1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <sys/types.h>
  76 # include <sys/mman.h>
  77 # include <sys/stat.h>
  78 # include <sys/select.h>
  79 # include <pthread.h>
  80 # include <signal.h>
  81 # include <errno.h>
  82 # include <dlfcn.h>
  83 # include <stdio.h>
  84 # include <unistd.h>
  85 # include <sys/resource.h>
  86 # include <pthread.h>
  87 # include <sys/stat.h>
  88 # include <sys/time.h>
  89 # include <sys/times.h>
  90 # include <sys/utsname.h>
  91 # include <sys/socket.h>
  92 # include <sys/wait.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <syscall.h>
  99 # include <sys/sysinfo.h>
 100 # include <gnu/libc-version.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 const int os::Linux::_vm_default_page_size = (8 * K);
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 pthread_condattr_t os::Linux::_condattr[1];
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 // Declarations
 162 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 163 
 164 // utility functions
 165 
 166 static int SR_initialize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   sysinfo(&si);
 176 
 177   return (julong)si.freeram * si.mem_unit;
 178 }
 179 
 180 julong os::physical_memory() {
 181   return Linux::physical_memory();
 182 }
 183 
 184 // Return true if user is running as root.
 185 
 186 bool os::have_special_privileges() {
 187   static bool init = false;
 188   static bool privileges = false;
 189   if (!init) {
 190     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 191     init = true;
 192   }
 193   return privileges;
 194 }
 195 
 196 
 197 #ifndef SYS_gettid
 198 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 199   #ifdef __ia64__
 200     #define SYS_gettid 1105
 201   #elif __i386__
 202     #define SYS_gettid 224
 203   #elif __amd64__
 204     #define SYS_gettid 186
 205   #elif __sparc__
 206     #define SYS_gettid 143
 207   #else
 208     #error define gettid for the arch
 209   #endif
 210 #endif
 211 
 212 // Cpu architecture string
 213 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 214 
 215 
 216 // pid_t gettid()
 217 //
 218 // Returns the kernel thread id of the currently running thread. Kernel
 219 // thread id is used to access /proc.
 220 //
 221 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 222 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 223 //
 224 pid_t os::Linux::gettid() {
 225   int rslt = syscall(SYS_gettid);
 226   if (rslt == -1) {
 227     // old kernel, no NPTL support
 228     return getpid();
 229   } else {
 230     return (pid_t)rslt;
 231   }
 232 }
 233 
 234 // Most versions of linux have a bug where the number of processors are
 235 // determined by looking at the /proc file system.  In a chroot environment,
 236 // the system call returns 1.  This causes the VM to act as if it is
 237 // a single processor and elide locking (see is_MP() call).
 238 static bool unsafe_chroot_detected = false;
 239 static const char *unstable_chroot_error = "/proc file system not found.\n"
 240                      "Java may be unstable running multithreaded in a chroot "
 241                      "environment on Linux when /proc filesystem is not mounted.";
 242 
 243 void os::Linux::initialize_system_info() {
 244   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 245   if (processor_count() == 1) {
 246     pid_t pid = os::Linux::gettid();
 247     char fname[32];
 248     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 249     FILE *fp = fopen(fname, "r");
 250     if (fp == NULL) {
 251       unsafe_chroot_detected = true;
 252     } else {
 253       fclose(fp);
 254     }
 255   }
 256   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 257   assert(processor_count() > 0, "linux error");
 258 }
 259 
 260 void os::init_system_properties_values() {
 261   // The next steps are taken in the product version:
 262   //
 263   // Obtain the JAVA_HOME value from the location of libjvm.so.
 264   // This library should be located at:
 265   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 266   //
 267   // If "/jre/lib/" appears at the right place in the path, then we
 268   // assume libjvm.so is installed in a JDK and we use this path.
 269   //
 270   // Otherwise exit with message: "Could not create the Java virtual machine."
 271   //
 272   // The following extra steps are taken in the debugging version:
 273   //
 274   // If "/jre/lib/" does NOT appear at the right place in the path
 275   // instead of exit check for $JAVA_HOME environment variable.
 276   //
 277   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 278   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 279   // it looks like libjvm.so is installed there
 280   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 281   //
 282   // Otherwise exit.
 283   //
 284   // Important note: if the location of libjvm.so changes this
 285   // code needs to be changed accordingly.
 286 
 287   // See ld(1):
 288   //      The linker uses the following search paths to locate required
 289   //      shared libraries:
 290   //        1: ...
 291   //        ...
 292   //        7: The default directories, normally /lib and /usr/lib.
 293 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 294   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 295 #else
 296   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 297 #endif
 298 
 299 // Base path of extensions installed on the system.
 300 #define SYS_EXT_DIR     "/usr/java/packages"
 301 #define EXTENSIONS_DIR  "/lib/ext"
 302 
 303   // Buffer that fits several sprintfs.
 304   // Note that the space for the colon and the trailing null are provided
 305   // by the nulls included by the sizeof operator.
 306   const size_t bufsize =
 307     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 308          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 309   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 310 
 311   // sysclasspath, java_home, dll_dir
 312   {
 313     char *pslash;
 314     os::jvm_path(buf, bufsize);
 315 
 316     // Found the full path to libjvm.so.
 317     // Now cut the path to <java_home>/jre if we can.
 318     pslash = strrchr(buf, '/');
 319     if (pslash != NULL) {
 320       *pslash = '\0';            // Get rid of /libjvm.so.
 321     }
 322     pslash = strrchr(buf, '/');
 323     if (pslash != NULL) {
 324       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 325     }
 326     Arguments::set_dll_dir(buf);
 327 
 328     if (pslash != NULL) {
 329       pslash = strrchr(buf, '/');
 330       if (pslash != NULL) {
 331         *pslash = '\0';          // Get rid of /<arch>.
 332         pslash = strrchr(buf, '/');
 333         if (pslash != NULL) {
 334           *pslash = '\0';        // Get rid of /lib.
 335         }
 336       }
 337     }
 338     Arguments::set_java_home(buf);
 339     set_boot_path('/', ':');
 340   }
 341 
 342   // Where to look for native libraries.
 343   //
 344   // Note: Due to a legacy implementation, most of the library path
 345   // is set in the launcher. This was to accomodate linking restrictions
 346   // on legacy Linux implementations (which are no longer supported).
 347   // Eventually, all the library path setting will be done here.
 348   //
 349   // However, to prevent the proliferation of improperly built native
 350   // libraries, the new path component /usr/java/packages is added here.
 351   // Eventually, all the library path setting will be done here.
 352   {
 353     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 354     // should always exist (until the legacy problem cited above is
 355     // addressed).
 356     const char *v = ::getenv("LD_LIBRARY_PATH");
 357     const char *v_colon = ":";
 358     if (v == NULL) { v = ""; v_colon = ""; }
 359     // That's +1 for the colon and +1 for the trailing '\0'.
 360     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 361                                                      strlen(v) + 1 +
 362                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 363                                                      mtInternal);
 364     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 365     Arguments::set_library_path(ld_library_path);
 366     FREE_C_HEAP_ARRAY(char, ld_library_path);
 367   }
 368 
 369   // Extensions directories.
 370   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 371   Arguments::set_ext_dirs(buf);
 372 
 373   FREE_C_HEAP_ARRAY(char, buf);
 374 
 375 #undef DEFAULT_LIBPATH
 376 #undef SYS_EXT_DIR
 377 #undef EXTENSIONS_DIR
 378 }
 379 
 380 ////////////////////////////////////////////////////////////////////////////////
 381 // breakpoint support
 382 
 383 void os::breakpoint() {
 384   BREAKPOINT;
 385 }
 386 
 387 extern "C" void breakpoint() {
 388   // use debugger to set breakpoint here
 389 }
 390 
 391 ////////////////////////////////////////////////////////////////////////////////
 392 // signal support
 393 
 394 debug_only(static bool signal_sets_initialized = false);
 395 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 396 
 397 bool os::Linux::is_sig_ignored(int sig) {
 398   struct sigaction oact;
 399   sigaction(sig, (struct sigaction*)NULL, &oact);
 400   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 401                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 402   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 403     return true;
 404   } else {
 405     return false;
 406   }
 407 }
 408 
 409 void os::Linux::signal_sets_init() {
 410   // Should also have an assertion stating we are still single-threaded.
 411   assert(!signal_sets_initialized, "Already initialized");
 412   // Fill in signals that are necessarily unblocked for all threads in
 413   // the VM. Currently, we unblock the following signals:
 414   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 415   //                         by -Xrs (=ReduceSignalUsage));
 416   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 417   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 418   // the dispositions or masks wrt these signals.
 419   // Programs embedding the VM that want to use the above signals for their
 420   // own purposes must, at this time, use the "-Xrs" option to prevent
 421   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 422   // (See bug 4345157, and other related bugs).
 423   // In reality, though, unblocking these signals is really a nop, since
 424   // these signals are not blocked by default.
 425   sigemptyset(&unblocked_sigs);
 426   sigemptyset(&allowdebug_blocked_sigs);
 427   sigaddset(&unblocked_sigs, SIGILL);
 428   sigaddset(&unblocked_sigs, SIGSEGV);
 429   sigaddset(&unblocked_sigs, SIGBUS);
 430   sigaddset(&unblocked_sigs, SIGFPE);
 431 #if defined(PPC64)
 432   sigaddset(&unblocked_sigs, SIGTRAP);
 433 #endif
 434   sigaddset(&unblocked_sigs, SR_signum);
 435 
 436   if (!ReduceSignalUsage) {
 437     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 438       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 439       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 440     }
 441     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 442       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 443       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 444     }
 445     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 446       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 447       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 448     }
 449   }
 450   // Fill in signals that are blocked by all but the VM thread.
 451   sigemptyset(&vm_sigs);
 452   if (!ReduceSignalUsage) {
 453     sigaddset(&vm_sigs, BREAK_SIGNAL);
 454   }
 455   debug_only(signal_sets_initialized = true);
 456 
 457 }
 458 
 459 // These are signals that are unblocked while a thread is running Java.
 460 // (For some reason, they get blocked by default.)
 461 sigset_t* os::Linux::unblocked_signals() {
 462   assert(signal_sets_initialized, "Not initialized");
 463   return &unblocked_sigs;
 464 }
 465 
 466 // These are the signals that are blocked while a (non-VM) thread is
 467 // running Java. Only the VM thread handles these signals.
 468 sigset_t* os::Linux::vm_signals() {
 469   assert(signal_sets_initialized, "Not initialized");
 470   return &vm_sigs;
 471 }
 472 
 473 // These are signals that are blocked during cond_wait to allow debugger in
 474 sigset_t* os::Linux::allowdebug_blocked_signals() {
 475   assert(signal_sets_initialized, "Not initialized");
 476   return &allowdebug_blocked_sigs;
 477 }
 478 
 479 void os::Linux::hotspot_sigmask(Thread* thread) {
 480 
 481   //Save caller's signal mask before setting VM signal mask
 482   sigset_t caller_sigmask;
 483   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 484 
 485   OSThread* osthread = thread->osthread();
 486   osthread->set_caller_sigmask(caller_sigmask);
 487 
 488   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 489 
 490   if (!ReduceSignalUsage) {
 491     if (thread->is_VM_thread()) {
 492       // Only the VM thread handles BREAK_SIGNAL ...
 493       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 494     } else {
 495       // ... all other threads block BREAK_SIGNAL
 496       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 497     }
 498   }
 499 }
 500 
 501 //////////////////////////////////////////////////////////////////////////////
 502 // detecting pthread library
 503 
 504 void os::Linux::libpthread_init() {
 505   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 506   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 507   // generic name for earlier versions.
 508   // Define macros here so we can build HotSpot on old systems.
 509 #ifndef _CS_GNU_LIBC_VERSION
 510   #define _CS_GNU_LIBC_VERSION 2
 511 #endif
 512 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 513   #define _CS_GNU_LIBPTHREAD_VERSION 3
 514 #endif
 515 
 516   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 517   if (n > 0) {
 518     char *str = (char *)malloc(n, mtInternal);
 519     confstr(_CS_GNU_LIBC_VERSION, str, n);
 520     os::Linux::set_glibc_version(str);
 521   } else {
 522     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 523     static char _gnu_libc_version[32];
 524     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 525                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 526     os::Linux::set_glibc_version(_gnu_libc_version);
 527   }
 528 
 529   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 530   if (n > 0) {
 531     char *str = (char *)malloc(n, mtInternal);
 532     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 533     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 534     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 535     // is the case. LinuxThreads has a hard limit on max number of threads.
 536     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 537     // On the other hand, NPTL does not have such a limit, sysconf()
 538     // will return -1 and errno is not changed. Check if it is really NPTL.
 539     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 540         strstr(str, "NPTL") &&
 541         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 542       free(str);
 543       os::Linux::set_libpthread_version("linuxthreads");
 544     } else {
 545       os::Linux::set_libpthread_version(str);
 546     }
 547   } else {
 548     // glibc before 2.3.2 only has LinuxThreads.
 549     os::Linux::set_libpthread_version("linuxthreads");
 550   }
 551 
 552   if (strstr(libpthread_version(), "NPTL")) {
 553     os::Linux::set_is_NPTL();
 554   } else {
 555     os::Linux::set_is_LinuxThreads();
 556   }
 557 
 558   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 559   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 560   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 561     os::Linux::set_is_floating_stack();
 562   }
 563 }
 564 
 565 /////////////////////////////////////////////////////////////////////////////
 566 // thread stack
 567 
 568 // Force Linux kernel to expand current thread stack. If "bottom" is close
 569 // to the stack guard, caller should block all signals.
 570 //
 571 // MAP_GROWSDOWN:
 572 //   A special mmap() flag that is used to implement thread stacks. It tells
 573 //   kernel that the memory region should extend downwards when needed. This
 574 //   allows early versions of LinuxThreads to only mmap the first few pages
 575 //   when creating a new thread. Linux kernel will automatically expand thread
 576 //   stack as needed (on page faults).
 577 //
 578 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 579 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 580 //   region, it's hard to tell if the fault is due to a legitimate stack
 581 //   access or because of reading/writing non-exist memory (e.g. buffer
 582 //   overrun). As a rule, if the fault happens below current stack pointer,
 583 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 584 //   application (see Linux kernel fault.c).
 585 //
 586 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 587 //   stack overflow detection.
 588 //
 589 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 590 //   not use this flag. However, the stack of initial thread is not created
 591 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 592 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 593 //   and then attach the thread to JVM.
 594 //
 595 // To get around the problem and allow stack banging on Linux, we need to
 596 // manually expand thread stack after receiving the SIGSEGV.
 597 //
 598 // There are two ways to expand thread stack to address "bottom", we used
 599 // both of them in JVM before 1.5:
 600 //   1. adjust stack pointer first so that it is below "bottom", and then
 601 //      touch "bottom"
 602 //   2. mmap() the page in question
 603 //
 604 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 605 // if current sp is already near the lower end of page 101, and we need to
 606 // call mmap() to map page 100, it is possible that part of the mmap() frame
 607 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 608 // That will destroy the mmap() frame and cause VM to crash.
 609 //
 610 // The following code works by adjusting sp first, then accessing the "bottom"
 611 // page to force a page fault. Linux kernel will then automatically expand the
 612 // stack mapping.
 613 //
 614 // _expand_stack_to() assumes its frame size is less than page size, which
 615 // should always be true if the function is not inlined.
 616 
 617 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 618   #define NOINLINE
 619 #else
 620   #define NOINLINE __attribute__ ((noinline))
 621 #endif
 622 
 623 static void _expand_stack_to(address bottom) NOINLINE;
 624 
 625 static void _expand_stack_to(address bottom) {
 626   address sp;
 627   size_t size;
 628   volatile char *p;
 629 
 630   // Adjust bottom to point to the largest address within the same page, it
 631   // gives us a one-page buffer if alloca() allocates slightly more memory.
 632   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 633   bottom += os::Linux::page_size() - 1;
 634 
 635   // sp might be slightly above current stack pointer; if that's the case, we
 636   // will alloca() a little more space than necessary, which is OK. Don't use
 637   // os::current_stack_pointer(), as its result can be slightly below current
 638   // stack pointer, causing us to not alloca enough to reach "bottom".
 639   sp = (address)&sp;
 640 
 641   if (sp > bottom) {
 642     size = sp - bottom;
 643     p = (volatile char *)alloca(size);
 644     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 645     p[0] = '\0';
 646   }
 647 }
 648 
 649 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 650   assert(t!=NULL, "just checking");
 651   assert(t->osthread()->expanding_stack(), "expand should be set");
 652   assert(t->stack_base() != NULL, "stack_base was not initialized");
 653 
 654   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 655     sigset_t mask_all, old_sigset;
 656     sigfillset(&mask_all);
 657     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 658     _expand_stack_to(addr);
 659     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 660     return true;
 661   }
 662   return false;
 663 }
 664 
 665 //////////////////////////////////////////////////////////////////////////////
 666 // create new thread
 667 
 668 static address highest_vm_reserved_address();
 669 
 670 // check if it's safe to start a new thread
 671 static bool _thread_safety_check(Thread* thread) {
 672   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 673     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 674     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 675     //   allocated (MAP_FIXED) from high address space. Every thread stack
 676     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 677     //   it to other values if they rebuild LinuxThreads).
 678     //
 679     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 680     // the memory region has already been mmap'ed. That means if we have too
 681     // many threads and/or very large heap, eventually thread stack will
 682     // collide with heap.
 683     //
 684     // Here we try to prevent heap/stack collision by comparing current
 685     // stack bottom with the highest address that has been mmap'ed by JVM
 686     // plus a safety margin for memory maps created by native code.
 687     //
 688     // This feature can be disabled by setting ThreadSafetyMargin to 0
 689     //
 690     if (ThreadSafetyMargin > 0) {
 691       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 692 
 693       // not safe if our stack extends below the safety margin
 694       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 695     } else {
 696       return true;
 697     }
 698   } else {
 699     // Floating stack LinuxThreads or NPTL:
 700     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 701     //   there's not enough space left, pthread_create() will fail. If we come
 702     //   here, that means enough space has been reserved for stack.
 703     return true;
 704   }
 705 }
 706 
 707 // Thread start routine for all newly created threads
 708 static void *java_start(Thread *thread) {
 709   // Try to randomize the cache line index of hot stack frames.
 710   // This helps when threads of the same stack traces evict each other's
 711   // cache lines. The threads can be either from the same JVM instance, or
 712   // from different JVM instances. The benefit is especially true for
 713   // processors with hyperthreading technology.
 714   static int counter = 0;
 715   int pid = os::current_process_id();
 716   alloca(((pid ^ counter++) & 7) * 128);
 717 
 718   ThreadLocalStorage::set_thread(thread);
 719 
 720   OSThread* osthread = thread->osthread();
 721   Monitor* sync = osthread->startThread_lock();
 722 
 723   // non floating stack LinuxThreads needs extra check, see above
 724   if (!_thread_safety_check(thread)) {
 725     // notify parent thread
 726     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 727     osthread->set_state(ZOMBIE);
 728     sync->notify_all();
 729     return NULL;
 730   }
 731 
 732   // thread_id is kernel thread id (similar to Solaris LWP id)
 733   osthread->set_thread_id(os::Linux::gettid());
 734 
 735   if (UseNUMA) {
 736     int lgrp_id = os::numa_get_group_id();
 737     if (lgrp_id != -1) {
 738       thread->set_lgrp_id(lgrp_id);
 739     }
 740   }
 741   // initialize signal mask for this thread
 742   os::Linux::hotspot_sigmask(thread);
 743 
 744   // initialize floating point control register
 745   os::Linux::init_thread_fpu_state();
 746 
 747   // handshaking with parent thread
 748   {
 749     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 750 
 751     // notify parent thread
 752     osthread->set_state(INITIALIZED);
 753     sync->notify_all();
 754 
 755     // wait until os::start_thread()
 756     while (osthread->get_state() == INITIALIZED) {
 757       sync->wait(Mutex::_no_safepoint_check_flag);
 758     }
 759   }
 760 
 761   // call one more level start routine
 762   thread->run();
 763 
 764   return 0;
 765 }
 766 
 767 bool os::create_thread(Thread* thread, ThreadType thr_type,
 768                        size_t stack_size) {
 769   assert(thread->osthread() == NULL, "caller responsible");
 770 
 771   // Allocate the OSThread object
 772   OSThread* osthread = new OSThread(NULL, NULL);
 773   if (osthread == NULL) {
 774     return false;
 775   }
 776 
 777   // set the correct thread state
 778   osthread->set_thread_type(thr_type);
 779 
 780   // Initial state is ALLOCATED but not INITIALIZED
 781   osthread->set_state(ALLOCATED);
 782 
 783   thread->set_osthread(osthread);
 784 
 785   // init thread attributes
 786   pthread_attr_t attr;
 787   pthread_attr_init(&attr);
 788   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 789 
 790   // stack size
 791   if (os::Linux::supports_variable_stack_size()) {
 792     // calculate stack size if it's not specified by caller
 793     if (stack_size == 0) {
 794       stack_size = os::Linux::default_stack_size(thr_type);
 795 
 796       switch (thr_type) {
 797       case os::java_thread:
 798         // Java threads use ThreadStackSize which default value can be
 799         // changed with the flag -Xss
 800         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 801         stack_size = JavaThread::stack_size_at_create();
 802         break;
 803       case os::compiler_thread:
 804         if (CompilerThreadStackSize > 0) {
 805           stack_size = (size_t)(CompilerThreadStackSize * K);
 806           break;
 807         } // else fall through:
 808           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 809       case os::vm_thread:
 810       case os::pgc_thread:
 811       case os::cgc_thread:
 812       case os::watcher_thread:
 813         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 814         break;
 815       }
 816     }
 817 
 818     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 819     pthread_attr_setstacksize(&attr, stack_size);
 820   } else {
 821     // let pthread_create() pick the default value.
 822   }
 823 
 824   // glibc guard page
 825   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 826 
 827   ThreadState state;
 828 
 829   {
 830     // Serialize thread creation if we are running with fixed stack LinuxThreads
 831     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 832     if (lock) {
 833       os::Linux::createThread_lock()->lock_without_safepoint_check();
 834     }
 835 
 836     pthread_t tid;
 837     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 838 
 839     pthread_attr_destroy(&attr);
 840 
 841     if (ret != 0) {
 842       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 843         perror("pthread_create()");
 844       }
 845       // Need to clean up stuff we've allocated so far
 846       thread->set_osthread(NULL);
 847       delete osthread;
 848       if (lock) os::Linux::createThread_lock()->unlock();
 849       return false;
 850     }
 851 
 852     // Store pthread info into the OSThread
 853     osthread->set_pthread_id(tid);
 854 
 855     // Wait until child thread is either initialized or aborted
 856     {
 857       Monitor* sync_with_child = osthread->startThread_lock();
 858       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 859       while ((state = osthread->get_state()) == ALLOCATED) {
 860         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 861       }
 862     }
 863 
 864     if (lock) {
 865       os::Linux::createThread_lock()->unlock();
 866     }
 867   }
 868 
 869   // Aborted due to thread limit being reached
 870   if (state == ZOMBIE) {
 871     thread->set_osthread(NULL);
 872     delete osthread;
 873     return false;
 874   }
 875 
 876   // The thread is returned suspended (in state INITIALIZED),
 877   // and is started higher up in the call chain
 878   assert(state == INITIALIZED, "race condition");
 879   return true;
 880 }
 881 
 882 /////////////////////////////////////////////////////////////////////////////
 883 // attach existing thread
 884 
 885 // bootstrap the main thread
 886 bool os::create_main_thread(JavaThread* thread) {
 887   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 888   return create_attached_thread(thread);
 889 }
 890 
 891 bool os::create_attached_thread(JavaThread* thread) {
 892 #ifdef ASSERT
 893   thread->verify_not_published();
 894 #endif
 895 
 896   // Allocate the OSThread object
 897   OSThread* osthread = new OSThread(NULL, NULL);
 898 
 899   if (osthread == NULL) {
 900     return false;
 901   }
 902 
 903   // Store pthread info into the OSThread
 904   osthread->set_thread_id(os::Linux::gettid());
 905   osthread->set_pthread_id(::pthread_self());
 906 
 907   // initialize floating point control register
 908   os::Linux::init_thread_fpu_state();
 909 
 910   // Initial thread state is RUNNABLE
 911   osthread->set_state(RUNNABLE);
 912 
 913   thread->set_osthread(osthread);
 914 
 915   if (UseNUMA) {
 916     int lgrp_id = os::numa_get_group_id();
 917     if (lgrp_id != -1) {
 918       thread->set_lgrp_id(lgrp_id);
 919     }
 920   }
 921 
 922   if (os::Linux::is_initial_thread()) {
 923     // If current thread is initial thread, its stack is mapped on demand,
 924     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 925     // the entire stack region to avoid SEGV in stack banging.
 926     // It is also useful to get around the heap-stack-gap problem on SuSE
 927     // kernel (see 4821821 for details). We first expand stack to the top
 928     // of yellow zone, then enable stack yellow zone (order is significant,
 929     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 930     // is no gap between the last two virtual memory regions.
 931 
 932     JavaThread *jt = (JavaThread *)thread;
 933     address addr = jt->stack_yellow_zone_base();
 934     assert(addr != NULL, "initialization problem?");
 935     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 936 
 937     osthread->set_expanding_stack();
 938     os::Linux::manually_expand_stack(jt, addr);
 939     osthread->clear_expanding_stack();
 940   }
 941 
 942   // initialize signal mask for this thread
 943   // and save the caller's signal mask
 944   os::Linux::hotspot_sigmask(thread);
 945 
 946   return true;
 947 }
 948 
 949 void os::pd_start_thread(Thread* thread) {
 950   OSThread * osthread = thread->osthread();
 951   assert(osthread->get_state() != INITIALIZED, "just checking");
 952   Monitor* sync_with_child = osthread->startThread_lock();
 953   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 954   sync_with_child->notify();
 955 }
 956 
 957 // Free Linux resources related to the OSThread
 958 void os::free_thread(OSThread* osthread) {
 959   assert(osthread != NULL, "osthread not set");
 960 
 961   if (Thread::current()->osthread() == osthread) {
 962     // Restore caller's signal mask
 963     sigset_t sigmask = osthread->caller_sigmask();
 964     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 965   }
 966 
 967   delete osthread;
 968 }
 969 
 970 //////////////////////////////////////////////////////////////////////////////
 971 // thread local storage
 972 
 973 // Restore the thread pointer if the destructor is called. This is in case
 974 // someone from JNI code sets up a destructor with pthread_key_create to run
 975 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 976 // will hang or crash. When detachCurrentThread is called the key will be set
 977 // to null and we will not be called again. If detachCurrentThread is never
 978 // called we could loop forever depending on the pthread implementation.
 979 static void restore_thread_pointer(void* p) {
 980   Thread* thread = (Thread*) p;
 981   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 982 }
 983 
 984 int os::allocate_thread_local_storage() {
 985   pthread_key_t key;
 986   int rslt = pthread_key_create(&key, restore_thread_pointer);
 987   assert(rslt == 0, "cannot allocate thread local storage");
 988   return (int)key;
 989 }
 990 
 991 // Note: This is currently not used by VM, as we don't destroy TLS key
 992 // on VM exit.
 993 void os::free_thread_local_storage(int index) {
 994   int rslt = pthread_key_delete((pthread_key_t)index);
 995   assert(rslt == 0, "invalid index");
 996 }
 997 
 998 void os::thread_local_storage_at_put(int index, void* value) {
 999   int rslt = pthread_setspecific((pthread_key_t)index, value);
1000   assert(rslt == 0, "pthread_setspecific failed");
1001 }
1002 
1003 extern "C" Thread* get_thread() {
1004   return ThreadLocalStorage::thread();
1005 }
1006 
1007 //////////////////////////////////////////////////////////////////////////////
1008 // initial thread
1009 
1010 // Check if current thread is the initial thread, similar to Solaris thr_main.
1011 bool os::Linux::is_initial_thread(void) {
1012   char dummy;
1013   // If called before init complete, thread stack bottom will be null.
1014   // Can be called if fatal error occurs before initialization.
1015   if (initial_thread_stack_bottom() == NULL) return false;
1016   assert(initial_thread_stack_bottom() != NULL &&
1017          initial_thread_stack_size()   != 0,
1018          "os::init did not locate initial thread's stack region");
1019   if ((address)&dummy >= initial_thread_stack_bottom() &&
1020       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1021     return true;
1022   } else {
1023     return false;
1024   }
1025 }
1026 
1027 // Find the virtual memory area that contains addr
1028 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1029   FILE *fp = fopen("/proc/self/maps", "r");
1030   if (fp) {
1031     address low, high;
1032     while (!feof(fp)) {
1033       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1034         if (low <= addr && addr < high) {
1035           if (vma_low)  *vma_low  = low;
1036           if (vma_high) *vma_high = high;
1037           fclose(fp);
1038           return true;
1039         }
1040       }
1041       for (;;) {
1042         int ch = fgetc(fp);
1043         if (ch == EOF || ch == (int)'\n') break;
1044       }
1045     }
1046     fclose(fp);
1047   }
1048   return false;
1049 }
1050 
1051 // Locate initial thread stack. This special handling of initial thread stack
1052 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1053 // bogus value for initial thread.
1054 void os::Linux::capture_initial_stack(size_t max_size) {
1055   // stack size is the easy part, get it from RLIMIT_STACK
1056   size_t stack_size;
1057   struct rlimit rlim;
1058   getrlimit(RLIMIT_STACK, &rlim);
1059   stack_size = rlim.rlim_cur;
1060 
1061   // 6308388: a bug in ld.so will relocate its own .data section to the
1062   //   lower end of primordial stack; reduce ulimit -s value a little bit
1063   //   so we won't install guard page on ld.so's data section.
1064   stack_size -= 2 * page_size();
1065 
1066   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1067   //   7.1, in both cases we will get 2G in return value.
1068   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1069   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1070   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1071   //   in case other parts in glibc still assumes 2M max stack size.
1072   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1073   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1074   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1075     stack_size = 2 * K * K IA64_ONLY(*2);
1076   }
1077   // Try to figure out where the stack base (top) is. This is harder.
1078   //
1079   // When an application is started, glibc saves the initial stack pointer in
1080   // a global variable "__libc_stack_end", which is then used by system
1081   // libraries. __libc_stack_end should be pretty close to stack top. The
1082   // variable is available since the very early days. However, because it is
1083   // a private interface, it could disappear in the future.
1084   //
1085   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1086   // to __libc_stack_end, it is very close to stack top, but isn't the real
1087   // stack top. Note that /proc may not exist if VM is running as a chroot
1088   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1089   // /proc/<pid>/stat could change in the future (though unlikely).
1090   //
1091   // We try __libc_stack_end first. If that doesn't work, look for
1092   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1093   // as a hint, which should work well in most cases.
1094 
1095   uintptr_t stack_start;
1096 
1097   // try __libc_stack_end first
1098   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1099   if (p && *p) {
1100     stack_start = *p;
1101   } else {
1102     // see if we can get the start_stack field from /proc/self/stat
1103     FILE *fp;
1104     int pid;
1105     char state;
1106     int ppid;
1107     int pgrp;
1108     int session;
1109     int nr;
1110     int tpgrp;
1111     unsigned long flags;
1112     unsigned long minflt;
1113     unsigned long cminflt;
1114     unsigned long majflt;
1115     unsigned long cmajflt;
1116     unsigned long utime;
1117     unsigned long stime;
1118     long cutime;
1119     long cstime;
1120     long prio;
1121     long nice;
1122     long junk;
1123     long it_real;
1124     uintptr_t start;
1125     uintptr_t vsize;
1126     intptr_t rss;
1127     uintptr_t rsslim;
1128     uintptr_t scodes;
1129     uintptr_t ecode;
1130     int i;
1131 
1132     // Figure what the primordial thread stack base is. Code is inspired
1133     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1134     // followed by command name surrounded by parentheses, state, etc.
1135     char stat[2048];
1136     int statlen;
1137 
1138     fp = fopen("/proc/self/stat", "r");
1139     if (fp) {
1140       statlen = fread(stat, 1, 2047, fp);
1141       stat[statlen] = '\0';
1142       fclose(fp);
1143 
1144       // Skip pid and the command string. Note that we could be dealing with
1145       // weird command names, e.g. user could decide to rename java launcher
1146       // to "java 1.4.2 :)", then the stat file would look like
1147       //                1234 (java 1.4.2 :)) R ... ...
1148       // We don't really need to know the command string, just find the last
1149       // occurrence of ")" and then start parsing from there. See bug 4726580.
1150       char * s = strrchr(stat, ')');
1151 
1152       i = 0;
1153       if (s) {
1154         // Skip blank chars
1155         do { s++; } while (s && isspace(*s));
1156 
1157 #define _UFM UINTX_FORMAT
1158 #define _DFM INTX_FORMAT
1159 
1160         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1161         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1162         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1163                    &state,          // 3  %c
1164                    &ppid,           // 4  %d
1165                    &pgrp,           // 5  %d
1166                    &session,        // 6  %d
1167                    &nr,             // 7  %d
1168                    &tpgrp,          // 8  %d
1169                    &flags,          // 9  %lu
1170                    &minflt,         // 10 %lu
1171                    &cminflt,        // 11 %lu
1172                    &majflt,         // 12 %lu
1173                    &cmajflt,        // 13 %lu
1174                    &utime,          // 14 %lu
1175                    &stime,          // 15 %lu
1176                    &cutime,         // 16 %ld
1177                    &cstime,         // 17 %ld
1178                    &prio,           // 18 %ld
1179                    &nice,           // 19 %ld
1180                    &junk,           // 20 %ld
1181                    &it_real,        // 21 %ld
1182                    &start,          // 22 UINTX_FORMAT
1183                    &vsize,          // 23 UINTX_FORMAT
1184                    &rss,            // 24 INTX_FORMAT
1185                    &rsslim,         // 25 UINTX_FORMAT
1186                    &scodes,         // 26 UINTX_FORMAT
1187                    &ecode,          // 27 UINTX_FORMAT
1188                    &stack_start);   // 28 UINTX_FORMAT
1189       }
1190 
1191 #undef _UFM
1192 #undef _DFM
1193 
1194       if (i != 28 - 2) {
1195         assert(false, "Bad conversion from /proc/self/stat");
1196         // product mode - assume we are the initial thread, good luck in the
1197         // embedded case.
1198         warning("Can't detect initial thread stack location - bad conversion");
1199         stack_start = (uintptr_t) &rlim;
1200       }
1201     } else {
1202       // For some reason we can't open /proc/self/stat (for example, running on
1203       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1204       // most cases, so don't abort:
1205       warning("Can't detect initial thread stack location - no /proc/self/stat");
1206       stack_start = (uintptr_t) &rlim;
1207     }
1208   }
1209 
1210   // Now we have a pointer (stack_start) very close to the stack top, the
1211   // next thing to do is to figure out the exact location of stack top. We
1212   // can find out the virtual memory area that contains stack_start by
1213   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1214   // and its upper limit is the real stack top. (again, this would fail if
1215   // running inside chroot, because /proc may not exist.)
1216 
1217   uintptr_t stack_top;
1218   address low, high;
1219   if (find_vma((address)stack_start, &low, &high)) {
1220     // success, "high" is the true stack top. (ignore "low", because initial
1221     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1222     stack_top = (uintptr_t)high;
1223   } else {
1224     // failed, likely because /proc/self/maps does not exist
1225     warning("Can't detect initial thread stack location - find_vma failed");
1226     // best effort: stack_start is normally within a few pages below the real
1227     // stack top, use it as stack top, and reduce stack size so we won't put
1228     // guard page outside stack.
1229     stack_top = stack_start;
1230     stack_size -= 16 * page_size();
1231   }
1232 
1233   // stack_top could be partially down the page so align it
1234   stack_top = align_size_up(stack_top, page_size());
1235 
1236   if (max_size && stack_size > max_size) {
1237     _initial_thread_stack_size = max_size;
1238   } else {
1239     _initial_thread_stack_size = stack_size;
1240   }
1241 
1242   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1243   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1244 }
1245 
1246 ////////////////////////////////////////////////////////////////////////////////
1247 // time support
1248 
1249 // Time since start-up in seconds to a fine granularity.
1250 // Used by VMSelfDestructTimer and the MemProfiler.
1251 double os::elapsedTime() {
1252 
1253   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1254 }
1255 
1256 jlong os::elapsed_counter() {
1257   return javaTimeNanos() - initial_time_count;
1258 }
1259 
1260 jlong os::elapsed_frequency() {
1261   return NANOSECS_PER_SEC; // nanosecond resolution
1262 }
1263 
1264 bool os::supports_vtime() { return true; }
1265 bool os::enable_vtime()   { return false; }
1266 bool os::vtime_enabled()  { return false; }
1267 
1268 double os::elapsedVTime() {
1269   struct rusage usage;
1270   int retval = getrusage(RUSAGE_THREAD, &usage);
1271   if (retval == 0) {
1272     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1273   } else {
1274     // better than nothing, but not much
1275     return elapsedTime();
1276   }
1277 }
1278 
1279 jlong os::javaTimeMillis() {
1280   timeval time;
1281   int status = gettimeofday(&time, NULL);
1282   assert(status != -1, "linux error");
1283   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1284 }
1285 
1286 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1287   timeval time;
1288   int status = gettimeofday(&time, NULL);
1289   assert(status != -1, "linux error");
1290   seconds = jlong(time.tv_sec);
1291   nanos = jlong(time.tv_usec) * 1000;
1292 }
1293 
1294 
1295 #ifndef CLOCK_MONOTONIC
1296   #define CLOCK_MONOTONIC (1)
1297 #endif
1298 
1299 void os::Linux::clock_init() {
1300   // we do dlopen's in this particular order due to bug in linux
1301   // dynamical loader (see 6348968) leading to crash on exit
1302   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1303   if (handle == NULL) {
1304     handle = dlopen("librt.so", RTLD_LAZY);
1305   }
1306 
1307   if (handle) {
1308     int (*clock_getres_func)(clockid_t, struct timespec*) =
1309            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1310     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1311            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1312     if (clock_getres_func && clock_gettime_func) {
1313       // See if monotonic clock is supported by the kernel. Note that some
1314       // early implementations simply return kernel jiffies (updated every
1315       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1316       // for nano time (though the monotonic property is still nice to have).
1317       // It's fixed in newer kernels, however clock_getres() still returns
1318       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1319       // resolution for now. Hopefully as people move to new kernels, this
1320       // won't be a problem.
1321       struct timespec res;
1322       struct timespec tp;
1323       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1324           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1325         // yes, monotonic clock is supported
1326         _clock_gettime = clock_gettime_func;
1327         return;
1328       } else {
1329         // close librt if there is no monotonic clock
1330         dlclose(handle);
1331       }
1332     }
1333   }
1334   warning("No monotonic clock was available - timed services may " \
1335           "be adversely affected if the time-of-day clock changes");
1336 }
1337 
1338 #ifndef SYS_clock_getres
1339   #if defined(IA32) || defined(AMD64)
1340     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1341     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1342   #else
1343     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1344     #define sys_clock_getres(x,y)  -1
1345   #endif
1346 #else
1347   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1348 #endif
1349 
1350 void os::Linux::fast_thread_clock_init() {
1351   if (!UseLinuxPosixThreadCPUClocks) {
1352     return;
1353   }
1354   clockid_t clockid;
1355   struct timespec tp;
1356   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1357       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1358 
1359   // Switch to using fast clocks for thread cpu time if
1360   // the sys_clock_getres() returns 0 error code.
1361   // Note, that some kernels may support the current thread
1362   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1363   // returned by the pthread_getcpuclockid().
1364   // If the fast Posix clocks are supported then the sys_clock_getres()
1365   // must return at least tp.tv_sec == 0 which means a resolution
1366   // better than 1 sec. This is extra check for reliability.
1367 
1368   if (pthread_getcpuclockid_func &&
1369       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1370       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1371     _supports_fast_thread_cpu_time = true;
1372     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1373   }
1374 }
1375 
1376 jlong os::javaTimeNanos() {
1377   if (os::supports_monotonic_clock()) {
1378     struct timespec tp;
1379     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1380     assert(status == 0, "gettime error");
1381     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1382     return result;
1383   } else {
1384     timeval time;
1385     int status = gettimeofday(&time, NULL);
1386     assert(status != -1, "linux error");
1387     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1388     return 1000 * usecs;
1389   }
1390 }
1391 
1392 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1393   if (os::supports_monotonic_clock()) {
1394     info_ptr->max_value = ALL_64_BITS;
1395 
1396     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1397     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1398     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1399   } else {
1400     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1401     info_ptr->max_value = ALL_64_BITS;
1402 
1403     // gettimeofday is a real time clock so it skips
1404     info_ptr->may_skip_backward = true;
1405     info_ptr->may_skip_forward = true;
1406   }
1407 
1408   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1409 }
1410 
1411 // Return the real, user, and system times in seconds from an
1412 // arbitrary fixed point in the past.
1413 bool os::getTimesSecs(double* process_real_time,
1414                       double* process_user_time,
1415                       double* process_system_time) {
1416   struct tms ticks;
1417   clock_t real_ticks = times(&ticks);
1418 
1419   if (real_ticks == (clock_t) (-1)) {
1420     return false;
1421   } else {
1422     double ticks_per_second = (double) clock_tics_per_sec;
1423     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1424     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1425     *process_real_time = ((double) real_ticks) / ticks_per_second;
1426 
1427     return true;
1428   }
1429 }
1430 
1431 
1432 char * os::local_time_string(char *buf, size_t buflen) {
1433   struct tm t;
1434   time_t long_time;
1435   time(&long_time);
1436   localtime_r(&long_time, &t);
1437   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1438                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1439                t.tm_hour, t.tm_min, t.tm_sec);
1440   return buf;
1441 }
1442 
1443 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1444   return localtime_r(clock, res);
1445 }
1446 
1447 ////////////////////////////////////////////////////////////////////////////////
1448 // runtime exit support
1449 
1450 // Note: os::shutdown() might be called very early during initialization, or
1451 // called from signal handler. Before adding something to os::shutdown(), make
1452 // sure it is async-safe and can handle partially initialized VM.
1453 void os::shutdown() {
1454 
1455   // allow PerfMemory to attempt cleanup of any persistent resources
1456   perfMemory_exit();
1457 
1458   // needs to remove object in file system
1459   AttachListener::abort();
1460 
1461   // flush buffered output, finish log files
1462   ostream_abort();
1463 
1464   // Check for abort hook
1465   abort_hook_t abort_hook = Arguments::abort_hook();
1466   if (abort_hook != NULL) {
1467     abort_hook();
1468   }
1469 
1470 }
1471 
1472 // Note: os::abort() might be called very early during initialization, or
1473 // called from signal handler. Before adding something to os::abort(), make
1474 // sure it is async-safe and can handle partially initialized VM.
1475 void os::abort(bool dump_core) {
1476   os::shutdown();
1477   if (dump_core) {
1478 #ifndef PRODUCT
1479     fdStream out(defaultStream::output_fd());
1480     out.print_raw("Current thread is ");
1481     char buf[16];
1482     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1483     out.print_raw_cr(buf);
1484     out.print_raw_cr("Dumping core ...");
1485 #endif
1486     ::abort(); // dump core
1487   }
1488 
1489   ::exit(1);
1490 }
1491 
1492 // Die immediately, no exit hook, no abort hook, no cleanup.
1493 void os::die() {
1494   // _exit() on LinuxThreads only kills current thread
1495   ::abort();
1496 }
1497 
1498 
1499 // This method is a copy of JDK's sysGetLastErrorString
1500 // from src/solaris/hpi/src/system_md.c
1501 
1502 size_t os::lasterror(char *buf, size_t len) {
1503   if (errno == 0)  return 0;
1504 
1505   const char *s = ::strerror(errno);
1506   size_t n = ::strlen(s);
1507   if (n >= len) {
1508     n = len - 1;
1509   }
1510   ::strncpy(buf, s, n);
1511   buf[n] = '\0';
1512   return n;
1513 }
1514 
1515 intx os::current_thread_id() { return (intx)pthread_self(); }
1516 int os::current_process_id() {
1517 
1518   // Under the old linux thread library, linux gives each thread
1519   // its own process id. Because of this each thread will return
1520   // a different pid if this method were to return the result
1521   // of getpid(2). Linux provides no api that returns the pid
1522   // of the launcher thread for the vm. This implementation
1523   // returns a unique pid, the pid of the launcher thread
1524   // that starts the vm 'process'.
1525 
1526   // Under the NPTL, getpid() returns the same pid as the
1527   // launcher thread rather than a unique pid per thread.
1528   // Use gettid() if you want the old pre NPTL behaviour.
1529 
1530   // if you are looking for the result of a call to getpid() that
1531   // returns a unique pid for the calling thread, then look at the
1532   // OSThread::thread_id() method in osThread_linux.hpp file
1533 
1534   return (int)(_initial_pid ? _initial_pid : getpid());
1535 }
1536 
1537 // DLL functions
1538 
1539 const char* os::dll_file_extension() { return ".so"; }
1540 
1541 // This must be hard coded because it's the system's temporary
1542 // directory not the java application's temp directory, ala java.io.tmpdir.
1543 const char* os::get_temp_directory() { return "/tmp"; }
1544 
1545 static bool file_exists(const char* filename) {
1546   struct stat statbuf;
1547   if (filename == NULL || strlen(filename) == 0) {
1548     return false;
1549   }
1550   return os::stat(filename, &statbuf) == 0;
1551 }
1552 
1553 bool os::dll_build_name(char* buffer, size_t buflen,
1554                         const char* pname, const char* fname) {
1555   bool retval = false;
1556   // Copied from libhpi
1557   const size_t pnamelen = pname ? strlen(pname) : 0;
1558 
1559   // Return error on buffer overflow.
1560   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1561     return retval;
1562   }
1563 
1564   if (pnamelen == 0) {
1565     snprintf(buffer, buflen, "lib%s.so", fname);
1566     retval = true;
1567   } else if (strchr(pname, *os::path_separator()) != NULL) {
1568     int n;
1569     char** pelements = split_path(pname, &n);
1570     if (pelements == NULL) {
1571       return false;
1572     }
1573     for (int i = 0; i < n; i++) {
1574       // Really shouldn't be NULL, but check can't hurt
1575       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1576         continue; // skip the empty path values
1577       }
1578       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1579       if (file_exists(buffer)) {
1580         retval = true;
1581         break;
1582       }
1583     }
1584     // release the storage
1585     for (int i = 0; i < n; i++) {
1586       if (pelements[i] != NULL) {
1587         FREE_C_HEAP_ARRAY(char, pelements[i]);
1588       }
1589     }
1590     if (pelements != NULL) {
1591       FREE_C_HEAP_ARRAY(char*, pelements);
1592     }
1593   } else {
1594     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1595     retval = true;
1596   }
1597   return retval;
1598 }
1599 
1600 // check if addr is inside libjvm.so
1601 bool os::address_is_in_vm(address addr) {
1602   static address libjvm_base_addr;
1603   Dl_info dlinfo;
1604 
1605   if (libjvm_base_addr == NULL) {
1606     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1607       libjvm_base_addr = (address)dlinfo.dli_fbase;
1608     }
1609     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1610   }
1611 
1612   if (dladdr((void *)addr, &dlinfo) != 0) {
1613     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1614   }
1615 
1616   return false;
1617 }
1618 
1619 bool os::dll_address_to_function_name(address addr, char *buf,
1620                                       int buflen, int *offset) {
1621   // buf is not optional, but offset is optional
1622   assert(buf != NULL, "sanity check");
1623 
1624   Dl_info dlinfo;
1625 
1626   if (dladdr((void*)addr, &dlinfo) != 0) {
1627     // see if we have a matching symbol
1628     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1629       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1630         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1631       }
1632       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1633       return true;
1634     }
1635     // no matching symbol so try for just file info
1636     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1637       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1638                           buf, buflen, offset, dlinfo.dli_fname)) {
1639         return true;
1640       }
1641     }
1642   }
1643 
1644   buf[0] = '\0';
1645   if (offset != NULL) *offset = -1;
1646   return false;
1647 }
1648 
1649 struct _address_to_library_name {
1650   address addr;          // input : memory address
1651   size_t  buflen;        //         size of fname
1652   char*   fname;         // output: library name
1653   address base;          //         library base addr
1654 };
1655 
1656 static int address_to_library_name_callback(struct dl_phdr_info *info,
1657                                             size_t size, void *data) {
1658   int i;
1659   bool found = false;
1660   address libbase = NULL;
1661   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1662 
1663   // iterate through all loadable segments
1664   for (i = 0; i < info->dlpi_phnum; i++) {
1665     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1666     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1667       // base address of a library is the lowest address of its loaded
1668       // segments.
1669       if (libbase == NULL || libbase > segbase) {
1670         libbase = segbase;
1671       }
1672       // see if 'addr' is within current segment
1673       if (segbase <= d->addr &&
1674           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1675         found = true;
1676       }
1677     }
1678   }
1679 
1680   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1681   // so dll_address_to_library_name() can fall through to use dladdr() which
1682   // can figure out executable name from argv[0].
1683   if (found && info->dlpi_name && info->dlpi_name[0]) {
1684     d->base = libbase;
1685     if (d->fname) {
1686       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1687     }
1688     return 1;
1689   }
1690   return 0;
1691 }
1692 
1693 bool os::dll_address_to_library_name(address addr, char* buf,
1694                                      int buflen, int* offset) {
1695   // buf is not optional, but offset is optional
1696   assert(buf != NULL, "sanity check");
1697 
1698   Dl_info dlinfo;
1699   struct _address_to_library_name data;
1700 
1701   // There is a bug in old glibc dladdr() implementation that it could resolve
1702   // to wrong library name if the .so file has a base address != NULL. Here
1703   // we iterate through the program headers of all loaded libraries to find
1704   // out which library 'addr' really belongs to. This workaround can be
1705   // removed once the minimum requirement for glibc is moved to 2.3.x.
1706   data.addr = addr;
1707   data.fname = buf;
1708   data.buflen = buflen;
1709   data.base = NULL;
1710   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1711 
1712   if (rslt) {
1713     // buf already contains library name
1714     if (offset) *offset = addr - data.base;
1715     return true;
1716   }
1717   if (dladdr((void*)addr, &dlinfo) != 0) {
1718     if (dlinfo.dli_fname != NULL) {
1719       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1720     }
1721     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1722       *offset = addr - (address)dlinfo.dli_fbase;
1723     }
1724     return true;
1725   }
1726 
1727   buf[0] = '\0';
1728   if (offset) *offset = -1;
1729   return false;
1730 }
1731 
1732 // Loads .dll/.so and
1733 // in case of error it checks if .dll/.so was built for the
1734 // same architecture as Hotspot is running on
1735 
1736 
1737 // Remember the stack's state. The Linux dynamic linker will change
1738 // the stack to 'executable' at most once, so we must safepoint only once.
1739 bool os::Linux::_stack_is_executable = false;
1740 
1741 // VM operation that loads a library.  This is necessary if stack protection
1742 // of the Java stacks can be lost during loading the library.  If we
1743 // do not stop the Java threads, they can stack overflow before the stacks
1744 // are protected again.
1745 class VM_LinuxDllLoad: public VM_Operation {
1746  private:
1747   const char *_filename;
1748   char *_ebuf;
1749   int _ebuflen;
1750   void *_lib;
1751  public:
1752   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1753     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1754   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1755   void doit() {
1756     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1757     os::Linux::_stack_is_executable = true;
1758   }
1759   void* loaded_library() { return _lib; }
1760 };
1761 
1762 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1763   void * result = NULL;
1764   bool load_attempted = false;
1765 
1766   // Check whether the library to load might change execution rights
1767   // of the stack. If they are changed, the protection of the stack
1768   // guard pages will be lost. We need a safepoint to fix this.
1769   //
1770   // See Linux man page execstack(8) for more info.
1771   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1772     ElfFile ef(filename);
1773     if (!ef.specifies_noexecstack()) {
1774       if (!is_init_completed()) {
1775         os::Linux::_stack_is_executable = true;
1776         // This is OK - No Java threads have been created yet, and hence no
1777         // stack guard pages to fix.
1778         //
1779         // This should happen only when you are building JDK7 using a very
1780         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1781         //
1782         // Dynamic loader will make all stacks executable after
1783         // this function returns, and will not do that again.
1784         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1785       } else {
1786         warning("You have loaded library %s which might have disabled stack guard. "
1787                 "The VM will try to fix the stack guard now.\n"
1788                 "It's highly recommended that you fix the library with "
1789                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1790                 filename);
1791 
1792         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1793         JavaThread *jt = JavaThread::current();
1794         if (jt->thread_state() != _thread_in_native) {
1795           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1796           // that requires ExecStack. Cannot enter safe point. Let's give up.
1797           warning("Unable to fix stack guard. Giving up.");
1798         } else {
1799           if (!LoadExecStackDllInVMThread) {
1800             // This is for the case where the DLL has an static
1801             // constructor function that executes JNI code. We cannot
1802             // load such DLLs in the VMThread.
1803             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1804           }
1805 
1806           ThreadInVMfromNative tiv(jt);
1807           debug_only(VMNativeEntryWrapper vew;)
1808 
1809           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1810           VMThread::execute(&op);
1811           if (LoadExecStackDllInVMThread) {
1812             result = op.loaded_library();
1813           }
1814           load_attempted = true;
1815         }
1816       }
1817     }
1818   }
1819 
1820   if (!load_attempted) {
1821     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1822   }
1823 
1824   if (result != NULL) {
1825     // Successful loading
1826     return result;
1827   }
1828 
1829   Elf32_Ehdr elf_head;
1830   int diag_msg_max_length=ebuflen-strlen(ebuf);
1831   char* diag_msg_buf=ebuf+strlen(ebuf);
1832 
1833   if (diag_msg_max_length==0) {
1834     // No more space in ebuf for additional diagnostics message
1835     return NULL;
1836   }
1837 
1838 
1839   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1840 
1841   if (file_descriptor < 0) {
1842     // Can't open library, report dlerror() message
1843     return NULL;
1844   }
1845 
1846   bool failed_to_read_elf_head=
1847     (sizeof(elf_head)!=
1848      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1849 
1850   ::close(file_descriptor);
1851   if (failed_to_read_elf_head) {
1852     // file i/o error - report dlerror() msg
1853     return NULL;
1854   }
1855 
1856   typedef struct {
1857     Elf32_Half  code;         // Actual value as defined in elf.h
1858     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1859     char        elf_class;    // 32 or 64 bit
1860     char        endianess;    // MSB or LSB
1861     char*       name;         // String representation
1862   } arch_t;
1863 
1864 #ifndef EM_486
1865   #define EM_486          6               /* Intel 80486 */
1866 #endif
1867 #ifndef EM_AARCH64
1868   #define EM_AARCH64    183               /* ARM AARCH64 */
1869 #endif
1870 
1871   static const arch_t arch_array[]={
1872     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1873     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1874     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1875     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1876     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1877     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1878     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1879     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1880 #if defined(VM_LITTLE_ENDIAN)
1881     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1882 #else
1883     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1884 #endif
1885     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1886     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1887     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1888     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1889     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1890     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1891     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1892     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1893   };
1894 
1895 #if  (defined IA32)
1896   static  Elf32_Half running_arch_code=EM_386;
1897 #elif   (defined AMD64)
1898   static  Elf32_Half running_arch_code=EM_X86_64;
1899 #elif  (defined IA64)
1900   static  Elf32_Half running_arch_code=EM_IA_64;
1901 #elif  (defined __sparc) && (defined _LP64)
1902   static  Elf32_Half running_arch_code=EM_SPARCV9;
1903 #elif  (defined __sparc) && (!defined _LP64)
1904   static  Elf32_Half running_arch_code=EM_SPARC;
1905 #elif  (defined __powerpc64__)
1906   static  Elf32_Half running_arch_code=EM_PPC64;
1907 #elif  (defined __powerpc__)
1908   static  Elf32_Half running_arch_code=EM_PPC;
1909 #elif  (defined ARM)
1910   static  Elf32_Half running_arch_code=EM_ARM;
1911 #elif  (defined S390)
1912   static  Elf32_Half running_arch_code=EM_S390;
1913 #elif  (defined ALPHA)
1914   static  Elf32_Half running_arch_code=EM_ALPHA;
1915 #elif  (defined MIPSEL)
1916   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1917 #elif  (defined PARISC)
1918   static  Elf32_Half running_arch_code=EM_PARISC;
1919 #elif  (defined MIPS)
1920   static  Elf32_Half running_arch_code=EM_MIPS;
1921 #elif  (defined M68K)
1922   static  Elf32_Half running_arch_code=EM_68K;
1923 #elif  (defined AARCH64)
1924   static  Elf32_Half running_arch_code=EM_AARCH64;
1925 #else
1926     #error Method os::dll_load requires that one of following is defined:\
1927          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1928 #endif
1929 
1930   // Identify compatability class for VM's architecture and library's architecture
1931   // Obtain string descriptions for architectures
1932 
1933   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1934   int running_arch_index=-1;
1935 
1936   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1937     if (running_arch_code == arch_array[i].code) {
1938       running_arch_index    = i;
1939     }
1940     if (lib_arch.code == arch_array[i].code) {
1941       lib_arch.compat_class = arch_array[i].compat_class;
1942       lib_arch.name         = arch_array[i].name;
1943     }
1944   }
1945 
1946   assert(running_arch_index != -1,
1947          "Didn't find running architecture code (running_arch_code) in arch_array");
1948   if (running_arch_index == -1) {
1949     // Even though running architecture detection failed
1950     // we may still continue with reporting dlerror() message
1951     return NULL;
1952   }
1953 
1954   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1955     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1956     return NULL;
1957   }
1958 
1959 #ifndef S390
1960   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1962     return NULL;
1963   }
1964 #endif // !S390
1965 
1966   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1967     if (lib_arch.name!=NULL) {
1968       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1969                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1970                  lib_arch.name, arch_array[running_arch_index].name);
1971     } else {
1972       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1973                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1974                  lib_arch.code,
1975                  arch_array[running_arch_index].name);
1976     }
1977   }
1978 
1979   return NULL;
1980 }
1981 
1982 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1983                                 int ebuflen) {
1984   void * result = ::dlopen(filename, RTLD_LAZY);
1985   if (result == NULL) {
1986     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1987     ebuf[ebuflen-1] = '\0';
1988   }
1989   return result;
1990 }
1991 
1992 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1993                                        int ebuflen) {
1994   void * result = NULL;
1995   if (LoadExecStackDllInVMThread) {
1996     result = dlopen_helper(filename, ebuf, ebuflen);
1997   }
1998 
1999   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2000   // library that requires an executable stack, or which does not have this
2001   // stack attribute set, dlopen changes the stack attribute to executable. The
2002   // read protection of the guard pages gets lost.
2003   //
2004   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2005   // may have been queued at the same time.
2006 
2007   if (!_stack_is_executable) {
2008     JavaThread *jt = Threads::first();
2009 
2010     while (jt) {
2011       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2012           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2013         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2014                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2015           warning("Attempt to reguard stack yellow zone failed.");
2016         }
2017       }
2018       jt = jt->next();
2019     }
2020   }
2021 
2022   return result;
2023 }
2024 
2025 void* os::dll_lookup(void* handle, const char* name) {
2026   void* res = dlsym(handle, name);
2027   return res;
2028 }
2029 
2030 void* os::get_default_process_handle() {
2031   return (void*)::dlopen(NULL, RTLD_LAZY);
2032 }
2033 
2034 static bool _print_ascii_file(const char* filename, outputStream* st) {
2035   int fd = ::open(filename, O_RDONLY);
2036   if (fd == -1) {
2037     return false;
2038   }
2039 
2040   char buf[32];
2041   int bytes;
2042   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2043     st->print_raw(buf, bytes);
2044   }
2045 
2046   ::close(fd);
2047 
2048   return true;
2049 }
2050 
2051 void os::print_dll_info(outputStream *st) {
2052   st->print_cr("Dynamic libraries:");
2053 
2054   char fname[32];
2055   pid_t pid = os::Linux::gettid();
2056 
2057   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2058 
2059   if (!_print_ascii_file(fname, st)) {
2060     st->print("Can not get library information for pid = %d\n", pid);
2061   }
2062 }
2063 
2064 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2065   FILE *procmapsFile = NULL;
2066 
2067   // Open the procfs maps file for the current process
2068   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2069     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2070     char line[PATH_MAX + 100];
2071 
2072     // Read line by line from 'file'
2073     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2074       u8 base, top, offset, inode;
2075       char permissions[5];
2076       char device[6];
2077       char name[PATH_MAX + 1];
2078 
2079       // Parse fields from line
2080       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2081 
2082       // Filter by device id '00:00' so that we only get file system mapped files.
2083       if (strcmp(device, "00:00") != 0) {
2084 
2085         // Call callback with the fields of interest
2086         if(callback(name, (address)base, (address)top, param)) {
2087           // Oops abort, callback aborted
2088           fclose(procmapsFile);
2089           return 1;
2090         }
2091       }
2092     }
2093     fclose(procmapsFile);
2094   }
2095   return 0;
2096 }
2097 
2098 void os::print_os_info_brief(outputStream* st) {
2099   os::Linux::print_distro_info(st);
2100 
2101   os::Posix::print_uname_info(st);
2102 
2103   os::Linux::print_libversion_info(st);
2104 
2105 }
2106 
2107 void os::print_os_info(outputStream* st) {
2108   st->print("OS:");
2109 
2110   os::Linux::print_distro_info(st);
2111 
2112   os::Posix::print_uname_info(st);
2113 
2114   // Print warning if unsafe chroot environment detected
2115   if (unsafe_chroot_detected) {
2116     st->print("WARNING!! ");
2117     st->print_cr("%s", unstable_chroot_error);
2118   }
2119 
2120   os::Linux::print_libversion_info(st);
2121 
2122   os::Posix::print_rlimit_info(st);
2123 
2124   os::Posix::print_load_average(st);
2125 
2126   os::Linux::print_full_memory_info(st);
2127 }
2128 
2129 // Try to identify popular distros.
2130 // Most Linux distributions have a /etc/XXX-release file, which contains
2131 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2132 // file that also contains the OS version string. Some have more than one
2133 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2134 // /etc/redhat-release.), so the order is important.
2135 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2136 // their own specific XXX-release file as well as a redhat-release file.
2137 // Because of this the XXX-release file needs to be searched for before the
2138 // redhat-release file.
2139 // Since Red Hat has a lsb-release file that is not very descriptive the
2140 // search for redhat-release needs to be before lsb-release.
2141 // Since the lsb-release file is the new standard it needs to be searched
2142 // before the older style release files.
2143 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2144 // next to last resort.  The os-release file is a new standard that contains
2145 // distribution information and the system-release file seems to be an old
2146 // standard that has been replaced by the lsb-release and os-release files.
2147 // Searching for the debian_version file is the last resort.  It contains
2148 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2149 // "Debian " is printed before the contents of the debian_version file.
2150 void os::Linux::print_distro_info(outputStream* st) {
2151   if (!_print_ascii_file("/etc/oracle-release", st) &&
2152       !_print_ascii_file("/etc/mandriva-release", st) &&
2153       !_print_ascii_file("/etc/mandrake-release", st) &&
2154       !_print_ascii_file("/etc/sun-release", st) &&
2155       !_print_ascii_file("/etc/redhat-release", st) &&
2156       !_print_ascii_file("/etc/lsb-release", st) &&
2157       !_print_ascii_file("/etc/SuSE-release", st) &&
2158       !_print_ascii_file("/etc/turbolinux-release", st) &&
2159       !_print_ascii_file("/etc/gentoo-release", st) &&
2160       !_print_ascii_file("/etc/ltib-release", st) &&
2161       !_print_ascii_file("/etc/angstrom-version", st) &&
2162       !_print_ascii_file("/etc/system-release", st) &&
2163       !_print_ascii_file("/etc/os-release", st)) {
2164 
2165     if (file_exists("/etc/debian_version")) {
2166       st->print("Debian ");
2167       _print_ascii_file("/etc/debian_version", st);
2168     } else {
2169       st->print("Linux");
2170     }
2171   }
2172   st->cr();
2173 }
2174 
2175 void os::Linux::print_libversion_info(outputStream* st) {
2176   // libc, pthread
2177   st->print("libc:");
2178   st->print("%s ", os::Linux::glibc_version());
2179   st->print("%s ", os::Linux::libpthread_version());
2180   if (os::Linux::is_LinuxThreads()) {
2181     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2182   }
2183   st->cr();
2184 }
2185 
2186 void os::Linux::print_full_memory_info(outputStream* st) {
2187   st->print("\n/proc/meminfo:\n");
2188   _print_ascii_file("/proc/meminfo", st);
2189   st->cr();
2190 }
2191 
2192 void os::print_memory_info(outputStream* st) {
2193 
2194   st->print("Memory:");
2195   st->print(" %dk page", os::vm_page_size()>>10);
2196 
2197   // values in struct sysinfo are "unsigned long"
2198   struct sysinfo si;
2199   sysinfo(&si);
2200 
2201   st->print(", physical " UINT64_FORMAT "k",
2202             os::physical_memory() >> 10);
2203   st->print("(" UINT64_FORMAT "k free)",
2204             os::available_memory() >> 10);
2205   st->print(", swap " UINT64_FORMAT "k",
2206             ((jlong)si.totalswap * si.mem_unit) >> 10);
2207   st->print("(" UINT64_FORMAT "k free)",
2208             ((jlong)si.freeswap * si.mem_unit) >> 10);
2209   st->cr();
2210 }
2211 
2212 void os::pd_print_cpu_info(outputStream* st) {
2213   st->print("\n/proc/cpuinfo:\n");
2214   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2215     st->print("  <Not Available>");
2216   }
2217   st->cr();
2218 }
2219 
2220 void os::print_siginfo(outputStream* st, void* siginfo) {
2221   const siginfo_t* si = (const siginfo_t*)siginfo;
2222 
2223   os::Posix::print_siginfo_brief(st, si);
2224 #if INCLUDE_CDS
2225   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2226       UseSharedSpaces) {
2227     FileMapInfo* mapinfo = FileMapInfo::current_info();
2228     if (mapinfo->is_in_shared_space(si->si_addr)) {
2229       st->print("\n\nError accessing class data sharing archive."   \
2230                 " Mapped file inaccessible during execution, "      \
2231                 " possible disk/network problem.");
2232     }
2233   }
2234 #endif
2235   st->cr();
2236 }
2237 
2238 
2239 static void print_signal_handler(outputStream* st, int sig,
2240                                  char* buf, size_t buflen);
2241 
2242 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2243   st->print_cr("Signal Handlers:");
2244   print_signal_handler(st, SIGSEGV, buf, buflen);
2245   print_signal_handler(st, SIGBUS , buf, buflen);
2246   print_signal_handler(st, SIGFPE , buf, buflen);
2247   print_signal_handler(st, SIGPIPE, buf, buflen);
2248   print_signal_handler(st, SIGXFSZ, buf, buflen);
2249   print_signal_handler(st, SIGILL , buf, buflen);
2250   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2251   print_signal_handler(st, SR_signum, buf, buflen);
2252   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2253   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2254   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2255   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2256 #if defined(PPC64)
2257   print_signal_handler(st, SIGTRAP, buf, buflen);
2258 #endif
2259 }
2260 
2261 static char saved_jvm_path[MAXPATHLEN] = {0};
2262 
2263 // Find the full path to the current module, libjvm.so
2264 void os::jvm_path(char *buf, jint buflen) {
2265   // Error checking.
2266   if (buflen < MAXPATHLEN) {
2267     assert(false, "must use a large-enough buffer");
2268     buf[0] = '\0';
2269     return;
2270   }
2271   // Lazy resolve the path to current module.
2272   if (saved_jvm_path[0] != 0) {
2273     strcpy(buf, saved_jvm_path);
2274     return;
2275   }
2276 
2277   char dli_fname[MAXPATHLEN];
2278   bool ret = dll_address_to_library_name(
2279                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2280                                          dli_fname, sizeof(dli_fname), NULL);
2281   assert(ret, "cannot locate libjvm");
2282   char *rp = NULL;
2283   if (ret && dli_fname[0] != '\0') {
2284     rp = realpath(dli_fname, buf);
2285   }
2286   if (rp == NULL) {
2287     return;
2288   }
2289 
2290   if (Arguments::sun_java_launcher_is_altjvm()) {
2291     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2292     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2293     // If "/jre/lib/" appears at the right place in the string, then
2294     // assume we are installed in a JDK and we're done. Otherwise, check
2295     // for a JAVA_HOME environment variable and fix up the path so it
2296     // looks like libjvm.so is installed there (append a fake suffix
2297     // hotspot/libjvm.so).
2298     const char *p = buf + strlen(buf) - 1;
2299     for (int count = 0; p > buf && count < 5; ++count) {
2300       for (--p; p > buf && *p != '/'; --p)
2301         /* empty */ ;
2302     }
2303 
2304     if (strncmp(p, "/jre/lib/", 9) != 0) {
2305       // Look for JAVA_HOME in the environment.
2306       char* java_home_var = ::getenv("JAVA_HOME");
2307       if (java_home_var != NULL && java_home_var[0] != 0) {
2308         char* jrelib_p;
2309         int len;
2310 
2311         // Check the current module name "libjvm.so".
2312         p = strrchr(buf, '/');
2313         if (p == NULL) {
2314           return;
2315         }
2316         assert(strstr(p, "/libjvm") == p, "invalid library name");
2317 
2318         rp = realpath(java_home_var, buf);
2319         if (rp == NULL) {
2320           return;
2321         }
2322 
2323         // determine if this is a legacy image or modules image
2324         // modules image doesn't have "jre" subdirectory
2325         len = strlen(buf);
2326         assert(len < buflen, "Ran out of buffer room");
2327         jrelib_p = buf + len;
2328         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2329         if (0 != access(buf, F_OK)) {
2330           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2331         }
2332 
2333         if (0 == access(buf, F_OK)) {
2334           // Use current module name "libjvm.so"
2335           len = strlen(buf);
2336           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2337         } else {
2338           // Go back to path of .so
2339           rp = realpath(dli_fname, buf);
2340           if (rp == NULL) {
2341             return;
2342           }
2343         }
2344       }
2345     }
2346   }
2347 
2348   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2349   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2350 }
2351 
2352 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2353   // no prefix required, not even "_"
2354 }
2355 
2356 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2357   // no suffix required
2358 }
2359 
2360 ////////////////////////////////////////////////////////////////////////////////
2361 // sun.misc.Signal support
2362 
2363 static volatile jint sigint_count = 0;
2364 
2365 static void UserHandler(int sig, void *siginfo, void *context) {
2366   // 4511530 - sem_post is serialized and handled by the manager thread. When
2367   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2368   // don't want to flood the manager thread with sem_post requests.
2369   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2370     return;
2371   }
2372 
2373   // Ctrl-C is pressed during error reporting, likely because the error
2374   // handler fails to abort. Let VM die immediately.
2375   if (sig == SIGINT && is_error_reported()) {
2376     os::die();
2377   }
2378 
2379   os::signal_notify(sig);
2380 }
2381 
2382 void* os::user_handler() {
2383   return CAST_FROM_FN_PTR(void*, UserHandler);
2384 }
2385 
2386 class Semaphore : public StackObj {
2387  public:
2388   Semaphore();
2389   ~Semaphore();
2390   void signal();
2391   void wait();
2392   bool trywait();
2393   bool timedwait(unsigned int sec, int nsec);
2394  private:
2395   sem_t _semaphore;
2396 };
2397 
2398 Semaphore::Semaphore() {
2399   sem_init(&_semaphore, 0, 0);
2400 }
2401 
2402 Semaphore::~Semaphore() {
2403   sem_destroy(&_semaphore);
2404 }
2405 
2406 void Semaphore::signal() {
2407   sem_post(&_semaphore);
2408 }
2409 
2410 void Semaphore::wait() {
2411   sem_wait(&_semaphore);
2412 }
2413 
2414 bool Semaphore::trywait() {
2415   return sem_trywait(&_semaphore) == 0;
2416 }
2417 
2418 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2419 
2420   struct timespec ts;
2421   // Semaphore's are always associated with CLOCK_REALTIME
2422   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2423   // see unpackTime for discussion on overflow checking
2424   if (sec >= MAX_SECS) {
2425     ts.tv_sec += MAX_SECS;
2426     ts.tv_nsec = 0;
2427   } else {
2428     ts.tv_sec += sec;
2429     ts.tv_nsec += nsec;
2430     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2431       ts.tv_nsec -= NANOSECS_PER_SEC;
2432       ++ts.tv_sec; // note: this must be <= max_secs
2433     }
2434   }
2435 
2436   while (1) {
2437     int result = sem_timedwait(&_semaphore, &ts);
2438     if (result == 0) {
2439       return true;
2440     } else if (errno == EINTR) {
2441       continue;
2442     } else if (errno == ETIMEDOUT) {
2443       return false;
2444     } else {
2445       return false;
2446     }
2447   }
2448 }
2449 
2450 extern "C" {
2451   typedef void (*sa_handler_t)(int);
2452   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2453 }
2454 
2455 void* os::signal(int signal_number, void* handler) {
2456   struct sigaction sigAct, oldSigAct;
2457 
2458   sigfillset(&(sigAct.sa_mask));
2459   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2460   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2461 
2462   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2463     // -1 means registration failed
2464     return (void *)-1;
2465   }
2466 
2467   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2468 }
2469 
2470 void os::signal_raise(int signal_number) {
2471   ::raise(signal_number);
2472 }
2473 
2474 // The following code is moved from os.cpp for making this
2475 // code platform specific, which it is by its very nature.
2476 
2477 // Will be modified when max signal is changed to be dynamic
2478 int os::sigexitnum_pd() {
2479   return NSIG;
2480 }
2481 
2482 // a counter for each possible signal value
2483 static volatile jint pending_signals[NSIG+1] = { 0 };
2484 
2485 // Linux(POSIX) specific hand shaking semaphore.
2486 static sem_t sig_sem;
2487 static Semaphore sr_semaphore;
2488 
2489 void os::signal_init_pd() {
2490   // Initialize signal structures
2491   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2492 
2493   // Initialize signal semaphore
2494   ::sem_init(&sig_sem, 0, 0);
2495 }
2496 
2497 void os::signal_notify(int sig) {
2498   Atomic::inc(&pending_signals[sig]);
2499   ::sem_post(&sig_sem);
2500 }
2501 
2502 static int check_pending_signals(bool wait) {
2503   Atomic::store(0, &sigint_count);
2504   for (;;) {
2505     for (int i = 0; i < NSIG + 1; i++) {
2506       jint n = pending_signals[i];
2507       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2508         return i;
2509       }
2510     }
2511     if (!wait) {
2512       return -1;
2513     }
2514     JavaThread *thread = JavaThread::current();
2515     ThreadBlockInVM tbivm(thread);
2516 
2517     bool threadIsSuspended;
2518     do {
2519       thread->set_suspend_equivalent();
2520       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2521       ::sem_wait(&sig_sem);
2522 
2523       // were we externally suspended while we were waiting?
2524       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2525       if (threadIsSuspended) {
2526         // The semaphore has been incremented, but while we were waiting
2527         // another thread suspended us. We don't want to continue running
2528         // while suspended because that would surprise the thread that
2529         // suspended us.
2530         ::sem_post(&sig_sem);
2531 
2532         thread->java_suspend_self();
2533       }
2534     } while (threadIsSuspended);
2535   }
2536 }
2537 
2538 int os::signal_lookup() {
2539   return check_pending_signals(false);
2540 }
2541 
2542 int os::signal_wait() {
2543   return check_pending_signals(true);
2544 }
2545 
2546 ////////////////////////////////////////////////////////////////////////////////
2547 // Virtual Memory
2548 
2549 int os::vm_page_size() {
2550   // Seems redundant as all get out
2551   assert(os::Linux::page_size() != -1, "must call os::init");
2552   return os::Linux::page_size();
2553 }
2554 
2555 // Solaris allocates memory by pages.
2556 int os::vm_allocation_granularity() {
2557   assert(os::Linux::page_size() != -1, "must call os::init");
2558   return os::Linux::page_size();
2559 }
2560 
2561 // Rationale behind this function:
2562 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2563 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2564 //  samples for JITted code. Here we create private executable mapping over the code cache
2565 //  and then we can use standard (well, almost, as mapping can change) way to provide
2566 //  info for the reporting script by storing timestamp and location of symbol
2567 void linux_wrap_code(char* base, size_t size) {
2568   static volatile jint cnt = 0;
2569 
2570   if (!UseOprofile) {
2571     return;
2572   }
2573 
2574   char buf[PATH_MAX+1];
2575   int num = Atomic::add(1, &cnt);
2576 
2577   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2578            os::get_temp_directory(), os::current_process_id(), num);
2579   unlink(buf);
2580 
2581   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2582 
2583   if (fd != -1) {
2584     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2585     if (rv != (off_t)-1) {
2586       if (::write(fd, "", 1) == 1) {
2587         mmap(base, size,
2588              PROT_READ|PROT_WRITE|PROT_EXEC,
2589              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2590       }
2591     }
2592     ::close(fd);
2593     unlink(buf);
2594   }
2595 }
2596 
2597 static bool recoverable_mmap_error(int err) {
2598   // See if the error is one we can let the caller handle. This
2599   // list of errno values comes from JBS-6843484. I can't find a
2600   // Linux man page that documents this specific set of errno
2601   // values so while this list currently matches Solaris, it may
2602   // change as we gain experience with this failure mode.
2603   switch (err) {
2604   case EBADF:
2605   case EINVAL:
2606   case ENOTSUP:
2607     // let the caller deal with these errors
2608     return true;
2609 
2610   default:
2611     // Any remaining errors on this OS can cause our reserved mapping
2612     // to be lost. That can cause confusion where different data
2613     // structures think they have the same memory mapped. The worst
2614     // scenario is if both the VM and a library think they have the
2615     // same memory mapped.
2616     return false;
2617   }
2618 }
2619 
2620 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2621                                     int err) {
2622   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2623           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2624           strerror(err), err);
2625 }
2626 
2627 static void warn_fail_commit_memory(char* addr, size_t size,
2628                                     size_t alignment_hint, bool exec,
2629                                     int err) {
2630   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2631           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2632           alignment_hint, exec, strerror(err), err);
2633 }
2634 
2635 // NOTE: Linux kernel does not really reserve the pages for us.
2636 //       All it does is to check if there are enough free pages
2637 //       left at the time of mmap(). This could be a potential
2638 //       problem.
2639 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2640   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2641   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2642                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2643   if (res != (uintptr_t) MAP_FAILED) {
2644     if (UseNUMAInterleaving) {
2645       numa_make_global(addr, size);
2646     }
2647     return 0;
2648   }
2649 
2650   int err = errno;  // save errno from mmap() call above
2651 
2652   if (!recoverable_mmap_error(err)) {
2653     warn_fail_commit_memory(addr, size, exec, err);
2654     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2655   }
2656 
2657   return err;
2658 }
2659 
2660 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2661   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2662 }
2663 
2664 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2665                                   const char* mesg) {
2666   assert(mesg != NULL, "mesg must be specified");
2667   int err = os::Linux::commit_memory_impl(addr, size, exec);
2668   if (err != 0) {
2669     // the caller wants all commit errors to exit with the specified mesg:
2670     warn_fail_commit_memory(addr, size, exec, err);
2671     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2672   }
2673 }
2674 
2675 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2676 #ifndef MAP_HUGETLB
2677   #define MAP_HUGETLB 0x40000
2678 #endif
2679 
2680 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2681 #ifndef MADV_HUGEPAGE
2682   #define MADV_HUGEPAGE 14
2683 #endif
2684 
2685 int os::Linux::commit_memory_impl(char* addr, size_t size,
2686                                   size_t alignment_hint, bool exec) {
2687   int err = os::Linux::commit_memory_impl(addr, size, exec);
2688   if (err == 0) {
2689     realign_memory(addr, size, alignment_hint);
2690   }
2691   return err;
2692 }
2693 
2694 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2695                           bool exec) {
2696   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2697 }
2698 
2699 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2700                                   size_t alignment_hint, bool exec,
2701                                   const char* mesg) {
2702   assert(mesg != NULL, "mesg must be specified");
2703   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2704   if (err != 0) {
2705     // the caller wants all commit errors to exit with the specified mesg:
2706     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2707     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2708   }
2709 }
2710 
2711 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2712   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2713     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2714     // be supported or the memory may already be backed by huge pages.
2715     ::madvise(addr, bytes, MADV_HUGEPAGE);
2716   }
2717 }
2718 
2719 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2720   // This method works by doing an mmap over an existing mmaping and effectively discarding
2721   // the existing pages. However it won't work for SHM-based large pages that cannot be
2722   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2723   // small pages on top of the SHM segment. This method always works for small pages, so we
2724   // allow that in any case.
2725   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2726     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2727   }
2728 }
2729 
2730 void os::numa_make_global(char *addr, size_t bytes) {
2731   Linux::numa_interleave_memory(addr, bytes);
2732 }
2733 
2734 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2735 // bind policy to MPOL_PREFERRED for the current thread.
2736 #define USE_MPOL_PREFERRED 0
2737 
2738 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2739   // To make NUMA and large pages more robust when both enabled, we need to ease
2740   // the requirements on where the memory should be allocated. MPOL_BIND is the
2741   // default policy and it will force memory to be allocated on the specified
2742   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2743   // the specified node, but will not force it. Using this policy will prevent
2744   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2745   // free large pages.
2746   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2747   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2748 }
2749 
2750 bool os::numa_topology_changed() { return false; }
2751 
2752 size_t os::numa_get_groups_num() {
2753   int max_node = Linux::numa_max_node();
2754   return max_node > 0 ? max_node + 1 : 1;
2755 }
2756 
2757 int os::numa_get_group_id() {
2758   int cpu_id = Linux::sched_getcpu();
2759   if (cpu_id != -1) {
2760     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2761     if (lgrp_id != -1) {
2762       return lgrp_id;
2763     }
2764   }
2765   return 0;
2766 }
2767 
2768 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2769   for (size_t i = 0; i < size; i++) {
2770     ids[i] = i;
2771   }
2772   return size;
2773 }
2774 
2775 bool os::get_page_info(char *start, page_info* info) {
2776   return false;
2777 }
2778 
2779 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2780                      page_info* page_found) {
2781   return end;
2782 }
2783 
2784 
2785 int os::Linux::sched_getcpu_syscall(void) {
2786   unsigned int cpu;
2787   int retval = -1;
2788 
2789 #if defined(IA32)
2790   #ifndef SYS_getcpu
2791     #define SYS_getcpu 318
2792   #endif
2793   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2794 #elif defined(AMD64)
2795 // Unfortunately we have to bring all these macros here from vsyscall.h
2796 // to be able to compile on old linuxes.
2797   #define __NR_vgetcpu 2
2798   #define VSYSCALL_START (-10UL << 20)
2799   #define VSYSCALL_SIZE 1024
2800   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2801   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2802   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2803   retval = vgetcpu(&cpu, NULL, NULL);
2804 #endif
2805 
2806   return (retval == -1) ? retval : cpu;
2807 }
2808 
2809 // Something to do with the numa-aware allocator needs these symbols
2810 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2811 extern "C" JNIEXPORT void numa_error(char *where) { }
2812 extern "C" JNIEXPORT int fork1() { return fork(); }
2813 
2814 
2815 // If we are running with libnuma version > 2, then we should
2816 // be trying to use symbols with versions 1.1
2817 // If we are running with earlier version, which did not have symbol versions,
2818 // we should use the base version.
2819 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2820   void *f = dlvsym(handle, name, "libnuma_1.1");
2821   if (f == NULL) {
2822     f = dlsym(handle, name);
2823   }
2824   return f;
2825 }
2826 
2827 bool os::Linux::libnuma_init() {
2828   // sched_getcpu() should be in libc.
2829   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2830                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2831 
2832   // If it's not, try a direct syscall.
2833   if (sched_getcpu() == -1) {
2834     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2835                                     (void*)&sched_getcpu_syscall));
2836   }
2837 
2838   if (sched_getcpu() != -1) { // Does it work?
2839     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2840     if (handle != NULL) {
2841       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2842                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2843       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2844                                        libnuma_dlsym(handle, "numa_max_node")));
2845       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2846                                         libnuma_dlsym(handle, "numa_available")));
2847       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2848                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2849       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2850                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2851       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2852                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2853 
2854 
2855       if (numa_available() != -1) {
2856         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2857         // Create a cpu -> node mapping
2858         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2859         rebuild_cpu_to_node_map();
2860         return true;
2861       }
2862     }
2863   }
2864   return false;
2865 }
2866 
2867 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2868 // The table is later used in get_node_by_cpu().
2869 void os::Linux::rebuild_cpu_to_node_map() {
2870   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2871                               // in libnuma (possible values are starting from 16,
2872                               // and continuing up with every other power of 2, but less
2873                               // than the maximum number of CPUs supported by kernel), and
2874                               // is a subject to change (in libnuma version 2 the requirements
2875                               // are more reasonable) we'll just hardcode the number they use
2876                               // in the library.
2877   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2878 
2879   size_t cpu_num = os::active_processor_count();
2880   size_t cpu_map_size = NCPUS / BitsPerCLong;
2881   size_t cpu_map_valid_size =
2882     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2883 
2884   cpu_to_node()->clear();
2885   cpu_to_node()->at_grow(cpu_num - 1);
2886   size_t node_num = numa_get_groups_num();
2887 
2888   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2889   for (size_t i = 0; i < node_num; i++) {
2890     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2891       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2892         if (cpu_map[j] != 0) {
2893           for (size_t k = 0; k < BitsPerCLong; k++) {
2894             if (cpu_map[j] & (1UL << k)) {
2895               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2896             }
2897           }
2898         }
2899       }
2900     }
2901   }
2902   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2903 }
2904 
2905 int os::Linux::get_node_by_cpu(int cpu_id) {
2906   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2907     return cpu_to_node()->at(cpu_id);
2908   }
2909   return -1;
2910 }
2911 
2912 GrowableArray<int>* os::Linux::_cpu_to_node;
2913 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2914 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2915 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2916 os::Linux::numa_available_func_t os::Linux::_numa_available;
2917 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2918 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2919 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2920 unsigned long* os::Linux::_numa_all_nodes;
2921 
2922 bool os::pd_uncommit_memory(char* addr, size_t size) {
2923   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2924                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2925   return res  != (uintptr_t) MAP_FAILED;
2926 }
2927 
2928 static address get_stack_commited_bottom(address bottom, size_t size) {
2929   address nbot = bottom;
2930   address ntop = bottom + size;
2931 
2932   size_t page_sz = os::vm_page_size();
2933   unsigned pages = size / page_sz;
2934 
2935   unsigned char vec[1];
2936   unsigned imin = 1, imax = pages + 1, imid;
2937   int mincore_return_value = 0;
2938 
2939   assert(imin <= imax, "Unexpected page size");
2940 
2941   while (imin < imax) {
2942     imid = (imax + imin) / 2;
2943     nbot = ntop - (imid * page_sz);
2944 
2945     // Use a trick with mincore to check whether the page is mapped or not.
2946     // mincore sets vec to 1 if page resides in memory and to 0 if page
2947     // is swapped output but if page we are asking for is unmapped
2948     // it returns -1,ENOMEM
2949     mincore_return_value = mincore(nbot, page_sz, vec);
2950 
2951     if (mincore_return_value == -1) {
2952       // Page is not mapped go up
2953       // to find first mapped page
2954       if (errno != EAGAIN) {
2955         assert(errno == ENOMEM, "Unexpected mincore errno");
2956         imax = imid;
2957       }
2958     } else {
2959       // Page is mapped go down
2960       // to find first not mapped page
2961       imin = imid + 1;
2962     }
2963   }
2964 
2965   nbot = nbot + page_sz;
2966 
2967   // Adjust stack bottom one page up if last checked page is not mapped
2968   if (mincore_return_value == -1) {
2969     nbot = nbot + page_sz;
2970   }
2971 
2972   return nbot;
2973 }
2974 
2975 
2976 // Linux uses a growable mapping for the stack, and if the mapping for
2977 // the stack guard pages is not removed when we detach a thread the
2978 // stack cannot grow beyond the pages where the stack guard was
2979 // mapped.  If at some point later in the process the stack expands to
2980 // that point, the Linux kernel cannot expand the stack any further
2981 // because the guard pages are in the way, and a segfault occurs.
2982 //
2983 // However, it's essential not to split the stack region by unmapping
2984 // a region (leaving a hole) that's already part of the stack mapping,
2985 // so if the stack mapping has already grown beyond the guard pages at
2986 // the time we create them, we have to truncate the stack mapping.
2987 // So, we need to know the extent of the stack mapping when
2988 // create_stack_guard_pages() is called.
2989 
2990 // We only need this for stacks that are growable: at the time of
2991 // writing thread stacks don't use growable mappings (i.e. those
2992 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2993 // only applies to the main thread.
2994 
2995 // If the (growable) stack mapping already extends beyond the point
2996 // where we're going to put our guard pages, truncate the mapping at
2997 // that point by munmap()ping it.  This ensures that when we later
2998 // munmap() the guard pages we don't leave a hole in the stack
2999 // mapping. This only affects the main/initial thread
3000 
3001 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3002   if (os::Linux::is_initial_thread()) {
3003     // As we manually grow stack up to bottom inside create_attached_thread(),
3004     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3005     // we don't need to do anything special.
3006     // Check it first, before calling heavy function.
3007     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3008     unsigned char vec[1];
3009 
3010     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3011       // Fallback to slow path on all errors, including EAGAIN
3012       stack_extent = (uintptr_t) get_stack_commited_bottom(
3013                                                            os::Linux::initial_thread_stack_bottom(),
3014                                                            (size_t)addr - stack_extent);
3015     }
3016 
3017     if (stack_extent < (uintptr_t)addr) {
3018       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3019     }
3020   }
3021 
3022   return os::commit_memory(addr, size, !ExecMem);
3023 }
3024 
3025 // If this is a growable mapping, remove the guard pages entirely by
3026 // munmap()ping them.  If not, just call uncommit_memory(). This only
3027 // affects the main/initial thread, but guard against future OS changes
3028 // It's safe to always unmap guard pages for initial thread because we
3029 // always place it right after end of the mapped region
3030 
3031 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3032   uintptr_t stack_extent, stack_base;
3033 
3034   if (os::Linux::is_initial_thread()) {
3035     return ::munmap(addr, size) == 0;
3036   }
3037 
3038   return os::uncommit_memory(addr, size);
3039 }
3040 
3041 static address _highest_vm_reserved_address = NULL;
3042 
3043 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3044 // at 'requested_addr'. If there are existing memory mappings at the same
3045 // location, however, they will be overwritten. If 'fixed' is false,
3046 // 'requested_addr' is only treated as a hint, the return value may or
3047 // may not start from the requested address. Unlike Linux mmap(), this
3048 // function returns NULL to indicate failure.
3049 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3050   char * addr;
3051   int flags;
3052 
3053   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3054   if (fixed) {
3055     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3056     flags |= MAP_FIXED;
3057   }
3058 
3059   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3060   // touch an uncommitted page. Otherwise, the read/write might
3061   // succeed if we have enough swap space to back the physical page.
3062   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3063                        flags, -1, 0);
3064 
3065   if (addr != MAP_FAILED) {
3066     // anon_mmap() should only get called during VM initialization,
3067     // don't need lock (actually we can skip locking even it can be called
3068     // from multiple threads, because _highest_vm_reserved_address is just a
3069     // hint about the upper limit of non-stack memory regions.)
3070     if ((address)addr + bytes > _highest_vm_reserved_address) {
3071       _highest_vm_reserved_address = (address)addr + bytes;
3072     }
3073   }
3074 
3075   return addr == MAP_FAILED ? NULL : addr;
3076 }
3077 
3078 // Don't update _highest_vm_reserved_address, because there might be memory
3079 // regions above addr + size. If so, releasing a memory region only creates
3080 // a hole in the address space, it doesn't help prevent heap-stack collision.
3081 //
3082 static int anon_munmap(char * addr, size_t size) {
3083   return ::munmap(addr, size) == 0;
3084 }
3085 
3086 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3087                             size_t alignment_hint) {
3088   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3089 }
3090 
3091 bool os::pd_release_memory(char* addr, size_t size) {
3092   return anon_munmap(addr, size);
3093 }
3094 
3095 static address highest_vm_reserved_address() {
3096   return _highest_vm_reserved_address;
3097 }
3098 
3099 static bool linux_mprotect(char* addr, size_t size, int prot) {
3100   // Linux wants the mprotect address argument to be page aligned.
3101   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3102 
3103   // According to SUSv3, mprotect() should only be used with mappings
3104   // established by mmap(), and mmap() always maps whole pages. Unaligned
3105   // 'addr' likely indicates problem in the VM (e.g. trying to change
3106   // protection of malloc'ed or statically allocated memory). Check the
3107   // caller if you hit this assert.
3108   assert(addr == bottom, "sanity check");
3109 
3110   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3111   return ::mprotect(bottom, size, prot) == 0;
3112 }
3113 
3114 // Set protections specified
3115 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3116                         bool is_committed) {
3117   unsigned int p = 0;
3118   switch (prot) {
3119   case MEM_PROT_NONE: p = PROT_NONE; break;
3120   case MEM_PROT_READ: p = PROT_READ; break;
3121   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3122   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3123   default:
3124     ShouldNotReachHere();
3125   }
3126   // is_committed is unused.
3127   return linux_mprotect(addr, bytes, p);
3128 }
3129 
3130 bool os::guard_memory(char* addr, size_t size) {
3131   return linux_mprotect(addr, size, PROT_NONE);
3132 }
3133 
3134 bool os::unguard_memory(char* addr, size_t size) {
3135   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3136 }
3137 
3138 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3139                                                     size_t page_size) {
3140   bool result = false;
3141   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3142                  MAP_ANONYMOUS|MAP_PRIVATE,
3143                  -1, 0);
3144   if (p != MAP_FAILED) {
3145     void *aligned_p = align_ptr_up(p, page_size);
3146 
3147     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3148 
3149     munmap(p, page_size * 2);
3150   }
3151 
3152   if (warn && !result) {
3153     warning("TransparentHugePages is not supported by the operating system.");
3154   }
3155 
3156   return result;
3157 }
3158 
3159 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3160   bool result = false;
3161   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3162                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3163                  -1, 0);
3164 
3165   if (p != MAP_FAILED) {
3166     // We don't know if this really is a huge page or not.
3167     FILE *fp = fopen("/proc/self/maps", "r");
3168     if (fp) {
3169       while (!feof(fp)) {
3170         char chars[257];
3171         long x = 0;
3172         if (fgets(chars, sizeof(chars), fp)) {
3173           if (sscanf(chars, "%lx-%*x", &x) == 1
3174               && x == (long)p) {
3175             if (strstr (chars, "hugepage")) {
3176               result = true;
3177               break;
3178             }
3179           }
3180         }
3181       }
3182       fclose(fp);
3183     }
3184     munmap(p, page_size);
3185   }
3186 
3187   if (warn && !result) {
3188     warning("HugeTLBFS is not supported by the operating system.");
3189   }
3190 
3191   return result;
3192 }
3193 
3194 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3195 //
3196 // From the coredump_filter documentation:
3197 //
3198 // - (bit 0) anonymous private memory
3199 // - (bit 1) anonymous shared memory
3200 // - (bit 2) file-backed private memory
3201 // - (bit 3) file-backed shared memory
3202 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3203 //           effective only if the bit 2 is cleared)
3204 // - (bit 5) hugetlb private memory
3205 // - (bit 6) hugetlb shared memory
3206 //
3207 static void set_coredump_filter(void) {
3208   FILE *f;
3209   long cdm;
3210 
3211   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3212     return;
3213   }
3214 
3215   if (fscanf(f, "%lx", &cdm) != 1) {
3216     fclose(f);
3217     return;
3218   }
3219 
3220   rewind(f);
3221 
3222   if ((cdm & LARGEPAGES_BIT) == 0) {
3223     cdm |= LARGEPAGES_BIT;
3224     fprintf(f, "%#lx", cdm);
3225   }
3226 
3227   fclose(f);
3228 }
3229 
3230 // Large page support
3231 
3232 static size_t _large_page_size = 0;
3233 
3234 size_t os::Linux::find_large_page_size() {
3235   size_t large_page_size = 0;
3236 
3237   // large_page_size on Linux is used to round up heap size. x86 uses either
3238   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3239   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3240   // page as large as 256M.
3241   //
3242   // Here we try to figure out page size by parsing /proc/meminfo and looking
3243   // for a line with the following format:
3244   //    Hugepagesize:     2048 kB
3245   //
3246   // If we can't determine the value (e.g. /proc is not mounted, or the text
3247   // format has been changed), we'll use the largest page size supported by
3248   // the processor.
3249 
3250 #ifndef ZERO
3251   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3252                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3253 #endif // ZERO
3254 
3255   FILE *fp = fopen("/proc/meminfo", "r");
3256   if (fp) {
3257     while (!feof(fp)) {
3258       int x = 0;
3259       char buf[16];
3260       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3261         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3262           large_page_size = x * K;
3263           break;
3264         }
3265       } else {
3266         // skip to next line
3267         for (;;) {
3268           int ch = fgetc(fp);
3269           if (ch == EOF || ch == (int)'\n') break;
3270         }
3271       }
3272     }
3273     fclose(fp);
3274   }
3275 
3276   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3277     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3278             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3279             proper_unit_for_byte_size(large_page_size));
3280   }
3281 
3282   return large_page_size;
3283 }
3284 
3285 size_t os::Linux::setup_large_page_size() {
3286   _large_page_size = Linux::find_large_page_size();
3287   const size_t default_page_size = (size_t)Linux::page_size();
3288   if (_large_page_size > default_page_size) {
3289     _page_sizes[0] = _large_page_size;
3290     _page_sizes[1] = default_page_size;
3291     _page_sizes[2] = 0;
3292   }
3293 
3294   return _large_page_size;
3295 }
3296 
3297 bool os::Linux::setup_large_page_type(size_t page_size) {
3298   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3299       FLAG_IS_DEFAULT(UseSHM) &&
3300       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3301 
3302     // The type of large pages has not been specified by the user.
3303 
3304     // Try UseHugeTLBFS and then UseSHM.
3305     UseHugeTLBFS = UseSHM = true;
3306 
3307     // Don't try UseTransparentHugePages since there are known
3308     // performance issues with it turned on. This might change in the future.
3309     UseTransparentHugePages = false;
3310   }
3311 
3312   if (UseTransparentHugePages) {
3313     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3314     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3315       UseHugeTLBFS = false;
3316       UseSHM = false;
3317       return true;
3318     }
3319     UseTransparentHugePages = false;
3320   }
3321 
3322   if (UseHugeTLBFS) {
3323     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3324     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3325       UseSHM = false;
3326       return true;
3327     }
3328     UseHugeTLBFS = false;
3329   }
3330 
3331   return UseSHM;
3332 }
3333 
3334 void os::large_page_init() {
3335   if (!UseLargePages &&
3336       !UseTransparentHugePages &&
3337       !UseHugeTLBFS &&
3338       !UseSHM) {
3339     // Not using large pages.
3340     return;
3341   }
3342 
3343   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3344     // The user explicitly turned off large pages.
3345     // Ignore the rest of the large pages flags.
3346     UseTransparentHugePages = false;
3347     UseHugeTLBFS = false;
3348     UseSHM = false;
3349     return;
3350   }
3351 
3352   size_t large_page_size = Linux::setup_large_page_size();
3353   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3354 
3355   set_coredump_filter();
3356 }
3357 
3358 #ifndef SHM_HUGETLB
3359   #define SHM_HUGETLB 04000
3360 #endif
3361 
3362 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3363                                             char* req_addr, bool exec) {
3364   // "exec" is passed in but not used.  Creating the shared image for
3365   // the code cache doesn't have an SHM_X executable permission to check.
3366   assert(UseLargePages && UseSHM, "only for SHM large pages");
3367   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3368 
3369   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3370     return NULL; // Fallback to small pages.
3371   }
3372 
3373   key_t key = IPC_PRIVATE;
3374   char *addr;
3375 
3376   bool warn_on_failure = UseLargePages &&
3377                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3378                          !FLAG_IS_DEFAULT(UseSHM) ||
3379                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3380   char msg[128];
3381 
3382   // Create a large shared memory region to attach to based on size.
3383   // Currently, size is the total size of the heap
3384   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3385   if (shmid == -1) {
3386     // Possible reasons for shmget failure:
3387     // 1. shmmax is too small for Java heap.
3388     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3389     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3390     // 2. not enough large page memory.
3391     //    > check available large pages: cat /proc/meminfo
3392     //    > increase amount of large pages:
3393     //          echo new_value > /proc/sys/vm/nr_hugepages
3394     //      Note 1: different Linux may use different name for this property,
3395     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3396     //      Note 2: it's possible there's enough physical memory available but
3397     //            they are so fragmented after a long run that they can't
3398     //            coalesce into large pages. Try to reserve large pages when
3399     //            the system is still "fresh".
3400     if (warn_on_failure) {
3401       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3402       warning("%s", msg);
3403     }
3404     return NULL;
3405   }
3406 
3407   // attach to the region
3408   addr = (char*)shmat(shmid, req_addr, 0);
3409   int err = errno;
3410 
3411   // Remove shmid. If shmat() is successful, the actual shared memory segment
3412   // will be deleted when it's detached by shmdt() or when the process
3413   // terminates. If shmat() is not successful this will remove the shared
3414   // segment immediately.
3415   shmctl(shmid, IPC_RMID, NULL);
3416 
3417   if ((intptr_t)addr == -1) {
3418     if (warn_on_failure) {
3419       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3420       warning("%s", msg);
3421     }
3422     return NULL;
3423   }
3424 
3425   return addr;
3426 }
3427 
3428 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3429                                         int error) {
3430   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3431 
3432   bool warn_on_failure = UseLargePages &&
3433       (!FLAG_IS_DEFAULT(UseLargePages) ||
3434        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3435        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3436 
3437   if (warn_on_failure) {
3438     char msg[128];
3439     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3440                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3441     warning("%s", msg);
3442   }
3443 }
3444 
3445 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3446                                                         char* req_addr,
3447                                                         bool exec) {
3448   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3449   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3450   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3451 
3452   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3453   char* addr = (char*)::mmap(req_addr, bytes, prot,
3454                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3455                              -1, 0);
3456 
3457   if (addr == MAP_FAILED) {
3458     warn_on_large_pages_failure(req_addr, bytes, errno);
3459     return NULL;
3460   }
3461 
3462   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3463 
3464   return addr;
3465 }
3466 
3467 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3468                                                          size_t alignment,
3469                                                          char* req_addr,
3470                                                          bool exec) {
3471   size_t large_page_size = os::large_page_size();
3472 
3473   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3474 
3475   // Allocate small pages.
3476 
3477   char* start;
3478   if (req_addr != NULL) {
3479     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3480     assert(is_size_aligned(bytes, alignment), "Must be");
3481     start = os::reserve_memory(bytes, req_addr);
3482     assert(start == NULL || start == req_addr, "Must be");
3483   } else {
3484     start = os::reserve_memory_aligned(bytes, alignment);
3485   }
3486 
3487   if (start == NULL) {
3488     return NULL;
3489   }
3490 
3491   assert(is_ptr_aligned(start, alignment), "Must be");
3492 
3493   if (MemTracker::tracking_level() > NMT_minimal) {
3494     // os::reserve_memory_special will record this memory area.
3495     // Need to release it here to prevent overlapping reservations.
3496     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3497     tkr.record((address)start, bytes);
3498   }
3499 
3500   char* end = start + bytes;
3501 
3502   // Find the regions of the allocated chunk that can be promoted to large pages.
3503   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3504   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3505 
3506   size_t lp_bytes = lp_end - lp_start;
3507 
3508   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3509 
3510   if (lp_bytes == 0) {
3511     // The mapped region doesn't even span the start and the end of a large page.
3512     // Fall back to allocate a non-special area.
3513     ::munmap(start, end - start);
3514     return NULL;
3515   }
3516 
3517   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3518 
3519 
3520   void* result;
3521 
3522   if (start != lp_start) {
3523     result = ::mmap(start, lp_start - start, prot,
3524                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3525                     -1, 0);
3526     if (result == MAP_FAILED) {
3527       ::munmap(lp_start, end - lp_start);
3528       return NULL;
3529     }
3530   }
3531 
3532   result = ::mmap(lp_start, lp_bytes, prot,
3533                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3534                   -1, 0);
3535   if (result == MAP_FAILED) {
3536     warn_on_large_pages_failure(req_addr, bytes, errno);
3537     // If the mmap above fails, the large pages region will be unmapped and we
3538     // have regions before and after with small pages. Release these regions.
3539     //
3540     // |  mapped  |  unmapped  |  mapped  |
3541     // ^          ^            ^          ^
3542     // start      lp_start     lp_end     end
3543     //
3544     ::munmap(start, lp_start - start);
3545     ::munmap(lp_end, end - lp_end);
3546     return NULL;
3547   }
3548 
3549   if (lp_end != end) {
3550     result = ::mmap(lp_end, end - lp_end, prot,
3551                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3552                     -1, 0);
3553     if (result == MAP_FAILED) {
3554       ::munmap(start, lp_end - start);
3555       return NULL;
3556     }
3557   }
3558 
3559   return start;
3560 }
3561 
3562 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3563                                                    size_t alignment,
3564                                                    char* req_addr,
3565                                                    bool exec) {
3566   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3567   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3568   assert(is_power_of_2(alignment), "Must be");
3569   assert(is_power_of_2(os::large_page_size()), "Must be");
3570   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3571 
3572   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3573     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3574   } else {
3575     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3576   }
3577 }
3578 
3579 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3580                                  char* req_addr, bool exec) {
3581   assert(UseLargePages, "only for large pages");
3582 
3583   char* addr;
3584   if (UseSHM) {
3585     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3586   } else {
3587     assert(UseHugeTLBFS, "must be");
3588     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3589   }
3590 
3591   if (addr != NULL) {
3592     if (UseNUMAInterleaving) {
3593       numa_make_global(addr, bytes);
3594     }
3595 
3596     // The memory is committed
3597     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3598   }
3599 
3600   return addr;
3601 }
3602 
3603 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3604   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3605   return shmdt(base) == 0;
3606 }
3607 
3608 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3609   return pd_release_memory(base, bytes);
3610 }
3611 
3612 bool os::release_memory_special(char* base, size_t bytes) {
3613   bool res;
3614   if (MemTracker::tracking_level() > NMT_minimal) {
3615     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3616     res = os::Linux::release_memory_special_impl(base, bytes);
3617     if (res) {
3618       tkr.record((address)base, bytes);
3619     }
3620 
3621   } else {
3622     res = os::Linux::release_memory_special_impl(base, bytes);
3623   }
3624   return res;
3625 }
3626 
3627 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3628   assert(UseLargePages, "only for large pages");
3629   bool res;
3630 
3631   if (UseSHM) {
3632     res = os::Linux::release_memory_special_shm(base, bytes);
3633   } else {
3634     assert(UseHugeTLBFS, "must be");
3635     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3636   }
3637   return res;
3638 }
3639 
3640 size_t os::large_page_size() {
3641   return _large_page_size;
3642 }
3643 
3644 // With SysV SHM the entire memory region must be allocated as shared
3645 // memory.
3646 // HugeTLBFS allows application to commit large page memory on demand.
3647 // However, when committing memory with HugeTLBFS fails, the region
3648 // that was supposed to be committed will lose the old reservation
3649 // and allow other threads to steal that memory region. Because of this
3650 // behavior we can't commit HugeTLBFS memory.
3651 bool os::can_commit_large_page_memory() {
3652   return UseTransparentHugePages;
3653 }
3654 
3655 bool os::can_execute_large_page_memory() {
3656   return UseTransparentHugePages || UseHugeTLBFS;
3657 }
3658 
3659 // Reserve memory at an arbitrary address, only if that area is
3660 // available (and not reserved for something else).
3661 
3662 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3663   const int max_tries = 10;
3664   char* base[max_tries];
3665   size_t size[max_tries];
3666   const size_t gap = 0x000000;
3667 
3668   // Assert only that the size is a multiple of the page size, since
3669   // that's all that mmap requires, and since that's all we really know
3670   // about at this low abstraction level.  If we need higher alignment,
3671   // we can either pass an alignment to this method or verify alignment
3672   // in one of the methods further up the call chain.  See bug 5044738.
3673   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3674 
3675   // Repeatedly allocate blocks until the block is allocated at the
3676   // right spot. Give up after max_tries. Note that reserve_memory() will
3677   // automatically update _highest_vm_reserved_address if the call is
3678   // successful. The variable tracks the highest memory address every reserved
3679   // by JVM. It is used to detect heap-stack collision if running with
3680   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3681   // space than needed, it could confuse the collision detecting code. To
3682   // solve the problem, save current _highest_vm_reserved_address and
3683   // calculate the correct value before return.
3684   address old_highest = _highest_vm_reserved_address;
3685 
3686   // Linux mmap allows caller to pass an address as hint; give it a try first,
3687   // if kernel honors the hint then we can return immediately.
3688   char * addr = anon_mmap(requested_addr, bytes, false);
3689   if (addr == requested_addr) {
3690     return requested_addr;
3691   }
3692 
3693   if (addr != NULL) {
3694     // mmap() is successful but it fails to reserve at the requested address
3695     anon_munmap(addr, bytes);
3696   }
3697 
3698   int i;
3699   for (i = 0; i < max_tries; ++i) {
3700     base[i] = reserve_memory(bytes);
3701 
3702     if (base[i] != NULL) {
3703       // Is this the block we wanted?
3704       if (base[i] == requested_addr) {
3705         size[i] = bytes;
3706         break;
3707       }
3708 
3709       // Does this overlap the block we wanted? Give back the overlapped
3710       // parts and try again.
3711 
3712       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3713       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3714         unmap_memory(base[i], top_overlap);
3715         base[i] += top_overlap;
3716         size[i] = bytes - top_overlap;
3717       } else {
3718         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3719         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3720           unmap_memory(requested_addr, bottom_overlap);
3721           size[i] = bytes - bottom_overlap;
3722         } else {
3723           size[i] = bytes;
3724         }
3725       }
3726     }
3727   }
3728 
3729   // Give back the unused reserved pieces.
3730 
3731   for (int j = 0; j < i; ++j) {
3732     if (base[j] != NULL) {
3733       unmap_memory(base[j], size[j]);
3734     }
3735   }
3736 
3737   if (i < max_tries) {
3738     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3739     return requested_addr;
3740   } else {
3741     _highest_vm_reserved_address = old_highest;
3742     return NULL;
3743   }
3744 }
3745 
3746 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3747   return ::read(fd, buf, nBytes);
3748 }
3749 
3750 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3751   return ::pread(fd, buf, nBytes, offset);
3752 }
3753 
3754 // Short sleep, direct OS call.
3755 //
3756 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3757 // sched_yield(2) will actually give up the CPU:
3758 //
3759 //   * Alone on this pariticular CPU, keeps running.
3760 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3761 //     (pre 2.6.39).
3762 //
3763 // So calling this with 0 is an alternative.
3764 //
3765 void os::naked_short_sleep(jlong ms) {
3766   struct timespec req;
3767 
3768   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3769   req.tv_sec = 0;
3770   if (ms > 0) {
3771     req.tv_nsec = (ms % 1000) * 1000000;
3772   } else {
3773     req.tv_nsec = 1;
3774   }
3775 
3776   nanosleep(&req, NULL);
3777 
3778   return;
3779 }
3780 
3781 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3782 void os::infinite_sleep() {
3783   while (true) {    // sleep forever ...
3784     ::sleep(100);   // ... 100 seconds at a time
3785   }
3786 }
3787 
3788 // Used to convert frequent JVM_Yield() to nops
3789 bool os::dont_yield() {
3790   return DontYieldALot;
3791 }
3792 
3793 void os::naked_yield() {
3794   sched_yield();
3795 }
3796 
3797 ////////////////////////////////////////////////////////////////////////////////
3798 // thread priority support
3799 
3800 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3801 // only supports dynamic priority, static priority must be zero. For real-time
3802 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3803 // However, for large multi-threaded applications, SCHED_RR is not only slower
3804 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3805 // of 5 runs - Sep 2005).
3806 //
3807 // The following code actually changes the niceness of kernel-thread/LWP. It
3808 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3809 // not the entire user process, and user level threads are 1:1 mapped to kernel
3810 // threads. It has always been the case, but could change in the future. For
3811 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3812 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3813 
3814 int os::java_to_os_priority[CriticalPriority + 1] = {
3815   19,              // 0 Entry should never be used
3816 
3817    4,              // 1 MinPriority
3818    3,              // 2
3819    2,              // 3
3820 
3821    1,              // 4
3822    0,              // 5 NormPriority
3823   -1,              // 6
3824 
3825   -2,              // 7
3826   -3,              // 8
3827   -4,              // 9 NearMaxPriority
3828 
3829   -5,              // 10 MaxPriority
3830 
3831   -5               // 11 CriticalPriority
3832 };
3833 
3834 static int prio_init() {
3835   if (ThreadPriorityPolicy == 1) {
3836     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3837     // if effective uid is not root. Perhaps, a more elegant way of doing
3838     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3839     if (geteuid() != 0) {
3840       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3841         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3842       }
3843       ThreadPriorityPolicy = 0;
3844     }
3845   }
3846   if (UseCriticalJavaThreadPriority) {
3847     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3848   }
3849   return 0;
3850 }
3851 
3852 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3853   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3854 
3855   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3856   return (ret == 0) ? OS_OK : OS_ERR;
3857 }
3858 
3859 OSReturn os::get_native_priority(const Thread* const thread,
3860                                  int *priority_ptr) {
3861   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3862     *priority_ptr = java_to_os_priority[NormPriority];
3863     return OS_OK;
3864   }
3865 
3866   errno = 0;
3867   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3868   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3869 }
3870 
3871 // Hint to the underlying OS that a task switch would not be good.
3872 // Void return because it's a hint and can fail.
3873 void os::hint_no_preempt() {}
3874 
3875 ////////////////////////////////////////////////////////////////////////////////
3876 // suspend/resume support
3877 
3878 //  the low-level signal-based suspend/resume support is a remnant from the
3879 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3880 //  within hotspot. Now there is a single use-case for this:
3881 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3882 //      that runs in the watcher thread.
3883 //  The remaining code is greatly simplified from the more general suspension
3884 //  code that used to be used.
3885 //
3886 //  The protocol is quite simple:
3887 //  - suspend:
3888 //      - sends a signal to the target thread
3889 //      - polls the suspend state of the osthread using a yield loop
3890 //      - target thread signal handler (SR_handler) sets suspend state
3891 //        and blocks in sigsuspend until continued
3892 //  - resume:
3893 //      - sets target osthread state to continue
3894 //      - sends signal to end the sigsuspend loop in the SR_handler
3895 //
3896 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3897 
3898 static void resume_clear_context(OSThread *osthread) {
3899   osthread->set_ucontext(NULL);
3900   osthread->set_siginfo(NULL);
3901 }
3902 
3903 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3904                                  ucontext_t* context) {
3905   osthread->set_ucontext(context);
3906   osthread->set_siginfo(siginfo);
3907 }
3908 
3909 // Handler function invoked when a thread's execution is suspended or
3910 // resumed. We have to be careful that only async-safe functions are
3911 // called here (Note: most pthread functions are not async safe and
3912 // should be avoided.)
3913 //
3914 // Note: sigwait() is a more natural fit than sigsuspend() from an
3915 // interface point of view, but sigwait() prevents the signal hander
3916 // from being run. libpthread would get very confused by not having
3917 // its signal handlers run and prevents sigwait()'s use with the
3918 // mutex granting granting signal.
3919 //
3920 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3921 //
3922 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3923   // Save and restore errno to avoid confusing native code with EINTR
3924   // after sigsuspend.
3925   int old_errno = errno;
3926 
3927   Thread* thread = Thread::current();
3928   OSThread* osthread = thread->osthread();
3929   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3930 
3931   os::SuspendResume::State current = osthread->sr.state();
3932   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3933     suspend_save_context(osthread, siginfo, context);
3934 
3935     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3936     os::SuspendResume::State state = osthread->sr.suspended();
3937     if (state == os::SuspendResume::SR_SUSPENDED) {
3938       sigset_t suspend_set;  // signals for sigsuspend()
3939 
3940       // get current set of blocked signals and unblock resume signal
3941       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3942       sigdelset(&suspend_set, SR_signum);
3943 
3944       sr_semaphore.signal();
3945       // wait here until we are resumed
3946       while (1) {
3947         sigsuspend(&suspend_set);
3948 
3949         os::SuspendResume::State result = osthread->sr.running();
3950         if (result == os::SuspendResume::SR_RUNNING) {
3951           sr_semaphore.signal();
3952           break;
3953         }
3954       }
3955 
3956     } else if (state == os::SuspendResume::SR_RUNNING) {
3957       // request was cancelled, continue
3958     } else {
3959       ShouldNotReachHere();
3960     }
3961 
3962     resume_clear_context(osthread);
3963   } else if (current == os::SuspendResume::SR_RUNNING) {
3964     // request was cancelled, continue
3965   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3966     // ignore
3967   } else {
3968     // ignore
3969   }
3970 
3971   errno = old_errno;
3972 }
3973 
3974 
3975 static int SR_initialize() {
3976   struct sigaction act;
3977   char *s;
3978   // Get signal number to use for suspend/resume
3979   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3980     int sig = ::strtol(s, 0, 10);
3981     if (sig > 0 || sig < _NSIG) {
3982       SR_signum = sig;
3983     }
3984   }
3985 
3986   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3987          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3988 
3989   sigemptyset(&SR_sigset);
3990   sigaddset(&SR_sigset, SR_signum);
3991 
3992   // Set up signal handler for suspend/resume
3993   act.sa_flags = SA_RESTART|SA_SIGINFO;
3994   act.sa_handler = (void (*)(int)) SR_handler;
3995 
3996   // SR_signum is blocked by default.
3997   // 4528190 - We also need to block pthread restart signal (32 on all
3998   // supported Linux platforms). Note that LinuxThreads need to block
3999   // this signal for all threads to work properly. So we don't have
4000   // to use hard-coded signal number when setting up the mask.
4001   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4002 
4003   if (sigaction(SR_signum, &act, 0) == -1) {
4004     return -1;
4005   }
4006 
4007   // Save signal flag
4008   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4009   return 0;
4010 }
4011 
4012 static int sr_notify(OSThread* osthread) {
4013   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4014   assert_status(status == 0, status, "pthread_kill");
4015   return status;
4016 }
4017 
4018 // "Randomly" selected value for how long we want to spin
4019 // before bailing out on suspending a thread, also how often
4020 // we send a signal to a thread we want to resume
4021 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4022 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4023 
4024 // returns true on success and false on error - really an error is fatal
4025 // but this seems the normal response to library errors
4026 static bool do_suspend(OSThread* osthread) {
4027   assert(osthread->sr.is_running(), "thread should be running");
4028   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4029 
4030   // mark as suspended and send signal
4031   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4032     // failed to switch, state wasn't running?
4033     ShouldNotReachHere();
4034     return false;
4035   }
4036 
4037   if (sr_notify(osthread) != 0) {
4038     ShouldNotReachHere();
4039   }
4040 
4041   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4042   while (true) {
4043     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4044       break;
4045     } else {
4046       // timeout
4047       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4048       if (cancelled == os::SuspendResume::SR_RUNNING) {
4049         return false;
4050       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4051         // make sure that we consume the signal on the semaphore as well
4052         sr_semaphore.wait();
4053         break;
4054       } else {
4055         ShouldNotReachHere();
4056         return false;
4057       }
4058     }
4059   }
4060 
4061   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4062   return true;
4063 }
4064 
4065 static void do_resume(OSThread* osthread) {
4066   assert(osthread->sr.is_suspended(), "thread should be suspended");
4067   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4068 
4069   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4070     // failed to switch to WAKEUP_REQUEST
4071     ShouldNotReachHere();
4072     return;
4073   }
4074 
4075   while (true) {
4076     if (sr_notify(osthread) == 0) {
4077       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4078         if (osthread->sr.is_running()) {
4079           return;
4080         }
4081       }
4082     } else {
4083       ShouldNotReachHere();
4084     }
4085   }
4086 
4087   guarantee(osthread->sr.is_running(), "Must be running!");
4088 }
4089 
4090 ///////////////////////////////////////////////////////////////////////////////////
4091 // signal handling (except suspend/resume)
4092 
4093 // This routine may be used by user applications as a "hook" to catch signals.
4094 // The user-defined signal handler must pass unrecognized signals to this
4095 // routine, and if it returns true (non-zero), then the signal handler must
4096 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4097 // routine will never retun false (zero), but instead will execute a VM panic
4098 // routine kill the process.
4099 //
4100 // If this routine returns false, it is OK to call it again.  This allows
4101 // the user-defined signal handler to perform checks either before or after
4102 // the VM performs its own checks.  Naturally, the user code would be making
4103 // a serious error if it tried to handle an exception (such as a null check
4104 // or breakpoint) that the VM was generating for its own correct operation.
4105 //
4106 // This routine may recognize any of the following kinds of signals:
4107 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4108 // It should be consulted by handlers for any of those signals.
4109 //
4110 // The caller of this routine must pass in the three arguments supplied
4111 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4112 // field of the structure passed to sigaction().  This routine assumes that
4113 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4114 //
4115 // Note that the VM will print warnings if it detects conflicting signal
4116 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4117 //
4118 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4119                                                  siginfo_t* siginfo,
4120                                                  void* ucontext,
4121                                                  int abort_if_unrecognized);
4122 
4123 void signalHandler(int sig, siginfo_t* info, void* uc) {
4124   assert(info != NULL && uc != NULL, "it must be old kernel");
4125   int orig_errno = errno;  // Preserve errno value over signal handler.
4126   JVM_handle_linux_signal(sig, info, uc, true);
4127   errno = orig_errno;
4128 }
4129 
4130 
4131 // This boolean allows users to forward their own non-matching signals
4132 // to JVM_handle_linux_signal, harmlessly.
4133 bool os::Linux::signal_handlers_are_installed = false;
4134 
4135 // For signal-chaining
4136 struct sigaction os::Linux::sigact[MAXSIGNUM];
4137 unsigned int os::Linux::sigs = 0;
4138 bool os::Linux::libjsig_is_loaded = false;
4139 typedef struct sigaction *(*get_signal_t)(int);
4140 get_signal_t os::Linux::get_signal_action = NULL;
4141 
4142 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4143   struct sigaction *actp = NULL;
4144 
4145   if (libjsig_is_loaded) {
4146     // Retrieve the old signal handler from libjsig
4147     actp = (*get_signal_action)(sig);
4148   }
4149   if (actp == NULL) {
4150     // Retrieve the preinstalled signal handler from jvm
4151     actp = get_preinstalled_handler(sig);
4152   }
4153 
4154   return actp;
4155 }
4156 
4157 static bool call_chained_handler(struct sigaction *actp, int sig,
4158                                  siginfo_t *siginfo, void *context) {
4159   // Call the old signal handler
4160   if (actp->sa_handler == SIG_DFL) {
4161     // It's more reasonable to let jvm treat it as an unexpected exception
4162     // instead of taking the default action.
4163     return false;
4164   } else if (actp->sa_handler != SIG_IGN) {
4165     if ((actp->sa_flags & SA_NODEFER) == 0) {
4166       // automaticlly block the signal
4167       sigaddset(&(actp->sa_mask), sig);
4168     }
4169 
4170     sa_handler_t hand;
4171     sa_sigaction_t sa;
4172     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4173     // retrieve the chained handler
4174     if (siginfo_flag_set) {
4175       sa = actp->sa_sigaction;
4176     } else {
4177       hand = actp->sa_handler;
4178     }
4179 
4180     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4181       actp->sa_handler = SIG_DFL;
4182     }
4183 
4184     // try to honor the signal mask
4185     sigset_t oset;
4186     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4187 
4188     // call into the chained handler
4189     if (siginfo_flag_set) {
4190       (*sa)(sig, siginfo, context);
4191     } else {
4192       (*hand)(sig);
4193     }
4194 
4195     // restore the signal mask
4196     pthread_sigmask(SIG_SETMASK, &oset, 0);
4197   }
4198   // Tell jvm's signal handler the signal is taken care of.
4199   return true;
4200 }
4201 
4202 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4203   bool chained = false;
4204   // signal-chaining
4205   if (UseSignalChaining) {
4206     struct sigaction *actp = get_chained_signal_action(sig);
4207     if (actp != NULL) {
4208       chained = call_chained_handler(actp, sig, siginfo, context);
4209     }
4210   }
4211   return chained;
4212 }
4213 
4214 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4215   if ((((unsigned int)1 << sig) & sigs) != 0) {
4216     return &sigact[sig];
4217   }
4218   return NULL;
4219 }
4220 
4221 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4222   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4223   sigact[sig] = oldAct;
4224   sigs |= (unsigned int)1 << sig;
4225 }
4226 
4227 // for diagnostic
4228 int os::Linux::sigflags[MAXSIGNUM];
4229 
4230 int os::Linux::get_our_sigflags(int sig) {
4231   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4232   return sigflags[sig];
4233 }
4234 
4235 void os::Linux::set_our_sigflags(int sig, int flags) {
4236   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4237   sigflags[sig] = flags;
4238 }
4239 
4240 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4241   // Check for overwrite.
4242   struct sigaction oldAct;
4243   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4244 
4245   void* oldhand = oldAct.sa_sigaction
4246                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4247                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4248   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4249       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4250       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4251     if (AllowUserSignalHandlers || !set_installed) {
4252       // Do not overwrite; user takes responsibility to forward to us.
4253       return;
4254     } else if (UseSignalChaining) {
4255       // save the old handler in jvm
4256       save_preinstalled_handler(sig, oldAct);
4257       // libjsig also interposes the sigaction() call below and saves the
4258       // old sigaction on it own.
4259     } else {
4260       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4261                     "%#lx for signal %d.", (long)oldhand, sig));
4262     }
4263   }
4264 
4265   struct sigaction sigAct;
4266   sigfillset(&(sigAct.sa_mask));
4267   sigAct.sa_handler = SIG_DFL;
4268   if (!set_installed) {
4269     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4270   } else {
4271     sigAct.sa_sigaction = signalHandler;
4272     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4273   }
4274   // Save flags, which are set by ours
4275   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4276   sigflags[sig] = sigAct.sa_flags;
4277 
4278   int ret = sigaction(sig, &sigAct, &oldAct);
4279   assert(ret == 0, "check");
4280 
4281   void* oldhand2  = oldAct.sa_sigaction
4282                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4283                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4284   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4285 }
4286 
4287 // install signal handlers for signals that HotSpot needs to
4288 // handle in order to support Java-level exception handling.
4289 
4290 void os::Linux::install_signal_handlers() {
4291   if (!signal_handlers_are_installed) {
4292     signal_handlers_are_installed = true;
4293 
4294     // signal-chaining
4295     typedef void (*signal_setting_t)();
4296     signal_setting_t begin_signal_setting = NULL;
4297     signal_setting_t end_signal_setting = NULL;
4298     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4299                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4300     if (begin_signal_setting != NULL) {
4301       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4302                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4303       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4304                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4305       libjsig_is_loaded = true;
4306       assert(UseSignalChaining, "should enable signal-chaining");
4307     }
4308     if (libjsig_is_loaded) {
4309       // Tell libjsig jvm is setting signal handlers
4310       (*begin_signal_setting)();
4311     }
4312 
4313     set_signal_handler(SIGSEGV, true);
4314     set_signal_handler(SIGPIPE, true);
4315     set_signal_handler(SIGBUS, true);
4316     set_signal_handler(SIGILL, true);
4317     set_signal_handler(SIGFPE, true);
4318 #if defined(PPC64)
4319     set_signal_handler(SIGTRAP, true);
4320 #endif
4321     set_signal_handler(SIGXFSZ, true);
4322 
4323     if (libjsig_is_loaded) {
4324       // Tell libjsig jvm finishes setting signal handlers
4325       (*end_signal_setting)();
4326     }
4327 
4328     // We don't activate signal checker if libjsig is in place, we trust ourselves
4329     // and if UserSignalHandler is installed all bets are off.
4330     // Log that signal checking is off only if -verbose:jni is specified.
4331     if (CheckJNICalls) {
4332       if (libjsig_is_loaded) {
4333         if (PrintJNIResolving) {
4334           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4335         }
4336         check_signals = false;
4337       }
4338       if (AllowUserSignalHandlers) {
4339         if (PrintJNIResolving) {
4340           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4341         }
4342         check_signals = false;
4343       }
4344     }
4345   }
4346 }
4347 
4348 // This is the fastest way to get thread cpu time on Linux.
4349 // Returns cpu time (user+sys) for any thread, not only for current.
4350 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4351 // It might work on 2.6.10+ with a special kernel/glibc patch.
4352 // For reference, please, see IEEE Std 1003.1-2004:
4353 //   http://www.unix.org/single_unix_specification
4354 
4355 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4356   struct timespec tp;
4357   int rc = os::Linux::clock_gettime(clockid, &tp);
4358   assert(rc == 0, "clock_gettime is expected to return 0 code");
4359 
4360   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4361 }
4362 
4363 /////
4364 // glibc on Linux platform uses non-documented flag
4365 // to indicate, that some special sort of signal
4366 // trampoline is used.
4367 // We will never set this flag, and we should
4368 // ignore this flag in our diagnostic
4369 #ifdef SIGNIFICANT_SIGNAL_MASK
4370   #undef SIGNIFICANT_SIGNAL_MASK
4371 #endif
4372 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4373 
4374 static const char* get_signal_handler_name(address handler,
4375                                            char* buf, int buflen) {
4376   int offset;
4377   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4378   if (found) {
4379     // skip directory names
4380     const char *p1, *p2;
4381     p1 = buf;
4382     size_t len = strlen(os::file_separator());
4383     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4384     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4385   } else {
4386     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4387   }
4388   return buf;
4389 }
4390 
4391 static void print_signal_handler(outputStream* st, int sig,
4392                                  char* buf, size_t buflen) {
4393   struct sigaction sa;
4394 
4395   sigaction(sig, NULL, &sa);
4396 
4397   // See comment for SIGNIFICANT_SIGNAL_MASK define
4398   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4399 
4400   st->print("%s: ", os::exception_name(sig, buf, buflen));
4401 
4402   address handler = (sa.sa_flags & SA_SIGINFO)
4403     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4404     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4405 
4406   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4407     st->print("SIG_DFL");
4408   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4409     st->print("SIG_IGN");
4410   } else {
4411     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4412   }
4413 
4414   st->print(", sa_mask[0]=");
4415   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4416 
4417   address rh = VMError::get_resetted_sighandler(sig);
4418   // May be, handler was resetted by VMError?
4419   if (rh != NULL) {
4420     handler = rh;
4421     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4422   }
4423 
4424   st->print(", sa_flags=");
4425   os::Posix::print_sa_flags(st, sa.sa_flags);
4426 
4427   // Check: is it our handler?
4428   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4429       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4430     // It is our signal handler
4431     // check for flags, reset system-used one!
4432     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4433       st->print(
4434                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4435                 os::Linux::get_our_sigflags(sig));
4436     }
4437   }
4438   st->cr();
4439 }
4440 
4441 
4442 #define DO_SIGNAL_CHECK(sig)                      \
4443   do {                                            \
4444     if (!sigismember(&check_signal_done, sig)) {  \
4445       os::Linux::check_signal_handler(sig);       \
4446     }                                             \
4447   } while (0)
4448 
4449 // This method is a periodic task to check for misbehaving JNI applications
4450 // under CheckJNI, we can add any periodic checks here
4451 
4452 void os::run_periodic_checks() {
4453   if (check_signals == false) return;
4454 
4455   // SEGV and BUS if overridden could potentially prevent
4456   // generation of hs*.log in the event of a crash, debugging
4457   // such a case can be very challenging, so we absolutely
4458   // check the following for a good measure:
4459   DO_SIGNAL_CHECK(SIGSEGV);
4460   DO_SIGNAL_CHECK(SIGILL);
4461   DO_SIGNAL_CHECK(SIGFPE);
4462   DO_SIGNAL_CHECK(SIGBUS);
4463   DO_SIGNAL_CHECK(SIGPIPE);
4464   DO_SIGNAL_CHECK(SIGXFSZ);
4465 #if defined(PPC64)
4466   DO_SIGNAL_CHECK(SIGTRAP);
4467 #endif
4468 
4469   // ReduceSignalUsage allows the user to override these handlers
4470   // see comments at the very top and jvm_solaris.h
4471   if (!ReduceSignalUsage) {
4472     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4473     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4474     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4475     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4476   }
4477 
4478   DO_SIGNAL_CHECK(SR_signum);
4479   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4480 }
4481 
4482 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4483 
4484 static os_sigaction_t os_sigaction = NULL;
4485 
4486 void os::Linux::check_signal_handler(int sig) {
4487   char buf[O_BUFLEN];
4488   address jvmHandler = NULL;
4489 
4490 
4491   struct sigaction act;
4492   if (os_sigaction == NULL) {
4493     // only trust the default sigaction, in case it has been interposed
4494     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4495     if (os_sigaction == NULL) return;
4496   }
4497 
4498   os_sigaction(sig, (struct sigaction*)NULL, &act);
4499 
4500 
4501   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4502 
4503   address thisHandler = (act.sa_flags & SA_SIGINFO)
4504     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4505     : CAST_FROM_FN_PTR(address, act.sa_handler);
4506 
4507 
4508   switch (sig) {
4509   case SIGSEGV:
4510   case SIGBUS:
4511   case SIGFPE:
4512   case SIGPIPE:
4513   case SIGILL:
4514   case SIGXFSZ:
4515     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4516     break;
4517 
4518   case SHUTDOWN1_SIGNAL:
4519   case SHUTDOWN2_SIGNAL:
4520   case SHUTDOWN3_SIGNAL:
4521   case BREAK_SIGNAL:
4522     jvmHandler = (address)user_handler();
4523     break;
4524 
4525   case INTERRUPT_SIGNAL:
4526     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4527     break;
4528 
4529   default:
4530     if (sig == SR_signum) {
4531       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4532     } else {
4533       return;
4534     }
4535     break;
4536   }
4537 
4538   if (thisHandler != jvmHandler) {
4539     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4540     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4541     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4542     // No need to check this sig any longer
4543     sigaddset(&check_signal_done, sig);
4544     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4545     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4546       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4547                     exception_name(sig, buf, O_BUFLEN));
4548     }
4549   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4550     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4551     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4552     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4553     // No need to check this sig any longer
4554     sigaddset(&check_signal_done, sig);
4555   }
4556 
4557   // Dump all the signal
4558   if (sigismember(&check_signal_done, sig)) {
4559     print_signal_handlers(tty, buf, O_BUFLEN);
4560   }
4561 }
4562 
4563 extern void report_error(char* file_name, int line_no, char* title,
4564                          char* format, ...);
4565 
4566 extern bool signal_name(int signo, char* buf, size_t len);
4567 
4568 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4569   if (0 < exception_code && exception_code <= SIGRTMAX) {
4570     // signal
4571     if (!signal_name(exception_code, buf, size)) {
4572       jio_snprintf(buf, size, "SIG%d", exception_code);
4573     }
4574     return buf;
4575   } else {
4576     return NULL;
4577   }
4578 }
4579 
4580 // this is called _before_ the most of global arguments have been parsed
4581 void os::init(void) {
4582   char dummy;   // used to get a guess on initial stack address
4583 //  first_hrtime = gethrtime();
4584 
4585   // With LinuxThreads the JavaMain thread pid (primordial thread)
4586   // is different than the pid of the java launcher thread.
4587   // So, on Linux, the launcher thread pid is passed to the VM
4588   // via the sun.java.launcher.pid property.
4589   // Use this property instead of getpid() if it was correctly passed.
4590   // See bug 6351349.
4591   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4592 
4593   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4594 
4595   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4596 
4597   init_random(1234567);
4598 
4599   ThreadCritical::initialize();
4600 
4601   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4602   if (Linux::page_size() == -1) {
4603     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4604                   strerror(errno)));
4605   }
4606   init_page_sizes((size_t) Linux::page_size());
4607 
4608   Linux::initialize_system_info();
4609 
4610   // main_thread points to the aboriginal thread
4611   Linux::_main_thread = pthread_self();
4612 
4613   Linux::clock_init();
4614   initial_time_count = javaTimeNanos();
4615 
4616   // pthread_condattr initialization for monotonic clock
4617   int status;
4618   pthread_condattr_t* _condattr = os::Linux::condAttr();
4619   if ((status = pthread_condattr_init(_condattr)) != 0) {
4620     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4621   }
4622   // Only set the clock if CLOCK_MONOTONIC is available
4623   if (os::supports_monotonic_clock()) {
4624     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4625       if (status == EINVAL) {
4626         warning("Unable to use monotonic clock with relative timed-waits" \
4627                 " - changes to the time-of-day clock may have adverse affects");
4628       } else {
4629         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4630       }
4631     }
4632   }
4633   // else it defaults to CLOCK_REALTIME
4634 
4635   // If the pagesize of the VM is greater than 8K determine the appropriate
4636   // number of initial guard pages.  The user can change this with the
4637   // command line arguments, if needed.
4638   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4639     StackYellowPages = 1;
4640     StackRedPages = 1;
4641     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4642   }
4643 
4644   // retrieve entry point for pthread_setname_np
4645   Linux::_pthread_setname_np =
4646     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4647 
4648 }
4649 
4650 // To install functions for atexit system call
4651 extern "C" {
4652   static void perfMemory_exit_helper() {
4653     perfMemory_exit();
4654   }
4655 }
4656 
4657 // this is called _after_ the global arguments have been parsed
4658 jint os::init_2(void) {
4659   Linux::fast_thread_clock_init();
4660 
4661   // Allocate a single page and mark it as readable for safepoint polling
4662   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4663   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4664 
4665   os::set_polling_page(polling_page);
4666 
4667 #ifndef PRODUCT
4668   if (Verbose && PrintMiscellaneous) {
4669     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4670                (intptr_t)polling_page);
4671   }
4672 #endif
4673 
4674   if (!UseMembar) {
4675     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4676     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4677     os::set_memory_serialize_page(mem_serialize_page);
4678 
4679 #ifndef PRODUCT
4680     if (Verbose && PrintMiscellaneous) {
4681       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4682                  (intptr_t)mem_serialize_page);
4683     }
4684 #endif
4685   }
4686 
4687   // initialize suspend/resume support - must do this before signal_sets_init()
4688   if (SR_initialize() != 0) {
4689     perror("SR_initialize failed");
4690     return JNI_ERR;
4691   }
4692 
4693   Linux::signal_sets_init();
4694   Linux::install_signal_handlers();
4695 
4696   // Check minimum allowable stack size for thread creation and to initialize
4697   // the java system classes, including StackOverflowError - depends on page
4698   // size.  Add a page for compiler2 recursion in main thread.
4699   // Add in 2*BytesPerWord times page size to account for VM stack during
4700   // class initialization depending on 32 or 64 bit VM.
4701   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4702                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4703                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4704 
4705   size_t threadStackSizeInBytes = ThreadStackSize * K;
4706   if (threadStackSizeInBytes != 0 &&
4707       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4708     tty->print_cr("\nThe stack size specified is too small, "
4709                   "Specify at least %dk",
4710                   os::Linux::min_stack_allowed/ K);
4711     return JNI_ERR;
4712   }
4713 
4714   // Make the stack size a multiple of the page size so that
4715   // the yellow/red zones can be guarded.
4716   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4717                                                 vm_page_size()));
4718 
4719   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4720 
4721 #if defined(IA32)
4722   workaround_expand_exec_shield_cs_limit();
4723 #endif
4724 
4725   Linux::libpthread_init();
4726   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4727     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4728                   Linux::glibc_version(), Linux::libpthread_version(),
4729                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4730   }
4731 
4732   if (UseNUMA) {
4733     if (!Linux::libnuma_init()) {
4734       UseNUMA = false;
4735     } else {
4736       if ((Linux::numa_max_node() < 1)) {
4737         // There's only one node(they start from 0), disable NUMA.
4738         UseNUMA = false;
4739       }
4740     }
4741     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4742     // we can make the adaptive lgrp chunk resizing work. If the user specified
4743     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4744     // disable adaptive resizing.
4745     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4746       if (FLAG_IS_DEFAULT(UseNUMA)) {
4747         UseNUMA = false;
4748       } else {
4749         if (FLAG_IS_DEFAULT(UseLargePages) &&
4750             FLAG_IS_DEFAULT(UseSHM) &&
4751             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4752           UseLargePages = false;
4753         } else {
4754           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4755           UseAdaptiveSizePolicy = false;
4756           UseAdaptiveNUMAChunkSizing = false;
4757         }
4758       }
4759     }
4760     if (!UseNUMA && ForceNUMA) {
4761       UseNUMA = true;
4762     }
4763   }
4764 
4765   if (MaxFDLimit) {
4766     // set the number of file descriptors to max. print out error
4767     // if getrlimit/setrlimit fails but continue regardless.
4768     struct rlimit nbr_files;
4769     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4770     if (status != 0) {
4771       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4772         perror("os::init_2 getrlimit failed");
4773       }
4774     } else {
4775       nbr_files.rlim_cur = nbr_files.rlim_max;
4776       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4777       if (status != 0) {
4778         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4779           perror("os::init_2 setrlimit failed");
4780         }
4781       }
4782     }
4783   }
4784 
4785   // Initialize lock used to serialize thread creation (see os::create_thread)
4786   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4787 
4788   // at-exit methods are called in the reverse order of their registration.
4789   // atexit functions are called on return from main or as a result of a
4790   // call to exit(3C). There can be only 32 of these functions registered
4791   // and atexit() does not set errno.
4792 
4793   if (PerfAllowAtExitRegistration) {
4794     // only register atexit functions if PerfAllowAtExitRegistration is set.
4795     // atexit functions can be delayed until process exit time, which
4796     // can be problematic for embedded VM situations. Embedded VMs should
4797     // call DestroyJavaVM() to assure that VM resources are released.
4798 
4799     // note: perfMemory_exit_helper atexit function may be removed in
4800     // the future if the appropriate cleanup code can be added to the
4801     // VM_Exit VMOperation's doit method.
4802     if (atexit(perfMemory_exit_helper) != 0) {
4803       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4804     }
4805   }
4806 
4807   // initialize thread priority policy
4808   prio_init();
4809 
4810   return JNI_OK;
4811 }
4812 
4813 // Mark the polling page as unreadable
4814 void os::make_polling_page_unreadable(void) {
4815   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4816     fatal("Could not disable polling page");
4817   }
4818 }
4819 
4820 // Mark the polling page as readable
4821 void os::make_polling_page_readable(void) {
4822   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4823     fatal("Could not enable polling page");
4824   }
4825 }
4826 
4827 int os::active_processor_count() {
4828   // Linux doesn't yet have a (official) notion of processor sets,
4829   // so just return the number of online processors.
4830   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4831   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4832   return online_cpus;
4833 }
4834 
4835 void os::set_native_thread_name(const char *name) {
4836   if (Linux::_pthread_setname_np) {
4837     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4838     snprintf(buf, sizeof(buf), "%s", name);
4839     buf[sizeof(buf) - 1] = '\0';
4840     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4841     // ERANGE should not happen; all other errors should just be ignored.
4842     assert(rc != ERANGE, "pthread_setname_np failed");
4843   }
4844 }
4845 
4846 bool os::distribute_processes(uint length, uint* distribution) {
4847   // Not yet implemented.
4848   return false;
4849 }
4850 
4851 bool os::bind_to_processor(uint processor_id) {
4852   // Not yet implemented.
4853   return false;
4854 }
4855 
4856 ///
4857 
4858 void os::SuspendedThreadTask::internal_do_task() {
4859   if (do_suspend(_thread->osthread())) {
4860     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4861     do_task(context);
4862     do_resume(_thread->osthread());
4863   }
4864 }
4865 
4866 class PcFetcher : public os::SuspendedThreadTask {
4867  public:
4868   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4869   ExtendedPC result();
4870  protected:
4871   void do_task(const os::SuspendedThreadTaskContext& context);
4872  private:
4873   ExtendedPC _epc;
4874 };
4875 
4876 ExtendedPC PcFetcher::result() {
4877   guarantee(is_done(), "task is not done yet.");
4878   return _epc;
4879 }
4880 
4881 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4882   Thread* thread = context.thread();
4883   OSThread* osthread = thread->osthread();
4884   if (osthread->ucontext() != NULL) {
4885     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4886   } else {
4887     // NULL context is unexpected, double-check this is the VMThread
4888     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4889   }
4890 }
4891 
4892 // Suspends the target using the signal mechanism and then grabs the PC before
4893 // resuming the target. Used by the flat-profiler only
4894 ExtendedPC os::get_thread_pc(Thread* thread) {
4895   // Make sure that it is called by the watcher for the VMThread
4896   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4897   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4898 
4899   PcFetcher fetcher(thread);
4900   fetcher.run();
4901   return fetcher.result();
4902 }
4903 
4904 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4905                                    pthread_mutex_t *_mutex,
4906                                    const struct timespec *_abstime) {
4907   if (is_NPTL()) {
4908     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4909   } else {
4910     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4911     // word back to default 64bit precision if condvar is signaled. Java
4912     // wants 53bit precision.  Save and restore current value.
4913     int fpu = get_fpu_control_word();
4914     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4915     set_fpu_control_word(fpu);
4916     return status;
4917   }
4918 }
4919 
4920 ////////////////////////////////////////////////////////////////////////////////
4921 // debug support
4922 
4923 bool os::find(address addr, outputStream* st) {
4924   Dl_info dlinfo;
4925   memset(&dlinfo, 0, sizeof(dlinfo));
4926   if (dladdr(addr, &dlinfo) != 0) {
4927     st->print(PTR_FORMAT ": ", addr);
4928     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4929       st->print("%s+%#x", dlinfo.dli_sname,
4930                 addr - (intptr_t)dlinfo.dli_saddr);
4931     } else if (dlinfo.dli_fbase != NULL) {
4932       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4933     } else {
4934       st->print("<absolute address>");
4935     }
4936     if (dlinfo.dli_fname != NULL) {
4937       st->print(" in %s", dlinfo.dli_fname);
4938     }
4939     if (dlinfo.dli_fbase != NULL) {
4940       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4941     }
4942     st->cr();
4943 
4944     if (Verbose) {
4945       // decode some bytes around the PC
4946       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4947       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4948       address       lowest = (address) dlinfo.dli_sname;
4949       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4950       if (begin < lowest)  begin = lowest;
4951       Dl_info dlinfo2;
4952       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4953           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4954         end = (address) dlinfo2.dli_saddr;
4955       }
4956       Disassembler::decode(begin, end, st);
4957     }
4958     return true;
4959   }
4960   return false;
4961 }
4962 
4963 ////////////////////////////////////////////////////////////////////////////////
4964 // misc
4965 
4966 // This does not do anything on Linux. This is basically a hook for being
4967 // able to use structured exception handling (thread-local exception filters)
4968 // on, e.g., Win32.
4969 void
4970 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4971                          JavaCallArguments* args, Thread* thread) {
4972   f(value, method, args, thread);
4973 }
4974 
4975 void os::print_statistics() {
4976 }
4977 
4978 int os::message_box(const char* title, const char* message) {
4979   int i;
4980   fdStream err(defaultStream::error_fd());
4981   for (i = 0; i < 78; i++) err.print_raw("=");
4982   err.cr();
4983   err.print_raw_cr(title);
4984   for (i = 0; i < 78; i++) err.print_raw("-");
4985   err.cr();
4986   err.print_raw_cr(message);
4987   for (i = 0; i < 78; i++) err.print_raw("=");
4988   err.cr();
4989 
4990   char buf[16];
4991   // Prevent process from exiting upon "read error" without consuming all CPU
4992   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4993 
4994   return buf[0] == 'y' || buf[0] == 'Y';
4995 }
4996 
4997 int os::stat(const char *path, struct stat *sbuf) {
4998   char pathbuf[MAX_PATH];
4999   if (strlen(path) > MAX_PATH - 1) {
5000     errno = ENAMETOOLONG;
5001     return -1;
5002   }
5003   os::native_path(strcpy(pathbuf, path));
5004   return ::stat(pathbuf, sbuf);
5005 }
5006 
5007 bool os::check_heap(bool force) {
5008   return true;
5009 }
5010 
5011 // Is a (classpath) directory empty?
5012 bool os::dir_is_empty(const char* path) {
5013   DIR *dir = NULL;
5014   struct dirent *ptr;
5015 
5016   dir = opendir(path);
5017   if (dir == NULL) return true;
5018 
5019   // Scan the directory
5020   bool result = true;
5021   char buf[sizeof(struct dirent) + MAX_PATH];
5022   while (result && (ptr = ::readdir(dir)) != NULL) {
5023     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5024       result = false;
5025     }
5026   }
5027   closedir(dir);
5028   return result;
5029 }
5030 
5031 // This code originates from JDK's sysOpen and open64_w
5032 // from src/solaris/hpi/src/system_md.c
5033 
5034 int os::open(const char *path, int oflag, int mode) {
5035   if (strlen(path) > MAX_PATH - 1) {
5036     errno = ENAMETOOLONG;
5037     return -1;
5038   }
5039 
5040   // All file descriptors that are opened in the Java process and not
5041   // specifically destined for a subprocess should have the close-on-exec
5042   // flag set.  If we don't set it, then careless 3rd party native code
5043   // might fork and exec without closing all appropriate file descriptors
5044   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5045   // turn might:
5046   //
5047   // - cause end-of-file to fail to be detected on some file
5048   //   descriptors, resulting in mysterious hangs, or
5049   //
5050   // - might cause an fopen in the subprocess to fail on a system
5051   //   suffering from bug 1085341.
5052   //
5053   // (Yes, the default setting of the close-on-exec flag is a Unix
5054   // design flaw)
5055   //
5056   // See:
5057   // 1085341: 32-bit stdio routines should support file descriptors >255
5058   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5059   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5060   //
5061   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5062   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5063   // because it saves a system call and removes a small window where the flag
5064   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5065   // and we fall back to using FD_CLOEXEC (see below).
5066 #ifdef O_CLOEXEC
5067   oflag |= O_CLOEXEC;
5068 #endif
5069 
5070   int fd = ::open64(path, oflag, mode);
5071   if (fd == -1) return -1;
5072 
5073   //If the open succeeded, the file might still be a directory
5074   {
5075     struct stat64 buf64;
5076     int ret = ::fstat64(fd, &buf64);
5077     int st_mode = buf64.st_mode;
5078 
5079     if (ret != -1) {
5080       if ((st_mode & S_IFMT) == S_IFDIR) {
5081         errno = EISDIR;
5082         ::close(fd);
5083         return -1;
5084       }
5085     } else {
5086       ::close(fd);
5087       return -1;
5088     }
5089   }
5090 
5091 #ifdef FD_CLOEXEC
5092   // Validate that the use of the O_CLOEXEC flag on open above worked.
5093   // With recent kernels, we will perform this check exactly once.
5094   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5095   if (!O_CLOEXEC_is_known_to_work) {
5096     int flags = ::fcntl(fd, F_GETFD);
5097     if (flags != -1) {
5098       if ((flags & FD_CLOEXEC) != 0)
5099         O_CLOEXEC_is_known_to_work = 1;
5100       else
5101         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5102     }
5103   }
5104 #endif
5105 
5106   return fd;
5107 }
5108 
5109 
5110 // create binary file, rewriting existing file if required
5111 int os::create_binary_file(const char* path, bool rewrite_existing) {
5112   int oflags = O_WRONLY | O_CREAT;
5113   if (!rewrite_existing) {
5114     oflags |= O_EXCL;
5115   }
5116   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5117 }
5118 
5119 // return current position of file pointer
5120 jlong os::current_file_offset(int fd) {
5121   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5122 }
5123 
5124 // move file pointer to the specified offset
5125 jlong os::seek_to_file_offset(int fd, jlong offset) {
5126   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5127 }
5128 
5129 // This code originates from JDK's sysAvailable
5130 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5131 
5132 int os::available(int fd, jlong *bytes) {
5133   jlong cur, end;
5134   int mode;
5135   struct stat64 buf64;
5136 
5137   if (::fstat64(fd, &buf64) >= 0) {
5138     mode = buf64.st_mode;
5139     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5140       // XXX: is the following call interruptible? If so, this might
5141       // need to go through the INTERRUPT_IO() wrapper as for other
5142       // blocking, interruptible calls in this file.
5143       int n;
5144       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5145         *bytes = n;
5146         return 1;
5147       }
5148     }
5149   }
5150   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5151     return 0;
5152   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5153     return 0;
5154   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5155     return 0;
5156   }
5157   *bytes = end - cur;
5158   return 1;
5159 }
5160 
5161 // Map a block of memory.
5162 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5163                         char *addr, size_t bytes, bool read_only,
5164                         bool allow_exec) {
5165   int prot;
5166   int flags = MAP_PRIVATE;
5167 
5168   if (read_only) {
5169     prot = PROT_READ;
5170   } else {
5171     prot = PROT_READ | PROT_WRITE;
5172   }
5173 
5174   if (allow_exec) {
5175     prot |= PROT_EXEC;
5176   }
5177 
5178   if (addr != NULL) {
5179     flags |= MAP_FIXED;
5180   }
5181 
5182   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5183                                      fd, file_offset);
5184   if (mapped_address == MAP_FAILED) {
5185     return NULL;
5186   }
5187   return mapped_address;
5188 }
5189 
5190 
5191 // Remap a block of memory.
5192 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5193                           char *addr, size_t bytes, bool read_only,
5194                           bool allow_exec) {
5195   // same as map_memory() on this OS
5196   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5197                         allow_exec);
5198 }
5199 
5200 
5201 // Unmap a block of memory.
5202 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5203   return munmap(addr, bytes) == 0;
5204 }
5205 
5206 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5207 
5208 static clockid_t thread_cpu_clockid(Thread* thread) {
5209   pthread_t tid = thread->osthread()->pthread_id();
5210   clockid_t clockid;
5211 
5212   // Get thread clockid
5213   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5214   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5215   return clockid;
5216 }
5217 
5218 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5219 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5220 // of a thread.
5221 //
5222 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5223 // the fast estimate available on the platform.
5224 
5225 jlong os::current_thread_cpu_time() {
5226   if (os::Linux::supports_fast_thread_cpu_time()) {
5227     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5228   } else {
5229     // return user + sys since the cost is the same
5230     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5231   }
5232 }
5233 
5234 jlong os::thread_cpu_time(Thread* thread) {
5235   // consistent with what current_thread_cpu_time() returns
5236   if (os::Linux::supports_fast_thread_cpu_time()) {
5237     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5238   } else {
5239     return slow_thread_cpu_time(thread, true /* user + sys */);
5240   }
5241 }
5242 
5243 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5244   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5245     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5246   } else {
5247     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5248   }
5249 }
5250 
5251 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5252   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5253     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5254   } else {
5255     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5256   }
5257 }
5258 
5259 //  -1 on error.
5260 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5261   pid_t  tid = thread->osthread()->thread_id();
5262   char *s;
5263   char stat[2048];
5264   int statlen;
5265   char proc_name[64];
5266   int count;
5267   long sys_time, user_time;
5268   char cdummy;
5269   int idummy;
5270   long ldummy;
5271   FILE *fp;
5272 
5273   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5274   fp = fopen(proc_name, "r");
5275   if (fp == NULL) return -1;
5276   statlen = fread(stat, 1, 2047, fp);
5277   stat[statlen] = '\0';
5278   fclose(fp);
5279 
5280   // Skip pid and the command string. Note that we could be dealing with
5281   // weird command names, e.g. user could decide to rename java launcher
5282   // to "java 1.4.2 :)", then the stat file would look like
5283   //                1234 (java 1.4.2 :)) R ... ...
5284   // We don't really need to know the command string, just find the last
5285   // occurrence of ")" and then start parsing from there. See bug 4726580.
5286   s = strrchr(stat, ')');
5287   if (s == NULL) return -1;
5288 
5289   // Skip blank chars
5290   do { s++; } while (s && isspace(*s));
5291 
5292   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5293                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5294                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5295                  &user_time, &sys_time);
5296   if (count != 13) return -1;
5297   if (user_sys_cpu_time) {
5298     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5299   } else {
5300     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5301   }
5302 }
5303 
5304 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5305   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5306   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5307   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5308   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5309 }
5310 
5311 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5312   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5313   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5314   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5315   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5316 }
5317 
5318 bool os::is_thread_cpu_time_supported() {
5319   return true;
5320 }
5321 
5322 // System loadavg support.  Returns -1 if load average cannot be obtained.
5323 // Linux doesn't yet have a (official) notion of processor sets,
5324 // so just return the system wide load average.
5325 int os::loadavg(double loadavg[], int nelem) {
5326   return ::getloadavg(loadavg, nelem);
5327 }
5328 
5329 void os::pause() {
5330   char filename[MAX_PATH];
5331   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5332     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5333   } else {
5334     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5335   }
5336 
5337   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5338   if (fd != -1) {
5339     struct stat buf;
5340     ::close(fd);
5341     while (::stat(filename, &buf) == 0) {
5342       (void)::poll(NULL, 0, 100);
5343     }
5344   } else {
5345     jio_fprintf(stderr,
5346                 "Could not open pause file '%s', continuing immediately.\n", filename);
5347   }
5348 }
5349 
5350 
5351 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5352 // comment paragraphs are worth repeating here:
5353 //
5354 // Assumption:
5355 //    Only one parker can exist on an event, which is why we allocate
5356 //    them per-thread. Multiple unparkers can coexist.
5357 //
5358 // _Event serves as a restricted-range semaphore.
5359 //   -1 : thread is blocked, i.e. there is a waiter
5360 //    0 : neutral: thread is running or ready,
5361 //        could have been signaled after a wait started
5362 //    1 : signaled - thread is running or ready
5363 //
5364 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5365 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5366 // For specifics regarding the bug see GLIBC BUGID 261237 :
5367 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5368 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5369 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5370 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5371 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5372 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5373 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5374 // of libpthread avoids the problem, but isn't practical.
5375 //
5376 // Possible remedies:
5377 //
5378 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5379 //      This is palliative and probabilistic, however.  If the thread is preempted
5380 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5381 //      than the minimum period may have passed, and the abstime may be stale (in the
5382 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5383 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5384 //
5385 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5386 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5387 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5388 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5389 //      thread.
5390 //
5391 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5392 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5393 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5394 //      This also works well.  In fact it avoids kernel-level scalability impediments
5395 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5396 //      timers in a graceful fashion.
5397 //
5398 // 4.   When the abstime value is in the past it appears that control returns
5399 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5400 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5401 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5402 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5403 //      It may be possible to avoid reinitialization by checking the return
5404 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5405 //      condvar we must establish the invariant that cond_signal() is only called
5406 //      within critical sections protected by the adjunct mutex.  This prevents
5407 //      cond_signal() from "seeing" a condvar that's in the midst of being
5408 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5409 //      desirable signal-after-unlock optimization that avoids futile context switching.
5410 //
5411 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5412 //      structure when a condvar is used or initialized.  cond_destroy()  would
5413 //      release the helper structure.  Our reinitialize-after-timedwait fix
5414 //      put excessive stress on malloc/free and locks protecting the c-heap.
5415 //
5416 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5417 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5418 // and only enabling the work-around for vulnerable environments.
5419 
5420 // utility to compute the abstime argument to timedwait:
5421 // millis is the relative timeout time
5422 // abstime will be the absolute timeout time
5423 // TODO: replace compute_abstime() with unpackTime()
5424 
5425 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5426   if (millis < 0)  millis = 0;
5427 
5428   jlong seconds = millis / 1000;
5429   millis %= 1000;
5430   if (seconds > 50000000) { // see man cond_timedwait(3T)
5431     seconds = 50000000;
5432   }
5433 
5434   if (os::supports_monotonic_clock()) {
5435     struct timespec now;
5436     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5437     assert_status(status == 0, status, "clock_gettime");
5438     abstime->tv_sec = now.tv_sec  + seconds;
5439     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5440     if (nanos >= NANOSECS_PER_SEC) {
5441       abstime->tv_sec += 1;
5442       nanos -= NANOSECS_PER_SEC;
5443     }
5444     abstime->tv_nsec = nanos;
5445   } else {
5446     struct timeval now;
5447     int status = gettimeofday(&now, NULL);
5448     assert(status == 0, "gettimeofday");
5449     abstime->tv_sec = now.tv_sec  + seconds;
5450     long usec = now.tv_usec + millis * 1000;
5451     if (usec >= 1000000) {
5452       abstime->tv_sec += 1;
5453       usec -= 1000000;
5454     }
5455     abstime->tv_nsec = usec * 1000;
5456   }
5457   return abstime;
5458 }
5459 
5460 void os::PlatformEvent::park() {       // AKA "down()"
5461   // Transitions for _Event:
5462   //   -1 => -1 : illegal
5463   //    1 =>  0 : pass - return immediately
5464   //    0 => -1 : block; then set _Event to 0 before returning
5465 
5466   // Invariant: Only the thread associated with the Event/PlatformEvent
5467   // may call park().
5468   // TODO: assert that _Assoc != NULL or _Assoc == Self
5469   assert(_nParked == 0, "invariant");
5470 
5471   int v;
5472   for (;;) {
5473     v = _Event;
5474     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5475   }
5476   guarantee(v >= 0, "invariant");
5477   if (v == 0) {
5478     // Do this the hard way by blocking ...
5479     int status = pthread_mutex_lock(_mutex);
5480     assert_status(status == 0, status, "mutex_lock");
5481     guarantee(_nParked == 0, "invariant");
5482     ++_nParked;
5483     while (_Event < 0) {
5484       status = pthread_cond_wait(_cond, _mutex);
5485       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5486       // Treat this the same as if the wait was interrupted
5487       if (status == ETIME) { status = EINTR; }
5488       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5489     }
5490     --_nParked;
5491 
5492     _Event = 0;
5493     status = pthread_mutex_unlock(_mutex);
5494     assert_status(status == 0, status, "mutex_unlock");
5495     // Paranoia to ensure our locked and lock-free paths interact
5496     // correctly with each other.
5497     OrderAccess::fence();
5498   }
5499   guarantee(_Event >= 0, "invariant");
5500 }
5501 
5502 int os::PlatformEvent::park(jlong millis) {
5503   // Transitions for _Event:
5504   //   -1 => -1 : illegal
5505   //    1 =>  0 : pass - return immediately
5506   //    0 => -1 : block; then set _Event to 0 before returning
5507 
5508   guarantee(_nParked == 0, "invariant");
5509 
5510   int v;
5511   for (;;) {
5512     v = _Event;
5513     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5514   }
5515   guarantee(v >= 0, "invariant");
5516   if (v != 0) return OS_OK;
5517 
5518   // We do this the hard way, by blocking the thread.
5519   // Consider enforcing a minimum timeout value.
5520   struct timespec abst;
5521   compute_abstime(&abst, millis);
5522 
5523   int ret = OS_TIMEOUT;
5524   int status = pthread_mutex_lock(_mutex);
5525   assert_status(status == 0, status, "mutex_lock");
5526   guarantee(_nParked == 0, "invariant");
5527   ++_nParked;
5528 
5529   // Object.wait(timo) will return because of
5530   // (a) notification
5531   // (b) timeout
5532   // (c) thread.interrupt
5533   //
5534   // Thread.interrupt and object.notify{All} both call Event::set.
5535   // That is, we treat thread.interrupt as a special case of notification.
5536   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5537   // We assume all ETIME returns are valid.
5538   //
5539   // TODO: properly differentiate simultaneous notify+interrupt.
5540   // In that case, we should propagate the notify to another waiter.
5541 
5542   while (_Event < 0) {
5543     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5544     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5545       pthread_cond_destroy(_cond);
5546       pthread_cond_init(_cond, os::Linux::condAttr());
5547     }
5548     assert_status(status == 0 || status == EINTR ||
5549                   status == ETIME || status == ETIMEDOUT,
5550                   status, "cond_timedwait");
5551     if (!FilterSpuriousWakeups) break;                 // previous semantics
5552     if (status == ETIME || status == ETIMEDOUT) break;
5553     // We consume and ignore EINTR and spurious wakeups.
5554   }
5555   --_nParked;
5556   if (_Event >= 0) {
5557     ret = OS_OK;
5558   }
5559   _Event = 0;
5560   status = pthread_mutex_unlock(_mutex);
5561   assert_status(status == 0, status, "mutex_unlock");
5562   assert(_nParked == 0, "invariant");
5563   // Paranoia to ensure our locked and lock-free paths interact
5564   // correctly with each other.
5565   OrderAccess::fence();
5566   return ret;
5567 }
5568 
5569 void os::PlatformEvent::unpark() {
5570   // Transitions for _Event:
5571   //    0 => 1 : just return
5572   //    1 => 1 : just return
5573   //   -1 => either 0 or 1; must signal target thread
5574   //         That is, we can safely transition _Event from -1 to either
5575   //         0 or 1.
5576   // See also: "Semaphores in Plan 9" by Mullender & Cox
5577   //
5578   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5579   // that it will take two back-to-back park() calls for the owning
5580   // thread to block. This has the benefit of forcing a spurious return
5581   // from the first park() call after an unpark() call which will help
5582   // shake out uses of park() and unpark() without condition variables.
5583 
5584   if (Atomic::xchg(1, &_Event) >= 0) return;
5585 
5586   // Wait for the thread associated with the event to vacate
5587   int status = pthread_mutex_lock(_mutex);
5588   assert_status(status == 0, status, "mutex_lock");
5589   int AnyWaiters = _nParked;
5590   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5591   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5592     AnyWaiters = 0;
5593     pthread_cond_signal(_cond);
5594   }
5595   status = pthread_mutex_unlock(_mutex);
5596   assert_status(status == 0, status, "mutex_unlock");
5597   if (AnyWaiters != 0) {
5598     // Note that we signal() *after* dropping the lock for "immortal" Events.
5599     // This is safe and avoids a common class of  futile wakeups.  In rare
5600     // circumstances this can cause a thread to return prematurely from
5601     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5602     // will simply re-test the condition and re-park itself.
5603     // This provides particular benefit if the underlying platform does not
5604     // provide wait morphing.
5605     status = pthread_cond_signal(_cond);
5606     assert_status(status == 0, status, "cond_signal");
5607   }
5608 }
5609 
5610 
5611 // JSR166
5612 // -------------------------------------------------------
5613 
5614 // The solaris and linux implementations of park/unpark are fairly
5615 // conservative for now, but can be improved. They currently use a
5616 // mutex/condvar pair, plus a a count.
5617 // Park decrements count if > 0, else does a condvar wait.  Unpark
5618 // sets count to 1 and signals condvar.  Only one thread ever waits
5619 // on the condvar. Contention seen when trying to park implies that someone
5620 // is unparking you, so don't wait. And spurious returns are fine, so there
5621 // is no need to track notifications.
5622 
5623 // This code is common to linux and solaris and will be moved to a
5624 // common place in dolphin.
5625 //
5626 // The passed in time value is either a relative time in nanoseconds
5627 // or an absolute time in milliseconds. Either way it has to be unpacked
5628 // into suitable seconds and nanoseconds components and stored in the
5629 // given timespec structure.
5630 // Given time is a 64-bit value and the time_t used in the timespec is only
5631 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5632 // overflow if times way in the future are given. Further on Solaris versions
5633 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5634 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5635 // As it will be 28 years before "now + 100000000" will overflow we can
5636 // ignore overflow and just impose a hard-limit on seconds using the value
5637 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5638 // years from "now".
5639 
5640 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5641   assert(time > 0, "convertTime");
5642   time_t max_secs = 0;
5643 
5644   if (!os::supports_monotonic_clock() || isAbsolute) {
5645     struct timeval now;
5646     int status = gettimeofday(&now, NULL);
5647     assert(status == 0, "gettimeofday");
5648 
5649     max_secs = now.tv_sec + MAX_SECS;
5650 
5651     if (isAbsolute) {
5652       jlong secs = time / 1000;
5653       if (secs > max_secs) {
5654         absTime->tv_sec = max_secs;
5655       } else {
5656         absTime->tv_sec = secs;
5657       }
5658       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5659     } else {
5660       jlong secs = time / NANOSECS_PER_SEC;
5661       if (secs >= MAX_SECS) {
5662         absTime->tv_sec = max_secs;
5663         absTime->tv_nsec = 0;
5664       } else {
5665         absTime->tv_sec = now.tv_sec + secs;
5666         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5667         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5668           absTime->tv_nsec -= NANOSECS_PER_SEC;
5669           ++absTime->tv_sec; // note: this must be <= max_secs
5670         }
5671       }
5672     }
5673   } else {
5674     // must be relative using monotonic clock
5675     struct timespec now;
5676     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5677     assert_status(status == 0, status, "clock_gettime");
5678     max_secs = now.tv_sec + MAX_SECS;
5679     jlong secs = time / NANOSECS_PER_SEC;
5680     if (secs >= MAX_SECS) {
5681       absTime->tv_sec = max_secs;
5682       absTime->tv_nsec = 0;
5683     } else {
5684       absTime->tv_sec = now.tv_sec + secs;
5685       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5686       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5687         absTime->tv_nsec -= NANOSECS_PER_SEC;
5688         ++absTime->tv_sec; // note: this must be <= max_secs
5689       }
5690     }
5691   }
5692   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5693   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5694   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5695   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5696 }
5697 
5698 void Parker::park(bool isAbsolute, jlong time) {
5699   // Ideally we'd do something useful while spinning, such
5700   // as calling unpackTime().
5701 
5702   // Optional fast-path check:
5703   // Return immediately if a permit is available.
5704   // We depend on Atomic::xchg() having full barrier semantics
5705   // since we are doing a lock-free update to _counter.
5706   if (Atomic::xchg(0, &_counter) > 0) return;
5707 
5708   Thread* thread = Thread::current();
5709   assert(thread->is_Java_thread(), "Must be JavaThread");
5710   JavaThread *jt = (JavaThread *)thread;
5711 
5712   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5713   // Check interrupt before trying to wait
5714   if (Thread::is_interrupted(thread, false)) {
5715     return;
5716   }
5717 
5718   // Next, demultiplex/decode time arguments
5719   timespec absTime;
5720   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5721     return;
5722   }
5723   if (time > 0) {
5724     unpackTime(&absTime, isAbsolute, time);
5725   }
5726 
5727 
5728   // Enter safepoint region
5729   // Beware of deadlocks such as 6317397.
5730   // The per-thread Parker:: mutex is a classic leaf-lock.
5731   // In particular a thread must never block on the Threads_lock while
5732   // holding the Parker:: mutex.  If safepoints are pending both the
5733   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5734   ThreadBlockInVM tbivm(jt);
5735 
5736   // Don't wait if cannot get lock since interference arises from
5737   // unblocking.  Also. check interrupt before trying wait
5738   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5739     return;
5740   }
5741 
5742   int status;
5743   if (_counter > 0)  { // no wait needed
5744     _counter = 0;
5745     status = pthread_mutex_unlock(_mutex);
5746     assert(status == 0, "invariant");
5747     // Paranoia to ensure our locked and lock-free paths interact
5748     // correctly with each other and Java-level accesses.
5749     OrderAccess::fence();
5750     return;
5751   }
5752 
5753 #ifdef ASSERT
5754   // Don't catch signals while blocked; let the running threads have the signals.
5755   // (This allows a debugger to break into the running thread.)
5756   sigset_t oldsigs;
5757   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5758   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5759 #endif
5760 
5761   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5762   jt->set_suspend_equivalent();
5763   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5764 
5765   assert(_cur_index == -1, "invariant");
5766   if (time == 0) {
5767     _cur_index = REL_INDEX; // arbitrary choice when not timed
5768     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5769   } else {
5770     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5771     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5772     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5773       pthread_cond_destroy(&_cond[_cur_index]);
5774       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5775     }
5776   }
5777   _cur_index = -1;
5778   assert_status(status == 0 || status == EINTR ||
5779                 status == ETIME || status == ETIMEDOUT,
5780                 status, "cond_timedwait");
5781 
5782 #ifdef ASSERT
5783   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5784 #endif
5785 
5786   _counter = 0;
5787   status = pthread_mutex_unlock(_mutex);
5788   assert_status(status == 0, status, "invariant");
5789   // Paranoia to ensure our locked and lock-free paths interact
5790   // correctly with each other and Java-level accesses.
5791   OrderAccess::fence();
5792 
5793   // If externally suspended while waiting, re-suspend
5794   if (jt->handle_special_suspend_equivalent_condition()) {
5795     jt->java_suspend_self();
5796   }
5797 }
5798 
5799 void Parker::unpark() {
5800   int status = pthread_mutex_lock(_mutex);
5801   assert(status == 0, "invariant");
5802   const int s = _counter;
5803   _counter = 1;
5804   if (s < 1) {
5805     // thread might be parked
5806     if (_cur_index != -1) {
5807       // thread is definitely parked
5808       if (WorkAroundNPTLTimedWaitHang) {
5809         status = pthread_cond_signal(&_cond[_cur_index]);
5810         assert(status == 0, "invariant");
5811         status = pthread_mutex_unlock(_mutex);
5812         assert(status == 0, "invariant");
5813       } else {
5814         status = pthread_mutex_unlock(_mutex);
5815         assert(status == 0, "invariant");
5816         status = pthread_cond_signal(&_cond[_cur_index]);
5817         assert(status == 0, "invariant");
5818       }
5819     } else {
5820       pthread_mutex_unlock(_mutex);
5821       assert(status == 0, "invariant");
5822     }
5823   } else {
5824     pthread_mutex_unlock(_mutex);
5825     assert(status == 0, "invariant");
5826   }
5827 }
5828 
5829 
5830 extern char** environ;
5831 
5832 #ifndef __NR_fork
5833   #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57) AARCH64_ONLY(1079)
5834 #endif
5835 
5836 #ifndef __NR_execve
5837   #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59) AARCH64_ONLY(221)
5838 #endif
5839 
5840 // Run the specified command in a separate process. Return its exit value,
5841 // or -1 on failure (e.g. can't fork a new process).
5842 // Unlike system(), this function can be called from signal handler. It
5843 // doesn't block SIGINT et al.
5844 int os::fork_and_exec(char* cmd) {
5845   const char * argv[4] = {"sh", "-c", cmd, NULL};
5846 
5847   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5848   // pthread_atfork handlers and reset pthread library. All we need is a
5849   // separate process to execve. Make a direct syscall to fork process.
5850   // On IA64 there's no fork syscall, we have to use fork() and hope for
5851   // the best...
5852   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5853   IA64_ONLY(fork();)
5854 
5855   if (pid < 0) {
5856     // fork failed
5857     return -1;
5858 
5859   } else if (pid == 0) {
5860     // child process
5861 
5862     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5863     // first to kill every thread on the thread list. Because this list is
5864     // not reset by fork() (see notes above), execve() will instead kill
5865     // every thread in the parent process. We know this is the only thread
5866     // in the new process, so make a system call directly.
5867     // IA64 should use normal execve() from glibc to match the glibc fork()
5868     // above.
5869     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5870     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5871 
5872     // execve failed
5873     _exit(-1);
5874 
5875   } else  {
5876     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5877     // care about the actual exit code, for now.
5878 
5879     int status;
5880 
5881     // Wait for the child process to exit.  This returns immediately if
5882     // the child has already exited. */
5883     while (waitpid(pid, &status, 0) < 0) {
5884       switch (errno) {
5885       case ECHILD: return 0;
5886       case EINTR: break;
5887       default: return -1;
5888       }
5889     }
5890 
5891     if (WIFEXITED(status)) {
5892       // The child exited normally; get its exit code.
5893       return WEXITSTATUS(status);
5894     } else if (WIFSIGNALED(status)) {
5895       // The child exited because of a signal
5896       // The best value to return is 0x80 + signal number,
5897       // because that is what all Unix shells do, and because
5898       // it allows callers to distinguish between process exit and
5899       // process death by signal.
5900       return 0x80 + WTERMSIG(status);
5901     } else {
5902       // Unknown exit code; pass it through
5903       return status;
5904     }
5905   }
5906 }
5907 
5908 // is_headless_jre()
5909 //
5910 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5911 // in order to report if we are running in a headless jre
5912 //
5913 // Since JDK8 xawt/libmawt.so was moved into the same directory
5914 // as libawt.so, and renamed libawt_xawt.so
5915 //
5916 bool os::is_headless_jre() {
5917   struct stat statbuf;
5918   char buf[MAXPATHLEN];
5919   char libmawtpath[MAXPATHLEN];
5920   const char *xawtstr  = "/xawt/libmawt.so";
5921   const char *new_xawtstr = "/libawt_xawt.so";
5922   char *p;
5923 
5924   // Get path to libjvm.so
5925   os::jvm_path(buf, sizeof(buf));
5926 
5927   // Get rid of libjvm.so
5928   p = strrchr(buf, '/');
5929   if (p == NULL) {
5930     return false;
5931   } else {
5932     *p = '\0';
5933   }
5934 
5935   // Get rid of client or server
5936   p = strrchr(buf, '/');
5937   if (p == NULL) {
5938     return false;
5939   } else {
5940     *p = '\0';
5941   }
5942 
5943   // check xawt/libmawt.so
5944   strcpy(libmawtpath, buf);
5945   strcat(libmawtpath, xawtstr);
5946   if (::stat(libmawtpath, &statbuf) == 0) return false;
5947 
5948   // check libawt_xawt.so
5949   strcpy(libmawtpath, buf);
5950   strcat(libmawtpath, new_xawtstr);
5951   if (::stat(libmawtpath, &statbuf) == 0) return false;
5952 
5953   return true;
5954 }
5955 
5956 // Get the default path to the core file
5957 // Returns the length of the string
5958 int os::get_core_path(char* buffer, size_t bufferSize) {
5959   /*
5960    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5961    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5962    */
5963   const int core_pattern_len = 129;
5964   char core_pattern[core_pattern_len] = {0};
5965 
5966   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5967   if (core_pattern_file != -1) {
5968     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5969     ::close(core_pattern_file);
5970 
5971     if (ret > 0) {
5972       char *last_char = core_pattern + strlen(core_pattern) - 1;
5973 
5974       if (*last_char == '\n') {
5975         *last_char = '\0';
5976       }
5977     }
5978   }
5979 
5980   if (strlen(core_pattern) == 0) {
5981     return -1;
5982   }
5983 
5984   char *pid_pos = strstr(core_pattern, "%p");
5985   int written;
5986 
5987   if (core_pattern[0] == '/') {
5988     written = jio_snprintf(buffer, bufferSize, core_pattern);
5989   } else {
5990     char cwd[PATH_MAX];
5991 
5992     const char* p = get_current_directory(cwd, PATH_MAX);
5993     if (p == NULL) {
5994       return -1;
5995     }
5996 
5997     if (core_pattern[0] == '|') {
5998       written = jio_snprintf(buffer, bufferSize,
5999                         "\"%s\" (or dumping to %s/core.%d)",
6000                                      &core_pattern[1], p, current_process_id());
6001     } else {
6002       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6003     }
6004   }
6005 
6006   if (written < 0) {
6007     return -1;
6008   }
6009 
6010   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6011     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6012 
6013     if (core_uses_pid_file != -1) {
6014       char core_uses_pid = 0;
6015       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6016       ::close(core_uses_pid_file);
6017 
6018       if (core_uses_pid == '1') {
6019         jio_snprintf(buffer + written, bufferSize - written,
6020                                           ".%d", current_process_id());
6021       }
6022     }
6023   }
6024 
6025   return strlen(buffer);
6026 }
6027 
6028 /////////////// Unit tests ///////////////
6029 
6030 #ifndef PRODUCT
6031 
6032 #define test_log(...)              \
6033   do {                             \
6034     if (VerboseInternalVMTests) {  \
6035       tty->print_cr(__VA_ARGS__);  \
6036       tty->flush();                \
6037     }                              \
6038   } while (false)
6039 
6040 class TestReserveMemorySpecial : AllStatic {
6041  public:
6042   static void small_page_write(void* addr, size_t size) {
6043     size_t page_size = os::vm_page_size();
6044 
6045     char* end = (char*)addr + size;
6046     for (char* p = (char*)addr; p < end; p += page_size) {
6047       *p = 1;
6048     }
6049   }
6050 
6051   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6052     if (!UseHugeTLBFS) {
6053       return;
6054     }
6055 
6056     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6057 
6058     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6059 
6060     if (addr != NULL) {
6061       small_page_write(addr, size);
6062 
6063       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6064     }
6065   }
6066 
6067   static void test_reserve_memory_special_huge_tlbfs_only() {
6068     if (!UseHugeTLBFS) {
6069       return;
6070     }
6071 
6072     size_t lp = os::large_page_size();
6073 
6074     for (size_t size = lp; size <= lp * 10; size += lp) {
6075       test_reserve_memory_special_huge_tlbfs_only(size);
6076     }
6077   }
6078 
6079   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6080     if (!UseHugeTLBFS) {
6081       return;
6082     }
6083 
6084     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6085              size, alignment);
6086 
6087     assert(size >= os::large_page_size(), "Incorrect input to test");
6088 
6089     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6090 
6091     if (addr != NULL) {
6092       small_page_write(addr, size);
6093 
6094       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6095     }
6096   }
6097 
6098   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6099     size_t lp = os::large_page_size();
6100     size_t ag = os::vm_allocation_granularity();
6101 
6102     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6103       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6104     }
6105   }
6106 
6107   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6108     size_t lp = os::large_page_size();
6109     size_t ag = os::vm_allocation_granularity();
6110 
6111     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6112     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6113     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6114     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6115     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6116     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6117     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6118     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6119     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6120   }
6121 
6122   static void test_reserve_memory_special_huge_tlbfs() {
6123     if (!UseHugeTLBFS) {
6124       return;
6125     }
6126 
6127     test_reserve_memory_special_huge_tlbfs_only();
6128     test_reserve_memory_special_huge_tlbfs_mixed();
6129   }
6130 
6131   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6132     if (!UseSHM) {
6133       return;
6134     }
6135 
6136     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6137 
6138     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6139 
6140     if (addr != NULL) {
6141       assert(is_ptr_aligned(addr, alignment), "Check");
6142       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6143 
6144       small_page_write(addr, size);
6145 
6146       os::Linux::release_memory_special_shm(addr, size);
6147     }
6148   }
6149 
6150   static void test_reserve_memory_special_shm() {
6151     size_t lp = os::large_page_size();
6152     size_t ag = os::vm_allocation_granularity();
6153 
6154     for (size_t size = ag; size < lp * 3; size += ag) {
6155       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6156         test_reserve_memory_special_shm(size, alignment);
6157       }
6158     }
6159   }
6160 
6161   static void test() {
6162     test_reserve_memory_special_huge_tlbfs();
6163     test_reserve_memory_special_shm();
6164   }
6165 };
6166 
6167 void TestReserveMemorySpecial_test() {
6168   TestReserveMemorySpecial::test();
6169 }
6170 
6171 #endif