/* * Copyright (c) 2014 Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.openjdk.bench.java.util.stream.tasks.PrimesFilter.t10000; import org.openjdk.bench.java.util.stream.tasks.PrimesFilter.PrimesProblem; import org.openjdk.jmh.annotations.Benchmark; import org.openjdk.jmh.annotations.BenchmarkMode; import org.openjdk.jmh.annotations.Mode; import org.openjdk.jmh.annotations.OutputTimeUnit; import org.openjdk.jmh.annotations.Scope; import org.openjdk.jmh.annotations.State; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.concurrent.RecursiveTask; import java.util.concurrent.TimeUnit; import java.util.function.Predicate; import java.util.stream.Collectors; import java.util.stream.LongStream; /** * This benchmark evaluates find all prime numbers in a range. * * filter()...into() actions are benchmarked. */ @BenchmarkMode(Mode.Throughput) @OutputTimeUnit(TimeUnit.SECONDS) @State(Scope.Benchmark) public class Bulk { private final long RANGE_START = 1000_000_000_000_000L; private final long RANGE_END = RANGE_START + 100; @Benchmark public List hm_seq() { List results = new ArrayList<>(); for (long i = RANGE_START; i < RANGE_END; i++) { if (PrimesProblem.isPrime(i)) { results.add(i); } } return results; } @Benchmark public List hm_par() { return new FactoringTask(RANGE_START, RANGE_END).invoke(); } @Benchmark public List bulk_seq_inner() { return LongStream.range(RANGE_START, RANGE_END).parallel() .boxed() .filter(new Predicate() { @Override public boolean test(Long o) { return PrimesProblem.isPrime(o); } } ).collect(Collectors.toList()); } @Benchmark public List bulk_par_inner() { return LongStream.range(RANGE_START, RANGE_END).parallel() .boxed() .filter(new Predicate() { @Override public boolean test(Long o) { return PrimesProblem.isPrime(o); } } ).collect(Collectors.toList()); } @Benchmark public List bulk_parseq_inner() { return LongStream.range(RANGE_START, RANGE_END).parallel() .boxed() .filter(new Predicate() { @Override public boolean test(Long o) { return PrimesProblem.isPrime(o); } } ).sequential().collect(Collectors.toList()); } public static class FactoringTask extends RecursiveTask> { final long low; final long high; @Override protected List compute() { if (high - low == 1L) { if (PrimesProblem.isPrime(low)) return Collections.singletonList(low); else return Collections.emptyList(); } long mid = (low + high) / 2L; FactoringTask t1 = new FactoringTask(low, mid); FactoringTask t2 = new FactoringTask(mid, high); List results; // The right way to do it. Forks off one task and // continues the other task in this thread. I've // seen up to 8x speed up on 16-way Intel and 32-way // SPARC boxes (which probably matches the actual number // of cores they have, as opposed to the number of threads) t2.fork(); results = new ArrayList<>(t1.compute()); results.addAll(t2.join()); return results; } FactoringTask(long low, long high) { this.low = low; this.high = high; } } }