1 /*
   2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.math.*;
  30 import java.util.Objects;
  31 import jdk.internal.HotSpotIntrinsicCandidate;
  32 
  33 
  34 /**
  35  * The {@code Long} class wraps a value of the primitive type {@code
  36  * long} in an object. An object of type {@code Long} contains a
  37  * single field whose type is {@code long}.
  38  *
  39  * <p> In addition, this class provides several methods for converting
  40  * a {@code long} to a {@code String} and a {@code String} to a {@code
  41  * long}, as well as other constants and methods useful when dealing
  42  * with a {@code long}.
  43  *
  44  * <p>Implementation note: The implementations of the "bit twiddling"
  45  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  46  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  47  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
  48  * Delight</i>, (Addison Wesley, 2002).
  49  *
  50  * @author  Lee Boynton
  51  * @author  Arthur van Hoff
  52  * @author  Josh Bloch
  53  * @author  Joseph D. Darcy
  54  * @since   1.0
  55  */
  56 public final class Long extends Number implements Comparable<Long> {
  57     /**
  58      * A constant holding the minimum value a {@code long} can
  59      * have, -2<sup>63</sup>.
  60      */
  61     @Native public static final long MIN_VALUE = 0x8000000000000000L;
  62 
  63     /**
  64      * A constant holding the maximum value a {@code long} can
  65      * have, 2<sup>63</sup>-1.
  66      */
  67     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
  68 
  69     /**
  70      * The {@code Class} instance representing the primitive type
  71      * {@code long}.
  72      *
  73      * @since   1.1
  74      */
  75     @SuppressWarnings("unchecked")
  76     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
  77 
  78     /**
  79      * Zero {@code Long} constant.
  80      */
  81     private static final Long ZERO = new Long(0L);
  82 
  83     /**
  84      * Returns a string representation of the first argument in the
  85      * radix specified by the second argument.
  86      *
  87      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
  88      * or larger than {@code Character.MAX_RADIX}, then the radix
  89      * {@code 10} is used instead.
  90      *
  91      * <p>If the first argument is negative, the first element of the
  92      * result is the ASCII minus sign {@code '-'}
  93      * ({@code '\u005Cu002d'}). If the first argument is not
  94      * negative, no sign character appears in the result.
  95      *
  96      * <p>The remaining characters of the result represent the magnitude
  97      * of the first argument. If the magnitude is zero, it is
  98      * represented by a single zero character {@code '0'}
  99      * ({@code '\u005Cu0030'}); otherwise, the first character of
 100      * the representation of the magnitude will not be the zero
 101      * character.  The following ASCII characters are used as digits:
 102      *
 103      * <blockquote>
 104      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
 105      * </blockquote>
 106      *
 107      * These are {@code '\u005Cu0030'} through
 108      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 109      * {@code '\u005Cu007a'}. If {@code radix} is
 110      * <var>N</var>, then the first <var>N</var> of these characters
 111      * are used as radix-<var>N</var> digits in the order shown. Thus,
 112      * the digits for hexadecimal (radix 16) are
 113      * {@code 0123456789abcdef}. If uppercase letters are
 114      * desired, the {@link java.lang.String#toUpperCase()} method may
 115      * be called on the result:
 116      *
 117      * <blockquote>
 118      *  {@code Long.toString(n, 16).toUpperCase()}
 119      * </blockquote>
 120      *
 121      * @param   i       a {@code long} to be converted to a string.
 122      * @param   radix   the radix to use in the string representation.
 123      * @return  a string representation of the argument in the specified radix.
 124      * @see     java.lang.Character#MAX_RADIX
 125      * @see     java.lang.Character#MIN_RADIX
 126      */
 127     public static String toString(long i, int radix) {
 128         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 129             radix = 10;
 130         if (radix == 10)
 131             return toString(i);
 132         char[] buf = new char[65];
 133         int charPos = 64;
 134         boolean negative = (i < 0);
 135 
 136         if (!negative) {
 137             i = -i;
 138         }
 139 
 140         while (i <= -radix) {
 141             buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 142             i = i / radix;
 143         }
 144         buf[charPos] = Integer.digits[(int)(-i)];
 145 
 146         if (negative) {
 147             buf[--charPos] = '-';
 148         }
 149 
 150         return new String(buf, charPos, (65 - charPos));
 151     }
 152 
 153     /**
 154      * Returns a string representation of the first argument as an
 155      * unsigned integer value in the radix specified by the second
 156      * argument.
 157      *
 158      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 159      * or larger than {@code Character.MAX_RADIX}, then the radix
 160      * {@code 10} is used instead.
 161      *
 162      * <p>Note that since the first argument is treated as an unsigned
 163      * value, no leading sign character is printed.
 164      *
 165      * <p>If the magnitude is zero, it is represented by a single zero
 166      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 167      * the first character of the representation of the magnitude will
 168      * not be the zero character.
 169      *
 170      * <p>The behavior of radixes and the characters used as digits
 171      * are the same as {@link #toString(long, int) toString}.
 172      *
 173      * @param   i       an integer to be converted to an unsigned string.
 174      * @param   radix   the radix to use in the string representation.
 175      * @return  an unsigned string representation of the argument in the specified radix.
 176      * @see     #toString(long, int)
 177      * @since 1.8
 178      */
 179     public static String toUnsignedString(long i, int radix) {
 180         if (i >= 0)
 181             return toString(i, radix);
 182         else {
 183             switch (radix) {
 184             case 2:
 185                 return toBinaryString(i);
 186 
 187             case 4:
 188                 return toUnsignedString0(i, 2);
 189 
 190             case 8:
 191                 return toOctalString(i);
 192 
 193             case 10:
 194                 /*
 195                  * We can get the effect of an unsigned division by 10
 196                  * on a long value by first shifting right, yielding a
 197                  * positive value, and then dividing by 5.  This
 198                  * allows the last digit and preceding digits to be
 199                  * isolated more quickly than by an initial conversion
 200                  * to BigInteger.
 201                  */
 202                 long quot = (i >>> 1) / 5;
 203                 long rem = i - quot * 10;
 204                 return toString(quot) + rem;
 205 
 206             case 16:
 207                 return toHexString(i);
 208 
 209             case 32:
 210                 return toUnsignedString0(i, 5);
 211 
 212             default:
 213                 return toUnsignedBigInteger(i).toString(radix);
 214             }
 215         }
 216     }
 217 
 218     /**
 219      * Return a BigInteger equal to the unsigned value of the
 220      * argument.
 221      */
 222     private static BigInteger toUnsignedBigInteger(long i) {
 223         if (i >= 0L)
 224             return BigInteger.valueOf(i);
 225         else {
 226             int upper = (int) (i >>> 32);
 227             int lower = (int) i;
 228 
 229             // return (upper << 32) + lower
 230             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 231                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 232         }
 233     }
 234 
 235     /**
 236      * Returns a string representation of the {@code long}
 237      * argument as an unsigned integer in base&nbsp;16.
 238      *
 239      * <p>The unsigned {@code long} value is the argument plus
 240      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 241      * equal to the argument.  This value is converted to a string of
 242      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 243      * leading {@code 0}s.
 244      *
 245      * <p>The value of the argument can be recovered from the returned
 246      * string {@code s} by calling {@link
 247      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 248      * 16)}.
 249      *
 250      * <p>If the unsigned magnitude is zero, it is represented by a
 251      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 252      * otherwise, the first character of the representation of the
 253      * unsigned magnitude will not be the zero character. The
 254      * following characters are used as hexadecimal digits:
 255      *
 256      * <blockquote>
 257      *  {@code 0123456789abcdef}
 258      * </blockquote>
 259      *
 260      * These are the characters {@code '\u005Cu0030'} through
 261      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 262      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 263      * the {@link java.lang.String#toUpperCase()} method may be called
 264      * on the result:
 265      *
 266      * <blockquote>
 267      *  {@code Long.toHexString(n).toUpperCase()}
 268      * </blockquote>
 269      *
 270      * @param   i   a {@code long} to be converted to a string.
 271      * @return  the string representation of the unsigned {@code long}
 272      *          value represented by the argument in hexadecimal
 273      *          (base&nbsp;16).
 274      * @see #parseUnsignedLong(String, int)
 275      * @see #toUnsignedString(long, int)
 276      * @since   1.0.2
 277      */
 278     public static String toHexString(long i) {
 279         return toUnsignedString0(i, 4);
 280     }
 281 
 282     /**
 283      * Returns a string representation of the {@code long}
 284      * argument as an unsigned integer in base&nbsp;8.
 285      *
 286      * <p>The unsigned {@code long} value is the argument plus
 287      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 288      * equal to the argument.  This value is converted to a string of
 289      * ASCII digits in octal (base&nbsp;8) with no extra leading
 290      * {@code 0}s.
 291      *
 292      * <p>The value of the argument can be recovered from the returned
 293      * string {@code s} by calling {@link
 294      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 295      * 8)}.
 296      *
 297      * <p>If the unsigned magnitude is zero, it is represented by a
 298      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 299      * otherwise, the first character of the representation of the
 300      * unsigned magnitude will not be the zero character. The
 301      * following characters are used as octal digits:
 302      *
 303      * <blockquote>
 304      *  {@code 01234567}
 305      * </blockquote>
 306      *
 307      * These are the characters {@code '\u005Cu0030'} through
 308      * {@code '\u005Cu0037'}.
 309      *
 310      * @param   i   a {@code long} to be converted to a string.
 311      * @return  the string representation of the unsigned {@code long}
 312      *          value represented by the argument in octal (base&nbsp;8).
 313      * @see #parseUnsignedLong(String, int)
 314      * @see #toUnsignedString(long, int)
 315      * @since   1.0.2
 316      */
 317     public static String toOctalString(long i) {
 318         return toUnsignedString0(i, 3);
 319     }
 320 
 321     /**
 322      * Returns a string representation of the {@code long}
 323      * argument as an unsigned integer in base&nbsp;2.
 324      *
 325      * <p>The unsigned {@code long} value is the argument plus
 326      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 327      * equal to the argument.  This value is converted to a string of
 328      * ASCII digits in binary (base&nbsp;2) with no extra leading
 329      * {@code 0}s.
 330      *
 331      * <p>The value of the argument can be recovered from the returned
 332      * string {@code s} by calling {@link
 333      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 334      * 2)}.
 335      *
 336      * <p>If the unsigned magnitude is zero, it is represented by a
 337      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 338      * otherwise, the first character of the representation of the
 339      * unsigned magnitude will not be the zero character. The
 340      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 341      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 342      *
 343      * @param   i   a {@code long} to be converted to a string.
 344      * @return  the string representation of the unsigned {@code long}
 345      *          value represented by the argument in binary (base&nbsp;2).
 346      * @see #parseUnsignedLong(String, int)
 347      * @see #toUnsignedString(long, int)
 348      * @since   1.0.2
 349      */
 350     public static String toBinaryString(long i) {
 351         return toUnsignedString0(i, 1);
 352     }
 353 
 354     /**
 355      * Format a long (treated as unsigned) into a String.
 356      * @param val the value to format
 357      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 358      */
 359     static String toUnsignedString0(long val, int shift) {
 360         // assert shift > 0 && shift <=5 : "Illegal shift value";
 361         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 362         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 363         char[] buf = new char[chars];
 364 
 365         formatUnsignedLong(val, shift, buf, 0, chars);
 366         return new String(buf, true);
 367     }
 368 
 369     /**
 370      * Format a long (treated as unsigned) into a character buffer. If
 371      * {@code len} exceeds the formatted ASCII representation of {@code val},
 372      * {@code buf} will be padded with leading zeroes.
 373      *
 374      * @param val the unsigned long to format
 375      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 376      * @param buf the character buffer to write to
 377      * @param offset the offset in the destination buffer to start at
 378      * @param len the number of characters to write
 379      */
 380      static void formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
 381         // assert shift > 0 && shift <=5 : "Illegal shift value";
 382         // assert offset >= 0 && offset < buf.length : "illegal offset";
 383         // assert len > 0 && (offset + len) <= buf.length : "illegal length";
 384         int charPos = offset + len;
 385         int radix = 1 << shift;
 386         int mask = radix - 1;
 387         do {
 388             buf[--charPos] = Integer.digits[((int) val) & mask];
 389             val >>>= shift;
 390         } while (charPos > offset);
 391     }
 392 
 393     /**
 394      * Returns a {@code String} object representing the specified
 395      * {@code long}.  The argument is converted to signed decimal
 396      * representation and returned as a string, exactly as if the
 397      * argument and the radix 10 were given as arguments to the {@link
 398      * #toString(long, int)} method.
 399      *
 400      * @param   i   a {@code long} to be converted.
 401      * @return  a string representation of the argument in base&nbsp;10.
 402      */
 403     public static String toString(long i) {
 404         if (i == Long.MIN_VALUE)
 405             return "-9223372036854775808";
 406         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
 407         char[] buf = new char[size];
 408         getChars(i, size, buf);
 409         return new String(buf, true);
 410     }
 411 
 412     /**
 413      * Returns a string representation of the argument as an unsigned
 414      * decimal value.
 415      *
 416      * The argument is converted to unsigned decimal representation
 417      * and returned as a string exactly as if the argument and radix
 418      * 10 were given as arguments to the {@link #toUnsignedString(long,
 419      * int)} method.
 420      *
 421      * @param   i  an integer to be converted to an unsigned string.
 422      * @return  an unsigned string representation of the argument.
 423      * @see     #toUnsignedString(long, int)
 424      * @since 1.8
 425      */
 426     public static String toUnsignedString(long i) {
 427         return toUnsignedString(i, 10);
 428     }
 429 
 430     /**
 431      * Places characters representing the integer i into the
 432      * character array buf. The characters are placed into
 433      * the buffer backwards starting with the least significant
 434      * digit at the specified index (exclusive), and working
 435      * backwards from there.
 436      *
 437      * Will fail if i == Long.MIN_VALUE
 438      */
 439     static void getChars(long i, int index, char[] buf) {
 440         long q;
 441         int r;
 442         int charPos = index;
 443         char sign = 0;
 444 
 445         if (i < 0) {
 446             sign = '-';
 447             i = -i;
 448         }
 449 
 450         // Get 2 digits/iteration using longs until quotient fits into an int
 451         while (i > Integer.MAX_VALUE) {
 452             q = i / 100;
 453             // really: r = i - (q * 100);
 454             r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
 455             i = q;
 456             buf[--charPos] = Integer.DigitOnes[r];
 457             buf[--charPos] = Integer.DigitTens[r];
 458         }
 459 
 460         // Get 2 digits/iteration using ints
 461         int q2;
 462         int i2 = (int)i;
 463         while (i2 >= 65536) {
 464             q2 = i2 / 100;
 465             // really: r = i2 - (q * 100);
 466             r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
 467             i2 = q2;
 468             buf[--charPos] = Integer.DigitOnes[r];
 469             buf[--charPos] = Integer.DigitTens[r];
 470         }
 471 
 472         // Fall thru to fast mode for smaller numbers
 473         // assert(i2 <= 65536, i2);
 474         for (;;) {
 475             q2 = (i2 * 52429) >>> (16+3);
 476             r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
 477             buf[--charPos] = Integer.digits[r];
 478             i2 = q2;
 479             if (i2 == 0) break;
 480         }
 481         if (sign != 0) {
 482             buf[--charPos] = sign;
 483         }
 484     }
 485 
 486     // Requires positive x
 487     static int stringSize(long x) {
 488         long p = 10;
 489         for (int i=1; i<19; i++) {
 490             if (x < p)
 491                 return i;
 492             p = 10*p;
 493         }
 494         return 19;
 495     }
 496 
 497     /**
 498      * Parses the string argument as a signed {@code long} in the
 499      * radix specified by the second argument. The characters in the
 500      * string must all be digits of the specified radix (as determined
 501      * by whether {@link java.lang.Character#digit(char, int)} returns
 502      * a nonnegative value), except that the first character may be an
 503      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 504      * indicate a negative value or an ASCII plus sign {@code '+'}
 505      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 506      * resulting {@code long} value is returned.
 507      *
 508      * <p>Note that neither the character {@code L}
 509      * ({@code '\u005Cu004C'}) nor {@code l}
 510      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 511      * of the string as a type indicator, as would be permitted in
 512      * Java programming language source code - except that either
 513      * {@code L} or {@code l} may appear as a digit for a
 514      * radix greater than or equal to 22.
 515      *
 516      * <p>An exception of type {@code NumberFormatException} is
 517      * thrown if any of the following situations occurs:
 518      * <ul>
 519      *
 520      * <li>The first argument is {@code null} or is a string of
 521      * length zero.
 522      *
 523      * <li>The {@code radix} is either smaller than {@link
 524      * java.lang.Character#MIN_RADIX} or larger than {@link
 525      * java.lang.Character#MAX_RADIX}.
 526      *
 527      * <li>Any character of the string is not a digit of the specified
 528      * radix, except that the first character may be a minus sign
 529      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
 530      * '+'} ({@code '\u005Cu002B'}) provided that the string is
 531      * longer than length 1.
 532      *
 533      * <li>The value represented by the string is not a value of type
 534      *      {@code long}.
 535      * </ul>
 536      *
 537      * <p>Examples:
 538      * <blockquote><pre>
 539      * parseLong("0", 10) returns 0L
 540      * parseLong("473", 10) returns 473L
 541      * parseLong("+42", 10) returns 42L
 542      * parseLong("-0", 10) returns 0L
 543      * parseLong("-FF", 16) returns -255L
 544      * parseLong("1100110", 2) returns 102L
 545      * parseLong("99", 8) throws a NumberFormatException
 546      * parseLong("Hazelnut", 10) throws a NumberFormatException
 547      * parseLong("Hazelnut", 36) returns 1356099454469L
 548      * </pre></blockquote>
 549      *
 550      * @param      s       the {@code String} containing the
 551      *                     {@code long} representation to be parsed.
 552      * @param      radix   the radix to be used while parsing {@code s}.
 553      * @return     the {@code long} represented by the string argument in
 554      *             the specified radix.
 555      * @throws     NumberFormatException  if the string does not contain a
 556      *             parsable {@code long}.
 557      */
 558     public static long parseLong(String s, int radix)
 559               throws NumberFormatException
 560     {
 561         if (s == null) {
 562             throw new NumberFormatException("null");
 563         }
 564 
 565         if (radix < Character.MIN_RADIX) {
 566             throw new NumberFormatException("radix " + radix +
 567                                             " less than Character.MIN_RADIX");
 568         }
 569         if (radix > Character.MAX_RADIX) {
 570             throw new NumberFormatException("radix " + radix +
 571                                             " greater than Character.MAX_RADIX");
 572         }
 573 
 574         boolean negative = false;
 575         int i = 0, len = s.length();
 576         long limit = -Long.MAX_VALUE;
 577 
 578         if (len > 0) {
 579             char firstChar = s.charAt(0);
 580             if (firstChar < '0') { // Possible leading "+" or "-"
 581                 if (firstChar == '-') {
 582                     negative = true;
 583                     limit = Long.MIN_VALUE;
 584                 } else if (firstChar != '+') {
 585                     throw NumberFormatException.forInputString(s);
 586                 }
 587 
 588                 if (len == 1) { // Cannot have lone "+" or "-"
 589                     throw NumberFormatException.forInputString(s);
 590                 }
 591                 i++;
 592             }
 593             long multmin = limit / radix;
 594             long result = 0;
 595             while (i < len) {
 596                 // Accumulating negatively avoids surprises near MAX_VALUE
 597                 int digit = Character.digit(s.charAt(i++),radix);
 598                 if (digit < 0 || result < multmin) {
 599                     throw NumberFormatException.forInputString(s);
 600                 }
 601                 result *= radix;
 602                 if (result < limit + digit) {
 603                     throw NumberFormatException.forInputString(s);
 604                 }
 605                 result -= digit;
 606             }
 607             return negative ? result : -result;
 608         } else {
 609             throw NumberFormatException.forInputString(s);
 610         }
 611     }
 612 
 613     /**
 614      * Parses the {@link CharSequence} argument as a signed {@code long} in
 615      * the specified {@code radix}, beginning at the specified
 616      * {@code beginIndex} and extending to {@code endIndex - 1}.
 617      *
 618      * <p>The method does not take steps to guard against the
 619      * {@code CharSequence} being mutated while parsing.
 620      *
 621      * @param      s   the {@code CharSequence} containing the {@code long}
 622      *                  representation to be parsed
 623      * @param      beginIndex   the beginning index, inclusive.
 624      * @param      endIndex     the ending index, exclusive.
 625      * @param      radix   the radix to be used while parsing {@code s}.
 626      * @return     the signed {@code long} represented by the subsequence in
 627      *             the specified radix.
 628      * @throws     NullPointerException  if {@code s} is null.
 629      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 630      *             negative, or if {@code beginIndex} is greater than
 631      *             {@code endIndex} or if {@code endIndex} is greater than
 632      *             {@code s.length()}.
 633      * @throws     NumberFormatException  if the {@code CharSequence} does not
 634      *             contain a parsable {@code int} in the specified
 635      *             {@code radix}, or if {@code radix} is either smaller than
 636      *             {@link java.lang.Character#MIN_RADIX} or larger than
 637      *             {@link java.lang.Character#MAX_RADIX}.
 638      * @since  1.9
 639      */
 640     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
 641                 throws NumberFormatException {
 642         s = Objects.requireNonNull(s);
 643 
 644         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
 645             throw new IndexOutOfBoundsException();
 646         }
 647         if (radix < Character.MIN_RADIX) {
 648             throw new NumberFormatException("radix " + radix +
 649                     " less than Character.MIN_RADIX");
 650         }
 651         if (radix > Character.MAX_RADIX) {
 652             throw new NumberFormatException("radix " + radix +
 653                     " greater than Character.MAX_RADIX");
 654         }
 655 
 656         boolean negative = false;
 657         int i = beginIndex;
 658         long limit = -Long.MAX_VALUE;
 659 
 660         if (i < endIndex) {
 661             char firstChar = s.charAt(i);
 662             if (firstChar < '0') { // Possible leading "+" or "-"
 663                 if (firstChar == '-') {
 664                     negative = true;
 665                     limit = Long.MIN_VALUE;
 666                 } else if (firstChar != '+') {
 667                     throw NumberFormatException.forCharSequence(s, beginIndex,
 668                             endIndex, i);
 669                 }
 670                 i++;
 671             }
 672             if (i >= endIndex) { // Cannot have lone "+", "-" or ""
 673                 throw NumberFormatException.forCharSequence(s, beginIndex,
 674                         endIndex, i);
 675             }
 676             long multmin = limit / radix;
 677             long result = 0;
 678             while (i < endIndex) {
 679                 // Accumulating negatively avoids surprises near MAX_VALUE
 680                 int digit = Character.digit(s.charAt(i), radix);
 681                 if (digit < 0 || result < multmin) {
 682                     throw NumberFormatException.forCharSequence(s, beginIndex,
 683                             endIndex, i);
 684                 }
 685                 result *= radix;
 686                 if (result < limit + digit) {
 687                     throw NumberFormatException.forCharSequence(s, beginIndex,
 688                             endIndex, i);
 689                 }
 690                 i++;
 691                 result -= digit;
 692             }
 693             return negative ? result : -result;
 694         } else {
 695             throw new NumberFormatException("");
 696         }
 697     }
 698 
 699     /**
 700      * Parses the string argument as a signed decimal {@code long}.
 701      * The characters in the string must all be decimal digits, except
 702      * that the first character may be an ASCII minus sign {@code '-'}
 703      * ({@code \u005Cu002D'}) to indicate a negative value or an
 704      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 705      * indicate a positive value. The resulting {@code long} value is
 706      * returned, exactly as if the argument and the radix {@code 10}
 707      * were given as arguments to the {@link
 708      * #parseLong(java.lang.String, int)} method.
 709      *
 710      * <p>Note that neither the character {@code L}
 711      * ({@code '\u005Cu004C'}) nor {@code l}
 712      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 713      * of the string as a type indicator, as would be permitted in
 714      * Java programming language source code.
 715      *
 716      * @param      s   a {@code String} containing the {@code long}
 717      *             representation to be parsed
 718      * @return     the {@code long} represented by the argument in
 719      *             decimal.
 720      * @throws     NumberFormatException  if the string does not contain a
 721      *             parsable {@code long}.
 722      */
 723     public static long parseLong(String s) throws NumberFormatException {
 724         return parseLong(s, 10);
 725     }
 726 
 727     /**
 728      * Parses the string argument as an unsigned {@code long} in the
 729      * radix specified by the second argument.  An unsigned integer
 730      * maps the values usually associated with negative numbers to
 731      * positive numbers larger than {@code MAX_VALUE}.
 732      *
 733      * The characters in the string must all be digits of the
 734      * specified radix (as determined by whether {@link
 735      * java.lang.Character#digit(char, int)} returns a nonnegative
 736      * value), except that the first character may be an ASCII plus
 737      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 738      * integer value is returned.
 739      *
 740      * <p>An exception of type {@code NumberFormatException} is
 741      * thrown if any of the following situations occurs:
 742      * <ul>
 743      * <li>The first argument is {@code null} or is a string of
 744      * length zero.
 745      *
 746      * <li>The radix is either smaller than
 747      * {@link java.lang.Character#MIN_RADIX} or
 748      * larger than {@link java.lang.Character#MAX_RADIX}.
 749      *
 750      * <li>Any character of the string is not a digit of the specified
 751      * radix, except that the first character may be a plus sign
 752      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 753      * string is longer than length 1.
 754      *
 755      * <li>The value represented by the string is larger than the
 756      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 757      *
 758      * </ul>
 759      *
 760      *
 761      * @param      s   the {@code String} containing the unsigned integer
 762      *                  representation to be parsed
 763      * @param      radix   the radix to be used while parsing {@code s}.
 764      * @return     the unsigned {@code long} represented by the string
 765      *             argument in the specified radix.
 766      * @throws     NumberFormatException if the {@code String}
 767      *             does not contain a parsable {@code long}.
 768      * @since 1.8
 769      */
 770     public static long parseUnsignedLong(String s, int radix)
 771                 throws NumberFormatException {
 772         if (s == null)  {
 773             throw new NumberFormatException("null");
 774         }
 775 
 776         int len = s.length();
 777         if (len > 0) {
 778             char firstChar = s.charAt(0);
 779             if (firstChar == '-') {
 780                 throw new
 781                     NumberFormatException(String.format("Illegal leading minus sign " +
 782                                                        "on unsigned string %s.", s));
 783             } else {
 784                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
 785                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
 786                     return parseLong(s, radix);
 787                 }
 788 
 789                 // No need for range checks on len due to testing above.
 790                 long first = parseLong(s, 0, len - 1, radix);
 791                 int second = Character.digit(s.charAt(len - 1), radix);
 792                 if (second < 0) {
 793                     throw new NumberFormatException("Bad digit at end of " + s);
 794                 }
 795                 long result = first * radix + second;
 796 
 797                 /*
 798                  * Test leftmost bits of multiprecision extension of first*radix
 799                  * for overflow. The number of bits needed is defined by
 800                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
 801                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
 802                  * overflow is tested by splitting guard in the ranges
 803                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
 804                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
 805                  * on a value which does not include a prime factor in the legal
 806                  * radix range.
 807                  */
 808                 int guard = radix * (int) (first >>> 57);
 809                 if (guard >= 128 ||
 810                     (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
 811                     /*
 812                      * For purposes of exposition, the programmatic statements
 813                      * below should be taken to be multi-precision, i.e., not
 814                      * subject to overflow.
 815                      *
 816                      * A) Condition guard >= 128:
 817                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
 818                      * hence always overflow.
 819                      *
 820                      * B) Condition guard < 92:
 821                      * Define left7 = first >>> 57.
 822                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
 823                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
 824                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
 825                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
 826                      * never overflow.
 827                      *
 828                      * C) Condition 92 <= guard < 128:
 829                      * first*radix + second >= radix*left7*2^57 + second
 830                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
 831                      *
 832                      * D) Condition guard < 128:
 833                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
 834                      * so
 835                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
 836                      * thus
 837                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
 838                      * whence
 839                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
 840                      *
 841                      * E) Conditions C, D, and result >= 0:
 842                      * C and D combined imply the mathematical result
 843                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
 844                      * bound is therefore negative as a signed long, but the
 845                      * upper bound is too small to overflow again after the
 846                      * signed long overflows to positive above 2^64 - 1. Hence
 847                      * result >= 0 implies overflow given C and D.
 848                      */
 849                     throw new NumberFormatException(String.format("String value %s exceeds " +
 850                                                                   "range of unsigned long.", s));
 851                 }
 852                 return result;
 853             }
 854         } else {
 855             throw NumberFormatException.forInputString(s);
 856         }
 857     }
 858 
 859     /**
 860      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
 861      * the specified {@code radix}, beginning at the specified
 862      * {@code beginIndex} and extending to {@code endIndex - 1}.
 863      *
 864      * <p>The method does not take steps to guard against the
 865      * {@code CharSequence} being mutated while parsing.
 866      *
 867      * @param      s   the {@code CharSequence} containing the unsigned
 868      *                 {@code long} representation to be parsed
 869      * @param      beginIndex   the beginning index, inclusive.
 870      * @param      endIndex     the ending index, exclusive.
 871      * @param      radix   the radix to be used while parsing {@code s}.
 872      * @return     the unsigned {@code long} represented by the subsequence in
 873      *             the specified radix.
 874      * @throws     NullPointerException  if {@code s} is null.
 875      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
 876      *             negative, or if {@code beginIndex} is greater than
 877      *             {@code endIndex} or if {@code endIndex} is greater than
 878      *             {@code s.length()}.
 879      * @throws     NumberFormatException  if the {@code CharSequence} does not
 880      *             contain a parsable unsigned {@code long} in the specified
 881      *             {@code radix}, or if {@code radix} is either smaller than
 882      *             {@link java.lang.Character#MIN_RADIX} or larger than
 883      *             {@link java.lang.Character#MAX_RADIX}.
 884      * @since  1.9
 885      */
 886     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
 887                 throws NumberFormatException {
 888         s = Objects.requireNonNull(s);
 889 
 890         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
 891             throw new IndexOutOfBoundsException();
 892         }
 893         int start = beginIndex, len = endIndex - beginIndex;
 894 
 895         if (len > 0) {
 896             char firstChar = s.charAt(start);
 897             if (firstChar == '-') {
 898                 throw new NumberFormatException(String.format("Illegal leading minus sign " +
 899                         "on unsigned string %s.", s.subSequence(start, start + len)));
 900             } else {
 901                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
 902                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
 903                     return parseLong(s, start, start + len, radix);
 904                 }
 905 
 906                 // No need for range checks on end due to testing above.
 907                 long first = parseLong(s, start, start + len - 1, radix);
 908                 int second = Character.digit(s.charAt(start + len - 1), radix);
 909                 if (second < 0) {
 910                     throw new NumberFormatException("Bad digit at end of " +
 911                             s.subSequence(start, start + len));
 912                 }
 913                 long result = first * radix + second;
 914 
 915                 /*
 916                  * Test leftmost bits of multiprecision extension of first*radix
 917                  * for overflow. The number of bits needed is defined by
 918                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
 919                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
 920                  * overflow is tested by splitting guard in the ranges
 921                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
 922                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
 923                  * on a value which does not include a prime factor in the legal
 924                  * radix range.
 925                  */
 926                 int guard = radix * (int) (first >>> 57);
 927                 if (guard >= 128 ||
 928                         (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
 929                     /*
 930                      * For purposes of exposition, the programmatic statements
 931                      * below should be taken to be multi-precision, i.e., not
 932                      * subject to overflow.
 933                      *
 934                      * A) Condition guard >= 128:
 935                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
 936                      * hence always overflow.
 937                      *
 938                      * B) Condition guard < 92:
 939                      * Define left7 = first >>> 57.
 940                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
 941                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
 942                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
 943                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
 944                      * never overflow.
 945                      *
 946                      * C) Condition 92 <= guard < 128:
 947                      * first*radix + second >= radix*left7*2^57 + second
 948                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
 949                      *
 950                      * D) Condition guard < 128:
 951                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
 952                      * so
 953                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
 954                      * thus
 955                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
 956                      * whence
 957                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
 958                      *
 959                      * E) Conditions C, D, and result >= 0:
 960                      * C and D combined imply the mathematical result
 961                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
 962                      * bound is therefore negative as a signed long, but the
 963                      * upper bound is too small to overflow again after the
 964                      * signed long overflows to positive above 2^64 - 1. Hence
 965                      * result >= 0 implies overflow given C and D.
 966                      */
 967                     throw new NumberFormatException(String.format("String value %s exceeds " +
 968                             "range of unsigned long.", s.subSequence(start, start + len)));
 969                 }
 970                 return result;
 971             }
 972         } else {
 973             throw NumberFormatException.forInputString("");
 974         }
 975     }
 976 
 977     /**
 978      * Parses the string argument as an unsigned decimal {@code long}. The
 979      * characters in the string must all be decimal digits, except
 980      * that the first character may be an ASCII plus sign {@code
 981      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 982      * is returned, exactly as if the argument and the radix 10 were
 983      * given as arguments to the {@link
 984      * #parseUnsignedLong(java.lang.String, int)} method.
 985      *
 986      * @param s   a {@code String} containing the unsigned {@code long}
 987      *            representation to be parsed
 988      * @return    the unsigned {@code long} value represented by the decimal string argument
 989      * @throws    NumberFormatException  if the string does not contain a
 990      *            parsable unsigned integer.
 991      * @since 1.8
 992      */
 993     public static long parseUnsignedLong(String s) throws NumberFormatException {
 994         return parseUnsignedLong(s, 10);
 995     }
 996 
 997     /**
 998      * Returns a {@code Long} object holding the value
 999      * extracted from the specified {@code String} when parsed
1000      * with the radix given by the second argument.  The first
1001      * argument is interpreted as representing a signed
1002      * {@code long} in the radix specified by the second
1003      * argument, exactly as if the arguments were given to the {@link
1004      * #parseLong(java.lang.String, int)} method. The result is a
1005      * {@code Long} object that represents the {@code long}
1006      * value specified by the string.
1007      *
1008      * <p>In other words, this method returns a {@code Long} object equal
1009      * to the value of:
1010      *
1011      * <blockquote>
1012      *  {@code new Long(Long.parseLong(s, radix))}
1013      * </blockquote>
1014      *
1015      * @param      s       the string to be parsed
1016      * @param      radix   the radix to be used in interpreting {@code s}
1017      * @return     a {@code Long} object holding the value
1018      *             represented by the string argument in the specified
1019      *             radix.
1020      * @throws     NumberFormatException  If the {@code String} does not
1021      *             contain a parsable {@code long}.
1022      */
1023     public static Long valueOf(String s, int radix) throws NumberFormatException {
1024         return Long.valueOf(parseLong(s, radix));
1025     }
1026 
1027     /**
1028      * Returns a {@code Long} object holding the value
1029      * of the specified {@code String}. The argument is
1030      * interpreted as representing a signed decimal {@code long},
1031      * exactly as if the argument were given to the {@link
1032      * #parseLong(java.lang.String)} method. The result is a
1033      * {@code Long} object that represents the integer value
1034      * specified by the string.
1035      *
1036      * <p>In other words, this method returns a {@code Long} object
1037      * equal to the value of:
1038      *
1039      * <blockquote>
1040      *  {@code new Long(Long.parseLong(s))}
1041      * </blockquote>
1042      *
1043      * @param      s   the string to be parsed.
1044      * @return     a {@code Long} object holding the value
1045      *             represented by the string argument.
1046      * @throws     NumberFormatException  If the string cannot be parsed
1047      *             as a {@code long}.
1048      */
1049     public static Long valueOf(String s) throws NumberFormatException
1050     {
1051         return Long.valueOf(parseLong(s, 10));
1052     }
1053 
1054     private static class LongCache {
1055         private LongCache(){}
1056 
1057         static final Long cache[] = new Long[-(-128) + 127 + 1];
1058 
1059         static {
1060             for(int i = 0; i < cache.length; i++) {
1061                 int val = i - 128;
1062                 cache[i] = (val == 0) ? ZERO : new Long(val);
1063             }
1064         }
1065     }
1066 
1067     /**
1068      * Returns a {@code Long} instance representing the specified
1069      * {@code long} value.
1070      * If a new {@code Long} instance is not required, this method
1071      * should generally be used in preference to the constructor
1072      * {@link #Long(long)}, as this method is likely to yield
1073      * significantly better space and time performance by caching
1074      * frequently requested values.
1075      *
1076      * Note that unlike the {@linkplain Integer#valueOf(int)
1077      * corresponding method} in the {@code Integer} class, this method
1078      * is <em>not</em> required to cache values within a particular
1079      * range.
1080      *
1081      * @param  l a long value.
1082      * @return a {@code Long} instance representing {@code l}.
1083      * @since  1.5
1084      */
1085     @HotSpotIntrinsicCandidate
1086     public static Long valueOf(long l) {
1087         final int offset = 128;
1088         if (l >= -128 && l <= 127) { // will cache
1089             return LongCache.cache[(int)l + offset];
1090         }
1091         return new Long(l);
1092     }
1093 
1094     /**
1095      * Decodes a {@code String} into a {@code Long}.
1096      * Accepts decimal, hexadecimal, and octal numbers given by the
1097      * following grammar:
1098      *
1099      * <blockquote>
1100      * <dl>
1101      * <dt><i>DecodableString:</i>
1102      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1103      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1104      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1105      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1106      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1107      *
1108      * <dt><i>Sign:</i>
1109      * <dd>{@code -}
1110      * <dd>{@code +}
1111      * </dl>
1112      * </blockquote>
1113      *
1114      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1115      * are as defined in section 3.10.1 of
1116      * <cite>The Java&trade; Language Specification</cite>,
1117      * except that underscores are not accepted between digits.
1118      *
1119      * <p>The sequence of characters following an optional
1120      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1121      * "{@code #}", or leading zero) is parsed as by the {@code
1122      * Long.parseLong} method with the indicated radix (10, 16, or 8).
1123      * This sequence of characters must represent a positive value or
1124      * a {@link NumberFormatException} will be thrown.  The result is
1125      * negated if first character of the specified {@code String} is
1126      * the minus sign.  No whitespace characters are permitted in the
1127      * {@code String}.
1128      *
1129      * @param     nm the {@code String} to decode.
1130      * @return    a {@code Long} object holding the {@code long}
1131      *            value represented by {@code nm}
1132      * @throws    NumberFormatException  if the {@code String} does not
1133      *            contain a parsable {@code long}.
1134      * @see java.lang.Long#parseLong(String, int)
1135      * @since 1.2
1136      */
1137     public static Long decode(String nm) throws NumberFormatException {
1138         int radix = 10;
1139         int index = 0;
1140         boolean negative = false;
1141         Long result;
1142 
1143         if (nm.length() == 0)
1144             throw new NumberFormatException("Zero length string");
1145         char firstChar = nm.charAt(0);
1146         // Handle sign, if present
1147         if (firstChar == '-') {
1148             negative = true;
1149             index++;
1150         } else if (firstChar == '+')
1151             index++;
1152 
1153         // Handle radix specifier, if present
1154         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1155             index += 2;
1156             radix = 16;
1157         }
1158         else if (nm.startsWith("#", index)) {
1159             index ++;
1160             radix = 16;
1161         }
1162         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1163             index ++;
1164             radix = 8;
1165         }
1166 
1167         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1168             throw new NumberFormatException("Sign character in wrong position");
1169 
1170         try {
1171             result = Long.valueOf(nm.substring(index), radix);
1172             result = negative ? Long.valueOf(-result.longValue()) : result;
1173         } catch (NumberFormatException e) {
1174             // If number is Long.MIN_VALUE, we'll end up here. The next line
1175             // handles this case, and causes any genuine format error to be
1176             // rethrown.
1177             String constant = negative ? ("-" + nm.substring(index))
1178                                        : nm.substring(index);
1179             result = Long.valueOf(constant, radix);
1180         }
1181         return result;
1182     }
1183 
1184     /**
1185      * The value of the {@code Long}.
1186      *
1187      * @serial
1188      */
1189     private final long value;
1190 
1191     /**
1192      * Constructs a newly allocated {@code Long} object that
1193      * represents the specified {@code long} argument.
1194      *
1195      * @param   value   the value to be represented by the
1196      *          {@code Long} object.
1197      */
1198     public Long(long value) {
1199         this.value = value;
1200     }
1201 
1202     /**
1203      * Constructs a newly allocated {@code Long} object that
1204      * represents the {@code long} value indicated by the
1205      * {@code String} parameter. The string is converted to a
1206      * {@code long} value in exactly the manner used by the
1207      * {@code parseLong} method for radix 10.
1208      *
1209      * @param      s   the {@code String} to be converted to a
1210      *             {@code Long}.
1211      * @throws     NumberFormatException  if the {@code String} does not
1212      *             contain a parsable {@code long}.
1213      * @see        java.lang.Long#parseLong(java.lang.String, int)
1214      */
1215     public Long(String s) throws NumberFormatException {
1216         this.value = parseLong(s, 10);
1217     }
1218 
1219     /**
1220      * Returns the value of this {@code Long} as a {@code byte} after
1221      * a narrowing primitive conversion.
1222      * @jls 5.1.3 Narrowing Primitive Conversions
1223      */
1224     public byte byteValue() {
1225         return (byte)value;
1226     }
1227 
1228     /**
1229      * Returns the value of this {@code Long} as a {@code short} after
1230      * a narrowing primitive conversion.
1231      * @jls 5.1.3 Narrowing Primitive Conversions
1232      */
1233     public short shortValue() {
1234         return (short)value;
1235     }
1236 
1237     /**
1238      * Returns the value of this {@code Long} as an {@code int} after
1239      * a narrowing primitive conversion.
1240      * @jls 5.1.3 Narrowing Primitive Conversions
1241      */
1242     public int intValue() {
1243         return (int)value;
1244     }
1245 
1246     /**
1247      * Returns the value of this {@code Long} as a
1248      * {@code long} value.
1249      */
1250     @HotSpotIntrinsicCandidate
1251     public long longValue() {
1252         return value;
1253     }
1254 
1255     /**
1256      * Returns the value of this {@code Long} as a {@code float} after
1257      * a widening primitive conversion.
1258      * @jls 5.1.2 Widening Primitive Conversions
1259      */
1260     public float floatValue() {
1261         return (float)value;
1262     }
1263 
1264     /**
1265      * Returns the value of this {@code Long} as a {@code double}
1266      * after a widening primitive conversion.
1267      * @jls 5.1.2 Widening Primitive Conversions
1268      */
1269     public double doubleValue() {
1270         return (double)value;
1271     }
1272 
1273     /**
1274      * Returns a {@code String} object representing this
1275      * {@code Long}'s value.  The value is converted to signed
1276      * decimal representation and returned as a string, exactly as if
1277      * the {@code long} value were given as an argument to the
1278      * {@link java.lang.Long#toString(long)} method.
1279      *
1280      * @return  a string representation of the value of this object in
1281      *          base&nbsp;10.
1282      */
1283     public String toString() {
1284         return toString(value);
1285     }
1286 
1287     /**
1288      * Returns a hash code for this {@code Long}. The result is
1289      * the exclusive OR of the two halves of the primitive
1290      * {@code long} value held by this {@code Long}
1291      * object. That is, the hashcode is the value of the expression:
1292      *
1293      * <blockquote>
1294      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1295      * </blockquote>
1296      *
1297      * @return  a hash code value for this object.
1298      */
1299     @Override
1300     public int hashCode() {
1301         return Long.hashCode(value);
1302     }
1303 
1304     /**
1305      * Returns a hash code for a {@code long} value; compatible with
1306      * {@code Long.hashCode()}.
1307      *
1308      * @param value the value to hash
1309      * @return a hash code value for a {@code long} value.
1310      * @since 1.8
1311      */
1312     public static int hashCode(long value) {
1313         return (int)(value ^ (value >>> 32));
1314     }
1315 
1316     /**
1317      * Compares this object to the specified object.  The result is
1318      * {@code true} if and only if the argument is not
1319      * {@code null} and is a {@code Long} object that
1320      * contains the same {@code long} value as this object.
1321      *
1322      * @param   obj   the object to compare with.
1323      * @return  {@code true} if the objects are the same;
1324      *          {@code false} otherwise.
1325      */
1326     public boolean equals(Object obj) {
1327         if (obj instanceof Long) {
1328             return value == ((Long)obj).longValue();
1329         }
1330         return false;
1331     }
1332 
1333     /**
1334      * Determines the {@code long} value of the system property
1335      * with the specified name.
1336      *
1337      * <p>The first argument is treated as the name of a system
1338      * property.  System properties are accessible through the {@link
1339      * java.lang.System#getProperty(java.lang.String)} method. The
1340      * string value of this property is then interpreted as a {@code
1341      * long} value using the grammar supported by {@link Long#decode decode}
1342      * and a {@code Long} object representing this value is returned.
1343      *
1344      * <p>If there is no property with the specified name, if the
1345      * specified name is empty or {@code null}, or if the property
1346      * does not have the correct numeric format, then {@code null} is
1347      * returned.
1348      *
1349      * <p>In other words, this method returns a {@code Long} object
1350      * equal to the value of:
1351      *
1352      * <blockquote>
1353      *  {@code getLong(nm, null)}
1354      * </blockquote>
1355      *
1356      * @param   nm   property name.
1357      * @return  the {@code Long} value of the property.
1358      * @throws  SecurityException for the same reasons as
1359      *          {@link System#getProperty(String) System.getProperty}
1360      * @see     java.lang.System#getProperty(java.lang.String)
1361      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1362      */
1363     public static Long getLong(String nm) {
1364         return getLong(nm, null);
1365     }
1366 
1367     /**
1368      * Determines the {@code long} value of the system property
1369      * with the specified name.
1370      *
1371      * <p>The first argument is treated as the name of a system
1372      * property.  System properties are accessible through the {@link
1373      * java.lang.System#getProperty(java.lang.String)} method. The
1374      * string value of this property is then interpreted as a {@code
1375      * long} value using the grammar supported by {@link Long#decode decode}
1376      * and a {@code Long} object representing this value is returned.
1377      *
1378      * <p>The second argument is the default value. A {@code Long} object
1379      * that represents the value of the second argument is returned if there
1380      * is no property of the specified name, if the property does not have
1381      * the correct numeric format, or if the specified name is empty or null.
1382      *
1383      * <p>In other words, this method returns a {@code Long} object equal
1384      * to the value of:
1385      *
1386      * <blockquote>
1387      *  {@code getLong(nm, new Long(val))}
1388      * </blockquote>
1389      *
1390      * but in practice it may be implemented in a manner such as:
1391      *
1392      * <blockquote><pre>
1393      * Long result = getLong(nm, null);
1394      * return (result == null) ? new Long(val) : result;
1395      * </pre></blockquote>
1396      *
1397      * to avoid the unnecessary allocation of a {@code Long} object when
1398      * the default value is not needed.
1399      *
1400      * @param   nm    property name.
1401      * @param   val   default value.
1402      * @return  the {@code Long} value of the property.
1403      * @throws  SecurityException for the same reasons as
1404      *          {@link System#getProperty(String) System.getProperty}
1405      * @see     java.lang.System#getProperty(java.lang.String)
1406      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1407      */
1408     public static Long getLong(String nm, long val) {
1409         Long result = Long.getLong(nm, null);
1410         return (result == null) ? Long.valueOf(val) : result;
1411     }
1412 
1413     /**
1414      * Returns the {@code long} value of the system property with
1415      * the specified name.  The first argument is treated as the name
1416      * of a system property.  System properties are accessible through
1417      * the {@link java.lang.System#getProperty(java.lang.String)}
1418      * method. The string value of this property is then interpreted
1419      * as a {@code long} value, as per the
1420      * {@link Long#decode decode} method, and a {@code Long} object
1421      * representing this value is returned; in summary:
1422      *
1423      * <ul>
1424      * <li>If the property value begins with the two ASCII characters
1425      * {@code 0x} or the ASCII character {@code #}, not followed by
1426      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1427      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1428      * with radix 16.
1429      * <li>If the property value begins with the ASCII character
1430      * {@code 0} followed by another character, it is parsed as
1431      * an octal integer exactly as by the method {@link
1432      * #valueOf(java.lang.String, int)} with radix 8.
1433      * <li>Otherwise the property value is parsed as a decimal
1434      * integer exactly as by the method
1435      * {@link #valueOf(java.lang.String, int)} with radix 10.
1436      * </ul>
1437      *
1438      * <p>Note that, in every case, neither {@code L}
1439      * ({@code '\u005Cu004C'}) nor {@code l}
1440      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1441      * of the property value as a type indicator, as would be
1442      * permitted in Java programming language source code.
1443      *
1444      * <p>The second argument is the default value. The default value is
1445      * returned if there is no property of the specified name, if the
1446      * property does not have the correct numeric format, or if the
1447      * specified name is empty or {@code null}.
1448      *
1449      * @param   nm   property name.
1450      * @param   val   default value.
1451      * @return  the {@code Long} value of the property.
1452      * @throws  SecurityException for the same reasons as
1453      *          {@link System#getProperty(String) System.getProperty}
1454      * @see     System#getProperty(java.lang.String)
1455      * @see     System#getProperty(java.lang.String, java.lang.String)
1456      */
1457     public static Long getLong(String nm, Long val) {
1458         String v = null;
1459         try {
1460             v = System.getProperty(nm);
1461         } catch (IllegalArgumentException | NullPointerException e) {
1462         }
1463         if (v != null) {
1464             try {
1465                 return Long.decode(v);
1466             } catch (NumberFormatException e) {
1467             }
1468         }
1469         return val;
1470     }
1471 
1472     /**
1473      * Compares two {@code Long} objects numerically.
1474      *
1475      * @param   anotherLong   the {@code Long} to be compared.
1476      * @return  the value {@code 0} if this {@code Long} is
1477      *          equal to the argument {@code Long}; a value less than
1478      *          {@code 0} if this {@code Long} is numerically less
1479      *          than the argument {@code Long}; and a value greater
1480      *          than {@code 0} if this {@code Long} is numerically
1481      *           greater than the argument {@code Long} (signed
1482      *           comparison).
1483      * @since   1.2
1484      */
1485     public int compareTo(Long anotherLong) {
1486         return compare(this.value, anotherLong.value);
1487     }
1488 
1489     /**
1490      * Compares two {@code long} values numerically.
1491      * The value returned is identical to what would be returned by:
1492      * <pre>
1493      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1494      * </pre>
1495      *
1496      * @param  x the first {@code long} to compare
1497      * @param  y the second {@code long} to compare
1498      * @return the value {@code 0} if {@code x == y};
1499      *         a value less than {@code 0} if {@code x < y}; and
1500      *         a value greater than {@code 0} if {@code x > y}
1501      * @since 1.7
1502      */
1503     public static int compare(long x, long y) {
1504         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1505     }
1506 
1507     /**
1508      * Compares two {@code long} values numerically treating the values
1509      * as unsigned.
1510      *
1511      * @param  x the first {@code long} to compare
1512      * @param  y the second {@code long} to compare
1513      * @return the value {@code 0} if {@code x == y}; a value less
1514      *         than {@code 0} if {@code x < y} as unsigned values; and
1515      *         a value greater than {@code 0} if {@code x > y} as
1516      *         unsigned values
1517      * @since 1.8
1518      */
1519     public static int compareUnsigned(long x, long y) {
1520         return compare(x + MIN_VALUE, y + MIN_VALUE);
1521     }
1522 
1523 
1524     /**
1525      * Returns the unsigned quotient of dividing the first argument by
1526      * the second where each argument and the result is interpreted as
1527      * an unsigned value.
1528      *
1529      * <p>Note that in two's complement arithmetic, the three other
1530      * basic arithmetic operations of add, subtract, and multiply are
1531      * bit-wise identical if the two operands are regarded as both
1532      * being signed or both being unsigned.  Therefore separate {@code
1533      * addUnsigned}, etc. methods are not provided.
1534      *
1535      * @param dividend the value to be divided
1536      * @param divisor the value doing the dividing
1537      * @return the unsigned quotient of the first argument divided by
1538      * the second argument
1539      * @see #remainderUnsigned
1540      * @since 1.8
1541      */
1542     public static long divideUnsigned(long dividend, long divisor) {
1543         if (divisor < 0L) { // signed comparison
1544             // Answer must be 0 or 1 depending on relative magnitude
1545             // of dividend and divisor.
1546             return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1547         }
1548 
1549         if (dividend > 0) //  Both inputs non-negative
1550             return dividend/divisor;
1551         else {
1552             /*
1553              * For simple code, leveraging BigInteger.  Longer and faster
1554              * code written directly in terms of operations on longs is
1555              * possible; see "Hacker's Delight" for divide and remainder
1556              * algorithms.
1557              */
1558             return toUnsignedBigInteger(dividend).
1559                 divide(toUnsignedBigInteger(divisor)).longValue();
1560         }
1561     }
1562 
1563     /**
1564      * Returns the unsigned remainder from dividing the first argument
1565      * by the second where each argument and the result is interpreted
1566      * as an unsigned value.
1567      *
1568      * @param dividend the value to be divided
1569      * @param divisor the value doing the dividing
1570      * @return the unsigned remainder of the first argument divided by
1571      * the second argument
1572      * @see #divideUnsigned
1573      * @since 1.8
1574      */
1575     public static long remainderUnsigned(long dividend, long divisor) {
1576         if (dividend > 0 && divisor > 0) { // signed comparisons
1577             return dividend % divisor;
1578         } else {
1579             if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
1580                 return dividend;
1581             else
1582                 return toUnsignedBigInteger(dividend).
1583                     remainder(toUnsignedBigInteger(divisor)).longValue();
1584         }
1585     }
1586 
1587     // Bit Twiddling
1588 
1589     /**
1590      * The number of bits used to represent a {@code long} value in two's
1591      * complement binary form.
1592      *
1593      * @since 1.5
1594      */
1595     @Native public static final int SIZE = 64;
1596 
1597     /**
1598      * The number of bytes used to represent a {@code long} value in two's
1599      * complement binary form.
1600      *
1601      * @since 1.8
1602      */
1603     public static final int BYTES = SIZE / Byte.SIZE;
1604 
1605     /**
1606      * Returns a {@code long} value with at most a single one-bit, in the
1607      * position of the highest-order ("leftmost") one-bit in the specified
1608      * {@code long} value.  Returns zero if the specified value has no
1609      * one-bits in its two's complement binary representation, that is, if it
1610      * is equal to zero.
1611      *
1612      * @param i the value whose highest one bit is to be computed
1613      * @return a {@code long} value with a single one-bit, in the position
1614      *     of the highest-order one-bit in the specified value, or zero if
1615      *     the specified value is itself equal to zero.
1616      * @since 1.5
1617      */
1618     public static long highestOneBit(long i) {
1619         // HD, Figure 3-1
1620         i |= (i >>  1);
1621         i |= (i >>  2);
1622         i |= (i >>  4);
1623         i |= (i >>  8);
1624         i |= (i >> 16);
1625         i |= (i >> 32);
1626         return i - (i >>> 1);
1627     }
1628 
1629     /**
1630      * Returns a {@code long} value with at most a single one-bit, in the
1631      * position of the lowest-order ("rightmost") one-bit in the specified
1632      * {@code long} value.  Returns zero if the specified value has no
1633      * one-bits in its two's complement binary representation, that is, if it
1634      * is equal to zero.
1635      *
1636      * @param i the value whose lowest one bit is to be computed
1637      * @return a {@code long} value with a single one-bit, in the position
1638      *     of the lowest-order one-bit in the specified value, or zero if
1639      *     the specified value is itself equal to zero.
1640      * @since 1.5
1641      */
1642     public static long lowestOneBit(long i) {
1643         // HD, Section 2-1
1644         return i & -i;
1645     }
1646 
1647     /**
1648      * Returns the number of zero bits preceding the highest-order
1649      * ("leftmost") one-bit in the two's complement binary representation
1650      * of the specified {@code long} value.  Returns 64 if the
1651      * specified value has no one-bits in its two's complement representation,
1652      * in other words if it is equal to zero.
1653      *
1654      * <p>Note that this method is closely related to the logarithm base 2.
1655      * For all positive {@code long} values x:
1656      * <ul>
1657      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1658      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1659      * </ul>
1660      *
1661      * @param i the value whose number of leading zeros is to be computed
1662      * @return the number of zero bits preceding the highest-order
1663      *     ("leftmost") one-bit in the two's complement binary representation
1664      *     of the specified {@code long} value, or 64 if the value
1665      *     is equal to zero.
1666      * @since 1.5
1667      */
1668     @HotSpotIntrinsicCandidate
1669     public static int numberOfLeadingZeros(long i) {
1670         // HD, Figure 5-6
1671          if (i == 0)
1672             return 64;
1673         int n = 1;
1674         int x = (int)(i >>> 32);
1675         if (x == 0) { n += 32; x = (int)i; }
1676         if (x >>> 16 == 0) { n += 16; x <<= 16; }
1677         if (x >>> 24 == 0) { n +=  8; x <<=  8; }
1678         if (x >>> 28 == 0) { n +=  4; x <<=  4; }
1679         if (x >>> 30 == 0) { n +=  2; x <<=  2; }
1680         n -= x >>> 31;
1681         return n;
1682     }
1683 
1684     /**
1685      * Returns the number of zero bits following the lowest-order ("rightmost")
1686      * one-bit in the two's complement binary representation of the specified
1687      * {@code long} value.  Returns 64 if the specified value has no
1688      * one-bits in its two's complement representation, in other words if it is
1689      * equal to zero.
1690      *
1691      * @param i the value whose number of trailing zeros is to be computed
1692      * @return the number of zero bits following the lowest-order ("rightmost")
1693      *     one-bit in the two's complement binary representation of the
1694      *     specified {@code long} value, or 64 if the value is equal
1695      *     to zero.
1696      * @since 1.5
1697      */
1698     @HotSpotIntrinsicCandidate
1699     public static int numberOfTrailingZeros(long i) {
1700         // HD, Figure 5-14
1701         int x, y;
1702         if (i == 0) return 64;
1703         int n = 63;
1704         y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1705         y = x <<16; if (y != 0) { n = n -16; x = y; }
1706         y = x << 8; if (y != 0) { n = n - 8; x = y; }
1707         y = x << 4; if (y != 0) { n = n - 4; x = y; }
1708         y = x << 2; if (y != 0) { n = n - 2; x = y; }
1709         return n - ((x << 1) >>> 31);
1710     }
1711 
1712     /**
1713      * Returns the number of one-bits in the two's complement binary
1714      * representation of the specified {@code long} value.  This function is
1715      * sometimes referred to as the <i>population count</i>.
1716      *
1717      * @param i the value whose bits are to be counted
1718      * @return the number of one-bits in the two's complement binary
1719      *     representation of the specified {@code long} value.
1720      * @since 1.5
1721      */
1722      @HotSpotIntrinsicCandidate
1723      public static int bitCount(long i) {
1724         // HD, Figure 5-2
1725         i = i - ((i >>> 1) & 0x5555555555555555L);
1726         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1727         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1728         i = i + (i >>> 8);
1729         i = i + (i >>> 16);
1730         i = i + (i >>> 32);
1731         return (int)i & 0x7f;
1732      }
1733 
1734     /**
1735      * Returns the value obtained by rotating the two's complement binary
1736      * representation of the specified {@code long} value left by the
1737      * specified number of bits.  (Bits shifted out of the left hand, or
1738      * high-order, side reenter on the right, or low-order.)
1739      *
1740      * <p>Note that left rotation with a negative distance is equivalent to
1741      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1742      * distance)}.  Note also that rotation by any multiple of 64 is a
1743      * no-op, so all but the last six bits of the rotation distance can be
1744      * ignored, even if the distance is negative: {@code rotateLeft(val,
1745      * distance) == rotateLeft(val, distance & 0x3F)}.
1746      *
1747      * @param i the value whose bits are to be rotated left
1748      * @param distance the number of bit positions to rotate left
1749      * @return the value obtained by rotating the two's complement binary
1750      *     representation of the specified {@code long} value left by the
1751      *     specified number of bits.
1752      * @since 1.5
1753      */
1754     public static long rotateLeft(long i, int distance) {
1755         return (i << distance) | (i >>> -distance);
1756     }
1757 
1758     /**
1759      * Returns the value obtained by rotating the two's complement binary
1760      * representation of the specified {@code long} value right by the
1761      * specified number of bits.  (Bits shifted out of the right hand, or
1762      * low-order, side reenter on the left, or high-order.)
1763      *
1764      * <p>Note that right rotation with a negative distance is equivalent to
1765      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1766      * distance)}.  Note also that rotation by any multiple of 64 is a
1767      * no-op, so all but the last six bits of the rotation distance can be
1768      * ignored, even if the distance is negative: {@code rotateRight(val,
1769      * distance) == rotateRight(val, distance & 0x3F)}.
1770      *
1771      * @param i the value whose bits are to be rotated right
1772      * @param distance the number of bit positions to rotate right
1773      * @return the value obtained by rotating the two's complement binary
1774      *     representation of the specified {@code long} value right by the
1775      *     specified number of bits.
1776      * @since 1.5
1777      */
1778     public static long rotateRight(long i, int distance) {
1779         return (i >>> distance) | (i << -distance);
1780     }
1781 
1782     /**
1783      * Returns the value obtained by reversing the order of the bits in the
1784      * two's complement binary representation of the specified {@code long}
1785      * value.
1786      *
1787      * @param i the value to be reversed
1788      * @return the value obtained by reversing order of the bits in the
1789      *     specified {@code long} value.
1790      * @since 1.5
1791      */
1792     public static long reverse(long i) {
1793         // HD, Figure 7-1
1794         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1795         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1796         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1797         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1798         i = (i << 48) | ((i & 0xffff0000L) << 16) |
1799             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1800         return i;
1801     }
1802 
1803     /**
1804      * Returns the signum function of the specified {@code long} value.  (The
1805      * return value is -1 if the specified value is negative; 0 if the
1806      * specified value is zero; and 1 if the specified value is positive.)
1807      *
1808      * @param i the value whose signum is to be computed
1809      * @return the signum function of the specified {@code long} value.
1810      * @since 1.5
1811      */
1812     public static int signum(long i) {
1813         // HD, Section 2-7
1814         return (int) ((i >> 63) | (-i >>> 63));
1815     }
1816 
1817     /**
1818      * Returns the value obtained by reversing the order of the bytes in the
1819      * two's complement representation of the specified {@code long} value.
1820      *
1821      * @param i the value whose bytes are to be reversed
1822      * @return the value obtained by reversing the bytes in the specified
1823      *     {@code long} value.
1824      * @since 1.5
1825      */
1826     @HotSpotIntrinsicCandidate
1827     public static long reverseBytes(long i) {
1828         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1829         return (i << 48) | ((i & 0xffff0000L) << 16) |
1830             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1831     }
1832 
1833     /**
1834      * Adds two {@code long} values together as per the + operator.
1835      *
1836      * @param a the first operand
1837      * @param b the second operand
1838      * @return the sum of {@code a} and {@code b}
1839      * @see java.util.function.BinaryOperator
1840      * @since 1.8
1841      */
1842     public static long sum(long a, long b) {
1843         return a + b;
1844     }
1845 
1846     /**
1847      * Returns the greater of two {@code long} values
1848      * as if by calling {@link Math#max(long, long) Math.max}.
1849      *
1850      * @param a the first operand
1851      * @param b the second operand
1852      * @return the greater of {@code a} and {@code b}
1853      * @see java.util.function.BinaryOperator
1854      * @since 1.8
1855      */
1856     public static long max(long a, long b) {
1857         return Math.max(a, b);
1858     }
1859 
1860     /**
1861      * Returns the smaller of two {@code long} values
1862      * as if by calling {@link Math#min(long, long) Math.min}.
1863      *
1864      * @param a the first operand
1865      * @param b the second operand
1866      * @return the smaller of {@code a} and {@code b}
1867      * @see java.util.function.BinaryOperator
1868      * @since 1.8
1869      */
1870     public static long min(long a, long b) {
1871         return Math.min(a, b);
1872     }
1873 
1874     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1875     @Native private static final long serialVersionUID = 4290774380558885855L;
1876 }