1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/c2compiler.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/runtime.hpp"
  33 #ifdef TARGET_ARCH_MODEL_x86_32
  34 # include "adfiles/ad_x86_32.hpp"
  35 #endif
  36 #ifdef TARGET_ARCH_MODEL_x86_64
  37 # include "adfiles/ad_x86_64.hpp"
  38 #endif
  39 #ifdef TARGET_ARCH_MODEL_sparc
  40 # include "adfiles/ad_sparc.hpp"
  41 #endif
  42 #ifdef TARGET_ARCH_MODEL_zero
  43 # include "adfiles/ad_zero.hpp"
  44 #endif
  45 #ifdef TARGET_ARCH_MODEL_arm
  46 # include "adfiles/ad_arm.hpp"
  47 #endif
  48 #ifdef TARGET_ARCH_MODEL_ppc
  49 # include "adfiles/ad_ppc.hpp"
  50 #endif
  51 
  52 // Optimization - Graph Style
  53 
  54 //------------------------------implicit_null_check----------------------------
  55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  57 // I can generate a memory op if there is not one nearby.
  58 // The proj is the control projection for the not-null case.
  59 // The val is the pointer being checked for nullness or
  60 // decodeHeapOop_not_null node if it did not fold into address.
  61 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  62   // Assume if null check need for 0 offset then always needed
  63   // Intel solaris doesn't support any null checks yet and no
  64   // mechanism exists (yet) to set the switches at an os_cpu level
  65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  66 
  67   // Make sure the ptr-is-null path appears to be uncommon!
  68   float f = block->end()->as_MachIf()->_prob;
  69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  70   if( f > PROB_UNLIKELY_MAG(4) ) return;
  71 
  72   uint bidx = 0;                // Capture index of value into memop
  73   bool was_store;               // Memory op is a store op
  74 
  75   // Get the successor block for if the test ptr is non-null
  76   Block* not_null_block;  // this one goes with the proj
  77   Block* null_block;
  78   if (block->get_node(block->number_of_nodes()-1) == proj) {
  79     null_block     = block->_succs[0];
  80     not_null_block = block->_succs[1];
  81   } else {
  82     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
  83     not_null_block = block->_succs[0];
  84     null_block     = block->_succs[1];
  85   }
  86   while (null_block->is_Empty() == Block::empty_with_goto) {
  87     null_block     = null_block->_succs[0];
  88   }
  89 
  90   // Search the exception block for an uncommon trap.
  91   // (See Parse::do_if and Parse::do_ifnull for the reason
  92   // we need an uncommon trap.  Briefly, we need a way to
  93   // detect failure of this optimization, as in 6366351.)
  94   {
  95     bool found_trap = false;
  96     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
  97       Node* nn = null_block->get_node(i1);
  98       if (nn->is_MachCall() &&
  99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 102           jint tr_con = trtype->is_int()->get_con();
 103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 105           assert((int)reason < (int)BitsPerInt, "recode bit map");
 106           if (is_set_nth_bit(allowed_reasons, (int) reason)
 107               && action != Deoptimization::Action_none) {
 108             // This uncommon trap is sure to recompile, eventually.
 109             // When that happens, C->too_many_traps will prevent
 110             // this transformation from happening again.
 111             found_trap = true;
 112           }
 113         }
 114         break;
 115       }
 116     }
 117     if (!found_trap) {
 118       // We did not find an uncommon trap.
 119       return;
 120     }
 121   }
 122 
 123   // Check for decodeHeapOop_not_null node which did not fold into address
 124   bool is_decoden = ((intptr_t)val) & 1;
 125   val = (Node*)(((intptr_t)val) & ~1);
 126 
 127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 129 
 130   // Search the successor block for a load or store who's base value is also
 131   // the tested value.  There may be several.
 132   Node_List *out = new Node_List(Thread::current()->resource_area());
 133   MachNode *best = NULL;        // Best found so far
 134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 135     Node *m = val->out(i);
 136     if( !m->is_Mach() ) continue;
 137     MachNode *mach = m->as_Mach();
 138     was_store = false;
 139     int iop = mach->ideal_Opcode();
 140     switch( iop ) {
 141     case Op_LoadB:
 142     case Op_LoadUB:
 143     case Op_LoadUS:
 144     case Op_LoadD:
 145     case Op_LoadF:
 146     case Op_LoadI:
 147     case Op_LoadL:
 148     case Op_LoadP:
 149     case Op_LoadN:
 150     case Op_LoadS:
 151     case Op_LoadKlass:
 152     case Op_LoadNKlass:
 153     case Op_LoadRange:
 154     case Op_LoadD_unaligned:
 155     case Op_LoadL_unaligned:
 156       assert(mach->in(2) == val, "should be address");
 157       break;
 158     case Op_StoreB:
 159     case Op_StoreC:
 160     case Op_StoreCM:
 161     case Op_StoreD:
 162     case Op_StoreF:
 163     case Op_StoreI:
 164     case Op_StoreL:
 165     case Op_StoreP:
 166     case Op_StoreN:
 167     case Op_StoreNKlass:
 168       was_store = true;         // Memory op is a store op
 169       // Stores will have their address in slot 2 (memory in slot 1).
 170       // If the value being nul-checked is in another slot, it means we
 171       // are storing the checked value, which does NOT check the value!
 172       if( mach->in(2) != val ) continue;
 173       break;                    // Found a memory op?
 174     case Op_StrComp:
 175     case Op_StrEquals:
 176     case Op_StrIndexOf:
 177     case Op_AryEq:
 178     case Op_EncodeISOArray:
 179       // Not a legit memory op for implicit null check regardless of
 180       // embedded loads
 181       continue;
 182     default:                    // Also check for embedded loads
 183       if( !mach->needs_anti_dependence_check() )
 184         continue;               // Not an memory op; skip it
 185       if( must_clone[iop] ) {
 186         // Do not move nodes which produce flags because
 187         // RA will try to clone it to place near branch and
 188         // it will cause recompilation, see clone_node().
 189         continue;
 190       }
 191       {
 192         // Check that value is used in memory address in
 193         // instructions with embedded load (CmpP val1,(val2+off)).
 194         Node* base;
 195         Node* index;
 196         const MachOper* oper = mach->memory_inputs(base, index);
 197         if (oper == NULL || oper == (MachOper*)-1) {
 198           continue;             // Not an memory op; skip it
 199         }
 200         if (val == base ||
 201             val == index && val->bottom_type()->isa_narrowoop()) {
 202           break;                // Found it
 203         } else {
 204           continue;             // Skip it
 205         }
 206       }
 207       break;
 208     }
 209     // check if the offset is not too high for implicit exception
 210     {
 211       intptr_t offset = 0;
 212       const TypePtr *adr_type = NULL;  // Do not need this return value here
 213       const Node* base = mach->get_base_and_disp(offset, adr_type);
 214       if (base == NULL || base == NodeSentinel) {
 215         // Narrow oop address doesn't have base, only index
 216         if( val->bottom_type()->isa_narrowoop() &&
 217             MacroAssembler::needs_explicit_null_check(offset) )
 218           continue;             // Give up if offset is beyond page size
 219         // cannot reason about it; is probably not implicit null exception
 220       } else {
 221         const TypePtr* tptr;
 222         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 223                                   Universe::narrow_klass_shift() == 0)) {
 224           // 32-bits narrow oop can be the base of address expressions
 225           tptr = base->get_ptr_type();
 226         } else {
 227           // only regular oops are expected here
 228           tptr = base->bottom_type()->is_ptr();
 229         }
 230         // Give up if offset is not a compile-time constant
 231         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 232           continue;
 233         offset += tptr->_offset; // correct if base is offseted
 234         if( MacroAssembler::needs_explicit_null_check(offset) )
 235           continue;             // Give up is reference is beyond 4K page size
 236       }
 237     }
 238 
 239     // Check ctrl input to see if the null-check dominates the memory op
 240     Block *cb = get_block_for_node(mach);
 241     cb = cb->_idom;             // Always hoist at least 1 block
 242     if( !was_store ) {          // Stores can be hoisted only one block
 243       while( cb->_dom_depth > (block->_dom_depth + 1))
 244         cb = cb->_idom;         // Hoist loads as far as we want
 245       // The non-null-block should dominate the memory op, too. Live
 246       // range spilling will insert a spill in the non-null-block if it is
 247       // needs to spill the memory op for an implicit null check.
 248       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 249         if (cb != not_null_block) continue;
 250         cb = cb->_idom;
 251       }
 252     }
 253     if( cb != block ) continue;
 254 
 255     // Found a memory user; see if it can be hoisted to check-block
 256     uint vidx = 0;              // Capture index of value into memop
 257     uint j;
 258     for( j = mach->req()-1; j > 0; j-- ) {
 259       if( mach->in(j) == val ) {
 260         vidx = j;
 261         // Ignore DecodeN val which could be hoisted to where needed.
 262         if( is_decoden ) continue;
 263       }
 264       // Block of memory-op input
 265       Block *inb = get_block_for_node(mach->in(j));
 266       Block *b = block;          // Start from nul check
 267       while( b != inb && b->_dom_depth > inb->_dom_depth )
 268         b = b->_idom;           // search upwards for input
 269       // See if input dominates null check
 270       if( b != inb )
 271         break;
 272     }
 273     if( j > 0 )
 274       continue;
 275     Block *mb = get_block_for_node(mach);
 276     // Hoisting stores requires more checks for the anti-dependence case.
 277     // Give up hoisting if we have to move the store past any load.
 278     if( was_store ) {
 279       Block *b = mb;            // Start searching here for a local load
 280       // mach use (faulting) trying to hoist
 281       // n might be blocker to hoisting
 282       while( b != block ) {
 283         uint k;
 284         for( k = 1; k < b->number_of_nodes(); k++ ) {
 285           Node *n = b->get_node(k);
 286           if( n->needs_anti_dependence_check() &&
 287               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 288             break;              // Found anti-dependent load
 289         }
 290         if( k < b->number_of_nodes() )
 291           break;                // Found anti-dependent load
 292         // Make sure control does not do a merge (would have to check allpaths)
 293         if( b->num_preds() != 2 ) break;
 294         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 295       }
 296       if( b != block ) continue;
 297     }
 298 
 299     // Make sure this memory op is not already being used for a NullCheck
 300     Node *e = mb->end();
 301     if( e->is_MachNullCheck() && e->in(1) == mach )
 302       continue;                 // Already being used as a NULL check
 303 
 304     // Found a candidate!  Pick one with least dom depth - the highest
 305     // in the dom tree should be closest to the null check.
 306     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 307       best = mach;
 308       bidx = vidx;
 309     }
 310   }
 311   // No candidate!
 312   if (best == NULL) {
 313     return;
 314   }
 315 
 316   // ---- Found an implicit null check
 317   extern int implicit_null_checks;
 318   implicit_null_checks++;
 319 
 320   if( is_decoden ) {
 321     // Check if we need to hoist decodeHeapOop_not_null first.
 322     Block *valb = get_block_for_node(val);
 323     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 324       // Hoist it up to the end of the test block.
 325       valb->find_remove(val);
 326       block->add_inst(val);
 327       map_node_to_block(val, block);
 328       // DecodeN on x86 may kill flags. Check for flag-killing projections
 329       // that also need to be hoisted.
 330       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 331         Node* n = val->fast_out(j);
 332         if( n->is_MachProj() ) {
 333           get_block_for_node(n)->find_remove(n);
 334           block->add_inst(n);
 335           map_node_to_block(n, block);
 336         }
 337       }
 338     }
 339   }
 340   // Hoist the memory candidate up to the end of the test block.
 341   Block *old_block = get_block_for_node(best);
 342   old_block->find_remove(best);
 343   block->add_inst(best);
 344   map_node_to_block(best, block);
 345 
 346   // Move the control dependence
 347   if (best->in(0) && best->in(0) == old_block->head())
 348     best->set_req(0, block->head());
 349 
 350   // Check for flag-killing projections that also need to be hoisted
 351   // Should be DU safe because no edge updates.
 352   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 353     Node* n = best->fast_out(j);
 354     if( n->is_MachProj() ) {
 355       get_block_for_node(n)->find_remove(n);
 356       block->add_inst(n);
 357       map_node_to_block(n, block);
 358     }
 359   }
 360 
 361   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 362   // One of two graph shapes got matched:
 363   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 364   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 365   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 366   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 367   // We need to flip the projections to keep the same semantics.
 368   if( proj->Opcode() == Op_IfTrue ) {
 369     // Swap order of projections in basic block to swap branch targets
 370     Node *tmp1 = block->get_node(block->end_idx()+1);
 371     Node *tmp2 = block->get_node(block->end_idx()+2);
 372     block->map_node(tmp2, block->end_idx()+1);
 373     block->map_node(tmp1, block->end_idx()+2);
 374     Node *tmp = new (C) Node(C->top()); // Use not NULL input
 375     tmp1->replace_by(tmp);
 376     tmp2->replace_by(tmp1);
 377     tmp->replace_by(tmp2);
 378     tmp->destruct();
 379   }
 380 
 381   // Remove the existing null check; use a new implicit null check instead.
 382   // Since schedule-local needs precise def-use info, we need to correct
 383   // it as well.
 384   Node *old_tst = proj->in(0);
 385   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 386   block->map_node(nul_chk, block->end_idx());
 387   map_node_to_block(nul_chk, block);
 388   // Redirect users of old_test to nul_chk
 389   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 390     old_tst->last_out(i2)->set_req(0, nul_chk);
 391   // Clean-up any dead code
 392   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 393     old_tst->set_req(i3, NULL);
 394 
 395   latency_from_uses(nul_chk);
 396   latency_from_uses(best);
 397 }
 398 
 399 
 400 //------------------------------select-----------------------------------------
 401 // Select a nice fellow from the worklist to schedule next. If there is only
 402 // one choice, then use it. Projections take top priority for correctness
 403 // reasons - if I see a projection, then it is next.  There are a number of
 404 // other special cases, for instructions that consume condition codes, et al.
 405 // These are chosen immediately. Some instructions are required to immediately
 406 // precede the last instruction in the block, and these are taken last. Of the
 407 // remaining cases (most), choose the instruction with the greatest latency
 408 // (that is, the most number of pseudo-cycles required to the end of the
 409 // routine). If there is a tie, choose the instruction with the most inputs.
 410 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
 411 
 412   // If only a single entry on the stack, use it
 413   uint cnt = worklist.size();
 414   if (cnt == 1) {
 415     Node *n = worklist[0];
 416     worklist.map(0,worklist.pop());
 417     return n;
 418   }
 419 
 420   uint choice  = 0; // Bigger is most important
 421   uint latency = 0; // Bigger is scheduled first
 422   uint score   = 0; // Bigger is better
 423   int idx = -1;     // Index in worklist
 424   int cand_cnt = 0; // Candidate count
 425 
 426   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 427     // Order in worklist is used to break ties.
 428     // See caller for how this is used to delay scheduling
 429     // of induction variable increments to after the other
 430     // uses of the phi are scheduled.
 431     Node *n = worklist[i];      // Get Node on worklist
 432 
 433     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 434     if( n->is_Proj() ||         // Projections always win
 435         n->Opcode()== Op_Con || // So does constant 'Top'
 436         iop == Op_CreateEx ||   // Create-exception must start block
 437         iop == Op_CheckCastPP
 438         ) {
 439       worklist.map(i,worklist.pop());
 440       return n;
 441     }
 442 
 443     // Final call in a block must be adjacent to 'catch'
 444     Node *e = block->end();
 445     if( e->is_Catch() && e->in(0)->in(0) == n )
 446       continue;
 447 
 448     // Memory op for an implicit null check has to be at the end of the block
 449     if( e->is_MachNullCheck() && e->in(1) == n )
 450       continue;
 451 
 452     // Schedule IV increment last.
 453     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 454         e->in(1)->in(1) == n && n->is_iteratively_computed())
 455       continue;
 456 
 457     uint n_choice  = 2;
 458 
 459     // See if this instruction is consumed by a branch. If so, then (as the
 460     // branch is the last instruction in the basic block) force it to the
 461     // end of the basic block
 462     if ( must_clone[iop] ) {
 463       // See if any use is a branch
 464       bool found_machif = false;
 465 
 466       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 467         Node* use = n->fast_out(j);
 468 
 469         // The use is a conditional branch, make them adjacent
 470         if (use->is_MachIf() && get_block_for_node(use) == block) {
 471           found_machif = true;
 472           break;
 473         }
 474 
 475         // More than this instruction pending for successor to be ready,
 476         // don't choose this if other opportunities are ready
 477         if (ready_cnt.at(use->_idx) > 1)
 478           n_choice = 1;
 479       }
 480 
 481       // loop terminated, prefer not to use this instruction
 482       if (found_machif)
 483         continue;
 484     }
 485 
 486     // See if this has a predecessor that is "must_clone", i.e. sets the
 487     // condition code. If so, choose this first
 488     for (uint j = 0; j < n->req() ; j++) {
 489       Node *inn = n->in(j);
 490       if (inn) {
 491         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 492           n_choice = 3;
 493           break;
 494         }
 495       }
 496     }
 497 
 498     // MachTemps should be scheduled last so they are near their uses
 499     if (n->is_MachTemp()) {
 500       n_choice = 1;
 501     }
 502 
 503     uint n_latency = get_latency_for_node(n);
 504     uint n_score   = n->req();   // Many inputs get high score to break ties
 505 
 506     // Keep best latency found
 507     cand_cnt++;
 508     if (choice < n_choice ||
 509         (choice == n_choice &&
 510          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 511           (!StressLCM &&
 512            (latency < n_latency ||
 513             (latency == n_latency &&
 514              (score < n_score))))))) {
 515       choice  = n_choice;
 516       latency = n_latency;
 517       score   = n_score;
 518       idx     = i;               // Also keep index in worklist
 519     }
 520   } // End of for all ready nodes in worklist
 521 
 522   assert(idx >= 0, "index should be set");
 523   Node *n = worklist[(uint)idx];      // Get the winner
 524 
 525   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 526   return n;
 527 }
 528 
 529 
 530 //------------------------------set_next_call----------------------------------
 531 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 532   if( next_call.test_set(n->_idx) ) return;
 533   for( uint i=0; i<n->len(); i++ ) {
 534     Node *m = n->in(i);
 535     if( !m ) continue;  // must see all nodes in block that precede call
 536     if (get_block_for_node(m) == block) {
 537       set_next_call(block, m, next_call);
 538     }
 539   }
 540 }
 541 
 542 //------------------------------needed_for_next_call---------------------------
 543 // Set the flag 'next_call' for each Node that is needed for the next call to
 544 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 545 // next subroutine call get priority - basically it moves things NOT needed
 546 // for the next call till after the call.  This prevents me from trying to
 547 // carry lots of stuff live across a call.
 548 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 549   // Find the next control-defining Node in this block
 550   Node* call = NULL;
 551   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 552     Node* m = this_call->fast_out(i);
 553     if (get_block_for_node(m) == block && // Local-block user
 554         m != this_call &&       // Not self-start node
 555         m->is_MachCall()) {
 556       call = m;
 557       break;
 558     }
 559   }
 560   if (call == NULL)  return;    // No next call (e.g., block end is near)
 561   // Set next-call for all inputs to this call
 562   set_next_call(block, call, next_call);
 563 }
 564 
 565 //------------------------------add_call_kills-------------------------------------
 566 // helper function that adds caller save registers to MachProjNode
 567 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 568   // Fill in the kill mask for the call
 569   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 570     if( !regs.Member(r) ) {     // Not already defined by the call
 571       // Save-on-call register?
 572       if ((save_policy[r] == 'C') ||
 573           (save_policy[r] == 'A') ||
 574           ((save_policy[r] == 'E') && exclude_soe)) {
 575         proj->_rout.Insert(r);
 576       }
 577     }
 578   }
 579 }
 580 
 581 
 582 //------------------------------sched_call-------------------------------------
 583 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 584   RegMask regs;
 585 
 586   // Schedule all the users of the call right now.  All the users are
 587   // projection Nodes, so they must be scheduled next to the call.
 588   // Collect all the defined registers.
 589   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 590     Node* n = mcall->fast_out(i);
 591     assert( n->is_MachProj(), "" );
 592     int n_cnt = ready_cnt.at(n->_idx)-1;
 593     ready_cnt.at_put(n->_idx, n_cnt);
 594     assert( n_cnt == 0, "" );
 595     // Schedule next to call
 596     block->map_node(n, node_cnt++);
 597     // Collect defined registers
 598     regs.OR(n->out_RegMask());
 599     // Check for scheduling the next control-definer
 600     if( n->bottom_type() == Type::CONTROL )
 601       // Warm up next pile of heuristic bits
 602       needed_for_next_call(block, n, next_call);
 603 
 604     // Children of projections are now all ready
 605     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 606       Node* m = n->fast_out(j); // Get user
 607       if(get_block_for_node(m) != block) {
 608         continue;
 609       }
 610       if( m->is_Phi() ) continue;
 611       int m_cnt = ready_cnt.at(m->_idx)-1;
 612       ready_cnt.at_put(m->_idx, m_cnt);
 613       if( m_cnt == 0 )
 614         worklist.push(m);
 615     }
 616 
 617   }
 618 
 619   // Act as if the call defines the Frame Pointer.
 620   // Certainly the FP is alive and well after the call.
 621   regs.Insert(_matcher.c_frame_pointer());
 622 
 623   // Set all registers killed and not already defined by the call.
 624   uint r_cnt = mcall->tf()->range()->cnt();
 625   int op = mcall->ideal_Opcode();
 626   MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 627   map_node_to_block(proj, block);
 628   block->insert_node(proj, node_cnt++);
 629 
 630   // Select the right register save policy.
 631   const char * save_policy;
 632   switch (op) {
 633     case Op_CallRuntime:
 634     case Op_CallLeaf:
 635     case Op_CallLeafNoFP:
 636       // Calling C code so use C calling convention
 637       save_policy = _matcher._c_reg_save_policy;
 638       break;
 639 
 640     case Op_CallStaticJava:
 641     case Op_CallDynamicJava:
 642       // Calling Java code so use Java calling convention
 643       save_policy = _matcher._register_save_policy;
 644       break;
 645 
 646     default:
 647       ShouldNotReachHere();
 648   }
 649 
 650   // When using CallRuntime mark SOE registers as killed by the call
 651   // so values that could show up in the RegisterMap aren't live in a
 652   // callee saved register since the register wouldn't know where to
 653   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 654   // have debug info on them.  Strictly speaking this only needs to be
 655   // done for oops since idealreg2debugmask takes care of debug info
 656   // references but there no way to handle oops differently than other
 657   // pointers as far as the kill mask goes.
 658   bool exclude_soe = op == Op_CallRuntime;
 659 
 660   // If the call is a MethodHandle invoke, we need to exclude the
 661   // register which is used to save the SP value over MH invokes from
 662   // the mask.  Otherwise this register could be used for
 663   // deoptimization information.
 664   if (op == Op_CallStaticJava) {
 665     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 666     if (mcallstaticjava->_method_handle_invoke)
 667       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 668   }
 669 
 670   add_call_kills(proj, regs, save_policy, exclude_soe);
 671 
 672   return node_cnt;
 673 }
 674 
 675 
 676 //------------------------------schedule_local---------------------------------
 677 // Topological sort within a block.  Someday become a real scheduler.
 678 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
 679   // Already "sorted" are the block start Node (as the first entry), and
 680   // the block-ending Node and any trailing control projections.  We leave
 681   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 682   // Node.  Everything else gets topo-sorted.
 683 
 684 #ifndef PRODUCT
 685     if (trace_opto_pipelining()) {
 686       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 687       for (uint i = 0;i < block->number_of_nodes(); i++) {
 688         tty->print("# ");
 689         block->get_node(i)->fast_dump();
 690       }
 691       tty->print_cr("#");
 692     }
 693 #endif
 694 
 695   // RootNode is already sorted
 696   if (block->number_of_nodes() == 1) {
 697     return true;
 698   }
 699 
 700   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 701   uint node_cnt = block->end_idx();
 702   uint phi_cnt = 1;
 703   uint i;
 704   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 705     Node *n = block->get_node(i);
 706     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 707         (n->is_Proj()  && n->in(0) == block->head()) ) {
 708       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 709       block->map_node(block->get_node(phi_cnt), i);
 710       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 711     } else {                    // All others
 712       // Count block-local inputs to 'n'
 713       uint cnt = n->len();      // Input count
 714       uint local = 0;
 715       for( uint j=0; j<cnt; j++ ) {
 716         Node *m = n->in(j);
 717         if( m && get_block_for_node(m) == block && !m->is_top() )
 718           local++;              // One more block-local input
 719       }
 720       ready_cnt.at_put(n->_idx, local); // Count em up
 721 
 722 #ifdef ASSERT
 723       if( UseConcMarkSweepGC || UseG1GC ) {
 724         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 725           // Check the precedence edges
 726           for (uint prec = n->req(); prec < n->len(); prec++) {
 727             Node* oop_store = n->in(prec);
 728             if (oop_store != NULL) {
 729               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 730             }
 731           }
 732         }
 733       }
 734 #endif
 735 
 736       // A few node types require changing a required edge to a precedence edge
 737       // before allocation.
 738       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 739           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 740            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 741         // MemBarAcquire could be created without Precedent edge.
 742         // del_req() replaces the specified edge with the last input edge
 743         // and then removes the last edge. If the specified edge > number of
 744         // edges the last edge will be moved outside of the input edges array
 745         // and the edge will be lost. This is why this code should be
 746         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 747         Node *x = n->in(TypeFunc::Parms);
 748         n->del_req(TypeFunc::Parms);
 749         n->add_prec(x);
 750       }
 751     }
 752   }
 753   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 754     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 755 
 756   // All the prescheduled guys do not hold back internal nodes
 757   uint i3;
 758   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 759     Node *n = block->get_node(i3);       // Get pre-scheduled
 760     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 761       Node* m = n->fast_out(j);
 762       if (get_block_for_node(m) == block) { // Local-block user
 763         int m_cnt = ready_cnt.at(m->_idx)-1;
 764         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 765       }
 766     }
 767   }
 768 
 769   Node_List delay;
 770   // Make a worklist
 771   Node_List worklist;
 772   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 773     Node *m = block->get_node(i4);
 774     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 775       if (m->is_iteratively_computed()) {
 776         // Push induction variable increments last to allow other uses
 777         // of the phi to be scheduled first. The select() method breaks
 778         // ties in scheduling by worklist order.
 779         delay.push(m);
 780       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 781         // Force the CreateEx to the top of the list so it's processed
 782         // first and ends up at the start of the block.
 783         worklist.insert(0, m);
 784       } else {
 785         worklist.push(m);         // Then on to worklist!
 786       }
 787     }
 788   }
 789   while (delay.size()) {
 790     Node* d = delay.pop();
 791     worklist.push(d);
 792   }
 793 
 794   // Warm up the 'next_call' heuristic bits
 795   needed_for_next_call(block, block->head(), next_call);
 796 
 797 #ifndef PRODUCT
 798     if (trace_opto_pipelining()) {
 799       for (uint j=0; j< block->number_of_nodes(); j++) {
 800         Node     *n = block->get_node(j);
 801         int     idx = n->_idx;
 802         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 803         tty->print("latency:%3d  ", get_latency_for_node(n));
 804         tty->print("%4d: %s\n", idx, n->Name());
 805       }
 806     }
 807 #endif
 808 
 809   uint max_idx = (uint)ready_cnt.length();
 810   // Pull from worklist and schedule
 811   while( worklist.size() ) {    // Worklist is not ready
 812 
 813 #ifndef PRODUCT
 814     if (trace_opto_pipelining()) {
 815       tty->print("#   ready list:");
 816       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 817         Node *n = worklist[i];      // Get Node on worklist
 818         tty->print(" %d", n->_idx);
 819       }
 820       tty->cr();
 821     }
 822 #endif
 823 
 824     // Select and pop a ready guy from worklist
 825     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
 826     block->map_node(n, phi_cnt++);    // Schedule him next
 827 
 828 #ifndef PRODUCT
 829     if (trace_opto_pipelining()) {
 830       tty->print("#    select %d: %s", n->_idx, n->Name());
 831       tty->print(", latency:%d", get_latency_for_node(n));
 832       n->dump();
 833       if (Verbose) {
 834         tty->print("#   ready list:");
 835         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 836           Node *n = worklist[i];      // Get Node on worklist
 837           tty->print(" %d", n->_idx);
 838         }
 839         tty->cr();
 840       }
 841     }
 842 
 843 #endif
 844     if( n->is_MachCall() ) {
 845       MachCallNode *mcall = n->as_MachCall();
 846       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
 847       continue;
 848     }
 849 
 850     if (n->is_Mach() && n->as_Mach()->has_call()) {
 851       RegMask regs;
 852       regs.Insert(_matcher.c_frame_pointer());
 853       regs.OR(n->out_RegMask());
 854 
 855       MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 856       map_node_to_block(proj, block);
 857       block->insert_node(proj, phi_cnt++);
 858 
 859       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
 860     }
 861 
 862     // Children are now all ready
 863     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 864       Node* m = n->fast_out(i5); // Get user
 865       if (get_block_for_node(m) != block) {
 866         continue;
 867       }
 868       if( m->is_Phi() ) continue;
 869       if (m->_idx >= max_idx) { // new node, skip it
 870         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 871         continue;
 872       }
 873       int m_cnt = ready_cnt.at(m->_idx)-1;
 874       ready_cnt.at_put(m->_idx, m_cnt);
 875       if( m_cnt == 0 )
 876         worklist.push(m);
 877     }
 878   }
 879 
 880   if( phi_cnt != block->end_idx() ) {
 881     // did not schedule all.  Retry, Bailout, or Die
 882     if (C->subsume_loads() == true && !C->failing()) {
 883       // Retry with subsume_loads == false
 884       // If this is the first failure, the sentinel string will "stick"
 885       // to the Compile object, and the C2Compiler will see it and retry.
 886       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 887     }
 888     // assert( phi_cnt == end_idx(), "did not schedule all" );
 889     return false;
 890   }
 891 
 892 #ifndef PRODUCT
 893   if (trace_opto_pipelining()) {
 894     tty->print_cr("#");
 895     tty->print_cr("# after schedule_local");
 896     for (uint i = 0;i < block->number_of_nodes();i++) {
 897       tty->print("# ");
 898       block->get_node(i)->fast_dump();
 899     }
 900     tty->cr();
 901   }
 902 #endif
 903 
 904 
 905   return true;
 906 }
 907 
 908 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 909 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 910   for (uint l = 0; l < use->len(); l++) {
 911     if (use->in(l) == old_def) {
 912       if (l < use->req()) {
 913         use->set_req(l, new_def);
 914       } else {
 915         use->rm_prec(l);
 916         use->add_prec(new_def);
 917         l--;
 918       }
 919     }
 920   }
 921 }
 922 
 923 //------------------------------catch_cleanup_find_cloned_def------------------
 924 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
 925   assert( use_blk != def_blk, "Inter-block cleanup only");
 926 
 927   // The use is some block below the Catch.  Find and return the clone of the def
 928   // that dominates the use. If there is no clone in a dominating block, then
 929   // create a phi for the def in a dominating block.
 930 
 931   // Find which successor block dominates this use.  The successor
 932   // blocks must all be single-entry (from the Catch only; I will have
 933   // split blocks to make this so), hence they all dominate.
 934   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 935     use_blk = use_blk->_idom;
 936 
 937   // Find the successor
 938   Node *fixup = NULL;
 939 
 940   uint j;
 941   for( j = 0; j < def_blk->_num_succs; j++ )
 942     if( use_blk == def_blk->_succs[j] )
 943       break;
 944 
 945   if( j == def_blk->_num_succs ) {
 946     // Block at same level in dom-tree is not a successor.  It needs a
 947     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 948     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 949     for(uint k = 1; k < use_blk->num_preds(); k++) {
 950       Block* block = get_block_for_node(use_blk->pred(k));
 951       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
 952     }
 953 
 954     // Check to see if the use_blk already has an identical phi inserted.
 955     // If it exists, it will be at the first position since all uses of a
 956     // def are processed together.
 957     Node *phi = use_blk->get_node(1);
 958     if( phi->is_Phi() ) {
 959       fixup = phi;
 960       for (uint k = 1; k < use_blk->num_preds(); k++) {
 961         if (phi->in(k) != inputs[k]) {
 962           // Not a match
 963           fixup = NULL;
 964           break;
 965         }
 966       }
 967     }
 968 
 969     // If an existing PhiNode was not found, make a new one.
 970     if (fixup == NULL) {
 971       Node *new_phi = PhiNode::make(use_blk->head(), def);
 972       use_blk->insert_node(new_phi, 1);
 973       map_node_to_block(new_phi, use_blk);
 974       for (uint k = 1; k < use_blk->num_preds(); k++) {
 975         new_phi->set_req(k, inputs[k]);
 976       }
 977       fixup = new_phi;
 978     }
 979 
 980   } else {
 981     // Found the use just below the Catch.  Make it use the clone.
 982     fixup = use_blk->get_node(n_clone_idx);
 983   }
 984 
 985   return fixup;
 986 }
 987 
 988 //--------------------------catch_cleanup_intra_block--------------------------
 989 // Fix all input edges in use that reference "def".  The use is in the same
 990 // block as the def and both have been cloned in each successor block.
 991 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
 992 
 993   // Both the use and def have been cloned. For each successor block,
 994   // get the clone of the use, and make its input the clone of the def
 995   // found in that block.
 996 
 997   uint use_idx = blk->find_node(use);
 998   uint offset_idx = use_idx - beg;
 999   for( uint k = 0; k < blk->_num_succs; k++ ) {
1000     // Get clone in each successor block
1001     Block *sb = blk->_succs[k];
1002     Node *clone = sb->get_node(offset_idx+1);
1003     assert( clone->Opcode() == use->Opcode(), "" );
1004 
1005     // Make use-clone reference the def-clone
1006     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1007   }
1008 }
1009 
1010 //------------------------------catch_cleanup_inter_block---------------------
1011 // Fix all input edges in use that reference "def".  The use is in a different
1012 // block than the def.
1013 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1014   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1015 
1016   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1017   catch_cleanup_fix_all_inputs(use, def, new_def);
1018 }
1019 
1020 //------------------------------call_catch_cleanup-----------------------------
1021 // If we inserted any instructions between a Call and his CatchNode,
1022 // clone the instructions on all paths below the Catch.
1023 void PhaseCFG::call_catch_cleanup(Block* block) {
1024 
1025   // End of region to clone
1026   uint end = block->end_idx();
1027   if( !block->get_node(end)->is_Catch() ) return;
1028   // Start of region to clone
1029   uint beg = end;
1030   while(!block->get_node(beg-1)->is_MachProj() ||
1031         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1032     beg--;
1033     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1034   }
1035   // Range of inserted instructions is [beg, end)
1036   if( beg == end ) return;
1037 
1038   // Clone along all Catch output paths.  Clone area between the 'beg' and
1039   // 'end' indices.
1040   for( uint i = 0; i < block->_num_succs; i++ ) {
1041     Block *sb = block->_succs[i];
1042     // Clone the entire area; ignoring the edge fixup for now.
1043     for( uint j = end; j > beg; j-- ) {
1044       // It is safe here to clone a node with anti_dependence
1045       // since clones dominate on each path.
1046       Node *clone = block->get_node(j-1)->clone();
1047       sb->insert_node(clone, 1);
1048       map_node_to_block(clone, sb);
1049     }
1050   }
1051 
1052 
1053   // Fixup edges.  Check the def-use info per cloned Node
1054   for(uint i2 = beg; i2 < end; i2++ ) {
1055     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1056     Node *n = block->get_node(i2);        // Node that got cloned
1057     // Need DU safe iterator because of edge manipulation in calls.
1058     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1059     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1060       out->push(n->fast_out(j1));
1061     }
1062     uint max = out->size();
1063     for (uint j = 0; j < max; j++) {// For all users
1064       Node *use = out->pop();
1065       Block *buse = get_block_for_node(use);
1066       if( use->is_Phi() ) {
1067         for( uint k = 1; k < use->req(); k++ )
1068           if( use->in(k) == n ) {
1069             Block* b = get_block_for_node(buse->pred(k));
1070             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1071             use->set_req(k, fixup);
1072           }
1073       } else {
1074         if (block == buse) {
1075           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1076         } else {
1077           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1078         }
1079       }
1080     } // End for all users
1081 
1082   } // End of for all Nodes in cloned area
1083 
1084   // Remove the now-dead cloned ops
1085   for(uint i3 = beg; i3 < end; i3++ ) {
1086     block->get_node(beg)->disconnect_inputs(NULL, C);
1087     block->remove_node(beg);
1088   }
1089 
1090   // If the successor blocks have a CreateEx node, move it back to the top
1091   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1092     Block *sb = block->_succs[i4];
1093     uint new_cnt = end - beg;
1094     // Remove any newly created, but dead, nodes.
1095     for( uint j = new_cnt; j > 0; j-- ) {
1096       Node *n = sb->get_node(j);
1097       if (n->outcnt() == 0 &&
1098           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1099         n->disconnect_inputs(NULL, C);
1100         sb->remove_node(j);
1101         new_cnt--;
1102       }
1103     }
1104     // If any newly created nodes remain, move the CreateEx node to the top
1105     if (new_cnt > 0) {
1106       Node *cex = sb->get_node(1+new_cnt);
1107       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1108         sb->remove_node(1+new_cnt);
1109         sb->insert_node(cex, 1);
1110       }
1111     }
1112   }
1113 }