1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "gc/shared/gcLocker.hpp"
  29 #include "oops/methodData.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/icache.hpp"
  32 #include "utilities/copy.hpp"
  33 #include "utilities/xmlstream.hpp"
  34 
  35 // The structure of a CodeSection:
  36 //
  37 //    _start ->           +----------------+
  38 //                        | machine code...|
  39 //    _end ->             |----------------|
  40 //                        |                |
  41 //                        |    (empty)     |
  42 //                        |                |
  43 //                        |                |
  44 //                        +----------------+
  45 //    _limit ->           |                |
  46 //
  47 //    _locs_start ->      +----------------+
  48 //                        |reloc records...|
  49 //                        |----------------|
  50 //    _locs_end ->        |                |
  51 //                        |                |
  52 //                        |    (empty)     |
  53 //                        |                |
  54 //                        |                |
  55 //                        +----------------+
  56 //    _locs_limit ->      |                |
  57 // The _end (resp. _limit) pointer refers to the first
  58 // unused (resp. unallocated) byte.
  59 
  60 // The structure of the CodeBuffer while code is being accumulated:
  61 //
  62 //    _total_start ->    \
  63 //    _insts._start ->              +----------------+
  64 //                                  |                |
  65 //                                  |     Code       |
  66 //                                  |                |
  67 //    _stubs._start ->              |----------------|
  68 //                                  |                |
  69 //                                  |    Stubs       | (also handlers for deopt/exception)
  70 //                                  |                |
  71 //    _consts._start ->             |----------------|
  72 //                                  |                |
  73 //                                  |   Constants    |
  74 //                                  |                |
  75 //                                  +----------------+
  76 //    + _total_size ->              |                |
  77 //
  78 // When the code and relocations are copied to the code cache,
  79 // the empty parts of each section are removed, and everything
  80 // is copied into contiguous locations.
  81 
  82 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  83 
  84 // External buffer, in a predefined CodeBlob.
  85 // Important: The code_start must be taken exactly, and not realigned.
  86 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  87   initialize_misc("static buffer");
  88   initialize(blob->content_begin(), blob->content_size());
  89   verify_section_allocation();
  90 }
  91 
  92 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  93   // Compute maximal alignment.
  94   int align = _insts.alignment();
  95   // Always allow for empty slop around each section.
  96   int slop = (int) CodeSection::end_slop();
  97 
  98   assert(blob() == NULL, "only once");
  99   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
 100   if (blob() == NULL) {
 101     // The assembler constructor will throw a fatal on an empty CodeBuffer.
 102     return;  // caller must test this
 103   }
 104 
 105   // Set up various pointers into the blob.
 106   initialize(_total_start, _total_size);
 107 
 108   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 109 
 110   pd_initialize();
 111 
 112   if (locs_size != 0) {
 113     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 114   }
 115 
 116   verify_section_allocation();
 117 }
 118 
 119 
 120 CodeBuffer::~CodeBuffer() {
 121   verify_section_allocation();
 122 
 123   // If we allocate our code buffer from the CodeCache
 124   // via a BufferBlob, and it's not permanent, then
 125   // free the BufferBlob.
 126   // The rest of the memory will be freed when the ResourceObj
 127   // is released.
 128   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 129     // Previous incarnations of this buffer are held live, so that internal
 130     // addresses constructed before expansions will not be confused.
 131     cb->free_blob();
 132   }
 133 
 134   // free any overflow storage
 135   delete _overflow_arena;
 136 
 137   // Claim is that stack allocation ensures resources are cleaned up.
 138   // This is resource clean up, let's hope that all were properly copied out.
 139   free_strings();
 140 
 141 #ifdef ASSERT
 142   // Save allocation type to execute assert in ~ResourceObj()
 143   // which is called after this destructor.
 144   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
 145   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 146   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 147   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 148 #endif
 149 }
 150 
 151 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 152   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 153   DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
 154   _oop_recorder = r;
 155 }
 156 
 157 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 158   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 159   csize_t slop = CodeSection::end_slop();  // margin between sections
 160   int align = cs->alignment();
 161   assert(is_power_of_2(align), "sanity");
 162   address start  = _insts._start;
 163   address limit  = _insts._limit;
 164   address middle = limit - size;
 165   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 166   guarantee(middle - slop > start, "need enough space to divide up");
 167   _insts._limit = middle - slop;  // subtract desired space, plus slop
 168   cs->initialize(middle, limit - middle);
 169   assert(cs->start() == middle, "sanity");
 170   assert(cs->limit() == limit,  "sanity");
 171   // give it some relocations to start with, if the main section has them
 172   if (_insts.has_locs())  cs->initialize_locs(1);
 173 }
 174 
 175 void CodeBuffer::freeze_section(CodeSection* cs) {
 176   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 177   csize_t frozen_size = cs->size();
 178   if (next_cs != NULL) {
 179     frozen_size = next_cs->align_at_start(frozen_size);
 180   }
 181   address old_limit = cs->limit();
 182   address new_limit = cs->start() + frozen_size;
 183   relocInfo* old_locs_limit = cs->locs_limit();
 184   relocInfo* new_locs_limit = cs->locs_end();
 185   // Patch the limits.
 186   cs->_limit = new_limit;
 187   cs->_locs_limit = new_locs_limit;
 188   cs->_frozen = true;
 189   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
 190     // Give remaining buffer space to the following section.
 191     next_cs->initialize(new_limit, old_limit - new_limit);
 192     next_cs->initialize_shared_locs(new_locs_limit,
 193                                     old_locs_limit - new_locs_limit);
 194   }
 195 }
 196 
 197 void CodeBuffer::set_blob(BufferBlob* blob) {
 198   _blob = blob;
 199   if (blob != NULL) {
 200     address start = blob->content_begin();
 201     address end   = blob->content_end();
 202     // Round up the starting address.
 203     int align = _insts.alignment();
 204     start += (-(intptr_t)start) & (align-1);
 205     _total_start = start;
 206     _total_size  = end - start;
 207   } else {
 208 #ifdef ASSERT
 209     // Clean out dangling pointers.
 210     _total_start    = badAddress;
 211     _consts._start  = _consts._end  = badAddress;
 212     _insts._start   = _insts._end   = badAddress;
 213     _stubs._start   = _stubs._end   = badAddress;
 214 #endif //ASSERT
 215   }
 216 }
 217 
 218 void CodeBuffer::free_blob() {
 219   if (_blob != NULL) {
 220     BufferBlob::free(_blob);
 221     set_blob(NULL);
 222   }
 223 }
 224 
 225 const char* CodeBuffer::code_section_name(int n) {
 226 #ifdef PRODUCT
 227   return NULL;
 228 #else //PRODUCT
 229   switch (n) {
 230   case SECT_CONSTS:            return "consts";
 231   case SECT_INSTS:             return "insts";
 232   case SECT_STUBS:             return "stubs";
 233   default:                     return NULL;
 234   }
 235 #endif //PRODUCT
 236 }
 237 
 238 int CodeBuffer::section_index_of(address addr) const {
 239   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 240     const CodeSection* cs = code_section(n);
 241     if (cs->allocates(addr))  return n;
 242   }
 243   return SECT_NONE;
 244 }
 245 
 246 int CodeBuffer::locator(address addr) const {
 247   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 248     const CodeSection* cs = code_section(n);
 249     if (cs->allocates(addr)) {
 250       return locator(addr - cs->start(), n);
 251     }
 252   }
 253   return -1;
 254 }
 255 
 256 address CodeBuffer::locator_address(int locator) const {
 257   if (locator < 0)  return NULL;
 258   address start = code_section(locator_sect(locator))->start();
 259   return start + locator_pos(locator);
 260 }
 261 
 262 bool CodeBuffer::is_backward_branch(Label& L) {
 263   return L.is_bound() && insts_end() <= locator_address(L.loc());
 264 }
 265 
 266 address CodeBuffer::decode_begin() {
 267   address begin = _insts.start();
 268   if (_decode_begin != NULL && _decode_begin > begin)
 269     begin = _decode_begin;
 270   return begin;
 271 }
 272 
 273 
 274 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 275   if (_overflow_arena == NULL) {
 276     _overflow_arena = new (mtCode) Arena(mtCode);
 277   }
 278   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 279 }
 280 
 281 
 282 // Helper function for managing labels and their target addresses.
 283 // Returns a sensible address, and if it is not the label's final
 284 // address, notes the dependency (at 'branch_pc') on the label.
 285 address CodeSection::target(Label& L, address branch_pc) {
 286   if (L.is_bound()) {
 287     int loc = L.loc();
 288     if (index() == CodeBuffer::locator_sect(loc)) {
 289       return start() + CodeBuffer::locator_pos(loc);
 290     } else {
 291       return outer()->locator_address(loc);
 292     }
 293   } else {
 294     assert(allocates2(branch_pc), "sanity");
 295     address base = start();
 296     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 297     L.add_patch_at(outer(), patch_loc);
 298 
 299     // Need to return a pc, doesn't matter what it is since it will be
 300     // replaced during resolution later.
 301     // Don't return NULL or badAddress, since branches shouldn't overflow.
 302     // Don't return base either because that could overflow displacements
 303     // for shorter branches.  It will get checked when bound.
 304     return branch_pc;
 305   }
 306 }
 307 
 308 void CodeSection::relocate(address at, relocInfo::relocType rtype, int format, jint method_index) {
 309   RelocationHolder rh;
 310   switch (rtype) {
 311     case relocInfo::none: return;
 312     case relocInfo::opt_virtual_call_type: {
 313       rh = opt_virtual_call_Relocation::spec(method_index);
 314       break;
 315     }
 316     case relocInfo::static_call_type: {
 317       rh = static_call_Relocation::spec(method_index);
 318       break;
 319     }
 320     case relocInfo::virtual_call_type: {
 321       assert(method_index == 0, "resolved method overriding is not supported");
 322       rh = Relocation::spec_simple(rtype);
 323       break;
 324     }
 325     default: {
 326       rh = Relocation::spec_simple(rtype);
 327       break;
 328     }
 329   }
 330   relocate(at, rh, format);
 331 }
 332 
 333 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 334   // Do not relocate in scratch buffers.
 335   if (scratch_emit()) { return; }
 336   Relocation* reloc = spec.reloc();
 337   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 338   if (rtype == relocInfo::none)  return;
 339 
 340   // The assertion below has been adjusted, to also work for
 341   // relocation for fixup.  Sometimes we want to put relocation
 342   // information for the next instruction, since it will be patched
 343   // with a call.
 344   assert(start() <= at && at <= end()+1,
 345          "cannot relocate data outside code boundaries");
 346 
 347   if (!has_locs()) {
 348     // no space for relocation information provided => code cannot be
 349     // relocated.  Make sure that relocate is only called with rtypes
 350     // that can be ignored for this kind of code.
 351     assert(rtype == relocInfo::none              ||
 352            rtype == relocInfo::runtime_call_type ||
 353            rtype == relocInfo::internal_word_type||
 354            rtype == relocInfo::section_word_type ||
 355            rtype == relocInfo::external_word_type,
 356            "code needs relocation information");
 357     // leave behind an indication that we attempted a relocation
 358     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 359     return;
 360   }
 361 
 362   // Advance the point, noting the offset we'll have to record.
 363   csize_t offset = at - locs_point();
 364   set_locs_point(at);
 365 
 366   // Test for a couple of overflow conditions; maybe expand the buffer.
 367   relocInfo* end = locs_end();
 368   relocInfo* req = end + relocInfo::length_limit;
 369   // Check for (potential) overflow
 370   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 371     req += (uint)offset / (uint)relocInfo::offset_limit();
 372     if (req >= locs_limit()) {
 373       // Allocate or reallocate.
 374       expand_locs(locs_count() + (req - end));
 375       // reload pointer
 376       end = locs_end();
 377     }
 378   }
 379 
 380   // If the offset is giant, emit filler relocs, of type 'none', but
 381   // each carrying the largest possible offset, to advance the locs_point.
 382   while (offset >= relocInfo::offset_limit()) {
 383     assert(end < locs_limit(), "adjust previous paragraph of code");
 384     *end++ = filler_relocInfo();
 385     offset -= filler_relocInfo().addr_offset();
 386   }
 387 
 388   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 389   (*end) = relocInfo(rtype, offset, format);
 390 
 391   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 392   end->initialize(this, reloc);
 393 }
 394 
 395 void CodeSection::initialize_locs(int locs_capacity) {
 396   assert(_locs_start == NULL, "only one locs init step, please");
 397   // Apply a priori lower limits to relocation size:
 398   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 399   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 400   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 401   _locs_start    = locs_start;
 402   _locs_end      = locs_start;
 403   _locs_limit    = locs_start + locs_capacity;
 404   _locs_own      = true;
 405 }
 406 
 407 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 408   assert(_locs_start == NULL, "do this before locs are allocated");
 409   // Internal invariant:  locs buf must be fully aligned.
 410   // See copy_relocations_to() below.
 411   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 412     ++buf; --length;
 413   }
 414   if (length > 0) {
 415     _locs_start = buf;
 416     _locs_end   = buf;
 417     _locs_limit = buf + length;
 418     _locs_own   = false;
 419   }
 420 }
 421 
 422 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 423   int lcount = source_cs->locs_count();
 424   if (lcount != 0) {
 425     initialize_shared_locs(source_cs->locs_start(), lcount);
 426     _locs_end = _locs_limit = _locs_start + lcount;
 427     assert(is_allocated(), "must have copied code already");
 428     set_locs_point(start() + source_cs->locs_point_off());
 429   }
 430   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 431 }
 432 
 433 void CodeSection::expand_locs(int new_capacity) {
 434   if (_locs_start == NULL) {
 435     initialize_locs(new_capacity);
 436     return;
 437   } else {
 438     int old_count    = locs_count();
 439     int old_capacity = locs_capacity();
 440     if (new_capacity < old_capacity * 2)
 441       new_capacity = old_capacity * 2;
 442     relocInfo* locs_start;
 443     if (_locs_own) {
 444       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 445     } else {
 446       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 447       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 448       _locs_own = true;
 449     }
 450     _locs_start    = locs_start;
 451     _locs_end      = locs_start + old_count;
 452     _locs_limit    = locs_start + new_capacity;
 453   }
 454 }
 455 
 456 
 457 /// Support for emitting the code to its final location.
 458 /// The pattern is the same for all functions.
 459 /// We iterate over all the sections, padding each to alignment.
 460 
 461 csize_t CodeBuffer::total_content_size() const {
 462   csize_t size_so_far = 0;
 463   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 464     const CodeSection* cs = code_section(n);
 465     if (cs->is_empty())  continue;  // skip trivial section
 466     size_so_far = cs->align_at_start(size_so_far);
 467     size_so_far += cs->size();
 468   }
 469   return size_so_far;
 470 }
 471 
 472 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 473   address buf = dest->_total_start;
 474   csize_t buf_offset = 0;
 475   assert(dest->_total_size >= total_content_size(), "must be big enough");
 476 
 477   {
 478     // not sure why this is here, but why not...
 479     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 480     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 481   }
 482 
 483   const CodeSection* prev_cs      = NULL;
 484   CodeSection*       prev_dest_cs = NULL;
 485 
 486   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 487     // figure compact layout of each section
 488     const CodeSection* cs = code_section(n);
 489     csize_t csize = cs->size();
 490 
 491     CodeSection* dest_cs = dest->code_section(n);
 492     if (!cs->is_empty()) {
 493       // Compute initial padding; assign it to the previous non-empty guy.
 494       // Cf. figure_expanded_capacities.
 495       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 496       if (padding != 0) {
 497         buf_offset += padding;
 498         assert(prev_dest_cs != NULL, "sanity");
 499         prev_dest_cs->_limit += padding;
 500       }
 501       #ifdef ASSERT
 502       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 503         // Make sure the ends still match up.
 504         // This is important because a branch in a frozen section
 505         // might target code in a following section, via a Label,
 506         // and without a relocation record.  See Label::patch_instructions.
 507         address dest_start = buf+buf_offset;
 508         csize_t start2start = cs->start() - prev_cs->start();
 509         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 510         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 511       }
 512       #endif //ASSERT
 513       prev_dest_cs = dest_cs;
 514       prev_cs      = cs;
 515     }
 516 
 517     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 518     dest_cs->initialize(buf+buf_offset, csize);
 519     dest_cs->set_end(buf+buf_offset+csize);
 520     assert(dest_cs->is_allocated(), "must always be allocated");
 521     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 522 
 523     buf_offset += csize;
 524   }
 525 
 526   // Done calculating sections; did it come out to the right end?
 527   assert(buf_offset == total_content_size(), "sanity");
 528   dest->verify_section_allocation();
 529 }
 530 
 531 // Append an oop reference that keeps the class alive.
 532 static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
 533   oop cl = k->klass_holder();
 534   if (cl != NULL && !oops->contains(cl)) {
 535     oops->append(cl);
 536   }
 537 }
 538 
 539 void CodeBuffer::finalize_oop_references(const methodHandle& mh) {
 540   NoSafepointVerifier nsv;
 541 
 542   GrowableArray<oop> oops;
 543 
 544   // Make sure that immediate metadata records something in the OopRecorder
 545   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 546     // pull code out of each section
 547     CodeSection* cs = code_section(n);
 548     if (cs->is_empty())  continue;  // skip trivial section
 549     RelocIterator iter(cs);
 550     while (iter.next()) {
 551       if (iter.type() == relocInfo::metadata_type) {
 552         metadata_Relocation* md = iter.metadata_reloc();
 553         if (md->metadata_is_immediate()) {
 554           Metadata* m = md->metadata_value();
 555           if (oop_recorder()->is_real(m)) {
 556             if (m->is_methodData()) {
 557               m = ((MethodData*)m)->method();
 558             }
 559             if (m->is_method()) {
 560               m = ((Method*)m)->method_holder();
 561             }
 562             if (m->is_klass()) {
 563               append_oop_references(&oops, (Klass*)m);
 564             } else {
 565               // XXX This will currently occur for MDO which don't
 566               // have a backpointer.  This has to be fixed later.
 567               m->print();
 568               ShouldNotReachHere();
 569             }
 570           }
 571         }
 572       }
 573     }
 574   }
 575 
 576   if (!oop_recorder()->is_unused()) {
 577     for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
 578       Metadata* m = oop_recorder()->metadata_at(i);
 579       if (oop_recorder()->is_real(m)) {
 580         if (m->is_methodData()) {
 581           m = ((MethodData*)m)->method();
 582         }
 583         if (m->is_method()) {
 584           m = ((Method*)m)->method_holder();
 585         }
 586         if (m->is_klass()) {
 587           append_oop_references(&oops, (Klass*)m);
 588         } else {
 589           m->print();
 590           ShouldNotReachHere();
 591         }
 592       }
 593     }
 594 
 595   }
 596 
 597   // Add the class loader of Method* for the nmethod itself
 598   append_oop_references(&oops, mh->method_holder());
 599 
 600   // Add any oops that we've found
 601   Thread* thread = Thread::current();
 602   for (int i = 0; i < oops.length(); i++) {
 603     oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
 604   }
 605 }
 606 
 607 
 608 
 609 csize_t CodeBuffer::total_offset_of(const CodeSection* cs) const {
 610   csize_t size_so_far = 0;
 611   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 612     const CodeSection* cur_cs = code_section(n);
 613     if (!cur_cs->is_empty()) {
 614       size_so_far = cur_cs->align_at_start(size_so_far);
 615     }
 616     if (cur_cs->index() == cs->index()) {
 617       return size_so_far;
 618     }
 619     size_so_far += cur_cs->size();
 620   }
 621   ShouldNotReachHere();
 622   return -1;
 623 }
 624 
 625 csize_t CodeBuffer::total_relocation_size() const {
 626   csize_t lsize = copy_relocations_to(NULL);  // dry run only
 627   csize_t csize = total_content_size();
 628   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
 629   return (csize_t) align_size_up(total, HeapWordSize);
 630 }
 631 
 632 csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const {
 633   csize_t buf_offset = 0;
 634   csize_t code_end_so_far = 0;
 635   csize_t code_point_so_far = 0;
 636 
 637   assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 638   assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 639 
 640   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 641     if (only_inst && (n != (int)SECT_INSTS)) {
 642       // Need only relocation info for code.
 643       continue;
 644     }
 645     // pull relocs out of each section
 646     const CodeSection* cs = code_section(n);
 647     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 648     if (cs->is_empty())  continue;  // skip trivial section
 649     relocInfo* lstart = cs->locs_start();
 650     relocInfo* lend   = cs->locs_end();
 651     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 652     csize_t    csize  = cs->size();
 653     code_end_so_far = cs->align_at_start(code_end_so_far);
 654 
 655     if (lsize > 0) {
 656       // Figure out how to advance the combined relocation point
 657       // first to the beginning of this section.
 658       // We'll insert one or more filler relocs to span that gap.
 659       // (Don't bother to improve this by editing the first reloc's offset.)
 660       csize_t new_code_point = code_end_so_far;
 661       for (csize_t jump;
 662            code_point_so_far < new_code_point;
 663            code_point_so_far += jump) {
 664         jump = new_code_point - code_point_so_far;
 665         relocInfo filler = filler_relocInfo();
 666         if (jump >= filler.addr_offset()) {
 667           jump = filler.addr_offset();
 668         } else {  // else shrink the filler to fit
 669           filler = relocInfo(relocInfo::none, jump);
 670         }
 671         if (buf != NULL) {
 672           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 673           *(relocInfo*)(buf+buf_offset) = filler;
 674         }
 675         buf_offset += sizeof(filler);
 676       }
 677 
 678       // Update code point and end to skip past this section:
 679       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 680       assert(code_point_so_far <= last_code_point, "sanity");
 681       code_point_so_far = last_code_point; // advance past this guy's relocs
 682     }
 683     code_end_so_far += csize;  // advance past this guy's instructions too
 684 
 685     // Done with filler; emit the real relocations:
 686     if (buf != NULL && lsize != 0) {
 687       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 688       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 689       if (buf_offset % HeapWordSize == 0) {
 690         // Use wordwise copies if possible:
 691         Copy::disjoint_words((HeapWord*)lstart,
 692                              (HeapWord*)(buf+buf_offset),
 693                              (lsize + HeapWordSize-1) / HeapWordSize);
 694       } else {
 695         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 696       }
 697     }
 698     buf_offset += lsize;
 699   }
 700 
 701   // Align end of relocation info in target.
 702   while (buf_offset % HeapWordSize != 0) {
 703     if (buf != NULL) {
 704       relocInfo padding = relocInfo(relocInfo::none, 0);
 705       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 706       *(relocInfo*)(buf+buf_offset) = padding;
 707     }
 708     buf_offset += sizeof(relocInfo);
 709   }
 710 
 711   assert(only_inst || code_end_so_far == total_content_size(), "sanity");
 712 
 713   return buf_offset;
 714 }
 715 
 716 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 717   address buf = NULL;
 718   csize_t buf_offset = 0;
 719   csize_t buf_limit = 0;
 720 
 721   if (dest != NULL) {
 722     buf = (address)dest->relocation_begin();
 723     buf_limit = (address)dest->relocation_end() - buf;
 724   }
 725   // if dest == NULL, this is just the sizing pass
 726   //
 727   buf_offset = copy_relocations_to(buf, buf_limit, false);
 728 
 729   // Account for index:
 730   if (buf != NULL) {
 731     RelocIterator::create_index(dest->relocation_begin(),
 732                                 buf_offset / sizeof(relocInfo),
 733                                 dest->relocation_end());
 734   }
 735 
 736   return buf_offset;
 737 }
 738 
 739 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 740 #ifndef PRODUCT
 741   if (PrintNMethods && (WizardMode || Verbose)) {
 742     tty->print("done with CodeBuffer:");
 743     ((CodeBuffer*)this)->print();
 744   }
 745 #endif //PRODUCT
 746 
 747   CodeBuffer dest(dest_blob);
 748   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 749   this->compute_final_layout(&dest);
 750 
 751   // Set beginning of constant table before relocating.
 752   dest_blob->set_ctable_begin(dest.consts()->start());
 753 
 754   relocate_code_to(&dest);
 755 
 756   // transfer strings and comments from buffer to blob
 757   dest_blob->set_strings(_code_strings);
 758 
 759   // Done moving code bytes; were they the right size?
 760   assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 761 
 762   // Flush generated code
 763   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 764 }
 765 
 766 // Move all my code into another code buffer.  Consult applicable
 767 // relocs to repair embedded addresses.  The layout in the destination
 768 // CodeBuffer is different to the source CodeBuffer: the destination
 769 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 770 // ascending address).
 771 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 772   address dest_end = dest->_total_start + dest->_total_size;
 773   address dest_filled = NULL;
 774   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 775     // pull code out of each section
 776     const CodeSection* cs = code_section(n);
 777     if (cs->is_empty())  continue;  // skip trivial section
 778     CodeSection* dest_cs = dest->code_section(n);
 779     assert(cs->size() == dest_cs->size(), "sanity");
 780     csize_t usize = dest_cs->size();
 781     csize_t wsize = align_size_up(usize, HeapWordSize);
 782     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 783     // Copy the code as aligned machine words.
 784     // This may also include an uninitialized partial word at the end.
 785     Copy::disjoint_words((HeapWord*)cs->start(),
 786                          (HeapWord*)dest_cs->start(),
 787                          wsize / HeapWordSize);
 788 
 789     if (dest->blob() == NULL) {
 790       // Destination is a final resting place, not just another buffer.
 791       // Normalize uninitialized bytes in the final padding.
 792       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 793                           Assembler::code_fill_byte());
 794     }
 795     // Keep track of the highest filled address
 796     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
 797 
 798     assert(cs->locs_start() != (relocInfo*)badAddress,
 799            "this section carries no reloc storage, but reloc was attempted");
 800 
 801     // Make the new code copy use the old copy's relocations:
 802     dest_cs->initialize_locs_from(cs);
 803   }
 804 
 805   // Do relocation after all sections are copied.
 806   // This is necessary if the code uses constants in stubs, which are
 807   // relocated when the corresponding instruction in the code (e.g., a
 808   // call) is relocated. Stubs are placed behind the main code
 809   // section, so that section has to be copied before relocating.
 810   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 811     // pull code out of each section
 812     const CodeSection* cs = code_section(n);
 813     if (cs->is_empty()) continue;  // skip trivial section
 814     CodeSection* dest_cs = dest->code_section(n);
 815     { // Repair the pc relative information in the code after the move
 816       RelocIterator iter(dest_cs);
 817       while (iter.next()) {
 818         iter.reloc()->fix_relocation_after_move(this, dest);
 819       }
 820     }
 821   }
 822 
 823   if (dest->blob() == NULL && dest_filled != NULL) {
 824     // Destination is a final resting place, not just another buffer.
 825     // Normalize uninitialized bytes in the final padding.
 826     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
 827                         Assembler::code_fill_byte());
 828 
 829   }
 830 }
 831 
 832 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 833                                                csize_t amount,
 834                                                csize_t* new_capacity) {
 835   csize_t new_total_cap = 0;
 836 
 837   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 838     const CodeSection* sect = code_section(n);
 839 
 840     if (!sect->is_empty()) {
 841       // Compute initial padding; assign it to the previous section,
 842       // even if it's empty (e.g. consts section can be empty).
 843       // Cf. compute_final_layout
 844       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 845       if (padding != 0) {
 846         new_total_cap += padding;
 847         assert(n - 1 >= SECT_FIRST, "sanity");
 848         new_capacity[n - 1] += padding;
 849       }
 850     }
 851 
 852     csize_t exp = sect->size();  // 100% increase
 853     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 854     if (sect == which_cs) {
 855       if (exp < amount)  exp = amount;
 856       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 857     } else if (n == SECT_INSTS) {
 858       // scale down inst increases to a more modest 25%
 859       exp = 4*K + ((exp - 4*K) >> 2);
 860       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 861     } else if (sect->is_empty()) {
 862       // do not grow an empty secondary section
 863       exp = 0;
 864     }
 865     // Allow for inter-section slop:
 866     exp += CodeSection::end_slop();
 867     csize_t new_cap = sect->size() + exp;
 868     if (new_cap < sect->capacity()) {
 869       // No need to expand after all.
 870       new_cap = sect->capacity();
 871     }
 872     new_capacity[n] = new_cap;
 873     new_total_cap += new_cap;
 874   }
 875 
 876   return new_total_cap;
 877 }
 878 
 879 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 880 #ifndef PRODUCT
 881   if (PrintNMethods && (WizardMode || Verbose)) {
 882     tty->print("expanding CodeBuffer:");
 883     this->print();
 884   }
 885 
 886   if (StressCodeBuffers && blob() != NULL) {
 887     static int expand_count = 0;
 888     if (expand_count >= 0)  expand_count += 1;
 889     if (expand_count > 100 && is_power_of_2(expand_count)) {
 890       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 891       // simulate an occasional allocation failure:
 892       free_blob();
 893     }
 894   }
 895 #endif //PRODUCT
 896 
 897   // Resizing must be allowed
 898   {
 899     if (blob() == NULL)  return;  // caller must check for blob == NULL
 900     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 901       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 902     }
 903   }
 904 
 905   // Figure new capacity for each section.
 906   csize_t new_capacity[SECT_LIMIT];
 907   memset(new_capacity, 0, sizeof(csize_t) * SECT_LIMIT);
 908   csize_t new_total_cap
 909     = figure_expanded_capacities(which_cs, amount, new_capacity);
 910 
 911   // Create a new (temporary) code buffer to hold all the new data
 912   CodeBuffer cb(name(), new_total_cap, 0);
 913   if (cb.blob() == NULL) {
 914     // Failed to allocate in code cache.
 915     free_blob();
 916     return;
 917   }
 918 
 919   // Create an old code buffer to remember which addresses used to go where.
 920   // This will be useful when we do final assembly into the code cache,
 921   // because we will need to know how to warp any internal address that
 922   // has been created at any time in this CodeBuffer's past.
 923   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 924   bxp->take_over_code_from(this);  // remember the old undersized blob
 925   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 926   bxp->_before_expand = this->_before_expand;
 927   this->_before_expand = bxp;
 928 
 929   // Give each section its required (expanded) capacity.
 930   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 931     CodeSection* cb_sect   = cb.code_section(n);
 932     CodeSection* this_sect = code_section(n);
 933     if (new_capacity[n] == 0)  continue;  // already nulled out
 934     if (n != SECT_INSTS) {
 935       cb.initialize_section_size(cb_sect, new_capacity[n]);
 936     }
 937     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 938     address cb_start = cb_sect->start();
 939     cb_sect->set_end(cb_start + this_sect->size());
 940     if (this_sect->mark() == NULL) {
 941       cb_sect->clear_mark();
 942     } else {
 943       cb_sect->set_mark(cb_start + this_sect->mark_off());
 944     }
 945   }
 946 
 947   // Needs to be initialized when calling fix_relocation_after_move.
 948   cb.blob()->set_ctable_begin(cb.consts()->start());
 949 
 950   // Move all the code and relocations to the new blob:
 951   relocate_code_to(&cb);
 952 
 953   // Copy the temporary code buffer into the current code buffer.
 954   // Basically, do {*this = cb}, except for some control information.
 955   this->take_over_code_from(&cb);
 956   cb.set_blob(NULL);
 957 
 958   // Zap the old code buffer contents, to avoid mistakenly using them.
 959   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 960                                  badCodeHeapFreeVal));
 961 
 962   _decode_begin = NULL;  // sanity
 963 
 964   // Make certain that the new sections are all snugly inside the new blob.
 965   verify_section_allocation();
 966 
 967 #ifndef PRODUCT
 968   if (PrintNMethods && (WizardMode || Verbose)) {
 969     tty->print("expanded CodeBuffer:");
 970     this->print();
 971   }
 972 #endif //PRODUCT
 973 }
 974 
 975 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 976   // Must already have disposed of the old blob somehow.
 977   assert(blob() == NULL, "must be empty");
 978   // Take the new blob away from cb.
 979   set_blob(cb->blob());
 980   // Take over all the section pointers.
 981   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 982     CodeSection* cb_sect   = cb->code_section(n);
 983     CodeSection* this_sect = code_section(n);
 984     this_sect->take_over_code_from(cb_sect);
 985   }
 986   _overflow_arena = cb->_overflow_arena;
 987   // Make sure the old cb won't try to use it or free it.
 988   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 989 }
 990 
 991 void CodeBuffer::verify_section_allocation() {
 992   address tstart = _total_start;
 993   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
 994   address tend   = tstart + _total_size;
 995   if (_blob != NULL) {
 996 
 997     guarantee(tstart >= _blob->content_begin(), "sanity");
 998     guarantee(tend   <= _blob->content_end(),   "sanity");
 999   }
1000   // Verify disjointness.
1001   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
1002     CodeSection* sect = code_section(n);
1003     if (!sect->is_allocated() || sect->is_empty())  continue;
1004     guarantee((intptr_t)sect->start() % sect->alignment() == 0
1005            || sect->is_empty() || _blob == NULL,
1006            "start is aligned");
1007     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
1008       CodeSection* other = code_section(m);
1009       if (!other->is_allocated() || other == sect)  continue;
1010       guarantee(!other->contains(sect->start()    ), "sanity");
1011       // limit is an exclusive address and can be the start of another
1012       // section.
1013       guarantee(!other->contains(sect->limit() - 1), "sanity");
1014     }
1015     guarantee(sect->end() <= tend, "sanity");
1016     guarantee(sect->end() <= sect->limit(), "sanity");
1017   }
1018 }
1019 
1020 void CodeBuffer::log_section_sizes(const char* name) {
1021   if (xtty != NULL) {
1022     ttyLocker ttyl;
1023     // log info about buffer usage
1024     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
1025     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
1026       CodeSection* sect = code_section(n);
1027       if (!sect->is_allocated() || sect->is_empty())  continue;
1028       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
1029                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
1030     }
1031     xtty->print_cr("</blob>");
1032   }
1033 }
1034 
1035 #ifndef PRODUCT
1036 
1037 void CodeSection::dump() {
1038   address ptr = start();
1039   for (csize_t step; ptr < end(); ptr += step) {
1040     step = end() - ptr;
1041     if (step > jintSize * 4)  step = jintSize * 4;
1042     tty->print(INTPTR_FORMAT ": ", p2i(ptr));
1043     while (step > 0) {
1044       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
1045       ptr += jintSize;
1046     }
1047     tty->cr();
1048   }
1049 }
1050 
1051 
1052 void CodeSection::decode() {
1053   Disassembler::decode(start(), end());
1054 }
1055 
1056 
1057 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1058   _code_strings.add_comment(offset, comment);
1059 }
1060 
1061 const char* CodeBuffer::code_string(const char* str) {
1062   return _code_strings.add_string(str);
1063 }
1064 
1065 class CodeString: public CHeapObj<mtCode> {
1066  private:
1067   friend class CodeStrings;
1068   const char * _string;
1069   CodeString*  _next;
1070   intptr_t     _offset;
1071 
1072   ~CodeString() {
1073     assert(_next == NULL, "wrong interface for freeing list");
1074     os::free((void*)_string);
1075   }
1076 
1077   bool is_comment() const { return _offset >= 0; }
1078 
1079  public:
1080   CodeString(const char * string, intptr_t offset = -1)
1081     : _next(NULL), _offset(offset) {
1082     _string = os::strdup(string, mtCode);
1083   }
1084 
1085   const char * string() const { return _string; }
1086   intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1087   CodeString* next()    const { return _next; }
1088 
1089   void set_next(CodeString* next) { _next = next; }
1090 
1091   CodeString* first_comment() {
1092     if (is_comment()) {
1093       return this;
1094     } else {
1095       return next_comment();
1096     }
1097   }
1098   CodeString* next_comment() const {
1099     CodeString* s = _next;
1100     while (s != NULL && !s->is_comment()) {
1101       s = s->_next;
1102     }
1103     return s;
1104   }
1105 };
1106 
1107 CodeString* CodeStrings::find(intptr_t offset) const {
1108   CodeString* a = _strings->first_comment();
1109   while (a != NULL && a->offset() != offset) {
1110     a = a->next_comment();
1111   }
1112   return a;
1113 }
1114 
1115 // Convenience for add_comment.
1116 CodeString* CodeStrings::find_last(intptr_t offset) const {
1117   CodeString* a = find(offset);
1118   if (a != NULL) {
1119     CodeString* c = NULL;
1120     while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1121       a = c;
1122     }
1123   }
1124   return a;
1125 }
1126 
1127 void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1128   check_valid();
1129   CodeString* c      = new CodeString(comment, offset);
1130   CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1131 
1132   if (inspos) {
1133     // insert after already existing comments with same offset
1134     c->set_next(inspos->next());
1135     inspos->set_next(c);
1136   } else {
1137     // no comments with such offset, yet. Insert before anything else.
1138     c->set_next(_strings);
1139     _strings = c;
1140   }
1141 }
1142 
1143 void CodeStrings::assign(CodeStrings& other) {
1144   other.check_valid();
1145   assert(is_null(), "Cannot assign onto non-empty CodeStrings");
1146   _strings = other._strings;
1147 #ifdef ASSERT
1148   _defunct = false;
1149 #endif
1150   other.set_null_and_invalidate();
1151 }
1152 
1153 // Deep copy of CodeStrings for consistent memory management.
1154 // Only used for actual disassembly so this is cheaper than reference counting
1155 // for the "normal" fastdebug case.
1156 void CodeStrings::copy(CodeStrings& other) {
1157   other.check_valid();
1158   check_valid();
1159   assert(is_null(), "Cannot copy onto non-empty CodeStrings");
1160   CodeString* n = other._strings;
1161   CodeString** ps = &_strings;
1162   while (n != NULL) {
1163     *ps = new CodeString(n->string(),n->offset());
1164     ps = &((*ps)->_next);
1165     n = n->next();
1166   }
1167 }
1168 
1169 const char* CodeStrings::_prefix = " ;; ";  // default: can be changed via set_prefix
1170 
1171 void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1172     check_valid();
1173     if (_strings != NULL) {
1174     CodeString* c = find(offset);
1175     while (c && c->offset() == offset) {
1176       stream->bol();
1177       stream->print("%s", _prefix);
1178       // Don't interpret as format strings since it could contain %
1179       stream->print_raw_cr(c->string());
1180       c = c->next_comment();
1181     }
1182   }
1183 }
1184 
1185 // Also sets isNull()
1186 void CodeStrings::free() {
1187   CodeString* n = _strings;
1188   while (n) {
1189     // unlink the node from the list saving a pointer to the next
1190     CodeString* p = n->next();
1191     n->set_next(NULL);
1192     delete n;
1193     n = p;
1194   }
1195   set_null_and_invalidate();
1196 }
1197 
1198 const char* CodeStrings::add_string(const char * string) {
1199   check_valid();
1200   CodeString* s = new CodeString(string);
1201   s->set_next(_strings);
1202   _strings = s;
1203   assert(s->string() != NULL, "should have a string");
1204   return s->string();
1205 }
1206 
1207 void CodeBuffer::decode() {
1208   ttyLocker ttyl;
1209   Disassembler::decode(decode_begin(), insts_end());
1210   _decode_begin = insts_end();
1211 }
1212 
1213 
1214 void CodeBuffer::skip_decode() {
1215   _decode_begin = insts_end();
1216 }
1217 
1218 
1219 void CodeBuffer::decode_all() {
1220   ttyLocker ttyl;
1221   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1222     // dump contents of each section
1223     CodeSection* cs = code_section(n);
1224     tty->print_cr("! %s:", code_section_name(n));
1225     if (cs != consts())
1226       cs->decode();
1227     else
1228       cs->dump();
1229   }
1230 }
1231 
1232 
1233 void CodeSection::print(const char* name) {
1234   csize_t locs_size = locs_end() - locs_start();
1235   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1236                 name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1237                 is_frozen()? " [frozen]": "");
1238   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1239                 name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1240   if (PrintRelocations) {
1241     RelocIterator iter(this);
1242     iter.print();
1243   }
1244 }
1245 
1246 void CodeBuffer::print() {
1247   if (this == NULL) {
1248     tty->print_cr("NULL CodeBuffer pointer");
1249     return;
1250   }
1251 
1252   tty->print_cr("CodeBuffer:");
1253   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1254     // print each section
1255     CodeSection* cs = code_section(n);
1256     cs->print(code_section_name(n));
1257   }
1258 }
1259 
1260 #endif // PRODUCT