/* * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/codeCache.hpp" #include "code/compiledIC.hpp" #include "code/nmethod.hpp" #include "code/relocInfo.hpp" #include "memory/resourceArea.hpp" #include "runtime/stubCodeGenerator.hpp" #include "utilities/copy.hpp" #include "oops/oop.inline.hpp" const RelocationHolder RelocationHolder::none; // its type is relocInfo::none // Implementation of relocInfo #ifdef ASSERT relocInfo::relocInfo(relocType t, int off, int f) { assert(t != data_prefix_tag, "cannot build a prefix this way"); assert((t & type_mask) == t, "wrong type"); assert((f & format_mask) == f, "wrong format"); assert(off >= 0 && off < offset_limit(), "offset out off bounds"); assert((off & (offset_unit-1)) == 0, "misaligned offset"); (*this) = relocInfo(t, RAW_BITS, off, f); } #endif void relocInfo::initialize(CodeSection* dest, Relocation* reloc) { relocInfo* data = this+1; // here's where the data might go dest->set_locs_end(data); // sync end: the next call may read dest.locs_end reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end relocInfo* data_limit = dest->locs_end(); if (data_limit > data) { relocInfo suffix = (*this); data_limit = this->finish_prefix((short*) data_limit); // Finish up with the suffix. (Hack note: pack_data_to might edit this.) *data_limit = suffix; dest->set_locs_end(data_limit+1); } } relocInfo* relocInfo::finish_prefix(short* prefix_limit) { assert(sizeof(relocInfo) == sizeof(short), "change this code"); short* p = (short*)(this+1); assert(prefix_limit >= p, "must be a valid span of data"); int plen = prefix_limit - p; if (plen == 0) { debug_only(_value = 0xFFFF); return this; // no data: remove self completely } if (plen == 1 && fits_into_immediate(p[0])) { (*this) = immediate_relocInfo(p[0]); // move data inside self return this+1; } // cannot compact, so just update the count and return the limit pointer (*this) = prefix_relocInfo(plen); // write new datalen assert(data() + datalen() == prefix_limit, "pointers must line up"); return (relocInfo*)prefix_limit; } void relocInfo::set_type(relocType t) { int old_offset = addr_offset(); int old_format = format(); (*this) = relocInfo(t, old_offset, old_format); assert(type()==(int)t, "sanity check"); assert(addr_offset()==old_offset, "sanity check"); assert(format()==old_format, "sanity check"); } nmethod* RelocIterator::code_as_nmethod() const { return _code->as_nmethod(); } void relocInfo::set_format(int f) { int old_offset = addr_offset(); assert((f & format_mask) == f, "wrong format"); _value = (_value & ~(format_mask << offset_width)) | (f << offset_width); assert(addr_offset()==old_offset, "sanity check"); } void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) { bool found = false; while (itr->next() && !found) { if (itr->addr() == pc) { assert(itr->type()==old_type, "wrong relocInfo type found"); itr->current()->set_type(new_type); found=true; } } assert(found, "no relocInfo found for pc"); } void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) { change_reloc_info_for_address(itr, pc, old_type, none); } // ---------------------------------------------------------------------------------------------------- // Implementation of RelocIterator void RelocIterator::initialize(CompiledMethod* nm, address begin, address limit) { initialize_misc(); if (nm == NULL && begin != NULL) { // allow nmethod to be deduced from beginning address CodeBlob* cb = CodeCache::find_blob(begin); nm = cb->as_compiled_method_or_null(); } assert(nm != NULL, "must be able to deduce nmethod from other arguments"); _code = nm; _current = nm->relocation_begin() - 1; _end = nm->relocation_end(); _addr = nm->content_begin(); // Initialize code sections. _section_start[CodeBuffer::SECT_CONSTS] = nm->consts_begin(); _section_start[CodeBuffer::SECT_INSTS ] = nm->insts_begin() ; _section_start[CodeBuffer::SECT_STUBS ] = nm->stub_begin() ; _section_end [CodeBuffer::SECT_CONSTS] = nm->consts_end() ; _section_end [CodeBuffer::SECT_INSTS ] = nm->insts_end() ; _section_end [CodeBuffer::SECT_STUBS ] = nm->stub_end() ; assert(!has_current(), "just checking"); assert(begin == NULL || begin >= nm->code_begin(), "in bounds"); assert(limit == NULL || limit <= nm->code_end(), "in bounds"); set_limits(begin, limit); } RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) { initialize_misc(); _current = cs->locs_start()-1; _end = cs->locs_end(); _addr = cs->start(); _code = NULL; // Not cb->blob(); CodeBuffer* cb = cs->outer(); assert((int) SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal"); for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) { CodeSection* cs = cb->code_section(n); _section_start[n] = cs->start(); _section_end [n] = cs->end(); } assert(!has_current(), "just checking"); assert(begin == NULL || begin >= cs->start(), "in bounds"); assert(limit == NULL || limit <= cs->end(), "in bounds"); set_limits(begin, limit); } enum { indexCardSize = 128 }; struct RelocIndexEntry { jint addr_offset; // offset from header_end of an addr() jint reloc_offset; // offset from header_end of a relocInfo (prefix) }; bool RelocIterator::addr_in_const() const { const int n = CodeBuffer::SECT_CONSTS; return section_start(n) <= addr() && addr() < section_end(n); } void RelocIterator::set_limits(address begin, address limit) { _limit = limit; // the limit affects this next stuff: if (begin != NULL) { relocInfo* backup; address backup_addr; while (true) { backup = _current; backup_addr = _addr; if (!next() || addr() >= begin) break; } // At this point, either we are at the first matching record, // or else there is no such record, and !has_current(). // In either case, revert to the immediatly preceding state. _current = backup; _addr = backup_addr; set_has_current(false); } } void RelocIterator::set_limit(address limit) { address code_end = (address)code() + code()->size(); assert(limit == NULL || limit <= code_end, "in bounds"); _limit = limit; } // All the strange bit-encodings are in here. // The idea is to encode relocation data which are small integers // very efficiently (a single extra halfword). Larger chunks of // relocation data need a halfword header to hold their size. void RelocIterator::advance_over_prefix() { if (_current->is_datalen()) { _data = (short*) _current->data(); _datalen = _current->datalen(); _current += _datalen + 1; // skip the embedded data & header } else { _databuf = _current->immediate(); _data = &_databuf; _datalen = 1; _current++; // skip the header } // The client will see the following relocInfo, whatever that is. // It is the reloc to which the preceding data applies. } void RelocIterator::initialize_misc() { set_has_current(false); for (int i = (int) CodeBuffer::SECT_FIRST; i < (int) CodeBuffer::SECT_LIMIT; i++) { _section_start[i] = NULL; // these will be lazily computed, if needed _section_end [i] = NULL; } } Relocation* RelocIterator::reloc() { // (take the "switch" out-of-line) relocInfo::relocType t = type(); if (false) {} #define EACH_TYPE(name) \ else if (t == relocInfo::name##_type) { \ return name##_reloc(); \ } APPLY_TO_RELOCATIONS(EACH_TYPE); #undef EACH_TYPE assert(t == relocInfo::none, "must be padding"); return new(_rh) Relocation(); } //////// Methods for flyweight Relocation types RelocationHolder RelocationHolder::plus(int offset) const { if (offset != 0) { switch (type()) { case relocInfo::none: break; case relocInfo::oop_type: { oop_Relocation* r = (oop_Relocation*)reloc(); return oop_Relocation::spec(r->oop_index(), r->offset() + offset); } case relocInfo::metadata_type: { metadata_Relocation* r = (metadata_Relocation*)reloc(); return metadata_Relocation::spec(r->metadata_index(), r->offset() + offset); } default: ShouldNotReachHere(); } } return (*this); } void Relocation::guarantee_size() { guarantee(false, "Make _relocbuf bigger!"); } // some relocations can compute their own values address Relocation::value() { ShouldNotReachHere(); return NULL; } void Relocation::set_value(address x) { ShouldNotReachHere(); } void Relocation::const_set_data_value(address x) { #ifdef _LP64 if (format() == relocInfo::narrow_oop_in_const) { *(narrowOop*)addr() = oopDesc::encode_heap_oop((oop) x); } else { #endif *(address*)addr() = x; #ifdef _LP64 } #endif } void Relocation::const_verify_data_value(address x) { #ifdef _LP64 if (format() == relocInfo::narrow_oop_in_const) { guarantee(*(narrowOop*)addr() == oopDesc::encode_heap_oop((oop) x), "must agree"); } else { #endif guarantee(*(address*)addr() == x, "must agree"); #ifdef _LP64 } #endif } RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) { if (rtype == relocInfo::none) return RelocationHolder::none; relocInfo ri = relocInfo(rtype, 0); RelocIterator itr; itr.set_current(ri); itr.reloc(); return itr._rh; } address Relocation::old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest) { int sect = dest->section_index_of(newa); guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address"); address ostart = src->code_section(sect)->start(); address nstart = dest->code_section(sect)->start(); return ostart + (newa - nstart); } address Relocation::new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest) { debug_only(const CodeBuffer* src0 = src); int sect = CodeBuffer::SECT_NONE; // Look for olda in the source buffer, and all previous incarnations // if the source buffer has been expanded. for (; src != NULL; src = src->before_expand()) { sect = src->section_index_of(olda); if (sect != CodeBuffer::SECT_NONE) break; } guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address"); address ostart = src->code_section(sect)->start(); address nstart = dest->code_section(sect)->start(); return nstart + (olda - ostart); } void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) { address addr0 = addr; if (addr0 == NULL || dest->allocates2(addr0)) return; CodeBuffer* cb = dest->outer(); addr = new_addr_for(addr0, cb, cb); assert(allow_other_sections || dest->contains2(addr), "addr must be in required section"); } void CallRelocation::set_destination(address x) { pd_set_call_destination(x); } void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { // Usually a self-relative reference to an external routine. // On some platforms, the reference is absolute (not self-relative). // The enhanced use of pd_call_destination sorts this all out. address orig_addr = old_addr_for(addr(), src, dest); address callee = pd_call_destination(orig_addr); // Reassert the callee address, this time in the new copy of the code. pd_set_call_destination(callee); } //// pack/unpack methods void oop_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); p = pack_2_ints_to(p, _oop_index, _offset); dest->set_locs_end((relocInfo*) p); } void oop_Relocation::unpack_data() { unpack_2_ints(_oop_index, _offset); } void metadata_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); p = pack_2_ints_to(p, _metadata_index, _offset); dest->set_locs_end((relocInfo*) p); } void metadata_Relocation::unpack_data() { unpack_2_ints(_metadata_index, _offset); } void virtual_call_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); address point = dest->locs_point(); normalize_address(_cached_value, dest); jint x0 = scaled_offset_null_special(_cached_value, point); p = pack_2_ints_to(p, x0, _method_index); dest->set_locs_end((relocInfo*) p); } void virtual_call_Relocation::unpack_data() { jint x0 = 0; unpack_2_ints(x0, _method_index); address point = addr(); _cached_value = x0==0? NULL: address_from_scaled_offset(x0, point); } void runtime_call_w_cp_Relocation::pack_data_to(CodeSection * dest) { short* p = pack_1_int_to((short *)dest->locs_end(), (jint)(_offset >> 2)); dest->set_locs_end((relocInfo*) p); } void runtime_call_w_cp_Relocation::unpack_data() { _offset = unpack_1_int() << 2; } void static_stub_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); CodeSection* insts = dest->outer()->insts(); normalize_address(_static_call, insts); jint is_aot = _is_aot ? 1 : 0; p = pack_2_ints_to(p, scaled_offset(_static_call, insts->start()), is_aot); dest->set_locs_end((relocInfo*) p); } void static_stub_Relocation::unpack_data() { address base = binding()->section_start(CodeBuffer::SECT_INSTS); jint offset; jint is_aot; unpack_2_ints(offset, is_aot); _static_call = address_from_scaled_offset(offset, base); _is_aot = (is_aot == 1); } void trampoline_stub_Relocation::pack_data_to(CodeSection* dest ) { short* p = (short*) dest->locs_end(); CodeSection* insts = dest->outer()->insts(); normalize_address(_owner, insts); p = pack_1_int_to(p, scaled_offset(_owner, insts->start())); dest->set_locs_end((relocInfo*) p); } void trampoline_stub_Relocation::unpack_data() { address base = binding()->section_start(CodeBuffer::SECT_INSTS); _owner = address_from_scaled_offset(unpack_1_int(), base); } void external_word_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); #ifndef _LP64 p = pack_1_int_to(p, (int32_t) (intptr_t)_target); #else jlong t = (jlong) _target; int32_t lo = low(t); int32_t hi = high(t); p = pack_2_ints_to(p, lo, hi); #endif /* _LP64 */ dest->set_locs_end((relocInfo*) p); } void external_word_Relocation::unpack_data() { #ifndef _LP64 _target = (address) (intptr_t)unpack_1_int(); #else int32_t lo, hi; unpack_2_ints(lo, hi); jlong t = jlong_from(hi, lo);; _target = (address) t; #endif /* _LP64 */ } void internal_word_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); normalize_address(_target, dest, true); // Check whether my target address is valid within this section. // If not, strengthen the relocation type to point to another section. int sindex = _section; if (sindex == CodeBuffer::SECT_NONE && _target != NULL && (!dest->allocates(_target) || _target == dest->locs_point())) { sindex = dest->outer()->section_index_of(_target); guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere"); relocInfo* base = dest->locs_end() - 1; assert(base->type() == this->type(), "sanity"); // Change the written type, to be section_word_type instead. base->set_type(relocInfo::section_word_type); } // Note: An internal_word relocation cannot refer to its own instruction, // because we reserve "0" to mean that the pointer itself is embedded // in the code stream. We use a section_word relocation for such cases. if (sindex == CodeBuffer::SECT_NONE) { assert(type() == relocInfo::internal_word_type, "must be base class"); guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section"); jint x0 = scaled_offset_null_special(_target, dest->locs_point()); assert(!(x0 == 0 && _target != NULL), "correct encoding of null target"); p = pack_1_int_to(p, x0); } else { assert(_target != NULL, "sanity"); CodeSection* sect = dest->outer()->code_section(sindex); guarantee(sect->allocates2(_target), "must be in correct section"); address base = sect->start(); jint offset = scaled_offset(_target, base); assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity"); assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++"); p = pack_1_int_to(p, (offset << section_width) | sindex); } dest->set_locs_end((relocInfo*) p); } void internal_word_Relocation::unpack_data() { jint x0 = unpack_1_int(); _target = x0==0? NULL: address_from_scaled_offset(x0, addr()); _section = CodeBuffer::SECT_NONE; } void section_word_Relocation::unpack_data() { jint x = unpack_1_int(); jint offset = (x >> section_width); int sindex = (x & ((1<section_start(sindex); _section = sindex; _target = address_from_scaled_offset(offset, base); } //// miscellaneous methods oop* oop_Relocation::oop_addr() { int n = _oop_index; if (n == 0) { // oop is stored in the code stream return (oop*) pd_address_in_code(); } else { // oop is stored in table at nmethod::oops_begin return code()->oop_addr_at(n); } } oop oop_Relocation::oop_value() { oop v = *oop_addr(); // clean inline caches store a special pseudo-null if (v == (oop)Universe::non_oop_word()) v = NULL; return v; } void oop_Relocation::fix_oop_relocation() { if (!oop_is_immediate()) { // get the oop from the pool, and re-insert it into the instruction: set_value(value()); } } void oop_Relocation::verify_oop_relocation() { if (!oop_is_immediate()) { // get the oop from the pool, and re-insert it into the instruction: verify_value(value()); } } // meta data versions Metadata** metadata_Relocation::metadata_addr() { int n = _metadata_index; if (n == 0) { // metadata is stored in the code stream return (Metadata**) pd_address_in_code(); } else { // metadata is stored in table at nmethod::metadatas_begin return code()->metadata_addr_at(n); } } Metadata* metadata_Relocation::metadata_value() { Metadata* v = *metadata_addr(); // clean inline caches store a special pseudo-null if (v == (Metadata*)Universe::non_oop_word()) v = NULL; return v; } void metadata_Relocation::fix_metadata_relocation() { if (!metadata_is_immediate()) { // get the metadata from the pool, and re-insert it into the instruction: pd_fix_value(value()); } } void metadata_Relocation::verify_metadata_relocation() { if (!metadata_is_immediate()) { // get the metadata from the pool, and re-insert it into the instruction: verify_value(value()); } } address virtual_call_Relocation::cached_value() { assert(_cached_value != NULL && _cached_value < addr(), "must precede ic_call"); return _cached_value; } Method* virtual_call_Relocation::method_value() { CompiledMethod* cm = code(); if (cm == NULL) return (Method*)NULL; Metadata* m = cm->metadata_at(_method_index); assert(m != NULL || _method_index == 0, "should be non-null for non-zero index"); assert(m == NULL || m->is_method(), "not a method"); return (Method*)m; } void virtual_call_Relocation::clear_inline_cache() { // No stubs for ICs // Clean IC ResourceMark rm; CompiledIC* icache = CompiledIC_at(this); icache->set_to_clean(); } void opt_virtual_call_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); p = pack_1_int_to(p, _method_index); dest->set_locs_end((relocInfo*) p); } void opt_virtual_call_Relocation::unpack_data() { _method_index = unpack_1_int(); } Method* opt_virtual_call_Relocation::method_value() { CompiledMethod* cm = code(); if (cm == NULL) return (Method*)NULL; Metadata* m = cm->metadata_at(_method_index); assert(m != NULL || _method_index == 0, "should be non-null for non-zero index"); assert(m == NULL || m->is_method(), "not a method"); return (Method*)m; } void opt_virtual_call_Relocation::clear_inline_cache() { // No stubs for ICs // Clean IC ResourceMark rm; CompiledIC* icache = CompiledIC_at(this); icache->set_to_clean(); } address opt_virtual_call_Relocation::static_stub(bool is_aot) { // search for the static stub who points back to this static call address static_call_addr = addr(); RelocIterator iter(code()); while (iter.next()) { if (iter.type() == relocInfo::static_stub_type) { static_stub_Relocation* stub_reloc = iter.static_stub_reloc(); if (stub_reloc->static_call() == static_call_addr && stub_reloc->is_aot() == is_aot) { return iter.addr(); } } } return NULL; } Method* static_call_Relocation::method_value() { CompiledMethod* cm = code(); if (cm == NULL) return (Method*)NULL; Metadata* m = cm->metadata_at(_method_index); assert(m != NULL || _method_index == 0, "should be non-null for non-zero index"); assert(m == NULL || m->is_method(), "not a method"); return (Method*)m; } void static_call_Relocation::pack_data_to(CodeSection* dest) { short* p = (short*) dest->locs_end(); p = pack_1_int_to(p, _method_index); dest->set_locs_end((relocInfo*) p); } void static_call_Relocation::unpack_data() { _method_index = unpack_1_int(); } void static_call_Relocation::clear_inline_cache() { // Safe call site info CompiledStaticCall* handler = this->code()->compiledStaticCall_at(this); handler->set_to_clean(); } address static_call_Relocation::static_stub(bool is_aot) { // search for the static stub who points back to this static call address static_call_addr = addr(); RelocIterator iter(code()); while (iter.next()) { if (iter.type() == relocInfo::static_stub_type) { static_stub_Relocation* stub_reloc = iter.static_stub_reloc(); if (stub_reloc->static_call() == static_call_addr && stub_reloc->is_aot() == is_aot) { return iter.addr(); } } } return NULL; } // Finds the trampoline address for a call. If no trampoline stub is // found NULL is returned which can be handled by the caller. address trampoline_stub_Relocation::get_trampoline_for(address call, nmethod* code) { // There are no relocations available when the code gets relocated // because of CodeBuffer expansion. if (code->relocation_size() == 0) return NULL; RelocIterator iter(code, call); while (iter.next()) { if (iter.type() == relocInfo::trampoline_stub_type) { if (iter.trampoline_stub_reloc()->owner() == call) { return iter.addr(); } } } return NULL; } void static_stub_Relocation::clear_inline_cache() { // Call stub is only used when calling the interpreted code. // It does not really need to be cleared, except that we want to clean out the methodoop. CompiledDirectStaticCall::set_stub_to_clean(this); } void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { address target = _target; if (target == NULL) { // An absolute embedded reference to an external location, // which means there is nothing to fix here. return; } // Probably this reference is absolute, not relative, so the // following is probably a no-op. assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity"); set_value(target); } address external_word_Relocation::target() { address target = _target; if (target == NULL) { target = pd_get_address_from_code(); } return target; } void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { address target = _target; if (target == NULL) { target = new_addr_for(this->target(), src, dest); } set_value(target); } address internal_word_Relocation::target() { address target = _target; if (target == NULL) { if (addr_in_const()) { target = *(address*)addr(); } else { target = pd_get_address_from_code(); } } return target; } //--------------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT static const char* reloc_type_string(relocInfo::relocType t) { switch (t) { #define EACH_CASE(name) \ case relocInfo::name##_type: \ return #name; APPLY_TO_RELOCATIONS(EACH_CASE); #undef EACH_CASE case relocInfo::none: return "none"; case relocInfo::data_prefix_tag: return "prefix"; default: return "UNKNOWN RELOC TYPE"; } } void RelocIterator::print_current() { if (!has_current()) { tty->print_cr("(no relocs)"); return; } tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT " offset=%d", p2i(_current), type(), reloc_type_string((relocInfo::relocType) type()), p2i(_addr), _current->addr_offset()); if (current()->format() != 0) tty->print(" format=%d", current()->format()); if (datalen() == 1) { tty->print(" data=%d", data()[0]); } else if (datalen() > 0) { tty->print(" data={"); for (int i = 0; i < datalen(); i++) { tty->print("%04x", data()[i] & 0xFFFF); } tty->print("}"); } tty->print("]"); switch (type()) { case relocInfo::oop_type: { oop_Relocation* r = oop_reloc(); oop* oop_addr = NULL; oop raw_oop = NULL; oop oop_value = NULL; if (code() != NULL || r->oop_is_immediate()) { oop_addr = r->oop_addr(); raw_oop = *oop_addr; oop_value = r->oop_value(); } tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]", p2i(oop_addr), p2i(raw_oop), r->offset()); // Do not print the oop by default--we want this routine to // work even during GC or other inconvenient times. if (WizardMode && oop_value != NULL) { tty->print("oop_value=" INTPTR_FORMAT ": ", p2i(oop_value)); if (oop_value->is_oop()) { oop_value->print_value_on(tty); } } break; } case relocInfo::metadata_type: { metadata_Relocation* r = metadata_reloc(); Metadata** metadata_addr = NULL; Metadata* raw_metadata = NULL; Metadata* metadata_value = NULL; if (code() != NULL || r->metadata_is_immediate()) { metadata_addr = r->metadata_addr(); raw_metadata = *metadata_addr; metadata_value = r->metadata_value(); } tty->print(" | [metadata_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]", p2i(metadata_addr), p2i(raw_metadata), r->offset()); if (metadata_value != NULL) { tty->print("metadata_value=" INTPTR_FORMAT ": ", p2i(metadata_value)); metadata_value->print_value_on(tty); } break; } case relocInfo::external_word_type: case relocInfo::internal_word_type: case relocInfo::section_word_type: { DataRelocation* r = (DataRelocation*) reloc(); tty->print(" | [target=" INTPTR_FORMAT "]", p2i(r->value())); //value==target break; } case relocInfo::static_call_type: { static_call_Relocation* r = (static_call_Relocation*) reloc(); tty->print(" | [destination=" INTPTR_FORMAT " metadata=" INTPTR_FORMAT "]", p2i(r->destination()), p2i(r->method_value())); break; } case relocInfo::runtime_call_type: case relocInfo::runtime_call_w_cp_type: { CallRelocation* r = (CallRelocation*) reloc(); tty->print(" | [destination=" INTPTR_FORMAT "]", p2i(r->destination())); break; } case relocInfo::virtual_call_type: { virtual_call_Relocation* r = (virtual_call_Relocation*) reloc(); tty->print(" | [destination=" INTPTR_FORMAT " cached_value=" INTPTR_FORMAT " metadata=" INTPTR_FORMAT "]", p2i(r->destination()), p2i(r->cached_value()), p2i(r->method_value())); break; } case relocInfo::static_stub_type: { static_stub_Relocation* r = (static_stub_Relocation*) reloc(); tty->print(" | [static_call=" INTPTR_FORMAT "]", p2i(r->static_call())); break; } case relocInfo::trampoline_stub_type: { trampoline_stub_Relocation* r = (trampoline_stub_Relocation*) reloc(); tty->print(" | [trampoline owner=" INTPTR_FORMAT "]", p2i(r->owner())); break; } case relocInfo::opt_virtual_call_type: { opt_virtual_call_Relocation* r = (opt_virtual_call_Relocation*) reloc(); tty->print(" | [destination=" INTPTR_FORMAT " metadata=" INTPTR_FORMAT "]", p2i(r->destination()), p2i(r->method_value())); break; } } tty->cr(); } void RelocIterator::print() { RelocIterator save_this = (*this); relocInfo* scan = _current; if (!has_current()) scan += 1; // nothing to scan here! bool skip_next = has_current(); bool got_next; while (true) { got_next = (skip_next || next()); skip_next = false; tty->print(" @" INTPTR_FORMAT ": ", p2i(scan)); relocInfo* newscan = _current+1; if (!has_current()) newscan -= 1; // nothing to scan here! while (scan < newscan) { tty->print("%04x", *(short*)scan & 0xFFFF); scan++; } tty->cr(); if (!got_next) break; print_current(); } (*this) = save_this; } // For the debugger: extern "C" void print_blob_locs(nmethod* nm) { nm->print(); RelocIterator iter(nm); iter.print(); } extern "C" void print_buf_locs(CodeBuffer* cb) { FlagSetting fs(PrintRelocations, true); cb->print(); } #endif // !PRODUCT