1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  34 #include "gc_implementation/g1/g1Log.hpp"
  35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  36 #include "gc_implementation/g1/g1RemSet.hpp"
  37 #include "gc_implementation/g1/heapRegion.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  40 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  41 #include "gc_implementation/shared/vmGCOperations.hpp"
  42 #include "gc_implementation/shared/gcTimer.hpp"
  43 #include "gc_implementation/shared/gcTrace.hpp"
  44 #include "gc_implementation/shared/gcTraceTime.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/referencePolicy.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/prefetch.inline.hpp"
  54 #include "services/memTracker.hpp"
  55 
  56 // Concurrent marking bit map wrapper
  57 
  58 CMBitMapRO::CMBitMapRO(int shifter) :
  59   _bm(),
  60   _shifter(shifter) {
  61   _bmStartWord = 0;
  62   _bmWordSize = 0;
  63 }
  64 
  65 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  66                                                const HeapWord* limit) const {
  67   // First we must round addr *up* to a possible object boundary.
  68   addr = (HeapWord*)align_size_up((intptr_t)addr,
  69                                   HeapWordSize << _shifter);
  70   size_t addrOffset = heapWordToOffset(addr);
  71   if (limit == NULL) {
  72     limit = _bmStartWord + _bmWordSize;
  73   }
  74   size_t limitOffset = heapWordToOffset(limit);
  75   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  76   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  77   assert(nextAddr >= addr, "get_next_one postcondition");
  78   assert(nextAddr == limit || isMarked(nextAddr),
  79          "get_next_one postcondition");
  80   return nextAddr;
  81 }
  82 
  83 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  84                                                  const HeapWord* limit) const {
  85   size_t addrOffset = heapWordToOffset(addr);
  86   if (limit == NULL) {
  87     limit = _bmStartWord + _bmWordSize;
  88   }
  89   size_t limitOffset = heapWordToOffset(limit);
  90   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  91   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  92   assert(nextAddr >= addr, "get_next_one postcondition");
  93   assert(nextAddr == limit || !isMarked(nextAddr),
  94          "get_next_one postcondition");
  95   return nextAddr;
  96 }
  97 
  98 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  99   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 100   return (int) (diff >> _shifter);
 101 }
 102 
 103 #ifndef PRODUCT
 104 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 105   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 106   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 107          "size inconsistency");
 108   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 109          _bmWordSize  == heap_rs.word_size();
 110 }
 111 #endif
 112 
 113 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 114   _bm.print_on_error(st, prefix);
 115 }
 116 
 117 size_t CMBitMap::compute_size(size_t heap_size) {
 118   return heap_size / mark_distance();
 119 }
 120 
 121 size_t CMBitMap::mark_distance() {
 122   return MinObjAlignmentInBytes * BitsPerByte;
 123 }
 124 
 125 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 126   _bmStartWord = heap.start();
 127   _bmWordSize = heap.word_size();
 128 
 129   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 130   _bm.set_size(_bmWordSize >> _shifter);
 131 
 132   storage->set_mapping_changed_listener(&_listener);
 133 }
 134 
 135 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 136   if (zero_filled) {
 137     return;
 138   }
 139   // We need to clear the bitmap on commit, removing any existing information.
 140   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 141   _bm->clearRange(mr);
 142 }
 143 
 144 // Closure used for clearing the given mark bitmap.
 145 class ClearBitmapHRClosure : public HeapRegionClosure {
 146  private:
 147   ConcurrentMark* _cm;
 148   CMBitMap* _bitmap;
 149   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 150  public:
 151   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 152     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 153   }
 154 
 155   virtual bool doHeapRegion(HeapRegion* r) {
 156     size_t const chunk_size_in_words = M / HeapWordSize;
 157 
 158     HeapWord* cur = r->bottom();
 159     HeapWord* const end = r->end();
 160 
 161     while (cur < end) {
 162       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 163       _bitmap->clearRange(mr);
 164 
 165       cur += chunk_size_in_words;
 166 
 167       // Abort iteration if after yielding the marking has been aborted.
 168       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 169         return true;
 170       }
 171       // Repeat the asserts from before the start of the closure. We will do them
 172       // as asserts here to minimize their overhead on the product. However, we
 173       // will have them as guarantees at the beginning / end of the bitmap
 174       // clearing to get some checking in the product.
 175       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 176       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 177     }
 178 
 179     return false;
 180   }
 181 };
 182 
 183 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 184   ClearBitmapHRClosure* _cl;
 185   HeapRegionClaimer     _hrclaimer;
 186   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 187 
 188 public:
 189   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 190       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 191 
 192   void work(uint worker_id) {
 193     if (_suspendible) {
 194       SuspendibleThreadSet::join();
 195     }
 196     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 197     if (_suspendible) {
 198       SuspendibleThreadSet::leave();
 199     }
 200   }
 201 };
 202 
 203 void CMBitMap::clearAll() {
 204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 205   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 206   uint n_workers = g1h->workers()->active_workers();
 207   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 208   g1h->workers()->run_task(&task);
 209   guarantee(cl.complete(), "Must have completed iteration.");
 210   return;
 211 }
 212 
 213 void CMBitMap::markRange(MemRegion mr) {
 214   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 215   assert(!mr.is_empty(), "unexpected empty region");
 216   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 217           ((HeapWord *) mr.end())),
 218          "markRange memory region end is not card aligned");
 219   // convert address range into offset range
 220   _bm.at_put_range(heapWordToOffset(mr.start()),
 221                    heapWordToOffset(mr.end()), true);
 222 }
 223 
 224 void CMBitMap::clearRange(MemRegion mr) {
 225   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 226   assert(!mr.is_empty(), "unexpected empty region");
 227   // convert address range into offset range
 228   _bm.at_put_range(heapWordToOffset(mr.start()),
 229                    heapWordToOffset(mr.end()), false);
 230 }
 231 
 232 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 233                                             HeapWord* end_addr) {
 234   HeapWord* start = getNextMarkedWordAddress(addr);
 235   start = MIN2(start, end_addr);
 236   HeapWord* end   = getNextUnmarkedWordAddress(start);
 237   end = MIN2(end, end_addr);
 238   assert(start <= end, "Consistency check");
 239   MemRegion mr(start, end);
 240   if (!mr.is_empty()) {
 241     clearRange(mr);
 242   }
 243   return mr;
 244 }
 245 
 246 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 247   _base(NULL), _cm(cm)
 248 #ifdef ASSERT
 249   , _drain_in_progress(false)
 250   , _drain_in_progress_yields(false)
 251 #endif
 252 {}
 253 
 254 bool CMMarkStack::allocate(size_t capacity) {
 255   // allocate a stack of the requisite depth
 256   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 257   if (!rs.is_reserved()) {
 258     warning("ConcurrentMark MarkStack allocation failure");
 259     return false;
 260   }
 261   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 262   if (!_virtual_space.initialize(rs, rs.size())) {
 263     warning("ConcurrentMark MarkStack backing store failure");
 264     // Release the virtual memory reserved for the marking stack
 265     rs.release();
 266     return false;
 267   }
 268   assert(_virtual_space.committed_size() == rs.size(),
 269          "Didn't reserve backing store for all of ConcurrentMark stack?");
 270   _base = (oop*) _virtual_space.low();
 271   setEmpty();
 272   _capacity = (jint) capacity;
 273   _saved_index = -1;
 274   _should_expand = false;
 275   NOT_PRODUCT(_max_depth = 0);
 276   return true;
 277 }
 278 
 279 void CMMarkStack::expand() {
 280   // Called, during remark, if we've overflown the marking stack during marking.
 281   assert(isEmpty(), "stack should been emptied while handling overflow");
 282   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 283   // Clear expansion flag
 284   _should_expand = false;
 285   if (_capacity == (jint) MarkStackSizeMax) {
 286     if (PrintGCDetails && Verbose) {
 287       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 288     }
 289     return;
 290   }
 291   // Double capacity if possible
 292   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 293   // Do not give up existing stack until we have managed to
 294   // get the double capacity that we desired.
 295   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 296                                                            sizeof(oop)));
 297   if (rs.is_reserved()) {
 298     // Release the backing store associated with old stack
 299     _virtual_space.release();
 300     // Reinitialize virtual space for new stack
 301     if (!_virtual_space.initialize(rs, rs.size())) {
 302       fatal("Not enough swap for expanded marking stack capacity");
 303     }
 304     _base = (oop*)(_virtual_space.low());
 305     _index = 0;
 306     _capacity = new_capacity;
 307   } else {
 308     if (PrintGCDetails && Verbose) {
 309       // Failed to double capacity, continue;
 310       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 311                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 312                           _capacity / K, new_capacity / K);
 313     }
 314   }
 315 }
 316 
 317 void CMMarkStack::set_should_expand() {
 318   // If we're resetting the marking state because of an
 319   // marking stack overflow, record that we should, if
 320   // possible, expand the stack.
 321   _should_expand = _cm->has_overflown();
 322 }
 323 
 324 CMMarkStack::~CMMarkStack() {
 325   if (_base != NULL) {
 326     _base = NULL;
 327     _virtual_space.release();
 328   }
 329 }
 330 
 331 void CMMarkStack::par_push(oop ptr) {
 332   while (true) {
 333     if (isFull()) {
 334       _overflow = true;
 335       return;
 336     }
 337     // Otherwise...
 338     jint index = _index;
 339     jint next_index = index+1;
 340     jint res = Atomic::cmpxchg(next_index, &_index, index);
 341     if (res == index) {
 342       _base[index] = ptr;
 343       // Note that we don't maintain this atomically.  We could, but it
 344       // doesn't seem necessary.
 345       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 346       return;
 347     }
 348     // Otherwise, we need to try again.
 349   }
 350 }
 351 
 352 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 353   while (true) {
 354     if (isFull()) {
 355       _overflow = true;
 356       return;
 357     }
 358     // Otherwise...
 359     jint index = _index;
 360     jint next_index = index + n;
 361     if (next_index > _capacity) {
 362       _overflow = true;
 363       return;
 364     }
 365     jint res = Atomic::cmpxchg(next_index, &_index, index);
 366     if (res == index) {
 367       for (int i = 0; i < n; i++) {
 368         int  ind = index + i;
 369         assert(ind < _capacity, "By overflow test above.");
 370         _base[ind] = ptr_arr[i];
 371       }
 372       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 373       return;
 374     }
 375     // Otherwise, we need to try again.
 376   }
 377 }
 378 
 379 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 380   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 381   jint start = _index;
 382   jint next_index = start + n;
 383   if (next_index > _capacity) {
 384     _overflow = true;
 385     return;
 386   }
 387   // Otherwise.
 388   _index = next_index;
 389   for (int i = 0; i < n; i++) {
 390     int ind = start + i;
 391     assert(ind < _capacity, "By overflow test above.");
 392     _base[ind] = ptr_arr[i];
 393   }
 394   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 395 }
 396 
 397 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 398   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 399   jint index = _index;
 400   if (index == 0) {
 401     *n = 0;
 402     return false;
 403   } else {
 404     int k = MIN2(max, index);
 405     jint  new_ind = index - k;
 406     for (int j = 0; j < k; j++) {
 407       ptr_arr[j] = _base[new_ind + j];
 408     }
 409     _index = new_ind;
 410     *n = k;
 411     return true;
 412   }
 413 }
 414 
 415 template<class OopClosureClass>
 416 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 417   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 418          || SafepointSynchronize::is_at_safepoint(),
 419          "Drain recursion must be yield-safe.");
 420   bool res = true;
 421   debug_only(_drain_in_progress = true);
 422   debug_only(_drain_in_progress_yields = yield_after);
 423   while (!isEmpty()) {
 424     oop newOop = pop();
 425     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 426     assert(newOop->is_oop(), "Expected an oop");
 427     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 428            "only grey objects on this stack");
 429     newOop->oop_iterate(cl);
 430     if (yield_after && _cm->do_yield_check()) {
 431       res = false;
 432       break;
 433     }
 434   }
 435   debug_only(_drain_in_progress = false);
 436   return res;
 437 }
 438 
 439 void CMMarkStack::note_start_of_gc() {
 440   assert(_saved_index == -1,
 441          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 442   _saved_index = _index;
 443 }
 444 
 445 void CMMarkStack::note_end_of_gc() {
 446   // This is intentionally a guarantee, instead of an assert. If we
 447   // accidentally add something to the mark stack during GC, it
 448   // will be a correctness issue so it's better if we crash. we'll
 449   // only check this once per GC anyway, so it won't be a performance
 450   // issue in any way.
 451   guarantee(_saved_index == _index,
 452             err_msg("saved index: %d index: %d", _saved_index, _index));
 453   _saved_index = -1;
 454 }
 455 
 456 void CMMarkStack::oops_do(OopClosure* f) {
 457   assert(_saved_index == _index,
 458          err_msg("saved index: %d index: %d", _saved_index, _index));
 459   for (int i = 0; i < _index; i += 1) {
 460     f->do_oop(&_base[i]);
 461   }
 462 }
 463 
 464 CMRootRegions::CMRootRegions() :
 465   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 466   _should_abort(false),  _next_survivor(NULL) { }
 467 
 468 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 469   _young_list = g1h->young_list();
 470   _cm = cm;
 471 }
 472 
 473 void CMRootRegions::prepare_for_scan() {
 474   assert(!scan_in_progress(), "pre-condition");
 475 
 476   // Currently, only survivors can be root regions.
 477   assert(_next_survivor == NULL, "pre-condition");
 478   _next_survivor = _young_list->first_survivor_region();
 479   _scan_in_progress = (_next_survivor != NULL);
 480   _should_abort = false;
 481 }
 482 
 483 HeapRegion* CMRootRegions::claim_next() {
 484   if (_should_abort) {
 485     // If someone has set the should_abort flag, we return NULL to
 486     // force the caller to bail out of their loop.
 487     return NULL;
 488   }
 489 
 490   // Currently, only survivors can be root regions.
 491   HeapRegion* res = _next_survivor;
 492   if (res != NULL) {
 493     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 494     // Read it again in case it changed while we were waiting for the lock.
 495     res = _next_survivor;
 496     if (res != NULL) {
 497       if (res == _young_list->last_survivor_region()) {
 498         // We just claimed the last survivor so store NULL to indicate
 499         // that we're done.
 500         _next_survivor = NULL;
 501       } else {
 502         _next_survivor = res->get_next_young_region();
 503       }
 504     } else {
 505       // Someone else claimed the last survivor while we were trying
 506       // to take the lock so nothing else to do.
 507     }
 508   }
 509   assert(res == NULL || res->is_survivor(), "post-condition");
 510 
 511   return res;
 512 }
 513 
 514 void CMRootRegions::scan_finished() {
 515   assert(scan_in_progress(), "pre-condition");
 516 
 517   // Currently, only survivors can be root regions.
 518   if (!_should_abort) {
 519     assert(_next_survivor == NULL, "we should have claimed all survivors");
 520   }
 521   _next_survivor = NULL;
 522 
 523   {
 524     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 525     _scan_in_progress = false;
 526     RootRegionScan_lock->notify_all();
 527   }
 528 }
 529 
 530 bool CMRootRegions::wait_until_scan_finished() {
 531   if (!scan_in_progress()) return false;
 532 
 533   {
 534     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 535     while (scan_in_progress()) {
 536       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 537     }
 538   }
 539   return true;
 540 }
 541 
 542 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 543 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 544 #endif // _MSC_VER
 545 
 546 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 547   return MAX2((n_par_threads + 2) / 4, 1U);
 548 }
 549 
 550 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 551   _g1h(g1h),
 552   _markBitMap1(),
 553   _markBitMap2(),
 554   _parallel_marking_threads(0),
 555   _max_parallel_marking_threads(0),
 556   _sleep_factor(0.0),
 557   _marking_task_overhead(1.0),
 558   _cleanup_sleep_factor(0.0),
 559   _cleanup_task_overhead(1.0),
 560   _cleanup_list("Cleanup List"),
 561   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 562   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 563             CardTableModRefBS::card_shift,
 564             false /* in_resource_area*/),
 565 
 566   _prevMarkBitMap(&_markBitMap1),
 567   _nextMarkBitMap(&_markBitMap2),
 568 
 569   _markStack(this),
 570   // _finger set in set_non_marking_state
 571 
 572   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 573   // _active_tasks set in set_non_marking_state
 574   // _tasks set inside the constructor
 575   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 576   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 577 
 578   _has_overflown(false),
 579   _concurrent(false),
 580   _has_aborted(false),
 581   _aborted_gc_id(GCId::undefined()),
 582   _restart_for_overflow(false),
 583   _concurrent_marking_in_progress(false),
 584 
 585   // _verbose_level set below
 586 
 587   _init_times(),
 588   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 589   _cleanup_times(),
 590   _total_counting_time(0.0),
 591   _total_rs_scrub_time(0.0),
 592 
 593   _parallel_workers(NULL),
 594 
 595   _count_card_bitmaps(NULL),
 596   _count_marked_bytes(NULL),
 597   _completed_initialization(false) {
 598   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 599   if (verbose_level < no_verbose) {
 600     verbose_level = no_verbose;
 601   }
 602   if (verbose_level > high_verbose) {
 603     verbose_level = high_verbose;
 604   }
 605   _verbose_level = verbose_level;
 606 
 607   if (verbose_low()) {
 608     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 609                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 610   }
 611 
 612   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 613   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 614 
 615   // Create & start a ConcurrentMark thread.
 616   _cmThread = new ConcurrentMarkThread(this);
 617   assert(cmThread() != NULL, "CM Thread should have been created");
 618   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 619   if (_cmThread->osthread() == NULL) {
 620       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 621   }
 622 
 623   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 624   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 625   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 626 
 627   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 628   satb_qs.set_buffer_size(G1SATBBufferSize);
 629 
 630   _root_regions.init(_g1h, this);
 631 
 632   if (ConcGCThreads > ParallelGCThreads) {
 633     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 634             "than ParallelGCThreads (" UINTX_FORMAT ").",
 635             ConcGCThreads, ParallelGCThreads);
 636     return;
 637   }
 638   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 639     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 640     // if both are set
 641     _sleep_factor             = 0.0;
 642     _marking_task_overhead    = 1.0;
 643   } else if (G1MarkingOverheadPercent > 0) {
 644     // We will calculate the number of parallel marking threads based
 645     // on a target overhead with respect to the soft real-time goal
 646     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 647     double overall_cm_overhead =
 648       (double) MaxGCPauseMillis * marking_overhead /
 649       (double) GCPauseIntervalMillis;
 650     double cpu_ratio = 1.0 / (double) os::processor_count();
 651     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 652     double marking_task_overhead =
 653       overall_cm_overhead / marking_thread_num *
 654                                               (double) os::processor_count();
 655     double sleep_factor =
 656                        (1.0 - marking_task_overhead) / marking_task_overhead;
 657 
 658     FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 659     _sleep_factor             = sleep_factor;
 660     _marking_task_overhead    = marking_task_overhead;
 661   } else {
 662     // Calculate the number of parallel marking threads by scaling
 663     // the number of parallel GC threads.
 664     uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 665     FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 666     _sleep_factor             = 0.0;
 667     _marking_task_overhead    = 1.0;
 668   }
 669 
 670   assert(ConcGCThreads > 0, "Should have been set");
 671   _parallel_marking_threads = (uint) ConcGCThreads;
 672   _max_parallel_marking_threads = _parallel_marking_threads;
 673 
 674   if (parallel_marking_threads() > 1) {
 675     _cleanup_task_overhead = 1.0;
 676   } else {
 677     _cleanup_task_overhead = marking_task_overhead();
 678   }
 679   _cleanup_sleep_factor =
 680                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 681 
 682 #if 0
 683   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 684   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 685   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 686   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 687   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 688 #endif
 689 
 690   _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 691        _max_parallel_marking_threads, false, true);
 692   if (_parallel_workers == NULL) {
 693     vm_exit_during_initialization("Failed necessary allocation.");
 694   } else {
 695     _parallel_workers->initialize_workers();
 696   }
 697 
 698   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 699     uintx mark_stack_size =
 700       MIN2(MarkStackSizeMax,
 701           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 702     // Verify that the calculated value for MarkStackSize is in range.
 703     // It would be nice to use the private utility routine from Arguments.
 704     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 705       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 706               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 707               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 708       return;
 709     }
 710     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 711   } else {
 712     // Verify MarkStackSize is in range.
 713     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 714       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 715         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 716           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 717                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 718                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 719           return;
 720         }
 721       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 722         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 723           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 724                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 725                   MarkStackSize, MarkStackSizeMax);
 726           return;
 727         }
 728       }
 729     }
 730   }
 731 
 732   if (!_markStack.allocate(MarkStackSize)) {
 733     warning("Failed to allocate CM marking stack");
 734     return;
 735   }
 736 
 737   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 738   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 739 
 740   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 741   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 742 
 743   BitMap::idx_t card_bm_size = _card_bm.size();
 744 
 745   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 746   _active_tasks = _max_worker_id;
 747 
 748   size_t max_regions = (size_t) _g1h->max_regions();
 749   for (uint i = 0; i < _max_worker_id; ++i) {
 750     CMTaskQueue* task_queue = new CMTaskQueue();
 751     task_queue->initialize();
 752     _task_queues->register_queue(i, task_queue);
 753 
 754     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 755     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 756 
 757     _tasks[i] = new CMTask(i, this,
 758                            _count_marked_bytes[i],
 759                            &_count_card_bitmaps[i],
 760                            task_queue, _task_queues);
 761 
 762     _accum_task_vtime[i] = 0.0;
 763   }
 764 
 765   // Calculate the card number for the bottom of the heap. Used
 766   // in biasing indexes into the accounting card bitmaps.
 767   _heap_bottom_card_num =
 768     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 769                                 CardTableModRefBS::card_shift);
 770 
 771   // Clear all the liveness counting data
 772   clear_all_count_data();
 773 
 774   // so that the call below can read a sensible value
 775   _heap_start = g1h->reserved_region().start();
 776   set_non_marking_state();
 777   _completed_initialization = true;
 778 }
 779 
 780 void ConcurrentMark::reset() {
 781   // Starting values for these two. This should be called in a STW
 782   // phase.
 783   MemRegion reserved = _g1h->g1_reserved();
 784   _heap_start = reserved.start();
 785   _heap_end   = reserved.end();
 786 
 787   // Separated the asserts so that we know which one fires.
 788   assert(_heap_start != NULL, "heap bounds should look ok");
 789   assert(_heap_end != NULL, "heap bounds should look ok");
 790   assert(_heap_start < _heap_end, "heap bounds should look ok");
 791 
 792   // Reset all the marking data structures and any necessary flags
 793   reset_marking_state();
 794 
 795   if (verbose_low()) {
 796     gclog_or_tty->print_cr("[global] resetting");
 797   }
 798 
 799   // We do reset all of them, since different phases will use
 800   // different number of active threads. So, it's easiest to have all
 801   // of them ready.
 802   for (uint i = 0; i < _max_worker_id; ++i) {
 803     _tasks[i]->reset(_nextMarkBitMap);
 804   }
 805 
 806   // we need this to make sure that the flag is on during the evac
 807   // pause with initial mark piggy-backed
 808   set_concurrent_marking_in_progress();
 809 }
 810 
 811 
 812 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 813   _markStack.set_should_expand();
 814   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 815   if (clear_overflow) {
 816     clear_has_overflown();
 817   } else {
 818     assert(has_overflown(), "pre-condition");
 819   }
 820   _finger = _heap_start;
 821 
 822   for (uint i = 0; i < _max_worker_id; ++i) {
 823     CMTaskQueue* queue = _task_queues->queue(i);
 824     queue->set_empty();
 825   }
 826 }
 827 
 828 void ConcurrentMark::set_concurrency(uint active_tasks) {
 829   assert(active_tasks <= _max_worker_id, "we should not have more");
 830 
 831   _active_tasks = active_tasks;
 832   // Need to update the three data structures below according to the
 833   // number of active threads for this phase.
 834   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 835   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 836   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 837 }
 838 
 839 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 840   set_concurrency(active_tasks);
 841 
 842   _concurrent = concurrent;
 843   // We propagate this to all tasks, not just the active ones.
 844   for (uint i = 0; i < _max_worker_id; ++i)
 845     _tasks[i]->set_concurrent(concurrent);
 846 
 847   if (concurrent) {
 848     set_concurrent_marking_in_progress();
 849   } else {
 850     // We currently assume that the concurrent flag has been set to
 851     // false before we start remark. At this point we should also be
 852     // in a STW phase.
 853     assert(!concurrent_marking_in_progress(), "invariant");
 854     assert(out_of_regions(),
 855            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 856                    p2i(_finger), p2i(_heap_end)));
 857   }
 858 }
 859 
 860 void ConcurrentMark::set_non_marking_state() {
 861   // We set the global marking state to some default values when we're
 862   // not doing marking.
 863   reset_marking_state();
 864   _active_tasks = 0;
 865   clear_concurrent_marking_in_progress();
 866 }
 867 
 868 ConcurrentMark::~ConcurrentMark() {
 869   // The ConcurrentMark instance is never freed.
 870   ShouldNotReachHere();
 871 }
 872 
 873 void ConcurrentMark::clearNextBitmap() {
 874   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 875 
 876   // Make sure that the concurrent mark thread looks to still be in
 877   // the current cycle.
 878   guarantee(cmThread()->during_cycle(), "invariant");
 879 
 880   // We are finishing up the current cycle by clearing the next
 881   // marking bitmap and getting it ready for the next cycle. During
 882   // this time no other cycle can start. So, let's make sure that this
 883   // is the case.
 884   guarantee(!g1h->mark_in_progress(), "invariant");
 885 
 886   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 887   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 888   _parallel_workers->run_task(&task);
 889 
 890   // Clear the liveness counting data. If the marking has been aborted, the abort()
 891   // call already did that.
 892   if (cl.complete()) {
 893     clear_all_count_data();
 894   }
 895 
 896   // Repeat the asserts from above.
 897   guarantee(cmThread()->during_cycle(), "invariant");
 898   guarantee(!g1h->mark_in_progress(), "invariant");
 899 }
 900 
 901 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 902   CMBitMap* _bitmap;
 903   bool _error;
 904  public:
 905   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 906   }
 907 
 908   virtual bool doHeapRegion(HeapRegion* r) {
 909     // This closure can be called concurrently to the mutator, so we must make sure
 910     // that the result of the getNextMarkedWordAddress() call is compared to the
 911     // value passed to it as limit to detect any found bits.
 912     // We can use the region's orig_end() for the limit and the comparison value
 913     // as it always contains the "real" end of the region that never changes and
 914     // has no side effects.
 915     // Due to the latter, there can also be no problem with the compiler generating
 916     // reloads of the orig_end() call.
 917     HeapWord* end = r->orig_end();
 918     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 919   }
 920 };
 921 
 922 bool ConcurrentMark::nextMarkBitmapIsClear() {
 923   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 924   _g1h->heap_region_iterate(&cl);
 925   return cl.complete();
 926 }
 927 
 928 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 929 public:
 930   bool doHeapRegion(HeapRegion* r) {
 931     if (!r->is_continues_humongous()) {
 932       r->note_start_of_marking();
 933     }
 934     return false;
 935   }
 936 };
 937 
 938 void ConcurrentMark::checkpointRootsInitialPre() {
 939   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 940   G1CollectorPolicy* g1p = g1h->g1_policy();
 941 
 942   _has_aborted = false;
 943 
 944 #ifndef PRODUCT
 945   if (G1PrintReachableAtInitialMark) {
 946     print_reachable("at-cycle-start",
 947                     VerifyOption_G1UsePrevMarking, true /* all */);
 948   }
 949 #endif
 950 
 951   // Initialize marking structures. This has to be done in a STW phase.
 952   reset();
 953 
 954   // For each region note start of marking.
 955   NoteStartOfMarkHRClosure startcl;
 956   g1h->heap_region_iterate(&startcl);
 957 }
 958 
 959 
 960 void ConcurrentMark::checkpointRootsInitialPost() {
 961   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 962 
 963   // If we force an overflow during remark, the remark operation will
 964   // actually abort and we'll restart concurrent marking. If we always
 965   // force an overflow during remark we'll never actually complete the
 966   // marking phase. So, we initialize this here, at the start of the
 967   // cycle, so that at the remaining overflow number will decrease at
 968   // every remark and we'll eventually not need to cause one.
 969   force_overflow_stw()->init();
 970 
 971   // Start Concurrent Marking weak-reference discovery.
 972   ReferenceProcessor* rp = g1h->ref_processor_cm();
 973   // enable ("weak") refs discovery
 974   rp->enable_discovery();
 975   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 976 
 977   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 978   // This is the start of  the marking cycle, we're expected all
 979   // threads to have SATB queues with active set to false.
 980   satb_mq_set.set_active_all_threads(true, /* new active value */
 981                                      false /* expected_active */);
 982 
 983   _root_regions.prepare_for_scan();
 984 
 985   // update_g1_committed() will be called at the end of an evac pause
 986   // when marking is on. So, it's also called at the end of the
 987   // initial-mark pause to update the heap end, if the heap expands
 988   // during it. No need to call it here.
 989 }
 990 
 991 /*
 992  * Notice that in the next two methods, we actually leave the STS
 993  * during the barrier sync and join it immediately afterwards. If we
 994  * do not do this, the following deadlock can occur: one thread could
 995  * be in the barrier sync code, waiting for the other thread to also
 996  * sync up, whereas another one could be trying to yield, while also
 997  * waiting for the other threads to sync up too.
 998  *
 999  * Note, however, that this code is also used during remark and in
1000  * this case we should not attempt to leave / enter the STS, otherwise
1001  * we'll either hit an assert (debug / fastdebug) or deadlock
1002  * (product). So we should only leave / enter the STS if we are
1003  * operating concurrently.
1004  *
1005  * Because the thread that does the sync barrier has left the STS, it
1006  * is possible to be suspended for a Full GC or an evacuation pause
1007  * could occur. This is actually safe, since the entering the sync
1008  * barrier is one of the last things do_marking_step() does, and it
1009  * doesn't manipulate any data structures afterwards.
1010  */
1011 
1012 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
1013   if (verbose_low()) {
1014     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
1015   }
1016 
1017   if (concurrent()) {
1018     SuspendibleThreadSet::leave();
1019   }
1020 
1021   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1022 
1023   if (concurrent()) {
1024     SuspendibleThreadSet::join();
1025   }
1026   // at this point everyone should have synced up and not be doing any
1027   // more work
1028 
1029   if (verbose_low()) {
1030     if (barrier_aborted) {
1031       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1032     } else {
1033       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1034     }
1035   }
1036 
1037   if (barrier_aborted) {
1038     // If the barrier aborted we ignore the overflow condition and
1039     // just abort the whole marking phase as quickly as possible.
1040     return;
1041   }
1042 
1043   // If we're executing the concurrent phase of marking, reset the marking
1044   // state; otherwise the marking state is reset after reference processing,
1045   // during the remark pause.
1046   // If we reset here as a result of an overflow during the remark we will
1047   // see assertion failures from any subsequent set_concurrency_and_phase()
1048   // calls.
1049   if (concurrent()) {
1050     // let the task associated with with worker 0 do this
1051     if (worker_id == 0) {
1052       // task 0 is responsible for clearing the global data structures
1053       // We should be here because of an overflow. During STW we should
1054       // not clear the overflow flag since we rely on it being true when
1055       // we exit this method to abort the pause and restart concurrent
1056       // marking.
1057       reset_marking_state(true /* clear_overflow */);
1058       force_overflow()->update();
1059 
1060       if (G1Log::fine()) {
1061         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1062         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1063       }
1064     }
1065   }
1066 
1067   // after this, each task should reset its own data structures then
1068   // then go into the second barrier
1069 }
1070 
1071 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1072   if (verbose_low()) {
1073     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1074   }
1075 
1076   if (concurrent()) {
1077     SuspendibleThreadSet::leave();
1078   }
1079 
1080   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1081 
1082   if (concurrent()) {
1083     SuspendibleThreadSet::join();
1084   }
1085   // at this point everything should be re-initialized and ready to go
1086 
1087   if (verbose_low()) {
1088     if (barrier_aborted) {
1089       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1090     } else {
1091       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1092     }
1093   }
1094 }
1095 
1096 #ifndef PRODUCT
1097 void ForceOverflowSettings::init() {
1098   _num_remaining = G1ConcMarkForceOverflow;
1099   _force = false;
1100   update();
1101 }
1102 
1103 void ForceOverflowSettings::update() {
1104   if (_num_remaining > 0) {
1105     _num_remaining -= 1;
1106     _force = true;
1107   } else {
1108     _force = false;
1109   }
1110 }
1111 
1112 bool ForceOverflowSettings::should_force() {
1113   if (_force) {
1114     _force = false;
1115     return true;
1116   } else {
1117     return false;
1118   }
1119 }
1120 #endif // !PRODUCT
1121 
1122 class CMConcurrentMarkingTask: public AbstractGangTask {
1123 private:
1124   ConcurrentMark*       _cm;
1125   ConcurrentMarkThread* _cmt;
1126 
1127 public:
1128   void work(uint worker_id) {
1129     assert(Thread::current()->is_ConcurrentGC_thread(),
1130            "this should only be done by a conc GC thread");
1131     ResourceMark rm;
1132 
1133     double start_vtime = os::elapsedVTime();
1134 
1135     SuspendibleThreadSet::join();
1136 
1137     assert(worker_id < _cm->active_tasks(), "invariant");
1138     CMTask* the_task = _cm->task(worker_id);
1139     the_task->record_start_time();
1140     if (!_cm->has_aborted()) {
1141       do {
1142         double start_vtime_sec = os::elapsedVTime();
1143         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1144 
1145         the_task->do_marking_step(mark_step_duration_ms,
1146                                   true  /* do_termination */,
1147                                   false /* is_serial*/);
1148 
1149         double end_vtime_sec = os::elapsedVTime();
1150         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1151         _cm->clear_has_overflown();
1152 
1153         _cm->do_yield_check(worker_id);
1154 
1155         jlong sleep_time_ms;
1156         if (!_cm->has_aborted() && the_task->has_aborted()) {
1157           sleep_time_ms =
1158             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1159           SuspendibleThreadSet::leave();
1160           os::sleep(Thread::current(), sleep_time_ms, false);
1161           SuspendibleThreadSet::join();
1162         }
1163       } while (!_cm->has_aborted() && the_task->has_aborted());
1164     }
1165     the_task->record_end_time();
1166     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1167 
1168     SuspendibleThreadSet::leave();
1169 
1170     double end_vtime = os::elapsedVTime();
1171     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1172   }
1173 
1174   CMConcurrentMarkingTask(ConcurrentMark* cm,
1175                           ConcurrentMarkThread* cmt) :
1176       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1177 
1178   ~CMConcurrentMarkingTask() { }
1179 };
1180 
1181 // Calculates the number of active workers for a concurrent
1182 // phase.
1183 uint ConcurrentMark::calc_parallel_marking_threads() {
1184   uint n_conc_workers = 0;
1185   if (!UseDynamicNumberOfGCThreads ||
1186       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1187        !ForceDynamicNumberOfGCThreads)) {
1188     n_conc_workers = max_parallel_marking_threads();
1189   } else {
1190     n_conc_workers =
1191       AdaptiveSizePolicy::calc_default_active_workers(
1192                                    max_parallel_marking_threads(),
1193                                    1, /* Minimum workers */
1194                                    parallel_marking_threads(),
1195                                    Threads::number_of_non_daemon_threads());
1196     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1197     // that scaling has already gone into "_max_parallel_marking_threads".
1198   }
1199   assert(n_conc_workers > 0, "Always need at least 1");
1200   return n_conc_workers;
1201 }
1202 
1203 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1204   // Currently, only survivors can be root regions.
1205   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1206   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1207 
1208   const uintx interval = PrefetchScanIntervalInBytes;
1209   HeapWord* curr = hr->bottom();
1210   const HeapWord* end = hr->top();
1211   while (curr < end) {
1212     Prefetch::read(curr, interval);
1213     oop obj = oop(curr);
1214     int size = obj->oop_iterate(&cl);
1215     assert(size == obj->size(), "sanity");
1216     curr += size;
1217   }
1218 }
1219 
1220 class CMRootRegionScanTask : public AbstractGangTask {
1221 private:
1222   ConcurrentMark* _cm;
1223 
1224 public:
1225   CMRootRegionScanTask(ConcurrentMark* cm) :
1226     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1227 
1228   void work(uint worker_id) {
1229     assert(Thread::current()->is_ConcurrentGC_thread(),
1230            "this should only be done by a conc GC thread");
1231 
1232     CMRootRegions* root_regions = _cm->root_regions();
1233     HeapRegion* hr = root_regions->claim_next();
1234     while (hr != NULL) {
1235       _cm->scanRootRegion(hr, worker_id);
1236       hr = root_regions->claim_next();
1237     }
1238   }
1239 };
1240 
1241 void ConcurrentMark::scanRootRegions() {
1242   // Start of concurrent marking.
1243   ClassLoaderDataGraph::clear_claimed_marks();
1244 
1245   // scan_in_progress() will have been set to true only if there was
1246   // at least one root region to scan. So, if it's false, we
1247   // should not attempt to do any further work.
1248   if (root_regions()->scan_in_progress()) {
1249     _parallel_marking_threads = calc_parallel_marking_threads();
1250     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1251            "Maximum number of marking threads exceeded");
1252     uint active_workers = MAX2(1U, parallel_marking_threads());
1253 
1254     CMRootRegionScanTask task(this);
1255     _parallel_workers->set_active_workers(active_workers);
1256     _parallel_workers->run_task(&task);
1257 
1258     // It's possible that has_aborted() is true here without actually
1259     // aborting the survivor scan earlier. This is OK as it's
1260     // mainly used for sanity checking.
1261     root_regions()->scan_finished();
1262   }
1263 }
1264 
1265 void ConcurrentMark::markFromRoots() {
1266   // we might be tempted to assert that:
1267   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1268   //        "inconsistent argument?");
1269   // However that wouldn't be right, because it's possible that
1270   // a safepoint is indeed in progress as a younger generation
1271   // stop-the-world GC happens even as we mark in this generation.
1272 
1273   _restart_for_overflow = false;
1274   force_overflow_conc()->init();
1275 
1276   // _g1h has _n_par_threads
1277   _parallel_marking_threads = calc_parallel_marking_threads();
1278   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1279     "Maximum number of marking threads exceeded");
1280 
1281   uint active_workers = MAX2(1U, parallel_marking_threads());
1282 
1283   // Parallel task terminator is set in "set_concurrency_and_phase()"
1284   set_concurrency_and_phase(active_workers, true /* concurrent */);
1285 
1286   CMConcurrentMarkingTask markingTask(this, cmThread());
1287   _parallel_workers->set_active_workers(active_workers);
1288   // Don't set _n_par_threads because it affects MT in process_roots()
1289   // and the decisions on that MT processing is made elsewhere.
1290   assert(_parallel_workers->active_workers() > 0, "Should have been set");
1291   _parallel_workers->run_task(&markingTask);
1292   print_stats();
1293 }
1294 
1295 // Helper class to get rid of some boilerplate code.
1296 class G1CMTraceTime : public GCTraceTime {
1297   static bool doit_and_prepend(bool doit) {
1298     if (doit) {
1299       gclog_or_tty->put(' ');
1300     }
1301     return doit;
1302   }
1303 
1304  public:
1305   G1CMTraceTime(const char* title, bool doit)
1306     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1307         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1308   }
1309 };
1310 
1311 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1312   // world is stopped at this checkpoint
1313   assert(SafepointSynchronize::is_at_safepoint(),
1314          "world should be stopped");
1315 
1316   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1317 
1318   // If a full collection has happened, we shouldn't do this.
1319   if (has_aborted()) {
1320     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1321     return;
1322   }
1323 
1324   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1325 
1326   if (VerifyDuringGC) {
1327     HandleMark hm;  // handle scope
1328     Universe::heap()->prepare_for_verify();
1329     Universe::verify(VerifyOption_G1UsePrevMarking,
1330                      " VerifyDuringGC:(before)");
1331   }
1332   g1h->check_bitmaps("Remark Start");
1333 
1334   G1CollectorPolicy* g1p = g1h->g1_policy();
1335   g1p->record_concurrent_mark_remark_start();
1336 
1337   double start = os::elapsedTime();
1338 
1339   checkpointRootsFinalWork();
1340 
1341   double mark_work_end = os::elapsedTime();
1342 
1343   weakRefsWork(clear_all_soft_refs);
1344 
1345   if (has_overflown()) {
1346     // Oops.  We overflowed.  Restart concurrent marking.
1347     _restart_for_overflow = true;
1348     if (G1TraceMarkStackOverflow) {
1349       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1350     }
1351 
1352     // Verify the heap w.r.t. the previous marking bitmap.
1353     if (VerifyDuringGC) {
1354       HandleMark hm;  // handle scope
1355       Universe::heap()->prepare_for_verify();
1356       Universe::verify(VerifyOption_G1UsePrevMarking,
1357                        " VerifyDuringGC:(overflow)");
1358     }
1359 
1360     // Clear the marking state because we will be restarting
1361     // marking due to overflowing the global mark stack.
1362     reset_marking_state();
1363   } else {
1364     {
1365       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1366 
1367       // Aggregate the per-task counting data that we have accumulated
1368       // while marking.
1369       aggregate_count_data();
1370     }
1371 
1372     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1373     // We're done with marking.
1374     // This is the end of  the marking cycle, we're expected all
1375     // threads to have SATB queues with active set to true.
1376     satb_mq_set.set_active_all_threads(false, /* new active value */
1377                                        true /* expected_active */);
1378 
1379     if (VerifyDuringGC) {
1380       HandleMark hm;  // handle scope
1381       Universe::heap()->prepare_for_verify();
1382       Universe::verify(VerifyOption_G1UseNextMarking,
1383                        " VerifyDuringGC:(after)");
1384     }
1385     g1h->check_bitmaps("Remark End");
1386     assert(!restart_for_overflow(), "sanity");
1387     // Completely reset the marking state since marking completed
1388     set_non_marking_state();
1389   }
1390 
1391   // Expand the marking stack, if we have to and if we can.
1392   if (_markStack.should_expand()) {
1393     _markStack.expand();
1394   }
1395 
1396   // Statistics
1397   double now = os::elapsedTime();
1398   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1399   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1400   _remark_times.add((now - start) * 1000.0);
1401 
1402   g1p->record_concurrent_mark_remark_end();
1403 
1404   G1CMIsAliveClosure is_alive(g1h);
1405   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1406 }
1407 
1408 // Base class of the closures that finalize and verify the
1409 // liveness counting data.
1410 class CMCountDataClosureBase: public HeapRegionClosure {
1411 protected:
1412   G1CollectedHeap* _g1h;
1413   ConcurrentMark* _cm;
1414   CardTableModRefBS* _ct_bs;
1415 
1416   BitMap* _region_bm;
1417   BitMap* _card_bm;
1418 
1419   // Takes a region that's not empty (i.e., it has at least one
1420   // live object in it and sets its corresponding bit on the region
1421   // bitmap to 1. If the region is "starts humongous" it will also set
1422   // to 1 the bits on the region bitmap that correspond to its
1423   // associated "continues humongous" regions.
1424   void set_bit_for_region(HeapRegion* hr) {
1425     assert(!hr->is_continues_humongous(), "should have filtered those out");
1426 
1427     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1428     if (!hr->is_starts_humongous()) {
1429       // Normal (non-humongous) case: just set the bit.
1430       _region_bm->par_at_put(index, true);
1431     } else {
1432       // Starts humongous case: calculate how many regions are part of
1433       // this humongous region and then set the bit range.
1434       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1435       _region_bm->par_at_put_range(index, end_index, true);
1436     }
1437   }
1438 
1439 public:
1440   CMCountDataClosureBase(G1CollectedHeap* g1h,
1441                          BitMap* region_bm, BitMap* card_bm):
1442     _g1h(g1h), _cm(g1h->concurrent_mark()),
1443     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1444     _region_bm(region_bm), _card_bm(card_bm) { }
1445 };
1446 
1447 // Closure that calculates the # live objects per region. Used
1448 // for verification purposes during the cleanup pause.
1449 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1450   CMBitMapRO* _bm;
1451   size_t _region_marked_bytes;
1452 
1453 public:
1454   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1455                          BitMap* region_bm, BitMap* card_bm) :
1456     CMCountDataClosureBase(g1h, region_bm, card_bm),
1457     _bm(bm), _region_marked_bytes(0) { }
1458 
1459   bool doHeapRegion(HeapRegion* hr) {
1460 
1461     if (hr->is_continues_humongous()) {
1462       // We will ignore these here and process them when their
1463       // associated "starts humongous" region is processed (see
1464       // set_bit_for_heap_region()). Note that we cannot rely on their
1465       // associated "starts humongous" region to have their bit set to
1466       // 1 since, due to the region chunking in the parallel region
1467       // iteration, a "continues humongous" region might be visited
1468       // before its associated "starts humongous".
1469       return false;
1470     }
1471 
1472     HeapWord* ntams = hr->next_top_at_mark_start();
1473     HeapWord* start = hr->bottom();
1474 
1475     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1476            err_msg("Preconditions not met - "
1477                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1478                    p2i(start), p2i(ntams), p2i(hr->end())));
1479 
1480     // Find the first marked object at or after "start".
1481     start = _bm->getNextMarkedWordAddress(start, ntams);
1482 
1483     size_t marked_bytes = 0;
1484 
1485     while (start < ntams) {
1486       oop obj = oop(start);
1487       int obj_sz = obj->size();
1488       HeapWord* obj_end = start + obj_sz;
1489 
1490       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1491       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1492 
1493       // Note: if we're looking at the last region in heap - obj_end
1494       // could be actually just beyond the end of the heap; end_idx
1495       // will then correspond to a (non-existent) card that is also
1496       // just beyond the heap.
1497       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1498         // end of object is not card aligned - increment to cover
1499         // all the cards spanned by the object
1500         end_idx += 1;
1501       }
1502 
1503       // Set the bits in the card BM for the cards spanned by this object.
1504       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1505 
1506       // Add the size of this object to the number of marked bytes.
1507       marked_bytes += (size_t)obj_sz * HeapWordSize;
1508 
1509       // Find the next marked object after this one.
1510       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1511     }
1512 
1513     // Mark the allocated-since-marking portion...
1514     HeapWord* top = hr->top();
1515     if (ntams < top) {
1516       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1517       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1518 
1519       // Note: if we're looking at the last region in heap - top
1520       // could be actually just beyond the end of the heap; end_idx
1521       // will then correspond to a (non-existent) card that is also
1522       // just beyond the heap.
1523       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1524         // end of object is not card aligned - increment to cover
1525         // all the cards spanned by the object
1526         end_idx += 1;
1527       }
1528       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1529 
1530       // This definitely means the region has live objects.
1531       set_bit_for_region(hr);
1532     }
1533 
1534     // Update the live region bitmap.
1535     if (marked_bytes > 0) {
1536       set_bit_for_region(hr);
1537     }
1538 
1539     // Set the marked bytes for the current region so that
1540     // it can be queried by a calling verification routine
1541     _region_marked_bytes = marked_bytes;
1542 
1543     return false;
1544   }
1545 
1546   size_t region_marked_bytes() const { return _region_marked_bytes; }
1547 };
1548 
1549 // Heap region closure used for verifying the counting data
1550 // that was accumulated concurrently and aggregated during
1551 // the remark pause. This closure is applied to the heap
1552 // regions during the STW cleanup pause.
1553 
1554 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1555   G1CollectedHeap* _g1h;
1556   ConcurrentMark* _cm;
1557   CalcLiveObjectsClosure _calc_cl;
1558   BitMap* _region_bm;   // Region BM to be verified
1559   BitMap* _card_bm;     // Card BM to be verified
1560   bool _verbose;        // verbose output?
1561 
1562   BitMap* _exp_region_bm; // Expected Region BM values
1563   BitMap* _exp_card_bm;   // Expected card BM values
1564 
1565   int _failures;
1566 
1567 public:
1568   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1569                                 BitMap* region_bm,
1570                                 BitMap* card_bm,
1571                                 BitMap* exp_region_bm,
1572                                 BitMap* exp_card_bm,
1573                                 bool verbose) :
1574     _g1h(g1h), _cm(g1h->concurrent_mark()),
1575     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1576     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1577     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1578     _failures(0) { }
1579 
1580   int failures() const { return _failures; }
1581 
1582   bool doHeapRegion(HeapRegion* hr) {
1583     if (hr->is_continues_humongous()) {
1584       // We will ignore these here and process them when their
1585       // associated "starts humongous" region is processed (see
1586       // set_bit_for_heap_region()). Note that we cannot rely on their
1587       // associated "starts humongous" region to have their bit set to
1588       // 1 since, due to the region chunking in the parallel region
1589       // iteration, a "continues humongous" region might be visited
1590       // before its associated "starts humongous".
1591       return false;
1592     }
1593 
1594     int failures = 0;
1595 
1596     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1597     // this region and set the corresponding bits in the expected region
1598     // and card bitmaps.
1599     bool res = _calc_cl.doHeapRegion(hr);
1600     assert(res == false, "should be continuing");
1601 
1602     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1603                     Mutex::_no_safepoint_check_flag);
1604 
1605     // Verify the marked bytes for this region.
1606     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1607     size_t act_marked_bytes = hr->next_marked_bytes();
1608 
1609     // We're not OK if expected marked bytes > actual marked bytes. It means
1610     // we have missed accounting some objects during the actual marking.
1611     if (exp_marked_bytes > act_marked_bytes) {
1612       if (_verbose) {
1613         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1614                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1615                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1616       }
1617       failures += 1;
1618     }
1619 
1620     // Verify the bit, for this region, in the actual and expected
1621     // (which was just calculated) region bit maps.
1622     // We're not OK if the bit in the calculated expected region
1623     // bitmap is set and the bit in the actual region bitmap is not.
1624     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1625 
1626     bool expected = _exp_region_bm->at(index);
1627     bool actual = _region_bm->at(index);
1628     if (expected && !actual) {
1629       if (_verbose) {
1630         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1631                                "expected: %s, actual: %s",
1632                                hr->hrm_index(),
1633                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1634       }
1635       failures += 1;
1636     }
1637 
1638     // Verify that the card bit maps for the cards spanned by the current
1639     // region match. We have an error if we have a set bit in the expected
1640     // bit map and the corresponding bit in the actual bitmap is not set.
1641 
1642     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1643     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1644 
1645     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1646       expected = _exp_card_bm->at(i);
1647       actual = _card_bm->at(i);
1648 
1649       if (expected && !actual) {
1650         if (_verbose) {
1651           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1652                                  "expected: %s, actual: %s",
1653                                  hr->hrm_index(), i,
1654                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1655         }
1656         failures += 1;
1657       }
1658     }
1659 
1660     if (failures > 0 && _verbose)  {
1661       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1662                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1663                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1664                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1665     }
1666 
1667     _failures += failures;
1668 
1669     // We could stop iteration over the heap when we
1670     // find the first violating region by returning true.
1671     return false;
1672   }
1673 };
1674 
1675 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1676 protected:
1677   G1CollectedHeap* _g1h;
1678   ConcurrentMark* _cm;
1679   BitMap* _actual_region_bm;
1680   BitMap* _actual_card_bm;
1681 
1682   uint    _n_workers;
1683 
1684   BitMap* _expected_region_bm;
1685   BitMap* _expected_card_bm;
1686 
1687   int  _failures;
1688   bool _verbose;
1689 
1690   HeapRegionClaimer _hrclaimer;
1691 
1692 public:
1693   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1694                             BitMap* region_bm, BitMap* card_bm,
1695                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1696     : AbstractGangTask("G1 verify final counting"),
1697       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1698       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1699       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1700       _failures(0), _verbose(false),
1701       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1702     assert(VerifyDuringGC, "don't call this otherwise");
1703     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1704     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1705 
1706     _verbose = _cm->verbose_medium();
1707   }
1708 
1709   void work(uint worker_id) {
1710     assert(worker_id < _n_workers, "invariant");
1711 
1712     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1713                                             _actual_region_bm, _actual_card_bm,
1714                                             _expected_region_bm,
1715                                             _expected_card_bm,
1716                                             _verbose);
1717 
1718     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1719 
1720     Atomic::add(verify_cl.failures(), &_failures);
1721   }
1722 
1723   int failures() const { return _failures; }
1724 };
1725 
1726 // Closure that finalizes the liveness counting data.
1727 // Used during the cleanup pause.
1728 // Sets the bits corresponding to the interval [NTAMS, top]
1729 // (which contains the implicitly live objects) in the
1730 // card liveness bitmap. Also sets the bit for each region,
1731 // containing live data, in the region liveness bitmap.
1732 
1733 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1734  public:
1735   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1736                               BitMap* region_bm,
1737                               BitMap* card_bm) :
1738     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1739 
1740   bool doHeapRegion(HeapRegion* hr) {
1741 
1742     if (hr->is_continues_humongous()) {
1743       // We will ignore these here and process them when their
1744       // associated "starts humongous" region is processed (see
1745       // set_bit_for_heap_region()). Note that we cannot rely on their
1746       // associated "starts humongous" region to have their bit set to
1747       // 1 since, due to the region chunking in the parallel region
1748       // iteration, a "continues humongous" region might be visited
1749       // before its associated "starts humongous".
1750       return false;
1751     }
1752 
1753     HeapWord* ntams = hr->next_top_at_mark_start();
1754     HeapWord* top   = hr->top();
1755 
1756     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1757 
1758     // Mark the allocated-since-marking portion...
1759     if (ntams < top) {
1760       // This definitely means the region has live objects.
1761       set_bit_for_region(hr);
1762 
1763       // Now set the bits in the card bitmap for [ntams, top)
1764       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1765       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1766 
1767       // Note: if we're looking at the last region in heap - top
1768       // could be actually just beyond the end of the heap; end_idx
1769       // will then correspond to a (non-existent) card that is also
1770       // just beyond the heap.
1771       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1772         // end of object is not card aligned - increment to cover
1773         // all the cards spanned by the object
1774         end_idx += 1;
1775       }
1776 
1777       assert(end_idx <= _card_bm->size(),
1778              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1779                      end_idx, _card_bm->size()));
1780       assert(start_idx < _card_bm->size(),
1781              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1782                      start_idx, _card_bm->size()));
1783 
1784       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1785     }
1786 
1787     // Set the bit for the region if it contains live data
1788     if (hr->next_marked_bytes() > 0) {
1789       set_bit_for_region(hr);
1790     }
1791 
1792     return false;
1793   }
1794 };
1795 
1796 class G1ParFinalCountTask: public AbstractGangTask {
1797 protected:
1798   G1CollectedHeap* _g1h;
1799   ConcurrentMark* _cm;
1800   BitMap* _actual_region_bm;
1801   BitMap* _actual_card_bm;
1802 
1803   uint    _n_workers;
1804   HeapRegionClaimer _hrclaimer;
1805 
1806 public:
1807   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1808     : AbstractGangTask("G1 final counting"),
1809       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1810       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1811       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1812   }
1813 
1814   void work(uint worker_id) {
1815     assert(worker_id < _n_workers, "invariant");
1816 
1817     FinalCountDataUpdateClosure final_update_cl(_g1h,
1818                                                 _actual_region_bm,
1819                                                 _actual_card_bm);
1820 
1821     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1822   }
1823 };
1824 
1825 class G1ParNoteEndTask;
1826 
1827 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1828   G1CollectedHeap* _g1;
1829   size_t _max_live_bytes;
1830   uint _regions_claimed;
1831   size_t _freed_bytes;
1832   FreeRegionList* _local_cleanup_list;
1833   HeapRegionSetCount _old_regions_removed;
1834   HeapRegionSetCount _humongous_regions_removed;
1835   HRRSCleanupTask* _hrrs_cleanup_task;
1836   double _claimed_region_time;
1837   double _max_region_time;
1838 
1839 public:
1840   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1841                              FreeRegionList* local_cleanup_list,
1842                              HRRSCleanupTask* hrrs_cleanup_task) :
1843     _g1(g1),
1844     _max_live_bytes(0), _regions_claimed(0),
1845     _freed_bytes(0),
1846     _claimed_region_time(0.0), _max_region_time(0.0),
1847     _local_cleanup_list(local_cleanup_list),
1848     _old_regions_removed(),
1849     _humongous_regions_removed(),
1850     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1851 
1852   size_t freed_bytes() { return _freed_bytes; }
1853   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1854   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1855 
1856   bool doHeapRegion(HeapRegion *hr) {
1857     if (hr->is_continues_humongous()) {
1858       return false;
1859     }
1860     // We use a claim value of zero here because all regions
1861     // were claimed with value 1 in the FinalCount task.
1862     _g1->reset_gc_time_stamps(hr);
1863     double start = os::elapsedTime();
1864     _regions_claimed++;
1865     hr->note_end_of_marking();
1866     _max_live_bytes += hr->max_live_bytes();
1867 
1868     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1869       _freed_bytes += hr->used();
1870       hr->set_containing_set(NULL);
1871       if (hr->is_humongous()) {
1872         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1873         _humongous_regions_removed.increment(1u, hr->capacity());
1874         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1875       } else {
1876         _old_regions_removed.increment(1u, hr->capacity());
1877         _g1->free_region(hr, _local_cleanup_list, true);
1878       }
1879     } else {
1880       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1881     }
1882 
1883     double region_time = (os::elapsedTime() - start);
1884     _claimed_region_time += region_time;
1885     if (region_time > _max_region_time) {
1886       _max_region_time = region_time;
1887     }
1888     return false;
1889   }
1890 
1891   size_t max_live_bytes() { return _max_live_bytes; }
1892   uint regions_claimed() { return _regions_claimed; }
1893   double claimed_region_time_sec() { return _claimed_region_time; }
1894   double max_region_time_sec() { return _max_region_time; }
1895 };
1896 
1897 class G1ParNoteEndTask: public AbstractGangTask {
1898   friend class G1NoteEndOfConcMarkClosure;
1899 
1900 protected:
1901   G1CollectedHeap* _g1h;
1902   size_t _max_live_bytes;
1903   size_t _freed_bytes;
1904   FreeRegionList* _cleanup_list;
1905   HeapRegionClaimer _hrclaimer;
1906 
1907 public:
1908   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1909       AbstractGangTask("G1 note end"), _g1h(g1h), _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1910   }
1911 
1912   void work(uint worker_id) {
1913     double start = os::elapsedTime();
1914     FreeRegionList local_cleanup_list("Local Cleanup List");
1915     HRRSCleanupTask hrrs_cleanup_task;
1916     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1917                                            &hrrs_cleanup_task);
1918     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1919     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1920 
1921     // Now update the lists
1922     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1923     {
1924       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1925       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1926       _max_live_bytes += g1_note_end.max_live_bytes();
1927       _freed_bytes += g1_note_end.freed_bytes();
1928 
1929       // If we iterate over the global cleanup list at the end of
1930       // cleanup to do this printing we will not guarantee to only
1931       // generate output for the newly-reclaimed regions (the list
1932       // might not be empty at the beginning of cleanup; we might
1933       // still be working on its previous contents). So we do the
1934       // printing here, before we append the new regions to the global
1935       // cleanup list.
1936 
1937       G1HRPrinter* hr_printer = _g1h->hr_printer();
1938       if (hr_printer->is_active()) {
1939         FreeRegionListIterator iter(&local_cleanup_list);
1940         while (iter.more_available()) {
1941           HeapRegion* hr = iter.get_next();
1942           hr_printer->cleanup(hr);
1943         }
1944       }
1945 
1946       _cleanup_list->add_ordered(&local_cleanup_list);
1947       assert(local_cleanup_list.is_empty(), "post-condition");
1948 
1949       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1950     }
1951   }
1952   size_t max_live_bytes() { return _max_live_bytes; }
1953   size_t freed_bytes() { return _freed_bytes; }
1954 };
1955 
1956 class G1ParScrubRemSetTask: public AbstractGangTask {
1957 protected:
1958   G1RemSet* _g1rs;
1959   BitMap* _region_bm;
1960   BitMap* _card_bm;
1961   HeapRegionClaimer _hrclaimer;
1962 
1963 public:
1964   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1965       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1966   }
1967 
1968   void work(uint worker_id) {
1969     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1970   }
1971 
1972 };
1973 
1974 void ConcurrentMark::cleanup() {
1975   // world is stopped at this checkpoint
1976   assert(SafepointSynchronize::is_at_safepoint(),
1977          "world should be stopped");
1978   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1979 
1980   // If a full collection has happened, we shouldn't do this.
1981   if (has_aborted()) {
1982     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1983     return;
1984   }
1985 
1986   g1h->verify_region_sets_optional();
1987 
1988   if (VerifyDuringGC) {
1989     HandleMark hm;  // handle scope
1990     Universe::heap()->prepare_for_verify();
1991     Universe::verify(VerifyOption_G1UsePrevMarking,
1992                      " VerifyDuringGC:(before)");
1993   }
1994   g1h->check_bitmaps("Cleanup Start");
1995 
1996   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1997   g1p->record_concurrent_mark_cleanup_start();
1998 
1999   double start = os::elapsedTime();
2000 
2001   HeapRegionRemSet::reset_for_cleanup_tasks();
2002 
2003   uint n_workers;
2004 
2005   // Do counting once more with the world stopped for good measure.
2006   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2007 
2008   g1h->set_par_threads();
2009   n_workers = g1h->n_par_threads();
2010   assert(g1h->n_par_threads() == n_workers,
2011          "Should not have been reset");
2012   g1h->workers()->run_task(&g1_par_count_task);
2013   // Done with the parallel phase so reset to 0.
2014   g1h->set_par_threads(0);
2015 
2016   if (VerifyDuringGC) {
2017     // Verify that the counting data accumulated during marking matches
2018     // that calculated by walking the marking bitmap.
2019 
2020     // Bitmaps to hold expected values
2021     BitMap expected_region_bm(_region_bm.size(), true);
2022     BitMap expected_card_bm(_card_bm.size(), true);
2023 
2024     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2025                                                  &_region_bm,
2026                                                  &_card_bm,
2027                                                  &expected_region_bm,
2028                                                  &expected_card_bm);
2029 
2030     g1h->set_par_threads((int)n_workers);
2031     g1h->workers()->run_task(&g1_par_verify_task);
2032     // Done with the parallel phase so reset to 0.
2033     g1h->set_par_threads(0);
2034 
2035     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2036   }
2037 
2038   size_t start_used_bytes = g1h->used();
2039   g1h->set_marking_complete();
2040 
2041   double count_end = os::elapsedTime();
2042   double this_final_counting_time = (count_end - start);
2043   _total_counting_time += this_final_counting_time;
2044 
2045   if (G1PrintRegionLivenessInfo) {
2046     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2047     _g1h->heap_region_iterate(&cl);
2048   }
2049 
2050   // Install newly created mark bitMap as "prev".
2051   swapMarkBitMaps();
2052 
2053   g1h->reset_gc_time_stamp();
2054 
2055   // Note end of marking in all heap regions.
2056   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
2057   g1h->set_par_threads((int)n_workers);
2058   g1h->workers()->run_task(&g1_par_note_end_task);
2059   g1h->set_par_threads(0);
2060   g1h->check_gc_time_stamps();
2061 
2062   if (!cleanup_list_is_empty()) {
2063     // The cleanup list is not empty, so we'll have to process it
2064     // concurrently. Notify anyone else that might be wanting free
2065     // regions that there will be more free regions coming soon.
2066     g1h->set_free_regions_coming();
2067   }
2068 
2069   // call below, since it affects the metric by which we sort the heap
2070   // regions.
2071   if (G1ScrubRemSets) {
2072     double rs_scrub_start = os::elapsedTime();
2073     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
2074     g1h->set_par_threads((int)n_workers);
2075     g1h->workers()->run_task(&g1_par_scrub_rs_task);
2076     g1h->set_par_threads(0);
2077 
2078     double rs_scrub_end = os::elapsedTime();
2079     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2080     _total_rs_scrub_time += this_rs_scrub_time;
2081   }
2082 
2083   // this will also free any regions totally full of garbage objects,
2084   // and sort the regions.
2085   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2086 
2087   // Statistics.
2088   double end = os::elapsedTime();
2089   _cleanup_times.add((end - start) * 1000.0);
2090 
2091   if (G1Log::fine()) {
2092     g1h->print_size_transition(gclog_or_tty,
2093                                start_used_bytes,
2094                                g1h->used(),
2095                                g1h->capacity());
2096   }
2097 
2098   // Clean up will have freed any regions completely full of garbage.
2099   // Update the soft reference policy with the new heap occupancy.
2100   Universe::update_heap_info_at_gc();
2101 
2102   if (VerifyDuringGC) {
2103     HandleMark hm;  // handle scope
2104     Universe::heap()->prepare_for_verify();
2105     Universe::verify(VerifyOption_G1UsePrevMarking,
2106                      " VerifyDuringGC:(after)");
2107   }
2108 
2109   g1h->check_bitmaps("Cleanup End");
2110 
2111   g1h->verify_region_sets_optional();
2112 
2113   // We need to make this be a "collection" so any collection pause that
2114   // races with it goes around and waits for completeCleanup to finish.
2115   g1h->increment_total_collections();
2116 
2117   // Clean out dead classes and update Metaspace sizes.
2118   if (ClassUnloadingWithConcurrentMark) {
2119     ClassLoaderDataGraph::purge();
2120   }
2121   MetaspaceGC::compute_new_size();
2122 
2123   // We reclaimed old regions so we should calculate the sizes to make
2124   // sure we update the old gen/space data.
2125   g1h->g1mm()->update_sizes();
2126   g1h->allocation_context_stats().update_after_mark();
2127 
2128   g1h->trace_heap_after_concurrent_cycle();
2129 }
2130 
2131 void ConcurrentMark::completeCleanup() {
2132   if (has_aborted()) return;
2133 
2134   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2135 
2136   _cleanup_list.verify_optional();
2137   FreeRegionList tmp_free_list("Tmp Free List");
2138 
2139   if (G1ConcRegionFreeingVerbose) {
2140     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2141                            "cleanup list has %u entries",
2142                            _cleanup_list.length());
2143   }
2144 
2145   // No one else should be accessing the _cleanup_list at this point,
2146   // so it is not necessary to take any locks
2147   while (!_cleanup_list.is_empty()) {
2148     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2149     assert(hr != NULL, "Got NULL from a non-empty list");
2150     hr->par_clear();
2151     tmp_free_list.add_ordered(hr);
2152 
2153     // Instead of adding one region at a time to the secondary_free_list,
2154     // we accumulate them in the local list and move them a few at a
2155     // time. This also cuts down on the number of notify_all() calls
2156     // we do during this process. We'll also append the local list when
2157     // _cleanup_list is empty (which means we just removed the last
2158     // region from the _cleanup_list).
2159     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2160         _cleanup_list.is_empty()) {
2161       if (G1ConcRegionFreeingVerbose) {
2162         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2163                                "appending %u entries to the secondary_free_list, "
2164                                "cleanup list still has %u entries",
2165                                tmp_free_list.length(),
2166                                _cleanup_list.length());
2167       }
2168 
2169       {
2170         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2171         g1h->secondary_free_list_add(&tmp_free_list);
2172         SecondaryFreeList_lock->notify_all();
2173       }
2174 
2175       if (G1StressConcRegionFreeing) {
2176         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2177           os::sleep(Thread::current(), (jlong) 1, false);
2178         }
2179       }
2180     }
2181   }
2182   assert(tmp_free_list.is_empty(), "post-condition");
2183 }
2184 
2185 // Supporting Object and Oop closures for reference discovery
2186 // and processing in during marking
2187 
2188 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2189   HeapWord* addr = (HeapWord*)obj;
2190   return addr != NULL &&
2191          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2192 }
2193 
2194 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2195 // Uses the CMTask associated with a worker thread (for serial reference
2196 // processing the CMTask for worker 0 is used) to preserve (mark) and
2197 // trace referent objects.
2198 //
2199 // Using the CMTask and embedded local queues avoids having the worker
2200 // threads operating on the global mark stack. This reduces the risk
2201 // of overflowing the stack - which we would rather avoid at this late
2202 // state. Also using the tasks' local queues removes the potential
2203 // of the workers interfering with each other that could occur if
2204 // operating on the global stack.
2205 
2206 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2207   ConcurrentMark* _cm;
2208   CMTask*         _task;
2209   int             _ref_counter_limit;
2210   int             _ref_counter;
2211   bool            _is_serial;
2212  public:
2213   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2214     _cm(cm), _task(task), _is_serial(is_serial),
2215     _ref_counter_limit(G1RefProcDrainInterval) {
2216     assert(_ref_counter_limit > 0, "sanity");
2217     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2218     _ref_counter = _ref_counter_limit;
2219   }
2220 
2221   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2222   virtual void do_oop(      oop* p) { do_oop_work(p); }
2223 
2224   template <class T> void do_oop_work(T* p) {
2225     if (!_cm->has_overflown()) {
2226       oop obj = oopDesc::load_decode_heap_oop(p);
2227       if (_cm->verbose_high()) {
2228         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2229                                "*"PTR_FORMAT" = "PTR_FORMAT,
2230                                _task->worker_id(), p2i(p), p2i((void*) obj));
2231       }
2232 
2233       _task->deal_with_reference(obj);
2234       _ref_counter--;
2235 
2236       if (_ref_counter == 0) {
2237         // We have dealt with _ref_counter_limit references, pushing them
2238         // and objects reachable from them on to the local stack (and
2239         // possibly the global stack). Call CMTask::do_marking_step() to
2240         // process these entries.
2241         //
2242         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2243         // there's nothing more to do (i.e. we're done with the entries that
2244         // were pushed as a result of the CMTask::deal_with_reference() calls
2245         // above) or we overflow.
2246         //
2247         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2248         // flag while there may still be some work to do. (See the comment at
2249         // the beginning of CMTask::do_marking_step() for those conditions -
2250         // one of which is reaching the specified time target.) It is only
2251         // when CMTask::do_marking_step() returns without setting the
2252         // has_aborted() flag that the marking step has completed.
2253         do {
2254           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2255           _task->do_marking_step(mark_step_duration_ms,
2256                                  false      /* do_termination */,
2257                                  _is_serial);
2258         } while (_task->has_aborted() && !_cm->has_overflown());
2259         _ref_counter = _ref_counter_limit;
2260       }
2261     } else {
2262       if (_cm->verbose_high()) {
2263          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2264       }
2265     }
2266   }
2267 };
2268 
2269 // 'Drain' oop closure used by both serial and parallel reference processing.
2270 // Uses the CMTask associated with a given worker thread (for serial
2271 // reference processing the CMtask for worker 0 is used). Calls the
2272 // do_marking_step routine, with an unbelievably large timeout value,
2273 // to drain the marking data structures of the remaining entries
2274 // added by the 'keep alive' oop closure above.
2275 
2276 class G1CMDrainMarkingStackClosure: public VoidClosure {
2277   ConcurrentMark* _cm;
2278   CMTask*         _task;
2279   bool            _is_serial;
2280  public:
2281   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2282     _cm(cm), _task(task), _is_serial(is_serial) {
2283     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2284   }
2285 
2286   void do_void() {
2287     do {
2288       if (_cm->verbose_high()) {
2289         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2290                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2291       }
2292 
2293       // We call CMTask::do_marking_step() to completely drain the local
2294       // and global marking stacks of entries pushed by the 'keep alive'
2295       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2296       //
2297       // CMTask::do_marking_step() is called in a loop, which we'll exit
2298       // if there's nothing more to do (i.e. we've completely drained the
2299       // entries that were pushed as a a result of applying the 'keep alive'
2300       // closure to the entries on the discovered ref lists) or we overflow
2301       // the global marking stack.
2302       //
2303       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2304       // flag while there may still be some work to do. (See the comment at
2305       // the beginning of CMTask::do_marking_step() for those conditions -
2306       // one of which is reaching the specified time target.) It is only
2307       // when CMTask::do_marking_step() returns without setting the
2308       // has_aborted() flag that the marking step has completed.
2309 
2310       _task->do_marking_step(1000000000.0 /* something very large */,
2311                              true         /* do_termination */,
2312                              _is_serial);
2313     } while (_task->has_aborted() && !_cm->has_overflown());
2314   }
2315 };
2316 
2317 // Implementation of AbstractRefProcTaskExecutor for parallel
2318 // reference processing at the end of G1 concurrent marking
2319 
2320 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2321 private:
2322   G1CollectedHeap* _g1h;
2323   ConcurrentMark*  _cm;
2324   WorkGang*        _workers;
2325   int              _active_workers;
2326 
2327 public:
2328   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2329                         ConcurrentMark* cm,
2330                         WorkGang* workers,
2331                         int n_workers) :
2332     _g1h(g1h), _cm(cm),
2333     _workers(workers), _active_workers(n_workers) { }
2334 
2335   // Executes the given task using concurrent marking worker threads.
2336   virtual void execute(ProcessTask& task);
2337   virtual void execute(EnqueueTask& task);
2338 };
2339 
2340 class G1CMRefProcTaskProxy: public AbstractGangTask {
2341   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2342   ProcessTask&     _proc_task;
2343   G1CollectedHeap* _g1h;
2344   ConcurrentMark*  _cm;
2345 
2346 public:
2347   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2348                      G1CollectedHeap* g1h,
2349                      ConcurrentMark* cm) :
2350     AbstractGangTask("Process reference objects in parallel"),
2351     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2352     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2353     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2354   }
2355 
2356   virtual void work(uint worker_id) {
2357     ResourceMark rm;
2358     HandleMark hm;
2359     CMTask* task = _cm->task(worker_id);
2360     G1CMIsAliveClosure g1_is_alive(_g1h);
2361     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2362     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2363 
2364     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2365   }
2366 };
2367 
2368 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2369   assert(_workers != NULL, "Need parallel worker threads.");
2370   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2371 
2372   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2373 
2374   // We need to reset the concurrency level before each
2375   // proxy task execution, so that the termination protocol
2376   // and overflow handling in CMTask::do_marking_step() knows
2377   // how many workers to wait for.
2378   _cm->set_concurrency(_active_workers);
2379   _g1h->set_par_threads(_active_workers);
2380   _workers->run_task(&proc_task_proxy);
2381   _g1h->set_par_threads(0);
2382 }
2383 
2384 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2385   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2386   EnqueueTask& _enq_task;
2387 
2388 public:
2389   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2390     AbstractGangTask("Enqueue reference objects in parallel"),
2391     _enq_task(enq_task) { }
2392 
2393   virtual void work(uint worker_id) {
2394     _enq_task.work(worker_id);
2395   }
2396 };
2397 
2398 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2399   assert(_workers != NULL, "Need parallel worker threads.");
2400   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2401 
2402   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2403 
2404   // Not strictly necessary but...
2405   //
2406   // We need to reset the concurrency level before each
2407   // proxy task execution, so that the termination protocol
2408   // and overflow handling in CMTask::do_marking_step() knows
2409   // how many workers to wait for.
2410   _cm->set_concurrency(_active_workers);
2411   _g1h->set_par_threads(_active_workers);
2412   _workers->run_task(&enq_task_proxy);
2413   _g1h->set_par_threads(0);
2414 }
2415 
2416 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2417   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2418 }
2419 
2420 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2421   if (has_overflown()) {
2422     // Skip processing the discovered references if we have
2423     // overflown the global marking stack. Reference objects
2424     // only get discovered once so it is OK to not
2425     // de-populate the discovered reference lists. We could have,
2426     // but the only benefit would be that, when marking restarts,
2427     // less reference objects are discovered.
2428     return;
2429   }
2430 
2431   ResourceMark rm;
2432   HandleMark   hm;
2433 
2434   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2435 
2436   // Is alive closure.
2437   G1CMIsAliveClosure g1_is_alive(g1h);
2438 
2439   // Inner scope to exclude the cleaning of the string and symbol
2440   // tables from the displayed time.
2441   {
2442     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2443 
2444     ReferenceProcessor* rp = g1h->ref_processor_cm();
2445 
2446     // See the comment in G1CollectedHeap::ref_processing_init()
2447     // about how reference processing currently works in G1.
2448 
2449     // Set the soft reference policy
2450     rp->setup_policy(clear_all_soft_refs);
2451     assert(_markStack.isEmpty(), "mark stack should be empty");
2452 
2453     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2454     // in serial reference processing. Note these closures are also
2455     // used for serially processing (by the the current thread) the
2456     // JNI references during parallel reference processing.
2457     //
2458     // These closures do not need to synchronize with the worker
2459     // threads involved in parallel reference processing as these
2460     // instances are executed serially by the current thread (e.g.
2461     // reference processing is not multi-threaded and is thus
2462     // performed by the current thread instead of a gang worker).
2463     //
2464     // The gang tasks involved in parallel reference processing create
2465     // their own instances of these closures, which do their own
2466     // synchronization among themselves.
2467     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2468     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2469 
2470     // We need at least one active thread. If reference processing
2471     // is not multi-threaded we use the current (VMThread) thread,
2472     // otherwise we use the work gang from the G1CollectedHeap and
2473     // we utilize all the worker threads we can.
2474     bool processing_is_mt = rp->processing_is_mt();
2475     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2476     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2477 
2478     // Parallel processing task executor.
2479     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2480                                               g1h->workers(), active_workers);
2481     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2482 
2483     // Set the concurrency level. The phase was already set prior to
2484     // executing the remark task.
2485     set_concurrency(active_workers);
2486 
2487     // Set the degree of MT processing here.  If the discovery was done MT,
2488     // the number of threads involved during discovery could differ from
2489     // the number of active workers.  This is OK as long as the discovered
2490     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2491     rp->set_active_mt_degree(active_workers);
2492 
2493     // Process the weak references.
2494     const ReferenceProcessorStats& stats =
2495         rp->process_discovered_references(&g1_is_alive,
2496                                           &g1_keep_alive,
2497                                           &g1_drain_mark_stack,
2498                                           executor,
2499                                           g1h->gc_timer_cm(),
2500                                           concurrent_gc_id());
2501     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2502 
2503     // The do_oop work routines of the keep_alive and drain_marking_stack
2504     // oop closures will set the has_overflown flag if we overflow the
2505     // global marking stack.
2506 
2507     assert(_markStack.overflow() || _markStack.isEmpty(),
2508             "mark stack should be empty (unless it overflowed)");
2509 
2510     if (_markStack.overflow()) {
2511       // This should have been done already when we tried to push an
2512       // entry on to the global mark stack. But let's do it again.
2513       set_has_overflown();
2514     }
2515 
2516     assert(rp->num_q() == active_workers, "why not");
2517 
2518     rp->enqueue_discovered_references(executor);
2519 
2520     rp->verify_no_references_recorded();
2521     assert(!rp->discovery_enabled(), "Post condition");
2522   }
2523 
2524   if (has_overflown()) {
2525     // We can not trust g1_is_alive if the marking stack overflowed
2526     return;
2527   }
2528 
2529   assert(_markStack.isEmpty(), "Marking should have completed");
2530 
2531   // Unload Klasses, String, Symbols, Code Cache, etc.
2532   {
2533     G1CMTraceTime trace("Unloading", G1Log::finer());
2534 
2535     if (ClassUnloadingWithConcurrentMark) {
2536       // Cleaning of klasses depends on correct information from MetadataMarkOnStack. The CodeCache::mark_on_stack
2537       // part is too slow to be done serially, so it is handled during the weakRefsWorkParallelPart phase.
2538       // Defer the cleaning until we have complete on_stack data.
2539       MetadataOnStackMark md_on_stack(false /* Don't visit the code cache at this point */);
2540 
2541       bool purged_classes;
2542 
2543       {
2544         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2545         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2546       }
2547 
2548       {
2549         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2550         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2551       }
2552 
2553       {
2554         G1CMTraceTime trace("Deallocate Metadata", G1Log::finest());
2555         ClassLoaderDataGraph::free_deallocate_lists();
2556       }
2557     }
2558 
2559     if (G1StringDedup::is_enabled()) {
2560       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2561       G1StringDedup::unlink(&g1_is_alive);
2562     }
2563   }
2564 }
2565 
2566 void ConcurrentMark::swapMarkBitMaps() {
2567   CMBitMapRO* temp = _prevMarkBitMap;
2568   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2569   _nextMarkBitMap  = (CMBitMap*)  temp;
2570 }
2571 
2572 class CMObjectClosure;
2573 
2574 // Closure for iterating over objects, currently only used for
2575 // processing SATB buffers.
2576 class CMObjectClosure : public ObjectClosure {
2577 private:
2578   CMTask* _task;
2579 
2580 public:
2581   void do_object(oop obj) {
2582     _task->deal_with_reference(obj);
2583   }
2584 
2585   CMObjectClosure(CMTask* task) : _task(task) { }
2586 };
2587 
2588 class G1RemarkThreadsClosure : public ThreadClosure {
2589   CMObjectClosure _cm_obj;
2590   G1CMOopClosure _cm_cl;
2591   MarkingCodeBlobClosure _code_cl;
2592   int _thread_parity;
2593 
2594  public:
2595   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2596     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2597     _thread_parity(SharedHeap::heap()->strong_roots_parity()) {}
2598 
2599   void do_thread(Thread* thread) {
2600     if (thread->is_Java_thread()) {
2601       if (thread->claim_oops_do(true, _thread_parity)) {
2602         JavaThread* jt = (JavaThread*)thread;
2603 
2604         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2605         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2606         // * Alive if on the stack of an executing method
2607         // * Weakly reachable otherwise
2608         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2609         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2610         jt->nmethods_do(&_code_cl);
2611 
2612         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2613       }
2614     } else if (thread->is_VM_thread()) {
2615       if (thread->claim_oops_do(true, _thread_parity)) {
2616         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2617       }
2618     }
2619   }
2620 };
2621 
2622 class CMRemarkTask: public AbstractGangTask {
2623 private:
2624   ConcurrentMark* _cm;
2625 public:
2626   void work(uint worker_id) {
2627     // Since all available tasks are actually started, we should
2628     // only proceed if we're supposed to be active.
2629     if (worker_id < _cm->active_tasks()) {
2630       CMTask* task = _cm->task(worker_id);
2631       task->record_start_time();
2632       {
2633         ResourceMark rm;
2634         HandleMark hm;
2635 
2636         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2637         Threads::threads_do(&threads_f);
2638       }
2639 
2640       do {
2641         task->do_marking_step(1000000000.0 /* something very large */,
2642                               true         /* do_termination       */,
2643                               false        /* is_serial            */);
2644       } while (task->has_aborted() && !_cm->has_overflown());
2645       // If we overflow, then we do not want to restart. We instead
2646       // want to abort remark and do concurrent marking again.
2647       task->record_end_time();
2648     }
2649   }
2650 
2651   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2652     AbstractGangTask("Par Remark"), _cm(cm) {
2653     _cm->terminator()->reset_for_reuse(active_workers);
2654   }
2655 };
2656 
2657 void ConcurrentMark::checkpointRootsFinalWork() {
2658   ResourceMark rm;
2659   HandleMark   hm;
2660   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2661 
2662   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2663 
2664   g1h->ensure_parsability(false);
2665 
2666   G1CollectedHeap::StrongRootsScope srs(g1h);
2667   // this is remark, so we'll use up all active threads
2668   uint active_workers = g1h->workers()->active_workers();
2669   if (active_workers == 0) {
2670     assert(active_workers > 0, "Should have been set earlier");
2671     active_workers = (uint) ParallelGCThreads;
2672     g1h->workers()->set_active_workers(active_workers);
2673   }
2674   set_concurrency_and_phase(active_workers, false /* concurrent */);
2675   // Leave _parallel_marking_threads at it's
2676   // value originally calculated in the ConcurrentMark
2677   // constructor and pass values of the active workers
2678   // through the gang in the task.
2679 
2680   CMRemarkTask remarkTask(this, active_workers);
2681   // We will start all available threads, even if we decide that the
2682   // active_workers will be fewer. The extra ones will just bail out
2683   // immediately.
2684   g1h->set_par_threads(active_workers);
2685   g1h->workers()->run_task(&remarkTask);
2686   g1h->set_par_threads(0);
2687 
2688   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2689   guarantee(has_overflown() ||
2690             satb_mq_set.completed_buffers_num() == 0,
2691             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2692                     BOOL_TO_STR(has_overflown()),
2693                     satb_mq_set.completed_buffers_num()));
2694 
2695   print_stats();
2696 }
2697 
2698 #ifndef PRODUCT
2699 
2700 class PrintReachableOopClosure: public OopClosure {
2701 private:
2702   G1CollectedHeap* _g1h;
2703   outputStream*    _out;
2704   VerifyOption     _vo;
2705   bool             _all;
2706 
2707 public:
2708   PrintReachableOopClosure(outputStream* out,
2709                            VerifyOption  vo,
2710                            bool          all) :
2711     _g1h(G1CollectedHeap::heap()),
2712     _out(out), _vo(vo), _all(all) { }
2713 
2714   void do_oop(narrowOop* p) { do_oop_work(p); }
2715   void do_oop(      oop* p) { do_oop_work(p); }
2716 
2717   template <class T> void do_oop_work(T* p) {
2718     oop         obj = oopDesc::load_decode_heap_oop(p);
2719     const char* str = NULL;
2720     const char* str2 = "";
2721 
2722     if (obj == NULL) {
2723       str = "";
2724     } else if (!_g1h->is_in_g1_reserved(obj)) {
2725       str = " O";
2726     } else {
2727       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2728       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2729       bool marked = _g1h->is_marked(obj, _vo);
2730 
2731       if (over_tams) {
2732         str = " >";
2733         if (marked) {
2734           str2 = " AND MARKED";
2735         }
2736       } else if (marked) {
2737         str = " M";
2738       } else {
2739         str = " NOT";
2740       }
2741     }
2742 
2743     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2744                    p2i(p), p2i((void*) obj), str, str2);
2745   }
2746 };
2747 
2748 class PrintReachableObjectClosure : public ObjectClosure {
2749 private:
2750   G1CollectedHeap* _g1h;
2751   outputStream*    _out;
2752   VerifyOption     _vo;
2753   bool             _all;
2754   HeapRegion*      _hr;
2755 
2756 public:
2757   PrintReachableObjectClosure(outputStream* out,
2758                               VerifyOption  vo,
2759                               bool          all,
2760                               HeapRegion*   hr) :
2761     _g1h(G1CollectedHeap::heap()),
2762     _out(out), _vo(vo), _all(all), _hr(hr) { }
2763 
2764   void do_object(oop o) {
2765     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2766     bool marked = _g1h->is_marked(o, _vo);
2767     bool print_it = _all || over_tams || marked;
2768 
2769     if (print_it) {
2770       _out->print_cr(" "PTR_FORMAT"%s",
2771                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2772       PrintReachableOopClosure oopCl(_out, _vo, _all);
2773       o->oop_iterate_no_header(&oopCl);
2774     }
2775   }
2776 };
2777 
2778 class PrintReachableRegionClosure : public HeapRegionClosure {
2779 private:
2780   G1CollectedHeap* _g1h;
2781   outputStream*    _out;
2782   VerifyOption     _vo;
2783   bool             _all;
2784 
2785 public:
2786   bool doHeapRegion(HeapRegion* hr) {
2787     HeapWord* b = hr->bottom();
2788     HeapWord* e = hr->end();
2789     HeapWord* t = hr->top();
2790     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2791     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2792                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2793     _out->cr();
2794 
2795     HeapWord* from = b;
2796     HeapWord* to   = t;
2797 
2798     if (to > from) {
2799       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2800       _out->cr();
2801       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2802       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2803       _out->cr();
2804     }
2805 
2806     return false;
2807   }
2808 
2809   PrintReachableRegionClosure(outputStream* out,
2810                               VerifyOption  vo,
2811                               bool          all) :
2812     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2813 };
2814 
2815 void ConcurrentMark::print_reachable(const char* str,
2816                                      VerifyOption vo,
2817                                      bool all) {
2818   gclog_or_tty->cr();
2819   gclog_or_tty->print_cr("== Doing heap dump... ");
2820 
2821   if (G1PrintReachableBaseFile == NULL) {
2822     gclog_or_tty->print_cr("  #### error: no base file defined");
2823     return;
2824   }
2825 
2826   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2827       (JVM_MAXPATHLEN - 1)) {
2828     gclog_or_tty->print_cr("  #### error: file name too long");
2829     return;
2830   }
2831 
2832   char file_name[JVM_MAXPATHLEN];
2833   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2834   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2835 
2836   fileStream fout(file_name);
2837   if (!fout.is_open()) {
2838     gclog_or_tty->print_cr("  #### error: could not open file");
2839     return;
2840   }
2841 
2842   outputStream* out = &fout;
2843   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2844   out->cr();
2845 
2846   out->print_cr("--- ITERATING OVER REGIONS");
2847   out->cr();
2848   PrintReachableRegionClosure rcl(out, vo, all);
2849   _g1h->heap_region_iterate(&rcl);
2850   out->cr();
2851 
2852   gclog_or_tty->print_cr("  done");
2853   gclog_or_tty->flush();
2854 }
2855 
2856 #endif // PRODUCT
2857 
2858 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2859   // Note we are overriding the read-only view of the prev map here, via
2860   // the cast.
2861   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2862 }
2863 
2864 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2865   _nextMarkBitMap->clearRange(mr);
2866 }
2867 
2868 HeapRegion*
2869 ConcurrentMark::claim_region(uint worker_id) {
2870   // "checkpoint" the finger
2871   HeapWord* finger = _finger;
2872 
2873   // _heap_end will not change underneath our feet; it only changes at
2874   // yield points.
2875   while (finger < _heap_end) {
2876     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2877 
2878     // Note on how this code handles humongous regions. In the
2879     // normal case the finger will reach the start of a "starts
2880     // humongous" (SH) region. Its end will either be the end of the
2881     // last "continues humongous" (CH) region in the sequence, or the
2882     // standard end of the SH region (if the SH is the only region in
2883     // the sequence). That way claim_region() will skip over the CH
2884     // regions. However, there is a subtle race between a CM thread
2885     // executing this method and a mutator thread doing a humongous
2886     // object allocation. The two are not mutually exclusive as the CM
2887     // thread does not need to hold the Heap_lock when it gets
2888     // here. So there is a chance that claim_region() will come across
2889     // a free region that's in the progress of becoming a SH or a CH
2890     // region. In the former case, it will either
2891     //   a) Miss the update to the region's end, in which case it will
2892     //      visit every subsequent CH region, will find their bitmaps
2893     //      empty, and do nothing, or
2894     //   b) Will observe the update of the region's end (in which case
2895     //      it will skip the subsequent CH regions).
2896     // If it comes across a region that suddenly becomes CH, the
2897     // scenario will be similar to b). So, the race between
2898     // claim_region() and a humongous object allocation might force us
2899     // to do a bit of unnecessary work (due to some unnecessary bitmap
2900     // iterations) but it should not introduce and correctness issues.
2901     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2902 
2903     // Above heap_region_containing_raw may return NULL as we always scan claim
2904     // until the end of the heap. In this case, just jump to the next region.
2905     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2906 
2907     // Is the gap between reading the finger and doing the CAS too long?
2908     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2909     if (res == finger && curr_region != NULL) {
2910       // we succeeded
2911       HeapWord*   bottom        = curr_region->bottom();
2912       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2913 
2914       if (verbose_low()) {
2915         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2916                                "["PTR_FORMAT", "PTR_FORMAT"), "
2917                                "limit = "PTR_FORMAT,
2918                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2919       }
2920 
2921       // notice that _finger == end cannot be guaranteed here since,
2922       // someone else might have moved the finger even further
2923       assert(_finger >= end, "the finger should have moved forward");
2924 
2925       if (verbose_low()) {
2926         gclog_or_tty->print_cr("[%u] we were successful with region = "
2927                                PTR_FORMAT, worker_id, p2i(curr_region));
2928       }
2929 
2930       if (limit > bottom) {
2931         if (verbose_low()) {
2932           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2933                                  "returning it ", worker_id, p2i(curr_region));
2934         }
2935         return curr_region;
2936       } else {
2937         assert(limit == bottom,
2938                "the region limit should be at bottom");
2939         if (verbose_low()) {
2940           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2941                                  "returning NULL", worker_id, p2i(curr_region));
2942         }
2943         // we return NULL and the caller should try calling
2944         // claim_region() again.
2945         return NULL;
2946       }
2947     } else {
2948       assert(_finger > finger, "the finger should have moved forward");
2949       if (verbose_low()) {
2950         if (curr_region == NULL) {
2951           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2952                                  "global finger = "PTR_FORMAT", "
2953                                  "our finger = "PTR_FORMAT,
2954                                  worker_id, p2i(_finger), p2i(finger));
2955         } else {
2956           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2957                                  "global finger = "PTR_FORMAT", "
2958                                  "our finger = "PTR_FORMAT,
2959                                  worker_id, p2i(_finger), p2i(finger));
2960         }
2961       }
2962 
2963       // read it again
2964       finger = _finger;
2965     }
2966   }
2967 
2968   return NULL;
2969 }
2970 
2971 #ifndef PRODUCT
2972 enum VerifyNoCSetOopsPhase {
2973   VerifyNoCSetOopsStack,
2974   VerifyNoCSetOopsQueues,
2975   VerifyNoCSetOopsSATBCompleted,
2976   VerifyNoCSetOopsSATBThread
2977 };
2978 
2979 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2980 private:
2981   G1CollectedHeap* _g1h;
2982   VerifyNoCSetOopsPhase _phase;
2983   int _info;
2984 
2985   const char* phase_str() {
2986     switch (_phase) {
2987     case VerifyNoCSetOopsStack:         return "Stack";
2988     case VerifyNoCSetOopsQueues:        return "Queue";
2989     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2990     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2991     default:                            ShouldNotReachHere();
2992     }
2993     return NULL;
2994   }
2995 
2996   void do_object_work(oop obj) {
2997     guarantee(!_g1h->obj_in_cs(obj),
2998               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2999                       p2i((void*) obj), phase_str(), _info));
3000   }
3001 
3002 public:
3003   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3004 
3005   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3006     _phase = phase;
3007     _info = info;
3008   }
3009 
3010   virtual void do_oop(oop* p) {
3011     oop obj = oopDesc::load_decode_heap_oop(p);
3012     do_object_work(obj);
3013   }
3014 
3015   virtual void do_oop(narrowOop* p) {
3016     // We should not come across narrow oops while scanning marking
3017     // stacks and SATB buffers.
3018     ShouldNotReachHere();
3019   }
3020 
3021   virtual void do_object(oop obj) {
3022     do_object_work(obj);
3023   }
3024 };
3025 
3026 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3027                                          bool verify_enqueued_buffers,
3028                                          bool verify_thread_buffers,
3029                                          bool verify_fingers) {
3030   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3031   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3032     return;
3033   }
3034 
3035   VerifyNoCSetOopsClosure cl;
3036 
3037   if (verify_stacks) {
3038     // Verify entries on the global mark stack
3039     cl.set_phase(VerifyNoCSetOopsStack);
3040     _markStack.oops_do(&cl);
3041 
3042     // Verify entries on the task queues
3043     for (uint i = 0; i < _max_worker_id; i += 1) {
3044       cl.set_phase(VerifyNoCSetOopsQueues, i);
3045       CMTaskQueue* queue = _task_queues->queue(i);
3046       queue->oops_do(&cl);
3047     }
3048   }
3049 
3050   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3051 
3052   // Verify entries on the enqueued SATB buffers
3053   if (verify_enqueued_buffers) {
3054     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3055     satb_qs.iterate_completed_buffers_read_only(&cl);
3056   }
3057 
3058   // Verify entries on the per-thread SATB buffers
3059   if (verify_thread_buffers) {
3060     cl.set_phase(VerifyNoCSetOopsSATBThread);
3061     satb_qs.iterate_thread_buffers_read_only(&cl);
3062   }
3063 
3064   if (verify_fingers) {
3065     // Verify the global finger
3066     HeapWord* global_finger = finger();
3067     if (global_finger != NULL && global_finger < _heap_end) {
3068       // The global finger always points to a heap region boundary. We
3069       // use heap_region_containing_raw() to get the containing region
3070       // given that the global finger could be pointing to a free region
3071       // which subsequently becomes continues humongous. If that
3072       // happens, heap_region_containing() will return the bottom of the
3073       // corresponding starts humongous region and the check below will
3074       // not hold any more.
3075       // Since we always iterate over all regions, we might get a NULL HeapRegion
3076       // here.
3077       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3078       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3079                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3080                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3081     }
3082 
3083     // Verify the task fingers
3084     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3085     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3086       CMTask* task = _tasks[i];
3087       HeapWord* task_finger = task->finger();
3088       if (task_finger != NULL && task_finger < _heap_end) {
3089         // See above note on the global finger verification.
3090         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3091         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3092                   !task_hr->in_collection_set(),
3093                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3094                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3095       }
3096     }
3097   }
3098 }
3099 #endif // PRODUCT
3100 
3101 // Aggregate the counting data that was constructed concurrently
3102 // with marking.
3103 class AggregateCountDataHRClosure: public HeapRegionClosure {
3104   G1CollectedHeap* _g1h;
3105   ConcurrentMark* _cm;
3106   CardTableModRefBS* _ct_bs;
3107   BitMap* _cm_card_bm;
3108   uint _max_worker_id;
3109 
3110  public:
3111   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3112                               BitMap* cm_card_bm,
3113                               uint max_worker_id) :
3114     _g1h(g1h), _cm(g1h->concurrent_mark()),
3115     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3116     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3117 
3118   bool doHeapRegion(HeapRegion* hr) {
3119     if (hr->is_continues_humongous()) {
3120       // We will ignore these here and process them when their
3121       // associated "starts humongous" region is processed.
3122       // Note that we cannot rely on their associated
3123       // "starts humongous" region to have their bit set to 1
3124       // since, due to the region chunking in the parallel region
3125       // iteration, a "continues humongous" region might be visited
3126       // before its associated "starts humongous".
3127       return false;
3128     }
3129 
3130     HeapWord* start = hr->bottom();
3131     HeapWord* limit = hr->next_top_at_mark_start();
3132     HeapWord* end = hr->end();
3133 
3134     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3135            err_msg("Preconditions not met - "
3136                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3137                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3138                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3139 
3140     assert(hr->next_marked_bytes() == 0, "Precondition");
3141 
3142     if (start == limit) {
3143       // NTAMS of this region has not been set so nothing to do.
3144       return false;
3145     }
3146 
3147     // 'start' should be in the heap.
3148     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3149     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3150     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3151 
3152     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3153     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3154     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3155 
3156     // If ntams is not card aligned then we bump card bitmap index
3157     // for limit so that we get the all the cards spanned by
3158     // the object ending at ntams.
3159     // Note: if this is the last region in the heap then ntams
3160     // could be actually just beyond the end of the the heap;
3161     // limit_idx will then  correspond to a (non-existent) card
3162     // that is also outside the heap.
3163     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3164       limit_idx += 1;
3165     }
3166 
3167     assert(limit_idx <= end_idx, "or else use atomics");
3168 
3169     // Aggregate the "stripe" in the count data associated with hr.
3170     uint hrm_index = hr->hrm_index();
3171     size_t marked_bytes = 0;
3172 
3173     for (uint i = 0; i < _max_worker_id; i += 1) {
3174       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3175       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3176 
3177       // Fetch the marked_bytes in this region for task i and
3178       // add it to the running total for this region.
3179       marked_bytes += marked_bytes_array[hrm_index];
3180 
3181       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3182       // into the global card bitmap.
3183       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3184 
3185       while (scan_idx < limit_idx) {
3186         assert(task_card_bm->at(scan_idx) == true, "should be");
3187         _cm_card_bm->set_bit(scan_idx);
3188         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3189 
3190         // BitMap::get_next_one_offset() can handle the case when
3191         // its left_offset parameter is greater than its right_offset
3192         // parameter. It does, however, have an early exit if
3193         // left_offset == right_offset. So let's limit the value
3194         // passed in for left offset here.
3195         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3196         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3197       }
3198     }
3199 
3200     // Update the marked bytes for this region.
3201     hr->add_to_marked_bytes(marked_bytes);
3202 
3203     // Next heap region
3204     return false;
3205   }
3206 };
3207 
3208 class G1AggregateCountDataTask: public AbstractGangTask {
3209 protected:
3210   G1CollectedHeap* _g1h;
3211   ConcurrentMark* _cm;
3212   BitMap* _cm_card_bm;
3213   uint _max_worker_id;
3214   int _active_workers;
3215   HeapRegionClaimer _hrclaimer;
3216 
3217 public:
3218   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3219                            ConcurrentMark* cm,
3220                            BitMap* cm_card_bm,
3221                            uint max_worker_id,
3222                            int n_workers) :
3223       AbstractGangTask("Count Aggregation"),
3224       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3225       _max_worker_id(max_worker_id),
3226       _active_workers(n_workers),
3227       _hrclaimer(_active_workers) {
3228   }
3229 
3230   void work(uint worker_id) {
3231     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3232 
3233     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
3234   }
3235 };
3236 
3237 
3238 void ConcurrentMark::aggregate_count_data() {
3239   int n_workers = _g1h->workers()->active_workers();
3240 
3241   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3242                                            _max_worker_id, n_workers);
3243 
3244   _g1h->set_par_threads(n_workers);
3245   _g1h->workers()->run_task(&g1_par_agg_task);
3246   _g1h->set_par_threads(0);
3247 }
3248 
3249 // Clear the per-worker arrays used to store the per-region counting data
3250 void ConcurrentMark::clear_all_count_data() {
3251   // Clear the global card bitmap - it will be filled during
3252   // liveness count aggregation (during remark) and the
3253   // final counting task.
3254   _card_bm.clear();
3255 
3256   // Clear the global region bitmap - it will be filled as part
3257   // of the final counting task.
3258   _region_bm.clear();
3259 
3260   uint max_regions = _g1h->max_regions();
3261   assert(_max_worker_id > 0, "uninitialized");
3262 
3263   for (uint i = 0; i < _max_worker_id; i += 1) {
3264     BitMap* task_card_bm = count_card_bitmap_for(i);
3265     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3266 
3267     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3268     assert(marked_bytes_array != NULL, "uninitialized");
3269 
3270     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3271     task_card_bm->clear();
3272   }
3273 }
3274 
3275 void ConcurrentMark::print_stats() {
3276   if (verbose_stats()) {
3277     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3278     for (size_t i = 0; i < _active_tasks; ++i) {
3279       _tasks[i]->print_stats();
3280       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3281     }
3282   }
3283 }
3284 
3285 // abandon current marking iteration due to a Full GC
3286 void ConcurrentMark::abort() {
3287   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3288   // concurrent bitmap clearing.
3289   _nextMarkBitMap->clearAll();
3290 
3291   // Note we cannot clear the previous marking bitmap here
3292   // since VerifyDuringGC verifies the objects marked during
3293   // a full GC against the previous bitmap.
3294 
3295   // Clear the liveness counting data
3296   clear_all_count_data();
3297   // Empty mark stack
3298   reset_marking_state();
3299   for (uint i = 0; i < _max_worker_id; ++i) {
3300     _tasks[i]->clear_region_fields();
3301   }
3302   _first_overflow_barrier_sync.abort();
3303   _second_overflow_barrier_sync.abort();
3304   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3305   if (!gc_id.is_undefined()) {
3306     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3307     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3308     _aborted_gc_id = gc_id;
3309    }
3310   _has_aborted = true;
3311 
3312   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3313   satb_mq_set.abandon_partial_marking();
3314   // This can be called either during or outside marking, we'll read
3315   // the expected_active value from the SATB queue set.
3316   satb_mq_set.set_active_all_threads(
3317                                  false, /* new active value */
3318                                  satb_mq_set.is_active() /* expected_active */);
3319 
3320   _g1h->trace_heap_after_concurrent_cycle();
3321   _g1h->register_concurrent_cycle_end();
3322 }
3323 
3324 const GCId& ConcurrentMark::concurrent_gc_id() {
3325   if (has_aborted()) {
3326     return _aborted_gc_id;
3327   }
3328   return _g1h->gc_tracer_cm()->gc_id();
3329 }
3330 
3331 static void print_ms_time_info(const char* prefix, const char* name,
3332                                NumberSeq& ns) {
3333   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3334                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3335   if (ns.num() > 0) {
3336     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3337                            prefix, ns.sd(), ns.maximum());
3338   }
3339 }
3340 
3341 void ConcurrentMark::print_summary_info() {
3342   gclog_or_tty->print_cr(" Concurrent marking:");
3343   print_ms_time_info("  ", "init marks", _init_times);
3344   print_ms_time_info("  ", "remarks", _remark_times);
3345   {
3346     print_ms_time_info("     ", "final marks", _remark_mark_times);
3347     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3348 
3349   }
3350   print_ms_time_info("  ", "cleanups", _cleanup_times);
3351   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3352                          _total_counting_time,
3353                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3354                           (double)_cleanup_times.num()
3355                          : 0.0));
3356   if (G1ScrubRemSets) {
3357     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3358                            _total_rs_scrub_time,
3359                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3360                             (double)_cleanup_times.num()
3361                            : 0.0));
3362   }
3363   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3364                          (_init_times.sum() + _remark_times.sum() +
3365                           _cleanup_times.sum())/1000.0);
3366   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3367                 "(%8.2f s marking).",
3368                 cmThread()->vtime_accum(),
3369                 cmThread()->vtime_mark_accum());
3370 }
3371 
3372 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3373   _parallel_workers->print_worker_threads_on(st);
3374 }
3375 
3376 void ConcurrentMark::print_on_error(outputStream* st) const {
3377   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3378       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3379   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3380   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3381 }
3382 
3383 // We take a break if someone is trying to stop the world.
3384 bool ConcurrentMark::do_yield_check(uint worker_id) {
3385   if (SuspendibleThreadSet::should_yield()) {
3386     if (worker_id == 0) {
3387       _g1h->g1_policy()->record_concurrent_pause();
3388     }
3389     SuspendibleThreadSet::yield();
3390     return true;
3391   } else {
3392     return false;
3393   }
3394 }
3395 
3396 #ifndef PRODUCT
3397 // for debugging purposes
3398 void ConcurrentMark::print_finger() {
3399   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3400                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3401   for (uint i = 0; i < _max_worker_id; ++i) {
3402     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3403   }
3404   gclog_or_tty->cr();
3405 }
3406 #endif
3407 
3408 void CMTask::scan_object(oop obj) {
3409   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3410 
3411   if (_cm->verbose_high()) {
3412     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3413                            _worker_id, p2i((void*) obj));
3414   }
3415 
3416   size_t obj_size = obj->size();
3417   _words_scanned += obj_size;
3418 
3419   obj->oop_iterate(_cm_oop_closure);
3420   statsOnly( ++_objs_scanned );
3421   check_limits();
3422 }
3423 
3424 // Closure for iteration over bitmaps
3425 class CMBitMapClosure : public BitMapClosure {
3426 private:
3427   // the bitmap that is being iterated over
3428   CMBitMap*                   _nextMarkBitMap;
3429   ConcurrentMark*             _cm;
3430   CMTask*                     _task;
3431 
3432 public:
3433   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3434     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3435 
3436   bool do_bit(size_t offset) {
3437     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3438     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3439     assert( addr < _cm->finger(), "invariant");
3440 
3441     statsOnly( _task->increase_objs_found_on_bitmap() );
3442     assert(addr >= _task->finger(), "invariant");
3443 
3444     // We move that task's local finger along.
3445     _task->move_finger_to(addr);
3446 
3447     _task->scan_object(oop(addr));
3448     // we only partially drain the local queue and global stack
3449     _task->drain_local_queue(true);
3450     _task->drain_global_stack(true);
3451 
3452     // if the has_aborted flag has been raised, we need to bail out of
3453     // the iteration
3454     return !_task->has_aborted();
3455   }
3456 };
3457 
3458 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3459                                ConcurrentMark* cm,
3460                                CMTask* task)
3461   : _g1h(g1h), _cm(cm), _task(task) {
3462   assert(_ref_processor == NULL, "should be initialized to NULL");
3463 
3464   if (G1UseConcMarkReferenceProcessing) {
3465     _ref_processor = g1h->ref_processor_cm();
3466     assert(_ref_processor != NULL, "should not be NULL");
3467   }
3468 }
3469 
3470 void CMTask::setup_for_region(HeapRegion* hr) {
3471   assert(hr != NULL,
3472         "claim_region() should have filtered out NULL regions");
3473   assert(!hr->is_continues_humongous(),
3474         "claim_region() should have filtered out continues humongous regions");
3475 
3476   if (_cm->verbose_low()) {
3477     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3478                            _worker_id, p2i(hr));
3479   }
3480 
3481   _curr_region  = hr;
3482   _finger       = hr->bottom();
3483   update_region_limit();
3484 }
3485 
3486 void CMTask::update_region_limit() {
3487   HeapRegion* hr            = _curr_region;
3488   HeapWord* bottom          = hr->bottom();
3489   HeapWord* limit           = hr->next_top_at_mark_start();
3490 
3491   if (limit == bottom) {
3492     if (_cm->verbose_low()) {
3493       gclog_or_tty->print_cr("[%u] found an empty region "
3494                              "["PTR_FORMAT", "PTR_FORMAT")",
3495                              _worker_id, p2i(bottom), p2i(limit));
3496     }
3497     // The region was collected underneath our feet.
3498     // We set the finger to bottom to ensure that the bitmap
3499     // iteration that will follow this will not do anything.
3500     // (this is not a condition that holds when we set the region up,
3501     // as the region is not supposed to be empty in the first place)
3502     _finger = bottom;
3503   } else if (limit >= _region_limit) {
3504     assert(limit >= _finger, "peace of mind");
3505   } else {
3506     assert(limit < _region_limit, "only way to get here");
3507     // This can happen under some pretty unusual circumstances.  An
3508     // evacuation pause empties the region underneath our feet (NTAMS
3509     // at bottom). We then do some allocation in the region (NTAMS
3510     // stays at bottom), followed by the region being used as a GC
3511     // alloc region (NTAMS will move to top() and the objects
3512     // originally below it will be grayed). All objects now marked in
3513     // the region are explicitly grayed, if below the global finger,
3514     // and we do not need in fact to scan anything else. So, we simply
3515     // set _finger to be limit to ensure that the bitmap iteration
3516     // doesn't do anything.
3517     _finger = limit;
3518   }
3519 
3520   _region_limit = limit;
3521 }
3522 
3523 void CMTask::giveup_current_region() {
3524   assert(_curr_region != NULL, "invariant");
3525   if (_cm->verbose_low()) {
3526     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3527                            _worker_id, p2i(_curr_region));
3528   }
3529   clear_region_fields();
3530 }
3531 
3532 void CMTask::clear_region_fields() {
3533   // Values for these three fields that indicate that we're not
3534   // holding on to a region.
3535   _curr_region   = NULL;
3536   _finger        = NULL;
3537   _region_limit  = NULL;
3538 }
3539 
3540 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3541   if (cm_oop_closure == NULL) {
3542     assert(_cm_oop_closure != NULL, "invariant");
3543   } else {
3544     assert(_cm_oop_closure == NULL, "invariant");
3545   }
3546   _cm_oop_closure = cm_oop_closure;
3547 }
3548 
3549 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3550   guarantee(nextMarkBitMap != NULL, "invariant");
3551 
3552   if (_cm->verbose_low()) {
3553     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3554   }
3555 
3556   _nextMarkBitMap                = nextMarkBitMap;
3557   clear_region_fields();
3558 
3559   _calls                         = 0;
3560   _elapsed_time_ms               = 0.0;
3561   _termination_time_ms           = 0.0;
3562   _termination_start_time_ms     = 0.0;
3563 
3564 #if _MARKING_STATS_
3565   _local_pushes                  = 0;
3566   _local_pops                    = 0;
3567   _local_max_size                = 0;
3568   _objs_scanned                  = 0;
3569   _global_pushes                 = 0;
3570   _global_pops                   = 0;
3571   _global_max_size               = 0;
3572   _global_transfers_to           = 0;
3573   _global_transfers_from         = 0;
3574   _regions_claimed               = 0;
3575   _objs_found_on_bitmap          = 0;
3576   _satb_buffers_processed        = 0;
3577   _steal_attempts                = 0;
3578   _steals                        = 0;
3579   _aborted                       = 0;
3580   _aborted_overflow              = 0;
3581   _aborted_cm_aborted            = 0;
3582   _aborted_yield                 = 0;
3583   _aborted_timed_out             = 0;
3584   _aborted_satb                  = 0;
3585   _aborted_termination           = 0;
3586 #endif // _MARKING_STATS_
3587 }
3588 
3589 bool CMTask::should_exit_termination() {
3590   regular_clock_call();
3591   // This is called when we are in the termination protocol. We should
3592   // quit if, for some reason, this task wants to abort or the global
3593   // stack is not empty (this means that we can get work from it).
3594   return !_cm->mark_stack_empty() || has_aborted();
3595 }
3596 
3597 void CMTask::reached_limit() {
3598   assert(_words_scanned >= _words_scanned_limit ||
3599          _refs_reached >= _refs_reached_limit ,
3600          "shouldn't have been called otherwise");
3601   regular_clock_call();
3602 }
3603 
3604 void CMTask::regular_clock_call() {
3605   if (has_aborted()) return;
3606 
3607   // First, we need to recalculate the words scanned and refs reached
3608   // limits for the next clock call.
3609   recalculate_limits();
3610 
3611   // During the regular clock call we do the following
3612 
3613   // (1) If an overflow has been flagged, then we abort.
3614   if (_cm->has_overflown()) {
3615     set_has_aborted();
3616     return;
3617   }
3618 
3619   // If we are not concurrent (i.e. we're doing remark) we don't need
3620   // to check anything else. The other steps are only needed during
3621   // the concurrent marking phase.
3622   if (!concurrent()) return;
3623 
3624   // (2) If marking has been aborted for Full GC, then we also abort.
3625   if (_cm->has_aborted()) {
3626     set_has_aborted();
3627     statsOnly( ++_aborted_cm_aborted );
3628     return;
3629   }
3630 
3631   double curr_time_ms = os::elapsedVTime() * 1000.0;
3632 
3633   // (3) If marking stats are enabled, then we update the step history.
3634 #if _MARKING_STATS_
3635   if (_words_scanned >= _words_scanned_limit) {
3636     ++_clock_due_to_scanning;
3637   }
3638   if (_refs_reached >= _refs_reached_limit) {
3639     ++_clock_due_to_marking;
3640   }
3641 
3642   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3643   _interval_start_time_ms = curr_time_ms;
3644   _all_clock_intervals_ms.add(last_interval_ms);
3645 
3646   if (_cm->verbose_medium()) {
3647       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3648                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3649                         _worker_id, last_interval_ms,
3650                         _words_scanned,
3651                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3652                         _refs_reached,
3653                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3654   }
3655 #endif // _MARKING_STATS_
3656 
3657   // (4) We check whether we should yield. If we have to, then we abort.
3658   if (SuspendibleThreadSet::should_yield()) {
3659     // We should yield. To do this we abort the task. The caller is
3660     // responsible for yielding.
3661     set_has_aborted();
3662     statsOnly( ++_aborted_yield );
3663     return;
3664   }
3665 
3666   // (5) We check whether we've reached our time quota. If we have,
3667   // then we abort.
3668   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3669   if (elapsed_time_ms > _time_target_ms) {
3670     set_has_aborted();
3671     _has_timed_out = true;
3672     statsOnly( ++_aborted_timed_out );
3673     return;
3674   }
3675 
3676   // (6) Finally, we check whether there are enough completed STAB
3677   // buffers available for processing. If there are, we abort.
3678   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3679   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3680     if (_cm->verbose_low()) {
3681       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3682                              _worker_id);
3683     }
3684     // we do need to process SATB buffers, we'll abort and restart
3685     // the marking task to do so
3686     set_has_aborted();
3687     statsOnly( ++_aborted_satb );
3688     return;
3689   }
3690 }
3691 
3692 void CMTask::recalculate_limits() {
3693   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3694   _words_scanned_limit      = _real_words_scanned_limit;
3695 
3696   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3697   _refs_reached_limit       = _real_refs_reached_limit;
3698 }
3699 
3700 void CMTask::decrease_limits() {
3701   // This is called when we believe that we're going to do an infrequent
3702   // operation which will increase the per byte scanned cost (i.e. move
3703   // entries to/from the global stack). It basically tries to decrease the
3704   // scanning limit so that the clock is called earlier.
3705 
3706   if (_cm->verbose_medium()) {
3707     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3708   }
3709 
3710   _words_scanned_limit = _real_words_scanned_limit -
3711     3 * words_scanned_period / 4;
3712   _refs_reached_limit  = _real_refs_reached_limit -
3713     3 * refs_reached_period / 4;
3714 }
3715 
3716 void CMTask::move_entries_to_global_stack() {
3717   // local array where we'll store the entries that will be popped
3718   // from the local queue
3719   oop buffer[global_stack_transfer_size];
3720 
3721   int n = 0;
3722   oop obj;
3723   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3724     buffer[n] = obj;
3725     ++n;
3726   }
3727 
3728   if (n > 0) {
3729     // we popped at least one entry from the local queue
3730 
3731     statsOnly( ++_global_transfers_to; _local_pops += n );
3732 
3733     if (!_cm->mark_stack_push(buffer, n)) {
3734       if (_cm->verbose_low()) {
3735         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3736                                _worker_id);
3737       }
3738       set_has_aborted();
3739     } else {
3740       // the transfer was successful
3741 
3742       if (_cm->verbose_medium()) {
3743         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3744                                _worker_id, n);
3745       }
3746       statsOnly( int tmp_size = _cm->mark_stack_size();
3747                  if (tmp_size > _global_max_size) {
3748                    _global_max_size = tmp_size;
3749                  }
3750                  _global_pushes += n );
3751     }
3752   }
3753 
3754   // this operation was quite expensive, so decrease the limits
3755   decrease_limits();
3756 }
3757 
3758 void CMTask::get_entries_from_global_stack() {
3759   // local array where we'll store the entries that will be popped
3760   // from the global stack.
3761   oop buffer[global_stack_transfer_size];
3762   int n;
3763   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3764   assert(n <= global_stack_transfer_size,
3765          "we should not pop more than the given limit");
3766   if (n > 0) {
3767     // yes, we did actually pop at least one entry
3768 
3769     statsOnly( ++_global_transfers_from; _global_pops += n );
3770     if (_cm->verbose_medium()) {
3771       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3772                              _worker_id, n);
3773     }
3774     for (int i = 0; i < n; ++i) {
3775       bool success = _task_queue->push(buffer[i]);
3776       // We only call this when the local queue is empty or under a
3777       // given target limit. So, we do not expect this push to fail.
3778       assert(success, "invariant");
3779     }
3780 
3781     statsOnly( int tmp_size = _task_queue->size();
3782                if (tmp_size > _local_max_size) {
3783                  _local_max_size = tmp_size;
3784                }
3785                _local_pushes += n );
3786   }
3787 
3788   // this operation was quite expensive, so decrease the limits
3789   decrease_limits();
3790 }
3791 
3792 void CMTask::drain_local_queue(bool partially) {
3793   if (has_aborted()) return;
3794 
3795   // Decide what the target size is, depending whether we're going to
3796   // drain it partially (so that other tasks can steal if they run out
3797   // of things to do) or totally (at the very end).
3798   size_t target_size;
3799   if (partially) {
3800     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3801   } else {
3802     target_size = 0;
3803   }
3804 
3805   if (_task_queue->size() > target_size) {
3806     if (_cm->verbose_high()) {
3807       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3808                              _worker_id, target_size);
3809     }
3810 
3811     oop obj;
3812     bool ret = _task_queue->pop_local(obj);
3813     while (ret) {
3814       statsOnly( ++_local_pops );
3815 
3816       if (_cm->verbose_high()) {
3817         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3818                                p2i((void*) obj));
3819       }
3820 
3821       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3822       assert(!_g1h->is_on_master_free_list(
3823                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3824 
3825       scan_object(obj);
3826 
3827       if (_task_queue->size() <= target_size || has_aborted()) {
3828         ret = false;
3829       } else {
3830         ret = _task_queue->pop_local(obj);
3831       }
3832     }
3833 
3834     if (_cm->verbose_high()) {
3835       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3836                              _worker_id, _task_queue->size());
3837     }
3838   }
3839 }
3840 
3841 void CMTask::drain_global_stack(bool partially) {
3842   if (has_aborted()) return;
3843 
3844   // We have a policy to drain the local queue before we attempt to
3845   // drain the global stack.
3846   assert(partially || _task_queue->size() == 0, "invariant");
3847 
3848   // Decide what the target size is, depending whether we're going to
3849   // drain it partially (so that other tasks can steal if they run out
3850   // of things to do) or totally (at the very end).  Notice that,
3851   // because we move entries from the global stack in chunks or
3852   // because another task might be doing the same, we might in fact
3853   // drop below the target. But, this is not a problem.
3854   size_t target_size;
3855   if (partially) {
3856     target_size = _cm->partial_mark_stack_size_target();
3857   } else {
3858     target_size = 0;
3859   }
3860 
3861   if (_cm->mark_stack_size() > target_size) {
3862     if (_cm->verbose_low()) {
3863       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3864                              _worker_id, target_size);
3865     }
3866 
3867     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3868       get_entries_from_global_stack();
3869       drain_local_queue(partially);
3870     }
3871 
3872     if (_cm->verbose_low()) {
3873       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3874                              _worker_id, _cm->mark_stack_size());
3875     }
3876   }
3877 }
3878 
3879 // SATB Queue has several assumptions on whether to call the par or
3880 // non-par versions of the methods. this is why some of the code is
3881 // replicated. We should really get rid of the single-threaded version
3882 // of the code to simplify things.
3883 void CMTask::drain_satb_buffers() {
3884   if (has_aborted()) return;
3885 
3886   // We set this so that the regular clock knows that we're in the
3887   // middle of draining buffers and doesn't set the abort flag when it
3888   // notices that SATB buffers are available for draining. It'd be
3889   // very counter productive if it did that. :-)
3890   _draining_satb_buffers = true;
3891 
3892   CMObjectClosure oc(this);
3893   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3894   satb_mq_set.set_closure(_worker_id, &oc);
3895 
3896   // This keeps claiming and applying the closure to completed buffers
3897   // until we run out of buffers or we need to abort.
3898   while (!has_aborted() &&
3899          satb_mq_set.apply_closure_to_completed_buffer(_worker_id)) {
3900     if (_cm->verbose_medium()) {
3901       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3902     }
3903     statsOnly( ++_satb_buffers_processed );
3904     regular_clock_call();
3905   }
3906 
3907   _draining_satb_buffers = false;
3908 
3909   assert(has_aborted() ||
3910          concurrent() ||
3911          satb_mq_set.completed_buffers_num() == 0, "invariant");
3912 
3913   satb_mq_set.set_closure(_worker_id, NULL);
3914 
3915   // again, this was a potentially expensive operation, decrease the
3916   // limits to get the regular clock call early
3917   decrease_limits();
3918 }
3919 
3920 void CMTask::print_stats() {
3921   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3922                          _worker_id, _calls);
3923   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3924                          _elapsed_time_ms, _termination_time_ms);
3925   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3926                          _step_times_ms.num(), _step_times_ms.avg(),
3927                          _step_times_ms.sd());
3928   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3929                          _step_times_ms.maximum(), _step_times_ms.sum());
3930 
3931 #if _MARKING_STATS_
3932   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3933                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3934                          _all_clock_intervals_ms.sd());
3935   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3936                          _all_clock_intervals_ms.maximum(),
3937                          _all_clock_intervals_ms.sum());
3938   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
3939                          _clock_due_to_scanning, _clock_due_to_marking);
3940   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
3941                          _objs_scanned, _objs_found_on_bitmap);
3942   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
3943                          _local_pushes, _local_pops, _local_max_size);
3944   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
3945                          _global_pushes, _global_pops, _global_max_size);
3946   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
3947                          _global_transfers_to,_global_transfers_from);
3948   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3949   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
3950   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
3951                          _steal_attempts, _steals);
3952   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
3953   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
3954                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3955   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
3956                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3957 #endif // _MARKING_STATS_
3958 }
3959 
3960 /*****************************************************************************
3961 
3962     The do_marking_step(time_target_ms, ...) method is the building
3963     block of the parallel marking framework. It can be called in parallel
3964     with other invocations of do_marking_step() on different tasks
3965     (but only one per task, obviously) and concurrently with the
3966     mutator threads, or during remark, hence it eliminates the need
3967     for two versions of the code. When called during remark, it will
3968     pick up from where the task left off during the concurrent marking
3969     phase. Interestingly, tasks are also claimable during evacuation
3970     pauses too, since do_marking_step() ensures that it aborts before
3971     it needs to yield.
3972 
3973     The data structures that it uses to do marking work are the
3974     following:
3975 
3976       (1) Marking Bitmap. If there are gray objects that appear only
3977       on the bitmap (this happens either when dealing with an overflow
3978       or when the initial marking phase has simply marked the roots
3979       and didn't push them on the stack), then tasks claim heap
3980       regions whose bitmap they then scan to find gray objects. A
3981       global finger indicates where the end of the last claimed region
3982       is. A local finger indicates how far into the region a task has
3983       scanned. The two fingers are used to determine how to gray an
3984       object (i.e. whether simply marking it is OK, as it will be
3985       visited by a task in the future, or whether it needs to be also
3986       pushed on a stack).
3987 
3988       (2) Local Queue. The local queue of the task which is accessed
3989       reasonably efficiently by the task. Other tasks can steal from
3990       it when they run out of work. Throughout the marking phase, a
3991       task attempts to keep its local queue short but not totally
3992       empty, so that entries are available for stealing by other
3993       tasks. Only when there is no more work, a task will totally
3994       drain its local queue.
3995 
3996       (3) Global Mark Stack. This handles local queue overflow. During
3997       marking only sets of entries are moved between it and the local
3998       queues, as access to it requires a mutex and more fine-grain
3999       interaction with it which might cause contention. If it
4000       overflows, then the marking phase should restart and iterate
4001       over the bitmap to identify gray objects. Throughout the marking
4002       phase, tasks attempt to keep the global mark stack at a small
4003       length but not totally empty, so that entries are available for
4004       popping by other tasks. Only when there is no more work, tasks
4005       will totally drain the global mark stack.
4006 
4007       (4) SATB Buffer Queue. This is where completed SATB buffers are
4008       made available. Buffers are regularly removed from this queue
4009       and scanned for roots, so that the queue doesn't get too
4010       long. During remark, all completed buffers are processed, as
4011       well as the filled in parts of any uncompleted buffers.
4012 
4013     The do_marking_step() method tries to abort when the time target
4014     has been reached. There are a few other cases when the
4015     do_marking_step() method also aborts:
4016 
4017       (1) When the marking phase has been aborted (after a Full GC).
4018 
4019       (2) When a global overflow (on the global stack) has been
4020       triggered. Before the task aborts, it will actually sync up with
4021       the other tasks to ensure that all the marking data structures
4022       (local queues, stacks, fingers etc.)  are re-initialized so that
4023       when do_marking_step() completes, the marking phase can
4024       immediately restart.
4025 
4026       (3) When enough completed SATB buffers are available. The
4027       do_marking_step() method only tries to drain SATB buffers right
4028       at the beginning. So, if enough buffers are available, the
4029       marking step aborts and the SATB buffers are processed at
4030       the beginning of the next invocation.
4031 
4032       (4) To yield. when we have to yield then we abort and yield
4033       right at the end of do_marking_step(). This saves us from a lot
4034       of hassle as, by yielding we might allow a Full GC. If this
4035       happens then objects will be compacted underneath our feet, the
4036       heap might shrink, etc. We save checking for this by just
4037       aborting and doing the yield right at the end.
4038 
4039     From the above it follows that the do_marking_step() method should
4040     be called in a loop (or, otherwise, regularly) until it completes.
4041 
4042     If a marking step completes without its has_aborted() flag being
4043     true, it means it has completed the current marking phase (and
4044     also all other marking tasks have done so and have all synced up).
4045 
4046     A method called regular_clock_call() is invoked "regularly" (in
4047     sub ms intervals) throughout marking. It is this clock method that
4048     checks all the abort conditions which were mentioned above and
4049     decides when the task should abort. A work-based scheme is used to
4050     trigger this clock method: when the number of object words the
4051     marking phase has scanned or the number of references the marking
4052     phase has visited reach a given limit. Additional invocations to
4053     the method clock have been planted in a few other strategic places
4054     too. The initial reason for the clock method was to avoid calling
4055     vtime too regularly, as it is quite expensive. So, once it was in
4056     place, it was natural to piggy-back all the other conditions on it
4057     too and not constantly check them throughout the code.
4058 
4059     If do_termination is true then do_marking_step will enter its
4060     termination protocol.
4061 
4062     The value of is_serial must be true when do_marking_step is being
4063     called serially (i.e. by the VMThread) and do_marking_step should
4064     skip any synchronization in the termination and overflow code.
4065     Examples include the serial remark code and the serial reference
4066     processing closures.
4067 
4068     The value of is_serial must be false when do_marking_step is
4069     being called by any of the worker threads in a work gang.
4070     Examples include the concurrent marking code (CMMarkingTask),
4071     the MT remark code, and the MT reference processing closures.
4072 
4073  *****************************************************************************/
4074 
4075 void CMTask::do_marking_step(double time_target_ms,
4076                              bool do_termination,
4077                              bool is_serial) {
4078   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4079   assert(concurrent() == _cm->concurrent(), "they should be the same");
4080 
4081   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4082   assert(_task_queues != NULL, "invariant");
4083   assert(_task_queue != NULL, "invariant");
4084   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4085 
4086   assert(!_claimed,
4087          "only one thread should claim this task at any one time");
4088 
4089   // OK, this doesn't safeguard again all possible scenarios, as it is
4090   // possible for two threads to set the _claimed flag at the same
4091   // time. But it is only for debugging purposes anyway and it will
4092   // catch most problems.
4093   _claimed = true;
4094 
4095   _start_time_ms = os::elapsedVTime() * 1000.0;
4096   statsOnly( _interval_start_time_ms = _start_time_ms );
4097 
4098   // If do_stealing is true then do_marking_step will attempt to
4099   // steal work from the other CMTasks. It only makes sense to
4100   // enable stealing when the termination protocol is enabled
4101   // and do_marking_step() is not being called serially.
4102   bool do_stealing = do_termination && !is_serial;
4103 
4104   double diff_prediction_ms =
4105     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4106   _time_target_ms = time_target_ms - diff_prediction_ms;
4107 
4108   // set up the variables that are used in the work-based scheme to
4109   // call the regular clock method
4110   _words_scanned = 0;
4111   _refs_reached  = 0;
4112   recalculate_limits();
4113 
4114   // clear all flags
4115   clear_has_aborted();
4116   _has_timed_out = false;
4117   _draining_satb_buffers = false;
4118 
4119   ++_calls;
4120 
4121   if (_cm->verbose_low()) {
4122     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4123                            "target = %1.2lfms >>>>>>>>>>",
4124                            _worker_id, _calls, _time_target_ms);
4125   }
4126 
4127   // Set up the bitmap and oop closures. Anything that uses them is
4128   // eventually called from this method, so it is OK to allocate these
4129   // statically.
4130   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4131   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4132   set_cm_oop_closure(&cm_oop_closure);
4133 
4134   if (_cm->has_overflown()) {
4135     // This can happen if the mark stack overflows during a GC pause
4136     // and this task, after a yield point, restarts. We have to abort
4137     // as we need to get into the overflow protocol which happens
4138     // right at the end of this task.
4139     set_has_aborted();
4140   }
4141 
4142   // First drain any available SATB buffers. After this, we will not
4143   // look at SATB buffers before the next invocation of this method.
4144   // If enough completed SATB buffers are queued up, the regular clock
4145   // will abort this task so that it restarts.
4146   drain_satb_buffers();
4147   // ...then partially drain the local queue and the global stack
4148   drain_local_queue(true);
4149   drain_global_stack(true);
4150 
4151   do {
4152     if (!has_aborted() && _curr_region != NULL) {
4153       // This means that we're already holding on to a region.
4154       assert(_finger != NULL, "if region is not NULL, then the finger "
4155              "should not be NULL either");
4156 
4157       // We might have restarted this task after an evacuation pause
4158       // which might have evacuated the region we're holding on to
4159       // underneath our feet. Let's read its limit again to make sure
4160       // that we do not iterate over a region of the heap that
4161       // contains garbage (update_region_limit() will also move
4162       // _finger to the start of the region if it is found empty).
4163       update_region_limit();
4164       // We will start from _finger not from the start of the region,
4165       // as we might be restarting this task after aborting half-way
4166       // through scanning this region. In this case, _finger points to
4167       // the address where we last found a marked object. If this is a
4168       // fresh region, _finger points to start().
4169       MemRegion mr = MemRegion(_finger, _region_limit);
4170 
4171       if (_cm->verbose_low()) {
4172         gclog_or_tty->print_cr("[%u] we're scanning part "
4173                                "["PTR_FORMAT", "PTR_FORMAT") "
4174                                "of region "HR_FORMAT,
4175                                _worker_id, p2i(_finger), p2i(_region_limit),
4176                                HR_FORMAT_PARAMS(_curr_region));
4177       }
4178 
4179       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4180              "humongous regions should go around loop once only");
4181 
4182       // Some special cases:
4183       // If the memory region is empty, we can just give up the region.
4184       // If the current region is humongous then we only need to check
4185       // the bitmap for the bit associated with the start of the object,
4186       // scan the object if it's live, and give up the region.
4187       // Otherwise, let's iterate over the bitmap of the part of the region
4188       // that is left.
4189       // If the iteration is successful, give up the region.
4190       if (mr.is_empty()) {
4191         giveup_current_region();
4192         regular_clock_call();
4193       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4194         if (_nextMarkBitMap->isMarked(mr.start())) {
4195           // The object is marked - apply the closure
4196           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4197           bitmap_closure.do_bit(offset);
4198         }
4199         // Even if this task aborted while scanning the humongous object
4200         // we can (and should) give up the current region.
4201         giveup_current_region();
4202         regular_clock_call();
4203       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4204         giveup_current_region();
4205         regular_clock_call();
4206       } else {
4207         assert(has_aborted(), "currently the only way to do so");
4208         // The only way to abort the bitmap iteration is to return
4209         // false from the do_bit() method. However, inside the
4210         // do_bit() method we move the _finger to point to the
4211         // object currently being looked at. So, if we bail out, we
4212         // have definitely set _finger to something non-null.
4213         assert(_finger != NULL, "invariant");
4214 
4215         // Region iteration was actually aborted. So now _finger
4216         // points to the address of the object we last scanned. If we
4217         // leave it there, when we restart this task, we will rescan
4218         // the object. It is easy to avoid this. We move the finger by
4219         // enough to point to the next possible object header (the
4220         // bitmap knows by how much we need to move it as it knows its
4221         // granularity).
4222         assert(_finger < _region_limit, "invariant");
4223         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4224         // Check if bitmap iteration was aborted while scanning the last object
4225         if (new_finger >= _region_limit) {
4226           giveup_current_region();
4227         } else {
4228           move_finger_to(new_finger);
4229         }
4230       }
4231     }
4232     // At this point we have either completed iterating over the
4233     // region we were holding on to, or we have aborted.
4234 
4235     // We then partially drain the local queue and the global stack.
4236     // (Do we really need this?)
4237     drain_local_queue(true);
4238     drain_global_stack(true);
4239 
4240     // Read the note on the claim_region() method on why it might
4241     // return NULL with potentially more regions available for
4242     // claiming and why we have to check out_of_regions() to determine
4243     // whether we're done or not.
4244     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4245       // We are going to try to claim a new region. We should have
4246       // given up on the previous one.
4247       // Separated the asserts so that we know which one fires.
4248       assert(_curr_region  == NULL, "invariant");
4249       assert(_finger       == NULL, "invariant");
4250       assert(_region_limit == NULL, "invariant");
4251       if (_cm->verbose_low()) {
4252         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4253       }
4254       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4255       if (claimed_region != NULL) {
4256         // Yes, we managed to claim one
4257         statsOnly( ++_regions_claimed );
4258 
4259         if (_cm->verbose_low()) {
4260           gclog_or_tty->print_cr("[%u] we successfully claimed "
4261                                  "region "PTR_FORMAT,
4262                                  _worker_id, p2i(claimed_region));
4263         }
4264 
4265         setup_for_region(claimed_region);
4266         assert(_curr_region == claimed_region, "invariant");
4267       }
4268       // It is important to call the regular clock here. It might take
4269       // a while to claim a region if, for example, we hit a large
4270       // block of empty regions. So we need to call the regular clock
4271       // method once round the loop to make sure it's called
4272       // frequently enough.
4273       regular_clock_call();
4274     }
4275 
4276     if (!has_aborted() && _curr_region == NULL) {
4277       assert(_cm->out_of_regions(),
4278              "at this point we should be out of regions");
4279     }
4280   } while ( _curr_region != NULL && !has_aborted());
4281 
4282   if (!has_aborted()) {
4283     // We cannot check whether the global stack is empty, since other
4284     // tasks might be pushing objects to it concurrently.
4285     assert(_cm->out_of_regions(),
4286            "at this point we should be out of regions");
4287 
4288     if (_cm->verbose_low()) {
4289       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4290     }
4291 
4292     // Try to reduce the number of available SATB buffers so that
4293     // remark has less work to do.
4294     drain_satb_buffers();
4295   }
4296 
4297   // Since we've done everything else, we can now totally drain the
4298   // local queue and global stack.
4299   drain_local_queue(false);
4300   drain_global_stack(false);
4301 
4302   // Attempt at work stealing from other task's queues.
4303   if (do_stealing && !has_aborted()) {
4304     // We have not aborted. This means that we have finished all that
4305     // we could. Let's try to do some stealing...
4306 
4307     // We cannot check whether the global stack is empty, since other
4308     // tasks might be pushing objects to it concurrently.
4309     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4310            "only way to reach here");
4311 
4312     if (_cm->verbose_low()) {
4313       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4314     }
4315 
4316     while (!has_aborted()) {
4317       oop obj;
4318       statsOnly( ++_steal_attempts );
4319 
4320       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4321         if (_cm->verbose_medium()) {
4322           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4323                                  _worker_id, p2i((void*) obj));
4324         }
4325 
4326         statsOnly( ++_steals );
4327 
4328         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4329                "any stolen object should be marked");
4330         scan_object(obj);
4331 
4332         // And since we're towards the end, let's totally drain the
4333         // local queue and global stack.
4334         drain_local_queue(false);
4335         drain_global_stack(false);
4336       } else {
4337         break;
4338       }
4339     }
4340   }
4341 
4342   // If we are about to wrap up and go into termination, check if we
4343   // should raise the overflow flag.
4344   if (do_termination && !has_aborted()) {
4345     if (_cm->force_overflow()->should_force()) {
4346       _cm->set_has_overflown();
4347       regular_clock_call();
4348     }
4349   }
4350 
4351   // We still haven't aborted. Now, let's try to get into the
4352   // termination protocol.
4353   if (do_termination && !has_aborted()) {
4354     // We cannot check whether the global stack is empty, since other
4355     // tasks might be concurrently pushing objects on it.
4356     // Separated the asserts so that we know which one fires.
4357     assert(_cm->out_of_regions(), "only way to reach here");
4358     assert(_task_queue->size() == 0, "only way to reach here");
4359 
4360     if (_cm->verbose_low()) {
4361       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4362     }
4363 
4364     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4365 
4366     // The CMTask class also extends the TerminatorTerminator class,
4367     // hence its should_exit_termination() method will also decide
4368     // whether to exit the termination protocol or not.
4369     bool finished = (is_serial ||
4370                      _cm->terminator()->offer_termination(this));
4371     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4372     _termination_time_ms +=
4373       termination_end_time_ms - _termination_start_time_ms;
4374 
4375     if (finished) {
4376       // We're all done.
4377 
4378       if (_worker_id == 0) {
4379         // let's allow task 0 to do this
4380         if (concurrent()) {
4381           assert(_cm->concurrent_marking_in_progress(), "invariant");
4382           // we need to set this to false before the next
4383           // safepoint. This way we ensure that the marking phase
4384           // doesn't observe any more heap expansions.
4385           _cm->clear_concurrent_marking_in_progress();
4386         }
4387       }
4388 
4389       // We can now guarantee that the global stack is empty, since
4390       // all other tasks have finished. We separated the guarantees so
4391       // that, if a condition is false, we can immediately find out
4392       // which one.
4393       guarantee(_cm->out_of_regions(), "only way to reach here");
4394       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4395       guarantee(_task_queue->size() == 0, "only way to reach here");
4396       guarantee(!_cm->has_overflown(), "only way to reach here");
4397       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4398 
4399       if (_cm->verbose_low()) {
4400         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4401       }
4402     } else {
4403       // Apparently there's more work to do. Let's abort this task. It
4404       // will restart it and we can hopefully find more things to do.
4405 
4406       if (_cm->verbose_low()) {
4407         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4408                                _worker_id);
4409       }
4410 
4411       set_has_aborted();
4412       statsOnly( ++_aborted_termination );
4413     }
4414   }
4415 
4416   // Mainly for debugging purposes to make sure that a pointer to the
4417   // closure which was statically allocated in this frame doesn't
4418   // escape it by accident.
4419   set_cm_oop_closure(NULL);
4420   double end_time_ms = os::elapsedVTime() * 1000.0;
4421   double elapsed_time_ms = end_time_ms - _start_time_ms;
4422   // Update the step history.
4423   _step_times_ms.add(elapsed_time_ms);
4424 
4425   if (has_aborted()) {
4426     // The task was aborted for some reason.
4427 
4428     statsOnly( ++_aborted );
4429 
4430     if (_has_timed_out) {
4431       double diff_ms = elapsed_time_ms - _time_target_ms;
4432       // Keep statistics of how well we did with respect to hitting
4433       // our target only if we actually timed out (if we aborted for
4434       // other reasons, then the results might get skewed).
4435       _marking_step_diffs_ms.add(diff_ms);
4436     }
4437 
4438     if (_cm->has_overflown()) {
4439       // This is the interesting one. We aborted because a global
4440       // overflow was raised. This means we have to restart the
4441       // marking phase and start iterating over regions. However, in
4442       // order to do this we have to make sure that all tasks stop
4443       // what they are doing and re-initialize in a safe manner. We
4444       // will achieve this with the use of two barrier sync points.
4445 
4446       if (_cm->verbose_low()) {
4447         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4448       }
4449 
4450       if (!is_serial) {
4451         // We only need to enter the sync barrier if being called
4452         // from a parallel context
4453         _cm->enter_first_sync_barrier(_worker_id);
4454 
4455         // When we exit this sync barrier we know that all tasks have
4456         // stopped doing marking work. So, it's now safe to
4457         // re-initialize our data structures. At the end of this method,
4458         // task 0 will clear the global data structures.
4459       }
4460 
4461       statsOnly( ++_aborted_overflow );
4462 
4463       // We clear the local state of this task...
4464       clear_region_fields();
4465 
4466       if (!is_serial) {
4467         // ...and enter the second barrier.
4468         _cm->enter_second_sync_barrier(_worker_id);
4469       }
4470       // At this point, if we're during the concurrent phase of
4471       // marking, everything has been re-initialized and we're
4472       // ready to restart.
4473     }
4474 
4475     if (_cm->verbose_low()) {
4476       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4477                              "elapsed = %1.2lfms <<<<<<<<<<",
4478                              _worker_id, _time_target_ms, elapsed_time_ms);
4479       if (_cm->has_aborted()) {
4480         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4481                                _worker_id);
4482       }
4483     }
4484   } else {
4485     if (_cm->verbose_low()) {
4486       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4487                              "elapsed = %1.2lfms <<<<<<<<<<",
4488                              _worker_id, _time_target_ms, elapsed_time_ms);
4489     }
4490   }
4491 
4492   _claimed = false;
4493 }
4494 
4495 CMTask::CMTask(uint worker_id,
4496                ConcurrentMark* cm,
4497                size_t* marked_bytes,
4498                BitMap* card_bm,
4499                CMTaskQueue* task_queue,
4500                CMTaskQueueSet* task_queues)
4501   : _g1h(G1CollectedHeap::heap()),
4502     _worker_id(worker_id), _cm(cm),
4503     _claimed(false),
4504     _nextMarkBitMap(NULL), _hash_seed(17),
4505     _task_queue(task_queue),
4506     _task_queues(task_queues),
4507     _cm_oop_closure(NULL),
4508     _marked_bytes_array(marked_bytes),
4509     _card_bm(card_bm) {
4510   guarantee(task_queue != NULL, "invariant");
4511   guarantee(task_queues != NULL, "invariant");
4512 
4513   statsOnly( _clock_due_to_scanning = 0;
4514              _clock_due_to_marking  = 0 );
4515 
4516   _marking_step_diffs_ms.add(0.5);
4517 }
4518 
4519 // These are formatting macros that are used below to ensure
4520 // consistent formatting. The *_H_* versions are used to format the
4521 // header for a particular value and they should be kept consistent
4522 // with the corresponding macro. Also note that most of the macros add
4523 // the necessary white space (as a prefix) which makes them a bit
4524 // easier to compose.
4525 
4526 // All the output lines are prefixed with this string to be able to
4527 // identify them easily in a large log file.
4528 #define G1PPRL_LINE_PREFIX            "###"
4529 
4530 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4531 #ifdef _LP64
4532 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4533 #else // _LP64
4534 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4535 #endif // _LP64
4536 
4537 // For per-region info
4538 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4539 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4540 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4541 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4542 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4543 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4544 
4545 // For summary info
4546 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4547 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4548 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4549 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4550 
4551 G1PrintRegionLivenessInfoClosure::
4552 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4553   : _out(out),
4554     _total_used_bytes(0), _total_capacity_bytes(0),
4555     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4556     _hum_used_bytes(0), _hum_capacity_bytes(0),
4557     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4558     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4559   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4560   MemRegion g1_reserved = g1h->g1_reserved();
4561   double now = os::elapsedTime();
4562 
4563   // Print the header of the output.
4564   _out->cr();
4565   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4566   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4567                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4568                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4569                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4570                  HeapRegion::GrainBytes);
4571   _out->print_cr(G1PPRL_LINE_PREFIX);
4572   _out->print_cr(G1PPRL_LINE_PREFIX
4573                 G1PPRL_TYPE_H_FORMAT
4574                 G1PPRL_ADDR_BASE_H_FORMAT
4575                 G1PPRL_BYTE_H_FORMAT
4576                 G1PPRL_BYTE_H_FORMAT
4577                 G1PPRL_BYTE_H_FORMAT
4578                 G1PPRL_DOUBLE_H_FORMAT
4579                 G1PPRL_BYTE_H_FORMAT
4580                 G1PPRL_BYTE_H_FORMAT,
4581                 "type", "address-range",
4582                 "used", "prev-live", "next-live", "gc-eff",
4583                 "remset", "code-roots");
4584   _out->print_cr(G1PPRL_LINE_PREFIX
4585                 G1PPRL_TYPE_H_FORMAT
4586                 G1PPRL_ADDR_BASE_H_FORMAT
4587                 G1PPRL_BYTE_H_FORMAT
4588                 G1PPRL_BYTE_H_FORMAT
4589                 G1PPRL_BYTE_H_FORMAT
4590                 G1PPRL_DOUBLE_H_FORMAT
4591                 G1PPRL_BYTE_H_FORMAT
4592                 G1PPRL_BYTE_H_FORMAT,
4593                 "", "",
4594                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4595                 "(bytes)", "(bytes)");
4596 }
4597 
4598 // It takes as a parameter a reference to one of the _hum_* fields, it
4599 // deduces the corresponding value for a region in a humongous region
4600 // series (either the region size, or what's left if the _hum_* field
4601 // is < the region size), and updates the _hum_* field accordingly.
4602 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4603   size_t bytes = 0;
4604   // The > 0 check is to deal with the prev and next live bytes which
4605   // could be 0.
4606   if (*hum_bytes > 0) {
4607     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4608     *hum_bytes -= bytes;
4609   }
4610   return bytes;
4611 }
4612 
4613 // It deduces the values for a region in a humongous region series
4614 // from the _hum_* fields and updates those accordingly. It assumes
4615 // that that _hum_* fields have already been set up from the "starts
4616 // humongous" region and we visit the regions in address order.
4617 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4618                                                      size_t* capacity_bytes,
4619                                                      size_t* prev_live_bytes,
4620                                                      size_t* next_live_bytes) {
4621   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4622   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4623   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4624   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4625   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4626 }
4627 
4628 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4629   const char* type       = r->get_type_str();
4630   HeapWord* bottom       = r->bottom();
4631   HeapWord* end          = r->end();
4632   size_t capacity_bytes  = r->capacity();
4633   size_t used_bytes      = r->used();
4634   size_t prev_live_bytes = r->live_bytes();
4635   size_t next_live_bytes = r->next_live_bytes();
4636   double gc_eff          = r->gc_efficiency();
4637   size_t remset_bytes    = r->rem_set()->mem_size();
4638   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4639 
4640   if (r->is_starts_humongous()) {
4641     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4642            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4643            "they should have been zeroed after the last time we used them");
4644     // Set up the _hum_* fields.
4645     _hum_capacity_bytes  = capacity_bytes;
4646     _hum_used_bytes      = used_bytes;
4647     _hum_prev_live_bytes = prev_live_bytes;
4648     _hum_next_live_bytes = next_live_bytes;
4649     get_hum_bytes(&used_bytes, &capacity_bytes,
4650                   &prev_live_bytes, &next_live_bytes);
4651     end = bottom + HeapRegion::GrainWords;
4652   } else if (r->is_continues_humongous()) {
4653     get_hum_bytes(&used_bytes, &capacity_bytes,
4654                   &prev_live_bytes, &next_live_bytes);
4655     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4656   }
4657 
4658   _total_used_bytes      += used_bytes;
4659   _total_capacity_bytes  += capacity_bytes;
4660   _total_prev_live_bytes += prev_live_bytes;
4661   _total_next_live_bytes += next_live_bytes;
4662   _total_remset_bytes    += remset_bytes;
4663   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4664 
4665   // Print a line for this particular region.
4666   _out->print_cr(G1PPRL_LINE_PREFIX
4667                  G1PPRL_TYPE_FORMAT
4668                  G1PPRL_ADDR_BASE_FORMAT
4669                  G1PPRL_BYTE_FORMAT
4670                  G1PPRL_BYTE_FORMAT
4671                  G1PPRL_BYTE_FORMAT
4672                  G1PPRL_DOUBLE_FORMAT
4673                  G1PPRL_BYTE_FORMAT
4674                  G1PPRL_BYTE_FORMAT,
4675                  type, p2i(bottom), p2i(end),
4676                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4677                  remset_bytes, strong_code_roots_bytes);
4678 
4679   return false;
4680 }
4681 
4682 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4683   // add static memory usages to remembered set sizes
4684   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4685   // Print the footer of the output.
4686   _out->print_cr(G1PPRL_LINE_PREFIX);
4687   _out->print_cr(G1PPRL_LINE_PREFIX
4688                  " SUMMARY"
4689                  G1PPRL_SUM_MB_FORMAT("capacity")
4690                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4691                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4692                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4693                  G1PPRL_SUM_MB_FORMAT("remset")
4694                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4695                  bytes_to_mb(_total_capacity_bytes),
4696                  bytes_to_mb(_total_used_bytes),
4697                  perc(_total_used_bytes, _total_capacity_bytes),
4698                  bytes_to_mb(_total_prev_live_bytes),
4699                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4700                  bytes_to_mb(_total_next_live_bytes),
4701                  perc(_total_next_live_bytes, _total_capacity_bytes),
4702                  bytes_to_mb(_total_remset_bytes),
4703                  bytes_to_mb(_total_strong_code_roots_bytes));
4704   _out->cr();
4705 }