1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _is_predicted;
  50   bool             _does_virtual_dispatch;
  51   vmIntrinsics::ID _intrinsic_id;
  52 
  53  public:
  54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  55     : InlineCallGenerator(m),
  56       _is_virtual(is_virtual),
  57       _is_predicted(is_predicted),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _intrinsic_id(id)
  60   {
  61   }
  62   virtual bool is_intrinsic() const { return true; }
  63   virtual bool is_virtual()   const { return _is_virtual; }
  64   virtual bool is_predicted()   const { return _is_predicted; }
  65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  67   virtual Node* generate_predicate(JVMState* jvms);
  68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  69 };
  70 
  71 
  72 // Local helper class for LibraryIntrinsic:
  73 class LibraryCallKit : public GraphKit {
  74  private:
  75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  76   Node*             _result;        // the result node, if any
  77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  78 
  79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  80 
  81  public:
  82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  83     : GraphKit(jvms),
  84       _intrinsic(intrinsic),
  85       _result(NULL)
  86   {
  87     // Check if this is a root compile.  In that case we don't have a caller.
  88     if (!jvms->has_method()) {
  89       _reexecute_sp = sp();
  90     } else {
  91       // Find out how many arguments the interpreter needs when deoptimizing
  92       // and save the stack pointer value so it can used by uncommon_trap.
  93       // We find the argument count by looking at the declared signature.
  94       bool ignored_will_link;
  95       ciSignature* declared_signature = NULL;
  96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  99     }
 100   }
 101 
 102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 103 
 104   ciMethod*         caller()    const    { return jvms()->method(); }
 105   int               bci()       const    { return jvms()->bci(); }
 106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 108   ciMethod*         callee()    const    { return _intrinsic->method(); }
 109 
 110   bool try_to_inline();
 111   Node* try_to_predicate();
 112 
 113   void push_result() {
 114     // Push the result onto the stack.
 115     if (!stopped() && result() != NULL) {
 116       BasicType bt = result()->bottom_type()->basic_type();
 117       push_node(bt, result());
 118     }
 119   }
 120 
 121  private:
 122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 124   }
 125 
 126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 127   void  set_result(RegionNode* region, PhiNode* value);
 128   Node*     result() { return _result; }
 129 
 130   virtual int reexecute_sp() { return _reexecute_sp; }
 131 
 132   // Helper functions to inline natives
 133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 134   Node* generate_slow_guard(Node* test, RegionNode* region);
 135   Node* generate_fair_guard(Node* test, RegionNode* region);
 136   Node* generate_negative_guard(Node* index, RegionNode* region,
 137                                 // resulting CastII of index:
 138                                 Node* *pos_index = NULL);
 139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 140                                    // resulting CastII of index:
 141                                    Node* *pos_index = NULL);
 142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 143                              Node* array_length,
 144                              RegionNode* region);
 145   Node* generate_current_thread(Node* &tls_output);
 146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 148   Node* load_mirror_from_klass(Node* klass);
 149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 150                                       RegionNode* region, int null_path,
 151                                       int offset);
 152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 153                                RegionNode* region, int null_path) {
 154     int offset = java_lang_Class::klass_offset_in_bytes();
 155     return load_klass_from_mirror_common(mirror, never_see_null,
 156                                          region, null_path,
 157                                          offset);
 158   }
 159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                      RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::array_klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* generate_access_flags_guard(Node* kls,
 167                                     int modifier_mask, int modifier_bits,
 168                                     RegionNode* region);
 169   Node* generate_interface_guard(Node* kls, RegionNode* region);
 170   Node* generate_array_guard(Node* kls, RegionNode* region) {
 171     return generate_array_guard_common(kls, region, false, false);
 172   }
 173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, true);
 175   }
 176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, true, false);
 178   }
 179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, true);
 181   }
 182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 183                                     bool obj_array, bool not_array);
 184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 186                                      bool is_virtual = false, bool is_static = false);
 187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 188     return generate_method_call(method_id, false, true);
 189   }
 190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, true, false);
 192   }
 193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 194 
 195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 197   bool inline_string_compareTo();
 198   bool inline_string_indexOf();
 199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 200   bool inline_string_equals();
 201   Node* round_double_node(Node* n);
 202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 203   bool inline_math_native(vmIntrinsics::ID id);
 204   bool inline_trig(vmIntrinsics::ID id);
 205   bool inline_math(vmIntrinsics::ID id);
 206   void inline_math_mathExact(Node* math);
 207   bool inline_math_addExactI(bool is_increment);
 208   bool inline_math_addExactL(bool is_increment);
 209   bool inline_math_multiplyExactI();
 210   bool inline_math_multiplyExactL();
 211   bool inline_math_negateExactI();
 212   bool inline_math_negateExactL();
 213   bool inline_math_subtractExactI(bool is_decrement);
 214   bool inline_math_subtractExactL(bool is_decrement);
 215   bool inline_exp();
 216   bool inline_pow();
 217   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 218   bool inline_min_max(vmIntrinsics::ID id);
 219   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 220   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 221   int classify_unsafe_addr(Node* &base, Node* &offset);
 222   Node* make_unsafe_address(Node* base, Node* offset);
 223   // Helper for inline_unsafe_access.
 224   // Generates the guards that check whether the result of
 225   // Unsafe.getObject should be recorded in an SATB log buffer.
 226   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 227   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 228   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 229   static bool klass_needs_init_guard(Node* kls);
 230   bool inline_unsafe_allocate();
 231   bool inline_unsafe_copyMemory();
 232   bool inline_native_currentThread();
 233 #ifdef TRACE_HAVE_INTRINSICS
 234   bool inline_native_classID();
 235   bool inline_native_threadID();
 236 #endif
 237   bool inline_native_time_funcs(address method, const char* funcName);
 238   bool inline_native_isInterrupted();
 239   bool inline_native_Class_query(vmIntrinsics::ID id);
 240   bool inline_native_subtype_check();
 241 
 242   bool inline_native_newArray();
 243   bool inline_native_getLength();
 244   bool inline_array_copyOf(bool is_copyOfRange);
 245   bool inline_array_equals();
 246   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 247   bool inline_native_clone(bool is_virtual);
 248   bool inline_native_Reflection_getCallerClass();
 249   // Helper function for inlining native object hash method
 250   bool inline_native_hashcode(bool is_virtual, bool is_static);
 251   bool inline_native_getClass();
 252 
 253   // Helper functions for inlining arraycopy
 254   bool inline_arraycopy();
 255   void generate_arraycopy(const TypePtr* adr_type,
 256                           BasicType basic_elem_type,
 257                           Node* src,  Node* src_offset,
 258                           Node* dest, Node* dest_offset,
 259                           Node* copy_length,
 260                           bool disjoint_bases = false,
 261                           bool length_never_negative = false,
 262                           RegionNode* slow_region = NULL);
 263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 264                                                 RegionNode* slow_region);
 265   void generate_clear_array(const TypePtr* adr_type,
 266                             Node* dest,
 267                             BasicType basic_elem_type,
 268                             Node* slice_off,
 269                             Node* slice_len,
 270                             Node* slice_end);
 271   bool generate_block_arraycopy(const TypePtr* adr_type,
 272                                 BasicType basic_elem_type,
 273                                 AllocateNode* alloc,
 274                                 Node* src,  Node* src_offset,
 275                                 Node* dest, Node* dest_offset,
 276                                 Node* dest_size, bool dest_uninitialized);
 277   void generate_slow_arraycopy(const TypePtr* adr_type,
 278                                Node* src,  Node* src_offset,
 279                                Node* dest, Node* dest_offset,
 280                                Node* copy_length, bool dest_uninitialized);
 281   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 282                                      Node* dest_elem_klass,
 283                                      Node* src,  Node* src_offset,
 284                                      Node* dest, Node* dest_offset,
 285                                      Node* copy_length, bool dest_uninitialized);
 286   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 287                                    Node* src,  Node* src_offset,
 288                                    Node* dest, Node* dest_offset,
 289                                    Node* copy_length, bool dest_uninitialized);
 290   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 291                                     BasicType basic_elem_type,
 292                                     bool disjoint_bases,
 293                                     Node* src,  Node* src_offset,
 294                                     Node* dest, Node* dest_offset,
 295                                     Node* copy_length, bool dest_uninitialized);
 296   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 297   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 298   bool inline_unsafe_ordered_store(BasicType type);
 299   bool inline_unsafe_fence(vmIntrinsics::ID id);
 300   bool inline_fp_conversions(vmIntrinsics::ID id);
 301   bool inline_number_methods(vmIntrinsics::ID id);
 302   bool inline_reference_get();
 303   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 304   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 305   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 306   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 307   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 308   bool inline_encodeISOArray();
 309   bool inline_updateCRC32();
 310   bool inline_updateBytesCRC32();
 311   bool inline_updateByteBufferCRC32();
 312 };
 313 
 314 
 315 //---------------------------make_vm_intrinsic----------------------------
 316 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 317   vmIntrinsics::ID id = m->intrinsic_id();
 318   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 319 
 320   if (DisableIntrinsic[0] != '\0'
 321       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 322     // disabled by a user request on the command line:
 323     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 324     return NULL;
 325   }
 326 
 327   if (!m->is_loaded()) {
 328     // do not attempt to inline unloaded methods
 329     return NULL;
 330   }
 331 
 332   // Only a few intrinsics implement a virtual dispatch.
 333   // They are expensive calls which are also frequently overridden.
 334   if (is_virtual) {
 335     switch (id) {
 336     case vmIntrinsics::_hashCode:
 337     case vmIntrinsics::_clone:
 338       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 339       break;
 340     default:
 341       return NULL;
 342     }
 343   }
 344 
 345   // -XX:-InlineNatives disables nearly all intrinsics:
 346   if (!InlineNatives) {
 347     switch (id) {
 348     case vmIntrinsics::_indexOf:
 349     case vmIntrinsics::_compareTo:
 350     case vmIntrinsics::_equals:
 351     case vmIntrinsics::_equalsC:
 352     case vmIntrinsics::_getAndAddInt:
 353     case vmIntrinsics::_getAndAddLong:
 354     case vmIntrinsics::_getAndSetInt:
 355     case vmIntrinsics::_getAndSetLong:
 356     case vmIntrinsics::_getAndSetObject:
 357     case vmIntrinsics::_loadFence:
 358     case vmIntrinsics::_storeFence:
 359     case vmIntrinsics::_fullFence:
 360       break;  // InlineNatives does not control String.compareTo
 361     case vmIntrinsics::_Reference_get:
 362       break;  // InlineNatives does not control Reference.get
 363     default:
 364       return NULL;
 365     }
 366   }
 367 
 368   bool is_predicted = false;
 369   bool does_virtual_dispatch = false;
 370 
 371   switch (id) {
 372   case vmIntrinsics::_compareTo:
 373     if (!SpecialStringCompareTo)  return NULL;
 374     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 375     break;
 376   case vmIntrinsics::_indexOf:
 377     if (!SpecialStringIndexOf)  return NULL;
 378     break;
 379   case vmIntrinsics::_equals:
 380     if (!SpecialStringEquals)  return NULL;
 381     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 382     break;
 383   case vmIntrinsics::_equalsC:
 384     if (!SpecialArraysEquals)  return NULL;
 385     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 386     break;
 387   case vmIntrinsics::_arraycopy:
 388     if (!InlineArrayCopy)  return NULL;
 389     break;
 390   case vmIntrinsics::_copyMemory:
 391     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 392     if (!InlineArrayCopy)  return NULL;
 393     break;
 394   case vmIntrinsics::_hashCode:
 395     if (!InlineObjectHash)  return NULL;
 396     does_virtual_dispatch = true;
 397     break;
 398   case vmIntrinsics::_clone:
 399     does_virtual_dispatch = true;
 400   case vmIntrinsics::_copyOf:
 401   case vmIntrinsics::_copyOfRange:
 402     if (!InlineObjectCopy)  return NULL;
 403     // These also use the arraycopy intrinsic mechanism:
 404     if (!InlineArrayCopy)  return NULL;
 405     break;
 406   case vmIntrinsics::_encodeISOArray:
 407     if (!SpecialEncodeISOArray)  return NULL;
 408     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 409     break;
 410   case vmIntrinsics::_checkIndex:
 411     // We do not intrinsify this.  The optimizer does fine with it.
 412     return NULL;
 413 
 414   case vmIntrinsics::_getCallerClass:
 415     if (!UseNewReflection)  return NULL;
 416     if (!InlineReflectionGetCallerClass)  return NULL;
 417     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 418     break;
 419 
 420   case vmIntrinsics::_bitCount_i:
 421     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_bitCount_l:
 425     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_numberOfLeadingZeros_i:
 429     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_numberOfLeadingZeros_l:
 433     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_numberOfTrailingZeros_i:
 437     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_numberOfTrailingZeros_l:
 441     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 442     break;
 443 
 444   case vmIntrinsics::_reverseBytes_c:
 445     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 446     break;
 447   case vmIntrinsics::_reverseBytes_s:
 448     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 449     break;
 450   case vmIntrinsics::_reverseBytes_i:
 451     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 452     break;
 453   case vmIntrinsics::_reverseBytes_l:
 454     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_Reference_get:
 458     // Use the intrinsic version of Reference.get() so that the value in
 459     // the referent field can be registered by the G1 pre-barrier code.
 460     // Also add memory barrier to prevent commoning reads from this field
 461     // across safepoint since GC can change it value.
 462     break;
 463 
 464   case vmIntrinsics::_compareAndSwapObject:
 465 #ifdef _LP64
 466     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 467 #endif
 468     break;
 469 
 470   case vmIntrinsics::_compareAndSwapLong:
 471     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_getAndAddInt:
 475     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_getAndAddLong:
 479     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndSetInt:
 483     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_getAndSetLong:
 487     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 488     break;
 489 
 490   case vmIntrinsics::_getAndSetObject:
 491 #ifdef _LP64
 492     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 493     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 494     break;
 495 #else
 496     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 497     break;
 498 #endif
 499 
 500   case vmIntrinsics::_aescrypt_encryptBlock:
 501   case vmIntrinsics::_aescrypt_decryptBlock:
 502     if (!UseAESIntrinsics) return NULL;
 503     break;
 504 
 505   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 506   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 507     if (!UseAESIntrinsics) return NULL;
 508     // these two require the predicated logic
 509     is_predicted = true;
 510     break;
 511 
 512   case vmIntrinsics::_updateCRC32:
 513   case vmIntrinsics::_updateBytesCRC32:
 514   case vmIntrinsics::_updateByteBufferCRC32:
 515     if (!UseCRC32Intrinsics) return NULL;
 516     break;
 517 
 518   case vmIntrinsics::_incrementExactI:
 519   case vmIntrinsics::_addExactI:
 520     if (!Matcher::match_rule_supported(Op_AddExactI) || !UseMathExactIntrinsics) return NULL;
 521     break;
 522   case vmIntrinsics::_incrementExactL:
 523   case vmIntrinsics::_addExactL:
 524     if (!Matcher::match_rule_supported(Op_AddExactL) || !UseMathExactIntrinsics) return NULL;
 525     break;
 526   case vmIntrinsics::_decrementExactI:
 527   case vmIntrinsics::_subtractExactI:
 528     if (!Matcher::match_rule_supported(Op_SubExactI) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_decrementExactL:
 531   case vmIntrinsics::_subtractExactL:
 532     if (!Matcher::match_rule_supported(Op_SubExactL) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_negateExactI:
 535     if (!Matcher::match_rule_supported(Op_NegExactI) || !UseMathExactIntrinsics) return NULL;
 536     break;
 537   case vmIntrinsics::_negateExactL:
 538     if (!Matcher::match_rule_supported(Op_NegExactL) || !UseMathExactIntrinsics) return NULL;
 539     break;
 540   case vmIntrinsics::_multiplyExactI:
 541     if (!Matcher::match_rule_supported(Op_MulExactI) || !UseMathExactIntrinsics) return NULL;
 542     break;
 543   case vmIntrinsics::_multiplyExactL:
 544     if (!Matcher::match_rule_supported(Op_MulExactL) || !UseMathExactIntrinsics) return NULL;
 545     break;
 546 
 547  default:
 548     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 549     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 550     break;
 551   }
 552 
 553   // -XX:-InlineClassNatives disables natives from the Class class.
 554   // The flag applies to all reflective calls, notably Array.newArray
 555   // (visible to Java programmers as Array.newInstance).
 556   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 557       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 558     if (!InlineClassNatives)  return NULL;
 559   }
 560 
 561   // -XX:-InlineThreadNatives disables natives from the Thread class.
 562   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 563     if (!InlineThreadNatives)  return NULL;
 564   }
 565 
 566   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 567   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 568       m->holder()->name() == ciSymbol::java_lang_Float() ||
 569       m->holder()->name() == ciSymbol::java_lang_Double()) {
 570     if (!InlineMathNatives)  return NULL;
 571   }
 572 
 573   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 574   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 575     if (!InlineUnsafeOps)  return NULL;
 576   }
 577 
 578   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 579 }
 580 
 581 //----------------------register_library_intrinsics-----------------------
 582 // Initialize this file's data structures, for each Compile instance.
 583 void Compile::register_library_intrinsics() {
 584   // Nothing to do here.
 585 }
 586 
 587 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 588   LibraryCallKit kit(jvms, this);
 589   Compile* C = kit.C;
 590   int nodes = C->unique();
 591 #ifndef PRODUCT
 592   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 593     char buf[1000];
 594     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 595     tty->print_cr("Intrinsic %s", str);
 596   }
 597 #endif
 598   ciMethod* callee = kit.callee();
 599   const int bci    = kit.bci();
 600 
 601   // Try to inline the intrinsic.
 602   if (kit.try_to_inline()) {
 603     if (C->print_intrinsics() || C->print_inlining()) {
 604       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 605     }
 606     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 607     if (C->log()) {
 608       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 609                      vmIntrinsics::name_at(intrinsic_id()),
 610                      (is_virtual() ? " virtual='1'" : ""),
 611                      C->unique() - nodes);
 612     }
 613     // Push the result from the inlined method onto the stack.
 614     kit.push_result();
 615     return kit.transfer_exceptions_into_jvms();
 616   }
 617 
 618   // The intrinsic bailed out
 619   if (C->print_intrinsics() || C->print_inlining()) {
 620     if (jvms->has_method()) {
 621       // Not a root compile.
 622       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 623       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 624     } else {
 625       // Root compile
 626       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 627                vmIntrinsics::name_at(intrinsic_id()),
 628                (is_virtual() ? " (virtual)" : ""), bci);
 629     }
 630   }
 631   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 632   return NULL;
 633 }
 634 
 635 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 636   LibraryCallKit kit(jvms, this);
 637   Compile* C = kit.C;
 638   int nodes = C->unique();
 639 #ifndef PRODUCT
 640   assert(is_predicted(), "sanity");
 641   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 642     char buf[1000];
 643     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 644     tty->print_cr("Predicate for intrinsic %s", str);
 645   }
 646 #endif
 647   ciMethod* callee = kit.callee();
 648   const int bci    = kit.bci();
 649 
 650   Node* slow_ctl = kit.try_to_predicate();
 651   if (!kit.failing()) {
 652     if (C->print_intrinsics() || C->print_inlining()) {
 653       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 654     }
 655     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 656     if (C->log()) {
 657       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 658                      vmIntrinsics::name_at(intrinsic_id()),
 659                      (is_virtual() ? " virtual='1'" : ""),
 660                      C->unique() - nodes);
 661     }
 662     return slow_ctl; // Could be NULL if the check folds.
 663   }
 664 
 665   // The intrinsic bailed out
 666   if (C->print_intrinsics() || C->print_inlining()) {
 667     if (jvms->has_method()) {
 668       // Not a root compile.
 669       const char* msg = "failed to generate predicate for intrinsic";
 670       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 671     } else {
 672       // Root compile
 673       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 674                                         vmIntrinsics::name_at(intrinsic_id()),
 675                                         (is_virtual() ? " (virtual)" : ""), bci);
 676     }
 677   }
 678   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 679   return NULL;
 680 }
 681 
 682 bool LibraryCallKit::try_to_inline() {
 683   // Handle symbolic names for otherwise undistinguished boolean switches:
 684   const bool is_store       = true;
 685   const bool is_native_ptr  = true;
 686   const bool is_static      = true;
 687   const bool is_volatile    = true;
 688 
 689   if (!jvms()->has_method()) {
 690     // Root JVMState has a null method.
 691     assert(map()->memory()->Opcode() == Op_Parm, "");
 692     // Insert the memory aliasing node
 693     set_all_memory(reset_memory());
 694   }
 695   assert(merged_memory(), "");
 696 
 697 
 698   switch (intrinsic_id()) {
 699   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 700   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 701   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 702 
 703   case vmIntrinsics::_dsin:
 704   case vmIntrinsics::_dcos:
 705   case vmIntrinsics::_dtan:
 706   case vmIntrinsics::_dabs:
 707   case vmIntrinsics::_datan2:
 708   case vmIntrinsics::_dsqrt:
 709   case vmIntrinsics::_dexp:
 710   case vmIntrinsics::_dlog:
 711   case vmIntrinsics::_dlog10:
 712   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 713 
 714   case vmIntrinsics::_min:
 715   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 716 
 717   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 718   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 719   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 720   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 721   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 722   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 723   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 724   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 725   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 726   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 727   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 728   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 729 
 730   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 731 
 732   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 733   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 734   case vmIntrinsics::_equals:                   return inline_string_equals();
 735 
 736   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 737   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 738   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 739   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 740   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 741   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 742   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 743   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 744   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 745 
 746   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 747   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 748   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 749   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 750   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 751   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 752   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 753   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 754   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 755 
 756   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 757   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 758   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 759   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 760   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 761   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 762   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 763   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 764 
 765   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 766   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 767   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 768   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 769   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 770   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 771   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 772   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 773 
 774   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 775   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 776   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 777   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 778   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 779   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 780   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 781   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 782   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 783 
 784   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 785   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 786   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 787   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 788   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 789   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 790   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 791   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 792   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 793 
 794   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 795   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 796   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 797   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 798 
 799   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 800   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 801   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 802 
 803   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 804   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 805   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 806 
 807   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 808   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 809   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 810   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 811   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 812 
 813   case vmIntrinsics::_loadFence:
 814   case vmIntrinsics::_storeFence:
 815   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 816 
 817   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 818   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 819 
 820 #ifdef TRACE_HAVE_INTRINSICS
 821   case vmIntrinsics::_classID:                  return inline_native_classID();
 822   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 823   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 824 #endif
 825   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 826   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 827   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 828   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 829   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 830   case vmIntrinsics::_getLength:                return inline_native_getLength();
 831   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 832   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 833   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 834   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 835 
 836   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 837 
 838   case vmIntrinsics::_isInstance:
 839   case vmIntrinsics::_getModifiers:
 840   case vmIntrinsics::_isInterface:
 841   case vmIntrinsics::_isArray:
 842   case vmIntrinsics::_isPrimitive:
 843   case vmIntrinsics::_getSuperclass:
 844   case vmIntrinsics::_getComponentType:
 845   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 846 
 847   case vmIntrinsics::_floatToRawIntBits:
 848   case vmIntrinsics::_floatToIntBits:
 849   case vmIntrinsics::_intBitsToFloat:
 850   case vmIntrinsics::_doubleToRawLongBits:
 851   case vmIntrinsics::_doubleToLongBits:
 852   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 853 
 854   case vmIntrinsics::_numberOfLeadingZeros_i:
 855   case vmIntrinsics::_numberOfLeadingZeros_l:
 856   case vmIntrinsics::_numberOfTrailingZeros_i:
 857   case vmIntrinsics::_numberOfTrailingZeros_l:
 858   case vmIntrinsics::_bitCount_i:
 859   case vmIntrinsics::_bitCount_l:
 860   case vmIntrinsics::_reverseBytes_i:
 861   case vmIntrinsics::_reverseBytes_l:
 862   case vmIntrinsics::_reverseBytes_s:
 863   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 864 
 865   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 866 
 867   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 868 
 869   case vmIntrinsics::_aescrypt_encryptBlock:
 870   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 871 
 872   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 873   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 874     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 875 
 876   case vmIntrinsics::_encodeISOArray:
 877     return inline_encodeISOArray();
 878 
 879   case vmIntrinsics::_updateCRC32:
 880     return inline_updateCRC32();
 881   case vmIntrinsics::_updateBytesCRC32:
 882     return inline_updateBytesCRC32();
 883   case vmIntrinsics::_updateByteBufferCRC32:
 884     return inline_updateByteBufferCRC32();
 885 
 886   default:
 887     // If you get here, it may be that someone has added a new intrinsic
 888     // to the list in vmSymbols.hpp without implementing it here.
 889 #ifndef PRODUCT
 890     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 891       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 892                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 893     }
 894 #endif
 895     return false;
 896   }
 897 }
 898 
 899 Node* LibraryCallKit::try_to_predicate() {
 900   if (!jvms()->has_method()) {
 901     // Root JVMState has a null method.
 902     assert(map()->memory()->Opcode() == Op_Parm, "");
 903     // Insert the memory aliasing node
 904     set_all_memory(reset_memory());
 905   }
 906   assert(merged_memory(), "");
 907 
 908   switch (intrinsic_id()) {
 909   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 910     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 911   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 912     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 913 
 914   default:
 915     // If you get here, it may be that someone has added a new intrinsic
 916     // to the list in vmSymbols.hpp without implementing it here.
 917 #ifndef PRODUCT
 918     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 919       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 920                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 921     }
 922 #endif
 923     Node* slow_ctl = control();
 924     set_control(top()); // No fast path instrinsic
 925     return slow_ctl;
 926   }
 927 }
 928 
 929 //------------------------------set_result-------------------------------
 930 // Helper function for finishing intrinsics.
 931 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 932   record_for_igvn(region);
 933   set_control(_gvn.transform(region));
 934   set_result( _gvn.transform(value));
 935   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 936 }
 937 
 938 //------------------------------generate_guard---------------------------
 939 // Helper function for generating guarded fast-slow graph structures.
 940 // The given 'test', if true, guards a slow path.  If the test fails
 941 // then a fast path can be taken.  (We generally hope it fails.)
 942 // In all cases, GraphKit::control() is updated to the fast path.
 943 // The returned value represents the control for the slow path.
 944 // The return value is never 'top'; it is either a valid control
 945 // or NULL if it is obvious that the slow path can never be taken.
 946 // Also, if region and the slow control are not NULL, the slow edge
 947 // is appended to the region.
 948 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 949   if (stopped()) {
 950     // Already short circuited.
 951     return NULL;
 952   }
 953 
 954   // Build an if node and its projections.
 955   // If test is true we take the slow path, which we assume is uncommon.
 956   if (_gvn.type(test) == TypeInt::ZERO) {
 957     // The slow branch is never taken.  No need to build this guard.
 958     return NULL;
 959   }
 960 
 961   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 962 
 963   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 964   if (if_slow == top()) {
 965     // The slow branch is never taken.  No need to build this guard.
 966     return NULL;
 967   }
 968 
 969   if (region != NULL)
 970     region->add_req(if_slow);
 971 
 972   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 973   set_control(if_fast);
 974 
 975   return if_slow;
 976 }
 977 
 978 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 979   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 980 }
 981 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 982   return generate_guard(test, region, PROB_FAIR);
 983 }
 984 
 985 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 986                                                      Node* *pos_index) {
 987   if (stopped())
 988     return NULL;                // already stopped
 989   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 990     return NULL;                // index is already adequately typed
 991   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 992   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 993   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 994   if (is_neg != NULL && pos_index != NULL) {
 995     // Emulate effect of Parse::adjust_map_after_if.
 996     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 997     ccast->set_req(0, control());
 998     (*pos_index) = _gvn.transform(ccast);
 999   }
1000   return is_neg;
1001 }
1002 
1003 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1004                                                         Node* *pos_index) {
1005   if (stopped())
1006     return NULL;                // already stopped
1007   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1008     return NULL;                // index is already adequately typed
1009   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1010   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1011   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1012   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1013   if (is_notp != NULL && pos_index != NULL) {
1014     // Emulate effect of Parse::adjust_map_after_if.
1015     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1016     ccast->set_req(0, control());
1017     (*pos_index) = _gvn.transform(ccast);
1018   }
1019   return is_notp;
1020 }
1021 
1022 // Make sure that 'position' is a valid limit index, in [0..length].
1023 // There are two equivalent plans for checking this:
1024 //   A. (offset + copyLength)  unsigned<=  arrayLength
1025 //   B. offset  <=  (arrayLength - copyLength)
1026 // We require that all of the values above, except for the sum and
1027 // difference, are already known to be non-negative.
1028 // Plan A is robust in the face of overflow, if offset and copyLength
1029 // are both hugely positive.
1030 //
1031 // Plan B is less direct and intuitive, but it does not overflow at
1032 // all, since the difference of two non-negatives is always
1033 // representable.  Whenever Java methods must perform the equivalent
1034 // check they generally use Plan B instead of Plan A.
1035 // For the moment we use Plan A.
1036 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1037                                                   Node* subseq_length,
1038                                                   Node* array_length,
1039                                                   RegionNode* region) {
1040   if (stopped())
1041     return NULL;                // already stopped
1042   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1043   if (zero_offset && subseq_length->eqv_uncast(array_length))
1044     return NULL;                // common case of whole-array copy
1045   Node* last = subseq_length;
1046   if (!zero_offset)             // last += offset
1047     last = _gvn.transform(new (C) AddINode(last, offset));
1048   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1049   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1050   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1051   return is_over;
1052 }
1053 
1054 
1055 //--------------------------generate_current_thread--------------------
1056 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1057   ciKlass*    thread_klass = env()->Thread_klass();
1058   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1059   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1060   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1061   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
1062   tls_output = thread;
1063   return threadObj;
1064 }
1065 
1066 
1067 //------------------------------make_string_method_node------------------------
1068 // Helper method for String intrinsic functions. This version is called
1069 // with str1 and str2 pointing to String object nodes.
1070 //
1071 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1072   Node* no_ctrl = NULL;
1073 
1074   // Get start addr of string
1075   Node* str1_value   = load_String_value(no_ctrl, str1);
1076   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1077   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1078 
1079   // Get length of string 1
1080   Node* str1_len  = load_String_length(no_ctrl, str1);
1081 
1082   Node* str2_value   = load_String_value(no_ctrl, str2);
1083   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1084   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1085 
1086   Node* str2_len = NULL;
1087   Node* result = NULL;
1088 
1089   switch (opcode) {
1090   case Op_StrIndexOf:
1091     // Get length of string 2
1092     str2_len = load_String_length(no_ctrl, str2);
1093 
1094     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1095                                  str1_start, str1_len, str2_start, str2_len);
1096     break;
1097   case Op_StrComp:
1098     // Get length of string 2
1099     str2_len = load_String_length(no_ctrl, str2);
1100 
1101     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1102                                  str1_start, str1_len, str2_start, str2_len);
1103     break;
1104   case Op_StrEquals:
1105     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1106                                str1_start, str2_start, str1_len);
1107     break;
1108   default:
1109     ShouldNotReachHere();
1110     return NULL;
1111   }
1112 
1113   // All these intrinsics have checks.
1114   C->set_has_split_ifs(true); // Has chance for split-if optimization
1115 
1116   return _gvn.transform(result);
1117 }
1118 
1119 // Helper method for String intrinsic functions. This version is called
1120 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1121 // to Int nodes containing the lenghts of str1 and str2.
1122 //
1123 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1124   Node* result = NULL;
1125   switch (opcode) {
1126   case Op_StrIndexOf:
1127     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1128                                  str1_start, cnt1, str2_start, cnt2);
1129     break;
1130   case Op_StrComp:
1131     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1132                                  str1_start, cnt1, str2_start, cnt2);
1133     break;
1134   case Op_StrEquals:
1135     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1136                                  str1_start, str2_start, cnt1);
1137     break;
1138   default:
1139     ShouldNotReachHere();
1140     return NULL;
1141   }
1142 
1143   // All these intrinsics have checks.
1144   C->set_has_split_ifs(true); // Has chance for split-if optimization
1145 
1146   return _gvn.transform(result);
1147 }
1148 
1149 //------------------------------inline_string_compareTo------------------------
1150 // public int java.lang.String.compareTo(String anotherString);
1151 bool LibraryCallKit::inline_string_compareTo() {
1152   Node* receiver = null_check(argument(0));
1153   Node* arg      = null_check(argument(1));
1154   if (stopped()) {
1155     return true;
1156   }
1157   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1158   return true;
1159 }
1160 
1161 //------------------------------inline_string_equals------------------------
1162 bool LibraryCallKit::inline_string_equals() {
1163   Node* receiver = null_check_receiver();
1164   // NOTE: Do not null check argument for String.equals() because spec
1165   // allows to specify NULL as argument.
1166   Node* argument = this->argument(1);
1167   if (stopped()) {
1168     return true;
1169   }
1170 
1171   // paths (plus control) merge
1172   RegionNode* region = new (C) RegionNode(5);
1173   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1174 
1175   // does source == target string?
1176   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1177   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1178 
1179   Node* if_eq = generate_slow_guard(bol, NULL);
1180   if (if_eq != NULL) {
1181     // receiver == argument
1182     phi->init_req(2, intcon(1));
1183     region->init_req(2, if_eq);
1184   }
1185 
1186   // get String klass for instanceOf
1187   ciInstanceKlass* klass = env()->String_klass();
1188 
1189   if (!stopped()) {
1190     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1191     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1192     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1193 
1194     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1195     //instanceOf == true, fallthrough
1196 
1197     if (inst_false != NULL) {
1198       phi->init_req(3, intcon(0));
1199       region->init_req(3, inst_false);
1200     }
1201   }
1202 
1203   if (!stopped()) {
1204     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1205 
1206     // Properly cast the argument to String
1207     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1208     // This path is taken only when argument's type is String:NotNull.
1209     argument = cast_not_null(argument, false);
1210 
1211     Node* no_ctrl = NULL;
1212 
1213     // Get start addr of receiver
1214     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1215     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1216     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1217 
1218     // Get length of receiver
1219     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1220 
1221     // Get start addr of argument
1222     Node* argument_val    = load_String_value(no_ctrl, argument);
1223     Node* argument_offset = load_String_offset(no_ctrl, argument);
1224     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1225 
1226     // Get length of argument
1227     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1228 
1229     // Check for receiver count != argument count
1230     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1231     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1232     Node* if_ne = generate_slow_guard(bol, NULL);
1233     if (if_ne != NULL) {
1234       phi->init_req(4, intcon(0));
1235       region->init_req(4, if_ne);
1236     }
1237 
1238     // Check for count == 0 is done by assembler code for StrEquals.
1239 
1240     if (!stopped()) {
1241       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1242       phi->init_req(1, equals);
1243       region->init_req(1, control());
1244     }
1245   }
1246 
1247   // post merge
1248   set_control(_gvn.transform(region));
1249   record_for_igvn(region);
1250 
1251   set_result(_gvn.transform(phi));
1252   return true;
1253 }
1254 
1255 //------------------------------inline_array_equals----------------------------
1256 bool LibraryCallKit::inline_array_equals() {
1257   Node* arg1 = argument(0);
1258   Node* arg2 = argument(1);
1259   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1260   return true;
1261 }
1262 
1263 // Java version of String.indexOf(constant string)
1264 // class StringDecl {
1265 //   StringDecl(char[] ca) {
1266 //     offset = 0;
1267 //     count = ca.length;
1268 //     value = ca;
1269 //   }
1270 //   int offset;
1271 //   int count;
1272 //   char[] value;
1273 // }
1274 //
1275 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1276 //                             int targetOffset, int cache_i, int md2) {
1277 //   int cache = cache_i;
1278 //   int sourceOffset = string_object.offset;
1279 //   int sourceCount = string_object.count;
1280 //   int targetCount = target_object.length;
1281 //
1282 //   int targetCountLess1 = targetCount - 1;
1283 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1284 //
1285 //   char[] source = string_object.value;
1286 //   char[] target = target_object;
1287 //   int lastChar = target[targetCountLess1];
1288 //
1289 //  outer_loop:
1290 //   for (int i = sourceOffset; i < sourceEnd; ) {
1291 //     int src = source[i + targetCountLess1];
1292 //     if (src == lastChar) {
1293 //       // With random strings and a 4-character alphabet,
1294 //       // reverse matching at this point sets up 0.8% fewer
1295 //       // frames, but (paradoxically) makes 0.3% more probes.
1296 //       // Since those probes are nearer the lastChar probe,
1297 //       // there is may be a net D$ win with reverse matching.
1298 //       // But, reversing loop inhibits unroll of inner loop
1299 //       // for unknown reason.  So, does running outer loop from
1300 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1301 //       for (int j = 0; j < targetCountLess1; j++) {
1302 //         if (target[targetOffset + j] != source[i+j]) {
1303 //           if ((cache & (1 << source[i+j])) == 0) {
1304 //             if (md2 < j+1) {
1305 //               i += j+1;
1306 //               continue outer_loop;
1307 //             }
1308 //           }
1309 //           i += md2;
1310 //           continue outer_loop;
1311 //         }
1312 //       }
1313 //       return i - sourceOffset;
1314 //     }
1315 //     if ((cache & (1 << src)) == 0) {
1316 //       i += targetCountLess1;
1317 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1318 //     i++;
1319 //   }
1320 //   return -1;
1321 // }
1322 
1323 //------------------------------string_indexOf------------------------
1324 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1325                                      jint cache_i, jint md2_i) {
1326 
1327   Node* no_ctrl  = NULL;
1328   float likely   = PROB_LIKELY(0.9);
1329   float unlikely = PROB_UNLIKELY(0.9);
1330 
1331   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1332 
1333   Node* source        = load_String_value(no_ctrl, string_object);
1334   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1335   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1336 
1337   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1338   jint target_length = target_array->length();
1339   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1340   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1341 
1342   // String.value field is known to be @Stable.
1343   if (UseImplicitStableValues) {
1344     target = cast_array_to_stable(target, target_type);
1345   }
1346 
1347   IdealKit kit(this, false, true);
1348 #define __ kit.
1349   Node* zero             = __ ConI(0);
1350   Node* one              = __ ConI(1);
1351   Node* cache            = __ ConI(cache_i);
1352   Node* md2              = __ ConI(md2_i);
1353   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1354   Node* targetCount      = __ ConI(target_length);
1355   Node* targetCountLess1 = __ ConI(target_length - 1);
1356   Node* targetOffset     = __ ConI(targetOffset_i);
1357   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1358 
1359   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1360   Node* outer_loop = __ make_label(2 /* goto */);
1361   Node* return_    = __ make_label(1);
1362 
1363   __ set(rtn,__ ConI(-1));
1364   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1365        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1366        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1367        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1368        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1369          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1370               Node* tpj = __ AddI(targetOffset, __ value(j));
1371               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1372               Node* ipj  = __ AddI(__ value(i), __ value(j));
1373               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1374               __ if_then(targ, BoolTest::ne, src2); {
1375                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1376                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1377                     __ increment(i, __ AddI(__ value(j), one));
1378                     __ goto_(outer_loop);
1379                   } __ end_if(); __ dead(j);
1380                 }__ end_if(); __ dead(j);
1381                 __ increment(i, md2);
1382                 __ goto_(outer_loop);
1383               }__ end_if();
1384               __ increment(j, one);
1385          }__ end_loop(); __ dead(j);
1386          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1387          __ goto_(return_);
1388        }__ end_if();
1389        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1390          __ increment(i, targetCountLess1);
1391        }__ end_if();
1392        __ increment(i, one);
1393        __ bind(outer_loop);
1394   }__ end_loop(); __ dead(i);
1395   __ bind(return_);
1396 
1397   // Final sync IdealKit and GraphKit.
1398   final_sync(kit);
1399   Node* result = __ value(rtn);
1400 #undef __
1401   C->set_has_loops(true);
1402   return result;
1403 }
1404 
1405 //------------------------------inline_string_indexOf------------------------
1406 bool LibraryCallKit::inline_string_indexOf() {
1407   Node* receiver = argument(0);
1408   Node* arg      = argument(1);
1409 
1410   Node* result;
1411   // Disable the use of pcmpestri until it can be guaranteed that
1412   // the load doesn't cross into the uncommited space.
1413   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1414       UseSSE42Intrinsics) {
1415     // Generate SSE4.2 version of indexOf
1416     // We currently only have match rules that use SSE4.2
1417 
1418     receiver = null_check(receiver);
1419     arg      = null_check(arg);
1420     if (stopped()) {
1421       return true;
1422     }
1423 
1424     ciInstanceKlass* str_klass = env()->String_klass();
1425     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1426 
1427     // Make the merge point
1428     RegionNode* result_rgn = new (C) RegionNode(4);
1429     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1430     Node* no_ctrl  = NULL;
1431 
1432     // Get start addr of source string
1433     Node* source = load_String_value(no_ctrl, receiver);
1434     Node* source_offset = load_String_offset(no_ctrl, receiver);
1435     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1436 
1437     // Get length of source string
1438     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1439 
1440     // Get start addr of substring
1441     Node* substr = load_String_value(no_ctrl, arg);
1442     Node* substr_offset = load_String_offset(no_ctrl, arg);
1443     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1444 
1445     // Get length of source string
1446     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1447 
1448     // Check for substr count > string count
1449     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1450     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1451     Node* if_gt = generate_slow_guard(bol, NULL);
1452     if (if_gt != NULL) {
1453       result_phi->init_req(2, intcon(-1));
1454       result_rgn->init_req(2, if_gt);
1455     }
1456 
1457     if (!stopped()) {
1458       // Check for substr count == 0
1459       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1460       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1461       Node* if_zero = generate_slow_guard(bol, NULL);
1462       if (if_zero != NULL) {
1463         result_phi->init_req(3, intcon(0));
1464         result_rgn->init_req(3, if_zero);
1465       }
1466     }
1467 
1468     if (!stopped()) {
1469       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1470       result_phi->init_req(1, result);
1471       result_rgn->init_req(1, control());
1472     }
1473     set_control(_gvn.transform(result_rgn));
1474     record_for_igvn(result_rgn);
1475     result = _gvn.transform(result_phi);
1476 
1477   } else { // Use LibraryCallKit::string_indexOf
1478     // don't intrinsify if argument isn't a constant string.
1479     if (!arg->is_Con()) {
1480      return false;
1481     }
1482     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1483     if (str_type == NULL) {
1484       return false;
1485     }
1486     ciInstanceKlass* klass = env()->String_klass();
1487     ciObject* str_const = str_type->const_oop();
1488     if (str_const == NULL || str_const->klass() != klass) {
1489       return false;
1490     }
1491     ciInstance* str = str_const->as_instance();
1492     assert(str != NULL, "must be instance");
1493 
1494     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1495     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1496 
1497     int o;
1498     int c;
1499     if (java_lang_String::has_offset_field()) {
1500       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1501       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1502     } else {
1503       o = 0;
1504       c = pat->length();
1505     }
1506 
1507     // constant strings have no offset and count == length which
1508     // simplifies the resulting code somewhat so lets optimize for that.
1509     if (o != 0 || c != pat->length()) {
1510      return false;
1511     }
1512 
1513     receiver = null_check(receiver, T_OBJECT);
1514     // NOTE: No null check on the argument is needed since it's a constant String oop.
1515     if (stopped()) {
1516       return true;
1517     }
1518 
1519     // The null string as a pattern always returns 0 (match at beginning of string)
1520     if (c == 0) {
1521       set_result(intcon(0));
1522       return true;
1523     }
1524 
1525     // Generate default indexOf
1526     jchar lastChar = pat->char_at(o + (c - 1));
1527     int cache = 0;
1528     int i;
1529     for (i = 0; i < c - 1; i++) {
1530       assert(i < pat->length(), "out of range");
1531       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1532     }
1533 
1534     int md2 = c;
1535     for (i = 0; i < c - 1; i++) {
1536       assert(i < pat->length(), "out of range");
1537       if (pat->char_at(o + i) == lastChar) {
1538         md2 = (c - 1) - i;
1539       }
1540     }
1541 
1542     result = string_indexOf(receiver, pat, o, cache, md2);
1543   }
1544   set_result(result);
1545   return true;
1546 }
1547 
1548 //--------------------------round_double_node--------------------------------
1549 // Round a double node if necessary.
1550 Node* LibraryCallKit::round_double_node(Node* n) {
1551   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1552     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1553   return n;
1554 }
1555 
1556 //------------------------------inline_math-----------------------------------
1557 // public static double Math.abs(double)
1558 // public static double Math.sqrt(double)
1559 // public static double Math.log(double)
1560 // public static double Math.log10(double)
1561 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1562   Node* arg = round_double_node(argument(0));
1563   Node* n;
1564   switch (id) {
1565   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1566   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1567   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1568   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1569   default:  fatal_unexpected_iid(id);  break;
1570   }
1571   set_result(_gvn.transform(n));
1572   return true;
1573 }
1574 
1575 //------------------------------inline_trig----------------------------------
1576 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1577 // argument reduction which will turn into a fast/slow diamond.
1578 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1579   Node* arg = round_double_node(argument(0));
1580   Node* n = NULL;
1581 
1582   switch (id) {
1583   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1584   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1585   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1586   default:  fatal_unexpected_iid(id);  break;
1587   }
1588   n = _gvn.transform(n);
1589 
1590   // Rounding required?  Check for argument reduction!
1591   if (Matcher::strict_fp_requires_explicit_rounding) {
1592     static const double     pi_4 =  0.7853981633974483;
1593     static const double neg_pi_4 = -0.7853981633974483;
1594     // pi/2 in 80-bit extended precision
1595     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1596     // -pi/2 in 80-bit extended precision
1597     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1598     // Cutoff value for using this argument reduction technique
1599     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1600     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1601 
1602     // Pseudocode for sin:
1603     // if (x <= Math.PI / 4.0) {
1604     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1605     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1606     // } else {
1607     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1608     // }
1609     // return StrictMath.sin(x);
1610 
1611     // Pseudocode for cos:
1612     // if (x <= Math.PI / 4.0) {
1613     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1614     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1615     // } else {
1616     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1617     // }
1618     // return StrictMath.cos(x);
1619 
1620     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1621     // requires a special machine instruction to load it.  Instead we'll try
1622     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1623     // probably do the math inside the SIN encoding.
1624 
1625     // Make the merge point
1626     RegionNode* r = new (C) RegionNode(3);
1627     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1628 
1629     // Flatten arg so we need only 1 test
1630     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1631     // Node for PI/4 constant
1632     Node *pi4 = makecon(TypeD::make(pi_4));
1633     // Check PI/4 : abs(arg)
1634     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1635     // Check: If PI/4 < abs(arg) then go slow
1636     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1637     // Branch either way
1638     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1639     set_control(opt_iff(r,iff));
1640 
1641     // Set fast path result
1642     phi->init_req(2, n);
1643 
1644     // Slow path - non-blocking leaf call
1645     Node* call = NULL;
1646     switch (id) {
1647     case vmIntrinsics::_dsin:
1648       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1649                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1650                                "Sin", NULL, arg, top());
1651       break;
1652     case vmIntrinsics::_dcos:
1653       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1654                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1655                                "Cos", NULL, arg, top());
1656       break;
1657     case vmIntrinsics::_dtan:
1658       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1659                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1660                                "Tan", NULL, arg, top());
1661       break;
1662     }
1663     assert(control()->in(0) == call, "");
1664     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1665     r->init_req(1, control());
1666     phi->init_req(1, slow_result);
1667 
1668     // Post-merge
1669     set_control(_gvn.transform(r));
1670     record_for_igvn(r);
1671     n = _gvn.transform(phi);
1672 
1673     C->set_has_split_ifs(true); // Has chance for split-if optimization
1674   }
1675   set_result(n);
1676   return true;
1677 }
1678 
1679 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1680   //-------------------
1681   //result=(result.isNaN())? funcAddr():result;
1682   // Check: If isNaN() by checking result!=result? then either trap
1683   // or go to runtime
1684   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1685   // Build the boolean node
1686   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1687 
1688   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1689     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1690       // The pow or exp intrinsic returned a NaN, which requires a call
1691       // to the runtime.  Recompile with the runtime call.
1692       uncommon_trap(Deoptimization::Reason_intrinsic,
1693                     Deoptimization::Action_make_not_entrant);
1694     }
1695     set_result(result);
1696   } else {
1697     // If this inlining ever returned NaN in the past, we compile a call
1698     // to the runtime to properly handle corner cases
1699 
1700     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1701     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1702     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1703 
1704     if (!if_slow->is_top()) {
1705       RegionNode* result_region = new (C) RegionNode(3);
1706       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1707 
1708       result_region->init_req(1, if_fast);
1709       result_val->init_req(1, result);
1710 
1711       set_control(if_slow);
1712 
1713       const TypePtr* no_memory_effects = NULL;
1714       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1715                                    no_memory_effects,
1716                                    x, top(), y, y ? top() : NULL);
1717       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1718 #ifdef ASSERT
1719       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1720       assert(value_top == top(), "second value must be top");
1721 #endif
1722 
1723       result_region->init_req(2, control());
1724       result_val->init_req(2, value);
1725       set_result(result_region, result_val);
1726     } else {
1727       set_result(result);
1728     }
1729   }
1730 }
1731 
1732 //------------------------------inline_exp-------------------------------------
1733 // Inline exp instructions, if possible.  The Intel hardware only misses
1734 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1735 bool LibraryCallKit::inline_exp() {
1736   Node* arg = round_double_node(argument(0));
1737   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1738 
1739   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1740 
1741   C->set_has_split_ifs(true); // Has chance for split-if optimization
1742   return true;
1743 }
1744 
1745 //------------------------------inline_pow-------------------------------------
1746 // Inline power instructions, if possible.
1747 bool LibraryCallKit::inline_pow() {
1748   // Pseudocode for pow
1749   // if (x <= 0.0) {
1750   //   long longy = (long)y;
1751   //   if ((double)longy == y) { // if y is long
1752   //     if (y + 1 == y) longy = 0; // huge number: even
1753   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1754   //   } else {
1755   //     result = NaN;
1756   //   }
1757   // } else {
1758   //   result = DPow(x,y);
1759   // }
1760   // if (result != result)?  {
1761   //   result = uncommon_trap() or runtime_call();
1762   // }
1763   // return result;
1764 
1765   Node* x = round_double_node(argument(0));
1766   Node* y = round_double_node(argument(2));
1767 
1768   Node* result = NULL;
1769 
1770   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1771     // Short form: skip the fancy tests and just check for NaN result.
1772     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1773   } else {
1774     // If this inlining ever returned NaN in the past, include all
1775     // checks + call to the runtime.
1776 
1777     // Set the merge point for If node with condition of (x <= 0.0)
1778     // There are four possible paths to region node and phi node
1779     RegionNode *r = new (C) RegionNode(4);
1780     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1781 
1782     // Build the first if node: if (x <= 0.0)
1783     // Node for 0 constant
1784     Node *zeronode = makecon(TypeD::ZERO);
1785     // Check x:0
1786     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1787     // Check: If (x<=0) then go complex path
1788     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1789     // Branch either way
1790     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1791     // Fast path taken; set region slot 3
1792     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1793     r->init_req(3,fast_taken); // Capture fast-control
1794 
1795     // Fast path not-taken, i.e. slow path
1796     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1797 
1798     // Set fast path result
1799     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1800     phi->init_req(3, fast_result);
1801 
1802     // Complex path
1803     // Build the second if node (if y is long)
1804     // Node for (long)y
1805     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1806     // Node for (double)((long) y)
1807     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1808     // Check (double)((long) y) : y
1809     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1810     // Check if (y isn't long) then go to slow path
1811 
1812     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1813     // Branch either way
1814     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1815     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1816 
1817     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1818 
1819     // Calculate DPow(abs(x), y)*(1 & (long)y)
1820     // Node for constant 1
1821     Node *conone = longcon(1);
1822     // 1& (long)y
1823     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1824 
1825     // A huge number is always even. Detect a huge number by checking
1826     // if y + 1 == y and set integer to be tested for parity to 0.
1827     // Required for corner case:
1828     // (long)9.223372036854776E18 = max_jlong
1829     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1830     // max_jlong is odd but 9.223372036854776E18 is even
1831     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1832     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1833     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1834     Node* correctedsign = NULL;
1835     if (ConditionalMoveLimit != 0) {
1836       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1837     } else {
1838       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1839       RegionNode *r = new (C) RegionNode(3);
1840       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1841       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1842       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1843       phi->init_req(1, signnode);
1844       phi->init_req(2, longcon(0));
1845       correctedsign = _gvn.transform(phi);
1846       ylong_path = _gvn.transform(r);
1847       record_for_igvn(r);
1848     }
1849 
1850     // zero node
1851     Node *conzero = longcon(0);
1852     // Check (1&(long)y)==0?
1853     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1854     // Check if (1&(long)y)!=0?, if so the result is negative
1855     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1856     // abs(x)
1857     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1858     // abs(x)^y
1859     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1860     // -abs(x)^y
1861     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1862     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1863     Node *signresult = NULL;
1864     if (ConditionalMoveLimit != 0) {
1865       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1866     } else {
1867       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1868       RegionNode *r = new (C) RegionNode(3);
1869       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1870       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1871       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1872       phi->init_req(1, absxpowy);
1873       phi->init_req(2, negabsxpowy);
1874       signresult = _gvn.transform(phi);
1875       ylong_path = _gvn.transform(r);
1876       record_for_igvn(r);
1877     }
1878     // Set complex path fast result
1879     r->init_req(2, ylong_path);
1880     phi->init_req(2, signresult);
1881 
1882     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1883     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1884     r->init_req(1,slow_path);
1885     phi->init_req(1,slow_result);
1886 
1887     // Post merge
1888     set_control(_gvn.transform(r));
1889     record_for_igvn(r);
1890     result = _gvn.transform(phi);
1891   }
1892 
1893   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1894 
1895   C->set_has_split_ifs(true); // Has chance for split-if optimization
1896   return true;
1897 }
1898 
1899 //------------------------------runtime_math-----------------------------
1900 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1901   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1902          "must be (DD)D or (D)D type");
1903 
1904   // Inputs
1905   Node* a = round_double_node(argument(0));
1906   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1907 
1908   const TypePtr* no_memory_effects = NULL;
1909   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1910                                  no_memory_effects,
1911                                  a, top(), b, b ? top() : NULL);
1912   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1913 #ifdef ASSERT
1914   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1915   assert(value_top == top(), "second value must be top");
1916 #endif
1917 
1918   set_result(value);
1919   return true;
1920 }
1921 
1922 //------------------------------inline_math_native-----------------------------
1923 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1924 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1925   switch (id) {
1926     // These intrinsics are not properly supported on all hardware
1927   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1928     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1929   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1930     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1931   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1932     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1933 
1934   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1935     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1936   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1937     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1938 
1939     // These intrinsics are supported on all hardware
1940   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1941   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1942 
1943   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1944     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1945   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1946     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1947 #undef FN_PTR
1948 
1949    // These intrinsics are not yet correctly implemented
1950   case vmIntrinsics::_datan2:
1951     return false;
1952 
1953   default:
1954     fatal_unexpected_iid(id);
1955     return false;
1956   }
1957 }
1958 
1959 static bool is_simple_name(Node* n) {
1960   return (n->req() == 1         // constant
1961           || (n->is_Type() && n->as_Type()->type()->singleton())
1962           || n->is_Proj()       // parameter or return value
1963           || n->is_Phi()        // local of some sort
1964           );
1965 }
1966 
1967 //----------------------------inline_min_max-----------------------------------
1968 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1969   set_result(generate_min_max(id, argument(0), argument(1)));
1970   return true;
1971 }
1972 
1973 void LibraryCallKit::inline_math_mathExact(Node* math) {
1974   // If we didn't get the expected opcode it means we have optimized
1975   // the node to something else and don't need the exception edge.
1976   if (!math->is_MathExact()) {
1977     set_result(math);
1978     return;
1979   }
1980 
1981   Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
1982   Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
1983 
1984   Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
1985   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1986   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1987   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1988 
1989   {
1990     PreserveJVMState pjvms(this);
1991     PreserveReexecuteState preexecs(this);
1992     jvms()->set_should_reexecute(true);
1993 
1994     set_control(slow_path);
1995     set_i_o(i_o());
1996 
1997     uncommon_trap(Deoptimization::Reason_intrinsic,
1998                   Deoptimization::Action_none);
1999   }
2000 
2001   set_control(fast_path);
2002   set_result(result);
2003 }
2004 
2005 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2006   Node* arg1 = argument(0);
2007   Node* arg2 = NULL;
2008 
2009   if (is_increment) {
2010     arg2 = intcon(1);
2011   } else {
2012     arg2 = argument(1);
2013   }
2014 
2015   Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
2016   inline_math_mathExact(add);
2017   return true;
2018 }
2019 
2020 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2021   Node* arg1 = argument(0); // type long
2022   // argument(1) == TOP
2023   Node* arg2 = NULL;
2024 
2025   if (is_increment) {
2026     arg2 = longcon(1);
2027   } else {
2028     arg2 = argument(2); // type long
2029     // argument(3) == TOP
2030   }
2031 
2032   Node* add = _gvn.transform(new(C) AddExactLNode(NULL, arg1, arg2));
2033   inline_math_mathExact(add);
2034   return true;
2035 }
2036 
2037 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2038   Node* arg1 = argument(0);
2039   Node* arg2 = NULL;
2040 
2041   if (is_decrement) {
2042     arg2 = intcon(1);
2043   } else {
2044     arg2 = argument(1);
2045   }
2046 
2047   Node* sub = _gvn.transform(new(C) SubExactINode(NULL, arg1, arg2));
2048   inline_math_mathExact(sub);
2049   return true;
2050 }
2051 
2052 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2053   Node* arg1 = argument(0); // type long
2054   // argument(1) == TOP
2055   Node* arg2 = NULL;
2056 
2057   if (is_decrement) {
2058     arg2 = longcon(1);
2059   } else {
2060     arg2 = argument(2); // type long
2061     // argument(3) == TOP
2062   }
2063 
2064   Node* sub = _gvn.transform(new(C) SubExactLNode(NULL, arg1, arg2));
2065   inline_math_mathExact(sub);
2066   return true;
2067 }
2068 
2069 bool LibraryCallKit::inline_math_negateExactI() {
2070   Node* arg1 = argument(0);
2071 
2072   Node* neg = _gvn.transform(new(C) NegExactINode(NULL, arg1));
2073   inline_math_mathExact(neg);
2074   return true;
2075 }
2076 
2077 bool LibraryCallKit::inline_math_negateExactL() {
2078   Node* arg1 = argument(0);
2079   // argument(1) == TOP
2080 
2081   Node* neg = _gvn.transform(new(C) NegExactLNode(NULL, arg1));
2082   inline_math_mathExact(neg);
2083   return true;
2084 }
2085 
2086 bool LibraryCallKit::inline_math_multiplyExactI() {
2087   Node* arg1 = argument(0);
2088   Node* arg2 = argument(1);
2089 
2090   Node* mul = _gvn.transform(new(C) MulExactINode(NULL, arg1, arg2));
2091   inline_math_mathExact(mul);
2092   return true;
2093 }
2094 
2095 bool LibraryCallKit::inline_math_multiplyExactL() {
2096   Node* arg1 = argument(0);
2097   // argument(1) == TOP
2098   Node* arg2 = argument(2);
2099   // argument(3) == TOP
2100 
2101   Node* mul = _gvn.transform(new(C) MulExactLNode(NULL, arg1, arg2));
2102   inline_math_mathExact(mul);
2103   return true;
2104 }
2105 
2106 Node*
2107 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2108   // These are the candidate return value:
2109   Node* xvalue = x0;
2110   Node* yvalue = y0;
2111 
2112   if (xvalue == yvalue) {
2113     return xvalue;
2114   }
2115 
2116   bool want_max = (id == vmIntrinsics::_max);
2117 
2118   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2119   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2120   if (txvalue == NULL || tyvalue == NULL)  return top();
2121   // This is not really necessary, but it is consistent with a
2122   // hypothetical MaxINode::Value method:
2123   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2124 
2125   // %%% This folding logic should (ideally) be in a different place.
2126   // Some should be inside IfNode, and there to be a more reliable
2127   // transformation of ?: style patterns into cmoves.  We also want
2128   // more powerful optimizations around cmove and min/max.
2129 
2130   // Try to find a dominating comparison of these guys.
2131   // It can simplify the index computation for Arrays.copyOf
2132   // and similar uses of System.arraycopy.
2133   // First, compute the normalized version of CmpI(x, y).
2134   int   cmp_op = Op_CmpI;
2135   Node* xkey = xvalue;
2136   Node* ykey = yvalue;
2137   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2138   if (ideal_cmpxy->is_Cmp()) {
2139     // E.g., if we have CmpI(length - offset, count),
2140     // it might idealize to CmpI(length, count + offset)
2141     cmp_op = ideal_cmpxy->Opcode();
2142     xkey = ideal_cmpxy->in(1);
2143     ykey = ideal_cmpxy->in(2);
2144   }
2145 
2146   // Start by locating any relevant comparisons.
2147   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2148   Node* cmpxy = NULL;
2149   Node* cmpyx = NULL;
2150   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2151     Node* cmp = start_from->fast_out(k);
2152     if (cmp->outcnt() > 0 &&            // must have prior uses
2153         cmp->in(0) == NULL &&           // must be context-independent
2154         cmp->Opcode() == cmp_op) {      // right kind of compare
2155       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2156       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2157     }
2158   }
2159 
2160   const int NCMPS = 2;
2161   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2162   int cmpn;
2163   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2164     if (cmps[cmpn] != NULL)  break;     // find a result
2165   }
2166   if (cmpn < NCMPS) {
2167     // Look for a dominating test that tells us the min and max.
2168     int depth = 0;                // Limit search depth for speed
2169     Node* dom = control();
2170     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2171       if (++depth >= 100)  break;
2172       Node* ifproj = dom;
2173       if (!ifproj->is_Proj())  continue;
2174       Node* iff = ifproj->in(0);
2175       if (!iff->is_If())  continue;
2176       Node* bol = iff->in(1);
2177       if (!bol->is_Bool())  continue;
2178       Node* cmp = bol->in(1);
2179       if (cmp == NULL)  continue;
2180       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2181         if (cmps[cmpn] == cmp)  break;
2182       if (cmpn == NCMPS)  continue;
2183       BoolTest::mask btest = bol->as_Bool()->_test._test;
2184       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2185       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2186       // At this point, we know that 'x btest y' is true.
2187       switch (btest) {
2188       case BoolTest::eq:
2189         // They are proven equal, so we can collapse the min/max.
2190         // Either value is the answer.  Choose the simpler.
2191         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2192           return yvalue;
2193         return xvalue;
2194       case BoolTest::lt:          // x < y
2195       case BoolTest::le:          // x <= y
2196         return (want_max ? yvalue : xvalue);
2197       case BoolTest::gt:          // x > y
2198       case BoolTest::ge:          // x >= y
2199         return (want_max ? xvalue : yvalue);
2200       }
2201     }
2202   }
2203 
2204   // We failed to find a dominating test.
2205   // Let's pick a test that might GVN with prior tests.
2206   Node*          best_bol   = NULL;
2207   BoolTest::mask best_btest = BoolTest::illegal;
2208   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2209     Node* cmp = cmps[cmpn];
2210     if (cmp == NULL)  continue;
2211     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2212       Node* bol = cmp->fast_out(j);
2213       if (!bol->is_Bool())  continue;
2214       BoolTest::mask btest = bol->as_Bool()->_test._test;
2215       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2216       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2217       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2218         best_bol   = bol->as_Bool();
2219         best_btest = btest;
2220       }
2221     }
2222   }
2223 
2224   Node* answer_if_true  = NULL;
2225   Node* answer_if_false = NULL;
2226   switch (best_btest) {
2227   default:
2228     if (cmpxy == NULL)
2229       cmpxy = ideal_cmpxy;
2230     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2231     // and fall through:
2232   case BoolTest::lt:          // x < y
2233   case BoolTest::le:          // x <= y
2234     answer_if_true  = (want_max ? yvalue : xvalue);
2235     answer_if_false = (want_max ? xvalue : yvalue);
2236     break;
2237   case BoolTest::gt:          // x > y
2238   case BoolTest::ge:          // x >= y
2239     answer_if_true  = (want_max ? xvalue : yvalue);
2240     answer_if_false = (want_max ? yvalue : xvalue);
2241     break;
2242   }
2243 
2244   jint hi, lo;
2245   if (want_max) {
2246     // We can sharpen the minimum.
2247     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2248     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2249   } else {
2250     // We can sharpen the maximum.
2251     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2252     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2253   }
2254 
2255   // Use a flow-free graph structure, to avoid creating excess control edges
2256   // which could hinder other optimizations.
2257   // Since Math.min/max is often used with arraycopy, we want
2258   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2259   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2260                                answer_if_false, answer_if_true,
2261                                TypeInt::make(lo, hi, widen));
2262 
2263   return _gvn.transform(cmov);
2264 
2265   /*
2266   // This is not as desirable as it may seem, since Min and Max
2267   // nodes do not have a full set of optimizations.
2268   // And they would interfere, anyway, with 'if' optimizations
2269   // and with CMoveI canonical forms.
2270   switch (id) {
2271   case vmIntrinsics::_min:
2272     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2273   case vmIntrinsics::_max:
2274     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2275   default:
2276     ShouldNotReachHere();
2277   }
2278   */
2279 }
2280 
2281 inline int
2282 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2283   const TypePtr* base_type = TypePtr::NULL_PTR;
2284   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2285   if (base_type == NULL) {
2286     // Unknown type.
2287     return Type::AnyPtr;
2288   } else if (base_type == TypePtr::NULL_PTR) {
2289     // Since this is a NULL+long form, we have to switch to a rawptr.
2290     base   = _gvn.transform(new (C) CastX2PNode(offset));
2291     offset = MakeConX(0);
2292     return Type::RawPtr;
2293   } else if (base_type->base() == Type::RawPtr) {
2294     return Type::RawPtr;
2295   } else if (base_type->isa_oopptr()) {
2296     // Base is never null => always a heap address.
2297     if (base_type->ptr() == TypePtr::NotNull) {
2298       return Type::OopPtr;
2299     }
2300     // Offset is small => always a heap address.
2301     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2302     if (offset_type != NULL &&
2303         base_type->offset() == 0 &&     // (should always be?)
2304         offset_type->_lo >= 0 &&
2305         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2306       return Type::OopPtr;
2307     }
2308     // Otherwise, it might either be oop+off or NULL+addr.
2309     return Type::AnyPtr;
2310   } else {
2311     // No information:
2312     return Type::AnyPtr;
2313   }
2314 }
2315 
2316 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2317   int kind = classify_unsafe_addr(base, offset);
2318   if (kind == Type::RawPtr) {
2319     return basic_plus_adr(top(), base, offset);
2320   } else {
2321     return basic_plus_adr(base, offset);
2322   }
2323 }
2324 
2325 //--------------------------inline_number_methods-----------------------------
2326 // inline int     Integer.numberOfLeadingZeros(int)
2327 // inline int        Long.numberOfLeadingZeros(long)
2328 //
2329 // inline int     Integer.numberOfTrailingZeros(int)
2330 // inline int        Long.numberOfTrailingZeros(long)
2331 //
2332 // inline int     Integer.bitCount(int)
2333 // inline int        Long.bitCount(long)
2334 //
2335 // inline char  Character.reverseBytes(char)
2336 // inline short     Short.reverseBytes(short)
2337 // inline int     Integer.reverseBytes(int)
2338 // inline long       Long.reverseBytes(long)
2339 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2340   Node* arg = argument(0);
2341   Node* n;
2342   switch (id) {
2343   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2344   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2345   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2346   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2347   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2348   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2349   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2350   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2351   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2352   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2353   default:  fatal_unexpected_iid(id);  break;
2354   }
2355   set_result(_gvn.transform(n));
2356   return true;
2357 }
2358 
2359 //----------------------------inline_unsafe_access----------------------------
2360 
2361 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2362 
2363 // Helper that guards and inserts a pre-barrier.
2364 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2365                                         Node* pre_val, bool need_mem_bar) {
2366   // We could be accessing the referent field of a reference object. If so, when G1
2367   // is enabled, we need to log the value in the referent field in an SATB buffer.
2368   // This routine performs some compile time filters and generates suitable
2369   // runtime filters that guard the pre-barrier code.
2370   // Also add memory barrier for non volatile load from the referent field
2371   // to prevent commoning of loads across safepoint.
2372   if (!UseG1GC && !need_mem_bar)
2373     return;
2374 
2375   // Some compile time checks.
2376 
2377   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2378   const TypeX* otype = offset->find_intptr_t_type();
2379   if (otype != NULL && otype->is_con() &&
2380       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2381     // Constant offset but not the reference_offset so just return
2382     return;
2383   }
2384 
2385   // We only need to generate the runtime guards for instances.
2386   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2387   if (btype != NULL) {
2388     if (btype->isa_aryptr()) {
2389       // Array type so nothing to do
2390       return;
2391     }
2392 
2393     const TypeInstPtr* itype = btype->isa_instptr();
2394     if (itype != NULL) {
2395       // Can the klass of base_oop be statically determined to be
2396       // _not_ a sub-class of Reference and _not_ Object?
2397       ciKlass* klass = itype->klass();
2398       if ( klass->is_loaded() &&
2399           !klass->is_subtype_of(env()->Reference_klass()) &&
2400           !env()->Object_klass()->is_subtype_of(klass)) {
2401         return;
2402       }
2403     }
2404   }
2405 
2406   // The compile time filters did not reject base_oop/offset so
2407   // we need to generate the following runtime filters
2408   //
2409   // if (offset == java_lang_ref_Reference::_reference_offset) {
2410   //   if (instance_of(base, java.lang.ref.Reference)) {
2411   //     pre_barrier(_, pre_val, ...);
2412   //   }
2413   // }
2414 
2415   float likely   = PROB_LIKELY(  0.999);
2416   float unlikely = PROB_UNLIKELY(0.999);
2417 
2418   IdealKit ideal(this);
2419 #define __ ideal.
2420 
2421   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2422 
2423   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2424       // Update graphKit memory and control from IdealKit.
2425       sync_kit(ideal);
2426 
2427       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2428       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2429 
2430       // Update IdealKit memory and control from graphKit.
2431       __ sync_kit(this);
2432 
2433       Node* one = __ ConI(1);
2434       // is_instof == 0 if base_oop == NULL
2435       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2436 
2437         // Update graphKit from IdeakKit.
2438         sync_kit(ideal);
2439 
2440         // Use the pre-barrier to record the value in the referent field
2441         pre_barrier(false /* do_load */,
2442                     __ ctrl(),
2443                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2444                     pre_val /* pre_val */,
2445                     T_OBJECT);
2446         if (need_mem_bar) {
2447           // Add memory barrier to prevent commoning reads from this field
2448           // across safepoint since GC can change its value.
2449           insert_mem_bar(Op_MemBarCPUOrder);
2450         }
2451         // Update IdealKit from graphKit.
2452         __ sync_kit(this);
2453 
2454       } __ end_if(); // _ref_type != ref_none
2455   } __ end_if(); // offset == referent_offset
2456 
2457   // Final sync IdealKit and GraphKit.
2458   final_sync(ideal);
2459 #undef __
2460 }
2461 
2462 
2463 // Interpret Unsafe.fieldOffset cookies correctly:
2464 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2465 
2466 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2467   // Attempt to infer a sharper value type from the offset and base type.
2468   ciKlass* sharpened_klass = NULL;
2469 
2470   // See if it is an instance field, with an object type.
2471   if (alias_type->field() != NULL) {
2472     assert(!is_native_ptr, "native pointer op cannot use a java address");
2473     if (alias_type->field()->type()->is_klass()) {
2474       sharpened_klass = alias_type->field()->type()->as_klass();
2475     }
2476   }
2477 
2478   // See if it is a narrow oop array.
2479   if (adr_type->isa_aryptr()) {
2480     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2481       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2482       if (elem_type != NULL) {
2483         sharpened_klass = elem_type->klass();
2484       }
2485     }
2486   }
2487 
2488   // The sharpened class might be unloaded if there is no class loader
2489   // contraint in place.
2490   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2491     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2492 
2493 #ifndef PRODUCT
2494     if (C->print_intrinsics() || C->print_inlining()) {
2495       tty->print("  from base type: ");  adr_type->dump();
2496       tty->print("  sharpened value: ");  tjp->dump();
2497     }
2498 #endif
2499     // Sharpen the value type.
2500     return tjp;
2501   }
2502   return NULL;
2503 }
2504 
2505 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2506   if (callee()->is_static())  return false;  // caller must have the capability!
2507 
2508 #ifndef PRODUCT
2509   {
2510     ResourceMark rm;
2511     // Check the signatures.
2512     ciSignature* sig = callee()->signature();
2513 #ifdef ASSERT
2514     if (!is_store) {
2515       // Object getObject(Object base, int/long offset), etc.
2516       BasicType rtype = sig->return_type()->basic_type();
2517       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2518           rtype = T_ADDRESS;  // it is really a C void*
2519       assert(rtype == type, "getter must return the expected value");
2520       if (!is_native_ptr) {
2521         assert(sig->count() == 2, "oop getter has 2 arguments");
2522         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2523         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2524       } else {
2525         assert(sig->count() == 1, "native getter has 1 argument");
2526         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2527       }
2528     } else {
2529       // void putObject(Object base, int/long offset, Object x), etc.
2530       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2531       if (!is_native_ptr) {
2532         assert(sig->count() == 3, "oop putter has 3 arguments");
2533         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2534         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2535       } else {
2536         assert(sig->count() == 2, "native putter has 2 arguments");
2537         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2538       }
2539       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2540       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2541         vtype = T_ADDRESS;  // it is really a C void*
2542       assert(vtype == type, "putter must accept the expected value");
2543     }
2544 #endif // ASSERT
2545  }
2546 #endif //PRODUCT
2547 
2548   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2549 
2550   Node* receiver = argument(0);  // type: oop
2551 
2552   // Build address expression.  See the code in inline_unsafe_prefetch.
2553   Node* adr;
2554   Node* heap_base_oop = top();
2555   Node* offset = top();
2556   Node* val;
2557 
2558   if (!is_native_ptr) {
2559     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2560     Node* base = argument(1);  // type: oop
2561     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2562     offset = argument(2);  // type: long
2563     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2564     // to be plain byte offsets, which are also the same as those accepted
2565     // by oopDesc::field_base.
2566     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2567            "fieldOffset must be byte-scaled");
2568     // 32-bit machines ignore the high half!
2569     offset = ConvL2X(offset);
2570     adr = make_unsafe_address(base, offset);
2571     heap_base_oop = base;
2572     val = is_store ? argument(4) : NULL;
2573   } else {
2574     Node* ptr = argument(1);  // type: long
2575     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2576     adr = make_unsafe_address(NULL, ptr);
2577     val = is_store ? argument(3) : NULL;
2578   }
2579 
2580   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2581 
2582   // First guess at the value type.
2583   const Type *value_type = Type::get_const_basic_type(type);
2584 
2585   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2586   // there was not enough information to nail it down.
2587   Compile::AliasType* alias_type = C->alias_type(adr_type);
2588   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2589 
2590   // We will need memory barriers unless we can determine a unique
2591   // alias category for this reference.  (Note:  If for some reason
2592   // the barriers get omitted and the unsafe reference begins to "pollute"
2593   // the alias analysis of the rest of the graph, either Compile::can_alias
2594   // or Compile::must_alias will throw a diagnostic assert.)
2595   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2596 
2597   // If we are reading the value of the referent field of a Reference
2598   // object (either by using Unsafe directly or through reflection)
2599   // then, if G1 is enabled, we need to record the referent in an
2600   // SATB log buffer using the pre-barrier mechanism.
2601   // Also we need to add memory barrier to prevent commoning reads
2602   // from this field across safepoint since GC can change its value.
2603   bool need_read_barrier = !is_native_ptr && !is_store &&
2604                            offset != top() && heap_base_oop != top();
2605 
2606   if (!is_store && type == T_OBJECT) {
2607     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2608     if (tjp != NULL) {
2609       value_type = tjp;
2610     }
2611   }
2612 
2613   receiver = null_check(receiver);
2614   if (stopped()) {
2615     return true;
2616   }
2617   // Heap pointers get a null-check from the interpreter,
2618   // as a courtesy.  However, this is not guaranteed by Unsafe,
2619   // and it is not possible to fully distinguish unintended nulls
2620   // from intended ones in this API.
2621 
2622   if (is_volatile) {
2623     // We need to emit leading and trailing CPU membars (see below) in
2624     // addition to memory membars when is_volatile. This is a little
2625     // too strong, but avoids the need to insert per-alias-type
2626     // volatile membars (for stores; compare Parse::do_put_xxx), which
2627     // we cannot do effectively here because we probably only have a
2628     // rough approximation of type.
2629     need_mem_bar = true;
2630     // For Stores, place a memory ordering barrier now.
2631     if (is_store)
2632       insert_mem_bar(Op_MemBarRelease);
2633   }
2634 
2635   // Memory barrier to prevent normal and 'unsafe' accesses from
2636   // bypassing each other.  Happens after null checks, so the
2637   // exception paths do not take memory state from the memory barrier,
2638   // so there's no problems making a strong assert about mixing users
2639   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2640   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2641   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2642 
2643   if (!is_store) {
2644     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2645     // load value
2646     switch (type) {
2647     case T_BOOLEAN:
2648     case T_CHAR:
2649     case T_BYTE:
2650     case T_SHORT:
2651     case T_INT:
2652     case T_LONG:
2653     case T_FLOAT:
2654     case T_DOUBLE:
2655       break;
2656     case T_OBJECT:
2657       if (need_read_barrier) {
2658         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2659       }
2660       break;
2661     case T_ADDRESS:
2662       // Cast to an int type.
2663       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2664       p = ConvX2L(p);
2665       break;
2666     default:
2667       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2668       break;
2669     }
2670     // The load node has the control of the preceding MemBarCPUOrder.  All
2671     // following nodes will have the control of the MemBarCPUOrder inserted at
2672     // the end of this method.  So, pushing the load onto the stack at a later
2673     // point is fine.
2674     set_result(p);
2675   } else {
2676     // place effect of store into memory
2677     switch (type) {
2678     case T_DOUBLE:
2679       val = dstore_rounding(val);
2680       break;
2681     case T_ADDRESS:
2682       // Repackage the long as a pointer.
2683       val = ConvL2X(val);
2684       val = _gvn.transform(new (C) CastX2PNode(val));
2685       break;
2686     }
2687 
2688     if (type != T_OBJECT ) {
2689       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2690     } else {
2691       // Possibly an oop being stored to Java heap or native memory
2692       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2693         // oop to Java heap.
2694         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2695       } else {
2696         // We can't tell at compile time if we are storing in the Java heap or outside
2697         // of it. So we need to emit code to conditionally do the proper type of
2698         // store.
2699 
2700         IdealKit ideal(this);
2701 #define __ ideal.
2702         // QQQ who knows what probability is here??
2703         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2704           // Sync IdealKit and graphKit.
2705           sync_kit(ideal);
2706           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2707           // Update IdealKit memory.
2708           __ sync_kit(this);
2709         } __ else_(); {
2710           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2711         } __ end_if();
2712         // Final sync IdealKit and GraphKit.
2713         final_sync(ideal);
2714 #undef __
2715       }
2716     }
2717   }
2718 
2719   if (is_volatile) {
2720     if (!is_store)
2721       insert_mem_bar(Op_MemBarAcquire);
2722     else
2723       insert_mem_bar(Op_MemBarVolatile);
2724   }
2725 
2726   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2727 
2728   return true;
2729 }
2730 
2731 //----------------------------inline_unsafe_prefetch----------------------------
2732 
2733 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2734 #ifndef PRODUCT
2735   {
2736     ResourceMark rm;
2737     // Check the signatures.
2738     ciSignature* sig = callee()->signature();
2739 #ifdef ASSERT
2740     // Object getObject(Object base, int/long offset), etc.
2741     BasicType rtype = sig->return_type()->basic_type();
2742     if (!is_native_ptr) {
2743       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2744       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2745       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2746     } else {
2747       assert(sig->count() == 1, "native prefetch has 1 argument");
2748       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2749     }
2750 #endif // ASSERT
2751   }
2752 #endif // !PRODUCT
2753 
2754   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2755 
2756   const int idx = is_static ? 0 : 1;
2757   if (!is_static) {
2758     null_check_receiver();
2759     if (stopped()) {
2760       return true;
2761     }
2762   }
2763 
2764   // Build address expression.  See the code in inline_unsafe_access.
2765   Node *adr;
2766   if (!is_native_ptr) {
2767     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2768     Node* base   = argument(idx + 0);  // type: oop
2769     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2770     Node* offset = argument(idx + 1);  // type: long
2771     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2772     // to be plain byte offsets, which are also the same as those accepted
2773     // by oopDesc::field_base.
2774     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2775            "fieldOffset must be byte-scaled");
2776     // 32-bit machines ignore the high half!
2777     offset = ConvL2X(offset);
2778     adr = make_unsafe_address(base, offset);
2779   } else {
2780     Node* ptr = argument(idx + 0);  // type: long
2781     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2782     adr = make_unsafe_address(NULL, ptr);
2783   }
2784 
2785   // Generate the read or write prefetch
2786   Node *prefetch;
2787   if (is_store) {
2788     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2789   } else {
2790     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2791   }
2792   prefetch->init_req(0, control());
2793   set_i_o(_gvn.transform(prefetch));
2794 
2795   return true;
2796 }
2797 
2798 //----------------------------inline_unsafe_load_store----------------------------
2799 // This method serves a couple of different customers (depending on LoadStoreKind):
2800 //
2801 // LS_cmpxchg:
2802 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2803 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2804 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2805 //
2806 // LS_xadd:
2807 //   public int  getAndAddInt( Object o, long offset, int  delta)
2808 //   public long getAndAddLong(Object o, long offset, long delta)
2809 //
2810 // LS_xchg:
2811 //   int    getAndSet(Object o, long offset, int    newValue)
2812 //   long   getAndSet(Object o, long offset, long   newValue)
2813 //   Object getAndSet(Object o, long offset, Object newValue)
2814 //
2815 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2816   // This basic scheme here is the same as inline_unsafe_access, but
2817   // differs in enough details that combining them would make the code
2818   // overly confusing.  (This is a true fact! I originally combined
2819   // them, but even I was confused by it!) As much code/comments as
2820   // possible are retained from inline_unsafe_access though to make
2821   // the correspondences clearer. - dl
2822 
2823   if (callee()->is_static())  return false;  // caller must have the capability!
2824 
2825 #ifndef PRODUCT
2826   BasicType rtype;
2827   {
2828     ResourceMark rm;
2829     // Check the signatures.
2830     ciSignature* sig = callee()->signature();
2831     rtype = sig->return_type()->basic_type();
2832     if (kind == LS_xadd || kind == LS_xchg) {
2833       // Check the signatures.
2834 #ifdef ASSERT
2835       assert(rtype == type, "get and set must return the expected type");
2836       assert(sig->count() == 3, "get and set has 3 arguments");
2837       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2838       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2839       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2840 #endif // ASSERT
2841     } else if (kind == LS_cmpxchg) {
2842       // Check the signatures.
2843 #ifdef ASSERT
2844       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2845       assert(sig->count() == 4, "CAS has 4 arguments");
2846       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2847       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2848 #endif // ASSERT
2849     } else {
2850       ShouldNotReachHere();
2851     }
2852   }
2853 #endif //PRODUCT
2854 
2855   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2856 
2857   // Get arguments:
2858   Node* receiver = NULL;
2859   Node* base     = NULL;
2860   Node* offset   = NULL;
2861   Node* oldval   = NULL;
2862   Node* newval   = NULL;
2863   if (kind == LS_cmpxchg) {
2864     const bool two_slot_type = type2size[type] == 2;
2865     receiver = argument(0);  // type: oop
2866     base     = argument(1);  // type: oop
2867     offset   = argument(2);  // type: long
2868     oldval   = argument(4);  // type: oop, int, or long
2869     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2870   } else if (kind == LS_xadd || kind == LS_xchg){
2871     receiver = argument(0);  // type: oop
2872     base     = argument(1);  // type: oop
2873     offset   = argument(2);  // type: long
2874     oldval   = NULL;
2875     newval   = argument(4);  // type: oop, int, or long
2876   }
2877 
2878   // Null check receiver.
2879   receiver = null_check(receiver);
2880   if (stopped()) {
2881     return true;
2882   }
2883 
2884   // Build field offset expression.
2885   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2886   // to be plain byte offsets, which are also the same as those accepted
2887   // by oopDesc::field_base.
2888   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2889   // 32-bit machines ignore the high half of long offsets
2890   offset = ConvL2X(offset);
2891   Node* adr = make_unsafe_address(base, offset);
2892   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2893 
2894   // For CAS, unlike inline_unsafe_access, there seems no point in
2895   // trying to refine types. Just use the coarse types here.
2896   const Type *value_type = Type::get_const_basic_type(type);
2897   Compile::AliasType* alias_type = C->alias_type(adr_type);
2898   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2899 
2900   if (kind == LS_xchg && type == T_OBJECT) {
2901     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2902     if (tjp != NULL) {
2903       value_type = tjp;
2904     }
2905   }
2906 
2907   int alias_idx = C->get_alias_index(adr_type);
2908 
2909   // Memory-model-wise, a LoadStore acts like a little synchronized
2910   // block, so needs barriers on each side.  These don't translate
2911   // into actual barriers on most machines, but we still need rest of
2912   // compiler to respect ordering.
2913 
2914   insert_mem_bar(Op_MemBarRelease);
2915   insert_mem_bar(Op_MemBarCPUOrder);
2916 
2917   // 4984716: MemBars must be inserted before this
2918   //          memory node in order to avoid a false
2919   //          dependency which will confuse the scheduler.
2920   Node *mem = memory(alias_idx);
2921 
2922   // For now, we handle only those cases that actually exist: ints,
2923   // longs, and Object. Adding others should be straightforward.
2924   Node* load_store;
2925   switch(type) {
2926   case T_INT:
2927     if (kind == LS_xadd) {
2928       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2929     } else if (kind == LS_xchg) {
2930       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2931     } else if (kind == LS_cmpxchg) {
2932       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2933     } else {
2934       ShouldNotReachHere();
2935     }
2936     break;
2937   case T_LONG:
2938     if (kind == LS_xadd) {
2939       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2940     } else if (kind == LS_xchg) {
2941       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2942     } else if (kind == LS_cmpxchg) {
2943       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2944     } else {
2945       ShouldNotReachHere();
2946     }
2947     break;
2948   case T_OBJECT:
2949     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2950     // could be delayed during Parse (for example, in adjust_map_after_if()).
2951     // Execute transformation here to avoid barrier generation in such case.
2952     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2953       newval = _gvn.makecon(TypePtr::NULL_PTR);
2954 
2955     // Reference stores need a store barrier.
2956     if (kind == LS_xchg) {
2957       // If pre-barrier must execute before the oop store, old value will require do_load here.
2958       if (!can_move_pre_barrier()) {
2959         pre_barrier(true /* do_load*/,
2960                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2961                     NULL /* pre_val*/,
2962                     T_OBJECT);
2963       } // Else move pre_barrier to use load_store value, see below.
2964     } else if (kind == LS_cmpxchg) {
2965       // Same as for newval above:
2966       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2967         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2968       }
2969       // The only known value which might get overwritten is oldval.
2970       pre_barrier(false /* do_load */,
2971                   control(), NULL, NULL, max_juint, NULL, NULL,
2972                   oldval /* pre_val */,
2973                   T_OBJECT);
2974     } else {
2975       ShouldNotReachHere();
2976     }
2977 
2978 #ifdef _LP64
2979     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2980       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2981       if (kind == LS_xchg) {
2982         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2983                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2984       } else {
2985         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2986         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2987         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2988                                                                    newval_enc, oldval_enc));
2989       }
2990     } else
2991 #endif
2992     {
2993       if (kind == LS_xchg) {
2994         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2995       } else {
2996         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2997         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2998       }
2999     }
3000     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3001     break;
3002   default:
3003     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3004     break;
3005   }
3006 
3007   // SCMemProjNodes represent the memory state of a LoadStore. Their
3008   // main role is to prevent LoadStore nodes from being optimized away
3009   // when their results aren't used.
3010   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3011   set_memory(proj, alias_idx);
3012 
3013   if (type == T_OBJECT && kind == LS_xchg) {
3014 #ifdef _LP64
3015     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3016       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3017     }
3018 #endif
3019     if (can_move_pre_barrier()) {
3020       // Don't need to load pre_val. The old value is returned by load_store.
3021       // The pre_barrier can execute after the xchg as long as no safepoint
3022       // gets inserted between them.
3023       pre_barrier(false /* do_load */,
3024                   control(), NULL, NULL, max_juint, NULL, NULL,
3025                   load_store /* pre_val */,
3026                   T_OBJECT);
3027     }
3028   }
3029 
3030   // Add the trailing membar surrounding the access
3031   insert_mem_bar(Op_MemBarCPUOrder);
3032   insert_mem_bar(Op_MemBarAcquire);
3033 
3034   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3035   set_result(load_store);
3036   return true;
3037 }
3038 
3039 //----------------------------inline_unsafe_ordered_store----------------------
3040 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3041 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3042 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3043 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3044   // This is another variant of inline_unsafe_access, differing in
3045   // that it always issues store-store ("release") barrier and ensures
3046   // store-atomicity (which only matters for "long").
3047 
3048   if (callee()->is_static())  return false;  // caller must have the capability!
3049 
3050 #ifndef PRODUCT
3051   {
3052     ResourceMark rm;
3053     // Check the signatures.
3054     ciSignature* sig = callee()->signature();
3055 #ifdef ASSERT
3056     BasicType rtype = sig->return_type()->basic_type();
3057     assert(rtype == T_VOID, "must return void");
3058     assert(sig->count() == 3, "has 3 arguments");
3059     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3060     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3061 #endif // ASSERT
3062   }
3063 #endif //PRODUCT
3064 
3065   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3066 
3067   // Get arguments:
3068   Node* receiver = argument(0);  // type: oop
3069   Node* base     = argument(1);  // type: oop
3070   Node* offset   = argument(2);  // type: long
3071   Node* val      = argument(4);  // type: oop, int, or long
3072 
3073   // Null check receiver.
3074   receiver = null_check(receiver);
3075   if (stopped()) {
3076     return true;
3077   }
3078 
3079   // Build field offset expression.
3080   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3081   // 32-bit machines ignore the high half of long offsets
3082   offset = ConvL2X(offset);
3083   Node* adr = make_unsafe_address(base, offset);
3084   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3085   const Type *value_type = Type::get_const_basic_type(type);
3086   Compile::AliasType* alias_type = C->alias_type(adr_type);
3087 
3088   insert_mem_bar(Op_MemBarRelease);
3089   insert_mem_bar(Op_MemBarCPUOrder);
3090   // Ensure that the store is atomic for longs:
3091   const bool require_atomic_access = true;
3092   Node* store;
3093   if (type == T_OBJECT) // reference stores need a store barrier.
3094     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
3095   else {
3096     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
3097   }
3098   insert_mem_bar(Op_MemBarCPUOrder);
3099   return true;
3100 }
3101 
3102 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3103   // Regardless of form, don't allow previous ld/st to move down,
3104   // then issue acquire, release, or volatile mem_bar.
3105   insert_mem_bar(Op_MemBarCPUOrder);
3106   switch(id) {
3107     case vmIntrinsics::_loadFence:
3108       insert_mem_bar(Op_MemBarAcquire);
3109       return true;
3110     case vmIntrinsics::_storeFence:
3111       insert_mem_bar(Op_MemBarRelease);
3112       return true;
3113     case vmIntrinsics::_fullFence:
3114       insert_mem_bar(Op_MemBarVolatile);
3115       return true;
3116     default:
3117       fatal_unexpected_iid(id);
3118       return false;
3119   }
3120 }
3121 
3122 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3123   if (!kls->is_Con()) {
3124     return true;
3125   }
3126   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3127   if (klsptr == NULL) {
3128     return true;
3129   }
3130   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3131   // don't need a guard for a klass that is already initialized
3132   return !ik->is_initialized();
3133 }
3134 
3135 //----------------------------inline_unsafe_allocate---------------------------
3136 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3137 bool LibraryCallKit::inline_unsafe_allocate() {
3138   if (callee()->is_static())  return false;  // caller must have the capability!
3139 
3140   null_check_receiver();  // null-check, then ignore
3141   Node* cls = null_check(argument(1));
3142   if (stopped())  return true;
3143 
3144   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3145   kls = null_check(kls);
3146   if (stopped())  return true;  // argument was like int.class
3147 
3148   Node* test = NULL;
3149   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3150     // Note:  The argument might still be an illegal value like
3151     // Serializable.class or Object[].class.   The runtime will handle it.
3152     // But we must make an explicit check for initialization.
3153     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3154     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3155     // can generate code to load it as unsigned byte.
3156     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
3157     Node* bits = intcon(InstanceKlass::fully_initialized);
3158     test = _gvn.transform(new (C) SubINode(inst, bits));
3159     // The 'test' is non-zero if we need to take a slow path.
3160   }
3161 
3162   Node* obj = new_instance(kls, test);
3163   set_result(obj);
3164   return true;
3165 }
3166 
3167 #ifdef TRACE_HAVE_INTRINSICS
3168 /*
3169  * oop -> myklass
3170  * myklass->trace_id |= USED
3171  * return myklass->trace_id & ~0x3
3172  */
3173 bool LibraryCallKit::inline_native_classID() {
3174   null_check_receiver();  // null-check, then ignore
3175   Node* cls = null_check(argument(1), T_OBJECT);
3176   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3177   kls = null_check(kls, T_OBJECT);
3178   ByteSize offset = TRACE_ID_OFFSET;
3179   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3180   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
3181   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3182   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3183   Node* clsused = longcon(0x01l); // set the class bit
3184   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3185 
3186   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3187   store_to_memory(control(), insp, orl, T_LONG, adr_type);
3188   set_result(andl);
3189   return true;
3190 }
3191 
3192 bool LibraryCallKit::inline_native_threadID() {
3193   Node* tls_ptr = NULL;
3194   Node* cur_thr = generate_current_thread(tls_ptr);
3195   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3196   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3197   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3198 
3199   Node* threadid = NULL;
3200   size_t thread_id_size = OSThread::thread_id_size();
3201   if (thread_id_size == (size_t) BytesPerLong) {
3202     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
3203   } else if (thread_id_size == (size_t) BytesPerInt) {
3204     threadid = make_load(control(), p, TypeInt::INT, T_INT);
3205   } else {
3206     ShouldNotReachHere();
3207   }
3208   set_result(threadid);
3209   return true;
3210 }
3211 #endif
3212 
3213 //------------------------inline_native_time_funcs--------------
3214 // inline code for System.currentTimeMillis() and System.nanoTime()
3215 // these have the same type and signature
3216 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3217   const TypeFunc* tf = OptoRuntime::void_long_Type();
3218   const TypePtr* no_memory_effects = NULL;
3219   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3220   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3221 #ifdef ASSERT
3222   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3223   assert(value_top == top(), "second value must be top");
3224 #endif
3225   set_result(value);
3226   return true;
3227 }
3228 
3229 //------------------------inline_native_currentThread------------------
3230 bool LibraryCallKit::inline_native_currentThread() {
3231   Node* junk = NULL;
3232   set_result(generate_current_thread(junk));
3233   return true;
3234 }
3235 
3236 //------------------------inline_native_isInterrupted------------------
3237 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3238 bool LibraryCallKit::inline_native_isInterrupted() {
3239   // Add a fast path to t.isInterrupted(clear_int):
3240   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3241   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3242   // So, in the common case that the interrupt bit is false,
3243   // we avoid making a call into the VM.  Even if the interrupt bit
3244   // is true, if the clear_int argument is false, we avoid the VM call.
3245   // However, if the receiver is not currentThread, we must call the VM,
3246   // because there must be some locking done around the operation.
3247 
3248   // We only go to the fast case code if we pass two guards.
3249   // Paths which do not pass are accumulated in the slow_region.
3250 
3251   enum {
3252     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3253     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3254     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3255     PATH_LIMIT
3256   };
3257 
3258   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3259   // out of the function.
3260   insert_mem_bar(Op_MemBarCPUOrder);
3261 
3262   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3263   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3264 
3265   RegionNode* slow_region = new (C) RegionNode(1);
3266   record_for_igvn(slow_region);
3267 
3268   // (a) Receiving thread must be the current thread.
3269   Node* rec_thr = argument(0);
3270   Node* tls_ptr = NULL;
3271   Node* cur_thr = generate_current_thread(tls_ptr);
3272   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3273   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3274 
3275   generate_slow_guard(bol_thr, slow_region);
3276 
3277   // (b) Interrupt bit on TLS must be false.
3278   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3279   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3280   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3281 
3282   // Set the control input on the field _interrupted read to prevent it floating up.
3283   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3284   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3285   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3286 
3287   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3288 
3289   // First fast path:  if (!TLS._interrupted) return false;
3290   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3291   result_rgn->init_req(no_int_result_path, false_bit);
3292   result_val->init_req(no_int_result_path, intcon(0));
3293 
3294   // drop through to next case
3295   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3296 
3297   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3298   Node* clr_arg = argument(1);
3299   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3300   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3301   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3302 
3303   // Second fast path:  ... else if (!clear_int) return true;
3304   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3305   result_rgn->init_req(no_clear_result_path, false_arg);
3306   result_val->init_req(no_clear_result_path, intcon(1));
3307 
3308   // drop through to next case
3309   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3310 
3311   // (d) Otherwise, go to the slow path.
3312   slow_region->add_req(control());
3313   set_control( _gvn.transform(slow_region));
3314 
3315   if (stopped()) {
3316     // There is no slow path.
3317     result_rgn->init_req(slow_result_path, top());
3318     result_val->init_req(slow_result_path, top());
3319   } else {
3320     // non-virtual because it is a private non-static
3321     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3322 
3323     Node* slow_val = set_results_for_java_call(slow_call);
3324     // this->control() comes from set_results_for_java_call
3325 
3326     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3327     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3328 
3329     // These two phis are pre-filled with copies of of the fast IO and Memory
3330     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3331     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3332 
3333     result_rgn->init_req(slow_result_path, control());
3334     result_io ->init_req(slow_result_path, i_o());
3335     result_mem->init_req(slow_result_path, reset_memory());
3336     result_val->init_req(slow_result_path, slow_val);
3337 
3338     set_all_memory(_gvn.transform(result_mem));
3339     set_i_o(       _gvn.transform(result_io));
3340   }
3341 
3342   C->set_has_split_ifs(true); // Has chance for split-if optimization
3343   set_result(result_rgn, result_val);
3344   return true;
3345 }
3346 
3347 //---------------------------load_mirror_from_klass----------------------------
3348 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3349 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3350   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3351   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3352 }
3353 
3354 //-----------------------load_klass_from_mirror_common-------------------------
3355 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3356 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3357 // and branch to the given path on the region.
3358 // If never_see_null, take an uncommon trap on null, so we can optimistically
3359 // compile for the non-null case.
3360 // If the region is NULL, force never_see_null = true.
3361 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3362                                                     bool never_see_null,
3363                                                     RegionNode* region,
3364                                                     int null_path,
3365                                                     int offset) {
3366   if (region == NULL)  never_see_null = true;
3367   Node* p = basic_plus_adr(mirror, offset);
3368   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3369   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3370   Node* null_ctl = top();
3371   kls = null_check_oop(kls, &null_ctl, never_see_null);
3372   if (region != NULL) {
3373     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3374     region->init_req(null_path, null_ctl);
3375   } else {
3376     assert(null_ctl == top(), "no loose ends");
3377   }
3378   return kls;
3379 }
3380 
3381 //--------------------(inline_native_Class_query helpers)---------------------
3382 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3383 // Fall through if (mods & mask) == bits, take the guard otherwise.
3384 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3385   // Branch around if the given klass has the given modifier bit set.
3386   // Like generate_guard, adds a new path onto the region.
3387   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3388   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3389   Node* mask = intcon(modifier_mask);
3390   Node* bits = intcon(modifier_bits);
3391   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3392   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3393   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3394   return generate_fair_guard(bol, region);
3395 }
3396 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3397   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3398 }
3399 
3400 //-------------------------inline_native_Class_query-------------------
3401 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3402   const Type* return_type = TypeInt::BOOL;
3403   Node* prim_return_value = top();  // what happens if it's a primitive class?
3404   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3405   bool expect_prim = false;     // most of these guys expect to work on refs
3406 
3407   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3408 
3409   Node* mirror = argument(0);
3410   Node* obj    = top();
3411 
3412   switch (id) {
3413   case vmIntrinsics::_isInstance:
3414     // nothing is an instance of a primitive type
3415     prim_return_value = intcon(0);
3416     obj = argument(1);
3417     break;
3418   case vmIntrinsics::_getModifiers:
3419     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3420     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3421     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3422     break;
3423   case vmIntrinsics::_isInterface:
3424     prim_return_value = intcon(0);
3425     break;
3426   case vmIntrinsics::_isArray:
3427     prim_return_value = intcon(0);
3428     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3429     break;
3430   case vmIntrinsics::_isPrimitive:
3431     prim_return_value = intcon(1);
3432     expect_prim = true;  // obviously
3433     break;
3434   case vmIntrinsics::_getSuperclass:
3435     prim_return_value = null();
3436     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3437     break;
3438   case vmIntrinsics::_getComponentType:
3439     prim_return_value = null();
3440     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3441     break;
3442   case vmIntrinsics::_getClassAccessFlags:
3443     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3444     return_type = TypeInt::INT;  // not bool!  6297094
3445     break;
3446   default:
3447     fatal_unexpected_iid(id);
3448     break;
3449   }
3450 
3451   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3452   if (mirror_con == NULL)  return false;  // cannot happen?
3453 
3454 #ifndef PRODUCT
3455   if (C->print_intrinsics() || C->print_inlining()) {
3456     ciType* k = mirror_con->java_mirror_type();
3457     if (k) {
3458       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3459       k->print_name();
3460       tty->cr();
3461     }
3462   }
3463 #endif
3464 
3465   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3466   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3467   record_for_igvn(region);
3468   PhiNode* phi = new (C) PhiNode(region, return_type);
3469 
3470   // The mirror will never be null of Reflection.getClassAccessFlags, however
3471   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3472   // if it is. See bug 4774291.
3473 
3474   // For Reflection.getClassAccessFlags(), the null check occurs in
3475   // the wrong place; see inline_unsafe_access(), above, for a similar
3476   // situation.
3477   mirror = null_check(mirror);
3478   // If mirror or obj is dead, only null-path is taken.
3479   if (stopped())  return true;
3480 
3481   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3482 
3483   // Now load the mirror's klass metaobject, and null-check it.
3484   // Side-effects region with the control path if the klass is null.
3485   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3486   // If kls is null, we have a primitive mirror.
3487   phi->init_req(_prim_path, prim_return_value);
3488   if (stopped()) { set_result(region, phi); return true; }
3489   bool safe_for_replace = (region->in(_prim_path) == top());
3490 
3491   Node* p;  // handy temp
3492   Node* null_ctl;
3493 
3494   // Now that we have the non-null klass, we can perform the real query.
3495   // For constant classes, the query will constant-fold in LoadNode::Value.
3496   Node* query_value = top();
3497   switch (id) {
3498   case vmIntrinsics::_isInstance:
3499     // nothing is an instance of a primitive type
3500     query_value = gen_instanceof(obj, kls, safe_for_replace);
3501     break;
3502 
3503   case vmIntrinsics::_getModifiers:
3504     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3505     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3506     break;
3507 
3508   case vmIntrinsics::_isInterface:
3509     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3510     if (generate_interface_guard(kls, region) != NULL)
3511       // A guard was added.  If the guard is taken, it was an interface.
3512       phi->add_req(intcon(1));
3513     // If we fall through, it's a plain class.
3514     query_value = intcon(0);
3515     break;
3516 
3517   case vmIntrinsics::_isArray:
3518     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3519     if (generate_array_guard(kls, region) != NULL)
3520       // A guard was added.  If the guard is taken, it was an array.
3521       phi->add_req(intcon(1));
3522     // If we fall through, it's a plain class.
3523     query_value = intcon(0);
3524     break;
3525 
3526   case vmIntrinsics::_isPrimitive:
3527     query_value = intcon(0); // "normal" path produces false
3528     break;
3529 
3530   case vmIntrinsics::_getSuperclass:
3531     // The rules here are somewhat unfortunate, but we can still do better
3532     // with random logic than with a JNI call.
3533     // Interfaces store null or Object as _super, but must report null.
3534     // Arrays store an intermediate super as _super, but must report Object.
3535     // Other types can report the actual _super.
3536     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3537     if (generate_interface_guard(kls, region) != NULL)
3538       // A guard was added.  If the guard is taken, it was an interface.
3539       phi->add_req(null());
3540     if (generate_array_guard(kls, region) != NULL)
3541       // A guard was added.  If the guard is taken, it was an array.
3542       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3543     // If we fall through, it's a plain class.  Get its _super.
3544     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3545     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3546     null_ctl = top();
3547     kls = null_check_oop(kls, &null_ctl);
3548     if (null_ctl != top()) {
3549       // If the guard is taken, Object.superClass is null (both klass and mirror).
3550       region->add_req(null_ctl);
3551       phi   ->add_req(null());
3552     }
3553     if (!stopped()) {
3554       query_value = load_mirror_from_klass(kls);
3555     }
3556     break;
3557 
3558   case vmIntrinsics::_getComponentType:
3559     if (generate_array_guard(kls, region) != NULL) {
3560       // Be sure to pin the oop load to the guard edge just created:
3561       Node* is_array_ctrl = region->in(region->req()-1);
3562       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3563       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3564       phi->add_req(cmo);
3565     }
3566     query_value = null();  // non-array case is null
3567     break;
3568 
3569   case vmIntrinsics::_getClassAccessFlags:
3570     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3571     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3572     break;
3573 
3574   default:
3575     fatal_unexpected_iid(id);
3576     break;
3577   }
3578 
3579   // Fall-through is the normal case of a query to a real class.
3580   phi->init_req(1, query_value);
3581   region->init_req(1, control());
3582 
3583   C->set_has_split_ifs(true); // Has chance for split-if optimization
3584   set_result(region, phi);
3585   return true;
3586 }
3587 
3588 //--------------------------inline_native_subtype_check------------------------
3589 // This intrinsic takes the JNI calls out of the heart of
3590 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3591 bool LibraryCallKit::inline_native_subtype_check() {
3592   // Pull both arguments off the stack.
3593   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3594   args[0] = argument(0);
3595   args[1] = argument(1);
3596   Node* klasses[2];             // corresponding Klasses: superk, subk
3597   klasses[0] = klasses[1] = top();
3598 
3599   enum {
3600     // A full decision tree on {superc is prim, subc is prim}:
3601     _prim_0_path = 1,           // {P,N} => false
3602                                 // {P,P} & superc!=subc => false
3603     _prim_same_path,            // {P,P} & superc==subc => true
3604     _prim_1_path,               // {N,P} => false
3605     _ref_subtype_path,          // {N,N} & subtype check wins => true
3606     _both_ref_path,             // {N,N} & subtype check loses => false
3607     PATH_LIMIT
3608   };
3609 
3610   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3611   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3612   record_for_igvn(region);
3613 
3614   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3615   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3616   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3617 
3618   // First null-check both mirrors and load each mirror's klass metaobject.
3619   int which_arg;
3620   for (which_arg = 0; which_arg <= 1; which_arg++) {
3621     Node* arg = args[which_arg];
3622     arg = null_check(arg);
3623     if (stopped())  break;
3624     args[which_arg] = arg;
3625 
3626     Node* p = basic_plus_adr(arg, class_klass_offset);
3627     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3628     klasses[which_arg] = _gvn.transform(kls);
3629   }
3630 
3631   // Having loaded both klasses, test each for null.
3632   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3633   for (which_arg = 0; which_arg <= 1; which_arg++) {
3634     Node* kls = klasses[which_arg];
3635     Node* null_ctl = top();
3636     kls = null_check_oop(kls, &null_ctl, never_see_null);
3637     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3638     region->init_req(prim_path, null_ctl);
3639     if (stopped())  break;
3640     klasses[which_arg] = kls;
3641   }
3642 
3643   if (!stopped()) {
3644     // now we have two reference types, in klasses[0..1]
3645     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3646     Node* superk = klasses[0];  // the receiver
3647     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3648     // now we have a successful reference subtype check
3649     region->set_req(_ref_subtype_path, control());
3650   }
3651 
3652   // If both operands are primitive (both klasses null), then
3653   // we must return true when they are identical primitives.
3654   // It is convenient to test this after the first null klass check.
3655   set_control(region->in(_prim_0_path)); // go back to first null check
3656   if (!stopped()) {
3657     // Since superc is primitive, make a guard for the superc==subc case.
3658     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3659     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3660     generate_guard(bol_eq, region, PROB_FAIR);
3661     if (region->req() == PATH_LIMIT+1) {
3662       // A guard was added.  If the added guard is taken, superc==subc.
3663       region->swap_edges(PATH_LIMIT, _prim_same_path);
3664       region->del_req(PATH_LIMIT);
3665     }
3666     region->set_req(_prim_0_path, control()); // Not equal after all.
3667   }
3668 
3669   // these are the only paths that produce 'true':
3670   phi->set_req(_prim_same_path,   intcon(1));
3671   phi->set_req(_ref_subtype_path, intcon(1));
3672 
3673   // pull together the cases:
3674   assert(region->req() == PATH_LIMIT, "sane region");
3675   for (uint i = 1; i < region->req(); i++) {
3676     Node* ctl = region->in(i);
3677     if (ctl == NULL || ctl == top()) {
3678       region->set_req(i, top());
3679       phi   ->set_req(i, top());
3680     } else if (phi->in(i) == NULL) {
3681       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3682     }
3683   }
3684 
3685   set_control(_gvn.transform(region));
3686   set_result(_gvn.transform(phi));
3687   return true;
3688 }
3689 
3690 //---------------------generate_array_guard_common------------------------
3691 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3692                                                   bool obj_array, bool not_array) {
3693   // If obj_array/non_array==false/false:
3694   // Branch around if the given klass is in fact an array (either obj or prim).
3695   // If obj_array/non_array==false/true:
3696   // Branch around if the given klass is not an array klass of any kind.
3697   // If obj_array/non_array==true/true:
3698   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3699   // If obj_array/non_array==true/false:
3700   // Branch around if the kls is an oop array (Object[] or subtype)
3701   //
3702   // Like generate_guard, adds a new path onto the region.
3703   jint  layout_con = 0;
3704   Node* layout_val = get_layout_helper(kls, layout_con);
3705   if (layout_val == NULL) {
3706     bool query = (obj_array
3707                   ? Klass::layout_helper_is_objArray(layout_con)
3708                   : Klass::layout_helper_is_array(layout_con));
3709     if (query == not_array) {
3710       return NULL;                       // never a branch
3711     } else {                             // always a branch
3712       Node* always_branch = control();
3713       if (region != NULL)
3714         region->add_req(always_branch);
3715       set_control(top());
3716       return always_branch;
3717     }
3718   }
3719   // Now test the correct condition.
3720   jint  nval = (obj_array
3721                 ? ((jint)Klass::_lh_array_tag_type_value
3722                    <<    Klass::_lh_array_tag_shift)
3723                 : Klass::_lh_neutral_value);
3724   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3725   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3726   // invert the test if we are looking for a non-array
3727   if (not_array)  btest = BoolTest(btest).negate();
3728   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3729   return generate_fair_guard(bol, region);
3730 }
3731 
3732 
3733 //-----------------------inline_native_newArray--------------------------
3734 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3735 bool LibraryCallKit::inline_native_newArray() {
3736   Node* mirror    = argument(0);
3737   Node* count_val = argument(1);
3738 
3739   mirror = null_check(mirror);
3740   // If mirror or obj is dead, only null-path is taken.
3741   if (stopped())  return true;
3742 
3743   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3744   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3745   PhiNode*    result_val = new(C) PhiNode(result_reg,
3746                                           TypeInstPtr::NOTNULL);
3747   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3748   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3749                                           TypePtr::BOTTOM);
3750 
3751   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3752   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3753                                                   result_reg, _slow_path);
3754   Node* normal_ctl   = control();
3755   Node* no_array_ctl = result_reg->in(_slow_path);
3756 
3757   // Generate code for the slow case.  We make a call to newArray().
3758   set_control(no_array_ctl);
3759   if (!stopped()) {
3760     // Either the input type is void.class, or else the
3761     // array klass has not yet been cached.  Either the
3762     // ensuing call will throw an exception, or else it
3763     // will cache the array klass for next time.
3764     PreserveJVMState pjvms(this);
3765     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3766     Node* slow_result = set_results_for_java_call(slow_call);
3767     // this->control() comes from set_results_for_java_call
3768     result_reg->set_req(_slow_path, control());
3769     result_val->set_req(_slow_path, slow_result);
3770     result_io ->set_req(_slow_path, i_o());
3771     result_mem->set_req(_slow_path, reset_memory());
3772   }
3773 
3774   set_control(normal_ctl);
3775   if (!stopped()) {
3776     // Normal case:  The array type has been cached in the java.lang.Class.
3777     // The following call works fine even if the array type is polymorphic.
3778     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3779     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3780     result_reg->init_req(_normal_path, control());
3781     result_val->init_req(_normal_path, obj);
3782     result_io ->init_req(_normal_path, i_o());
3783     result_mem->init_req(_normal_path, reset_memory());
3784   }
3785 
3786   // Return the combined state.
3787   set_i_o(        _gvn.transform(result_io)  );
3788   set_all_memory( _gvn.transform(result_mem));
3789 
3790   C->set_has_split_ifs(true); // Has chance for split-if optimization
3791   set_result(result_reg, result_val);
3792   return true;
3793 }
3794 
3795 //----------------------inline_native_getLength--------------------------
3796 // public static native int java.lang.reflect.Array.getLength(Object array);
3797 bool LibraryCallKit::inline_native_getLength() {
3798   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3799 
3800   Node* array = null_check(argument(0));
3801   // If array is dead, only null-path is taken.
3802   if (stopped())  return true;
3803 
3804   // Deoptimize if it is a non-array.
3805   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3806 
3807   if (non_array != NULL) {
3808     PreserveJVMState pjvms(this);
3809     set_control(non_array);
3810     uncommon_trap(Deoptimization::Reason_intrinsic,
3811                   Deoptimization::Action_maybe_recompile);
3812   }
3813 
3814   // If control is dead, only non-array-path is taken.
3815   if (stopped())  return true;
3816 
3817   // The works fine even if the array type is polymorphic.
3818   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3819   Node* result = load_array_length(array);
3820 
3821   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3822   set_result(result);
3823   return true;
3824 }
3825 
3826 //------------------------inline_array_copyOf----------------------------
3827 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3828 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3829 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3830   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3831 
3832   // Get the arguments.
3833   Node* original          = argument(0);
3834   Node* start             = is_copyOfRange? argument(1): intcon(0);
3835   Node* end               = is_copyOfRange? argument(2): argument(1);
3836   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3837 
3838   Node* newcopy;
3839 
3840   // Set the original stack and the reexecute bit for the interpreter to reexecute
3841   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3842   { PreserveReexecuteState preexecs(this);
3843     jvms()->set_should_reexecute(true);
3844 
3845     array_type_mirror = null_check(array_type_mirror);
3846     original          = null_check(original);
3847 
3848     // Check if a null path was taken unconditionally.
3849     if (stopped())  return true;
3850 
3851     Node* orig_length = load_array_length(original);
3852 
3853     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3854     klass_node = null_check(klass_node);
3855 
3856     RegionNode* bailout = new (C) RegionNode(1);
3857     record_for_igvn(bailout);
3858 
3859     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3860     // Bail out if that is so.
3861     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3862     if (not_objArray != NULL) {
3863       // Improve the klass node's type from the new optimistic assumption:
3864       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3865       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3866       Node* cast = new (C) CastPPNode(klass_node, akls);
3867       cast->init_req(0, control());
3868       klass_node = _gvn.transform(cast);
3869     }
3870 
3871     // Bail out if either start or end is negative.
3872     generate_negative_guard(start, bailout, &start);
3873     generate_negative_guard(end,   bailout, &end);
3874 
3875     Node* length = end;
3876     if (_gvn.type(start) != TypeInt::ZERO) {
3877       length = _gvn.transform(new (C) SubINode(end, start));
3878     }
3879 
3880     // Bail out if length is negative.
3881     // Without this the new_array would throw
3882     // NegativeArraySizeException but IllegalArgumentException is what
3883     // should be thrown
3884     generate_negative_guard(length, bailout, &length);
3885 
3886     if (bailout->req() > 1) {
3887       PreserveJVMState pjvms(this);
3888       set_control(_gvn.transform(bailout));
3889       uncommon_trap(Deoptimization::Reason_intrinsic,
3890                     Deoptimization::Action_maybe_recompile);
3891     }
3892 
3893     if (!stopped()) {
3894       // How many elements will we copy from the original?
3895       // The answer is MinI(orig_length - start, length).
3896       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3897       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3898 
3899       newcopy = new_array(klass_node, length, 0);  // no argments to push
3900 
3901       // Generate a direct call to the right arraycopy function(s).
3902       // We know the copy is disjoint but we might not know if the
3903       // oop stores need checking.
3904       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3905       // This will fail a store-check if x contains any non-nulls.
3906       bool disjoint_bases = true;
3907       // if start > orig_length then the length of the copy may be
3908       // negative.
3909       bool length_never_negative = !is_copyOfRange;
3910       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3911                          original, start, newcopy, intcon(0), moved,
3912                          disjoint_bases, length_never_negative);
3913     }
3914   } // original reexecute is set back here
3915 
3916   C->set_has_split_ifs(true); // Has chance for split-if optimization
3917   if (!stopped()) {
3918     set_result(newcopy);
3919   }
3920   return true;
3921 }
3922 
3923 
3924 //----------------------generate_virtual_guard---------------------------
3925 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3926 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3927                                              RegionNode* slow_region) {
3928   ciMethod* method = callee();
3929   int vtable_index = method->vtable_index();
3930   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3931          err_msg_res("bad index %d", vtable_index));
3932   // Get the Method* out of the appropriate vtable entry.
3933   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3934                      vtable_index*vtableEntry::size()) * wordSize +
3935                      vtableEntry::method_offset_in_bytes();
3936   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3937   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3938 
3939   // Compare the target method with the expected method (e.g., Object.hashCode).
3940   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3941 
3942   Node* native_call = makecon(native_call_addr);
3943   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3944   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3945 
3946   return generate_slow_guard(test_native, slow_region);
3947 }
3948 
3949 //-----------------------generate_method_call----------------------------
3950 // Use generate_method_call to make a slow-call to the real
3951 // method if the fast path fails.  An alternative would be to
3952 // use a stub like OptoRuntime::slow_arraycopy_Java.
3953 // This only works for expanding the current library call,
3954 // not another intrinsic.  (E.g., don't use this for making an
3955 // arraycopy call inside of the copyOf intrinsic.)
3956 CallJavaNode*
3957 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3958   // When compiling the intrinsic method itself, do not use this technique.
3959   guarantee(callee() != C->method(), "cannot make slow-call to self");
3960 
3961   ciMethod* method = callee();
3962   // ensure the JVMS we have will be correct for this call
3963   guarantee(method_id == method->intrinsic_id(), "must match");
3964 
3965   const TypeFunc* tf = TypeFunc::make(method);
3966   CallJavaNode* slow_call;
3967   if (is_static) {
3968     assert(!is_virtual, "");
3969     slow_call = new(C) CallStaticJavaNode(C, tf,
3970                            SharedRuntime::get_resolve_static_call_stub(),
3971                            method, bci());
3972   } else if (is_virtual) {
3973     null_check_receiver();
3974     int vtable_index = Method::invalid_vtable_index;
3975     if (UseInlineCaches) {
3976       // Suppress the vtable call
3977     } else {
3978       // hashCode and clone are not a miranda methods,
3979       // so the vtable index is fixed.
3980       // No need to use the linkResolver to get it.
3981        vtable_index = method->vtable_index();
3982        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3983               err_msg_res("bad index %d", vtable_index));
3984     }
3985     slow_call = new(C) CallDynamicJavaNode(tf,
3986                           SharedRuntime::get_resolve_virtual_call_stub(),
3987                           method, vtable_index, bci());
3988   } else {  // neither virtual nor static:  opt_virtual
3989     null_check_receiver();
3990     slow_call = new(C) CallStaticJavaNode(C, tf,
3991                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3992                                 method, bci());
3993     slow_call->set_optimized_virtual(true);
3994   }
3995   set_arguments_for_java_call(slow_call);
3996   set_edges_for_java_call(slow_call);
3997   return slow_call;
3998 }
3999 
4000 
4001 //------------------------------inline_native_hashcode--------------------
4002 // Build special case code for calls to hashCode on an object.
4003 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4004   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4005   assert(!(is_virtual && is_static), "either virtual, special, or static");
4006 
4007   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4008 
4009   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4010   PhiNode*    result_val = new(C) PhiNode(result_reg,
4011                                           TypeInt::INT);
4012   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4013   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4014                                           TypePtr::BOTTOM);
4015   Node* obj = NULL;
4016   if (!is_static) {
4017     // Check for hashing null object
4018     obj = null_check_receiver();
4019     if (stopped())  return true;        // unconditionally null
4020     result_reg->init_req(_null_path, top());
4021     result_val->init_req(_null_path, top());
4022   } else {
4023     // Do a null check, and return zero if null.
4024     // System.identityHashCode(null) == 0
4025     obj = argument(0);
4026     Node* null_ctl = top();
4027     obj = null_check_oop(obj, &null_ctl);
4028     result_reg->init_req(_null_path, null_ctl);
4029     result_val->init_req(_null_path, _gvn.intcon(0));
4030   }
4031 
4032   // Unconditionally null?  Then return right away.
4033   if (stopped()) {
4034     set_control( result_reg->in(_null_path));
4035     if (!stopped())
4036       set_result(result_val->in(_null_path));
4037     return true;
4038   }
4039 
4040   // After null check, get the object's klass.
4041   Node* obj_klass = load_object_klass(obj);
4042 
4043   // This call may be virtual (invokevirtual) or bound (invokespecial).
4044   // For each case we generate slightly different code.
4045 
4046   // We only go to the fast case code if we pass a number of guards.  The
4047   // paths which do not pass are accumulated in the slow_region.
4048   RegionNode* slow_region = new (C) RegionNode(1);
4049   record_for_igvn(slow_region);
4050 
4051   // If this is a virtual call, we generate a funny guard.  We pull out
4052   // the vtable entry corresponding to hashCode() from the target object.
4053   // If the target method which we are calling happens to be the native
4054   // Object hashCode() method, we pass the guard.  We do not need this
4055   // guard for non-virtual calls -- the caller is known to be the native
4056   // Object hashCode().
4057   if (is_virtual) {
4058     generate_virtual_guard(obj_klass, slow_region);
4059   }
4060 
4061   // Get the header out of the object, use LoadMarkNode when available
4062   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4063   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
4064 
4065   // Test the header to see if it is unlocked.
4066   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4067   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4068   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4069   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4070   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4071 
4072   generate_slow_guard(test_unlocked, slow_region);
4073 
4074   // Get the hash value and check to see that it has been properly assigned.
4075   // We depend on hash_mask being at most 32 bits and avoid the use of
4076   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4077   // vm: see markOop.hpp.
4078   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4079   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4080   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4081   // This hack lets the hash bits live anywhere in the mark object now, as long
4082   // as the shift drops the relevant bits into the low 32 bits.  Note that
4083   // Java spec says that HashCode is an int so there's no point in capturing
4084   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4085   hshifted_header      = ConvX2I(hshifted_header);
4086   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4087 
4088   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4089   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4090   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4091 
4092   generate_slow_guard(test_assigned, slow_region);
4093 
4094   Node* init_mem = reset_memory();
4095   // fill in the rest of the null path:
4096   result_io ->init_req(_null_path, i_o());
4097   result_mem->init_req(_null_path, init_mem);
4098 
4099   result_val->init_req(_fast_path, hash_val);
4100   result_reg->init_req(_fast_path, control());
4101   result_io ->init_req(_fast_path, i_o());
4102   result_mem->init_req(_fast_path, init_mem);
4103 
4104   // Generate code for the slow case.  We make a call to hashCode().
4105   set_control(_gvn.transform(slow_region));
4106   if (!stopped()) {
4107     // No need for PreserveJVMState, because we're using up the present state.
4108     set_all_memory(init_mem);
4109     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4110     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4111     Node* slow_result = set_results_for_java_call(slow_call);
4112     // this->control() comes from set_results_for_java_call
4113     result_reg->init_req(_slow_path, control());
4114     result_val->init_req(_slow_path, slow_result);
4115     result_io  ->set_req(_slow_path, i_o());
4116     result_mem ->set_req(_slow_path, reset_memory());
4117   }
4118 
4119   // Return the combined state.
4120   set_i_o(        _gvn.transform(result_io)  );
4121   set_all_memory( _gvn.transform(result_mem));
4122 
4123   set_result(result_reg, result_val);
4124   return true;
4125 }
4126 
4127 //---------------------------inline_native_getClass----------------------------
4128 // public final native Class<?> java.lang.Object.getClass();
4129 //
4130 // Build special case code for calls to getClass on an object.
4131 bool LibraryCallKit::inline_native_getClass() {
4132   Node* obj = null_check_receiver();
4133   if (stopped())  return true;
4134   set_result(load_mirror_from_klass(load_object_klass(obj)));
4135   return true;
4136 }
4137 
4138 //-----------------inline_native_Reflection_getCallerClass---------------------
4139 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4140 //
4141 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4142 //
4143 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4144 // in that it must skip particular security frames and checks for
4145 // caller sensitive methods.
4146 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4147 #ifndef PRODUCT
4148   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4149     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4150   }
4151 #endif
4152 
4153   if (!jvms()->has_method()) {
4154 #ifndef PRODUCT
4155     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4156       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4157     }
4158 #endif
4159     return false;
4160   }
4161 
4162   // Walk back up the JVM state to find the caller at the required
4163   // depth.
4164   JVMState* caller_jvms = jvms();
4165 
4166   // Cf. JVM_GetCallerClass
4167   // NOTE: Start the loop at depth 1 because the current JVM state does
4168   // not include the Reflection.getCallerClass() frame.
4169   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4170     ciMethod* m = caller_jvms->method();
4171     switch (n) {
4172     case 0:
4173       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4174       break;
4175     case 1:
4176       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4177       if (!m->caller_sensitive()) {
4178 #ifndef PRODUCT
4179         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4180           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4181         }
4182 #endif
4183         return false;  // bail-out; let JVM_GetCallerClass do the work
4184       }
4185       break;
4186     default:
4187       if (!m->is_ignored_by_security_stack_walk()) {
4188         // We have reached the desired frame; return the holder class.
4189         // Acquire method holder as java.lang.Class and push as constant.
4190         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4191         ciInstance* caller_mirror = caller_klass->java_mirror();
4192         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4193 
4194 #ifndef PRODUCT
4195         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4196           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4197           tty->print_cr("  JVM state at this point:");
4198           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4199             ciMethod* m = jvms()->of_depth(i)->method();
4200             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4201           }
4202         }
4203 #endif
4204         return true;
4205       }
4206       break;
4207     }
4208   }
4209 
4210 #ifndef PRODUCT
4211   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4212     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4213     tty->print_cr("  JVM state at this point:");
4214     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4215       ciMethod* m = jvms()->of_depth(i)->method();
4216       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4217     }
4218   }
4219 #endif
4220 
4221   return false;  // bail-out; let JVM_GetCallerClass do the work
4222 }
4223 
4224 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4225   Node* arg = argument(0);
4226   Node* result;
4227 
4228   switch (id) {
4229   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4230   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4231   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4232   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4233 
4234   case vmIntrinsics::_doubleToLongBits: {
4235     // two paths (plus control) merge in a wood
4236     RegionNode *r = new (C) RegionNode(3);
4237     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4238 
4239     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4240     // Build the boolean node
4241     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4242 
4243     // Branch either way.
4244     // NaN case is less traveled, which makes all the difference.
4245     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4246     Node *opt_isnan = _gvn.transform(ifisnan);
4247     assert( opt_isnan->is_If(), "Expect an IfNode");
4248     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4249     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4250 
4251     set_control(iftrue);
4252 
4253     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4254     Node *slow_result = longcon(nan_bits); // return NaN
4255     phi->init_req(1, _gvn.transform( slow_result ));
4256     r->init_req(1, iftrue);
4257 
4258     // Else fall through
4259     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4260     set_control(iffalse);
4261 
4262     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4263     r->init_req(2, iffalse);
4264 
4265     // Post merge
4266     set_control(_gvn.transform(r));
4267     record_for_igvn(r);
4268 
4269     C->set_has_split_ifs(true); // Has chance for split-if optimization
4270     result = phi;
4271     assert(result->bottom_type()->isa_long(), "must be");
4272     break;
4273   }
4274 
4275   case vmIntrinsics::_floatToIntBits: {
4276     // two paths (plus control) merge in a wood
4277     RegionNode *r = new (C) RegionNode(3);
4278     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4279 
4280     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4281     // Build the boolean node
4282     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4283 
4284     // Branch either way.
4285     // NaN case is less traveled, which makes all the difference.
4286     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4287     Node *opt_isnan = _gvn.transform(ifisnan);
4288     assert( opt_isnan->is_If(), "Expect an IfNode");
4289     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4290     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4291 
4292     set_control(iftrue);
4293 
4294     static const jint nan_bits = 0x7fc00000;
4295     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4296     phi->init_req(1, _gvn.transform( slow_result ));
4297     r->init_req(1, iftrue);
4298 
4299     // Else fall through
4300     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4301     set_control(iffalse);
4302 
4303     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4304     r->init_req(2, iffalse);
4305 
4306     // Post merge
4307     set_control(_gvn.transform(r));
4308     record_for_igvn(r);
4309 
4310     C->set_has_split_ifs(true); // Has chance for split-if optimization
4311     result = phi;
4312     assert(result->bottom_type()->isa_int(), "must be");
4313     break;
4314   }
4315 
4316   default:
4317     fatal_unexpected_iid(id);
4318     break;
4319   }
4320   set_result(_gvn.transform(result));
4321   return true;
4322 }
4323 
4324 #ifdef _LP64
4325 #define XTOP ,top() /*additional argument*/
4326 #else  //_LP64
4327 #define XTOP        /*no additional argument*/
4328 #endif //_LP64
4329 
4330 //----------------------inline_unsafe_copyMemory-------------------------
4331 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4332 bool LibraryCallKit::inline_unsafe_copyMemory() {
4333   if (callee()->is_static())  return false;  // caller must have the capability!
4334   null_check_receiver();  // null-check receiver
4335   if (stopped())  return true;
4336 
4337   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4338 
4339   Node* src_ptr =         argument(1);   // type: oop
4340   Node* src_off = ConvL2X(argument(2));  // type: long
4341   Node* dst_ptr =         argument(4);   // type: oop
4342   Node* dst_off = ConvL2X(argument(5));  // type: long
4343   Node* size    = ConvL2X(argument(7));  // type: long
4344 
4345   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4346          "fieldOffset must be byte-scaled");
4347 
4348   Node* src = make_unsafe_address(src_ptr, src_off);
4349   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4350 
4351   // Conservatively insert a memory barrier on all memory slices.
4352   // Do not let writes of the copy source or destination float below the copy.
4353   insert_mem_bar(Op_MemBarCPUOrder);
4354 
4355   // Call it.  Note that the length argument is not scaled.
4356   make_runtime_call(RC_LEAF|RC_NO_FP,
4357                     OptoRuntime::fast_arraycopy_Type(),
4358                     StubRoutines::unsafe_arraycopy(),
4359                     "unsafe_arraycopy",
4360                     TypeRawPtr::BOTTOM,
4361                     src, dst, size XTOP);
4362 
4363   // Do not let reads of the copy destination float above the copy.
4364   insert_mem_bar(Op_MemBarCPUOrder);
4365 
4366   return true;
4367 }
4368 
4369 //------------------------clone_coping-----------------------------------
4370 // Helper function for inline_native_clone.
4371 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4372   assert(obj_size != NULL, "");
4373   Node* raw_obj = alloc_obj->in(1);
4374   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4375 
4376   AllocateNode* alloc = NULL;
4377   if (ReduceBulkZeroing) {
4378     // We will be completely responsible for initializing this object -
4379     // mark Initialize node as complete.
4380     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4381     // The object was just allocated - there should be no any stores!
4382     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4383     // Mark as complete_with_arraycopy so that on AllocateNode
4384     // expansion, we know this AllocateNode is initialized by an array
4385     // copy and a StoreStore barrier exists after the array copy.
4386     alloc->initialization()->set_complete_with_arraycopy();
4387   }
4388 
4389   // Copy the fastest available way.
4390   // TODO: generate fields copies for small objects instead.
4391   Node* src  = obj;
4392   Node* dest = alloc_obj;
4393   Node* size = _gvn.transform(obj_size);
4394 
4395   // Exclude the header but include array length to copy by 8 bytes words.
4396   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4397   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4398                             instanceOopDesc::base_offset_in_bytes();
4399   // base_off:
4400   // 8  - 32-bit VM
4401   // 12 - 64-bit VM, compressed klass
4402   // 16 - 64-bit VM, normal klass
4403   if (base_off % BytesPerLong != 0) {
4404     assert(UseCompressedClassPointers, "");
4405     if (is_array) {
4406       // Exclude length to copy by 8 bytes words.
4407       base_off += sizeof(int);
4408     } else {
4409       // Include klass to copy by 8 bytes words.
4410       base_off = instanceOopDesc::klass_offset_in_bytes();
4411     }
4412     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4413   }
4414   src  = basic_plus_adr(src,  base_off);
4415   dest = basic_plus_adr(dest, base_off);
4416 
4417   // Compute the length also, if needed:
4418   Node* countx = size;
4419   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4420   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4421 
4422   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4423   bool disjoint_bases = true;
4424   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4425                                src, NULL, dest, NULL, countx,
4426                                /*dest_uninitialized*/true);
4427 
4428   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4429   if (card_mark) {
4430     assert(!is_array, "");
4431     // Put in store barrier for any and all oops we are sticking
4432     // into this object.  (We could avoid this if we could prove
4433     // that the object type contains no oop fields at all.)
4434     Node* no_particular_value = NULL;
4435     Node* no_particular_field = NULL;
4436     int raw_adr_idx = Compile::AliasIdxRaw;
4437     post_barrier(control(),
4438                  memory(raw_adr_type),
4439                  alloc_obj,
4440                  no_particular_field,
4441                  raw_adr_idx,
4442                  no_particular_value,
4443                  T_OBJECT,
4444                  false);
4445   }
4446 
4447   // Do not let reads from the cloned object float above the arraycopy.
4448   if (alloc != NULL) {
4449     // Do not let stores that initialize this object be reordered with
4450     // a subsequent store that would make this object accessible by
4451     // other threads.
4452     // Record what AllocateNode this StoreStore protects so that
4453     // escape analysis can go from the MemBarStoreStoreNode to the
4454     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4455     // based on the escape status of the AllocateNode.
4456     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4457   } else {
4458     insert_mem_bar(Op_MemBarCPUOrder);
4459   }
4460 }
4461 
4462 //------------------------inline_native_clone----------------------------
4463 // protected native Object java.lang.Object.clone();
4464 //
4465 // Here are the simple edge cases:
4466 //  null receiver => normal trap
4467 //  virtual and clone was overridden => slow path to out-of-line clone
4468 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4469 //
4470 // The general case has two steps, allocation and copying.
4471 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4472 //
4473 // Copying also has two cases, oop arrays and everything else.
4474 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4475 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4476 //
4477 // These steps fold up nicely if and when the cloned object's klass
4478 // can be sharply typed as an object array, a type array, or an instance.
4479 //
4480 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4481   PhiNode* result_val;
4482 
4483   // Set the reexecute bit for the interpreter to reexecute
4484   // the bytecode that invokes Object.clone if deoptimization happens.
4485   { PreserveReexecuteState preexecs(this);
4486     jvms()->set_should_reexecute(true);
4487 
4488     Node* obj = null_check_receiver();
4489     if (stopped())  return true;
4490 
4491     Node* obj_klass = load_object_klass(obj);
4492     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4493     const TypeOopPtr*   toop   = ((tklass != NULL)
4494                                 ? tklass->as_instance_type()
4495                                 : TypeInstPtr::NOTNULL);
4496 
4497     // Conservatively insert a memory barrier on all memory slices.
4498     // Do not let writes into the original float below the clone.
4499     insert_mem_bar(Op_MemBarCPUOrder);
4500 
4501     // paths into result_reg:
4502     enum {
4503       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4504       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4505       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4506       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4507       PATH_LIMIT
4508     };
4509     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4510     result_val             = new(C) PhiNode(result_reg,
4511                                             TypeInstPtr::NOTNULL);
4512     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4513     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4514                                             TypePtr::BOTTOM);
4515     record_for_igvn(result_reg);
4516 
4517     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4518     int raw_adr_idx = Compile::AliasIdxRaw;
4519 
4520     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4521     if (array_ctl != NULL) {
4522       // It's an array.
4523       PreserveJVMState pjvms(this);
4524       set_control(array_ctl);
4525       Node* obj_length = load_array_length(obj);
4526       Node* obj_size  = NULL;
4527       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4528 
4529       if (!use_ReduceInitialCardMarks()) {
4530         // If it is an oop array, it requires very special treatment,
4531         // because card marking is required on each card of the array.
4532         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4533         if (is_obja != NULL) {
4534           PreserveJVMState pjvms2(this);
4535           set_control(is_obja);
4536           // Generate a direct call to the right arraycopy function(s).
4537           bool disjoint_bases = true;
4538           bool length_never_negative = true;
4539           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4540                              obj, intcon(0), alloc_obj, intcon(0),
4541                              obj_length,
4542                              disjoint_bases, length_never_negative);
4543           result_reg->init_req(_objArray_path, control());
4544           result_val->init_req(_objArray_path, alloc_obj);
4545           result_i_o ->set_req(_objArray_path, i_o());
4546           result_mem ->set_req(_objArray_path, reset_memory());
4547         }
4548       }
4549       // Otherwise, there are no card marks to worry about.
4550       // (We can dispense with card marks if we know the allocation
4551       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4552       //  causes the non-eden paths to take compensating steps to
4553       //  simulate a fresh allocation, so that no further
4554       //  card marks are required in compiled code to initialize
4555       //  the object.)
4556 
4557       if (!stopped()) {
4558         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4559 
4560         // Present the results of the copy.
4561         result_reg->init_req(_array_path, control());
4562         result_val->init_req(_array_path, alloc_obj);
4563         result_i_o ->set_req(_array_path, i_o());
4564         result_mem ->set_req(_array_path, reset_memory());
4565       }
4566     }
4567 
4568     // We only go to the instance fast case code if we pass a number of guards.
4569     // The paths which do not pass are accumulated in the slow_region.
4570     RegionNode* slow_region = new (C) RegionNode(1);
4571     record_for_igvn(slow_region);
4572     if (!stopped()) {
4573       // It's an instance (we did array above).  Make the slow-path tests.
4574       // If this is a virtual call, we generate a funny guard.  We grab
4575       // the vtable entry corresponding to clone() from the target object.
4576       // If the target method which we are calling happens to be the
4577       // Object clone() method, we pass the guard.  We do not need this
4578       // guard for non-virtual calls; the caller is known to be the native
4579       // Object clone().
4580       if (is_virtual) {
4581         generate_virtual_guard(obj_klass, slow_region);
4582       }
4583 
4584       // The object must be cloneable and must not have a finalizer.
4585       // Both of these conditions may be checked in a single test.
4586       // We could optimize the cloneable test further, but we don't care.
4587       generate_access_flags_guard(obj_klass,
4588                                   // Test both conditions:
4589                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4590                                   // Must be cloneable but not finalizer:
4591                                   JVM_ACC_IS_CLONEABLE,
4592                                   slow_region);
4593     }
4594 
4595     if (!stopped()) {
4596       // It's an instance, and it passed the slow-path tests.
4597       PreserveJVMState pjvms(this);
4598       Node* obj_size  = NULL;
4599       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4600 
4601       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4602 
4603       // Present the results of the slow call.
4604       result_reg->init_req(_instance_path, control());
4605       result_val->init_req(_instance_path, alloc_obj);
4606       result_i_o ->set_req(_instance_path, i_o());
4607       result_mem ->set_req(_instance_path, reset_memory());
4608     }
4609 
4610     // Generate code for the slow case.  We make a call to clone().
4611     set_control(_gvn.transform(slow_region));
4612     if (!stopped()) {
4613       PreserveJVMState pjvms(this);
4614       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4615       Node* slow_result = set_results_for_java_call(slow_call);
4616       // this->control() comes from set_results_for_java_call
4617       result_reg->init_req(_slow_path, control());
4618       result_val->init_req(_slow_path, slow_result);
4619       result_i_o ->set_req(_slow_path, i_o());
4620       result_mem ->set_req(_slow_path, reset_memory());
4621     }
4622 
4623     // Return the combined state.
4624     set_control(    _gvn.transform(result_reg));
4625     set_i_o(        _gvn.transform(result_i_o));
4626     set_all_memory( _gvn.transform(result_mem));
4627   } // original reexecute is set back here
4628 
4629   set_result(_gvn.transform(result_val));
4630   return true;
4631 }
4632 
4633 //------------------------------basictype2arraycopy----------------------------
4634 address LibraryCallKit::basictype2arraycopy(BasicType t,
4635                                             Node* src_offset,
4636                                             Node* dest_offset,
4637                                             bool disjoint_bases,
4638                                             const char* &name,
4639                                             bool dest_uninitialized) {
4640   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4641   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4642 
4643   bool aligned = false;
4644   bool disjoint = disjoint_bases;
4645 
4646   // if the offsets are the same, we can treat the memory regions as
4647   // disjoint, because either the memory regions are in different arrays,
4648   // or they are identical (which we can treat as disjoint.)  We can also
4649   // treat a copy with a destination index  less that the source index
4650   // as disjoint since a low->high copy will work correctly in this case.
4651   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4652       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4653     // both indices are constants
4654     int s_offs = src_offset_inttype->get_con();
4655     int d_offs = dest_offset_inttype->get_con();
4656     int element_size = type2aelembytes(t);
4657     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4658               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4659     if (s_offs >= d_offs)  disjoint = true;
4660   } else if (src_offset == dest_offset && src_offset != NULL) {
4661     // This can occur if the offsets are identical non-constants.
4662     disjoint = true;
4663   }
4664 
4665   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4666 }
4667 
4668 
4669 //------------------------------inline_arraycopy-----------------------
4670 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4671 //                                                      Object dest, int destPos,
4672 //                                                      int length);
4673 bool LibraryCallKit::inline_arraycopy() {
4674   // Get the arguments.
4675   Node* src         = argument(0);  // type: oop
4676   Node* src_offset  = argument(1);  // type: int
4677   Node* dest        = argument(2);  // type: oop
4678   Node* dest_offset = argument(3);  // type: int
4679   Node* length      = argument(4);  // type: int
4680 
4681   // Compile time checks.  If any of these checks cannot be verified at compile time,
4682   // we do not make a fast path for this call.  Instead, we let the call remain as it
4683   // is.  The checks we choose to mandate at compile time are:
4684   //
4685   // (1) src and dest are arrays.
4686   const Type* src_type  = src->Value(&_gvn);
4687   const Type* dest_type = dest->Value(&_gvn);
4688   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4689   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4690 
4691   // Do we have the type of src?
4692   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4693   // Do we have the type of dest?
4694   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4695   // Is the type for src from speculation?
4696   bool src_spec = false;
4697   // Is the type for dest from speculation?
4698   bool dest_spec = false;
4699 
4700   if (!has_src || !has_dest) {
4701     // We don't have sufficient type information, let's see if
4702     // speculative types can help. We need to have types for both src
4703     // and dest so that it pays off.
4704 
4705     // Do we already have or could we have type information for src
4706     bool could_have_src = has_src;
4707     // Do we already have or could we have type information for dest
4708     bool could_have_dest = has_dest;
4709 
4710     ciKlass* src_k = NULL;
4711     if (!has_src) {
4712       src_k = src_type->speculative_type();
4713       if (src_k != NULL && src_k->is_array_klass()) {
4714         could_have_src = true;
4715       }
4716     }
4717 
4718     ciKlass* dest_k = NULL;
4719     if (!has_dest) {
4720       dest_k = dest_type->speculative_type();
4721       if (dest_k != NULL && dest_k->is_array_klass()) {
4722         could_have_dest = true;
4723       }
4724     }
4725 
4726     if (could_have_src && could_have_dest) {
4727       // This is going to pay off so emit the required guards
4728       if (!has_src) {
4729         src = maybe_cast_profiled_obj(src, src_k);
4730         src_type  = _gvn.type(src);
4731         top_src  = src_type->isa_aryptr();
4732         has_src = (top_src != NULL && top_src->klass() != NULL);
4733         src_spec = true;
4734       }
4735       if (!has_dest) {
4736         dest = maybe_cast_profiled_obj(dest, dest_k);
4737         dest_type  = _gvn.type(dest);
4738         top_dest  = dest_type->isa_aryptr();
4739         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4740         dest_spec = true;
4741       }
4742     }
4743   }
4744 
4745   if (!has_src || !has_dest) {
4746     // Conservatively insert a memory barrier on all memory slices.
4747     // Do not let writes into the source float below the arraycopy.
4748     insert_mem_bar(Op_MemBarCPUOrder);
4749 
4750     // Call StubRoutines::generic_arraycopy stub.
4751     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4752                        src, src_offset, dest, dest_offset, length);
4753 
4754     // Do not let reads from the destination float above the arraycopy.
4755     // Since we cannot type the arrays, we don't know which slices
4756     // might be affected.  We could restrict this barrier only to those
4757     // memory slices which pertain to array elements--but don't bother.
4758     if (!InsertMemBarAfterArraycopy)
4759       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4760       insert_mem_bar(Op_MemBarCPUOrder);
4761     return true;
4762   }
4763 
4764   // (2) src and dest arrays must have elements of the same BasicType
4765   // Figure out the size and type of the elements we will be copying.
4766   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4767   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4768   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4769   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4770 
4771   if (src_elem != dest_elem || dest_elem == T_VOID) {
4772     // The component types are not the same or are not recognized.  Punt.
4773     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4774     generate_slow_arraycopy(TypePtr::BOTTOM,
4775                             src, src_offset, dest, dest_offset, length,
4776                             /*dest_uninitialized*/false);
4777     return true;
4778   }
4779 
4780   if (src_elem == T_OBJECT) {
4781     // If both arrays are object arrays then having the exact types
4782     // for both will remove the need for a subtype check at runtime
4783     // before the call and may make it possible to pick a faster copy
4784     // routine (without a subtype check on every element)
4785     // Do we have the exact type of src?
4786     bool could_have_src = src_spec;
4787     // Do we have the exact type of dest?
4788     bool could_have_dest = dest_spec;
4789     ciKlass* src_k = top_src->klass();
4790     ciKlass* dest_k = top_dest->klass();
4791     if (!src_spec) {
4792       src_k = src_type->speculative_type();
4793       if (src_k != NULL && src_k->is_array_klass()) {
4794           could_have_src = true;
4795       }
4796     }
4797     if (!dest_spec) {
4798       dest_k = dest_type->speculative_type();
4799       if (dest_k != NULL && dest_k->is_array_klass()) {
4800         could_have_dest = true;
4801       }
4802     }
4803     if (could_have_src && could_have_dest) {
4804       // If we can have both exact types, emit the missing guards
4805       if (could_have_src && !src_spec) {
4806         src = maybe_cast_profiled_obj(src, src_k);
4807       }
4808       if (could_have_dest && !dest_spec) {
4809         dest = maybe_cast_profiled_obj(dest, dest_k);
4810       }
4811     }
4812   }
4813 
4814   //---------------------------------------------------------------------------
4815   // We will make a fast path for this call to arraycopy.
4816 
4817   // We have the following tests left to perform:
4818   //
4819   // (3) src and dest must not be null.
4820   // (4) src_offset must not be negative.
4821   // (5) dest_offset must not be negative.
4822   // (6) length must not be negative.
4823   // (7) src_offset + length must not exceed length of src.
4824   // (8) dest_offset + length must not exceed length of dest.
4825   // (9) each element of an oop array must be assignable
4826 
4827   RegionNode* slow_region = new (C) RegionNode(1);
4828   record_for_igvn(slow_region);
4829 
4830   // (3) operands must not be null
4831   // We currently perform our null checks with the null_check routine.
4832   // This means that the null exceptions will be reported in the caller
4833   // rather than (correctly) reported inside of the native arraycopy call.
4834   // This should be corrected, given time.  We do our null check with the
4835   // stack pointer restored.
4836   src  = null_check(src,  T_ARRAY);
4837   dest = null_check(dest, T_ARRAY);
4838 
4839   // (4) src_offset must not be negative.
4840   generate_negative_guard(src_offset, slow_region);
4841 
4842   // (5) dest_offset must not be negative.
4843   generate_negative_guard(dest_offset, slow_region);
4844 
4845   // (6) length must not be negative (moved to generate_arraycopy()).
4846   // generate_negative_guard(length, slow_region);
4847 
4848   // (7) src_offset + length must not exceed length of src.
4849   generate_limit_guard(src_offset, length,
4850                        load_array_length(src),
4851                        slow_region);
4852 
4853   // (8) dest_offset + length must not exceed length of dest.
4854   generate_limit_guard(dest_offset, length,
4855                        load_array_length(dest),
4856                        slow_region);
4857 
4858   // (9) each element of an oop array must be assignable
4859   // The generate_arraycopy subroutine checks this.
4860 
4861   // This is where the memory effects are placed:
4862   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4863   generate_arraycopy(adr_type, dest_elem,
4864                      src, src_offset, dest, dest_offset, length,
4865                      false, false, slow_region);
4866 
4867   return true;
4868 }
4869 
4870 //-----------------------------generate_arraycopy----------------------
4871 // Generate an optimized call to arraycopy.
4872 // Caller must guard against non-arrays.
4873 // Caller must determine a common array basic-type for both arrays.
4874 // Caller must validate offsets against array bounds.
4875 // The slow_region has already collected guard failure paths
4876 // (such as out of bounds length or non-conformable array types).
4877 // The generated code has this shape, in general:
4878 //
4879 //     if (length == 0)  return   // via zero_path
4880 //     slowval = -1
4881 //     if (types unknown) {
4882 //       slowval = call generic copy loop
4883 //       if (slowval == 0)  return  // via checked_path
4884 //     } else if (indexes in bounds) {
4885 //       if ((is object array) && !(array type check)) {
4886 //         slowval = call checked copy loop
4887 //         if (slowval == 0)  return  // via checked_path
4888 //       } else {
4889 //         call bulk copy loop
4890 //         return  // via fast_path
4891 //       }
4892 //     }
4893 //     // adjust params for remaining work:
4894 //     if (slowval != -1) {
4895 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4896 //     }
4897 //   slow_region:
4898 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4899 //     return  // via slow_call_path
4900 //
4901 // This routine is used from several intrinsics:  System.arraycopy,
4902 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4903 //
4904 void
4905 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4906                                    BasicType basic_elem_type,
4907                                    Node* src,  Node* src_offset,
4908                                    Node* dest, Node* dest_offset,
4909                                    Node* copy_length,
4910                                    bool disjoint_bases,
4911                                    bool length_never_negative,
4912                                    RegionNode* slow_region) {
4913 
4914   if (slow_region == NULL) {
4915     slow_region = new(C) RegionNode(1);
4916     record_for_igvn(slow_region);
4917   }
4918 
4919   Node* original_dest      = dest;
4920   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4921   bool  dest_uninitialized = false;
4922 
4923   // See if this is the initialization of a newly-allocated array.
4924   // If so, we will take responsibility here for initializing it to zero.
4925   // (Note:  Because tightly_coupled_allocation performs checks on the
4926   // out-edges of the dest, we need to avoid making derived pointers
4927   // from it until we have checked its uses.)
4928   if (ReduceBulkZeroing
4929       && !ZeroTLAB              // pointless if already zeroed
4930       && basic_elem_type != T_CONFLICT // avoid corner case
4931       && !src->eqv_uncast(dest)
4932       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4933           != NULL)
4934       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4935       && alloc->maybe_set_complete(&_gvn)) {
4936     // "You break it, you buy it."
4937     InitializeNode* init = alloc->initialization();
4938     assert(init->is_complete(), "we just did this");
4939     init->set_complete_with_arraycopy();
4940     assert(dest->is_CheckCastPP(), "sanity");
4941     assert(dest->in(0)->in(0) == init, "dest pinned");
4942     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4943     // From this point on, every exit path is responsible for
4944     // initializing any non-copied parts of the object to zero.
4945     // Also, if this flag is set we make sure that arraycopy interacts properly
4946     // with G1, eliding pre-barriers. See CR 6627983.
4947     dest_uninitialized = true;
4948   } else {
4949     // No zeroing elimination here.
4950     alloc             = NULL;
4951     //original_dest   = dest;
4952     //dest_uninitialized = false;
4953   }
4954 
4955   // Results are placed here:
4956   enum { fast_path        = 1,  // normal void-returning assembly stub
4957          checked_path     = 2,  // special assembly stub with cleanup
4958          slow_call_path   = 3,  // something went wrong; call the VM
4959          zero_path        = 4,  // bypass when length of copy is zero
4960          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4961          PATH_LIMIT       = 6
4962   };
4963   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4964   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4965   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4966   record_for_igvn(result_region);
4967   _gvn.set_type_bottom(result_i_o);
4968   _gvn.set_type_bottom(result_memory);
4969   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4970 
4971   // The slow_control path:
4972   Node* slow_control;
4973   Node* slow_i_o = i_o();
4974   Node* slow_mem = memory(adr_type);
4975   debug_only(slow_control = (Node*) badAddress);
4976 
4977   // Checked control path:
4978   Node* checked_control = top();
4979   Node* checked_mem     = NULL;
4980   Node* checked_i_o     = NULL;
4981   Node* checked_value   = NULL;
4982 
4983   if (basic_elem_type == T_CONFLICT) {
4984     assert(!dest_uninitialized, "");
4985     Node* cv = generate_generic_arraycopy(adr_type,
4986                                           src, src_offset, dest, dest_offset,
4987                                           copy_length, dest_uninitialized);
4988     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4989     checked_control = control();
4990     checked_i_o     = i_o();
4991     checked_mem     = memory(adr_type);
4992     checked_value   = cv;
4993     set_control(top());         // no fast path
4994   }
4995 
4996   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4997   if (not_pos != NULL) {
4998     PreserveJVMState pjvms(this);
4999     set_control(not_pos);
5000 
5001     // (6) length must not be negative.
5002     if (!length_never_negative) {
5003       generate_negative_guard(copy_length, slow_region);
5004     }
5005 
5006     // copy_length is 0.
5007     if (!stopped() && dest_uninitialized) {
5008       Node* dest_length = alloc->in(AllocateNode::ALength);
5009       if (copy_length->eqv_uncast(dest_length)
5010           || _gvn.find_int_con(dest_length, 1) <= 0) {
5011         // There is no zeroing to do. No need for a secondary raw memory barrier.
5012       } else {
5013         // Clear the whole thing since there are no source elements to copy.
5014         generate_clear_array(adr_type, dest, basic_elem_type,
5015                              intcon(0), NULL,
5016                              alloc->in(AllocateNode::AllocSize));
5017         // Use a secondary InitializeNode as raw memory barrier.
5018         // Currently it is needed only on this path since other
5019         // paths have stub or runtime calls as raw memory barriers.
5020         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5021                                                        Compile::AliasIdxRaw,
5022                                                        top())->as_Initialize();
5023         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5024       }
5025     }
5026 
5027     // Present the results of the fast call.
5028     result_region->init_req(zero_path, control());
5029     result_i_o   ->init_req(zero_path, i_o());
5030     result_memory->init_req(zero_path, memory(adr_type));
5031   }
5032 
5033   if (!stopped() && dest_uninitialized) {
5034     // We have to initialize the *uncopied* part of the array to zero.
5035     // The copy destination is the slice dest[off..off+len].  The other slices
5036     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5037     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5038     Node* dest_length = alloc->in(AllocateNode::ALength);
5039     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5040                                                           copy_length));
5041 
5042     // If there is a head section that needs zeroing, do it now.
5043     if (find_int_con(dest_offset, -1) != 0) {
5044       generate_clear_array(adr_type, dest, basic_elem_type,
5045                            intcon(0), dest_offset,
5046                            NULL);
5047     }
5048 
5049     // Next, perform a dynamic check on the tail length.
5050     // It is often zero, and we can win big if we prove this.
5051     // There are two wins:  Avoid generating the ClearArray
5052     // with its attendant messy index arithmetic, and upgrade
5053     // the copy to a more hardware-friendly word size of 64 bits.
5054     Node* tail_ctl = NULL;
5055     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5056       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5057       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5058       tail_ctl = generate_slow_guard(bol_lt, NULL);
5059       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5060     }
5061 
5062     // At this point, let's assume there is no tail.
5063     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5064       // There is no tail.  Try an upgrade to a 64-bit copy.
5065       bool didit = false;
5066       { PreserveJVMState pjvms(this);
5067         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5068                                          src, src_offset, dest, dest_offset,
5069                                          dest_size, dest_uninitialized);
5070         if (didit) {
5071           // Present the results of the block-copying fast call.
5072           result_region->init_req(bcopy_path, control());
5073           result_i_o   ->init_req(bcopy_path, i_o());
5074           result_memory->init_req(bcopy_path, memory(adr_type));
5075         }
5076       }
5077       if (didit)
5078         set_control(top());     // no regular fast path
5079     }
5080 
5081     // Clear the tail, if any.
5082     if (tail_ctl != NULL) {
5083       Node* notail_ctl = stopped() ? NULL : control();
5084       set_control(tail_ctl);
5085       if (notail_ctl == NULL) {
5086         generate_clear_array(adr_type, dest, basic_elem_type,
5087                              dest_tail, NULL,
5088                              dest_size);
5089       } else {
5090         // Make a local merge.
5091         Node* done_ctl = new(C) RegionNode(3);
5092         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5093         done_ctl->init_req(1, notail_ctl);
5094         done_mem->init_req(1, memory(adr_type));
5095         generate_clear_array(adr_type, dest, basic_elem_type,
5096                              dest_tail, NULL,
5097                              dest_size);
5098         done_ctl->init_req(2, control());
5099         done_mem->init_req(2, memory(adr_type));
5100         set_control( _gvn.transform(done_ctl));
5101         set_memory(  _gvn.transform(done_mem), adr_type );
5102       }
5103     }
5104   }
5105 
5106   BasicType copy_type = basic_elem_type;
5107   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5108   if (!stopped() && copy_type == T_OBJECT) {
5109     // If src and dest have compatible element types, we can copy bits.
5110     // Types S[] and D[] are compatible if D is a supertype of S.
5111     //
5112     // If they are not, we will use checked_oop_disjoint_arraycopy,
5113     // which performs a fast optimistic per-oop check, and backs off
5114     // further to JVM_ArrayCopy on the first per-oop check that fails.
5115     // (Actually, we don't move raw bits only; the GC requires card marks.)
5116 
5117     // Get the Klass* for both src and dest
5118     Node* src_klass  = load_object_klass(src);
5119     Node* dest_klass = load_object_klass(dest);
5120 
5121     // Generate the subtype check.
5122     // This might fold up statically, or then again it might not.
5123     //
5124     // Non-static example:  Copying List<String>.elements to a new String[].
5125     // The backing store for a List<String> is always an Object[],
5126     // but its elements are always type String, if the generic types
5127     // are correct at the source level.
5128     //
5129     // Test S[] against D[], not S against D, because (probably)
5130     // the secondary supertype cache is less busy for S[] than S.
5131     // This usually only matters when D is an interface.
5132     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5133     // Plug failing path into checked_oop_disjoint_arraycopy
5134     if (not_subtype_ctrl != top()) {
5135       PreserveJVMState pjvms(this);
5136       set_control(not_subtype_ctrl);
5137       // (At this point we can assume disjoint_bases, since types differ.)
5138       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5139       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5140       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5141       Node* dest_elem_klass = _gvn.transform(n1);
5142       Node* cv = generate_checkcast_arraycopy(adr_type,
5143                                               dest_elem_klass,
5144                                               src, src_offset, dest, dest_offset,
5145                                               ConvI2X(copy_length), dest_uninitialized);
5146       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5147       checked_control = control();
5148       checked_i_o     = i_o();
5149       checked_mem     = memory(adr_type);
5150       checked_value   = cv;
5151     }
5152     // At this point we know we do not need type checks on oop stores.
5153 
5154     // Let's see if we need card marks:
5155     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5156       // If we do not need card marks, copy using the jint or jlong stub.
5157       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5158       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5159              "sizes agree");
5160     }
5161   }
5162 
5163   if (!stopped()) {
5164     // Generate the fast path, if possible.
5165     PreserveJVMState pjvms(this);
5166     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5167                                  src, src_offset, dest, dest_offset,
5168                                  ConvI2X(copy_length), dest_uninitialized);
5169 
5170     // Present the results of the fast call.
5171     result_region->init_req(fast_path, control());
5172     result_i_o   ->init_req(fast_path, i_o());
5173     result_memory->init_req(fast_path, memory(adr_type));
5174   }
5175 
5176   // Here are all the slow paths up to this point, in one bundle:
5177   slow_control = top();
5178   if (slow_region != NULL)
5179     slow_control = _gvn.transform(slow_region);
5180   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5181 
5182   set_control(checked_control);
5183   if (!stopped()) {
5184     // Clean up after the checked call.
5185     // The returned value is either 0 or -1^K,
5186     // where K = number of partially transferred array elements.
5187     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5188     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5189     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5190 
5191     // If it is 0, we are done, so transfer to the end.
5192     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5193     result_region->init_req(checked_path, checks_done);
5194     result_i_o   ->init_req(checked_path, checked_i_o);
5195     result_memory->init_req(checked_path, checked_mem);
5196 
5197     // If it is not zero, merge into the slow call.
5198     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5199     RegionNode* slow_reg2 = new(C) RegionNode(3);
5200     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5201     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5202     record_for_igvn(slow_reg2);
5203     slow_reg2  ->init_req(1, slow_control);
5204     slow_i_o2  ->init_req(1, slow_i_o);
5205     slow_mem2  ->init_req(1, slow_mem);
5206     slow_reg2  ->init_req(2, control());
5207     slow_i_o2  ->init_req(2, checked_i_o);
5208     slow_mem2  ->init_req(2, checked_mem);
5209 
5210     slow_control = _gvn.transform(slow_reg2);
5211     slow_i_o     = _gvn.transform(slow_i_o2);
5212     slow_mem     = _gvn.transform(slow_mem2);
5213 
5214     if (alloc != NULL) {
5215       // We'll restart from the very beginning, after zeroing the whole thing.
5216       // This can cause double writes, but that's OK since dest is brand new.
5217       // So we ignore the low 31 bits of the value returned from the stub.
5218     } else {
5219       // We must continue the copy exactly where it failed, or else
5220       // another thread might see the wrong number of writes to dest.
5221       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5222       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5223       slow_offset->init_req(1, intcon(0));
5224       slow_offset->init_req(2, checked_offset);
5225       slow_offset  = _gvn.transform(slow_offset);
5226 
5227       // Adjust the arguments by the conditionally incoming offset.
5228       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5229       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5230       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5231 
5232       // Tweak the node variables to adjust the code produced below:
5233       src_offset  = src_off_plus;
5234       dest_offset = dest_off_plus;
5235       copy_length = length_minus;
5236     }
5237   }
5238 
5239   set_control(slow_control);
5240   if (!stopped()) {
5241     // Generate the slow path, if needed.
5242     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5243 
5244     set_memory(slow_mem, adr_type);
5245     set_i_o(slow_i_o);
5246 
5247     if (dest_uninitialized) {
5248       generate_clear_array(adr_type, dest, basic_elem_type,
5249                            intcon(0), NULL,
5250                            alloc->in(AllocateNode::AllocSize));
5251     }
5252 
5253     generate_slow_arraycopy(adr_type,
5254                             src, src_offset, dest, dest_offset,
5255                             copy_length, /*dest_uninitialized*/false);
5256 
5257     result_region->init_req(slow_call_path, control());
5258     result_i_o   ->init_req(slow_call_path, i_o());
5259     result_memory->init_req(slow_call_path, memory(adr_type));
5260   }
5261 
5262   // Remove unused edges.
5263   for (uint i = 1; i < result_region->req(); i++) {
5264     if (result_region->in(i) == NULL)
5265       result_region->init_req(i, top());
5266   }
5267 
5268   // Finished; return the combined state.
5269   set_control( _gvn.transform(result_region));
5270   set_i_o(     _gvn.transform(result_i_o)    );
5271   set_memory(  _gvn.transform(result_memory), adr_type );
5272 
5273   // The memory edges above are precise in order to model effects around
5274   // array copies accurately to allow value numbering of field loads around
5275   // arraycopy.  Such field loads, both before and after, are common in Java
5276   // collections and similar classes involving header/array data structures.
5277   //
5278   // But with low number of register or when some registers are used or killed
5279   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5280   // The next memory barrier is added to avoid it. If the arraycopy can be
5281   // optimized away (which it can, sometimes) then we can manually remove
5282   // the membar also.
5283   //
5284   // Do not let reads from the cloned object float above the arraycopy.
5285   if (alloc != NULL) {
5286     // Do not let stores that initialize this object be reordered with
5287     // a subsequent store that would make this object accessible by
5288     // other threads.
5289     // Record what AllocateNode this StoreStore protects so that
5290     // escape analysis can go from the MemBarStoreStoreNode to the
5291     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5292     // based on the escape status of the AllocateNode.
5293     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5294   } else if (InsertMemBarAfterArraycopy)
5295     insert_mem_bar(Op_MemBarCPUOrder);
5296 }
5297 
5298 
5299 // Helper function which determines if an arraycopy immediately follows
5300 // an allocation, with no intervening tests or other escapes for the object.
5301 AllocateArrayNode*
5302 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5303                                            RegionNode* slow_region) {
5304   if (stopped())             return NULL;  // no fast path
5305   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5306 
5307   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5308   if (alloc == NULL)  return NULL;
5309 
5310   Node* rawmem = memory(Compile::AliasIdxRaw);
5311   // Is the allocation's memory state untouched?
5312   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5313     // Bail out if there have been raw-memory effects since the allocation.
5314     // (Example:  There might have been a call or safepoint.)
5315     return NULL;
5316   }
5317   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5318   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5319     return NULL;
5320   }
5321 
5322   // There must be no unexpected observers of this allocation.
5323   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5324     Node* obs = ptr->fast_out(i);
5325     if (obs != this->map()) {
5326       return NULL;
5327     }
5328   }
5329 
5330   // This arraycopy must unconditionally follow the allocation of the ptr.
5331   Node* alloc_ctl = ptr->in(0);
5332   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5333 
5334   Node* ctl = control();
5335   while (ctl != alloc_ctl) {
5336     // There may be guards which feed into the slow_region.
5337     // Any other control flow means that we might not get a chance
5338     // to finish initializing the allocated object.
5339     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5340       IfNode* iff = ctl->in(0)->as_If();
5341       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5342       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5343       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5344         ctl = iff->in(0);       // This test feeds the known slow_region.
5345         continue;
5346       }
5347       // One more try:  Various low-level checks bottom out in
5348       // uncommon traps.  If the debug-info of the trap omits
5349       // any reference to the allocation, as we've already
5350       // observed, then there can be no objection to the trap.
5351       bool found_trap = false;
5352       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5353         Node* obs = not_ctl->fast_out(j);
5354         if (obs->in(0) == not_ctl && obs->is_Call() &&
5355             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5356           found_trap = true; break;
5357         }
5358       }
5359       if (found_trap) {
5360         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5361         continue;
5362       }
5363     }
5364     return NULL;
5365   }
5366 
5367   // If we get this far, we have an allocation which immediately
5368   // precedes the arraycopy, and we can take over zeroing the new object.
5369   // The arraycopy will finish the initialization, and provide
5370   // a new control state to which we will anchor the destination pointer.
5371 
5372   return alloc;
5373 }
5374 
5375 // Helper for initialization of arrays, creating a ClearArray.
5376 // It writes zero bits in [start..end), within the body of an array object.
5377 // The memory effects are all chained onto the 'adr_type' alias category.
5378 //
5379 // Since the object is otherwise uninitialized, we are free
5380 // to put a little "slop" around the edges of the cleared area,
5381 // as long as it does not go back into the array's header,
5382 // or beyond the array end within the heap.
5383 //
5384 // The lower edge can be rounded down to the nearest jint and the
5385 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5386 //
5387 // Arguments:
5388 //   adr_type           memory slice where writes are generated
5389 //   dest               oop of the destination array
5390 //   basic_elem_type    element type of the destination
5391 //   slice_idx          array index of first element to store
5392 //   slice_len          number of elements to store (or NULL)
5393 //   dest_size          total size in bytes of the array object
5394 //
5395 // Exactly one of slice_len or dest_size must be non-NULL.
5396 // If dest_size is non-NULL, zeroing extends to the end of the object.
5397 // If slice_len is non-NULL, the slice_idx value must be a constant.
5398 void
5399 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5400                                      Node* dest,
5401                                      BasicType basic_elem_type,
5402                                      Node* slice_idx,
5403                                      Node* slice_len,
5404                                      Node* dest_size) {
5405   // one or the other but not both of slice_len and dest_size:
5406   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5407   if (slice_len == NULL)  slice_len = top();
5408   if (dest_size == NULL)  dest_size = top();
5409 
5410   // operate on this memory slice:
5411   Node* mem = memory(adr_type); // memory slice to operate on
5412 
5413   // scaling and rounding of indexes:
5414   int scale = exact_log2(type2aelembytes(basic_elem_type));
5415   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5416   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5417   int bump_bit  = (-1 << scale) & BytesPerInt;
5418 
5419   // determine constant starts and ends
5420   const intptr_t BIG_NEG = -128;
5421   assert(BIG_NEG + 2*abase < 0, "neg enough");
5422   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5423   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5424   if (slice_len_con == 0) {
5425     return;                     // nothing to do here
5426   }
5427   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5428   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5429   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5430     assert(end_con < 0, "not two cons");
5431     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5432                        BytesPerLong);
5433   }
5434 
5435   if (start_con >= 0 && end_con >= 0) {
5436     // Constant start and end.  Simple.
5437     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5438                                        start_con, end_con, &_gvn);
5439   } else if (start_con >= 0 && dest_size != top()) {
5440     // Constant start, pre-rounded end after the tail of the array.
5441     Node* end = dest_size;
5442     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5443                                        start_con, end, &_gvn);
5444   } else if (start_con >= 0 && slice_len != top()) {
5445     // Constant start, non-constant end.  End needs rounding up.
5446     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5447     intptr_t end_base  = abase + (slice_idx_con << scale);
5448     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5449     Node*    end       = ConvI2X(slice_len);
5450     if (scale != 0)
5451       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5452     end_base += end_round;
5453     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5454     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5455     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5456                                        start_con, end, &_gvn);
5457   } else if (start_con < 0 && dest_size != top()) {
5458     // Non-constant start, pre-rounded end after the tail of the array.
5459     // This is almost certainly a "round-to-end" operation.
5460     Node* start = slice_idx;
5461     start = ConvI2X(start);
5462     if (scale != 0)
5463       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5464     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5465     if ((bump_bit | clear_low) != 0) {
5466       int to_clear = (bump_bit | clear_low);
5467       // Align up mod 8, then store a jint zero unconditionally
5468       // just before the mod-8 boundary.
5469       if (((abase + bump_bit) & ~to_clear) - bump_bit
5470           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5471         bump_bit = 0;
5472         assert((abase & to_clear) == 0, "array base must be long-aligned");
5473       } else {
5474         // Bump 'start' up to (or past) the next jint boundary:
5475         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5476         assert((abase & clear_low) == 0, "array base must be int-aligned");
5477       }
5478       // Round bumped 'start' down to jlong boundary in body of array.
5479       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5480       if (bump_bit != 0) {
5481         // Store a zero to the immediately preceding jint:
5482         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5483         Node* p1 = basic_plus_adr(dest, x1);
5484         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5485         mem = _gvn.transform(mem);
5486       }
5487     }
5488     Node* end = dest_size; // pre-rounded
5489     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5490                                        start, end, &_gvn);
5491   } else {
5492     // Non-constant start, unrounded non-constant end.
5493     // (Nobody zeroes a random midsection of an array using this routine.)
5494     ShouldNotReachHere();       // fix caller
5495   }
5496 
5497   // Done.
5498   set_memory(mem, adr_type);
5499 }
5500 
5501 
5502 bool
5503 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5504                                          BasicType basic_elem_type,
5505                                          AllocateNode* alloc,
5506                                          Node* src,  Node* src_offset,
5507                                          Node* dest, Node* dest_offset,
5508                                          Node* dest_size, bool dest_uninitialized) {
5509   // See if there is an advantage from block transfer.
5510   int scale = exact_log2(type2aelembytes(basic_elem_type));
5511   if (scale >= LogBytesPerLong)
5512     return false;               // it is already a block transfer
5513 
5514   // Look at the alignment of the starting offsets.
5515   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5516 
5517   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5518   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5519   if (src_off_con < 0 || dest_off_con < 0)
5520     // At present, we can only understand constants.
5521     return false;
5522 
5523   intptr_t src_off  = abase + (src_off_con  << scale);
5524   intptr_t dest_off = abase + (dest_off_con << scale);
5525 
5526   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5527     // Non-aligned; too bad.
5528     // One more chance:  Pick off an initial 32-bit word.
5529     // This is a common case, since abase can be odd mod 8.
5530     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5531         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5532       Node* sptr = basic_plus_adr(src,  src_off);
5533       Node* dptr = basic_plus_adr(dest, dest_off);
5534       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5535       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5536       src_off += BytesPerInt;
5537       dest_off += BytesPerInt;
5538     } else {
5539       return false;
5540     }
5541   }
5542   assert(src_off % BytesPerLong == 0, "");
5543   assert(dest_off % BytesPerLong == 0, "");
5544 
5545   // Do this copy by giant steps.
5546   Node* sptr  = basic_plus_adr(src,  src_off);
5547   Node* dptr  = basic_plus_adr(dest, dest_off);
5548   Node* countx = dest_size;
5549   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5550   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5551 
5552   bool disjoint_bases = true;   // since alloc != NULL
5553   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5554                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5555 
5556   return true;
5557 }
5558 
5559 
5560 // Helper function; generates code for the slow case.
5561 // We make a call to a runtime method which emulates the native method,
5562 // but without the native wrapper overhead.
5563 void
5564 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5565                                         Node* src,  Node* src_offset,
5566                                         Node* dest, Node* dest_offset,
5567                                         Node* copy_length, bool dest_uninitialized) {
5568   assert(!dest_uninitialized, "Invariant");
5569   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5570                                  OptoRuntime::slow_arraycopy_Type(),
5571                                  OptoRuntime::slow_arraycopy_Java(),
5572                                  "slow_arraycopy", adr_type,
5573                                  src, src_offset, dest, dest_offset,
5574                                  copy_length);
5575 
5576   // Handle exceptions thrown by this fellow:
5577   make_slow_call_ex(call, env()->Throwable_klass(), false);
5578 }
5579 
5580 // Helper function; generates code for cases requiring runtime checks.
5581 Node*
5582 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5583                                              Node* dest_elem_klass,
5584                                              Node* src,  Node* src_offset,
5585                                              Node* dest, Node* dest_offset,
5586                                              Node* copy_length, bool dest_uninitialized) {
5587   if (stopped())  return NULL;
5588 
5589   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5590   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5591     return NULL;
5592   }
5593 
5594   // Pick out the parameters required to perform a store-check
5595   // for the target array.  This is an optimistic check.  It will
5596   // look in each non-null element's class, at the desired klass's
5597   // super_check_offset, for the desired klass.
5598   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5599   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5600   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5601   Node* check_offset = ConvI2X(_gvn.transform(n3));
5602   Node* check_value  = dest_elem_klass;
5603 
5604   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5605   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5606 
5607   // (We know the arrays are never conjoint, because their types differ.)
5608   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5609                                  OptoRuntime::checkcast_arraycopy_Type(),
5610                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5611                                  // five arguments, of which two are
5612                                  // intptr_t (jlong in LP64)
5613                                  src_start, dest_start,
5614                                  copy_length XTOP,
5615                                  check_offset XTOP,
5616                                  check_value);
5617 
5618   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5619 }
5620 
5621 
5622 // Helper function; generates code for cases requiring runtime checks.
5623 Node*
5624 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5625                                            Node* src,  Node* src_offset,
5626                                            Node* dest, Node* dest_offset,
5627                                            Node* copy_length, bool dest_uninitialized) {
5628   assert(!dest_uninitialized, "Invariant");
5629   if (stopped())  return NULL;
5630   address copyfunc_addr = StubRoutines::generic_arraycopy();
5631   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5632     return NULL;
5633   }
5634 
5635   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5636                     OptoRuntime::generic_arraycopy_Type(),
5637                     copyfunc_addr, "generic_arraycopy", adr_type,
5638                     src, src_offset, dest, dest_offset, copy_length);
5639 
5640   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5641 }
5642 
5643 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5644 void
5645 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5646                                              BasicType basic_elem_type,
5647                                              bool disjoint_bases,
5648                                              Node* src,  Node* src_offset,
5649                                              Node* dest, Node* dest_offset,
5650                                              Node* copy_length, bool dest_uninitialized) {
5651   if (stopped())  return;               // nothing to do
5652 
5653   Node* src_start  = src;
5654   Node* dest_start = dest;
5655   if (src_offset != NULL || dest_offset != NULL) {
5656     assert(src_offset != NULL && dest_offset != NULL, "");
5657     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5658     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5659   }
5660 
5661   // Figure out which arraycopy runtime method to call.
5662   const char* copyfunc_name = "arraycopy";
5663   address     copyfunc_addr =
5664       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5665                           disjoint_bases, copyfunc_name, dest_uninitialized);
5666 
5667   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5668   make_runtime_call(RC_LEAF|RC_NO_FP,
5669                     OptoRuntime::fast_arraycopy_Type(),
5670                     copyfunc_addr, copyfunc_name, adr_type,
5671                     src_start, dest_start, copy_length XTOP);
5672 }
5673 
5674 //-------------inline_encodeISOArray-----------------------------------
5675 // encode char[] to byte[] in ISO_8859_1
5676 bool LibraryCallKit::inline_encodeISOArray() {
5677   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5678   // no receiver since it is static method
5679   Node *src         = argument(0);
5680   Node *src_offset  = argument(1);
5681   Node *dst         = argument(2);
5682   Node *dst_offset  = argument(3);
5683   Node *length      = argument(4);
5684 
5685   const Type* src_type = src->Value(&_gvn);
5686   const Type* dst_type = dst->Value(&_gvn);
5687   const TypeAryPtr* top_src = src_type->isa_aryptr();
5688   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5689   if (top_src  == NULL || top_src->klass()  == NULL ||
5690       top_dest == NULL || top_dest->klass() == NULL) {
5691     // failed array check
5692     return false;
5693   }
5694 
5695   // Figure out the size and type of the elements we will be copying.
5696   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5697   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5698   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5699     return false;
5700   }
5701   Node* src_start = array_element_address(src, src_offset, src_elem);
5702   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5703   // 'src_start' points to src array + scaled offset
5704   // 'dst_start' points to dst array + scaled offset
5705 
5706   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5707   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5708   enc = _gvn.transform(enc);
5709   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5710   set_memory(res_mem, mtype);
5711   set_result(enc);
5712   return true;
5713 }
5714 
5715 /**
5716  * Calculate CRC32 for byte.
5717  * int java.util.zip.CRC32.update(int crc, int b)
5718  */
5719 bool LibraryCallKit::inline_updateCRC32() {
5720   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5721   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5722   // no receiver since it is static method
5723   Node* crc  = argument(0); // type: int
5724   Node* b    = argument(1); // type: int
5725 
5726   /*
5727    *    int c = ~ crc;
5728    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5729    *    b = b ^ (c >>> 8);
5730    *    crc = ~b;
5731    */
5732 
5733   Node* M1 = intcon(-1);
5734   crc = _gvn.transform(new (C) XorINode(crc, M1));
5735   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5736   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5737 
5738   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5739   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5740   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5741   result = make_load(control(), adr, TypeInt::INT, T_INT);
5742 
5743   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5744   result = _gvn.transform(new (C) XorINode(crc, result));
5745   result = _gvn.transform(new (C) XorINode(result, M1));
5746   set_result(result);
5747   return true;
5748 }
5749 
5750 /**
5751  * Calculate CRC32 for byte[] array.
5752  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5753  */
5754 bool LibraryCallKit::inline_updateBytesCRC32() {
5755   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5756   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5757   // no receiver since it is static method
5758   Node* crc     = argument(0); // type: int
5759   Node* src     = argument(1); // type: oop
5760   Node* offset  = argument(2); // type: int
5761   Node* length  = argument(3); // type: int
5762 
5763   const Type* src_type = src->Value(&_gvn);
5764   const TypeAryPtr* top_src = src_type->isa_aryptr();
5765   if (top_src  == NULL || top_src->klass()  == NULL) {
5766     // failed array check
5767     return false;
5768   }
5769 
5770   // Figure out the size and type of the elements we will be copying.
5771   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5772   if (src_elem != T_BYTE) {
5773     return false;
5774   }
5775 
5776   // 'src_start' points to src array + scaled offset
5777   Node* src_start = array_element_address(src, offset, src_elem);
5778 
5779   // We assume that range check is done by caller.
5780   // TODO: generate range check (offset+length < src.length) in debug VM.
5781 
5782   // Call the stub.
5783   address stubAddr = StubRoutines::updateBytesCRC32();
5784   const char *stubName = "updateBytesCRC32";
5785 
5786   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5787                                  stubAddr, stubName, TypePtr::BOTTOM,
5788                                  crc, src_start, length);
5789   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5790   set_result(result);
5791   return true;
5792 }
5793 
5794 /**
5795  * Calculate CRC32 for ByteBuffer.
5796  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5797  */
5798 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5799   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5800   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5801   // no receiver since it is static method
5802   Node* crc     = argument(0); // type: int
5803   Node* src     = argument(1); // type: long
5804   Node* offset  = argument(3); // type: int
5805   Node* length  = argument(4); // type: int
5806 
5807   src = ConvL2X(src);  // adjust Java long to machine word
5808   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5809   offset = ConvI2X(offset);
5810 
5811   // 'src_start' points to src array + scaled offset
5812   Node* src_start = basic_plus_adr(top(), base, offset);
5813 
5814   // Call the stub.
5815   address stubAddr = StubRoutines::updateBytesCRC32();
5816   const char *stubName = "updateBytesCRC32";
5817 
5818   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5819                                  stubAddr, stubName, TypePtr::BOTTOM,
5820                                  crc, src_start, length);
5821   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5822   set_result(result);
5823   return true;
5824 }
5825 
5826 //----------------------------inline_reference_get----------------------------
5827 // public T java.lang.ref.Reference.get();
5828 bool LibraryCallKit::inline_reference_get() {
5829   const int referent_offset = java_lang_ref_Reference::referent_offset;
5830   guarantee(referent_offset > 0, "should have already been set");
5831 
5832   // Get the argument:
5833   Node* reference_obj = null_check_receiver();
5834   if (stopped()) return true;
5835 
5836   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5837 
5838   ciInstanceKlass* klass = env()->Object_klass();
5839   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5840 
5841   Node* no_ctrl = NULL;
5842   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5843 
5844   // Use the pre-barrier to record the value in the referent field
5845   pre_barrier(false /* do_load */,
5846               control(),
5847               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5848               result /* pre_val */,
5849               T_OBJECT);
5850 
5851   // Add memory barrier to prevent commoning reads from this field
5852   // across safepoint since GC can change its value.
5853   insert_mem_bar(Op_MemBarCPUOrder);
5854 
5855   set_result(result);
5856   return true;
5857 }
5858 
5859 
5860 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5861                                               bool is_exact=true, bool is_static=false) {
5862 
5863   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5864   assert(tinst != NULL, "obj is null");
5865   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5866   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5867 
5868   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5869                                                                           ciSymbol::make(fieldTypeString),
5870                                                                           is_static);
5871   if (field == NULL) return (Node *) NULL;
5872   assert (field != NULL, "undefined field");
5873 
5874   // Next code  copied from Parse::do_get_xxx():
5875 
5876   // Compute address and memory type.
5877   int offset  = field->offset_in_bytes();
5878   bool is_vol = field->is_volatile();
5879   ciType* field_klass = field->type();
5880   assert(field_klass->is_loaded(), "should be loaded");
5881   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5882   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5883   BasicType bt = field->layout_type();
5884 
5885   // Build the resultant type of the load
5886   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5887 
5888   // Build the load.
5889   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5890   return loadedField;
5891 }
5892 
5893 
5894 //------------------------------inline_aescrypt_Block-----------------------
5895 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5896   address stubAddr;
5897   const char *stubName;
5898   assert(UseAES, "need AES instruction support");
5899 
5900   switch(id) {
5901   case vmIntrinsics::_aescrypt_encryptBlock:
5902     stubAddr = StubRoutines::aescrypt_encryptBlock();
5903     stubName = "aescrypt_encryptBlock";
5904     break;
5905   case vmIntrinsics::_aescrypt_decryptBlock:
5906     stubAddr = StubRoutines::aescrypt_decryptBlock();
5907     stubName = "aescrypt_decryptBlock";
5908     break;
5909   }
5910   if (stubAddr == NULL) return false;
5911 
5912   Node* aescrypt_object = argument(0);
5913   Node* src             = argument(1);
5914   Node* src_offset      = argument(2);
5915   Node* dest            = argument(3);
5916   Node* dest_offset     = argument(4);
5917 
5918   // (1) src and dest are arrays.
5919   const Type* src_type = src->Value(&_gvn);
5920   const Type* dest_type = dest->Value(&_gvn);
5921   const TypeAryPtr* top_src = src_type->isa_aryptr();
5922   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5923   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5924 
5925   // for the quick and dirty code we will skip all the checks.
5926   // we are just trying to get the call to be generated.
5927   Node* src_start  = src;
5928   Node* dest_start = dest;
5929   if (src_offset != NULL || dest_offset != NULL) {
5930     assert(src_offset != NULL && dest_offset != NULL, "");
5931     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5932     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5933   }
5934 
5935   // now need to get the start of its expanded key array
5936   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5937   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5938   if (k_start == NULL) return false;
5939 
5940   if (Matcher::pass_original_key_for_aes()) {
5941     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5942     // compatibility issues between Java key expansion and SPARC crypto instructions
5943     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5944     if (original_k_start == NULL) return false;
5945 
5946     // Call the stub.
5947     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5948                       stubAddr, stubName, TypePtr::BOTTOM,
5949                       src_start, dest_start, k_start, original_k_start);
5950   } else {
5951     // Call the stub.
5952     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5953                       stubAddr, stubName, TypePtr::BOTTOM,
5954                       src_start, dest_start, k_start);
5955   }
5956 
5957   return true;
5958 }
5959 
5960 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5961 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5962   address stubAddr;
5963   const char *stubName;
5964 
5965   assert(UseAES, "need AES instruction support");
5966 
5967   switch(id) {
5968   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5969     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5970     stubName = "cipherBlockChaining_encryptAESCrypt";
5971     break;
5972   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5973     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5974     stubName = "cipherBlockChaining_decryptAESCrypt";
5975     break;
5976   }
5977   if (stubAddr == NULL) return false;
5978 
5979   Node* cipherBlockChaining_object = argument(0);
5980   Node* src                        = argument(1);
5981   Node* src_offset                 = argument(2);
5982   Node* len                        = argument(3);
5983   Node* dest                       = argument(4);
5984   Node* dest_offset                = argument(5);
5985 
5986   // (1) src and dest are arrays.
5987   const Type* src_type = src->Value(&_gvn);
5988   const Type* dest_type = dest->Value(&_gvn);
5989   const TypeAryPtr* top_src = src_type->isa_aryptr();
5990   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5991   assert (top_src  != NULL && top_src->klass()  != NULL
5992           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5993 
5994   // checks are the responsibility of the caller
5995   Node* src_start  = src;
5996   Node* dest_start = dest;
5997   if (src_offset != NULL || dest_offset != NULL) {
5998     assert(src_offset != NULL && dest_offset != NULL, "");
5999     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6000     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6001   }
6002 
6003   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6004   // (because of the predicated logic executed earlier).
6005   // so we cast it here safely.
6006   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6007 
6008   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6009   if (embeddedCipherObj == NULL) return false;
6010 
6011   // cast it to what we know it will be at runtime
6012   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6013   assert(tinst != NULL, "CBC obj is null");
6014   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6015   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6016   if (!klass_AESCrypt->is_loaded()) return false;
6017 
6018   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6019   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6020   const TypeOopPtr* xtype = aklass->as_instance_type();
6021   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6022   aescrypt_object = _gvn.transform(aescrypt_object);
6023 
6024   // we need to get the start of the aescrypt_object's expanded key array
6025   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6026   if (k_start == NULL) return false;
6027 
6028   // similarly, get the start address of the r vector
6029   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6030   if (objRvec == NULL) return false;
6031   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6032 
6033   Node* cbcCrypt;
6034   if (Matcher::pass_original_key_for_aes()) {
6035     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6036     // compatibility issues between Java key expansion and SPARC crypto instructions
6037     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6038     if (original_k_start == NULL) return false;
6039 
6040     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6041     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6042                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6043                                  stubAddr, stubName, TypePtr::BOTTOM,
6044                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6045   } else {
6046     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6047     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6048                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6049                                  stubAddr, stubName, TypePtr::BOTTOM,
6050                                  src_start, dest_start, k_start, r_start, len);
6051   }
6052 
6053   // return cipher length (int)
6054   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6055   set_result(retvalue);
6056   return true;
6057 }
6058 
6059 //------------------------------get_key_start_from_aescrypt_object-----------------------
6060 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6061   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6062   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6063   if (objAESCryptKey == NULL) return (Node *) NULL;
6064 
6065   // now have the array, need to get the start address of the K array
6066   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6067   return k_start;
6068 }
6069 
6070 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6071 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6072   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6073   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6074   if (objAESCryptKey == NULL) return (Node *) NULL;
6075 
6076   // now have the array, need to get the start address of the lastKey array
6077   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6078   return original_k_start;
6079 }
6080 
6081 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6082 // Return node representing slow path of predicate check.
6083 // the pseudo code we want to emulate with this predicate is:
6084 // for encryption:
6085 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6086 // for decryption:
6087 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6088 //    note cipher==plain is more conservative than the original java code but that's OK
6089 //
6090 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6091   // First, check receiver for NULL since it is virtual method.
6092   Node* objCBC = argument(0);
6093   objCBC = null_check(objCBC);
6094 
6095   if (stopped()) return NULL; // Always NULL
6096 
6097   // Load embeddedCipher field of CipherBlockChaining object.
6098   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6099 
6100   // get AESCrypt klass for instanceOf check
6101   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6102   // will have same classloader as CipherBlockChaining object
6103   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6104   assert(tinst != NULL, "CBCobj is null");
6105   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6106 
6107   // we want to do an instanceof comparison against the AESCrypt class
6108   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6109   if (!klass_AESCrypt->is_loaded()) {
6110     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6111     Node* ctrl = control();
6112     set_control(top()); // no regular fast path
6113     return ctrl;
6114   }
6115   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6116 
6117   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6118   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6119   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6120 
6121   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6122 
6123   // for encryption, we are done
6124   if (!decrypting)
6125     return instof_false;  // even if it is NULL
6126 
6127   // for decryption, we need to add a further check to avoid
6128   // taking the intrinsic path when cipher and plain are the same
6129   // see the original java code for why.
6130   RegionNode* region = new(C) RegionNode(3);
6131   region->init_req(1, instof_false);
6132   Node* src = argument(1);
6133   Node* dest = argument(4);
6134   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6135   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6136   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6137   region->init_req(2, src_dest_conjoint);
6138 
6139   record_for_igvn(region);
6140   return _gvn.transform(region);
6141 }