uint k = 1; k < use->req(); k++ )
1075           if( use->in(k) == n ) {
1076             Block* b = get_block_for_node(buse->pred(k));
1077             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1078             use->set_req(k, fixup);
1079           }
1080       } else {
1081         if (block == buse) {
1082           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1083         } else {
1084           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1085         }
1086       }
1087     } // End for all users
1088 
1089   } // End of for all Nodes in cloned area
1090 
1091   // Remove the now-dead cloned ops
1092   for(uint i3 = beg; i3 < end; i3++ ) {
1093     block->get_node(beg)->disconnect_inputs(NULL, C);
1094     block->remove_node(beg);
1095   }
1096 
1097   // If the successor blocks have a CreateEx node, move it back to the top
1098   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1099     Block *sb = block->_succs[i4];
1100     uint new_cnt = end - beg;
1101     // Remove any newly created, but dead, nodes.
1102     for( uint j = new_cnt; j > 0; j-- ) {
1103       Node *n = sb->get_node(j);
1104       if (n->outcnt() == 0 &&
1105           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1106         n->disconnect_inputs(NULL, C);
1107         sb->remove_node(j);
1108         new_cnt--;
1109       }
1110     }
1111     // If any newly created nodes remain, move the CreateEx node to the top
1112     if (new_cnt > 0) {
1113       Node *cex = sb->get_node(1+new_cnt);
1114       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1115         sb->remove_node(1+new_cnt);
1116         sb->insert_node(cex, 1);
1117       }
1118     }
1119   }
1120 }