1 /*
   2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.util.Objects;
  30 import jdk.internal.HotSpotIntrinsicCandidate;
  31 
  32 /**
  33  * The {@code Integer} class wraps a value of the primitive type
  34  * {@code int} in an object. An object of type {@code Integer}
  35  * contains a single field whose type is {@code int}.
  36  *
  37  * <p>In addition, this class provides several methods for converting
  38  * an {@code int} to a {@code String} and a {@code String} to an
  39  * {@code int}, as well as other constants and methods useful when
  40  * dealing with an {@code int}.
  41  *
  42  * <p>Implementation note: The implementations of the "bit twiddling"
  43  * methods (such as {@link #highestOneBit(int) highestOneBit} and
  44  * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
  45  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
  46  * Delight</i>, (Addison Wesley, 2002).
  47  *
  48  * @author  Lee Boynton
  49  * @author  Arthur van Hoff
  50  * @author  Josh Bloch
  51  * @author  Joseph D. Darcy
  52  * @since 1.0
  53  */
  54 public final class Integer extends Number implements Comparable<Integer> {
  55     /**
  56      * A constant holding the minimum value an {@code int} can
  57      * have, -2<sup>31</sup>.
  58      */
  59     @Native public static final int   MIN_VALUE = 0x80000000;
  60 
  61     /**
  62      * A constant holding the maximum value an {@code int} can
  63      * have, 2<sup>31</sup>-1.
  64      */
  65     @Native public static final int   MAX_VALUE = 0x7fffffff;
  66 
  67     /**
  68      * The {@code Class} instance representing the primitive type
  69      * {@code int}.
  70      *
  71      * @since   1.1
  72      */
  73     @SuppressWarnings("unchecked")
  74     public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");
  75 
  76     /**
  77      * Zero {@code Integer} constant.
  78      */
  79     private static final Integer ZERO = new Integer(0);
  80 
  81     /**
  82      * All possible chars for representing a number as a String
  83      */
  84     static final char[] digits = {
  85         '0' , '1' , '2' , '3' , '4' , '5' ,
  86         '6' , '7' , '8' , '9' , 'a' , 'b' ,
  87         'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
  88         'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
  89         'o' , 'p' , 'q' , 'r' , 's' , 't' ,
  90         'u' , 'v' , 'w' , 'x' , 'y' , 'z'
  91     };
  92 
  93     /**
  94      * Returns a string representation of the first argument in the
  95      * radix specified by the second argument.
  96      *
  97      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
  98      * or larger than {@code Character.MAX_RADIX}, then the radix
  99      * {@code 10} is used instead.
 100      *
 101      * <p>If the first argument is negative, the first element of the
 102      * result is the ASCII minus character {@code '-'}
 103      * ({@code '\u005Cu002D'}). If the first argument is not
 104      * negative, no sign character appears in the result.
 105      *
 106      * <p>The remaining characters of the result represent the magnitude
 107      * of the first argument. If the magnitude is zero, it is
 108      * represented by a single zero character {@code '0'}
 109      * ({@code '\u005Cu0030'}); otherwise, the first character of
 110      * the representation of the magnitude will not be the zero
 111      * character.  The following ASCII characters are used as digits:
 112      *
 113      * <blockquote>
 114      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 115      * </blockquote>
 116      *
 117      * These are {@code '\u005Cu0030'} through
 118      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 119      * {@code '\u005Cu007A'}. If {@code radix} is
 120      * <var>N</var>, then the first <var>N</var> of these characters
 121      * are used as radix-<var>N</var> digits in the order shown. Thus,
 122      * the digits for hexadecimal (radix 16) are
 123      * {@code 0123456789abcdef}. If uppercase letters are
 124      * desired, the {@link java.lang.String#toUpperCase()} method may
 125      * be called on the result:
 126      *
 127      * <blockquote>
 128      *  {@code Integer.toString(n, 16).toUpperCase()}
 129      * </blockquote>
 130      *
 131      * @param   i       an integer to be converted to a string.
 132      * @param   radix   the radix to use in the string representation.
 133      * @return  a string representation of the argument in the specified radix.
 134      * @see     java.lang.Character#MAX_RADIX
 135      * @see     java.lang.Character#MIN_RADIX
 136      */
 137     public static String toString(int i, int radix) {
 138         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 139             radix = 10;
 140 
 141         /* Use the faster version */
 142         if (radix == 10) {
 143             return toString(i);
 144         }
 145 
 146         char buf[] = new char[33];
 147         boolean negative = (i < 0);
 148         int charPos = 32;
 149 
 150         if (!negative) {
 151             i = -i;
 152         }
 153 
 154         while (i <= -radix) {
 155             buf[charPos--] = digits[-(i % radix)];
 156             i = i / radix;
 157         }
 158         buf[charPos] = digits[-i];
 159 
 160         if (negative) {
 161             buf[--charPos] = '-';
 162         }
 163 
 164         return new String(buf, charPos, (33 - charPos));
 165     }
 166 
 167     /**
 168      * Returns a string representation of the first argument as an
 169      * unsigned integer value in the radix specified by the second
 170      * argument.
 171      *
 172      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 173      * or larger than {@code Character.MAX_RADIX}, then the radix
 174      * {@code 10} is used instead.
 175      *
 176      * <p>Note that since the first argument is treated as an unsigned
 177      * value, no leading sign character is printed.
 178      *
 179      * <p>If the magnitude is zero, it is represented by a single zero
 180      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 181      * the first character of the representation of the magnitude will
 182      * not be the zero character.
 183      *
 184      * <p>The behavior of radixes and the characters used as digits
 185      * are the same as {@link #toString(int, int) toString}.
 186      *
 187      * @param   i       an integer to be converted to an unsigned string.
 188      * @param   radix   the radix to use in the string representation.
 189      * @return  an unsigned string representation of the argument in the specified radix.
 190      * @see     #toString(int, int)
 191      * @since 1.8
 192      */
 193     public static String toUnsignedString(int i, int radix) {
 194         return Long.toUnsignedString(toUnsignedLong(i), radix);
 195     }
 196 
 197     /**
 198      * Returns a string representation of the integer argument as an
 199      * unsigned integer in base&nbsp;16.
 200      *
 201      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 202      * if the argument is negative; otherwise, it is equal to the
 203      * argument.  This value is converted to a string of ASCII digits
 204      * in hexadecimal (base&nbsp;16) with no extra leading
 205      * {@code 0}s.
 206      *
 207      * <p>The value of the argument can be recovered from the returned
 208      * string {@code s} by calling {@link
 209      * Integer#parseUnsignedInt(String, int)
 210      * Integer.parseUnsignedInt(s, 16)}.
 211      *
 212      * <p>If the unsigned magnitude is zero, it is represented by a
 213      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 214      * otherwise, the first character of the representation of the
 215      * unsigned magnitude will not be the zero character. The
 216      * following characters are used as hexadecimal digits:
 217      *
 218      * <blockquote>
 219      *  {@code 0123456789abcdef}
 220      * </blockquote>
 221      *
 222      * These are the characters {@code '\u005Cu0030'} through
 223      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 224      * {@code '\u005Cu0066'}. If uppercase letters are
 225      * desired, the {@link java.lang.String#toUpperCase()} method may
 226      * be called on the result:
 227      *
 228      * <blockquote>
 229      *  {@code Integer.toHexString(n).toUpperCase()}
 230      * </blockquote>
 231      *
 232      * @param   i   an integer to be converted to a string.
 233      * @return  the string representation of the unsigned integer value
 234      *          represented by the argument in hexadecimal (base&nbsp;16).
 235      * @see #parseUnsignedInt(String, int)
 236      * @see #toUnsignedString(int, int)
 237      * @since   1.0.2
 238      */
 239     public static String toHexString(int i) {
 240         return toUnsignedString0(i, 4);
 241     }
 242 
 243     /**
 244      * Returns a string representation of the integer argument as an
 245      * unsigned integer in base&nbsp;8.
 246      *
 247      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 248      * if the argument is negative; otherwise, it is equal to the
 249      * argument.  This value is converted to a string of ASCII digits
 250      * in octal (base&nbsp;8) with no extra leading {@code 0}s.
 251      *
 252      * <p>The value of the argument can be recovered from the returned
 253      * string {@code s} by calling {@link
 254      * Integer#parseUnsignedInt(String, int)
 255      * Integer.parseUnsignedInt(s, 8)}.
 256      *
 257      * <p>If the unsigned magnitude is zero, it is represented by a
 258      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 259      * otherwise, the first character of the representation of the
 260      * unsigned magnitude will not be the zero character. The
 261      * following characters are used as octal digits:
 262      *
 263      * <blockquote>
 264      * {@code 01234567}
 265      * </blockquote>
 266      *
 267      * These are the characters {@code '\u005Cu0030'} through
 268      * {@code '\u005Cu0037'}.
 269      *
 270      * @param   i   an integer to be converted to a string.
 271      * @return  the string representation of the unsigned integer value
 272      *          represented by the argument in octal (base&nbsp;8).
 273      * @see #parseUnsignedInt(String, int)
 274      * @see #toUnsignedString(int, int)
 275      * @since   1.0.2
 276      */
 277     public static String toOctalString(int i) {
 278         return toUnsignedString0(i, 3);
 279     }
 280 
 281     /**
 282      * Returns a string representation of the integer argument as an
 283      * unsigned integer in base&nbsp;2.
 284      *
 285      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
 286      * if the argument is negative; otherwise it is equal to the
 287      * argument.  This value is converted to a string of ASCII digits
 288      * in binary (base&nbsp;2) with no extra leading {@code 0}s.
 289      *
 290      * <p>The value of the argument can be recovered from the returned
 291      * string {@code s} by calling {@link
 292      * Integer#parseUnsignedInt(String, int)
 293      * Integer.parseUnsignedInt(s, 2)}.
 294      *
 295      * <p>If the unsigned magnitude is zero, it is represented by a
 296      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 297      * otherwise, the first character of the representation of the
 298      * unsigned magnitude will not be the zero character. The
 299      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 300      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 301      *
 302      * @param   i   an integer to be converted to a string.
 303      * @return  the string representation of the unsigned integer value
 304      *          represented by the argument in binary (base&nbsp;2).
 305      * @see #parseUnsignedInt(String, int)
 306      * @see #toUnsignedString(int, int)
 307      * @since   1.0.2
 308      */
 309     public static String toBinaryString(int i) {
 310         return toUnsignedString0(i, 1);
 311     }
 312 
 313     /**
 314      * Convert the integer to an unsigned number.
 315      */
 316     private static String toUnsignedString0(int val, int shift) {
 317         // assert shift > 0 && shift <=5 : "Illegal shift value";
 318         int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val);
 319         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 320         char[] buf = new char[chars];
 321 
 322         formatUnsignedInt(val, shift, buf, 0, chars);
 323 
 324         // Use special constructor which takes over "buf".
 325         return new String(buf, true);
 326     }
 327 
 328     /**
 329      * Format an {@code int} (treated as unsigned) into a character buffer. If
 330      * {@code len} exceeds the formatted ASCII representation of {@code val},
 331      * {@code buf} will be padded with leading zeroes.
 332      *
 333      * @param val the unsigned int to format
 334      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 335      * @param buf the character buffer to write to
 336      * @param offset the offset in the destination buffer to start at
 337      * @param len the number of characters to write
 338      */
 339      static void formatUnsignedInt(int val, int shift, char[] buf, int offset, int len) {
 340         // assert shift > 0 && shift <=5 : "Illegal shift value";
 341         // assert offset >= 0 && offset < buf.length : "illegal offset";
 342         // assert len > 0 && (offset + len) <= buf.length : "illegal length";
 343         int charPos = offset + len;
 344         int radix = 1 << shift;
 345         int mask = radix - 1;
 346         do {
 347             buf[--charPos] = Integer.digits[val & mask];
 348             val >>>= shift;
 349         } while (charPos > offset);
 350     }
 351 
 352     static final char [] DigitTens = {
 353         '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
 354         '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
 355         '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
 356         '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
 357         '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
 358         '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
 359         '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
 360         '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
 361         '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
 362         '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
 363         } ;
 364 
 365     static final char [] DigitOnes = {
 366         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 367         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 368         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 369         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 370         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 371         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 372         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 373         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 374         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 375         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 376         } ;
 377 
 378         // I use the "invariant division by multiplication" trick to
 379         // accelerate Integer.toString.  In particular we want to
 380         // avoid division by 10.
 381         //
 382         // The "trick" has roughly the same performance characteristics
 383         // as the "classic" Integer.toString code on a non-JIT VM.
 384         // The trick avoids .rem and .div calls but has a longer code
 385         // path and is thus dominated by dispatch overhead.  In the
 386         // JIT case the dispatch overhead doesn't exist and the
 387         // "trick" is considerably faster than the classic code.
 388         //
 389         // RE:  Division by Invariant Integers using Multiplication
 390         //      T Gralund, P Montgomery
 391         //      ACM PLDI 1994
 392         //
 393 
 394     /**
 395      * Returns a {@code String} object representing the
 396      * specified integer. The argument is converted to signed decimal
 397      * representation and returned as a string, exactly as if the
 398      * argument and radix 10 were given as arguments to the {@link
 399      * #toString(int, int)} method.
 400      *
 401      * @param   i   an integer to be converted.
 402      * @return  a string representation of the argument in base&nbsp;10.
 403      */
 404     @HotSpotIntrinsicCandidate
 405     public static String toString(int i) {
 406         if (i == Integer.MIN_VALUE)
 407             return "-2147483648";
 408         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
 409         char[] buf = new char[size];
 410         getChars(i, size, buf);
 411         return new String(buf, true);
 412     }
 413 
 414     /**
 415      * Returns a string representation of the argument as an unsigned
 416      * decimal value.
 417      *
 418      * The argument is converted to unsigned decimal representation
 419      * and returned as a string exactly as if the argument and radix
 420      * 10 were given as arguments to the {@link #toUnsignedString(int,
 421      * int)} method.
 422      *
 423      * @param   i  an integer to be converted to an unsigned string.
 424      * @return  an unsigned string representation of the argument.
 425      * @see     #toUnsignedString(int, int)
 426      * @since 1.8
 427      */
 428     public static String toUnsignedString(int i) {
 429         return Long.toString(toUnsignedLong(i));
 430     }
 431 
 432     /**
 433      * Places characters representing the integer i into the
 434      * character array buf. The characters are placed into
 435      * the buffer backwards starting with the least significant
 436      * digit at the specified index (exclusive), and working
 437      * backwards from there.
 438      *
 439      * Will fail if i == Integer.MIN_VALUE
 440      */
 441     static void getChars(int i, int index, char[] buf) {
 442         int q, r;
 443         int charPos = index;
 444         char sign = 0;
 445 
 446         if (i < 0) {
 447             sign = '-';
 448             i = -i;
 449         }
 450 
 451         // Generate two digits per iteration
 452         while (i >= 65536) {
 453             q = i / 100;
 454         // really: r = i - (q * 100);
 455             r = i - ((q << 6) + (q << 5) + (q << 2));
 456             i = q;
 457             buf [--charPos] = DigitOnes[r];
 458             buf [--charPos] = DigitTens[r];
 459         }
 460 
 461         // Fall thru to fast mode for smaller numbers
 462         // assert(i <= 65536, i);
 463         for (;;) {
 464             q = (i * 52429) >>> (16+3);
 465             r = i - ((q << 3) + (q << 1));  // r = i-(q*10) ...
 466             buf [--charPos] = digits [r];
 467             i = q;
 468             if (i == 0) break;
 469         }
 470         if (sign != 0) {
 471             buf [--charPos] = sign;
 472         }
 473     }
 474 
 475     static final int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
 476                                       99999999, 999999999, Integer.MAX_VALUE };
 477 
 478     // Requires positive x
 479     static int stringSize(int x) {
 480         for (int i=0; ; i++)
 481             if (x <= sizeTable[i])
 482                 return i+1;
 483     }
 484 
 485     /**
 486      * Parses the string argument as a signed integer in the radix
 487      * specified by the second argument. The characters in the string
 488      * must all be digits of the specified radix (as determined by
 489      * whether {@link java.lang.Character#digit(char, int)} returns a
 490      * nonnegative value), except that the first character may be an
 491      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 492      * indicate a negative value or an ASCII plus sign {@code '+'}
 493      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 494      * resulting integer value is returned.
 495      *
 496      * <p>An exception of type {@code NumberFormatException} is
 497      * thrown if any of the following situations occurs:
 498      * <ul>
 499      * <li>The first argument is {@code null} or is a string of
 500      * length zero.
 501      *
 502      * <li>The radix is either smaller than
 503      * {@link java.lang.Character#MIN_RADIX} or
 504      * larger than {@link java.lang.Character#MAX_RADIX}.
 505      *
 506      * <li>Any character of the string is not a digit of the specified
 507      * radix, except that the first character may be a minus sign
 508      * {@code '-'} ({@code '\u005Cu002D'}) or plus sign
 509      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 510      * string is longer than length 1.
 511      *
 512      * <li>The value represented by the string is not a value of type
 513      * {@code int}.
 514      * </ul>
 515      *
 516      * <p>Examples:
 517      * <blockquote><pre>
 518      * parseInt("0", 10) returns 0
 519      * parseInt("473", 10) returns 473
 520      * parseInt("+42", 10) returns 42
 521      * parseInt("-0", 10) returns 0
 522      * parseInt("-FF", 16) returns -255
 523      * parseInt("1100110", 2) returns 102
 524      * parseInt("2147483647", 10) returns 2147483647
 525      * parseInt("-2147483648", 10) returns -2147483648
 526      * parseInt("2147483648", 10) throws a NumberFormatException
 527      * parseInt("99", 8) throws a NumberFormatException
 528      * parseInt("Kona", 10) throws a NumberFormatException
 529      * parseInt("Kona", 27) returns 411787
 530      * </pre></blockquote>
 531      *
 532      * @param      s   the {@code String} containing the integer
 533      *                  representation to be parsed
 534      * @param      radix   the radix to be used while parsing {@code s}.
 535      * @return     the integer represented by the string argument in the
 536      *             specified radix.
 537      * @exception  NumberFormatException if the {@code String}
 538      *             does not contain a parsable {@code int}.
 539      */
 540     public static int parseInt(String s, int radix)
 541                 throws NumberFormatException
 542     {
 543         /*
 544          * WARNING: This method may be invoked early during VM initialization
 545          * before IntegerCache is initialized. Care must be taken to not use
 546          * the valueOf method.
 547          */
 548 
 549         if (s == null) {
 550             throw new NumberFormatException("null");
 551         }
 552 
 553         if (radix < Character.MIN_RADIX) {
 554             throw new NumberFormatException("radix " + radix +
 555                                             " less than Character.MIN_RADIX");
 556         }
 557 
 558         if (radix > Character.MAX_RADIX) {
 559             throw new NumberFormatException("radix " + radix +
 560                                             " greater than Character.MAX_RADIX");
 561         }
 562 
 563         boolean negative = false;
 564         int i = 0, len = s.length();
 565         int limit = -Integer.MAX_VALUE;
 566 
 567         if (len > 0) {
 568             char firstChar = s.charAt(0);
 569             if (firstChar < '0') { // Possible leading "+" or "-"
 570                 if (firstChar == '-') {
 571                     negative = true;
 572                     limit = Integer.MIN_VALUE;
 573                 } else if (firstChar != '+') {
 574                     throw NumberFormatException.forInputString(s);
 575                 }
 576 
 577                 if (len == 1) { // Cannot have lone "+" or "-"
 578                     throw NumberFormatException.forInputString(s);
 579                 }
 580                 i++;
 581             }
 582             int multmin = limit / radix;
 583             int result = 0;
 584             while (i < len) {
 585                 // Accumulating negatively avoids surprises near MAX_VALUE
 586                 int digit = Character.digit(s.charAt(i++), radix);
 587                 if (digit < 0 || result < multmin) {
 588                     throw NumberFormatException.forInputString(s);
 589                 }
 590                 result *= radix;
 591                 if (result < limit + digit) {
 592                     throw NumberFormatException.forInputString(s);
 593                 }
 594                 result -= digit;
 595             }
 596             return negative ? result : -result;
 597         } else {
 598             throw NumberFormatException.forInputString(s);
 599         }
 600     }
 601 
 602     /**
 603      * Parses the {@link CharSequence} argument as a signed {@code int} in the
 604      * specified {@code radix}, beginning at the specified {@code beginIndex}
 605      * and extending to {@code endIndex - 1}.
 606      *
 607      * <p>The method does not take steps to guard against the
 608      * {@code CharSequence} being mutated while parsing.
 609      *
 610      * @param      s   the {@code CharSequence} containing the {@code int}
 611      *                  representation to be parsed
 612      * @param      beginIndex   the beginning index, inclusive.
 613      * @param      endIndex     the ending index, exclusive.
 614      * @param      radix   the radix to be used while parsing {@code s}.
 615      * @return     the signed {@code int} represented by the subsequence in
 616      *             the specified radix.
 617      * @throws     NullPointerException  if {@code s} is null.
 618      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 619      *             negative, or if {@code beginIndex} is greater than
 620      *             {@code endIndex} or if {@code endIndex} is greater than
 621      *             {@code s.length()}.
 622      * @throws     NumberFormatException  if the {@code CharSequence} does not
 623      *             contain a parsable {@code int} in the specified
 624      *             {@code radix}, or if {@code radix} is either smaller than
 625      *             {@link java.lang.Character#MIN_RADIX} or larger than
 626      *             {@link java.lang.Character#MAX_RADIX}.
 627      * @since  1.9
 628      */
 629     public static int parseInt(CharSequence s, int beginIndex, int endIndex, int radix)
 630                 throws NumberFormatException {
 631         s = Objects.requireNonNull(s);
 632 
 633         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
 634             throw new IndexOutOfBoundsException();
 635         }
 636         if (radix < Character.MIN_RADIX) {
 637             throw new NumberFormatException("radix " + radix +
 638                                             " less than Character.MIN_RADIX");
 639         }
 640         if (radix > Character.MAX_RADIX) {
 641             throw new NumberFormatException("radix " + radix +
 642                                             " greater than Character.MAX_RADIX");
 643         }
 644 
 645         boolean negative = false;
 646         int i = beginIndex;
 647         int limit = -Integer.MAX_VALUE;
 648 
 649         if (i < endIndex) {
 650             char firstChar = s.charAt(i);
 651             if (firstChar < '0') { // Possible leading "+" or "-"
 652                 if (firstChar == '-') {
 653                     negative = true;
 654                     limit = Integer.MIN_VALUE;
 655                 } else if (firstChar != '+') {
 656                     throw NumberFormatException.forCharSequence(s, beginIndex,
 657                             endIndex, i);
 658                 }
 659                 i++;
 660                 if (i == endIndex) { // Cannot have lone "+" or "-"
 661                     throw NumberFormatException.forCharSequence(s, beginIndex,
 662                             endIndex, i);
 663                 }
 664             }
 665             int multmin = limit / radix;
 666             int result = 0;
 667             while (i < endIndex) {
 668                 // Accumulating negatively avoids surprises near MAX_VALUE
 669                 int digit = Character.digit(s.charAt(i), radix);
 670                 if (digit < 0 || result < multmin) {
 671                     throw NumberFormatException.forCharSequence(s, beginIndex,
 672                             endIndex, i);
 673                 }
 674                 result *= radix;
 675                 if (result < limit + digit) {
 676                     throw NumberFormatException.forCharSequence(s, beginIndex,
 677                             endIndex, i);
 678                 }
 679                 i++;
 680                 result -= digit;
 681             }
 682             return negative ? result : -result;
 683         } else {
 684             throw NumberFormatException.forInputString("");
 685         }
 686     }
 687 
 688     /**
 689      * Parses the string argument as a signed decimal integer. The
 690      * characters in the string must all be decimal digits, except
 691      * that the first character may be an ASCII minus sign {@code '-'}
 692      * ({@code '\u005Cu002D'}) to indicate a negative value or an
 693      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 694      * indicate a positive value. The resulting integer value is
 695      * returned, exactly as if the argument and the radix 10 were
 696      * given as arguments to the {@link #parseInt(java.lang.String,
 697      * int)} method.
 698      *
 699      * @param s    a {@code String} containing the {@code int}
 700      *             representation to be parsed
 701      * @return     the integer value represented by the argument in decimal.
 702      * @exception  NumberFormatException  if the string does not contain a
 703      *               parsable integer.
 704      */
 705     public static int parseInt(String s) throws NumberFormatException {
 706         return parseInt(s,10);
 707     }
 708 
 709     /**
 710      * Parses the string argument as an unsigned integer in the radix
 711      * specified by the second argument.  An unsigned integer maps the
 712      * values usually associated with negative numbers to positive
 713      * numbers larger than {@code MAX_VALUE}.
 714      *
 715      * The characters in the string must all be digits of the
 716      * specified radix (as determined by whether {@link
 717      * java.lang.Character#digit(char, int)} returns a nonnegative
 718      * value), except that the first character may be an ASCII plus
 719      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 720      * integer value is returned.
 721      *
 722      * <p>An exception of type {@code NumberFormatException} is
 723      * thrown if any of the following situations occurs:
 724      * <ul>
 725      * <li>The first argument is {@code null} or is a string of
 726      * length zero.
 727      *
 728      * <li>The radix is either smaller than
 729      * {@link java.lang.Character#MIN_RADIX} or
 730      * larger than {@link java.lang.Character#MAX_RADIX}.
 731      *
 732      * <li>Any character of the string is not a digit of the specified
 733      * radix, except that the first character may be a plus sign
 734      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 735      * string is longer than length 1.
 736      *
 737      * <li>The value represented by the string is larger than the
 738      * largest unsigned {@code int}, 2<sup>32</sup>-1.
 739      *
 740      * </ul>
 741      *
 742      *
 743      * @param      s   the {@code String} containing the unsigned integer
 744      *                  representation to be parsed
 745      * @param      radix   the radix to be used while parsing {@code s}.
 746      * @return     the integer represented by the string argument in the
 747      *             specified radix.
 748      * @throws     NumberFormatException if the {@code String}
 749      *             does not contain a parsable {@code int}.
 750      * @since 1.8
 751      */
 752     public static int parseUnsignedInt(String s, int radix)
 753                 throws NumberFormatException {
 754         if (s == null)  {
 755             throw new NumberFormatException("null");
 756         }
 757 
 758         int len = s.length();
 759         if (len > 0) {
 760             char firstChar = s.charAt(0);
 761             if (firstChar == '-') {
 762                 throw new
 763                     NumberFormatException(String.format("Illegal leading minus sign " +
 764                                                        "on unsigned string %s.", s));
 765             } else {
 766                 if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
 767                     (radix == 10 && len <= 9) ) { // Integer.MAX_VALUE in base 10 is 10 digits
 768                     return parseInt(s, radix);
 769                 } else {
 770                     long ell = Long.parseLong(s, radix);
 771                     if ((ell & 0xffff_ffff_0000_0000L) == 0) {
 772                         return (int) ell;
 773                     } else {
 774                         throw new
 775                             NumberFormatException(String.format("String value %s exceeds " +
 776                                                                 "range of unsigned int.", s));
 777                     }
 778                 }
 779             }
 780         } else {
 781             throw NumberFormatException.forInputString(s);
 782         }
 783     }
 784 
 785     /**
 786      * Parses the {@link CharSequence} argument as an unsigned {@code int} in
 787      * the specified {@code radix}, beginning at the specified
 788      * {@code beginIndex} and extending to {@code endIndex - 1}.
 789      *
 790      * <p>The method does not take steps to guard against the
 791      * {@code CharSequence} being mutated while parsing.
 792      *
 793      * @param      s   the {@code CharSequence} containing the unsigned
 794      *                 {@code int} representation to be parsed
 795      * @param      beginIndex   the beginning index, inclusive.
 796      * @param      endIndex     the ending index, exclusive.
 797      * @param      radix   the radix to be used while parsing {@code s}.
 798      * @return     the unsigned {@code int} represented by the subsequence in
 799      *             the specified radix.
 800      * @throws     NullPointerException  if {@code s} is null.
 801      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 802      *             negative, or if {@code beginIndex} is greater than
 803      *             {@code endIndex} or if {@code endIndex} is greater than
 804      *             {@code s.length()}.
 805      * @throws     NumberFormatException  if the {@code CharSequence} does not
 806      *             contain a parsable unsigned {@code int} in the specified
 807      *             {@code radix}, or if {@code radix} is either smaller than
 808      *             {@link java.lang.Character#MIN_RADIX} or larger than
 809      *             {@link java.lang.Character#MAX_RADIX}.
 810      * @since  1.9
 811      */
 812     public static int parseUnsignedInt(CharSequence s, int beginIndex, int endIndex, int radix)
 813                 throws NumberFormatException {
 814         s = Objects.requireNonNull(s);
 815 
 816         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
 817             throw new IndexOutOfBoundsException();
 818         }
 819         int start = beginIndex, len = endIndex - beginIndex;
 820 
 821         if (len > 0) {
 822             char firstChar = s.charAt(start);
 823             if (firstChar == '-') {
 824                 throw new
 825                     NumberFormatException(String.format("Illegal leading minus sign " +
 826                                                        "on unsigned string %s.", s));
 827             } else {
 828                 if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
 829                         (radix == 10 && len <= 9)) { // Integer.MAX_VALUE in base 10 is 10 digits
 830                     return parseInt(s, start, start + len, radix);
 831                 } else {
 832                     long ell = Long.parseLong(s, start, start + len, radix);
 833                     if ((ell & 0xffff_ffff_0000_0000L) == 0) {
 834                         return (int) ell;
 835                     } else {
 836                         throw new
 837                             NumberFormatException(String.format("String value %s exceeds " +
 838                                                                 "range of unsigned int.", s));
 839                     }
 840                 }
 841             }
 842         } else {
 843             throw new NumberFormatException("");
 844         }
 845     }
 846 
 847     /**
 848      * Parses the string argument as an unsigned decimal integer. The
 849      * characters in the string must all be decimal digits, except
 850      * that the first character may be an ASCII plus sign {@code
 851      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 852      * is returned, exactly as if the argument and the radix 10 were
 853      * given as arguments to the {@link
 854      * #parseUnsignedInt(java.lang.String, int)} method.
 855      *
 856      * @param s   a {@code String} containing the unsigned {@code int}
 857      *            representation to be parsed
 858      * @return    the unsigned integer value represented by the argument in decimal.
 859      * @throws    NumberFormatException  if the string does not contain a
 860      *            parsable unsigned integer.
 861      * @since 1.8
 862      */
 863     public static int parseUnsignedInt(String s) throws NumberFormatException {
 864         return parseUnsignedInt(s, 10);
 865     }
 866 
 867     /**
 868      * Returns an {@code Integer} object holding the value
 869      * extracted from the specified {@code String} when parsed
 870      * with the radix given by the second argument. The first argument
 871      * is interpreted as representing a signed integer in the radix
 872      * specified by the second argument, exactly as if the arguments
 873      * were given to the {@link #parseInt(java.lang.String, int)}
 874      * method. The result is an {@code Integer} object that
 875      * represents the integer value specified by the string.
 876      *
 877      * <p>In other words, this method returns an {@code Integer}
 878      * object equal to the value of:
 879      *
 880      * <blockquote>
 881      *  {@code new Integer(Integer.parseInt(s, radix))}
 882      * </blockquote>
 883      *
 884      * @param      s   the string to be parsed.
 885      * @param      radix the radix to be used in interpreting {@code s}
 886      * @return     an {@code Integer} object holding the value
 887      *             represented by the string argument in the specified
 888      *             radix.
 889      * @exception NumberFormatException if the {@code String}
 890      *            does not contain a parsable {@code int}.
 891      */
 892     public static Integer valueOf(String s, int radix) throws NumberFormatException {
 893         return Integer.valueOf(parseInt(s,radix));
 894     }
 895 
 896     /**
 897      * Returns an {@code Integer} object holding the
 898      * value of the specified {@code String}. The argument is
 899      * interpreted as representing a signed decimal integer, exactly
 900      * as if the argument were given to the {@link
 901      * #parseInt(java.lang.String)} method. The result is an
 902      * {@code Integer} object that represents the integer value
 903      * specified by the string.
 904      *
 905      * <p>In other words, this method returns an {@code Integer}
 906      * object equal to the value of:
 907      *
 908      * <blockquote>
 909      *  {@code new Integer(Integer.parseInt(s))}
 910      * </blockquote>
 911      *
 912      * @param      s   the string to be parsed.
 913      * @return     an {@code Integer} object holding the value
 914      *             represented by the string argument.
 915      * @exception  NumberFormatException  if the string cannot be parsed
 916      *             as an integer.
 917      */
 918     public static Integer valueOf(String s) throws NumberFormatException {
 919         return Integer.valueOf(parseInt(s, 10));
 920     }
 921 
 922     /**
 923      * Cache to support the object identity semantics of autoboxing for values between
 924      * -128 and 127 (inclusive) as required by JLS.
 925      *
 926      * The cache is initialized on first usage.  The size of the cache
 927      * may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
 928      * During VM initialization, java.lang.Integer.IntegerCache.high property
 929      * may be set and saved in the private system properties in the
 930      * sun.misc.VM class.
 931      */
 932 
 933     private static class IntegerCache {
 934         static final int low = -128;
 935         static final int high;
 936         static final Integer cache[];
 937 
 938         static {
 939             // high value may be configured by property
 940             int h = 127;
 941             String integerCacheHighPropValue =
 942                 sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
 943             if (integerCacheHighPropValue != null) {
 944                 try {
 945                     int i = parseInt(integerCacheHighPropValue);
 946                     i = Math.max(i, 127);
 947                     // Maximum array size is Integer.MAX_VALUE
 948                     h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
 949                 } catch( NumberFormatException nfe) {
 950                     // If the property cannot be parsed into an int, ignore it.
 951                 }
 952             }
 953             high = h;
 954 
 955             cache = new Integer[(high - low) + 1];
 956             int j = low;
 957             for(int k = 0; k < cache.length; k++) {
 958                 int val = j++;
 959                 cache[k] = (val == 0) ? ZERO : new Integer(val);
 960             }
 961 
 962             // range [-128, 127] must be interned (JLS7 5.1.7)
 963             assert IntegerCache.high >= 127;
 964         }
 965 
 966         private IntegerCache() {}
 967     }
 968 
 969     /**
 970      * Returns an {@code Integer} instance representing the specified
 971      * {@code int} value.  If a new {@code Integer} instance is not
 972      * required, this method should generally be used in preference to
 973      * the constructor {@link #Integer(int)}, as this method is likely
 974      * to yield significantly better space and time performance by
 975      * caching frequently requested values.
 976      *
 977      * This method will always cache values in the range -128 to 127,
 978      * inclusive, and may cache other values outside of this range.
 979      *
 980      * @param  i an {@code int} value.
 981      * @return an {@code Integer} instance representing {@code i}.
 982      * @since  1.5
 983      */
 984     @HotSpotIntrinsicCandidate
 985     public static Integer valueOf(int i) {
 986         if (i >= IntegerCache.low && i <= IntegerCache.high)
 987             return IntegerCache.cache[i + (-IntegerCache.low)];
 988         return new Integer(i);
 989     }
 990 
 991     /**
 992      * The value of the {@code Integer}.
 993      *
 994      * @serial
 995      */
 996     private final int value;
 997 
 998     /**
 999      * Constructs a newly allocated {@code Integer} object that
1000      * represents the specified {@code int} value.
1001      *
1002      * @param   value   the value to be represented by the
1003      *                  {@code Integer} object.
1004      */
1005     public Integer(int value) {
1006         this.value = value;
1007     }
1008 
1009     /**
1010      * Constructs a newly allocated {@code Integer} object that
1011      * represents the {@code int} value indicated by the
1012      * {@code String} parameter. The string is converted to an
1013      * {@code int} value in exactly the manner used by the
1014      * {@code parseInt} method for radix 10.
1015      *
1016      * @param      s   the {@code String} to be converted to an
1017      *                 {@code Integer}.
1018      * @exception  NumberFormatException  if the {@code String} does not
1019      *               contain a parsable integer.
1020      * @see        java.lang.Integer#parseInt(java.lang.String, int)
1021      */
1022     public Integer(String s) throws NumberFormatException {
1023         this.value = parseInt(s, 10);
1024     }
1025 
1026     /**
1027      * Returns the value of this {@code Integer} as a {@code byte}
1028      * after a narrowing primitive conversion.
1029      * @jls 5.1.3 Narrowing Primitive Conversions
1030      */
1031     public byte byteValue() {
1032         return (byte)value;
1033     }
1034 
1035     /**
1036      * Returns the value of this {@code Integer} as a {@code short}
1037      * after a narrowing primitive conversion.
1038      * @jls 5.1.3 Narrowing Primitive Conversions
1039      */
1040     public short shortValue() {
1041         return (short)value;
1042     }
1043 
1044     /**
1045      * Returns the value of this {@code Integer} as an
1046      * {@code int}.
1047      */
1048     @HotSpotIntrinsicCandidate
1049     public int intValue() {
1050         return value;
1051     }
1052 
1053     /**
1054      * Returns the value of this {@code Integer} as a {@code long}
1055      * after a widening primitive conversion.
1056      * @jls 5.1.2 Widening Primitive Conversions
1057      * @see Integer#toUnsignedLong(int)
1058      */
1059     public long longValue() {
1060         return (long)value;
1061     }
1062 
1063     /**
1064      * Returns the value of this {@code Integer} as a {@code float}
1065      * after a widening primitive conversion.
1066      * @jls 5.1.2 Widening Primitive Conversions
1067      */
1068     public float floatValue() {
1069         return (float)value;
1070     }
1071 
1072     /**
1073      * Returns the value of this {@code Integer} as a {@code double}
1074      * after a widening primitive conversion.
1075      * @jls 5.1.2 Widening Primitive Conversions
1076      */
1077     public double doubleValue() {
1078         return (double)value;
1079     }
1080 
1081     /**
1082      * Returns a {@code String} object representing this
1083      * {@code Integer}'s value. The value is converted to signed
1084      * decimal representation and returned as a string, exactly as if
1085      * the integer value were given as an argument to the {@link
1086      * java.lang.Integer#toString(int)} method.
1087      *
1088      * @return  a string representation of the value of this object in
1089      *          base&nbsp;10.
1090      */
1091     public String toString() {
1092         return toString(value);
1093     }
1094 
1095     /**
1096      * Returns a hash code for this {@code Integer}.
1097      *
1098      * @return  a hash code value for this object, equal to the
1099      *          primitive {@code int} value represented by this
1100      *          {@code Integer} object.
1101      */
1102     @Override
1103     public int hashCode() {
1104         return Integer.hashCode(value);
1105     }
1106 
1107     /**
1108      * Returns a hash code for a {@code int} value; compatible with
1109      * {@code Integer.hashCode()}.
1110      *
1111      * @param value the value to hash
1112      * @since 1.8
1113      *
1114      * @return a hash code value for a {@code int} value.
1115      */
1116     public static int hashCode(int value) {
1117         return value;
1118     }
1119 
1120     /**
1121      * Compares this object to the specified object.  The result is
1122      * {@code true} if and only if the argument is not
1123      * {@code null} and is an {@code Integer} object that
1124      * contains the same {@code int} value as this object.
1125      *
1126      * @param   obj   the object to compare with.
1127      * @return  {@code true} if the objects are the same;
1128      *          {@code false} otherwise.
1129      */
1130     public boolean equals(Object obj) {
1131         if (obj instanceof Integer) {
1132             return value == ((Integer)obj).intValue();
1133         }
1134         return false;
1135     }
1136 
1137     /**
1138      * Determines the integer value of the system property with the
1139      * specified name.
1140      *
1141      * <p>The first argument is treated as the name of a system
1142      * property.  System properties are accessible through the {@link
1143      * java.lang.System#getProperty(java.lang.String)} method. The
1144      * string value of this property is then interpreted as an integer
1145      * value using the grammar supported by {@link Integer#decode decode} and
1146      * an {@code Integer} object representing this value is returned.
1147      *
1148      * <p>If there is no property with the specified name, if the
1149      * specified name is empty or {@code null}, or if the property
1150      * does not have the correct numeric format, then {@code null} is
1151      * returned.
1152      *
1153      * <p>In other words, this method returns an {@code Integer}
1154      * object equal to the value of:
1155      *
1156      * <blockquote>
1157      *  {@code getInteger(nm, null)}
1158      * </blockquote>
1159      *
1160      * @param   nm   property name.
1161      * @return  the {@code Integer} value of the property.
1162      * @throws  SecurityException for the same reasons as
1163      *          {@link System#getProperty(String) System.getProperty}
1164      * @see     java.lang.System#getProperty(java.lang.String)
1165      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1166      */
1167     public static Integer getInteger(String nm) {
1168         return getInteger(nm, null);
1169     }
1170 
1171     /**
1172      * Determines the integer value of the system property with the
1173      * specified name.
1174      *
1175      * <p>The first argument is treated as the name of a system
1176      * property.  System properties are accessible through the {@link
1177      * java.lang.System#getProperty(java.lang.String)} method. The
1178      * string value of this property is then interpreted as an integer
1179      * value using the grammar supported by {@link Integer#decode decode} and
1180      * an {@code Integer} object representing this value is returned.
1181      *
1182      * <p>The second argument is the default value. An {@code Integer} object
1183      * that represents the value of the second argument is returned if there
1184      * is no property of the specified name, if the property does not have
1185      * the correct numeric format, or if the specified name is empty or
1186      * {@code null}.
1187      *
1188      * <p>In other words, this method returns an {@code Integer} object
1189      * equal to the value of:
1190      *
1191      * <blockquote>
1192      *  {@code getInteger(nm, new Integer(val))}
1193      * </blockquote>
1194      *
1195      * but in practice it may be implemented in a manner such as:
1196      *
1197      * <blockquote><pre>
1198      * Integer result = getInteger(nm, null);
1199      * return (result == null) ? new Integer(val) : result;
1200      * </pre></blockquote>
1201      *
1202      * to avoid the unnecessary allocation of an {@code Integer}
1203      * object when the default value is not needed.
1204      *
1205      * @param   nm   property name.
1206      * @param   val   default value.
1207      * @return  the {@code Integer} value of the property.
1208      * @throws  SecurityException for the same reasons as
1209      *          {@link System#getProperty(String) System.getProperty}
1210      * @see     java.lang.System#getProperty(java.lang.String)
1211      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1212      */
1213     public static Integer getInteger(String nm, int val) {
1214         Integer result = getInteger(nm, null);
1215         return (result == null) ? Integer.valueOf(val) : result;
1216     }
1217 
1218     /**
1219      * Returns the integer value of the system property with the
1220      * specified name.  The first argument is treated as the name of a
1221      * system property.  System properties are accessible through the
1222      * {@link java.lang.System#getProperty(java.lang.String)} method.
1223      * The string value of this property is then interpreted as an
1224      * integer value, as per the {@link Integer#decode decode} method,
1225      * and an {@code Integer} object representing this value is
1226      * returned; in summary:
1227      *
1228      * <ul><li>If the property value begins with the two ASCII characters
1229      *         {@code 0x} or the ASCII character {@code #}, not
1230      *      followed by a minus sign, then the rest of it is parsed as a
1231      *      hexadecimal integer exactly as by the method
1232      *      {@link #valueOf(java.lang.String, int)} with radix 16.
1233      * <li>If the property value begins with the ASCII character
1234      *     {@code 0} followed by another character, it is parsed as an
1235      *     octal integer exactly as by the method
1236      *     {@link #valueOf(java.lang.String, int)} with radix 8.
1237      * <li>Otherwise, the property value is parsed as a decimal integer
1238      * exactly as by the method {@link #valueOf(java.lang.String, int)}
1239      * with radix 10.
1240      * </ul>
1241      *
1242      * <p>The second argument is the default value. The default value is
1243      * returned if there is no property of the specified name, if the
1244      * property does not have the correct numeric format, or if the
1245      * specified name is empty or {@code null}.
1246      *
1247      * @param   nm   property name.
1248      * @param   val   default value.
1249      * @return  the {@code Integer} value of the property.
1250      * @throws  SecurityException for the same reasons as
1251      *          {@link System#getProperty(String) System.getProperty}
1252      * @see     System#getProperty(java.lang.String)
1253      * @see     System#getProperty(java.lang.String, java.lang.String)
1254      */
1255     public static Integer getInteger(String nm, Integer val) {
1256         String v = null;
1257         try {
1258             v = System.getProperty(nm);
1259         } catch (IllegalArgumentException | NullPointerException e) {
1260         }
1261         if (v != null) {
1262             try {
1263                 return Integer.decode(v);
1264             } catch (NumberFormatException e) {
1265             }
1266         }
1267         return val;
1268     }
1269 
1270     /**
1271      * Decodes a {@code String} into an {@code Integer}.
1272      * Accepts decimal, hexadecimal, and octal numbers given
1273      * by the following grammar:
1274      *
1275      * <blockquote>
1276      * <dl>
1277      * <dt><i>DecodableString:</i>
1278      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1279      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1280      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1281      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1282      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1283      *
1284      * <dt><i>Sign:</i>
1285      * <dd>{@code -}
1286      * <dd>{@code +}
1287      * </dl>
1288      * </blockquote>
1289      *
1290      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1291      * are as defined in section 3.10.1 of
1292      * <cite>The Java&trade; Language Specification</cite>,
1293      * except that underscores are not accepted between digits.
1294      *
1295      * <p>The sequence of characters following an optional
1296      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1297      * "{@code #}", or leading zero) is parsed as by the {@code
1298      * Integer.parseInt} method with the indicated radix (10, 16, or
1299      * 8).  This sequence of characters must represent a positive
1300      * value or a {@link NumberFormatException} will be thrown.  The
1301      * result is negated if first character of the specified {@code
1302      * String} is the minus sign.  No whitespace characters are
1303      * permitted in the {@code String}.
1304      *
1305      * @param     nm the {@code String} to decode.
1306      * @return    an {@code Integer} object holding the {@code int}
1307      *             value represented by {@code nm}
1308      * @exception NumberFormatException  if the {@code String} does not
1309      *            contain a parsable integer.
1310      * @see java.lang.Integer#parseInt(java.lang.String, int)
1311      */
1312     public static Integer decode(String nm) throws NumberFormatException {
1313         int radix = 10;
1314         int index = 0;
1315         boolean negative = false;
1316         Integer result;
1317 
1318         if (nm.length() == 0)
1319             throw new NumberFormatException("Zero length string");
1320         char firstChar = nm.charAt(0);
1321         // Handle sign, if present
1322         if (firstChar == '-') {
1323             negative = true;
1324             index++;
1325         } else if (firstChar == '+')
1326             index++;
1327 
1328         // Handle radix specifier, if present
1329         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1330             index += 2;
1331             radix = 16;
1332         }
1333         else if (nm.startsWith("#", index)) {
1334             index ++;
1335             radix = 16;
1336         }
1337         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1338             index ++;
1339             radix = 8;
1340         }
1341 
1342         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1343             throw new NumberFormatException("Sign character in wrong position");
1344 
1345         try {
1346             result = Integer.valueOf(nm.substring(index), radix);
1347             result = negative ? Integer.valueOf(-result.intValue()) : result;
1348         } catch (NumberFormatException e) {
1349             // If number is Integer.MIN_VALUE, we'll end up here. The next line
1350             // handles this case, and causes any genuine format error to be
1351             // rethrown.
1352             String constant = negative ? ("-" + nm.substring(index))
1353                                        : nm.substring(index);
1354             result = Integer.valueOf(constant, radix);
1355         }
1356         return result;
1357     }
1358 
1359     /**
1360      * Compares two {@code Integer} objects numerically.
1361      *
1362      * @param   anotherInteger   the {@code Integer} to be compared.
1363      * @return  the value {@code 0} if this {@code Integer} is
1364      *          equal to the argument {@code Integer}; a value less than
1365      *          {@code 0} if this {@code Integer} is numerically less
1366      *          than the argument {@code Integer}; and a value greater
1367      *          than {@code 0} if this {@code Integer} is numerically
1368      *           greater than the argument {@code Integer} (signed
1369      *           comparison).
1370      * @since   1.2
1371      */
1372     public int compareTo(Integer anotherInteger) {
1373         return compare(this.value, anotherInteger.value);
1374     }
1375 
1376     /**
1377      * Compares two {@code int} values numerically.
1378      * The value returned is identical to what would be returned by:
1379      * <pre>
1380      *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
1381      * </pre>
1382      *
1383      * @param  x the first {@code int} to compare
1384      * @param  y the second {@code int} to compare
1385      * @return the value {@code 0} if {@code x == y};
1386      *         a value less than {@code 0} if {@code x < y}; and
1387      *         a value greater than {@code 0} if {@code x > y}
1388      * @since 1.7
1389      */
1390     public static int compare(int x, int y) {
1391         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1392     }
1393 
1394     /**
1395      * Compares two {@code int} values numerically treating the values
1396      * as unsigned.
1397      *
1398      * @param  x the first {@code int} to compare
1399      * @param  y the second {@code int} to compare
1400      * @return the value {@code 0} if {@code x == y}; a value less
1401      *         than {@code 0} if {@code x < y} as unsigned values; and
1402      *         a value greater than {@code 0} if {@code x > y} as
1403      *         unsigned values
1404      * @since 1.8
1405      */
1406     public static int compareUnsigned(int x, int y) {
1407         return compare(x + MIN_VALUE, y + MIN_VALUE);
1408     }
1409 
1410     /**
1411      * Converts the argument to a {@code long} by an unsigned
1412      * conversion.  In an unsigned conversion to a {@code long}, the
1413      * high-order 32 bits of the {@code long} are zero and the
1414      * low-order 32 bits are equal to the bits of the integer
1415      * argument.
1416      *
1417      * Consequently, zero and positive {@code int} values are mapped
1418      * to a numerically equal {@code long} value and negative {@code
1419      * int} values are mapped to a {@code long} value equal to the
1420      * input plus 2<sup>32</sup>.
1421      *
1422      * @param  x the value to convert to an unsigned {@code long}
1423      * @return the argument converted to {@code long} by an unsigned
1424      *         conversion
1425      * @since 1.8
1426      */
1427     public static long toUnsignedLong(int x) {
1428         return ((long) x) & 0xffffffffL;
1429     }
1430 
1431     /**
1432      * Returns the unsigned quotient of dividing the first argument by
1433      * the second where each argument and the result is interpreted as
1434      * an unsigned value.
1435      *
1436      * <p>Note that in two's complement arithmetic, the three other
1437      * basic arithmetic operations of add, subtract, and multiply are
1438      * bit-wise identical if the two operands are regarded as both
1439      * being signed or both being unsigned.  Therefore separate {@code
1440      * addUnsigned}, etc. methods are not provided.
1441      *
1442      * @param dividend the value to be divided
1443      * @param divisor the value doing the dividing
1444      * @return the unsigned quotient of the first argument divided by
1445      * the second argument
1446      * @see #remainderUnsigned
1447      * @since 1.8
1448      */
1449     public static int divideUnsigned(int dividend, int divisor) {
1450         // In lieu of tricky code, for now just use long arithmetic.
1451         return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor));
1452     }
1453 
1454     /**
1455      * Returns the unsigned remainder from dividing the first argument
1456      * by the second where each argument and the result is interpreted
1457      * as an unsigned value.
1458      *
1459      * @param dividend the value to be divided
1460      * @param divisor the value doing the dividing
1461      * @return the unsigned remainder of the first argument divided by
1462      * the second argument
1463      * @see #divideUnsigned
1464      * @since 1.8
1465      */
1466     public static int remainderUnsigned(int dividend, int divisor) {
1467         // In lieu of tricky code, for now just use long arithmetic.
1468         return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor));
1469     }
1470 
1471 
1472     // Bit twiddling
1473 
1474     /**
1475      * The number of bits used to represent an {@code int} value in two's
1476      * complement binary form.
1477      *
1478      * @since 1.5
1479      */
1480     @Native public static final int SIZE = 32;
1481 
1482     /**
1483      * The number of bytes used to represent a {@code int} value in two's
1484      * complement binary form.
1485      *
1486      * @since 1.8
1487      */
1488     public static final int BYTES = SIZE / Byte.SIZE;
1489 
1490     /**
1491      * Returns an {@code int} value with at most a single one-bit, in the
1492      * position of the highest-order ("leftmost") one-bit in the specified
1493      * {@code int} value.  Returns zero if the specified value has no
1494      * one-bits in its two's complement binary representation, that is, if it
1495      * is equal to zero.
1496      *
1497      * @param i the value whose highest one bit is to be computed
1498      * @return an {@code int} value with a single one-bit, in the position
1499      *     of the highest-order one-bit in the specified value, or zero if
1500      *     the specified value is itself equal to zero.
1501      * @since 1.5
1502      */
1503     public static int highestOneBit(int i) {
1504         // HD, Figure 3-1
1505         i |= (i >>  1);
1506         i |= (i >>  2);
1507         i |= (i >>  4);
1508         i |= (i >>  8);
1509         i |= (i >> 16);
1510         return i - (i >>> 1);
1511     }
1512 
1513     /**
1514      * Returns an {@code int} value with at most a single one-bit, in the
1515      * position of the lowest-order ("rightmost") one-bit in the specified
1516      * {@code int} value.  Returns zero if the specified value has no
1517      * one-bits in its two's complement binary representation, that is, if it
1518      * is equal to zero.
1519      *
1520      * @param i the value whose lowest one bit is to be computed
1521      * @return an {@code int} value with a single one-bit, in the position
1522      *     of the lowest-order one-bit in the specified value, or zero if
1523      *     the specified value is itself equal to zero.
1524      * @since 1.5
1525      */
1526     public static int lowestOneBit(int i) {
1527         // HD, Section 2-1
1528         return i & -i;
1529     }
1530 
1531     /**
1532      * Returns the number of zero bits preceding the highest-order
1533      * ("leftmost") one-bit in the two's complement binary representation
1534      * of the specified {@code int} value.  Returns 32 if the
1535      * specified value has no one-bits in its two's complement representation,
1536      * in other words if it is equal to zero.
1537      *
1538      * <p>Note that this method is closely related to the logarithm base 2.
1539      * For all positive {@code int} values x:
1540      * <ul>
1541      * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
1542      * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
1543      * </ul>
1544      *
1545      * @param i the value whose number of leading zeros is to be computed
1546      * @return the number of zero bits preceding the highest-order
1547      *     ("leftmost") one-bit in the two's complement binary representation
1548      *     of the specified {@code int} value, or 32 if the value
1549      *     is equal to zero.
1550      * @since 1.5
1551      */
1552     @HotSpotIntrinsicCandidate
1553     public static int numberOfLeadingZeros(int i) {
1554         // HD, Figure 5-6
1555         if (i == 0)
1556             return 32;
1557         int n = 1;
1558         if (i >>> 16 == 0) { n += 16; i <<= 16; }
1559         if (i >>> 24 == 0) { n +=  8; i <<=  8; }
1560         if (i >>> 28 == 0) { n +=  4; i <<=  4; }
1561         if (i >>> 30 == 0) { n +=  2; i <<=  2; }
1562         n -= i >>> 31;
1563         return n;
1564     }
1565 
1566     /**
1567      * Returns the number of zero bits following the lowest-order ("rightmost")
1568      * one-bit in the two's complement binary representation of the specified
1569      * {@code int} value.  Returns 32 if the specified value has no
1570      * one-bits in its two's complement representation, in other words if it is
1571      * equal to zero.
1572      *
1573      * @param i the value whose number of trailing zeros is to be computed
1574      * @return the number of zero bits following the lowest-order ("rightmost")
1575      *     one-bit in the two's complement binary representation of the
1576      *     specified {@code int} value, or 32 if the value is equal
1577      *     to zero.
1578      * @since 1.5
1579      */
1580     @HotSpotIntrinsicCandidate
1581     public static int numberOfTrailingZeros(int i) {
1582         // HD, Figure 5-14
1583         int y;
1584         if (i == 0) return 32;
1585         int n = 31;
1586         y = i <<16; if (y != 0) { n = n -16; i = y; }
1587         y = i << 8; if (y != 0) { n = n - 8; i = y; }
1588         y = i << 4; if (y != 0) { n = n - 4; i = y; }
1589         y = i << 2; if (y != 0) { n = n - 2; i = y; }
1590         return n - ((i << 1) >>> 31);
1591     }
1592 
1593     /**
1594      * Returns the number of one-bits in the two's complement binary
1595      * representation of the specified {@code int} value.  This function is
1596      * sometimes referred to as the <i>population count</i>.
1597      *
1598      * @param i the value whose bits are to be counted
1599      * @return the number of one-bits in the two's complement binary
1600      *     representation of the specified {@code int} value.
1601      * @since 1.5
1602      */
1603     @HotSpotIntrinsicCandidate
1604     public static int bitCount(int i) {
1605         // HD, Figure 5-2
1606         i = i - ((i >>> 1) & 0x55555555);
1607         i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
1608         i = (i + (i >>> 4)) & 0x0f0f0f0f;
1609         i = i + (i >>> 8);
1610         i = i + (i >>> 16);
1611         return i & 0x3f;
1612     }
1613 
1614     /**
1615      * Returns the value obtained by rotating the two's complement binary
1616      * representation of the specified {@code int} value left by the
1617      * specified number of bits.  (Bits shifted out of the left hand, or
1618      * high-order, side reenter on the right, or low-order.)
1619      *
1620      * <p>Note that left rotation with a negative distance is equivalent to
1621      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1622      * distance)}.  Note also that rotation by any multiple of 32 is a
1623      * no-op, so all but the last five bits of the rotation distance can be
1624      * ignored, even if the distance is negative: {@code rotateLeft(val,
1625      * distance) == rotateLeft(val, distance & 0x1F)}.
1626      *
1627      * @param i the value whose bits are to be rotated left
1628      * @param distance the number of bit positions to rotate left
1629      * @return the value obtained by rotating the two's complement binary
1630      *     representation of the specified {@code int} value left by the
1631      *     specified number of bits.
1632      * @since 1.5
1633      */
1634     public static int rotateLeft(int i, int distance) {
1635         return (i << distance) | (i >>> -distance);
1636     }
1637 
1638     /**
1639      * Returns the value obtained by rotating the two's complement binary
1640      * representation of the specified {@code int} value right by the
1641      * specified number of bits.  (Bits shifted out of the right hand, or
1642      * low-order, side reenter on the left, or high-order.)
1643      *
1644      * <p>Note that right rotation with a negative distance is equivalent to
1645      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1646      * distance)}.  Note also that rotation by any multiple of 32 is a
1647      * no-op, so all but the last five bits of the rotation distance can be
1648      * ignored, even if the distance is negative: {@code rotateRight(val,
1649      * distance) == rotateRight(val, distance & 0x1F)}.
1650      *
1651      * @param i the value whose bits are to be rotated right
1652      * @param distance the number of bit positions to rotate right
1653      * @return the value obtained by rotating the two's complement binary
1654      *     representation of the specified {@code int} value right by the
1655      *     specified number of bits.
1656      * @since 1.5
1657      */
1658     public static int rotateRight(int i, int distance) {
1659         return (i >>> distance) | (i << -distance);
1660     }
1661 
1662     /**
1663      * Returns the value obtained by reversing the order of the bits in the
1664      * two's complement binary representation of the specified {@code int}
1665      * value.
1666      *
1667      * @param i the value to be reversed
1668      * @return the value obtained by reversing order of the bits in the
1669      *     specified {@code int} value.
1670      * @since 1.5
1671      */
1672     public static int reverse(int i) {
1673         // HD, Figure 7-1
1674         i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
1675         i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
1676         i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
1677         i = (i << 24) | ((i & 0xff00) << 8) |
1678             ((i >>> 8) & 0xff00) | (i >>> 24);
1679         return i;
1680     }
1681 
1682     /**
1683      * Returns the signum function of the specified {@code int} value.  (The
1684      * return value is -1 if the specified value is negative; 0 if the
1685      * specified value is zero; and 1 if the specified value is positive.)
1686      *
1687      * @param i the value whose signum is to be computed
1688      * @return the signum function of the specified {@code int} value.
1689      * @since 1.5
1690      */
1691     public static int signum(int i) {
1692         // HD, Section 2-7
1693         return (i >> 31) | (-i >>> 31);
1694     }
1695 
1696     /**
1697      * Returns the value obtained by reversing the order of the bytes in the
1698      * two's complement representation of the specified {@code int} value.
1699      *
1700      * @param i the value whose bytes are to be reversed
1701      * @return the value obtained by reversing the bytes in the specified
1702      *     {@code int} value.
1703      * @since 1.5
1704      */
1705     @HotSpotIntrinsicCandidate
1706     public static int reverseBytes(int i) {
1707         return ((i >>> 24)           ) |
1708                ((i >>   8) &   0xFF00) |
1709                ((i <<   8) & 0xFF0000) |
1710                ((i << 24));
1711     }
1712 
1713     /**
1714      * Adds two integers together as per the + operator.
1715      *
1716      * @param a the first operand
1717      * @param b the second operand
1718      * @return the sum of {@code a} and {@code b}
1719      * @see java.util.function.BinaryOperator
1720      * @since 1.8
1721      */
1722     public static int sum(int a, int b) {
1723         return a + b;
1724     }
1725 
1726     /**
1727      * Returns the greater of two {@code int} values
1728      * as if by calling {@link Math#max(int, int) Math.max}.
1729      *
1730      * @param a the first operand
1731      * @param b the second operand
1732      * @return the greater of {@code a} and {@code b}
1733      * @see java.util.function.BinaryOperator
1734      * @since 1.8
1735      */
1736     public static int max(int a, int b) {
1737         return Math.max(a, b);
1738     }
1739 
1740     /**
1741      * Returns the smaller of two {@code int} values
1742      * as if by calling {@link Math#min(int, int) Math.min}.
1743      *
1744      * @param a the first operand
1745      * @param b the second operand
1746      * @return the smaller of {@code a} and {@code b}
1747      * @see java.util.function.BinaryOperator
1748      * @since 1.8
1749      */
1750     public static int min(int a, int b) {
1751         return Math.min(a, b);
1752     }
1753 
1754     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1755     @Native private static final long serialVersionUID = 1360826667806852920L;
1756 }