1 /*
   2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.math.*;
  30 
  31 
  32 /**
  33  * The {@code Long} class wraps a value of the primitive type {@code
  34  * long} in an object. An object of type {@code Long} contains a
  35  * single field whose type is {@code long}.
  36  *
  37  * <p> In addition, this class provides several methods for converting
  38  * a {@code long} to a {@code String} and a {@code String} to a {@code
  39  * long}, as well as other constants and methods useful when dealing
  40  * with a {@code long}.
  41  *
  42  * <p>Implementation note: The implementations of the "bit twiddling"
  43  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  44  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  45  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
  46  * Delight</i>, (Addison Wesley, 2002).
  47  *
  48  * @author  Lee Boynton
  49  * @author  Arthur van Hoff
  50  * @author  Josh Bloch
  51  * @author  Joseph D. Darcy
  52  * @since   JDK1.0
  53  */
  54 public final class Long extends Number implements Comparable<Long> {
  55     /**
  56      * A constant holding the minimum value a {@code long} can
  57      * have, -2<sup>63</sup>.
  58      */
  59     @Native public static final long MIN_VALUE = 0x8000000000000000L;
  60 
  61     /**
  62      * A constant holding the maximum value a {@code long} can
  63      * have, 2<sup>63</sup>-1.
  64      */
  65     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
  66 
  67     /**
  68      * The {@code Class} instance representing the primitive type
  69      * {@code long}.
  70      *
  71      * @since   JDK1.1
  72      */
  73     @SuppressWarnings("unchecked")
  74     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
  75 
  76     /**
  77      * Returns a string representation of the first argument in the
  78      * radix specified by the second argument.
  79      *
  80      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
  81      * or larger than {@code Character.MAX_RADIX}, then the radix
  82      * {@code 10} is used instead.
  83      *
  84      * <p>If the first argument is negative, the first element of the
  85      * result is the ASCII minus sign {@code '-'}
  86      * ({@code '\u005Cu002d'}). If the first argument is not
  87      * negative, no sign character appears in the result.
  88      *
  89      * <p>The remaining characters of the result represent the magnitude
  90      * of the first argument. If the magnitude is zero, it is
  91      * represented by a single zero character {@code '0'}
  92      * ({@code '\u005Cu0030'}); otherwise, the first character of
  93      * the representation of the magnitude will not be the zero
  94      * character.  The following ASCII characters are used as digits:
  95      *
  96      * <blockquote>
  97      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
  98      * </blockquote>
  99      *
 100      * These are {@code '\u005Cu0030'} through
 101      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 102      * {@code '\u005Cu007a'}. If {@code radix} is
 103      * <var>N</var>, then the first <var>N</var> of these characters
 104      * are used as radix-<var>N</var> digits in the order shown. Thus,
 105      * the digits for hexadecimal (radix 16) are
 106      * {@code 0123456789abcdef}. If uppercase letters are
 107      * desired, the {@link java.lang.String#toUpperCase()} method may
 108      * be called on the result:
 109      *
 110      * <blockquote>
 111      *  {@code Long.toString(n, 16).toUpperCase()}
 112      * </blockquote>
 113      *
 114      * @param   i       a {@code long} to be converted to a string.
 115      * @param   radix   the radix to use in the string representation.
 116      * @return  a string representation of the argument in the specified radix.
 117      * @see     java.lang.Character#MAX_RADIX
 118      * @see     java.lang.Character#MIN_RADIX
 119      */
 120     public static String toString(long i, int radix) {
 121         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 122             radix = 10;
 123         if (radix == 10)
 124             return toString(i);
 125         char[] buf = new char[65];
 126         int charPos = 64;
 127         boolean negative = (i < 0);
 128 
 129         if (!negative) {
 130             i = -i;
 131         }
 132 
 133         while (i <= -radix) {
 134             buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 135             i = i / radix;
 136         }
 137         buf[charPos] = Integer.digits[(int)(-i)];
 138 
 139         if (negative) {
 140             buf[--charPos] = '-';
 141         }
 142 
 143         return new String(buf, charPos, (65 - charPos));
 144     }
 145 
 146     /**
 147      * Returns a string representation of the first argument as an
 148      * unsigned integer value in the radix specified by the second
 149      * argument.
 150      *
 151      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 152      * or larger than {@code Character.MAX_RADIX}, then the radix
 153      * {@code 10} is used instead.
 154      *
 155      * <p>Note that since the first argument is treated as an unsigned
 156      * value, no leading sign character is printed.
 157      *
 158      * <p>If the magnitude is zero, it is represented by a single zero
 159      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 160      * the first character of the representation of the magnitude will
 161      * not be the zero character.
 162      *
 163      * <p>The behavior of radixes and the characters used as digits
 164      * are the same as {@link #toString(long, int) toString}.
 165      *
 166      * @param   i       an integer to be converted to an unsigned string.
 167      * @param   radix   the radix to use in the string representation.
 168      * @return  an unsigned string representation of the argument in the specified radix.
 169      * @see     #toString(long, int)
 170      * @since 1.8
 171      */
 172     public static String toUnsignedString(long i, int radix) {
 173         if (i >= 0)
 174             return toString(i, radix);
 175         else {
 176             switch (radix) {
 177             case 2:
 178                 return toBinaryString(i);
 179 
 180             case 4:
 181                 return toUnsignedString0(i, 2);
 182 
 183             case 8:
 184                 return toOctalString(i);
 185 
 186             case 10:
 187                 /*
 188                  * We can get the effect of an unsigned division by 10
 189                  * on a long value by first shifting right, yielding a
 190                  * positive value, and then dividing by 5.  This
 191                  * allows the last digit and preceding digits to be
 192                  * isolated more quickly than by an initial conversion
 193                  * to BigInteger.
 194                  */
 195                 long quot = (i >>> 1) / 5;
 196                 long rem = i - quot * 10;
 197                 return toString(quot) + rem;
 198 
 199             case 16:
 200                 return toHexString(i);
 201 
 202             case 32:
 203                 return toUnsignedString0(i, 5);
 204 
 205             default:
 206                 return toUnsignedBigInteger(i).toString(radix);
 207             }
 208         }
 209     }
 210 
 211     /**
 212      * Return a BigInteger equal to the unsigned value of the
 213      * argument.
 214      */
 215     private static BigInteger toUnsignedBigInteger(long i) {
 216         if (i >= 0L)
 217             return BigInteger.valueOf(i);
 218         else {
 219             int upper = (int) (i >>> 32);
 220             int lower = (int) i;
 221 
 222             // return (upper << 32) + lower
 223             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 224                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 225         }
 226     }
 227 
 228     /**
 229      * Returns a string representation of the {@code long}
 230      * argument as an unsigned integer in base&nbsp;16.
 231      *
 232      * <p>The unsigned {@code long} value is the argument plus
 233      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 234      * equal to the argument.  This value is converted to a string of
 235      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 236      * leading {@code 0}s.
 237      *
 238      * <p>The value of the argument can be recovered from the returned
 239      * string {@code s} by calling {@link
 240      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 241      * 16)}.
 242      *
 243      * <p>If the unsigned magnitude is zero, it is represented by a
 244      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 245      * otherwise, the first character of the representation of the
 246      * unsigned magnitude will not be the zero character. The
 247      * following characters are used as hexadecimal digits:
 248      *
 249      * <blockquote>
 250      *  {@code 0123456789abcdef}
 251      * </blockquote>
 252      *
 253      * These are the characters {@code '\u005Cu0030'} through
 254      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 255      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 256      * the {@link java.lang.String#toUpperCase()} method may be called
 257      * on the result:
 258      *
 259      * <blockquote>
 260      *  {@code Long.toHexString(n).toUpperCase()}
 261      * </blockquote>
 262      *
 263      * @param   i   a {@code long} to be converted to a string.
 264      * @return  the string representation of the unsigned {@code long}
 265      *          value represented by the argument in hexadecimal
 266      *          (base&nbsp;16).
 267      * @see #parseUnsignedLong(String, int)
 268      * @see #toUnsignedString(long, int)
 269      * @since   JDK 1.0.2
 270      */
 271     public static String toHexString(long i) {
 272         return toUnsignedString0(i, 4);
 273     }
 274 
 275     /**
 276      * Returns a string representation of the {@code long}
 277      * argument as an unsigned integer in base&nbsp;8.
 278      *
 279      * <p>The unsigned {@code long} value is the argument plus
 280      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 281      * equal to the argument.  This value is converted to a string of
 282      * ASCII digits in octal (base&nbsp;8) with no extra leading
 283      * {@code 0}s.
 284      *
 285      * <p>The value of the argument can be recovered from the returned
 286      * string {@code s} by calling {@link
 287      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 288      * 8)}.
 289      *
 290      * <p>If the unsigned magnitude is zero, it is represented by a
 291      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 292      * otherwise, the first character of the representation of the
 293      * unsigned magnitude will not be the zero character. The
 294      * following characters are used as octal digits:
 295      *
 296      * <blockquote>
 297      *  {@code 01234567}
 298      * </blockquote>
 299      *
 300      * These are the characters {@code '\u005Cu0030'} through
 301      * {@code '\u005Cu0037'}.
 302      *
 303      * @param   i   a {@code long} to be converted to a string.
 304      * @return  the string representation of the unsigned {@code long}
 305      *          value represented by the argument in octal (base&nbsp;8).
 306      * @see #parseUnsignedLong(String, int)
 307      * @see #toUnsignedString(long, int)
 308      * @since   JDK 1.0.2
 309      */
 310     public static String toOctalString(long i) {
 311         return toUnsignedString0(i, 3);
 312     }
 313 
 314     /**
 315      * Returns a string representation of the {@code long}
 316      * argument as an unsigned integer in base&nbsp;2.
 317      *
 318      * <p>The unsigned {@code long} value is the argument plus
 319      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 320      * equal to the argument.  This value is converted to a string of
 321      * ASCII digits in binary (base&nbsp;2) with no extra leading
 322      * {@code 0}s.
 323      *
 324      * <p>The value of the argument can be recovered from the returned
 325      * string {@code s} by calling {@link
 326      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 327      * 2)}.
 328      *
 329      * <p>If the unsigned magnitude is zero, it is represented by a
 330      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 331      * otherwise, the first character of the representation of the
 332      * unsigned magnitude will not be the zero character. The
 333      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 334      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 335      *
 336      * @param   i   a {@code long} to be converted to a string.
 337      * @return  the string representation of the unsigned {@code long}
 338      *          value represented by the argument in binary (base&nbsp;2).
 339      * @see #parseUnsignedLong(String, int)
 340      * @see #toUnsignedString(long, int)
 341      * @since   JDK 1.0.2
 342      */
 343     public static String toBinaryString(long i) {
 344         return toUnsignedString0(i, 1);
 345     }
 346 
 347     /**
 348      * Format a long (treated as unsigned) into a String.
 349      * @param val the value to format
 350      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 351      */
 352     static String toUnsignedString0(long val, int shift) {
 353         // assert shift > 0 && shift <=5 : "Illegal shift value";
 354         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 355         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 356         char[] buf = new char[chars];
 357 
 358         formatUnsignedLong(val, shift, buf, 0, chars);
 359         return new String(buf, true);
 360     }
 361 
 362     /**
 363      * Format a long (treated as unsigned) into a character buffer. If
 364      * {@code len} exceeds the formatted ASCII representation of {@code val},
 365      * {@code buf} will be padded with leading zeroes.
 366      *
 367      * @param val the unsigned long to format
 368      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 369      * @param buf the character buffer to write to
 370      * @param offset the offset in the destination buffer to start at
 371      * @param len the number of characters to write
 372      */
 373      static void formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
 374         // assert shift > 0 && shift <=5 : "Illegal shift value";
 375         // assert offset >= 0 && offset < buf.length : "illegal offset";
 376         // assert len > 0 && (offset + len) <= buf.length : "illegal length";
 377         int charPos = offset + len;
 378         int radix = 1 << shift;
 379         int mask = radix - 1;
 380         do {
 381             buf[--charPos] = Integer.digits[((int) val) & mask];
 382             val >>>= shift;
 383         } while (charPos > offset);
 384     }
 385 
 386     /**
 387      * Returns a {@code String} object representing the specified
 388      * {@code long}.  The argument is converted to signed decimal
 389      * representation and returned as a string, exactly as if the
 390      * argument and the radix 10 were given as arguments to the {@link
 391      * #toString(long, int)} method.
 392      *
 393      * @param   i   a {@code long} to be converted.
 394      * @return  a string representation of the argument in base&nbsp;10.
 395      */
 396     public static String toString(long i) {
 397         if (i == Long.MIN_VALUE)
 398             return "-9223372036854775808";
 399         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
 400         char[] buf = new char[size];
 401         getChars(i, size, buf);
 402         return new String(buf, true);
 403     }
 404 
 405     /**
 406      * Returns a string representation of the argument as an unsigned
 407      * decimal value.
 408      *
 409      * The argument is converted to unsigned decimal representation
 410      * and returned as a string exactly as if the argument and radix
 411      * 10 were given as arguments to the {@link #toUnsignedString(long,
 412      * int)} method.
 413      *
 414      * @param   i  an integer to be converted to an unsigned string.
 415      * @return  an unsigned string representation of the argument.
 416      * @see     #toUnsignedString(long, int)
 417      * @since 1.8
 418      */
 419     public static String toUnsignedString(long i) {
 420         return toUnsignedString(i, 10);
 421     }
 422 
 423     /**
 424      * Places characters representing the integer i into the
 425      * character array buf. The characters are placed into
 426      * the buffer backwards starting with the least significant
 427      * digit at the specified index (exclusive), and working
 428      * backwards from there.
 429      *
 430      * Will fail if i == Long.MIN_VALUE
 431      */
 432     static void getChars(long i, int index, char[] buf) {
 433         long q;
 434         int r;
 435         int charPos = index;
 436         char sign = 0;
 437 
 438         if (i < 0) {
 439             sign = '-';
 440             i = -i;
 441         }
 442 
 443         // Get 2 digits/iteration using longs until quotient fits into an int
 444         while (i > Integer.MAX_VALUE) {
 445             q = i / 100;
 446             // really: r = i - (q * 100);
 447             r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
 448             i = q;
 449             buf[--charPos] = Integer.DigitOnes[r];
 450             buf[--charPos] = Integer.DigitTens[r];
 451         }
 452 
 453         // Get 2 digits/iteration using ints
 454         int q2;
 455         int i2 = (int)i;
 456         while (i2 >= 65536) {
 457             q2 = i2 / 100;
 458             // really: r = i2 - (q * 100);
 459             r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
 460             i2 = q2;
 461             buf[--charPos] = Integer.DigitOnes[r];
 462             buf[--charPos] = Integer.DigitTens[r];
 463         }
 464 
 465         // Fall thru to fast mode for smaller numbers
 466         // assert(i2 <= 65536, i2);
 467         for (;;) {
 468             q2 = (i2 * 52429) >>> (16+3);
 469             r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
 470             buf[--charPos] = Integer.digits[r];
 471             i2 = q2;
 472             if (i2 == 0) break;
 473         }
 474         if (sign != 0) {
 475             buf[--charPos] = sign;
 476         }
 477     }
 478 
 479     // Requires positive x
 480     static int stringSize(long x) {
 481         long p = 10;
 482         for (int i=1; i<19; i++) {
 483             if (x < p)
 484                 return i;
 485             p = 10*p;
 486         }
 487         return 19;
 488     }
 489 
 490     /**
 491      * Parses the string argument as a signed {@code long} in the
 492      * radix specified by the second argument. The characters in the
 493      * string must all be digits of the specified radix (as determined
 494      * by whether {@link java.lang.Character#digit(char, int)} returns
 495      * a nonnegative value), except that the first character may be an
 496      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 497      * indicate a negative value or an ASCII plus sign {@code '+'}
 498      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 499      * resulting {@code long} value is returned.
 500      *
 501      * <p>Note that neither the character {@code L}
 502      * ({@code '\u005Cu004C'}) nor {@code l}
 503      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 504      * of the string as a type indicator, as would be permitted in
 505      * Java programming language source code - except that either
 506      * {@code L} or {@code l} may appear as a digit for a
 507      * radix greater than or equal to 22.
 508      *
 509      * <p>An exception of type {@code NumberFormatException} is
 510      * thrown if any of the following situations occurs:
 511      * <ul>
 512      *
 513      * <li>The first argument is {@code null} or is a string of
 514      * length zero.
 515      *
 516      * <li>The {@code radix} is either smaller than {@link
 517      * java.lang.Character#MIN_RADIX} or larger than {@link
 518      * java.lang.Character#MAX_RADIX}.
 519      *
 520      * <li>Any character of the string is not a digit of the specified
 521      * radix, except that the first character may be a minus sign
 522      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
 523      * '+'} ({@code '\u005Cu002B'}) provided that the string is
 524      * longer than length 1.
 525      *
 526      * <li>The value represented by the string is not a value of type
 527      *      {@code long}.
 528      * </ul>
 529      *
 530      * <p>Examples:
 531      * <blockquote><pre>
 532      * parseLong("0", 10) returns 0L
 533      * parseLong("473", 10) returns 473L
 534      * parseLong("+42", 10) returns 42L
 535      * parseLong("-0", 10) returns 0L
 536      * parseLong("-FF", 16) returns -255L
 537      * parseLong("1100110", 2) returns 102L
 538      * parseLong("99", 8) throws a NumberFormatException
 539      * parseLong("Hazelnut", 10) throws a NumberFormatException
 540      * parseLong("Hazelnut", 36) returns 1356099454469L
 541      * </pre></blockquote>
 542      *
 543      * @param      s       the {@code String} containing the
 544      *                     {@code long} representation to be parsed.
 545      * @param      radix   the radix to be used while parsing {@code s}.
 546      * @return     the {@code long} represented by the string argument in
 547      *             the specified radix.
 548      * @throws     NumberFormatException  if the string does not contain a
 549      *             parsable {@code long}.
 550      */
 551     public static long parseLong(String s, int radix)
 552               throws NumberFormatException
 553     {
 554         if (s == null) {
 555             throw new NumberFormatException("null");
 556         }
 557 
 558         if (radix < Character.MIN_RADIX) {
 559             throw new NumberFormatException("radix " + radix +
 560                                             " less than Character.MIN_RADIX");
 561         }
 562         if (radix > Character.MAX_RADIX) {
 563             throw new NumberFormatException("radix " + radix +
 564                                             " greater than Character.MAX_RADIX");
 565         }
 566 
 567         long result = 0;
 568         boolean negative = false;
 569         int i = 0, len = s.length();
 570         long limit = -Long.MAX_VALUE;
 571         long multmin;
 572         int digit;
 573 
 574         if (len > 0) {
 575             char firstChar = s.charAt(0);
 576             if (firstChar < '0') { // Possible leading "+" or "-"
 577                 if (firstChar == '-') {
 578                     negative = true;
 579                     limit = Long.MIN_VALUE;
 580                 } else if (firstChar != '+')
 581                     throw NumberFormatException.forInputString(s);
 582 
 583                 if (len == 1) // Cannot have lone "+" or "-"
 584                     throw NumberFormatException.forInputString(s);
 585                 i++;
 586             }
 587             multmin = limit / radix;
 588             while (i < len) {
 589                 // Accumulating negatively avoids surprises near MAX_VALUE
 590                 digit = Character.digit(s.charAt(i++),radix);
 591                 if (digit < 0) {
 592                     throw NumberFormatException.forInputString(s);
 593                 }
 594                 if (result < multmin) {
 595                     throw NumberFormatException.forInputString(s);
 596                 }
 597                 result *= radix;
 598                 if (result < limit + digit) {
 599                     throw NumberFormatException.forInputString(s);
 600                 }
 601                 result -= digit;
 602             }
 603         } else {
 604             throw NumberFormatException.forInputString(s);
 605         }
 606         return negative ? result : -result;
 607     }
 608 
 609     /**
 610      * Parses the string argument as a signed decimal {@code long}.
 611      * The characters in the string must all be decimal digits, except
 612      * that the first character may be an ASCII minus sign {@code '-'}
 613      * ({@code \u005Cu002D'}) to indicate a negative value or an
 614      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 615      * indicate a positive value. The resulting {@code long} value is
 616      * returned, exactly as if the argument and the radix {@code 10}
 617      * were given as arguments to the {@link
 618      * #parseLong(java.lang.String, int)} method.
 619      *
 620      * <p>Note that neither the character {@code L}
 621      * ({@code '\u005Cu004C'}) nor {@code l}
 622      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 623      * of the string as a type indicator, as would be permitted in
 624      * Java programming language source code.
 625      *
 626      * @param      s   a {@code String} containing the {@code long}
 627      *             representation to be parsed
 628      * @return     the {@code long} represented by the argument in
 629      *             decimal.
 630      * @throws     NumberFormatException  if the string does not contain a
 631      *             parsable {@code long}.
 632      */
 633     public static long parseLong(String s) throws NumberFormatException {
 634         return parseLong(s, 10);
 635     }
 636 
 637     /**
 638      * Parses the string argument as an unsigned {@code long} in the
 639      * radix specified by the second argument.  An unsigned integer
 640      * maps the values usually associated with negative numbers to
 641      * positive numbers larger than {@code MAX_VALUE}.
 642      *
 643      * The characters in the string must all be digits of the
 644      * specified radix (as determined by whether {@link
 645      * java.lang.Character#digit(char, int)} returns a nonnegative
 646      * value), except that the first character may be an ASCII plus
 647      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 648      * integer value is returned.
 649      *
 650      * <p>An exception of type {@code NumberFormatException} is
 651      * thrown if any of the following situations occurs:
 652      * <ul>
 653      * <li>The first argument is {@code null} or is a string of
 654      * length zero.
 655      *
 656      * <li>The radix is either smaller than
 657      * {@link java.lang.Character#MIN_RADIX} or
 658      * larger than {@link java.lang.Character#MAX_RADIX}.
 659      *
 660      * <li>Any character of the string is not a digit of the specified
 661      * radix, except that the first character may be a plus sign
 662      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 663      * string is longer than length 1.
 664      *
 665      * <li>The value represented by the string is larger than the
 666      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 667      *
 668      * </ul>
 669      *
 670      *
 671      * @param      s   the {@code String} containing the unsigned integer
 672      *                  representation to be parsed
 673      * @param      radix   the radix to be used while parsing {@code s}.
 674      * @return     the unsigned {@code long} represented by the string
 675      *             argument in the specified radix.
 676      * @throws     NumberFormatException if the {@code String}
 677      *             does not contain a parsable {@code long}.
 678      * @since 1.8
 679      */
 680     public static long parseUnsignedLong(String s, int radix)
 681                 throws NumberFormatException {
 682         if (s == null)  {
 683             throw new NumberFormatException("null");
 684         }
 685 
 686         int len = s.length();
 687         if (len > 0) {
 688             char firstChar = s.charAt(0);
 689             if (firstChar == '-') {
 690                 throw new
 691                     NumberFormatException(String.format("Illegal leading minus sign " +
 692                                                        "on unsigned string %s.", s));
 693             } else {
 694                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
 695                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
 696                     return parseLong(s, radix);
 697                 }
 698 
 699                 // No need for range checks on len due to testing above.
 700                 long first = parseLong(s.substring(0, len - 1), radix);
 701                 int second = Character.digit(s.charAt(len - 1), radix);
 702                 if (second < 0) {
 703                     throw new NumberFormatException("Bad digit at end of " + s);
 704                 }
 705                 long result = first * radix + second;
 706                 if (compareUnsigned(result, first) < 0) {
 707                     /*
 708                      * The maximum unsigned value, (2^64)-1, takes at
 709                      * most one more digit to represent than the
 710                      * maximum signed value, (2^63)-1.  Therefore,
 711                      * parsing (len - 1) digits will be appropriately
 712                      * in-range of the signed parsing.  In other
 713                      * words, if parsing (len -1) digits overflows
 714                      * signed parsing, parsing len digits will
 715                      * certainly overflow unsigned parsing.
 716                      *
 717                      * The compareUnsigned check above catches
 718                      * situations where an unsigned overflow occurs
 719                      * incorporating the contribution of the final
 720                      * digit.
 721                      */
 722                     throw new NumberFormatException(String.format("String value %s exceeds " +
 723                                                                   "range of unsigned long.", s));
 724                 }
 725                 return result;
 726             }
 727         } else {
 728             throw NumberFormatException.forInputString(s);
 729         }
 730     }
 731 
 732     /**
 733      * Parses the string argument as an unsigned decimal {@code long}. The
 734      * characters in the string must all be decimal digits, except
 735      * that the first character may be an an ASCII plus sign {@code
 736      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 737      * is returned, exactly as if the argument and the radix 10 were
 738      * given as arguments to the {@link
 739      * #parseUnsignedLong(java.lang.String, int)} method.
 740      *
 741      * @param s   a {@code String} containing the unsigned {@code long}
 742      *            representation to be parsed
 743      * @return    the unsigned {@code long} value represented by the decimal string argument
 744      * @throws    NumberFormatException  if the string does not contain a
 745      *            parsable unsigned integer.
 746      * @since 1.8
 747      */
 748     public static long parseUnsignedLong(String s) throws NumberFormatException {
 749         return parseUnsignedLong(s, 10);
 750     }
 751 
 752     /**
 753      * Returns a {@code Long} object holding the value
 754      * extracted from the specified {@code String} when parsed
 755      * with the radix given by the second argument.  The first
 756      * argument is interpreted as representing a signed
 757      * {@code long} in the radix specified by the second
 758      * argument, exactly as if the arguments were given to the {@link
 759      * #parseLong(java.lang.String, int)} method. The result is a
 760      * {@code Long} object that represents the {@code long}
 761      * value specified by the string.
 762      *
 763      * <p>In other words, this method returns a {@code Long} object equal
 764      * to the value of:
 765      *
 766      * <blockquote>
 767      *  {@code new Long(Long.parseLong(s, radix))}
 768      * </blockquote>
 769      *
 770      * @param      s       the string to be parsed
 771      * @param      radix   the radix to be used in interpreting {@code s}
 772      * @return     a {@code Long} object holding the value
 773      *             represented by the string argument in the specified
 774      *             radix.
 775      * @throws     NumberFormatException  If the {@code String} does not
 776      *             contain a parsable {@code long}.
 777      */
 778     public static Long valueOf(String s, int radix) throws NumberFormatException {
 779         return Long.valueOf(parseLong(s, radix));
 780     }
 781 
 782     /**
 783      * Returns a {@code Long} object holding the value
 784      * of the specified {@code String}. The argument is
 785      * interpreted as representing a signed decimal {@code long},
 786      * exactly as if the argument were given to the {@link
 787      * #parseLong(java.lang.String)} method. The result is a
 788      * {@code Long} object that represents the integer value
 789      * specified by the string.
 790      *
 791      * <p>In other words, this method returns a {@code Long} object
 792      * equal to the value of:
 793      *
 794      * <blockquote>
 795      *  {@code new Long(Long.parseLong(s))}
 796      * </blockquote>
 797      *
 798      * @param      s   the string to be parsed.
 799      * @return     a {@code Long} object holding the value
 800      *             represented by the string argument.
 801      * @throws     NumberFormatException  If the string cannot be parsed
 802      *             as a {@code long}.
 803      */
 804     public static Long valueOf(String s) throws NumberFormatException
 805     {
 806         return Long.valueOf(parseLong(s, 10));
 807     }
 808 
 809     private static class LongCache {
 810         private LongCache(){}
 811 
 812         static final Long cache[] = new Long[-(-128) + 127 + 1];
 813 
 814         static {
 815             for(int i = 0; i < cache.length; i++)
 816                 cache[i] = new Long(i - 128);
 817         }
 818     }
 819 
 820     /**
 821      * Returns a {@code Long} instance representing the specified
 822      * {@code long} value.
 823      * If a new {@code Long} instance is not required, this method
 824      * should generally be used in preference to the constructor
 825      * {@link #Long(long)}, as this method is likely to yield
 826      * significantly better space and time performance by caching
 827      * frequently requested values.
 828      *
 829      * Note that unlike the {@linkplain Integer#valueOf(int)
 830      * corresponding method} in the {@code Integer} class, this method
 831      * is <em>not</em> required to cache values within a particular
 832      * range.
 833      *
 834      * @param  l a long value.
 835      * @return a {@code Long} instance representing {@code l}.
 836      * @since  1.5
 837      */
 838     public static Long valueOf(long l) {
 839         final int offset = 128;
 840         if (l >= -128 && l <= 127) { // will cache
 841             return LongCache.cache[(int)l + offset];
 842         }
 843         return new Long(l);
 844     }
 845 
 846     /**
 847      * Decodes a {@code String} into a {@code Long}.
 848      * Accepts decimal, hexadecimal, and octal numbers given by the
 849      * following grammar:
 850      *
 851      * <blockquote>
 852      * <dl>
 853      * <dt><i>DecodableString:</i>
 854      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
 855      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
 856      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
 857      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
 858      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
 859      *
 860      * <dt><i>Sign:</i>
 861      * <dd>{@code -}
 862      * <dd>{@code +}
 863      * </dl>
 864      * </blockquote>
 865      *
 866      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
 867      * are as defined in section 3.10.1 of
 868      * <cite>The Java&trade; Language Specification</cite>,
 869      * except that underscores are not accepted between digits.
 870      *
 871      * <p>The sequence of characters following an optional
 872      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
 873      * "{@code #}", or leading zero) is parsed as by the {@code
 874      * Long.parseLong} method with the indicated radix (10, 16, or 8).
 875      * This sequence of characters must represent a positive value or
 876      * a {@link NumberFormatException} will be thrown.  The result is
 877      * negated if first character of the specified {@code String} is
 878      * the minus sign.  No whitespace characters are permitted in the
 879      * {@code String}.
 880      *
 881      * @param     nm the {@code String} to decode.
 882      * @return    a {@code Long} object holding the {@code long}
 883      *            value represented by {@code nm}
 884      * @throws    NumberFormatException  if the {@code String} does not
 885      *            contain a parsable {@code long}.
 886      * @see java.lang.Long#parseLong(String, int)
 887      * @since 1.2
 888      */
 889     public static Long decode(String nm) throws NumberFormatException {
 890         int radix = 10;
 891         int index = 0;
 892         boolean negative = false;
 893         Long result;
 894 
 895         if (nm.length() == 0)
 896             throw new NumberFormatException("Zero length string");
 897         char firstChar = nm.charAt(0);
 898         // Handle sign, if present
 899         if (firstChar == '-') {
 900             negative = true;
 901             index++;
 902         } else if (firstChar == '+')
 903             index++;
 904 
 905         // Handle radix specifier, if present
 906         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
 907             index += 2;
 908             radix = 16;
 909         }
 910         else if (nm.startsWith("#", index)) {
 911             index ++;
 912             radix = 16;
 913         }
 914         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
 915             index ++;
 916             radix = 8;
 917         }
 918 
 919         if (nm.startsWith("-", index) || nm.startsWith("+", index))
 920             throw new NumberFormatException("Sign character in wrong position");
 921 
 922         try {
 923             result = Long.valueOf(nm.substring(index), radix);
 924             result = negative ? Long.valueOf(-result.longValue()) : result;
 925         } catch (NumberFormatException e) {
 926             // If number is Long.MIN_VALUE, we'll end up here. The next line
 927             // handles this case, and causes any genuine format error to be
 928             // rethrown.
 929             String constant = negative ? ("-" + nm.substring(index))
 930                                        : nm.substring(index);
 931             result = Long.valueOf(constant, radix);
 932         }
 933         return result;
 934     }
 935 
 936     /**
 937      * The value of the {@code Long}.
 938      *
 939      * @serial
 940      */
 941     private final long value;
 942 
 943     /**
 944      * Constructs a newly allocated {@code Long} object that
 945      * represents the specified {@code long} argument.
 946      *
 947      * @param   value   the value to be represented by the
 948      *          {@code Long} object.
 949      */
 950     public Long(long value) {
 951         this.value = value;
 952     }
 953 
 954     /**
 955      * Constructs a newly allocated {@code Long} object that
 956      * represents the {@code long} value indicated by the
 957      * {@code String} parameter. The string is converted to a
 958      * {@code long} value in exactly the manner used by the
 959      * {@code parseLong} method for radix 10.
 960      *
 961      * @param      s   the {@code String} to be converted to a
 962      *             {@code Long}.
 963      * @throws     NumberFormatException  if the {@code String} does not
 964      *             contain a parsable {@code long}.
 965      * @see        java.lang.Long#parseLong(java.lang.String, int)
 966      */
 967     public Long(String s) throws NumberFormatException {
 968         this.value = parseLong(s, 10);
 969     }
 970 
 971     /**
 972      * Returns the value of this {@code Long} as a {@code byte} after
 973      * a narrowing primitive conversion.
 974      * @jls 5.1.3 Narrowing Primitive Conversions
 975      */
 976     public byte byteValue() {
 977         return (byte)value;
 978     }
 979 
 980     /**
 981      * Returns the value of this {@code Long} as a {@code short} after
 982      * a narrowing primitive conversion.
 983      * @jls 5.1.3 Narrowing Primitive Conversions
 984      */
 985     public short shortValue() {
 986         return (short)value;
 987     }
 988 
 989     /**
 990      * Returns the value of this {@code Long} as an {@code int} after
 991      * a narrowing primitive conversion.
 992      * @jls 5.1.3 Narrowing Primitive Conversions
 993      */
 994     public int intValue() {
 995         return (int)value;
 996     }
 997 
 998     /**
 999      * Returns the value of this {@code Long} as a
1000      * {@code long} value.
1001      */
1002     public long longValue() {
1003         return value;
1004     }
1005 
1006     /**
1007      * Returns the value of this {@code Long} as a {@code float} after
1008      * a widening primitive conversion.
1009      * @jls 5.1.2 Widening Primitive Conversions
1010      */
1011     public float floatValue() {
1012         return (float)value;
1013     }
1014 
1015     /**
1016      * Returns the value of this {@code Long} as a {@code double}
1017      * after a widening primitive conversion.
1018      * @jls 5.1.2 Widening Primitive Conversions
1019      */
1020     public double doubleValue() {
1021         return (double)value;
1022     }
1023 
1024     /**
1025      * Returns a {@code String} object representing this
1026      * {@code Long}'s value.  The value is converted to signed
1027      * decimal representation and returned as a string, exactly as if
1028      * the {@code long} value were given as an argument to the
1029      * {@link java.lang.Long#toString(long)} method.
1030      *
1031      * @return  a string representation of the value of this object in
1032      *          base&nbsp;10.
1033      */
1034     public String toString() {
1035         return toString(value);
1036     }
1037 
1038     /**
1039      * Returns a hash code for this {@code Long}. The result is
1040      * the exclusive OR of the two halves of the primitive
1041      * {@code long} value held by this {@code Long}
1042      * object. That is, the hashcode is the value of the expression:
1043      *
1044      * <blockquote>
1045      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1046      * </blockquote>
1047      *
1048      * @return  a hash code value for this object.
1049      */
1050     @Override
1051     public int hashCode() {
1052         return Long.hashCode(value);
1053     }
1054 
1055     /**
1056      * Returns a hash code for a {@code long} value; compatible with
1057      * {@code Long.hashCode()}.
1058      *
1059      * @param value the value to hash
1060      * @return a hash code value for a {@code long} value.
1061      * @since 1.8
1062      */
1063     public static int hashCode(long value) {
1064         return (int)(value ^ (value >>> 32));
1065     }
1066 
1067     /**
1068      * Compares this object to the specified object.  The result is
1069      * {@code true} if and only if the argument is not
1070      * {@code null} and is a {@code Long} object that
1071      * contains the same {@code long} value as this object.
1072      *
1073      * @param   obj   the object to compare with.
1074      * @return  {@code true} if the objects are the same;
1075      *          {@code false} otherwise.
1076      */
1077     public boolean equals(Object obj) {
1078         if (obj instanceof Long) {
1079             return value == ((Long)obj).longValue();
1080         }
1081         return false;
1082     }
1083 
1084     /**
1085      * Determines the {@code long} value of the system property
1086      * with the specified name.
1087      *
1088      * <p>The first argument is treated as the name of a system
1089      * property.  System properties are accessible through the {@link
1090      * java.lang.System#getProperty(java.lang.String)} method. The
1091      * string value of this property is then interpreted as a {@code
1092      * long} value using the grammar supported by {@link Long#decode decode}
1093      * and a {@code Long} object representing this value is returned.
1094      *
1095      * <p>If there is no property with the specified name, if the
1096      * specified name is empty or {@code null}, or if the property
1097      * does not have the correct numeric format, then {@code null} is
1098      * returned.
1099      *
1100      * <p>In other words, this method returns a {@code Long} object
1101      * equal to the value of:
1102      *
1103      * <blockquote>
1104      *  {@code getLong(nm, null)}
1105      * </blockquote>
1106      *
1107      * @param   nm   property name.
1108      * @return  the {@code Long} value of the property.
1109      * @throws  SecurityException for the same reasons as
1110      *          {@link System#getProperty(String) System.getProperty}
1111      * @see     java.lang.System#getProperty(java.lang.String)
1112      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1113      */
1114     public static Long getLong(String nm) {
1115         return getLong(nm, null);
1116     }
1117 
1118     /**
1119      * Determines the {@code long} value of the system property
1120      * with the specified name.
1121      *
1122      * <p>The first argument is treated as the name of a system
1123      * property.  System properties are accessible through the {@link
1124      * java.lang.System#getProperty(java.lang.String)} method. The
1125      * string value of this property is then interpreted as a {@code
1126      * long} value using the grammar supported by {@link Long#decode decode}
1127      * and a {@code Long} object representing this value is returned.
1128      *
1129      * <p>The second argument is the default value. A {@code Long} object
1130      * that represents the value of the second argument is returned if there
1131      * is no property of the specified name, if the property does not have
1132      * the correct numeric format, or if the specified name is empty or null.
1133      *
1134      * <p>In other words, this method returns a {@code Long} object equal
1135      * to the value of:
1136      *
1137      * <blockquote>
1138      *  {@code getLong(nm, new Long(val))}
1139      * </blockquote>
1140      *
1141      * but in practice it may be implemented in a manner such as:
1142      *
1143      * <blockquote><pre>
1144      * Long result = getLong(nm, null);
1145      * return (result == null) ? new Long(val) : result;
1146      * </pre></blockquote>
1147      *
1148      * to avoid the unnecessary allocation of a {@code Long} object when
1149      * the default value is not needed.
1150      *
1151      * @param   nm    property name.
1152      * @param   val   default value.
1153      * @return  the {@code Long} value of the property.
1154      * @throws  SecurityException for the same reasons as
1155      *          {@link System#getProperty(String) System.getProperty}
1156      * @see     java.lang.System#getProperty(java.lang.String)
1157      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1158      */
1159     public static Long getLong(String nm, long val) {
1160         Long result = Long.getLong(nm, null);
1161         return (result == null) ? Long.valueOf(val) : result;
1162     }
1163 
1164     /**
1165      * Returns the {@code long} value of the system property with
1166      * the specified name.  The first argument is treated as the name
1167      * of a system property.  System properties are accessible through
1168      * the {@link java.lang.System#getProperty(java.lang.String)}
1169      * method. The string value of this property is then interpreted
1170      * as a {@code long} value, as per the
1171      * {@link Long#decode decode} method, and a {@code Long} object
1172      * representing this value is returned; in summary:
1173      *
1174      * <ul>
1175      * <li>If the property value begins with the two ASCII characters
1176      * {@code 0x} or the ASCII character {@code #}, not followed by
1177      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1178      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1179      * with radix 16.
1180      * <li>If the property value begins with the ASCII character
1181      * {@code 0} followed by another character, it is parsed as
1182      * an octal integer exactly as by the method {@link
1183      * #valueOf(java.lang.String, int)} with radix 8.
1184      * <li>Otherwise the property value is parsed as a decimal
1185      * integer exactly as by the method
1186      * {@link #valueOf(java.lang.String, int)} with radix 10.
1187      * </ul>
1188      *
1189      * <p>Note that, in every case, neither {@code L}
1190      * ({@code '\u005Cu004C'}) nor {@code l}
1191      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1192      * of the property value as a type indicator, as would be
1193      * permitted in Java programming language source code.
1194      *
1195      * <p>The second argument is the default value. The default value is
1196      * returned if there is no property of the specified name, if the
1197      * property does not have the correct numeric format, or if the
1198      * specified name is empty or {@code null}.
1199      *
1200      * @param   nm   property name.
1201      * @param   val   default value.
1202      * @return  the {@code Long} value of the property.
1203      * @throws  SecurityException for the same reasons as
1204      *          {@link System#getProperty(String) System.getProperty}
1205      * @see     System#getProperty(java.lang.String)
1206      * @see     System#getProperty(java.lang.String, java.lang.String)
1207      */
1208     public static Long getLong(String nm, Long val) {
1209         String v = null;
1210         try {
1211             v = System.getProperty(nm);
1212         } catch (IllegalArgumentException | NullPointerException e) {
1213         }
1214         if (v != null) {
1215             try {
1216                 return Long.decode(v);
1217             } catch (NumberFormatException e) {
1218             }
1219         }
1220         return val;
1221     }
1222 
1223     /**
1224      * Compares two {@code Long} objects numerically.
1225      *
1226      * @param   anotherLong   the {@code Long} to be compared.
1227      * @return  the value {@code 0} if this {@code Long} is
1228      *          equal to the argument {@code Long}; a value less than
1229      *          {@code 0} if this {@code Long} is numerically less
1230      *          than the argument {@code Long}; and a value greater
1231      *          than {@code 0} if this {@code Long} is numerically
1232      *           greater than the argument {@code Long} (signed
1233      *           comparison).
1234      * @since   1.2
1235      */
1236     public int compareTo(Long anotherLong) {
1237         return compare(this.value, anotherLong.value);
1238     }
1239 
1240     /**
1241      * Compares two {@code long} values numerically.
1242      * The value returned is identical to what would be returned by:
1243      * <pre>
1244      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1245      * </pre>
1246      *
1247      * @param  x the first {@code long} to compare
1248      * @param  y the second {@code long} to compare
1249      * @return the value {@code 0} if {@code x == y};
1250      *         a value less than {@code 0} if {@code x < y}; and
1251      *         a value greater than {@code 0} if {@code x > y}
1252      * @since 1.7
1253      */
1254     public static int compare(long x, long y) {
1255         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1256     }
1257 
1258     /**
1259      * Compares two {@code long} values numerically treating the values
1260      * as unsigned.
1261      *
1262      * @param  x the first {@code long} to compare
1263      * @param  y the second {@code long} to compare
1264      * @return the value {@code 0} if {@code x == y}; a value less
1265      *         than {@code 0} if {@code x < y} as unsigned values; and
1266      *         a value greater than {@code 0} if {@code x > y} as
1267      *         unsigned values
1268      * @since 1.8
1269      */
1270     public static int compareUnsigned(long x, long y) {
1271         return compare(x + MIN_VALUE, y + MIN_VALUE);
1272     }
1273 
1274 
1275     /**
1276      * Returns the unsigned quotient of dividing the first argument by
1277      * the second where each argument and the result is interpreted as
1278      * an unsigned value.
1279      *
1280      * <p>Note that in two's complement arithmetic, the three other
1281      * basic arithmetic operations of add, subtract, and multiply are
1282      * bit-wise identical if the two operands are regarded as both
1283      * being signed or both being unsigned.  Therefore separate {@code
1284      * addUnsigned}, etc. methods are not provided.
1285      *
1286      * @param dividend the value to be divided
1287      * @param divisor the value doing the dividing
1288      * @return the unsigned quotient of the first argument divided by
1289      * the second argument
1290      * @see #remainderUnsigned
1291      * @since 1.8
1292      */
1293     public static long divideUnsigned(long dividend, long divisor) {
1294         if (divisor < 0L) { // signed comparison
1295             // Answer must be 0 or 1 depending on relative magnitude
1296             // of dividend and divisor.
1297             return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1298         }
1299 
1300         if (dividend > 0) //  Both inputs non-negative
1301             return dividend/divisor;
1302         else {
1303             /*
1304              * For simple code, leveraging BigInteger.  Longer and faster
1305              * code written directly in terms of operations on longs is
1306              * possible; see "Hacker's Delight" for divide and remainder
1307              * algorithms.
1308              */
1309             return toUnsignedBigInteger(dividend).
1310                 divide(toUnsignedBigInteger(divisor)).longValue();
1311         }
1312     }
1313 
1314     /**
1315      * Returns the unsigned remainder from dividing the first argument
1316      * by the second where each argument and the result is interpreted
1317      * as an unsigned value.
1318      *
1319      * @param dividend the value to be divided
1320      * @param divisor the value doing the dividing
1321      * @return the unsigned remainder of the first argument divided by
1322      * the second argument
1323      * @see #divideUnsigned
1324      * @since 1.8
1325      */
1326     public static long remainderUnsigned(long dividend, long divisor) {
1327         if (dividend > 0 && divisor > 0) { // signed comparisons
1328             return dividend % divisor;
1329         } else {
1330             if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
1331                 return dividend;
1332             else
1333                 return toUnsignedBigInteger(dividend).
1334                     remainder(toUnsignedBigInteger(divisor)).longValue();
1335         }
1336     }
1337 
1338     // Bit Twiddling
1339 
1340     /**
1341      * The number of bits used to represent a {@code long} value in two's
1342      * complement binary form.
1343      *
1344      * @since 1.5
1345      */
1346     @Native public static final int SIZE = 64;
1347 
1348     /**
1349      * The number of bytes used to represent a {@code long} value in two's
1350      * complement binary form.
1351      *
1352      * @since 1.8
1353      */
1354     public static final int BYTES = SIZE / Byte.SIZE;
1355 
1356     /**
1357      * Returns a {@code long} value with at most a single one-bit, in the
1358      * position of the highest-order ("leftmost") one-bit in the specified
1359      * {@code long} value.  Returns zero if the specified value has no
1360      * one-bits in its two's complement binary representation, that is, if it
1361      * is equal to zero.
1362      *
1363      * @param i the value whose highest one bit is to be computed
1364      * @return a {@code long} value with a single one-bit, in the position
1365      *     of the highest-order one-bit in the specified value, or zero if
1366      *     the specified value is itself equal to zero.
1367      * @since 1.5
1368      */
1369     public static long highestOneBit(long i) {
1370         // HD, Figure 3-1
1371         i |= (i >>  1);
1372         i |= (i >>  2);
1373         i |= (i >>  4);
1374         i |= (i >>  8);
1375         i |= (i >> 16);
1376         i |= (i >> 32);
1377         return i - (i >>> 1);
1378     }
1379 
1380     /**
1381      * Returns a {@code long} value with at most a single one-bit, in the
1382      * position of the lowest-order ("rightmost") one-bit in the specified
1383      * {@code long} value.  Returns zero if the specified value has no
1384      * one-bits in its two's complement binary representation, that is, if it
1385      * is equal to zero.
1386      *
1387      * @param i the value whose lowest one bit is to be computed
1388      * @return a {@code long} value with a single one-bit, in the position
1389      *     of the lowest-order one-bit in the specified value, or zero if
1390      *     the specified value is itself equal to zero.
1391      * @since 1.5
1392      */
1393     public static long lowestOneBit(long i) {
1394         // HD, Section 2-1
1395         return i & -i;
1396     }
1397 
1398     /**
1399      * Returns the number of zero bits preceding the highest-order
1400      * ("leftmost") one-bit in the two's complement binary representation
1401      * of the specified {@code long} value.  Returns 64 if the
1402      * specified value has no one-bits in its two's complement representation,
1403      * in other words if it is equal to zero.
1404      *
1405      * <p>Note that this method is closely related to the logarithm base 2.
1406      * For all positive {@code long} values x:
1407      * <ul>
1408      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1409      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1410      * </ul>
1411      *
1412      * @param i the value whose number of leading zeros is to be computed
1413      * @return the number of zero bits preceding the highest-order
1414      *     ("leftmost") one-bit in the two's complement binary representation
1415      *     of the specified {@code long} value, or 64 if the value
1416      *     is equal to zero.
1417      * @since 1.5
1418      */
1419     public static int numberOfLeadingZeros(long i) {
1420         // HD, Figure 5-6
1421          if (i == 0)
1422             return 64;
1423         int n = 1;
1424         int x = (int)(i >>> 32);
1425         if (x == 0) { n += 32; x = (int)i; }
1426         if (x >>> 16 == 0) { n += 16; x <<= 16; }
1427         if (x >>> 24 == 0) { n +=  8; x <<=  8; }
1428         if (x >>> 28 == 0) { n +=  4; x <<=  4; }
1429         if (x >>> 30 == 0) { n +=  2; x <<=  2; }
1430         n -= x >>> 31;
1431         return n;
1432     }
1433 
1434     /**
1435      * Returns the number of zero bits following the lowest-order ("rightmost")
1436      * one-bit in the two's complement binary representation of the specified
1437      * {@code long} value.  Returns 64 if the specified value has no
1438      * one-bits in its two's complement representation, in other words if it is
1439      * equal to zero.
1440      *
1441      * @param i the value whose number of trailing zeros is to be computed
1442      * @return the number of zero bits following the lowest-order ("rightmost")
1443      *     one-bit in the two's complement binary representation of the
1444      *     specified {@code long} value, or 64 if the value is equal
1445      *     to zero.
1446      * @since 1.5
1447      */
1448     public static int numberOfTrailingZeros(long i) {
1449         // HD, Figure 5-14
1450         int x, y;
1451         if (i == 0) return 64;
1452         int n = 63;
1453         y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1454         y = x <<16; if (y != 0) { n = n -16; x = y; }
1455         y = x << 8; if (y != 0) { n = n - 8; x = y; }
1456         y = x << 4; if (y != 0) { n = n - 4; x = y; }
1457         y = x << 2; if (y != 0) { n = n - 2; x = y; }
1458         return n - ((x << 1) >>> 31);
1459     }
1460 
1461     /**
1462      * Returns the number of one-bits in the two's complement binary
1463      * representation of the specified {@code long} value.  This function is
1464      * sometimes referred to as the <i>population count</i>.
1465      *
1466      * @param i the value whose bits are to be counted
1467      * @return the number of one-bits in the two's complement binary
1468      *     representation of the specified {@code long} value.
1469      * @since 1.5
1470      */
1471      public static int bitCount(long i) {
1472         // HD, Figure 5-14
1473         i = i - ((i >>> 1) & 0x5555555555555555L);
1474         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1475         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1476         i = i + (i >>> 8);
1477         i = i + (i >>> 16);
1478         i = i + (i >>> 32);
1479         return (int)i & 0x7f;
1480      }
1481 
1482     /**
1483      * Returns the value obtained by rotating the two's complement binary
1484      * representation of the specified {@code long} value left by the
1485      * specified number of bits.  (Bits shifted out of the left hand, or
1486      * high-order, side reenter on the right, or low-order.)
1487      *
1488      * <p>Note that left rotation with a negative distance is equivalent to
1489      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1490      * distance)}.  Note also that rotation by any multiple of 64 is a
1491      * no-op, so all but the last six bits of the rotation distance can be
1492      * ignored, even if the distance is negative: {@code rotateLeft(val,
1493      * distance) == rotateLeft(val, distance & 0x3F)}.
1494      *
1495      * @param i the value whose bits are to be rotated left
1496      * @param distance the number of bit positions to rotate left
1497      * @return the value obtained by rotating the two's complement binary
1498      *     representation of the specified {@code long} value left by the
1499      *     specified number of bits.
1500      * @since 1.5
1501      */
1502     public static long rotateLeft(long i, int distance) {
1503         return (i << distance) | (i >>> -distance);
1504     }
1505 
1506     /**
1507      * Returns the value obtained by rotating the two's complement binary
1508      * representation of the specified {@code long} value right by the
1509      * specified number of bits.  (Bits shifted out of the right hand, or
1510      * low-order, side reenter on the left, or high-order.)
1511      *
1512      * <p>Note that right rotation with a negative distance is equivalent to
1513      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1514      * distance)}.  Note also that rotation by any multiple of 64 is a
1515      * no-op, so all but the last six bits of the rotation distance can be
1516      * ignored, even if the distance is negative: {@code rotateRight(val,
1517      * distance) == rotateRight(val, distance & 0x3F)}.
1518      *
1519      * @param i the value whose bits are to be rotated right
1520      * @param distance the number of bit positions to rotate right
1521      * @return the value obtained by rotating the two's complement binary
1522      *     representation of the specified {@code long} value right by the
1523      *     specified number of bits.
1524      * @since 1.5
1525      */
1526     public static long rotateRight(long i, int distance) {
1527         return (i >>> distance) | (i << -distance);
1528     }
1529 
1530     /**
1531      * Returns the value obtained by reversing the order of the bits in the
1532      * two's complement binary representation of the specified {@code long}
1533      * value.
1534      *
1535      * @param i the value to be reversed
1536      * @return the value obtained by reversing order of the bits in the
1537      *     specified {@code long} value.
1538      * @since 1.5
1539      */
1540     public static long reverse(long i) {
1541         // HD, Figure 7-1
1542         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1543         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1544         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1545         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1546         i = (i << 48) | ((i & 0xffff0000L) << 16) |
1547             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1548         return i;
1549     }
1550 
1551     /**
1552      * Returns the signum function of the specified {@code long} value.  (The
1553      * return value is -1 if the specified value is negative; 0 if the
1554      * specified value is zero; and 1 if the specified value is positive.)
1555      *
1556      * @param i the value whose signum is to be computed
1557      * @return the signum function of the specified {@code long} value.
1558      * @since 1.5
1559      */
1560     public static int signum(long i) {
1561         // HD, Section 2-7
1562         return (int) ((i >> 63) | (-i >>> 63));
1563     }
1564 
1565     /**
1566      * Returns the value obtained by reversing the order of the bytes in the
1567      * two's complement representation of the specified {@code long} value.
1568      *
1569      * @param i the value whose bytes are to be reversed
1570      * @return the value obtained by reversing the bytes in the specified
1571      *     {@code long} value.
1572      * @since 1.5
1573      */
1574     public static long reverseBytes(long i) {
1575         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1576         return (i << 48) | ((i & 0xffff0000L) << 16) |
1577             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1578     }
1579 
1580     /**
1581      * Adds two {@code long} values together as per the + operator.
1582      *
1583      * @param a the first operand
1584      * @param b the second operand
1585      * @return the sum of {@code a} and {@code b}
1586      * @see java.util.function.BinaryOperator
1587      * @since 1.8
1588      */
1589     public static long sum(long a, long b) {
1590         return a + b;
1591     }
1592 
1593     /**
1594      * Returns the greater of two {@code long} values
1595      * as if by calling {@link Math#max(long, long) Math.max}.
1596      *
1597      * @param a the first operand
1598      * @param b the second operand
1599      * @return the greater of {@code a} and {@code b}
1600      * @see java.util.function.BinaryOperator
1601      * @since 1.8
1602      */
1603     public static long max(long a, long b) {
1604         return Math.max(a, b);
1605     }
1606 
1607     /**
1608      * Returns the smaller of two {@code long} values
1609      * as if by calling {@link Math#min(long, long) Math.min}.
1610      *
1611      * @param a the first operand
1612      * @param b the second operand
1613      * @return the smaller of {@code a} and {@code b}
1614      * @see java.util.function.BinaryOperator
1615      * @since 1.8
1616      */
1617     public static long min(long a, long b) {
1618         return Math.min(a, b);
1619     }
1620 
1621     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1622     @Native private static final long serialVersionUID = 4290774380558885855L;
1623 }